CA2485174C - Device for fixation of spinous processes - Google Patents

Device for fixation of spinous processes Download PDF

Info

Publication number
CA2485174C
CA2485174C CA2485174A CA2485174A CA2485174C CA 2485174 C CA2485174 C CA 2485174C CA 2485174 A CA2485174 A CA 2485174A CA 2485174 A CA2485174 A CA 2485174A CA 2485174 C CA2485174 C CA 2485174C
Authority
CA
Canada
Prior art keywords
plate
post
plates
spinous processes
socket
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA2485174A
Other languages
French (fr)
Other versions
CA2485174A1 (en
Inventor
Paul Wisnewski
Jonathan Blackwell
W. Barry Null
James C. Robinson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Warsaw Orthopedic Inc
Original Assignee
Warsaw Orthopedic Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Warsaw Orthopedic Inc filed Critical Warsaw Orthopedic Inc
Publication of CA2485174A1 publication Critical patent/CA2485174A1/en
Application granted granted Critical
Publication of CA2485174C publication Critical patent/CA2485174C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
    • A61B17/7062Devices acting on, attached to, or simulating the effect of, vertebral processes, vertebral facets or ribs ; Tools for such devices
    • A61B17/7068Devices comprising separate rigid parts, assembled in situ, to bear on each side of spinous processes; Tools therefor

Abstract

A fixation device for use in association with ALIF procedures includes a couple of spaced plates having integral spikes on facing surfaces thereof for pressing into spinal processes of adjacent vertebrae. One of the plates has a spherical socket which captures a spherical head end of a post whose other end is received through an aperture in the other plate. The socket mounting is arranged to enable the post to pivot therein for at least two degrees of freedom to a limited extent, enabling angulation between the two plates so as to accommodate the different thicknesses and orientations of the spinal processes on adjacent vertebrae. The reception of the post in the second plate enables adjustment of spacing between the plates to accommodate effective installation of the assembly on the spinal processes by a compression instrument, and permanent reliable maintenance of that spacing following removal of the compression instrument. The cross-sectional configuration of the post and a receiver aperture in the plate inhibits rotation of the plate relative to the post about the post axis, and a set screw in the apertured plate engages a flat on the post fixing the inter-plate space as adjusted.

Description

DEVICE FOR FIXATION OF SPINOUS PROCESSES
BACKGROUND OF THE INVENTION
Field of the Invention This invention relates generally to spinal surgery, and more particularly to devices for stabilization of the spine in association with placement of an inter-body construct for interbody fusion or the like.
Description of the Prior Art Varieties of inter-body fusion devices are widely used following partial or total discectomies, for stabilization of the spine at the site. Some stabilization devices are anchored to the pedicles. With several systems, the use of the pedicles requires screws or other anchorage devices that occupy significant space and involve muscle dissection and associated work time for implantation. We believe that such elaborate apparatus and procedures are unnecessary in many instances.
Breard et al. Patent No. 5,011,484 issued April 30, 1991 discloses an artificial ligament used with an elongate insert. A couple of types of systems, one including rods and another including inextensible strips or inextensible bands, are mentioned as background in U.S. Patent No. 5,725,582 issued March 10, 1998 to Bevan et al.
One such mentioned system is to loop inextensible flexible members directly around spinous processes. The Bevan et al. patent discloses a proposed simplification of the loop procedure, by simply winding the band around spinous processes of adjacent vertebrae as in Figs. 1 and 2 of that patent, and then tensioning and crimping them. Bevan et al. shows other versions which involve pedicle screws and hooks. The Howland et al.
Patent No.
5,496,318 uses an arrangement mounted on spinous processes and has a retaining belt 124.
Lumb et al. Patent No. 3,648,691 uses flexible multi-aperiured straps 28 clamped on opposite sides of spinous processes. Vinylidene flouride is given as an example of the strap material and is said to be preferred over machined metal straps. The Kapp et al.
Patent No. 4,554,914 discloses a pair of elongate plates 28 and 30 clamped onto the spinal processes by bolts through holes drilled in the spinal processes. The Samani Patent No.
5,645,599 employs a U-shaped body preferably made of titanium forged in one piece and having upper and lower generally U-shaped brackets with holes therein. The brackets are receivable on spinous processes of adjacent vertebrae and have holes therein to receive bone screws or spikes engaged in the spinous processes and crimped in the holes to anchor the implant thereon.
In our view, and to various degrees, these systems involve one or more of a variety of shortcomings such as size, the necessity of large incisions, difficult manipulation, difficult or excessive drilling or sawing of bone, and permanence and reliability of fixation in association with anterior lumbar interbody fusion (ALIF) procedures. The present invention is directed to overcoming one or more shortcomings encountered with current fixation devices and systems following such procedures.
SUMMARY OF THE INVENTION
Described briefly, according to a typical embodiment of the present invention, a fixation device for use in association with ALIF procedures includes a couple of spaced plates having integral spikes on facing surfaces thereof for pressing into spinal processes of adjacent vertebrae. One of the plates has a socket which captures one end of a post which is received through an aperture in the other plate. The socket mounting is arranged to enable the post to pivot therein for at least two degrees of freedom to a limited extent enabling angulation between the two plates so as to accommodate the different thicknesses and orientations of the spinal processes on adjacent vertebrae. The reception of the post in the second plate enables adjustment of spacing between the plates to accommodate effective installation of the assembly on the spinal processes by a compression instrument, and permanent reliable maintenance of that spacing following removal of the compression instrument. The cross-sectional configuration of the post and a receiver aperture in the plate inhibits rotation of the plate relative to the post about the post axis.
BRIEF DESCRIPTION OF THE DRAWINGS
Fig. 1 is a posterior view of a portion of the spine with the device of the present invention fixed in place following anterior lumbar interbody fusion procedure.
Fig. 2 is a lateral view of the instrumentation of Fig. 1.

