CA2484725A1 - Hsdpa cqi, ack, nack power offset known in node b and in srnc - Google Patents

Hsdpa cqi, ack, nack power offset known in node b and in srnc Download PDF

Info

Publication number
CA2484725A1
CA2484725A1 CA002484725A CA2484725A CA2484725A1 CA 2484725 A1 CA2484725 A1 CA 2484725A1 CA 002484725 A CA002484725 A CA 002484725A CA 2484725 A CA2484725 A CA 2484725A CA 2484725 A1 CA2484725 A1 CA 2484725A1
Authority
CA
Canada
Prior art keywords
rnc
node
sending
signal
indicative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CA002484725A
Other languages
French (fr)
Other versions
CA2484725C (en
Inventor
Woonhee Hwang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Microsoft Technology Licensing LLC
Original Assignee
Nokia Corporation
Woonhee Hwang
Nokia 2011 Patent Trust
2011 Intellectual Property Asset Trust
Core Wireless Licensing S.A.R.L.
Microsoft Technology Licensing, Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nokia Corporation, Woonhee Hwang, Nokia 2011 Patent Trust, 2011 Intellectual Property Asset Trust, Core Wireless Licensing S.A.R.L., Microsoft Technology Licensing, Llc filed Critical Nokia Corporation
Publication of CA2484725A1 publication Critical patent/CA2484725A1/en
Application granted granted Critical
Publication of CA2484725C publication Critical patent/CA2484725C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0028Formatting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1671Details of the supervisory signal the supervisory signal being transmitted together with control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/16Deriving transmission power values from another channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/26TPC being performed according to specific parameters using transmission rate or quality of service QoS [Quality of Service]
    • H04W52/262TPC being performed according to specific parameters using transmission rate or quality of service QoS [Quality of Service] taking into account adaptive modulation and coding [AMC] scheme
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/28TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission
    • H04W52/286TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission during data packet transmission, e.g. high speed packet access [HSPA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/12Setup of transport tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • H04L1/1819Hybrid protocols; Hybrid automatic repeat request [HARQ] with retransmission of additional or different redundancy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1887Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/48TPC being performed in particular situations during retransmission after error or non-acknowledgment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/50TPC being performed in particular situations at the moment of starting communication in a multiple access environment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/54Signalisation aspects of the TPC commands, e.g. frame structure
    • H04W52/58Format of the TPC bits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/04Interfaces between hierarchically different network devices
    • H04W92/12Interfaces between hierarchically different network devices between access points and access point controllers

Abstract

High speed data packet access (HSDPA) is facilitated by ensuring that power offsets are delivered to the base station (Node B) so that the new functions envisioned therefor having to do with scheduling and retransmission handling can be carried out effectively. A signal primitive having one or more information elements indicative of corresponding power offsets are received by the Node B, saved for future use and then signalled back to the serving radio network controller so that the user equipment can be informed with a proper RRC message containing the appropriate power offsets.

Claims (28)