Fig. 3 is a perspective view of the device itself prior to installation.
Fig. 4 is a view of the inner face of the head plate with the cross-post secured in a socket therein and the assembly viewed along the longitudinal axis of the cross-post.
Fig. 5 is a view of the inner face of the head plate without the cross-post, so the post head socket is vacant.
Fig. 6 is a section through the head plate itself taken at line 6-6 in Fig. 5 and viewed in the direction of the arrows.
Fig. 7 is a view of the cross-post.
Fig. 8 is an end view of the cross-post taken at line 8-8 in Fig. 7 and viewed in the direction of the arrows.
Fig. 9 is a section taken through the assembly of Fig. 3 on the axis of the cross-post and viewed in a plane containing the axis of the cross-post and set screw and viewed in the direction of the arrows 9-9.
Fig. 10 is an enlarged elevational view of the breakoff set screw.
Fig. 11 is a view of the inner face of the locking plate viewed in the direction of the axis of the cross-post receiving aperture.
DESCRIPTION OF THE PREFERRED EMBODIMENT
For the purposes of promoting an understanding of the principles of the invention, reference will now be made to the embodiment illustrated in the drawings and specific language will be used to describe the same. It will nevertheless be understood that no limitation of the scope of the invention is thereby intended, such alterations and further modifications in the illustrated device, and such further applications of the principles of the invention as illustrated therein being contemplated as would normally occur to one skilled in the art to which the invention relates.
Referring now to the drawings in detail, particularly Figs. 3 and 9, the device 11 according to the illustrated embodiment of the present invention, is clamped to the spinal processes of the L4 and LS vertebrae. The device comprises a head plate 12, a locking plate 13, and a cross-post 14 having a head 16 received in a socket 17 in the head plate, and a distal end 18 received through an aperture 19 in the locking plate. The inboard or inside surface 12A of plate 12 facing the inside or inboard face 13A of plate 13, has a plurality of spikes 19 facing similar spikes 21 on the inside face 13A of plate 13. These spikes are embedded in the spinal processes when the device is compressed in place and so clamps the adjacent vertebrae.
The cross-post has a cylindrical cross- sectional shape but with a flat surface 14F
extending the length of the post 14. A set screw 22 is threaded into the locking plate. The inner end of the set screw bears on the flat 14F on the post to lock the plate to the post after fixation of the plates to the spinal processes by a compression instrument.
Various spinal compression tools available on the market may be used. Part-spherical recesses 26 (Fig. 6) are provided in the outboard or back face of head plate 12. Similar part-spherical recesses 27 (Fig. 3) are provided in the outboard or back face of the locking plate. These recesses facilitate placement of tips of a compression tool and retention of the tool onto the plates during compression of the plates onto the spinal processes.
Referring now to Figs. 7 and 8, the cross-post 14 is cylindrical, has a spherical head 16 at one end, and the distal end 18 is rounded. While the flat 14F subtends a very narrow arc of the cylindrical surface of the post, it provides a relatively deep groove or notch 14N in the head 16. As an example, where the post head is 7.14 mm in diameter, and the post diameter is 4.49 mm, the dimension 14H (Fig. 8) on a diametrical line in plane 14P bisecting the flat and groove 14N is 4.29 mm, and the width 14W (Fig. 7) of the slot, groove or notch 14N in the post head is 2.353 mm.
Fig. 11 is a view of the inboard face 13A of the locking plate, viewed along the axis of the aperture 19. A flat 19F is shown at the top of the aperture. This aperture 19 is thus shaped to provide a sliding, non-rotating fit between the plate and the cross-post. The flats on the post and in the hole 19 are interruptions in the circular form of the post and hole. The post and hole could be of some other cross sectional shape providing a slip fit but avoiding rotation of the locking plate relative to the post. For example, polygonal or key and key-way shapes could be used.
Referring back to Fig. 4, along with Figs. 6 and 9, the head plate 12 is viewed facing the inboard surface 12A and looking along the axis 14A of the cross-post 14.
The post head 16 is shown received in the socket 17. A snap ring 31 is received in a groove 12G (Fig. 6) at the entrance to the socket 17 and retains the post head 16 in the socket. It was mentioned above that the matching surfaces of the cross-post and the post receiving hole 19 in the locking plate prevent rotation of the plate relative to the post. At the head plate end of the cross-post, a cylindrical pin 32 press-fitted in a hole 33 (Figs. 6 and 9) in the head plate, projects into the groove 14N of the cross-post head. As shown in Fig. 4, a narrow space is allowed between each side of the groove and the wall of the pin 32. This permits a very narrow angle (maximum five degrees total) of rotation of the head plate relative to the cross-post about the cross-post axis 14A.
At the opposite end of the cross-post, a blind hole 13B extends from the top edge of the locking plate through the aperture 19 in the plate. The upper portion of the hole 13B is of greater diameter and tapped with internal threads to receive the external threads 22T of set screw 22. The screw is shown in Fig. 9 as tightly engaging the flat surface 14F of the cross-post. As shown in Figs. 3 and 9, the set screw has an upper or outboard head portion 22U
with flutes 22F exposed at the upper end of the screw to receive a screw installation tool.
There is also a set of flutes 22K (Fig. 9) at the inboard end of the set screw. Each of the two sets of flutes can accommodate a six fluted tool but, of course, of different diameters. At the lower end of the necked-down portion 22N of the set screw, there is an annular notch 22B
whereby, following installation and adequate tightening of the set screw, the head can be broken off from the threaded portion to minimize bulk at the outboard edge 13C
of plate 13.
Referring further to Fig. 9, it should be understood that in the preferred embodiment, the radius of the spherical portion of the socket is the same as the radius of the spherical head on the cross post. In Fig. 9 there appears to be a space between the socket and the post head at the top. This is because of the cut in the post head providing the slot 14N.
It should also be noted in Fig. 9 that the snap ring 31 has two chamfers 31A
and 31B
at the hole through it and extending inward from each face of the snap ring.
The chamfers may be flat, but are preferably concave, with a radius the same as that of the post head. In this way, it does not matter which way the snap ring is installed in the groove 12G after the post head is inserted in the socket in the pre-assembly of the device. Also, with the chamfer having a slight concavity of the same radius as the post head, the post head can fittingly seat on the snap ring to resist any tendency of the plates to separate following the installation and compression on the spinous processes, and the locking of plate 13 in place with the set screw.
As indicated above, the provision of the socket in the head plate 12, with the post head being swivel mounted in the socket, enables some movement of the plate relative to the axis 14A of the post. The width of the slot 14N, being slightly greater than the diameter of the anti-rotation pin 32, enables a very limited amount (a narrow angle less than five degrees) of rotation of the plate relative to the post about the post axis. Thus, it keeps the plates parallel to each other during insertion of the implant into the patient's back, and during compression of the spikes into the spinal processes, and during clamping of the set screw onto the flat surface 14F of the post. But the head plate also has the capability of angulation relative to the locking plate within an axial (horizontal) plane such as, for example, the plane containing the axis 14A of the post and the axis 32A of pin 32. The plane of the paper for Fig. 9 is an example. Stated in other terms, consider line 6-6 in Fig. 5 to be the longitudinal axis of plate 12. The plate can turn or rotate about this axis up to twenty-five degrees each side of the center of the socket 17, or a total of fifty degrees maximum. The head plate 12 also can angulate relative to locking plate 12 within a coronal (vertical) plane such as, for example, containing the axis 14A of the post and perpendicular to the axis of the pin 32. The plane of the paper for Figs. 1, 6 and 9, is an example. Stated otherwise, consider a line through the center of the socket 17, such as 32A in plane 9-9, and perpendicular to plane 6-6, and to be the transverse axis of plate 12. The plate 12 can rotate or turn about its transverse axis up to twenty-five degrees each side of the center of the socket.
The device according to the present invention can be used for stabilization following an anterior lumbar interbody fusion procedure. At a suitable time associated with or following the placement of a construct in the interbody site, a small incision is made in the patient's back. The incision is of sufficient size to admit the device and instrumentation.
Although angulation of the head plate relative to the post is possible to some extent, rotation of the plate relative to the post is very limited. Neither angulation nor rotation of the locking plate is possible relative to the post. Following the incision, muscle is moved aside if and as needed for placement of the plates. To minimize bulk prior to entry, the two plates can be placed as close together as the surgeon wishes, and the set screw mugged. If the plates have been installed with the spikes thereon touching each other, the set screw can be loosened to spread the plates for mounting on the spinal processes of the vertebrae adjacent the intervertebral construct site. Then the compression instrumentation is applied to press the plates toward each other, whereupon the spikes enter the spinal processes.
Compression is continued until the spikes are fully seated. The angulation of the head plate relative to the post is sufficient (up to twenty-five degrees either side of the center line as indicated above), to enable enough adaptation of the plates to different thicknesses and shapes of the spinal processes of adjacent vertebrae, to enable full seating of the spikes in the spinal processes of the adjacent vertebrae. To minimize thickness of the head plate at socket 17, while accommodating post head 16, opening 12E (Figs. 5 and 6) is provided in the head plate.
There is very little clearance between the sphere of the post head and the spherical cavity of the socket, providing a close but slidable fit. The opening 12E enhances effectiveness of autoclave for sanitizing the post head and socket following assembly of the parts outside the patient and before implantation. Although not likely to be needed following the seating of the plates on the spinal processes, the post head end 16E exposed in opening 12E rnay be lightly pushed toward the snap ring in the direction of arrow 41 (Fig. 9), if needed.
Following the full seating of the plates on the spinal processes, the set screw is tightened onto the flat 14F of the cross-post, using a screwdriver with flutes fitting the outer set of flutes. Upon satisfaction of the surgeon, that the fixation is complete, additional torque is applied to break the head of the set screw away from the threaded portion, and the set screw head is discarded. Then the site is closed up, completing the stabilization procedure. The set screw reliably maintains the clamping force of the plates on the spinous processes. If, at any time, it is decided to remove the device, the inner flutes can receive a smaller fluted head screwdriver to loosen the set screw.
During the compression procedure, and being sure that the post is properly placed, the ability of the head plate 12 to tilt on the post 14 and angulate relative to the locking plate 13, assists in assuring full seating of the spikes on both sides of both spinal processes. The ability of the head plate to tilt relative to the post is limited by engagement of the neck of the head against the inner edge of the snap ring 31. Angulation of the plate relative to the post in any plane is limited by the snap ring edge at about twenty-flue degrees each way from the post axis 14A.
The choice of whether the snap ring gap is located as shown in Fig. 4 or on the opposite side of the axis of the post in Fig. 4, or at forty-five degrees up or down from horizontal, may depend upon what the surgeon's impression is of where the strict limitation on angulation should be focused.

While the illustrated example of the device is applied to L-4 and L-5, the device can be implanted on spinous processes at other levels. Levels up to T-3 may be appropriate sites.
Also, plates bridging more than one level may also be considered. The shape of the plates may be different at different levels. The virtually identical perimeter edge concavo/convex shape and size of the illustrated plates 12 and 13, conforms generally to the lordotic curve in the lumbar region. In this example, the concave edge 12C and convex edge 12X
have a common center remote from the plates and in the plane of the face 12A of the plate. This common center is on a transverse axis of the plate such as mentioned above and which lies on a radius of the center of socket 17 to the common center of curvature of edges 12C and 12X. Plate faces other than flat may be used. Edge shapes other than the banana-shaped profile shown, may be used. Various bio-compatible materials can be used.
Titanium-6A-4V
ASTM F-136 is an example of plate, pin, post, lock ring, and screw material.
Other materials may be used.
The fact that the entire device can be assembled outside the body prior to implantation, but without excessive bulk inhibiting implantation, can be quite helpful in avoiding a mufti-component device requiring assembly inside the body. The integral approach reduces the size of the incision required for implantation. Even though the device is pre-assembled, it provides for the plates to angulate relative to each other in two planes, allowing the device to adapt to variations in spinous process thickness and geometry. Use of the integral spikes, rather than screws or shapes which require notching or other treatment of the spinous processes, simplifies the stabilization of the spinous processes following the ALIF. The incorporation of the cross-post in a secure way in the one plate, avoids the need for the use of separate bolt and cable to join plates.
While the invention has been illustrated and described in detail in the drawings and foregoing description, the same is to be considered as illustrative and not restrictive in character, it being understood that only the preferred embodiment has been shown and described and that all changes and modifications that come within the spirit of the invention are desired to be protected.

Claims (34)

What is claimed is:
1. An implantable device for fixation of spinous processes and comprising:
first and second spaced plates, said first plate having a surface facing a surface of said second plate;
a post connected to each of said plates and extending from said facing surface of said first plate to said facing surface of said second plate;
the connection of said post to said first plate being pivotable to enable changing the attitude of said first plate relative to said second plate; and the connection of said post to said second plate being adjustable to enable changing the spacing between said first plate and said second plate.
2. The device of claim 1 and wherein:
said second plate has an aperture therein, a portion of said post is slidably received in said aperture; and a set screw is received in said second plate and engaged with said post to fix the post to said second plate.
3. The device of claim 2 and wherein:
said post portion and said aperture have interfitting surfaces shaped for preventing rotation of said second plate relative to said post.
4. The device of claim 3 and wherein:
the interfitting surfaces are a flat surface on said post and a flat surface in said aperture.
5. The device of claim 1 and wherein:
said second plate has an aperture therein;
said post has a portion slidably received in said aperture; and said slidably received post portion is non-rotatably received in said aperture, to prevent rotation of said second plate relative to said post.
6. The device of claim 5 and wherein:
said slidably received post portion is elongate, has a generally cylindrical external surface with a longitudinally extending interruption in the cylindrical shape;
and said aperture has a generally cylindrical bore with an axially extending interruption fitting the interruption on the post portion and preventing rotation of the second plate on the post.
7. The device of claim 5 and wherein:
said post portion is elongate, has a solid generally circular cross-sectional shape but omitting a segment of the circle and;
said device has means for preventing rotation and which include a flat surface extending longitudinally on said post portion at the omitted segment of the circle and fittingly engaging a flat surface of said aperture.
8. The device of claim 6 and further comprising:
means on said second plate for locking said post to said second plate to fix a selected spacing between said plates.
9. The device of claim 8 and wherein said means for locking include:
a set screw threaded into said second plate and engageable with a flat surface of said post portion sufficiently tightly to prevent sliding of said post portion in said second plate.
10. The device of claim 1 and wherein:
said facing surfaces have arrays of spikes projecting from said surfaces to penetrate spinous processes in space between said plates to achieve fixation to spinous processes between said plates.
11. The device of claim 10 and wherein:
said facing surfaces are flat.
12. The device of claim 1 and wherein:
the first plate has a socket with a center;
said post has a longitudinal axis and a head received in said socket and pivotable in said socket whereby said post is pivotable relative to said facing surface of said first plate, in two planes perpendicular to each other;
said post has a groove in said head; and said first plate has a guide pin projecting into said socket and received in said groove for inhibiting rotation of said first plate relative to said post in a plane perpendicular to the axis of said post.
13. The device of claim 12 and wherein:
said post has said head at one end and a guide surface extending from said head toward an other end of said post;
said second plate has an aperture receiving said post through the aperture;
and the aperture has a guide-following surface engaging the guide surface on said post to inhibit rotation of said second plate relative to said post in a plane perpendicular to the axis of the post.
14. The device of claim 13 and wherein:
the guide surface is flat; and the aperture in said second plate is intercepted by a set screw tightened into said second plate and having an end engaging said flat guide surface and preventing translation of said second plate along said post and preventing rotation of said second plate relative to said post.
15. The device of claim 13 and wherein:
said second plate is elongate, having a longitudinal axis lying in a first plane of said two planes, and said second plate having a transverse axis lying in a second plane of said two planes;
said second plane is perpendicular to said first plane; and said first plate is elongate, having a longitudinal axis lying in and pivotable in said first plane, and said first plate having a transverse axis lying in and pivotable in said second plane.
16. The device of claim 15 and further comprising:
a retaining ring in said socket and sized and located to engage said post upon pivoting said first plate in said first plane and in said second plane to limit maximum angulation of said axes of said first plate in said first and second planes to less than twenty-five degrees from the center of the socket.
17. The device of claim 16 and wherein:
said first plate and said second plate are arrayed in generally parallel spaced relationship, with said post spanning the space between said plates;
said first plate has a surface facing a surface of said second plate; and said facing surfaces have arrays of spikes projecting from said surfaces to penetrate spinous processes in space between said plates.
18. The device of claim 17 and wherein:
said facing surfaces are flat.
19. The device of claim 18 and wherein:
said plates have a banana-shaped profile.
20. The device of claim 19 and wherein:
the transverse axis of said second plate is co-linear with radii of concave and convex concentric edges of said plate which are in concentric circles about a center in space remote from said second plate, whereby said edges define a concavo convex shape of said second plate in the plane of said facing surface thereof.
21. The device of claim 20 and further comprising:
a set screw which projects from said concave edge toward said center.
22. The device of claim 21 and wherein:
said set screw has a tool receiver head thereon.
23. The device of claim 22 and wherein;
said set screw has a first threaded portion beginning at said engaging end and having a first tool receiver opening therein facing in a direction away from said concave edge toward the center;
said set screw head has a second tool receiver opening facing away from said concave edge toward said center; and said set screw has a portion of reduced thickness for facilitating the break-away of the head from the threaded portion following installation at a treatment site.
24. The device of claim 1 and wherein:
said first plate has a socket;
said socket opens in said facing surface of said first plate;
said post has a head received in said socket and said post projects out of said facing surface of said first plate and is pivotable in said socket whereby said post is pivotable in two planes relative to said first plate;
said first plate has a back surface with a socket access opening therein; and a portion of said post head is exposed in said opening.
25. The device of claim 24 and further comprising:
a retainer ring in said socket retaining said head in said socket.
26. A method of fixation of spinous processes of a subject comprising:
assembling components into an implant assembly comprising first and second plates with a post having one end pivotally mounted in a socket in a first plate and the post having an opposite end slidably received in the second plate;
making an incision in the subject;
inserting the assembly to position adjacent the spinous processes;

sliding the second plate on the post and thereby providing space between the first and second plates to receive spinous processes between the first and second plates;
compressing the plates onto spinous processes; and holding the plates compressed against the spinous processes and clamping said second plate onto the post with a set screw.
27. The method of claim 26 and further comprising:
angulating the first plate relative to the second plate in at least one plane during compression of said plates on said spinous processes.
28. The method of claim 27 and further comprising:
angulating the first plate relative to the second plate in two planes during compression of said plates onto said spinous processes.
29. The method of claim 28 and further comprising:
pressing spikes on said plates into the spinous processes during compression of the plates against the spinous processes.
30. The method of claim 28 and wherein:
angulation of the first plate relative to the second plate is in coronal and axial planes.
31. The method of claim 26 and further comprising, prior to inserting the assembly to position adjacent the spinous processes:
closing the second plate onto the first plate;
locking the second plate closed with a set screw clamping the second plate onto the post;
making an incision in the back of the subject;
then inserting the assembly to position adjacent the spinous processes;
inserting a screw driver and unlocking the set screw;
sliding the second plate on the post and thereby increasing the spacing between said plates;

moving to desired positions adjacent the spinous processes to be fixated; and then compressing the plates against said spinous processes.
32. The method of claim 31 and further comprising:
engaging spikes of facing surfaces of said plates with said spinous processes;
and forcing the spikes into the engaged spinous processes during compressing the plates onto the spinous processes.
33. The method of claim 32 and further comprising:
using a screw driver to lock the second plate on the post while compressing the spikes into the engaged spinous processes.
34. The method of claim 33 and further comprising:
breaking the head off the set screw; and closing the incision.
CA2485174A 2002-05-17 2003-05-01 Device for fixation of spinous processes Expired - Fee Related CA2485174C (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10/147,554 US7048736B2 (en) 2002-05-17 2002-05-17 Device for fixation of spinous processes
US10/147,554 2002-05-17
PCT/US2003/013662 WO2003099147A1 (en) 2002-05-17 2003-05-01 Device for fixation of spinous processes

Publications (2)

Publication Number Publication Date
CA2485174A1 CA2485174A1 (en) 2003-12-04
CA2485174C true CA2485174C (en) 2011-01-04

Family

ID=29419030

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2485174A Expired - Fee Related CA2485174C (en) 2002-05-17 2003-05-01 Device for fixation of spinous processes

Country Status (10)

Country Link
US (1) US7048736B2 (en)
EP (2) EP1418854B1 (en)
JP (1) JP4299236B2 (en)
KR (1) KR101004937B1 (en)
CN (1) CN100337600C (en)
AT (1) ATE482660T1 (en)
AU (1) AU2009200016A1 (en)
CA (1) CA2485174C (en)
DE (1) DE60334357D1 (en)
WO (1) WO2003099147A1 (en)