1. Method for execution in a radio access network (RAN), comprising the steps of:
receiving by a base station (Node B) of said RAN a radio link (RL) setup request signal from a serving radio network controller (S-RNC), said signal having one or more information elements (IEs) indicative of one or more corresponding power offsets (POs), and saving said one or more POs in said Node B, and sending from said Node B an RL setup response signal to said S-RNC with IEs indicating receipt of said one or more POs from said S-RNC.
2. The method of claim 1, wherein said RL setup request signal includes a handover (HO) indication instead of said IEs and wherein said method further comprises the step of said Node B determining said one or more IEs and then carrying out said step of saving said one or more POs in said Node B and sending from said Node B an RL setup response signal to said S-RNC indicating said one or more POs determined by said Node B.
3. The method of claim 1, further comprising the steps of:
sending from said S-RNC said RL setup request signal to a drift radio network controller (D-RNC) associated with said Node B, and sending said RL setup request signal from said D-RNC to said Node B.
4. The method of claim 3, further comprising the step of sending a radio resource controller (RRC) message signal from said S-RNC to a user equipment (UE) indicative of said one or more IEs sent to or received from said Node B.
5. The method of claim 4, wherein said RRC message signal is sent from said S-RNC to said UE.
6. The method of claim 1, further comprising the step of sending a radio resource controller (RRC) message signal from said S-RNC to a user equipment (UE) indicative of said one or more IEs sent to said Node B.
7. The method of claim 6, wherein said RRC message signal is sent from said S-RNC to said UE.
8. The method of claim 1, wherein said IEs include an IE indicative of power offset used in an uplink (UL) between a high speed dedicated physical control channel (HS-DPCCH) slot carrying hybrid automatic repeat request (H-ARQ) information and an associated dedicated physical control channel (DPCCH).
9. The method of claim 8, wherein said H-ARQ information is H-ARQ acknowledge (ACK) information.
10. The method of claim 1, wherein said IEs include an IE having a channel quality indicator (CQl) indicative of power offset used in an uplink (UL) between an HS-DPCCH
slot carrying CQl information and said associated DPCCH.
11. The method of claim 3, further comprising the steps of:
receiving a RL reconfiguration prepare message signal according to a control plane protocol from said S-RNC at said Node B directly or via said D-RNC with changes to said one or more IEs, changing one or more corresponding POs at said Node B, and sending an RL reconfiguration ready message signal according to said control plane protocol from said Node B to said S-RNC directly or via said D-RNC.
12. The method of claim 11, further comprising the steps of:
sending from said S-RNC said RL reconfiguration prepare message signal to said Node B directly or via said D-RNC, and sending an RRC message signal from said S-RNC to a user equipment (UE) indicative of said one or more IEs sent to said Node B.
13. The method of claim 3, further comprising the steps of:
receiving a radio interface parameter update signal according to a user plane protocol directly from said S-RNC at said Node B or via said D-RNC with changes to said one or more IEs, and changing one or more corresponding POs at said Node B.
14. The method of claim 13, further comprising the steps of:
sending from said S-RNC said radio interface parameter update signal directly to said Node B or via said D-RNC, and sending an RRC message signal from said S-RNC to a user equipment (UE) indicative of said update signal sent to said Node B.
15. Method, comprising the steps of:
sending a radio link (RL) setup request signal from a radio network subsystem application part from a serving radio network controller (S-RNC) to a radio network subsystem application part (RNSAP) of a drift radio network controller (D-RNC) using radio network layer signaling procedures (RNSAP) specified for use between two radio network controllers, said RL setup request signal including one or more information elements indicative of power offsets (PO) including at least one of a channel quality indicator (CQI) PO, an acknowledge (ACK) PO and a negative acknowledge (NACK) PO, sending said radio link setup request signal from a Node B application part (NBAP) of said D-RNC to an NEAP of a Node B associated with said D-RNC for future use by said Node B, sending a radio link setup response signal from said NBAP of said Node B to said NBAP of said D-RNC indicative of receipt of said RL setup request signal by said NBAP of said Node B, sending said radio link setup response signal from said RNSAP of said D-RNC
to said RNSAP of said S-RNC, and sending a radio resource controller (RRC) message signal from said S-RNC to a user equipment indicative of said one or more information elements.
16. Apparatus for use in a radio access network (RAN), comprising:
an application part (514) of a base station (Node B) of said RAN, responsive to a radio link (RL) setup request signal (510) received via a drift radio network controller (D-RNC) associated with said Node B or directly from a serving radio network controller (S-RNC), said signal having one or more information elements (IEs) indicative of one or more corresponding power offsets (POs); and a memory (518) in said Node B for storing said one or more POs in said Node B, said application part for sending from said Node B an RL setup response signal to said S-RNC directly or via said D-RNC for indicating receipt of said one or more POs from said S-RNC.
17. The apparatus of claim 16, wherein said RL setup request signal includes a handover (HO) indication instead of said IEs and wherein said Node B includes means for determining said one or more POs and for storing said one or more POs in said memory and for sending an RL setup response signal to said S-RNC indicating said one or more Pos determined by said Node B.
18. The apparatus of claim 16, wherein said S-RNC is for sending a radio resource controller (RRC) message signal to a user equipment (UE) indicative of said one or more IEs sent to or received from said Node B.
19. The apparatus of claim 16, wherein said IEs include an IE indicative of power offset used in an uplink (UL) between a high speed dedicated physical control channel (HS-DPCCH) slot carrying hybrid automatic repeat request (H-ARQ) information and an associated dedicated physical control channel (DPCCH).
20. The apparatus of claim 19, wherein said H-ARQ information is H-ARQ
acknowledge (ACK) information.
21. The method of claim 16, wherein said IEs include an IE having a channel quality indicator (CQI) indicative of power offset used in an uplink (UL) between an HS-DPCCH
slot carrying CQI information and said associated DPCCH.
22. The apparatus of claim 16, wherein:
said Node B is responsive to a RL reconfiguration prepare message signal according to a control plane protocol from said S-RNC directly or via said D-RNC with changes to said one or more IEs, for changing one or more corresponding POs at said Node B, and for sending an RL reconfiguration ready message signal according to said control plane protocol from said Node B to said S-RNC directly or via said D-RNC.
23. The apparatus of claim 22, wherein said S-RNC is also for sending an RRC
message signal to a user equipment (UE) indicative of said one or more IEs sent to said Node B.
24. The apparatus of claim 16, wherein a radio interface parameter update signal according to a user plane protocol is received from said S-RNC at said Node B
directly or via said D-RNC with changes to said one or more IEs, and, in response thereto, said Node B changes one or more corresponding POs.
25. The apparatus of claim 24, wherein said S-RNC sends said radio interface parameter update signal to said Node B directly or via said D-RNC, and also sends an RRC message signal to a user equipment (UE) indicative of said update signal sent to said Node B.
26. System, comprising:
a serving radio network controller (S-RNC) for sending a radio link (RL) setup request signal from a radio network subsystem application part (RNSAP) thereof to a RNSAP of a drift radio network controller (D-RNC) using radio network layer signaling procedures specified for use between two radio network controllers, said RL
setup request signal including one or more information elements indicative of power offsets (PO) including at least one of a channel quality indicator (CQI) PO, an acknowledge (ACK) PO and a negative acknowledge (NACK) PO, said D-RNC having a Node B application part (NBAP) for sending said radio link setup request signal to an NBAP of a Node B associated with said D-RNC for future use by said Node B, wherein said NBAP of said Node B is for sending a radio link setup response signal to said NBAP of said D-RNC indicative of receipt of said RL setup request signal by said NBAP of said Node B, wherein said RNSAP of said D-RNC is for sending said radio link setup response signal to said RNSAP of said S-RNC via said RNSAP of said D-RNC, and wherein said S-RNC is for sending a radio resource controller (RRC) message signal to a user equipment (UE) indicative of said one or more information elements.
27. A computer program product for at least temporary storage in a computer readable medium for executing the steps of claim 1.
28. A data structure including a plurality of primitives, each primitive for at least temporary storage in a computer-readable medium at a base station (Node B) and in a computer readable medium at a server (RNC) during transfer of said primitives over a network between the base station and the server, characterized in that the data structure includes a radio link reconfiguration prepare primitive provided from said server to said base station including at least one power offset information element or at least a handover indication, and that in case said handover indication is provided to said base station, and that said data structure includes a radio link set up response primitive from said base station to said server with information elements indicating either said at least one power offset determined by said base station or indicating receipt by said base station of said at least one power offset from said server.
CA2484725A 2002-05-09 2003-05-06 Hsdpa cqi, ack, nack power offset known in node b and in srnc Expired - Fee Related CA2484725C (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US37991702P 2002-05-09 2002-05-09
US60/379,917 2002-05-09
PCT/IB2003/001755 WO2003096707A2 (en) 2002-05-09 2003-05-06 Hsdpa cqi, ack, nack power offset known in node b and in srnc