Families Citing this family (356)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080039859A1 (en) * 1997-01-02 2008-02-14 Zucherman James F Spine distraction implant and method
US7201751B2 (en) * 1997-01-02 2007-04-10 St. Francis Medical Technologies, Inc. Supplemental spine fixation device
US20080027552A1 (en) * 1997-01-02 2008-01-31 Zucherman James F Spine distraction implant and method
US7306628B2 (en) 2002-10-29 2007-12-11 St. Francis Medical Technologies Interspinous process apparatus and method with a selectably expandable spacer
US6695842B2 (en) * 1997-10-27 2004-02-24 St. Francis Medical Technologies, Inc. Interspinous process distraction system and method with positionable wing and method
US7959652B2 (en) * 2005-04-18 2011-06-14 Kyphon Sarl Interspinous process implant having deployable wings and method of implantation
US6068630A (en) * 1997-01-02 2000-05-30 St. Francis Medical Technologies, Inc. Spine distraction implant
US20080071378A1 (en) * 1997-01-02 2008-03-20 Zucherman James F Spine distraction implant and method
US8128661B2 (en) * 1997-01-02 2012-03-06 Kyphon Sarl Interspinous process distraction system and method with positionable wing and method
US20080086212A1 (en) 1997-01-02 2008-04-10 St. Francis Medical Technologies, Inc. Spine distraction implant
FR2828398B1 (en) * 2001-08-08 2003-09-19 Jean Taylor VERTEBRA STABILIZATION ASSEMBLY
US6793678B2 (en) 2002-06-27 2004-09-21 Depuy Acromed, Inc. Prosthetic intervertebral motion disc having dampening
FR2844179B1 (en) * 2002-09-10 2004-12-03 Jean Taylor POSTERIOR VERTEBRAL SUPPORT KIT
US7931674B2 (en) 2005-03-21 2011-04-26 Kyphon Sarl Interspinous process implant having deployable wing and method of implantation
US7833246B2 (en) * 2002-10-29 2010-11-16 Kyphon SÀRL Interspinous process and sacrum implant and method
US8048117B2 (en) 2003-05-22 2011-11-01 Kyphon Sarl Interspinous process implant and method of implantation
US8070778B2 (en) 2003-05-22 2011-12-06 Kyphon Sarl Interspinous process implant with slide-in distraction piece and method of implantation
US7549999B2 (en) * 2003-05-22 2009-06-23 Kyphon Sarl Interspinous process distraction implant and method of implantation
US7909853B2 (en) * 2004-09-23 2011-03-22 Kyphon Sarl Interspinous process implant including a binder and method of implantation
US20060064165A1 (en) * 2004-09-23 2006-03-23 St. Francis Medical Technologies, Inc. Interspinous process implant including a binder and method of implantation
US20080021468A1 (en) * 2002-10-29 2008-01-24 Zucherman James F Interspinous process implants and methods of use
US8147548B2 (en) * 2005-03-21 2012-04-03 Kyphon Sarl Interspinous process implant having a thread-shaped wing and method of implantation
US20050075634A1 (en) * 2002-10-29 2005-04-07 Zucherman James F. Interspinous process implant with radiolucent spacer and lead-in tissue expander
US7335203B2 (en) 2003-02-12 2008-02-26 Kyphon Inc. System and method for immobilizing adjacent spinous processes
FR2851154B1 (en) * 2003-02-19 2006-07-07 Sdgi Holding Inc INTER-SPINOUS DEVICE FOR BRAKING THE MOVEMENTS OF TWO SUCCESSIVE VERTEBRATES, AND METHOD FOR MANUFACTURING THE SAME THEREOF
US20040236333A1 (en) * 2003-03-21 2004-11-25 Lin Paul S. Uniplate cervical device
US20050131412A1 (en) * 2003-10-20 2005-06-16 Boris Olevsky Bone plate and method for using bone plate
US20050107877A1 (en) * 2003-10-30 2005-05-19 Nu Vasive, Inc. System and methods for restoring the structural integrity of bone
US7763073B2 (en) * 2004-03-09 2010-07-27 Depuy Spine, Inc. Posterior process dynamic spacer
US7585316B2 (en) * 2004-05-21 2009-09-08 Warsaw Orthopedic, Inc. Interspinous spacer
US8114158B2 (en) 2004-08-03 2012-02-14 Kspine, Inc. Facet device and method
US7658753B2 (en) 2004-08-03 2010-02-09 K Spine, Inc. Device and method for correcting a spinal deformity
US20060036259A1 (en) * 2004-08-03 2006-02-16 Carl Allen L Spine treatment devices and methods
WO2006017641A2 (en) * 2004-08-03 2006-02-16 Vertech Innovations, L.L.C. Spinous process reinforcement device and method
US7854752B2 (en) 2004-08-09 2010-12-21 Theken Spine, Llc System and method for dynamic skeletal stabilization
WO2006020530A2 (en) * 2004-08-09 2006-02-23 Innovative Spinal Technologies System and method for dynamic skeletal stabilization
AU2004322167A1 (en) * 2004-08-13 2006-02-16 Synthes Gmbh Intervertebral implant
US8012209B2 (en) 2004-09-23 2011-09-06 Kyphon Sarl Interspinous process implant including a binder, binder aligner and method of implantation
US8613747B2 (en) 2004-10-20 2013-12-24 Vertiflex, Inc. Spacer insertion instrument
US8317864B2 (en) 2004-10-20 2012-11-27 The Board Of Trustees Of The Leland Stanford Junior University Systems and methods for posterior dynamic stabilization of the spine
US8128662B2 (en) 2004-10-20 2012-03-06 Vertiflex, Inc. Minimally invasive tooling for delivery of interspinous spacer
US8425559B2 (en) 2004-10-20 2013-04-23 Vertiflex, Inc. Systems and methods for posterior dynamic stabilization of the spine
US9161783B2 (en) 2004-10-20 2015-10-20 Vertiflex, Inc. Interspinous spacer
US8945183B2 (en) 2004-10-20 2015-02-03 Vertiflex, Inc. Interspinous process spacer instrument system with deployment indicator
US7763074B2 (en) * 2004-10-20 2010-07-27 The Board Of Trustees Of The Leland Stanford Junior University Systems and methods for posterior dynamic stabilization of the spine
US8167944B2 (en) 2004-10-20 2012-05-01 The Board Of Trustees Of The Leland Stanford Junior University Systems and methods for posterior dynamic stabilization of the spine
US8277488B2 (en) 2004-10-20 2012-10-02 Vertiflex, Inc. Interspinous spacer
US8012207B2 (en) 2004-10-20 2011-09-06 Vertiflex, Inc. Systems and methods for posterior dynamic stabilization of the spine
US9119680B2 (en) 2004-10-20 2015-09-01 Vertiflex, Inc. Interspinous spacer
US8123807B2 (en) 2004-10-20 2012-02-28 Vertiflex, Inc. Systems and methods for posterior dynamic stabilization of the spine
US8123782B2 (en) 2004-10-20 2012-02-28 Vertiflex, Inc. Interspinous spacer
US8409282B2 (en) 2004-10-20 2013-04-02 Vertiflex, Inc. Systems and methods for posterior dynamic stabilization of the spine
US8152837B2 (en) 2004-10-20 2012-04-10 The Board Of Trustees Of The Leland Stanford Junior University Systems and methods for posterior dynamic stabilization of the spine
US9023084B2 (en) 2004-10-20 2015-05-05 The Board Of Trustees Of The Leland Stanford Junior University Systems and methods for stabilizing the motion or adjusting the position of the spine
WO2009009049A2 (en) 2004-10-20 2009-01-15 Vertiflex, Inc. Interspinous spacer
US9055981B2 (en) 2004-10-25 2015-06-16 Lanx, Inc. Spinal implants and methods
US8241330B2 (en) * 2007-01-11 2012-08-14 Lanx, Inc. Spinous process implants and associated methods
US7918875B2 (en) 2004-10-25 2011-04-05 Lanx, Inc. Interspinous distraction devices and associated methods of insertion
WO2006047562A2 (en) 2004-10-25 2006-05-04 Lins Robert E Interspinous distraction devices and associated methods of insertion
ATE524121T1 (en) 2004-11-24 2011-09-15 Abdou Samy DEVICES FOR PLACING AN ORTHOPEDIC INTERVERTEBRAL IMPLANT
WO2009086010A2 (en) 2004-12-06 2009-07-09 Vertiflex, Inc. Spacer insertion instrument
US8092459B2 (en) * 2005-02-17 2012-01-10 Kyphon Sarl Percutaneous spinal implants and methods
US8097018B2 (en) 2005-02-17 2012-01-17 Kyphon Sarl Percutaneous spinal implants and methods
US8038698B2 (en) * 2005-02-17 2011-10-18 Kphon Sarl Percutaneous spinal implants and methods
US8096995B2 (en) * 2005-02-17 2012-01-17 Kyphon Sarl Percutaneous spinal implants and methods
US7998174B2 (en) 2005-02-17 2011-08-16 Kyphon Sarl Percutaneous spinal implants and methods
US8029549B2 (en) 2005-02-17 2011-10-04 Kyphon Sarl Percutaneous spinal implants and methods
US20070276372A1 (en) * 2005-02-17 2007-11-29 Malandain Hugues F Percutaneous Spinal Implants and Methods
US8057513B2 (en) 2005-02-17 2011-11-15 Kyphon Sarl Percutaneous spinal implants and methods
US20060184248A1 (en) * 2005-02-17 2006-08-17 Edidin Avram A Percutaneous spinal implants and methods
US20080288078A1 (en) * 2005-02-17 2008-11-20 Kohm Andrew C Percutaneous spinal implants and methods
US7927354B2 (en) * 2005-02-17 2011-04-19 Kyphon Sarl Percutaneous spinal implants and methods
US20080039944A1 (en) * 2005-02-17 2008-02-14 Malandain Hugues F Percutaneous Spinal Implants and Methods
US7993342B2 (en) 2005-02-17 2011-08-09 Kyphon Sarl Percutaneous spinal implants and methods
US20070276373A1 (en) * 2005-02-17 2007-11-29 Malandain Hugues F Percutaneous Spinal Implants and Methods
US7998208B2 (en) * 2005-02-17 2011-08-16 Kyphon Sarl Percutaneous spinal implants and methods
US8029567B2 (en) 2005-02-17 2011-10-04 Kyphon Sarl Percutaneous spinal implants and methods
US8007521B2 (en) 2005-02-17 2011-08-30 Kyphon Sarl Percutaneous spinal implants and methods
US20070055237A1 (en) * 2005-02-17 2007-03-08 Edidin Avram A Percutaneous spinal implants and methods
US8034080B2 (en) * 2005-02-17 2011-10-11 Kyphon Sarl Percutaneous spinal implants and methods
US8157841B2 (en) 2005-02-17 2012-04-17 Kyphon Sarl Percutaneous spinal implants and methods
US8100943B2 (en) 2005-02-17 2012-01-24 Kyphon Sarl Percutaneous spinal implants and methods
US7988709B2 (en) * 2005-02-17 2011-08-02 Kyphon Sarl Percutaneous spinal implants and methods
US20070276493A1 (en) 2005-02-17 2007-11-29 Malandain Hugues F Percutaneous spinal implants and methods
US8096994B2 (en) 2005-02-17 2012-01-17 Kyphon Sarl Percutaneous spinal implants and methods
JP2006253316A (en) * 2005-03-09 2006-09-21 Sony Corp Solid-state image sensing device
US8066742B2 (en) * 2005-03-31 2011-11-29 Warsaw Orthopedic, Inc. Intervertebral prosthetic device for spinal stabilization and method of implanting same
US8940048B2 (en) 2005-03-31 2015-01-27 Life Spine, Inc. Expandable spinal interbody and intravertebral body devices
US9034041B2 (en) 2005-03-31 2015-05-19 Life Spine, Inc. Expandable spinal interbody and intravertebral body devices
US20060241757A1 (en) * 2005-03-31 2006-10-26 Sdgi Holdings, Inc. Intervertebral prosthetic device for spinal stabilization and method of manufacturing same
US9801733B2 (en) 2005-03-31 2017-10-31 Life Spine, Inc. Expandable spinal interbody and intravertebral body devices
CN103479419B (en) * 2005-04-08 2017-04-12 帕拉迪格脊骨有限责任公司 Interspinous vertebral and lumbosacral stabilization devices and methods of use
US7862590B2 (en) 2005-04-08 2011-01-04 Warsaw Orthopedic, Inc. Interspinous process spacer
US8034079B2 (en) 2005-04-12 2011-10-11 Warsaw Orthopedic, Inc. Implants and methods for posterior dynamic stabilization of a spinal motion segment
US7780709B2 (en) 2005-04-12 2010-08-24 Warsaw Orthopedic, Inc. Implants and methods for inter-transverse process dynamic stabilization of a spinal motion segment
US8784450B2 (en) * 2005-04-12 2014-07-22 Mosheh T. MOSKOWITZ Interarticulating spinous and transverse process staples for spinal fusion
US9675385B2 (en) 2005-04-12 2017-06-13 Nathan C. Moskowitz Spinous process staple with interdigitating-interlocking hemi-spacers for adjacent spinous process separation and distraction
US7789898B2 (en) 2005-04-15 2010-09-07 Warsaw Orthopedic, Inc. Transverse process/laminar spacer
US7727233B2 (en) * 2005-04-29 2010-06-01 Warsaw Orthopedic, Inc. Spinous process stabilization devices and methods
US20060247623A1 (en) * 2005-04-29 2006-11-02 Sdgi Holdings, Inc. Local delivery of an active agent from an orthopedic implant
US20060271048A1 (en) * 2005-05-12 2006-11-30 Jeffery Thramann Pedicle screw based vertebral body stabilization apparatus
US7828830B2 (en) 2005-05-12 2010-11-09 Lanx, Inc. Dynamic spinal stabilization
FR2887434B1 (en) 2005-06-28 2008-03-28 Jean Taylor SURGICAL TREATMENT EQUIPMENT OF TWO VERTEBRATES
PL377136A1 (en) 2005-09-19 2007-04-02 Lfc Spółka Z Ograniczoną Odpowiedzialnością Intervertebral space implant
CN103169533B (en) 2005-09-27 2015-07-15 帕拉迪格脊骨有限责任公司 Interspinous vertebral stabilization devices
US8267970B2 (en) * 2005-10-25 2012-09-18 Depuy Spine, Inc. Laminar hook spring
US8357181B2 (en) * 2005-10-27 2013-01-22 Warsaw Orthopedic, Inc. Intervertebral prosthetic device for spinal stabilization and method of implanting same
WO2007052975A1 (en) * 2005-11-03 2007-05-10 Dong-Kyu Chin Fixing device for spinous process
KR100788086B1 (en) * 2005-11-03 2007-12-21 진동규 Fixing Device for Spinous Process
US7862591B2 (en) * 2005-11-10 2011-01-04 Warsaw Orthopedic, Inc. Intervertebral prosthetic device for spinal stabilization and method of implanting same
US7699873B2 (en) * 2005-11-23 2010-04-20 Warsaw Orthopedic, Inc. Spinous process anchoring systems and methods
US8430911B2 (en) 2005-12-14 2013-04-30 Spinefrontier Inc Spinous process fixation implant
US20070168039A1 (en) * 2006-01-13 2007-07-19 Sdgi Holdings, Inc. Materials, devices and methods for treating multiple spinal regions including vertebral body and endplate regions
US20070173820A1 (en) * 2006-01-13 2007-07-26 Sdgi Holdings, Inc. Materials, devices, and methods for treating multiple spinal regions including the anterior region
US20070173821A1 (en) * 2006-01-13 2007-07-26 Sdgi Holdings, Inc. Materials, devices, and methods for treating multiple spinal regions including the posterior and spinous process regions
US20070173823A1 (en) 2006-01-18 2007-07-26 Sdgi Holdings, Inc. Intervertebral prosthetic device for spinal stabilization and method of implanting same
US8083795B2 (en) 2006-01-18 2011-12-27 Warsaw Orthopedic, Inc. Intervertebral prosthetic device for spinal stabilization and method of manufacturing same
US7682376B2 (en) 2006-01-27 2010-03-23 Warsaw Orthopedic, Inc. Interspinous devices and methods of use
US7691130B2 (en) * 2006-01-27 2010-04-06 Warsaw Orthopedic, Inc. Spinal implants including a sensor and methods of use
US7837711B2 (en) * 2006-01-27 2010-11-23 Warsaw Orthopedic, Inc. Artificial spinous process for the sacrum and methods of use
US20070191838A1 (en) * 2006-01-27 2007-08-16 Sdgi Holdings, Inc. Interspinous devices and methods of use
US7520888B2 (en) 2006-02-14 2009-04-21 Warsaw Orthopedic, Inc. Treatment of the vertebral column
US9011441B2 (en) * 2006-02-17 2015-04-21 Paradigm Spine, L.L.C. Method and system for performing interspinous space preparation for receiving an implant
US20070233068A1 (en) * 2006-02-22 2007-10-04 Sdgi Holdings, Inc. Intervertebral prosthetic assembly for spinal stabilization and method of implanting same
US8262698B2 (en) 2006-03-16 2012-09-11 Warsaw Orthopedic, Inc. Expandable device for insertion between anatomical structures and a procedure utilizing same
US7871426B2 (en) * 2006-03-21 2011-01-18 Spinefrontier, LLS Spinous process fixation device
US8025681B2 (en) 2006-03-29 2011-09-27 Theken Spine, Llc Dynamic motion spinal stabilization system
US7985246B2 (en) * 2006-03-31 2011-07-26 Warsaw Orthopedic, Inc. Methods and instruments for delivering interspinous process spacers
FR2899788B1 (en) * 2006-04-13 2008-07-04 Jean Taylor TREATMENT EQUIPMENT FOR VERTEBRATES, COMPRISING AN INTEREPINOUS IMPLANT
US8118844B2 (en) 2006-04-24 2012-02-21 Warsaw Orthopedic, Inc. Expandable device for insertion between anatomical structures and a procedure utilizing same
US8435267B2 (en) * 2006-04-24 2013-05-07 Spinefrontier Inc Spine fixation method and apparatus
US8105357B2 (en) 2006-04-28 2012-01-31 Warsaw Orthopedic, Inc. Interspinous process brace
DE102007018860B4 (en) 2006-04-28 2023-01-05 Paradigm Spine L.L.C. Instrument system for use with an interspinous implant
US20070270823A1 (en) * 2006-04-28 2007-11-22 Sdgi Holdings, Inc. Multi-chamber expandable interspinous process brace
US8252031B2 (en) * 2006-04-28 2012-08-28 Warsaw Orthopedic, Inc. Molding device for an expandable interspinous process implant
US20070270859A1 (en) * 2006-04-28 2007-11-22 Sdgi Holdings, Inc. Orthopedic screw with break away drive
US8048118B2 (en) 2006-04-28 2011-11-01 Warsaw Orthopedic, Inc. Adjustable interspinous process brace
US8348978B2 (en) * 2006-04-28 2013-01-08 Warsaw Orthopedic, Inc. Interosteotic implant
US7846185B2 (en) * 2006-04-28 2010-12-07 Warsaw Orthopedic, Inc. Expandable interspinous process implant and method of installing same
US8062337B2 (en) 2006-05-04 2011-11-22 Warsaw Orthopedic, Inc. Expandable device for insertion between anatomical structures and a procedure utilizing same
US20070276496A1 (en) * 2006-05-23 2007-11-29 Sdgi Holdings, Inc. Surgical spacer with shape control
US8147517B2 (en) * 2006-05-23 2012-04-03 Warsaw Orthopedic, Inc. Systems and methods for adjusting properties of a spinal implant
US20070276369A1 (en) * 2006-05-26 2007-11-29 Sdgi Holdings, Inc. In vivo-customizable implant
US20080058808A1 (en) 2006-06-14 2008-03-06 Spartek Medical, Inc. Implant system and method to treat degenerative disorders of the spine
US8048119B2 (en) 2006-07-20 2011-11-01 Warsaw Orthopedic, Inc. Apparatus for insertion between anatomical structures and a procedure utilizing same
US20080082104A1 (en) 2006-07-27 2008-04-03 Lanx, Llc Methods and apparatuses for facilitating percutaneous fusion
FR2907329B1 (en) * 2006-10-20 2009-02-27 Jean Taylor INTEREPINEAL VERTEBRAL PROSTHESIS
US20080086115A1 (en) * 2006-09-07 2008-04-10 Warsaw Orthopedic, Inc. Intercostal spacer device and method for use in correcting a spinal deformity
US8845726B2 (en) 2006-10-18 2014-09-30 Vertiflex, Inc. Dilator
US20080177298A1 (en) * 2006-10-24 2008-07-24 St. Francis Medical Technologies, Inc. Tensioner Tool and Method for Implanting an Interspinous Process Implant Including a Binder
US8097019B2 (en) 2006-10-24 2012-01-17 Kyphon Sarl Systems and methods for in situ assembly of an interspinous process distraction implant
FR2908035B1 (en) 2006-11-08 2009-05-01 Jean Taylor INTEREPINE IMPLANT
US8740941B2 (en) 2006-11-10 2014-06-03 Lanx, Inc. Pedicle based spinal stabilization with adjacent vertebral body support
US20080114357A1 (en) * 2006-11-15 2008-05-15 Warsaw Orthopedic, Inc. Inter-transverse process spacer device and method for use in correcting a spinal deformity
US7879104B2 (en) 2006-11-15 2011-02-01 Warsaw Orthopedic, Inc. Spinal implant system
AR064013A1 (en) * 2006-11-30 2009-03-04 Paradigm Spine Llc VERTEBRAL, INTERLAMINAR, INTERESPINOUS STABILIZATION SYSTEM
US8105382B2 (en) 2006-12-07 2012-01-31 Interventional Spine, Inc. Intervertebral implant
US7955392B2 (en) 2006-12-14 2011-06-07 Warsaw Orthopedic, Inc. Interspinous process devices and methods
US9265532B2 (en) 2007-01-11 2016-02-23 Lanx, Inc. Interspinous implants and methods
US8568453B2 (en) 2007-01-29 2013-10-29 Samy Abdou Spinal stabilization systems and methods of use
US20080183218A1 (en) * 2007-01-31 2008-07-31 Nuvasive, Inc. System and Methods for Spinous Process Fusion
US8034081B2 (en) 2007-02-06 2011-10-11 CollabComl, LLC Interspinous dynamic stabilization implant and method of implanting
US7842074B2 (en) * 2007-02-26 2010-11-30 Abdou M Samy Spinal stabilization systems and methods of use
US20080243135A1 (en) * 2007-03-30 2008-10-02 Robinson Randolph C Driver-Fixator System, Method, and Apparatus
WO2008124831A2 (en) * 2007-04-10 2008-10-16 Lee David M D Adjustable spine distraction implant
EP2155121B1 (en) 2007-04-16 2015-06-17 Vertiflex, Inc. Interspinous spacer
US7799058B2 (en) * 2007-04-19 2010-09-21 Zimmer Gmbh Interspinous spacer
US8840646B2 (en) 2007-05-10 2014-09-23 Warsaw Orthopedic, Inc. Spinous process implants and methods
US20080281361A1 (en) * 2007-05-10 2008-11-13 Shannon Marlece Vittur Posterior stabilization and spinous process systems and methods
US20080294199A1 (en) * 2007-05-25 2008-11-27 Andrew Kohm Spinous process implants and methods of using the same
US8070779B2 (en) * 2007-06-04 2011-12-06 K2M, Inc. Percutaneous interspinous process device and method
US8114134B2 (en) 2007-06-05 2012-02-14 Spartek Medical, Inc. Spinal prosthesis having a three bar linkage for motion preservation and dynamic stabilization of the spine
US8083772B2 (en) 2007-06-05 2011-12-27 Spartek Medical, Inc. Dynamic spinal rod assembly and method for dynamic stabilization of the spine
US8021396B2 (en) 2007-06-05 2011-09-20 Spartek Medical, Inc. Configurable dynamic spinal rod and method for dynamic stabilization of the spine
US8048115B2 (en) 2007-06-05 2011-11-01 Spartek Medical, Inc. Surgical tool and method for implantation of a dynamic bone anchor
US8298267B2 (en) 2007-06-05 2012-10-30 Spartek Medical, Inc. Spine implant with a deflection rod system including a deflection limiting shield associated with a bone screw and method
WO2008151096A1 (en) 2007-06-05 2008-12-11 Spartek Medical, Inc. A deflection rod system for a dynamic stabilization and motion preservation spinal implantation system and method
US8177815B2 (en) 2007-06-05 2012-05-15 Spartek Medical, Inc. Super-elastic deflection rod for a dynamic stabilization and motion preservation spinal implantation system and method
US7963978B2 (en) 2007-06-05 2011-06-21 Spartek Medical, Inc. Method for implanting a deflection rod system and customizing the deflection rod system for a particular patient need for dynamic stabilization and motion preservation spinal implantation system
US8092501B2 (en) 2007-06-05 2012-01-10 Spartek Medical, Inc. Dynamic spinal rod and method for dynamic stabilization of the spine
WO2008154313A1 (en) 2007-06-06 2008-12-18 Vertech, Inc. Medical device and method to correct deformity
US8900307B2 (en) 2007-06-26 2014-12-02 DePuy Synthes Products, LLC Highly lordosed fusion cage
DE502007004195D1 (en) * 2007-07-20 2010-08-05 Rolf Ackermann Spinous process implant
US8348976B2 (en) * 2007-08-27 2013-01-08 Kyphon Sarl Spinous-process implants and methods of using the same
US8308767B2 (en) 2007-09-19 2012-11-13 Pioneer Surgical Technology, Inc. Interlaminar stabilization system
US8262701B2 (en) * 2007-09-25 2012-09-11 Synthes Usa, Llc Transconnector
US20090118833A1 (en) * 2007-11-05 2009-05-07 Zimmer Spine, Inc. In-situ curable interspinous process spacer
JP5162741B2 (en) * 2007-12-05 2013-03-13 国立大学法人神戸大学 Spinous process fixture
US20090248090A1 (en) * 2007-12-28 2009-10-01 Pronto Products, Llc Rib bone tissue clamp
AU2008345132A1 (en) 2007-12-28 2009-07-09 Osteomed Spine, Inc. Bone tissue fixation device and method
WO2009091922A2 (en) 2008-01-15 2009-07-23 Vertiflex, Inc. Interspinous spacer
EP2471493A1 (en) 2008-01-17 2012-07-04 Synthes GmbH An expandable intervertebral implant and associated method of manufacturing the same
US20090198241A1 (en) * 2008-02-04 2009-08-06 Phan Christopher U Spine distraction tools and methods of use
US20090198338A1 (en) 2008-02-04 2009-08-06 Phan Christopher U Medical implants and methods
US8252029B2 (en) * 2008-02-21 2012-08-28 Zimmer Gmbh Expandable interspinous process spacer with lateral support and method for implantation
US8211155B2 (en) 2008-02-26 2012-07-03 Spartek Medical, Inc. Load-sharing bone anchor having a durable compliant member and method for dynamic stabilization of the spine
US8057515B2 (en) 2008-02-26 2011-11-15 Spartek Medical, Inc. Load-sharing anchor having a deflectable post and centering spring and method for dynamic stabilization of the spine
US8016861B2 (en) 2008-02-26 2011-09-13 Spartek Medical, Inc. Versatile polyaxial connector assembly and method for dynamic stabilization of the spine
US8007518B2 (en) 2008-02-26 2011-08-30 Spartek Medical, Inc. Load-sharing component having a deflectable post and method for dynamic stabilization of the spine
US8333792B2 (en) 2008-02-26 2012-12-18 Spartek Medical, Inc. Load-sharing bone anchor having a deflectable post and method for dynamic stabilization of the spine
US8097024B2 (en) 2008-02-26 2012-01-17 Spartek Medical, Inc. Load-sharing bone anchor having a deflectable post and method for stabilization of the spine
US8337536B2 (en) 2008-02-26 2012-12-25 Spartek Medical, Inc. Load-sharing bone anchor having a deflectable post with a compliant ring and method for stabilization of the spine
US8083775B2 (en) 2008-02-26 2011-12-27 Spartek Medical, Inc. Load-sharing bone anchor having a natural center of rotation and method for dynamic stabilization of the spine
US8267979B2 (en) 2008-02-26 2012-09-18 Spartek Medical, Inc. Load-sharing bone anchor having a deflectable post and axial spring and method for dynamic stabilization of the spine
US8114136B2 (en) 2008-03-18 2012-02-14 Warsaw Orthopedic, Inc. Implants and methods for inter-spinous process dynamic stabilization of a spinal motion segment
US8343190B1 (en) 2008-03-26 2013-01-01 Nuvasive, Inc. Systems and methods for spinous process fixation
CA2720580A1 (en) 2008-04-05 2009-10-08 Synthes Usa, Llc Expandable intervertebral implant
US9301788B2 (en) 2008-04-10 2016-04-05 Life Spine, Inc. Adjustable spine distraction implant
WO2009127041A1 (en) * 2008-04-14 2009-10-22 Howard Joeseph Ginsberg Spinous process stabilization device and method
FR2930718B1 (en) * 2008-05-02 2010-05-14 Warsaw Orthopedic Inc BONDING ELEMENT OF A VERTEBRAL OSTEOSYNTHESIS DEVICE, AND A VERTEBRAL OSTEOSYNTHESIS DEVICE COMPRISING SAME
US9398926B2 (en) * 2008-05-05 2016-07-26 Industrial Technology Research Institute Interspinous stabilization device
WO2009141393A1 (en) * 2008-05-20 2009-11-26 Zimmer Spine System for stabilizing at least three vertebrae
CN101589963B (en) * 2008-05-30 2011-10-05 冠亚生技股份有限公司 Crest spreading and stabilizing device
US20100030549A1 (en) * 2008-07-31 2010-02-04 Lee Michael M Mobile device having human language translation capability with positional feedback
ES2574302T3 (en) * 2008-08-08 2016-06-16 Alphatec Spine, Inc. Device for spinous process
KR20110055608A (en) 2008-08-13 2011-05-25 신세스 게엠바하 Interspinous spacer assembly
US8623062B2 (en) * 2008-09-29 2014-01-07 Dimitriy G. Kondrashov System and method to stablize a spinal column including a spinolaminar locking plate
US8114131B2 (en) 2008-11-05 2012-02-14 Kyphon Sarl Extension limiting devices and methods of use for the spine
US8828058B2 (en) 2008-11-11 2014-09-09 Kspine, Inc. Growth directed vertebral fixation system with distractible connector(s) and apical control
US8114135B2 (en) * 2009-01-16 2012-02-14 Kyphon Sarl Adjustable surgical cables and methods for treating spinal stenosis
US8123752B2 (en) * 2009-01-23 2012-02-28 Spartek Medical. Inc. Systems and methods for injecting bone filler into the spine
US8303629B1 (en) * 2009-03-19 2012-11-06 Abdou M Samy Spinous process fusion and orthopedic implants and methods
US8357182B2 (en) 2009-03-26 2013-01-22 Kspine, Inc. Alignment system with longitudinal support features
US9526620B2 (en) 2009-03-30 2016-12-27 DePuy Synthes Products, Inc. Zero profile spinal fusion cage
WO2010114925A1 (en) 2009-03-31 2010-10-07 Lanx, Inc. Spinous process implants and associated methods
US9095380B2 (en) 2009-03-31 2015-08-04 Hamid R. Mir Spinous process cross-link
US20100286701A1 (en) * 2009-05-08 2010-11-11 Kyphon Sarl Distraction tool for distracting an interspinous space
US20100312343A1 (en) * 2009-06-04 2010-12-09 Linares Medical Devices, Llc Tip support insert for application to left/right articular processes to minimize abrasion between vertebrae and to maintain proper angle/lift for reducing nerve compression
US8372117B2 (en) 2009-06-05 2013-02-12 Kyphon Sarl Multi-level interspinous implants and methods of use