Publications (2)

Publication Number Publication Date
CA2484725A1 true CA2484725A1 (en) 2003-11-20
CA2484725C CA2484725C (en) 2011-09-13

Family

ID=29420577

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2484725A Expired - Fee Related CA2484725C (en) 2002-05-09 2003-05-06 Hsdpa cqi, ack, nack power offset known in node b and in srnc

Country Status (12)

Country Link
US (3) US7343172B2 (en)
EP (2) EP1502456B1 (en)
JP (2) JP2005525057A (en)
KR (1) KR100721787B1 (en)
CN (1) CN100512536C (en)
AU (2) AU2003223035B2 (en)
CA (1) CA2484725C (en)
ES (1) ES2524440T3 (en)
MY (2) MY144371A (en)
TW (1) TWI234407B (en)
WO (1) WO2003096707A2 (en)
ZA (1) ZA200407553B (en)

Families Citing this family (80)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003228926A1 (en) * 2002-05-10 2003-11-11 Interdigital Technology Corporation Method for monitoring transmission sequence numbers assigned to protocol data units to detect and correct transmission errors
ES2279951T3 (en) * 2002-05-10 2007-09-01 Interdigital Technology Corporation METHOD AND APPLIANCE TO REDUCE ERRORS IN TRANSMISSION LINKS.
TWI357744B (en) 2002-05-10 2012-02-01 Interdigital Tech Corp Cognitive flow control based on channel quality co
KR20030092894A (en) * 2002-05-31 2003-12-06 삼성전자주식회사 Apparatus for determining report period of channel quality in communication system using high speed data packet access scheme and method thereof
US8107885B2 (en) * 2002-10-30 2012-01-31 Motorola Mobility, Inc. Method and apparatus for providing a distributed architecture digital wireless communication system
US7606208B2 (en) 2002-12-09 2009-10-20 Avaya Inc. Distributed architecture for deploying multiple wireless local-area networks
AU2004211063C1 (en) * 2003-02-13 2008-09-18 Core Wireless Licensing S.A.R.L. System and method for improved uplink signal detection and reduced uplink signal power
WO2004073245A1 (en) * 2003-02-14 2004-08-26 Siemens Aktiengesellschaft Data transmission method
DE10315767B4 (en) * 2003-04-07 2005-07-07 Siemens Ag Method for data transmission in a radio communication system
GB2405289B (en) * 2003-08-20 2006-10-25 Ipwireless Inc Method,base station,remote station and system for HSDPA communication
KR20050049622A (en) 2003-11-22 2005-05-27 엘지전자 주식회사 Method of power control for r-cqich and r-ackch in mobile communication
KR101084149B1 (en) 2003-11-13 2011-11-17 엘지전자 주식회사 Transmission power control apparatus in wireless communication system and method thereof
JP4363170B2 (en) * 2003-12-11 2009-11-11 日本電気株式会社 Mobile communication system and mobile radio terminal
US7570968B2 (en) * 2003-12-29 2009-08-04 Samsung Electronics Co., Ltd Method and apparatus for adaptive open-loop power control in mobile communication system using TDD
KR100689452B1 (en) * 2003-12-29 2007-03-08 삼성전자주식회사 Apparatus for adaptive open-loop power control in mobile communication system using time division duplex and the method thereof
US7215655B2 (en) * 2004-01-09 2007-05-08 Interdigital Technology Corporation Transport format combination selection in a wireless transmit/receive unit
JP4534492B2 (en) * 2004-01-14 2010-09-01 日本電気株式会社 Radio network controller and mobile communication system using the same
JP4389605B2 (en) * 2004-02-26 2009-12-24 日本電気株式会社 Multicast information distribution system and multicast information distribution method
US8243633B2 (en) * 2004-03-16 2012-08-14 Nokia Corporation Enhanced uplink dedicated channel—application protocol over lub/lur
EP1583270B1 (en) 2004-04-01 2012-01-25 Panasonic Corporation Interference limitation for retransmissions
CA2564468A1 (en) * 2004-04-30 2005-11-24 Interdigital Technology Corporation Method and system for controlling transmission power of a downlink signaling channel based on enhanced uplink transmission failure statistics
CN100355217C (en) * 2004-05-14 2007-12-12 华为技术有限公司 Power control method for up going dedicated physical control channel in high speed
US7447516B2 (en) * 2004-06-09 2008-11-04 Samsung Electronics Co., Ltd. Method and apparatus for data transmission in a mobile telecommunication system supporting enhanced uplink service
JP4683230B2 (en) 2004-06-17 2011-05-18 日本電気株式会社 Transmission power control method for uplink packet data transmission and mobile communication system
EP1766933A1 (en) * 2004-06-29 2007-03-28 Nokia Corporation Internet high speed packet access
US7372831B2 (en) * 2004-08-11 2008-05-13 Lg Electronics Inc. Packet transmission acknowledgement in wireless communication system
WO2006016775A2 (en) * 2004-08-11 2006-02-16 Lg Electronics Inc. Packet transmission acknowledgement in wireless communication system
FI20045297A0 (en) * 2004-08-16 2004-08-16 Nokia Corp Radio resource control of HSUPA system
SE0402260D0 (en) * 2004-09-15 2004-09-15 Ericsson Telefon Ab L M Method and arrangement in a telecommunication system
DE602004029513D1 (en) * 2004-12-03 2010-11-18 Ericsson Telefon Ab L M ADJUSTING AN UPWARD TRANSMISSION RATE LIMIT FOR MOBILE DEVICES SENDING OVER A USED FAST DOWNWARD TRACK CHANNEL
JP4940548B2 (en) * 2004-12-17 2012-05-30 富士通株式会社 Mobile station
US20060223447A1 (en) * 2005-03-31 2006-10-05 Ali Masoomzadeh-Fard Adaptive down bias to power changes for controlling random walk
EP1722583A1 (en) * 2005-05-11 2006-11-15 Siemens Aktiengesellschaft Beam-hopping in a radio communication system
FI20055242A0 (en) * 2005-05-20 2005-05-20 Nokia Corp Radio resource control in HSUPA system
TWI388151B (en) * 2005-08-10 2013-03-01 Koninkl Philips Electronics Nv A method of operating a communication device and system, a communication device and a system including the communication device
JP4592546B2 (en) * 2005-08-24 2010-12-01 株式会社エヌ・ティ・ティ・ドコモ Transmission power control method and radio network controller
JP4592548B2 (en) 2005-08-24 2010-12-01 株式会社エヌ・ティ・ティ・ドコモ Transmission power control method and mobile communication system
CN100466488C (en) * 2005-09-28 2009-03-04 华为技术有限公司 Method of self-adoptive regulating high-speed share control channel power
WO2007042898A1 (en) * 2005-10-07 2007-04-19 Nokia Corporation Apparatus, method and computer program product providing common pilot channel for soft frequency reuse
CN100456650C (en) * 2005-11-17 2009-01-28 华为技术有限公司 Method for setting power bias and carrying out system dispatching
WO2007091924A1 (en) * 2006-02-07 2007-08-16 Telefonaktiebolaget Lm Ericsson (Publ) Arrangement and method for extended control plane signalling in a high speed packet data communication
US9130791B2 (en) 2006-03-20 2015-09-08 Qualcomm Incorporated Uplink channel estimation using a signaling channel
KR100962460B1 (en) * 2006-03-20 2010-06-14 퀄컴 인코포레이티드 Uplink channel estimation using a signaling channel
CN101416434A (en) * 2006-04-07 2009-04-22 艾利森电话股份有限公司 Method for improved mixing automatic re-transmission request, receiver and transmitter
US20080049667A1 (en) * 2006-08-24 2008-02-28 Futurewei Technologies, Inc. System For Packet-Error Triggered Control Channel Transmissions
KR100876715B1 (en) 2006-08-24 2008-12-31 삼성전자주식회사 Reverse power control method and apparatus in communication system
JPWO2008050574A1 (en) * 2006-10-23 2010-02-25 シャープ株式会社 Mobile communication system, mobile communication method, base station apparatus, and mobile station apparatus
WO2008052780A1 (en) * 2006-10-31 2008-05-08 Telefonaktiebolaget Lm Ericsson (Publ) Method and arrangement for transmitting cqi on the uplink
TWI446807B (en) 2006-11-01 2014-07-21 Lg Electronics Inc Method of transmitting and receiving paging messages in a wireless communication system
WO2008054158A2 (en) 2006-11-01 2008-05-08 Lg Electronics Inc. Methods of transmitting and receiving downlink data in wireless communication system
US8923236B2 (en) 2006-11-01 2014-12-30 Lg Electronics Inc. Method of transmitting and receiving paging messages in a wireless communication system
US8705456B2 (en) * 2007-01-05 2014-04-22 Interdigital Technology Corporation Fast uplink response to downlink shared channel transmission without a dedicated uplink channel
JP5014820B2 (en) * 2007-01-09 2012-08-29 株式会社エヌ・ティ・ティ・ドコモ Mobile communication system, user apparatus and communication method
CN101222663B (en) * 2007-01-12 2012-05-09 中兴通讯股份有限公司 Method and device for acquiring parameters
US8233932B2 (en) * 2007-02-02 2012-07-31 Qualcomm Incorporated Method and apparatus for improving signaling reliability in wireless communications
CN101242206B (en) * 2007-02-07 2012-07-18 中兴通讯股份有限公司 A transmission power transmission method for high-speed downlink packet data access data
CN101039171B (en) * 2007-03-15 2011-08-24 中兴通讯股份有限公司 Method for demodulating ACK slot signal of HS-DPCCH channel
CN101188550B (en) * 2007-03-21 2010-12-08 中兴通讯股份有限公司 Method and device for reporting cell support capability for uplink high-rank modulation
US8064390B2 (en) 2007-04-27 2011-11-22 Research In Motion Limited Uplink scheduling and resource allocation with fast indication
CN106231672B (en) * 2007-04-30 2020-02-21 华为技术有限公司 Communication information sending method and device
CA2690430A1 (en) 2007-06-15 2008-12-18 Research In Motion Limited System and method for link adaptation overhead reduction
MX2009013413A (en) 2007-06-15 2010-01-20 Research In Motion Ltd System and method for semi-persistent and dynamic scheduling and discontinuous reception control.
US9160496B2 (en) 2007-06-29 2015-10-13 Qualcomm Incorporated Methods and apparatus for H-ARQ process memory management
EP2166774B1 (en) 2007-07-06 2014-09-10 Fujitsu Limited Path Switch Control Method for Wireless Communication System, and Controller in that System
ES2784190T3 (en) 2007-08-20 2020-09-23 Blackberry Ltd System and method for DRX and NACK / ACK control
EP2413637B1 (en) 2007-09-14 2013-01-23 Research In Motion Limited System and Method for Discontinuous Reception Control Start Time
KR101440912B1 (en) * 2007-10-25 2014-09-17 인터디지탈 패튼 홀딩스, 인크 Control and transmission of uplink feedback information from a wtru in a cell_fach state
MX2010004636A (en) 2007-10-30 2010-07-02 Nokia Siemens Networks Oy Providing improved scheduling request signaling with ack/nack or cqi.
US8718694B2 (en) * 2007-12-07 2014-05-06 Interdigital Patent Holdings, Inc. Method and apparatus of signaling and procedure to support uplink power level determination
KR101124907B1 (en) * 2008-01-02 2012-06-01 인터디지탈 패튼 홀딩스, 인크 Configuration for cqi reporting in lte
US20090175175A1 (en) 2008-01-04 2009-07-09 Interdigital Patent Holdings, Inc. Radio link control reset using radio resource control signaling
US8644874B2 (en) * 2008-01-07 2014-02-04 Telefonaktiebolaget L M Ericsson (Publ) Uplink power control for power limited terminals
EP2237593B1 (en) * 2008-01-31 2013-11-20 Sharp Kabushiki Kaisha Base station devices, communication system and communication methods
US8412222B2 (en) * 2008-06-27 2013-04-02 Qualcomm Incorporated Broadcast-multicast transmission with rate adaption
EP2408134B1 (en) 2009-03-17 2013-05-15 Huawei Technologies Co., Ltd. Feedback signal coding method and apparatus
US20120230295A1 (en) * 2009-11-10 2012-09-13 Qualcomm Incorporated Method and Apparatus to Support HSDPA ACK/CQI Operation During Baton Handover in TD-SCDMA Systems
CN102547958A (en) 2010-12-10 2012-07-04 中兴通讯股份有限公司 Power offset information transmission method of auxiliary common pilot channel and wireless network controller
CN102300322B (en) * 2011-07-28 2015-02-04 大唐移动通信设备有限公司 Method for reducing high speed uplink packet access (HSUPA) user interference and device
KR102345735B1 (en) * 2014-03-25 2022-01-03 삼성전자 주식회사 Method and apparatus for avoioding simultaneous transmission in wireless communication system supporting a dual connectivity
US11611939B2 (en) 2015-05-13 2023-03-21 Apple Inc. Techniques for determining power offsets of a physical downlink shared channel

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2670973B1 (en) * 1990-12-19 1994-04-15 Ouest Standard Telematique Sa PACKET TRANSMISSION SYSTEM WITH DATA COMPRESSION, METHOD AND EQUIPMENT THEREOF.
US5842113A (en) * 1996-04-10 1998-11-24 Lucent Technologies Inc. Method and apparatus for controlling power in a forward link of a CDMA telecommunications system
US6085108A (en) * 1997-12-15 2000-07-04 Telefonaktiebolaget Lm Ericsson Modified downlink power control during macrodiversity
US6708041B1 (en) * 1997-12-15 2004-03-16 Telefonaktiebolaget Lm (Publ) Base station transmit power control in a CDMA cellular telephone system
EP1058407A1 (en) 1999-04-01 2000-12-06 Alcatel Transmit power correction in a mobile communication system
EP1081979A1 (en) * 1999-08-31 2001-03-07 TELEFONAKTIEBOLAGET L M ERICSSON (publ) Subscriber station, network control means and method for carrying out inter-frequency measurements in a mobile communication system
EP1081977A1 (en) * 1999-08-31 2001-03-07 TELEFONAKTIEBOLAGET L M ERICSSON (publ) Subscriber station, network control means and method for triggering inter-frequency measurements in a mobile communication system
GB9923207D0 (en) * 1999-10-01 1999-12-08 Lucent Technologies Inc Power offset assignment for the physical control channel in universal mobile telecommunications systems (UMTS)
US6618589B1 (en) * 1999-10-27 2003-09-09 Telefonaktiebolaget Lm Ericsson (Publ) Method for performing cell and URA updates in a radio access network
US6590905B1 (en) * 1999-12-22 2003-07-08 Nokia Mobile Phones Ltd. Changing XID/PDCP parameters during connection
US6823193B1 (en) * 2000-02-28 2004-11-23 Telefonaktiebolaget Lm Ericsson (Publ) Downlink transmit power synchronization during diversity communication with a mobile station
US6473624B1 (en) * 2000-03-21 2002-10-29 Telefonaktiebolaget Lm Ericsson (Publ) Determining a reference power level for diversity handover base stations
US6845236B2 (en) * 2000-11-01 2005-01-18 Lg Electronics Inc. Method for concurrent multiple services in a mobile communication system
US7027828B2 (en) * 2000-11-18 2006-04-11 Lg Electronics Inc. Method for controlling power of TFCI field for DSCH in 3G standard mobile communication system
US6983166B2 (en) * 2001-08-20 2006-01-03 Qualcomm, Incorporated Power control for a channel with multiple formats in a communication system
KR100645743B1 (en) * 2001-12-28 2006-11-13 엘지노텔 주식회사 Method of Managing Power in the IMT-2000 System
KR100832117B1 (en) * 2002-02-17 2008-05-27 삼성전자주식회사 Apparatus for transmitting/receiving uplink power offset in communication system using high speed downlink packet access scheme
KR100891816B1 (en) * 2002-05-11 2009-04-07 삼성전자주식회사 Method for transmitting information of power offset of high speed physical downlink shared channel for high speed downlink packet access in wcdma communication system
KR100842654B1 (en) * 2002-09-19 2008-06-30 삼성전자주식회사 Method for determining transmission scheme serving multimedia broadcast/multicast service in mobile communication system

Also Published As

Publication number Publication date
KR20040106502A (en) 2004-12-17
EP1502456B1 (en) 2014-10-08
TW200308171A (en) 2003-12-16
AU2008202581A1 (en) 2008-07-03
CN1653830A (en) 2005-08-10
JP2005525057A (en) 2005-08-18
JP2008113448A (en) 2008-05-15
WO2003096707A2 (en) 2003-11-20
ZA200407553B (en) 2006-06-28
US7343172B2 (en) 2008-03-11
ES2524440T3 (en) 2014-12-09
US7907570B2 (en) 2011-03-15
EP1502456A4 (en) 2007-07-11
AU2003223035B2 (en) 2008-03-20
US20070189223A1 (en) 2007-08-16
EP2846592A1 (en) 2015-03-11
MY144371A (en) 2011-09-15
US20030228876A1 (en) 2003-12-11
MY137845A (en) 2009-03-31
EP2846592B1 (en) 2016-06-08
TWI234407B (en) 2005-06-11
US20080062932A1 (en) 2008-03-13
AU2008202581B2 (en) 2009-03-26
AU2003223035A1 (en) 2003-11-11
WO2003096707A3 (en) 2004-01-29
US7876727B2 (en) 2011-01-25
CN100512536C (en) 2009-07-08
CA2484725C (en) 2011-09-13
KR100721787B1 (en) 2007-05-25
EP1502456A2 (en) 2005-02-02

Similar Documents

Publication Publication Date Title
CA2484725A1 (en) Hsdpa cqi, ack, nack power offset known in node b and in srnc
CN107925916B (en) Uplink data partitioning
CN1462124B (en) Method for determining high-speed physical down share channel power offset and signalling method thereof
JP4662567B2 (en) Radio link parameter updating method in mobile communication system
KR100970206B1 (en) Method and apparatus for cell-specific HSDPA parameter configuration and reconfiguration
JP5344913B2 (en) Signal communication method in mobile communication system
TWI389510B (en) Wireless communication method and apparatus for reporting traffic volume measurement information to support enhanced uplink data transmissions
US8112093B2 (en) Iub/Iur HSDPA/HSUPA mobility procedures when RL addition/RL deletion condition triggers simultaneously, in SRNC, with the HS-DSCH/E-DCH serving cell change condition
JP4819836B2 (en) Peer-to-peer exchange of user equipment measurement information by wireless network controller
CN108306708A (en) A kind of data package processing method and device
EP3562207A1 (en) Data transmission method, network device and terminal device
US6850770B2 (en) Transmit power control (TPC) pattern information in radio link (RL) addition
JP2020526092A5 (en)
RU2420040C2 (en) Improvement of srb along hs-dsch in process of cell replacement
US20160057767A1 (en) Method and apparatus for transreceiving scheduling request in wireless communication system
CN102307391A (en) Method for allocating resources in packet mode in a mobile radio system
CN101989901B (en) Downlink data retransmission judging method and device
EP2166774A1 (en) Path switch control method for wireless communication system, control device used in the system, and wireless base station
KR100953580B1 (en) Transmission rate control method, radio base station, and radio line control station
US20110122839A1 (en) Inter-bss packet-switched handover
CN101005700A (en) Method for Mode B reporting maximum up data speed
CN102013963B (en) Data transmission method and device
CN102264112B (en) Method and device for sending data
EP3166274A1 (en) Method and device for controlling data transmission, and base station
WO2016070336A1 (en) Network device, user equipment (ue) and state transition method

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed

Effective date: 20180507