US8157842B2 (en) * 2009-06-12 2012-04-17 Kyphon Sarl Interspinous implant and methods of use
WO2011005508A2 (en) 2009-06-23 2011-01-13 Osteomed Bone tissue clamp
US8721686B2 (en) 2009-06-23 2014-05-13 Osteomed Llc Spinous process fusion implants and insertion, compression, and locking instrumentation
US9211147B2 (en) * 2009-06-23 2015-12-15 Osteomed Llc Spinous process fusion implants
US20110040332A1 (en) * 2009-08-11 2011-02-17 Interventional Spine, Inc. Spinous process spacer and implantation procedure
US9179944B2 (en) 2009-09-11 2015-11-10 Globus Medical, Inc. Spinous process fusion devices
US9402656B2 (en) * 2009-09-11 2016-08-02 Globus Medical, Inc. Spinous process fusion devices
US9168071B2 (en) 2009-09-15 2015-10-27 K2M, Inc. Growth modulation system
US8771317B2 (en) * 2009-10-28 2014-07-08 Warsaw Orthopedic, Inc. Interspinous process implant and method of implantation
US8795335B1 (en) 2009-11-06 2014-08-05 Samy Abdou Spinal fixation devices and methods of use
EP2506785A4 (en) 2009-12-02 2014-10-15 Spartek Medical Inc Low profile spinal prosthesis incorporating a bone anchor having a deflectable post and a compound spinal rod
US8764806B2 (en) 2009-12-07 2014-07-01 Samy Abdou Devices and methods for minimally invasive spinal stabilization and instrumentation
US9393129B2 (en) 2009-12-10 2016-07-19 DePuy Synthes Products, Inc. Bellows-like expandable interbody fusion cage
US8740948B2 (en) 2009-12-15 2014-06-03 Vertiflex, Inc. Spinal spacer for cervical and other vertebra, and associated systems and methods
US20110160772A1 (en) * 2009-12-28 2011-06-30 Arcenio Gregory B Systems and methods for performing spinal fusion
US8317831B2 (en) * 2010-01-13 2012-11-27 Kyphon Sarl Interspinous process spacer diagnostic balloon catheter and methods of use
US8114132B2 (en) 2010-01-13 2012-02-14 Kyphon Sarl Dynamic interspinous process device
US20110172720A1 (en) * 2010-01-13 2011-07-14 Kyphon Sarl Articulating interspinous process clamp
US8262697B2 (en) 2010-01-14 2012-09-11 X-Spine Systems, Inc. Modular interspinous fixation system and method
DE102010000230A1 (en) 2010-01-27 2011-07-28 Aesculap AG, 78532 Surgical instruments
DE102010000231A1 (en) 2010-01-27 2011-07-28 Aesculap AG, 78532 Implant for the mutual support of spinous processes of adjacent vertebral bodies and surgical system
US20110184468A1 (en) * 2010-01-28 2011-07-28 Warsaw Orthopedic, Inc., An Indiana Corporation Spinous process fusion plate with osteointegration insert
US8147526B2 (en) 2010-02-26 2012-04-03 Kyphon Sarl Interspinous process spacer diagnostic parallel balloon catheter and methods of use
CA3026693A1 (en) 2010-03-12 2011-09-15 Southern Spine, Llc Interspinous process spacing device and implantation tools
US20110264221A1 (en) * 2010-04-24 2011-10-27 Custom Spine, Inc. Interspinous Fusion Device and Method
US8518085B2 (en) 2010-06-10 2013-08-27 Spartek Medical, Inc. Adaptive spinal rod and methods for stabilization of the spine
US9592063B2 (en) 2010-06-24 2017-03-14 DePuy Synthes Products, Inc. Universal trial for lateral cages
US8979860B2 (en) 2010-06-24 2015-03-17 DePuy Synthes Products. LLC Enhanced cage insertion device
TW201215379A (en) 2010-06-29 2012-04-16 Synthes Gmbh Distractible intervertebral implant
US9913668B2 (en) 2010-07-15 2018-03-13 Spinefrontier, Inc Interspinous fixation implant
US8814908B2 (en) 2010-07-26 2014-08-26 Warsaw Orthopedic, Inc. Injectable flexible interspinous process device system
TWI434666B (en) * 2010-10-08 2014-04-21 Paonan Biotech Co Ltd A spine pedicle fastening device
US9402732B2 (en) 2010-10-11 2016-08-02 DePuy Synthes Products, Inc. Expandable interspinous process spacer implant
US20120109203A1 (en) * 2010-11-01 2012-05-03 Warsaw Orthopedic, Inc. Spinous process implant with extended post
US8821547B2 (en) 2010-11-01 2014-09-02 Warsaw Orthopedic, Inc. Spinous process implant with a post and an enlarged boss
US8636771B2 (en) * 2010-11-29 2014-01-28 Life Spine, Inc. Spinal implants for lumbar vertebra to sacrum fixation
US8690918B1 (en) * 2010-12-03 2014-04-08 Onike Technologies Spinous process fusion reduction plate for lumbar spine
US8603142B2 (en) * 2010-12-05 2013-12-10 James C. Robinson Spinous process fixation apparatus and method
US8603143B2 (en) 2010-12-05 2013-12-10 James C. Robinson Spinous process fixation apparatus
US8876866B2 (en) * 2010-12-13 2014-11-04 Globus Medical, Inc. Spinous process fusion devices and methods thereof
US8562650B2 (en) 2011-03-01 2013-10-22 Warsaw Orthopedic, Inc. Percutaneous spinous process fusion plate assembly and method
US8591548B2 (en) * 2011-03-31 2013-11-26 Warsaw Orthopedic, Inc. Spinous process fusion plate assembly
KR101066324B1 (en) 2011-04-06 2011-09-20 유창화 Apparatus for maintenance of interspinous space
US8591549B2 (en) 2011-04-08 2013-11-26 Warsaw Orthopedic, Inc. Variable durometer lumbar-sacral implant
WO2012145700A1 (en) 2011-04-21 2012-10-26 Osteomed Llc. Bone plates, screws, and instruments
CA2838047A1 (en) 2011-06-03 2012-12-06 Kspine, Inc. Spinal correction system actuators
US20120323276A1 (en) * 2011-06-17 2012-12-20 Bryan Okamoto Expandable interspinous device
FR2977139B1 (en) 2011-06-30 2014-08-22 Ldr Medical INTER-SPINAL IMPLANT AND IMPLANTATION INSTRUMENT
USD757943S1 (en) 2011-07-14 2016-05-31 Nuvasive, Inc. Spinous process plate
US8882805B1 (en) 2011-08-02 2014-11-11 Lawrence Maccree Spinal fixation system
US20130103088A1 (en) * 2011-09-16 2013-04-25 Lanx, Inc. Segmental Spinous Process Anchor System and Methods of Use
US8845728B1 (en) 2011-09-23 2014-09-30 Samy Abdou Spinal fixation devices and methods of use
US11812923B2 (en) 2011-10-07 2023-11-14 Alan Villavicencio Spinal fixation device
US8657855B2 (en) 2011-10-17 2014-02-25 Warsaw Orthopedic, Inc. Spinal fixation implant for mounting to spinous processes and related method
US20130103086A1 (en) * 2011-10-19 2013-04-25 Warsaw Orthopedic, Inc. Spinous process mounted spinal implant
US9451987B2 (en) 2011-11-16 2016-09-27 K2M, Inc. System and method for spinal correction
US9468468B2 (en) 2011-11-16 2016-10-18 K2M, Inc. Transverse connector for spinal stabilization system
US8920472B2 (en) 2011-11-16 2014-12-30 Kspine, Inc. Spinal correction and secondary stabilization
WO2014172632A2 (en) 2011-11-16 2014-10-23 Kspine, Inc. Spinal correction and secondary stabilization
US9468469B2 (en) 2011-11-16 2016-10-18 K2M, Inc. Transverse coupler adjuster spinal correction systems and methods
WO2013075053A1 (en) 2011-11-17 2013-05-23 Vertiflex Inc. Interspinous spacers and associated methods of use and manufacture
US20130184752A1 (en) * 2011-12-27 2013-07-18 Binder Biomedical, Inc. Spinous process fusion device
CN102397097B (en) * 2011-12-29 2013-01-30 山东威高骨科材料有限公司 Interspinous fusion device
US20130184751A1 (en) * 2012-01-17 2013-07-18 Warsaw Orthopedic, Inc. Spinous process implant with plate moveable by gear nut
US9119683B2 (en) * 2012-01-18 2015-09-01 Warsaw Orthopedic, Inc. Interspinous implant with overlapping arms
US8430916B1 (en) 2012-02-07 2013-04-30 Spartek Medical, Inc. Spinal rod connectors, methods of use, and spinal prosthesis incorporating spinal rod connectors
US20130226240A1 (en) 2012-02-22 2013-08-29 Samy Abdou Spinous process fixation devices and methods of use
JP6059741B2 (en) * 2012-02-28 2017-01-11 グローバス メディカル インコーポレイティッド Spinous process fusion device
US10448977B1 (en) 2012-03-31 2019-10-22 Ali H. MESIWALA Interspinous device and related methods
US9364267B2 (en) 2012-04-17 2016-06-14 Aurora Spine, Inc. Dynamic and non-dynamic interspinous fusion implant and bone growth stimulation system
AU2013248987A1 (en) 2012-04-20 2014-10-30 James C. Robinson Spinous process fixation apparatus and method
WO2013163101A1 (en) * 2012-04-23 2013-10-31 Alphatec Spine, Inc. Interspinous process device and method
US8771277B2 (en) 2012-05-08 2014-07-08 Globus Medical, Inc Device and a method for implanting a spinous process fixation device
EP2846717B1 (en) * 2012-05-11 2016-08-24 Aesculap AG Implant for stabilizing spinous processes
US8940052B2 (en) 2012-07-26 2015-01-27 DePuy Synthes Products, LLC Expandable implant
US9198767B2 (en) 2012-08-28 2015-12-01 Samy Abdou Devices and methods for spinal stabilization and instrumentation
US20140067069A1 (en) 2012-08-30 2014-03-06 Interventional Spine, Inc. Artificial disc
US9320617B2 (en) 2012-10-22 2016-04-26 Cogent Spine, LLC Devices and methods for spinal stabilization and instrumentation
US8906065B2 (en) * 2012-10-22 2014-12-09 Spectrum Spine Ip Holdings, Llc Inter-spinous process device and method
CN107811692A (en) * 2012-11-16 2018-03-20 南方施拜恩公司 Connection system for escapement between spinous process
US9668786B2 (en) 2012-11-16 2017-06-06 Southern Spine, Llc Linkage systems for interspinous process spacing device
US9198697B2 (en) 2013-03-13 2015-12-01 Globus Medical, Inc. Spinous process fixation system and methods thereof
US9011493B2 (en) 2012-12-31 2015-04-21 Globus Medical, Inc. Spinous process fixation system and methods thereof
US9486251B2 (en) 2012-12-31 2016-11-08 Globus Medical, Inc. Spinous process fixation system and methods thereof
US9522070B2 (en) 2013-03-07 2016-12-20 Interventional Spine, Inc. Intervertebral implant
US10383741B2 (en) 2013-03-13 2019-08-20 Life Spine, Inc. Expandable spinal interbody assembly
US11304818B2 (en) 2013-03-13 2022-04-19 Life Spine, Inc. Expandable spinal interbody assembly
US10154911B2 (en) 2013-03-13 2018-12-18 Life Spine, Inc. Expandable implant assembly
US10426632B2 (en) 2013-03-13 2019-10-01 Life Spine, Inc. Expandable spinal interbody assembly
US9675303B2 (en) 2013-03-15 2017-06-13 Vertiflex, Inc. Visualization systems, instruments and methods of using the same in spinal decompression procedures
US9072550B2 (en) 2013-03-15 2015-07-07 Warsaw Orthopedic, Inc. Spinal fixation system and method
US9168073B2 (en) 2013-03-15 2015-10-27 DePuy Synthes Products, Inc. Spinous process fixator
US9468471B2 (en) 2013-09-17 2016-10-18 K2M, Inc. Transverse coupler adjuster spinal correction systems and methods
EP3062717B1 (en) * 2013-10-31 2023-03-08 The University of Iowa Research Foundation Percutaneous transverse connector system
AU2015256024B2 (en) 2014-05-07 2020-03-05 Vertiflex, Inc. Spinal nerve decompression systems, dilation systems, and methods of using the same
CN106510819B (en) * 2014-10-24 2019-06-21 张秀静 The application method of Orthopedic fixing support
CA2966659A1 (en) 2014-11-06 2016-05-12 Spinal Elements, Inc. Apparatus and method of treating spinous processes
KR101647457B1 (en) 2014-11-25 2016-08-10 주식회사 메드릭스 Band coupling device for spinous process
KR101647453B1 (en) 2014-12-03 2016-08-10 주식회사 메드릭스 Band fixing spacer device for spinous process
WO2016137983A1 (en) 2015-02-24 2016-09-01 X-Spine Systems, Inc. Modular interspinous fixation system with threaded component
US11426290B2 (en) 2015-03-06 2022-08-30 DePuy Synthes Products, Inc. Expandable intervertebral implant, system, kit and method
JP6781170B2 (en) * 2015-05-22 2020-11-04 スパイナル シンプリシティ エルエルシーSpinal Simplicity LLC Interspinous process graft with body with removable ends
US9913727B2 (en) 2015-07-02 2018-03-13 Medos International Sarl Expandable implant
JP6670063B2 (en) * 2015-09-16 2020-03-18 セーレン株式会社 Conductive member
US10857003B1 (en) 2015-10-14 2020-12-08 Samy Abdou Devices and methods for vertebral stabilization
US10335207B2 (en) * 2015-12-29 2019-07-02 Nuvasive, Inc. Spinous process plate fixation assembly
CN109688981A (en) 2016-06-28 2019-04-26 Eit 新兴移植技术股份有限公司 Distensible, adjustable angle intervertebral cage
JP7023877B2 (en) 2016-06-28 2022-02-22 イーアイティー・エマージング・インプラント・テクノロジーズ・ゲーエムベーハー Expandable and angle-adjustable range-of-motion intervertebral cage
US10034693B2 (en) 2016-07-07 2018-07-31 Mark S. Stern Spinous laminar clamp assembly
US10744000B1 (en) 2016-10-25 2020-08-18 Samy Abdou Devices and methods for vertebral bone realignment
US10973648B1 (en) 2016-10-25 2021-04-13 Samy Abdou Devices and methods for vertebral bone realignment
US10537436B2 (en) 2016-11-01 2020-01-21 DePuy Synthes Products, Inc. Curved expandable cage
US10888433B2 (en) 2016-12-14 2021-01-12 DePuy Synthes Products, Inc. Intervertebral implant inserter and related methods
US10398563B2 (en) 2017-05-08 2019-09-03 Medos International Sarl Expandable cage
US11344424B2 (en) 2017-06-14 2022-05-31 Medos International Sarl Expandable intervertebral implant and related methods
US10940016B2 (en) 2017-07-05 2021-03-09 Medos International Sarl Expandable intervertebral fusion cage
US11033403B2 (en) 2017-07-10 2021-06-15 Life Spine, Inc. Expandable implant assembly
US11896494B2 (en) 2017-07-10 2024-02-13 Life Spine, Inc. Expandable implant assembly
US11179248B2 (en) 2018-10-02 2021-11-23 Samy Abdou Devices and methods for spinal implantation
US11446156B2 (en) 2018-10-25 2022-09-20 Medos International Sarl Expandable intervertebral implant, inserter instrument, and related methods
US11382764B2 (en) 2019-06-10 2022-07-12 Life Spine, Inc. Expandable implant assembly with compression features
US11426286B2 (en) 2020-03-06 2022-08-30 Eit Emerging Implant Technologies Gmbh Expandable intervertebral implant
US11857432B2 (en) 2020-04-13 2024-01-02 Life Spine, Inc. Expandable implant assembly
US11602439B2 (en) 2020-04-16 2023-03-14 Life Spine, Inc. Expandable implant assembly
US11602440B2 (en) 2020-06-25 2023-03-14 Life Spine, Inc. Expandable implant assembly
US11850160B2 (en) 2021-03-26 2023-12-26 Medos International Sarl Expandable lordotic intervertebral fusion cage
US11752009B2 (en) 2021-04-06 2023-09-12 Medos International Sarl Expandable intervertebral fusion cage

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2774350A (en) * 1952-09-08 1956-12-18 Jr Carl S Cleveland Spinal clamp or splint
GB780652A (en) 1954-04-30 1957-08-07 Zimmer Orthopaedic Ltd Improvements in or relating to apparatus for use in spinal fixation
US3426364A (en) * 1966-08-25 1969-02-11 Colorado State Univ Research F Prosthetic appliance for replacing one or more natural vertebrae
US3648691A (en) * 1970-02-24 1972-03-14 Univ Colorado State Res Found Method of applying vertebral appliance
US3693616A (en) * 1970-06-26 1972-09-26 Robert Roaf Device for correcting scoliotic curves
US4554914A (en) * 1983-10-04 1985-11-26 Kapp John P Prosthetic vertebral body
FR2623085B1 (en) * 1987-11-16 1992-08-14 Breard Francis SURGICAL IMPLANT TO LIMIT THE RELATIVE MOVEMENT OF VERTEBRES
FR2693364B1 (en) * 1992-07-07 1995-06-30 Erpios Snc INTERVERTEBRAL PROSTHESIS FOR STABILIZING ROTATORY AND FLEXIBLE-EXTENSION CONSTRAINTS.
GB9217578D0 (en) * 1992-08-19 1992-09-30 Surgicarft Ltd Surgical implants,etc
US5496318A (en) * 1993-01-08 1996-03-05 Advanced Spine Fixation Systems, Inc. Interspinous segmental spine fixation device
JP2606035Y2 (en) * 1993-12-24 2000-09-11 京セラ株式会社 Spine correction plate device
FR2722980B1 (en) * 1994-07-26 1996-09-27 Samani Jacques INTERTEPINOUS VERTEBRAL IMPLANT
CN2285134Y (en) * 1996-08-26 1998-07-01 黄令坚 Tongs clamp type fixator with convex surface
US20020143331A1 (en) * 1998-10-20 2002-10-03 Zucherman James F. Inter-spinous process implant and method with deformable spacer
US5836948A (en) * 1997-01-02 1998-11-17 Saint Francis Medical Technologies, Llc Spine distraction implant and method
US5860977A (en) * 1997-01-02 1999-01-19 Saint Francis Medical Technologies, Llc Spine distraction implant and method
US6451019B1 (en) * 1998-10-20 2002-09-17 St. Francis Medical Technologies, Inc. Supplemental spine fixation device and method
US7306628B2 (en) * 2002-10-29 2007-12-11 St. Francis Medical Technologies Interspinous process apparatus and method with a selectably expandable spacer
US6695842B2 (en) * 1997-10-27 2004-02-24 St. Francis Medical Technologies, Inc. Interspinous process distraction system and method with positionable wing and method
US6068630A (en) * 1997-01-02 2000-05-30 St. Francis Medical Technologies, Inc. Spine distraction implant
WO1999021501A1 (en) * 1997-10-27 1999-05-06 Saint Francis Medical Technologies, Llc Spine distraction implant
FR2775183B1 (en) * 1998-02-20 2000-08-04 Jean Taylor INTER-SPINOUS PROSTHESIS
US7029473B2 (en) * 1998-10-20 2006-04-18 St. Francis Medical Technologies, Inc. Deflectable spacer for use as an interspinous process implant and method
CN2401157Y (en) * 1999-12-09 2000-10-18 中国人民解放军第二军医大学 Arcus posterior atlantis fixator and special forceps thereof
US6312431B1 (en) * 2000-04-24 2001-11-06 Wilson T. Asfora Vertebrae linking system
FR2811540B1 (en) * 2000-07-12 2003-04-25 Spine Next Sa IMPORTING INTERVERTEBRAL IMPLANT
US6364883B1 (en) * 2001-02-23 2002-04-02 Albert N. Santilli Spinous process clamp for spinal fusion and method of operation
US20030040746A1 (en) * 2001-07-20 2003-02-27 Mitchell Margaret E. Spinal stabilization system and method
US6733534B2 (en) * 2002-01-29 2004-05-11 Sdgi Holdings, Inc. System and method for spine spacing

Also Published As

Publication number Publication date
CN1652727A (en) 2005-08-10
KR20050000425A (en) 2005-01-03
WO2003099147A1 (en) 2003-12-04
US20030216736A1 (en) 2003-11-20
DE60334357D1 (en) 2010-11-11
EP1418854B1 (en) 2010-09-29
CA2485174A1 (en) 2003-12-04
EP2275047A2 (en) 2011-01-19
EP1418854A1 (en) 2004-05-19
JP4299236B2 (en) 2009-07-22
US7048736B2 (en) 2006-05-23
JP2005525907A (en) 2005-09-02
KR101004937B1 (en) 2010-12-29
CN100337600C (en) 2007-09-19
AU2009200016A1 (en) 2009-02-05
EP2275047A3 (en) 2011-10-05
ATE482660T1 (en) 2010-10-15
AU2003225270A1 (en) 2003-12-12

Similar Documents

Publication Publication Date Title
CA2485174C (en) Device for fixation of spinous processes
CA2289089C (en) Articulating toggle bolt bone screw
AU692343B2 (en) Segmental lamina grapple hooks
EP1635722B1 (en) Variable offset spinal fixation system
US6361535B2 (en) Bone screw threaded plug closure with central set screw
CA2335059C (en) Device for securing spinal rods
KR101086157B1 (en) Midline Occipital Vertebral Fixation System
EP1330196B1 (en) Connector for spinal rod and vertebral anchor
US6280445B1 (en) Multi-axial bone anchor system
AU2009314046B2 (en) Locking polyaxial ball and socket fastener
EP1152705B1 (en) Spinal fixation system
JP4584876B2 (en) Fixing assembly
US7857834B2 (en) Spinal implant fixation assembly
AU692147B2 (en) Anterior cervical plating system
US7344537B1 (en) Bone fixation rod system
US5810817A (en) Spinal therapy apparatus
US20030212398A1 (en) Multiple diameter tangential set screw
WO1996002200A1 (en) Spinal segmental reduction derotational fixation system
AU2003225270B2 (en) Device for fixation of spinous processes

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed