CA2492978A1 - Medical implant - Google Patents

Medical implant Download PDF

Info

Publication number
CA2492978A1
CA2492978A1 CA002492978A CA2492978A CA2492978A1 CA 2492978 A1 CA2492978 A1 CA 2492978A1 CA 002492978 A CA002492978 A CA 002492978A CA 2492978 A CA2492978 A CA 2492978A CA 2492978 A1 CA2492978 A1 CA 2492978A1
Authority
CA
Canada
Prior art keywords
implant
catheter
guide wire
micro
filaments
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002492978A
Other languages
French (fr)
Inventor
Hans Henkes
Achim Flesser
Ronald Kontek
Juergen Speder
Ralph Bodenburg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dendron GmbH
Original Assignee
Dendron Gmbh
Hans Henkes
Achim Flesser
Ronald Kontek
Juergen Speder
Ralph Bodenburg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dendron Gmbh, Hans Henkes, Achim Flesser, Ronald Kontek, Juergen Speder, Ralph Bodenburg filed Critical Dendron Gmbh
Publication of CA2492978A1 publication Critical patent/CA2492978A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/95Instruments specially adapted for placement or removal of stents or stent-grafts
    • A61F2/962Instruments specially adapted for placement or removal of stents or stent-grafts having an outer sleeve
    • A61F2/966Instruments specially adapted for placement or removal of stents or stent-grafts having an outer sleeve with relative longitudinal movement between outer sleeve and prosthesis, e.g. using a push rod
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/12022Occluding by internal devices, e.g. balloons or releasable wires
    • A61B17/12099Occluding by internal devices, e.g. balloons or releasable wires characterised by the location of the occluder
    • A61B17/12109Occluding by internal devices, e.g. balloons or releasable wires characterised by the location of the occluder in a blood vessel
    • A61B17/12113Occluding by internal devices, e.g. balloons or releasable wires characterised by the location of the occluder in a blood vessel within an aneurysm
    • A61B17/12118Occluding by internal devices, e.g. balloons or releasable wires characterised by the location of the occluder in a blood vessel within an aneurysm for positioning in conjunction with a stent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B17/221Gripping devices in the form of loops or baskets for gripping calculi or similar types of obstructions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/92Stents in the form of a rolled-up sheet expanding after insertion into the vessel, e.g. with a spiral shape in cross-section
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/95Instruments specially adapted for placement or removal of stents or stent-grafts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/12022Occluding by internal devices, e.g. balloons or releasable wires
    • A61B2017/1205Introduction devices
    • A61B2017/12054Details concerning the detachment of the occluding device from the introduction device
    • A61B2017/12063Details concerning the detachment of the occluding device from the introduction device electrolytically detachable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B17/221Gripping devices in the form of loops or baskets for gripping calculi or similar types of obstructions
    • A61B2017/2215Gripping devices in the form of loops or baskets for gripping calculi or similar types of obstructions having an open distal end
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30003Material related properties of the prosthesis or of a coating on the prosthesis
    • A61F2002/3006Properties of materials and coating materials
    • A61F2002/3008Properties of materials and coating materials radio-opaque, e.g. radio-opaque markers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • A61F2002/91525Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other within the whole structure different bands showing different meander characteristics, e.g. frequency or amplitude
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • A61F2002/91533Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other characterised by the phase between adjacent bands
    • A61F2002/91541Adjacent bands are arranged out of phase
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • A61F2002/9155Adjacent bands being connected to each other
    • A61F2002/91558Adjacent bands being connected to each other connected peak to peak
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/95Instruments specially adapted for placement or removal of stents or stent-grafts
    • A61F2002/9528Instruments specially adapted for placement or removal of stents or stent-grafts for retrieval of stents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/95Instruments specially adapted for placement or removal of stents or stent-grafts
    • A61F2002/9534Instruments specially adapted for placement or removal of stents or stent-grafts for repositioning of stents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2220/00Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2220/0025Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2220/005Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements using adhesives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2220/00Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2220/0025Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2220/0058Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements soldered or brazed or welded
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0002Two-dimensional shapes, e.g. cross-sections
    • A61F2230/0004Rounded shapes, e.g. with rounded corners
    • A61F2230/0008Rounded shapes, e.g. with rounded corners elliptical or oval
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0058Additional features; Implant or prostheses properties not otherwise provided for
    • A61F2250/0096Markers and sensors for detecting a position or changes of a position of an implant, e.g. RF sensors, ultrasound markers
    • A61F2250/0098Markers and sensors for detecting a position or changes of a position of an implant, e.g. RF sensors, ultrasound markers radio-opaque, e.g. radio-opaque markers

Abstract

Disclosed is a medical implant which comprises a proximal and a distal end, is preformed so as to embody a superior structure at the place of implantation, and can be modified into a volume-reduced form in order to be inserted throu gh a microcatheter (22) and a guiding wire (21) that is disposed at the proxima l end. The implant (1) takes on the shape of a tube that is open in the longitudinal direction in the superior structure thereof and is provided wit h a mesh-type structure (3) of webs or filaments (2) that are interconnected. The proximal end of the implant (1) has a tapering structure (B) in which th e webs or filaments (2) converge towards a connecting point (5). Preferably, t he implant (1) represents a neurostent. The invention also relates to a system which is used for treating aneurysms or other vascular malformations and comprises such a medical implant that is detachably fixed to a guiding wire.

Description

DNDR0105 (27/05) AKI...
s The invention relates to a medical implant which is prefiom~ed in order to assume, at the site of implantation, a superimposed structure while, during the process of implantation, it is present in volume-reduced form.
Furthermore, the invention relates to the application of such an implant as a neuro-stent, its combination with a guide wire as well as a system for the ~o application of such implants when treating aneurysms or other vascular malformations.
It is known from prior art to treat vascoconstriction (stenoses) with the help of stents (vascular endoprostheses, vessel props) which are inserted into the stenotic area where they keep the vessel lumen open. ft is further known to use s such stents for closing off vessel wall ballooning (aneurysms) or fistulae.
For this purpose, balloon-dilatable stents are traditionally used. For placement these are crimped over a non-expanded balloon in non-dilated state, moved to the treatment location by means of a catheter system and then by expanding the balloon dilated and thus anchored within the vessel. Since there is no need for Zo sophisticated supporting and guiding sheaths when placing balloon-dilatable stents in position these can also be inserted into very fine vessels. It is, however, problematic that on account of their plastic deformability they can easily be compressed when external pressuns is exerted on them. Another disadvantage is encountered when anchoring such stents in that by applying as high pressure they have to be expanded initially beyond the circumferential size Z
they will finally have. Such an expansion beyond the circumferential size required may involve the risk of a vessel injury that may entail the formation of thrombs.
It is a further disadvantage of these traditional balloon-diiatable stems that due s to their structure they cannot simply be introduced through a laid micro-catheter and advanced to the implantation site but have to be arranged in the distal area of a specially designed micro-catheter in order to be capable of being moved to the implantation location by means of a so-called pusher. This calls fvr a rather sophisticated catheter technology that is difficult to handle. Another problem is o encountered in that a stent once placed in position can only be relocated or retrieved with great difficulty, if at all. After a wrongly placed stent has beers dilated it can neither be relocated nor removed as a rule.
It is further known to apply self expanding stents that are made of shape-memory materials. These possess a braid-like structure and are initially 1s introduced and moved in collapsed 'state through a catheter to the destination site where they expand either due to temperature changes (thermo-memory effect) or because the mechanical force exerted by the catheter (super-elasticity) is no longer effective. Such stents as well have the disadvantage in that the mechanisms required for their introduction are relatively expensive and space-Zo consuming. The known super-elastic expandable stents thus always require the use of a supporting and guiding sheath which results in a relatively large catheter size and, what is more, also makes it impossible to introduce such stents through an already laid catheter.
For the introduction into small-lumen intra-cranial vessels it is furthermore 25 known to use stents of shape-memory materials that initially are present in the form of an elongated f lament, and not before they exit from the catheter will they assume the tubular structure of a stent due to the change in temperature or because of the compression force no longer being exerted by the catheter.
From DE 197 03 482 A1 it is known far the treatment of aneurysms and similar 3 o diseases to use a scent consisting of two stretched out filaments that by the mechanical constraint of the strand are kept, induced by tension, in that stretched out form until when being pushed out of the catheter said constraint is removed and they assume the actual form of a stent. For the first time, this enabled the use of stents having shape-memory properties also in vessels of very small lumen such as the intra-cranial and cerebral vessel branches.
s Though well suited for certain applications these stents show a number of disadvantages in that, inter alia, it is relatively difficult to displace them inside the catheter and even impossible to move them back into the catheter, the latter being important in case of incorrect placements. Moreover, due to its very filigree structure the stent is hardly suited to cover aneurysms and fistulae in the io vessels In such a way that occlusion agents placed into them can be retained.
In view of the disadvantages associated with the state of the art it is thus the object of the invention to provide implants that can also be introduced through traditional micro-catheters into small-lumen intra-cranial vessels, are well placeable and relocatable, can be moved back into the micro-catheter in case of 25 need, and are suited to bridge vessel ballooning and fistulae in such a manner that these can be filled with occlusion agents. Furthermore, it would be desirable to have available implants capable of adapting to the vessel caliber relatively freely, i.e. must not be tailored to a specific vessel caliber.
According to the invention this objective is reached by providing a medical ao implant of the kind mentioned at the beginning that has the form of a longitudinally open tube with interconnected strings or filaments forming a mesh structure culminating, on one side, in a tapering structure at a connection point.
In other words, the implant according to the invention consists of a flat object that as a result of its impressed and superimposed structure assumes the form as of a slotted tube or hose with the free legs preferably overlapping. In its volume-reduced form it continues to be present in a curled-up condition, i.e. the diameter of the implant in volume-reduced state is significantly reduced in comparison to that of the superimposed structure. After the implant has been released it endeavors to assume the structure impressed on ft and expands to 3 o such an extent that the vessel surrounding the implant allows. Such an expansion in the form of an expanding spiral spring leads to the implant automatically adapting to the vessel caliber or lumen in such a manner that it can be applied in vessels having differrent calibers. In the case of narrow vessels this results in a relatively wide overlap of the two free legs, with wider vessels this overlap is smaller or even a free gap forms which in the event of vessel s branches may even be a desirable trait.
The implant proper has a mesh-like structure consisting of strings or filaments connected with each other. Strings occur if the implant comprises cut structures as, for example, are frequently put to use in coronary stents, a mesh-like structure consisting of filaments is found if the implants are present in the form io of mats having knitted or braided structures or in the form of individual filaments that are welded to one another.
An important aspect of the invention is that the implant is a flat or two dimensional structure that is rolled up to form a longitudinally open object capable of establishing close contact with the wall of the vessel into which it is ss introduced, The strings or filaments tapering on one side and culminating in a connection point permit the implant still to be connected to a guide wire to be easily retracted into the catheter in the event of an incorrect placement or inadequate adaptation to the implantation site so that it may be replaced by another implant 20 or reimplanted after the catheter has been repositioned. As a result of its tapering structure the implant entering the micro-catheter curls up more closely and again assumes its volume~reduced form with the pull force applied to the guide wire and the forces exerted via the catheter rim interacting.
In the catheter itself the implant is present in its volume-reduced form, z5 resembling rolled-up wire netting. Through the action of the guide wire and when thrust forcxs are applied an axial compression will be caused as well, and when released and the superimposed sttvcture is assumed a minor longitudinal contract'ron might occur. However, the longitudinal contraction noticed with dilatable stems will occur with the stents according to the invention to an 3o insignificant extent only.

The connection point of the medical implant situated at the end of the tapered structure serves at the same time as fastening point for the guide wire, either directly or via a connecting element. In the event of a cut or expanded metal foil this represents the point where the strings of the implant converge. (n the case s of a mesh-like structure consisting of individual filaments at least two filaments converge at this point and are connected with each other by welding or crimping.
The connection point usually serves also as a connecting element or part thereof which remains attached to the implant after the guide wire has been detached from the implant. It may be expedient to arrange this connection point io within a platinum spiral or attach it via a platinum spiral to a connecting element, said spiral may also serve as an x-ray reflecting marker for positioning purposes.
Especially preferred are connecting elements that are electrolytically corrodible, such as have been described in DE 100 10 840 A1 for example. Such connecting elements enable the implant, after it has been correctly positioned, to is be detached from the guide wire by applying etectrica) energy for brief periods of to 60 s for example.
As has already been explained the medical implant consists of a flat or two dimensional object that curls up into a hose as a result of the predetermined superimposed stnrcture. Preferably, this results in at least a slight overlapping of
2 o the free legs of the implant.
The implant proper may consist of a foil that is provided with appropriate string patterns, for example using laser technology methods. The string width amounts, for example, to 0.05 to 0.2 mm. The manufacturing technique is the same as that employed for tubular coronary stents.
a 5 Alternatively, expanded metal foil may be used with the respective string widths being of the same magnitude. In this case it is preferred to subsequently smooth the foil to make sure all strings are arranged on the same plane. The thickness of the foil usually ranges between 0.02 and 0.2 mm. Foils of greater thickness also permit the stent to be used in oth~r fields of application, for example as ao coronary stents yr in other regions of the body including for instance the bile duct or ureter.

The mesh width as a rule ranges between 0.5 and 4 mm and may vary within an implant. The same applies to the string width. !t is thus generally preferred to employ in the tapered area mesh sizes of greater width and length and/or greater string widths or thicker filaments. In the area of the tapering structure it is s normally not required to provide support for and coverage of the vessel wall, but on the other hand requirements as to tensile and thnrst strength increase.
In case mesh structures are used that are built from filaments warp-knitted or weft-knitted structures may be employed as well as filaments that are interconnected by welding. The filament thickness is normally in the range of between 0.01 and 0,1 mm and preferably between 0.02 and 0.076 mm. With respect to the mesh widths the aforementioned remarks shall apply.
To the extent that the mesh structure consists of individual filaments interconnected by welding a laser welding technique is preferably employed. A
knitted braiding of individual filaments is produced by generally known braiding, warp- or weft-knitting techniques as ate for example known in the field of wire mesh manfucturing or from textile technology. Especially preferred in this context are knitted braidings having a warp-knitting structure that, as a result of its manufacturing process, leads to curled-up rims because in this manner the superimposed structure can be produced with the help of the warp-knitting z o technique. Especially preferred is a warp-knitting structure known to the textile specialist under the German language term of "Fluse".
A special advantage of the medical implants according to the invention over the traditional expandable stents is that when adapting to the vessel to be treated a longitudinal contraction will no longer occur. The longitudinally open structure zs having a predetermined "winding" property has no effect whatsoever on the longitudinal expansion of the stent. The foil structures proper have been found to be remarkably true to size under the influence of thrust and tensile forces.
The same applies to the warp-knitted structure and the mesh-like structure consisting of individual filaments interconnected by welding.

Filaments consisting of a braid of individual strands and so to speak formed into a rope can also be employed. Braids comprising 12 to 14 strands having a total thickness of 0.02 mm have proved useful.
In case the superimposed structure cannot be impressed onto the implants with s the help of the warp or weft knitting method or by braiding, material may be put to use that possesses shape-memory properties. For example, such materials consist of alloys containing titanium and nickel which are known by the name of Nitinol, as well as iron and copper based alloys. Shape..memory properties may be based on a stress-induced martensitic transformation or a temperature-so induced martensitic transformation or may be the result of a combination of the two.
As materials for the filaments in particular it is also possible to use platinum, platinum alloys, gold and stainless steel. Generally speaking, all permanent implant materials known in medical technology can be employed that satisfy the relevant requirements.
As mentioned earlier the implants according to the invention in particular are also provided with x-ray reflecting markers that enable the positioning and implantation to be monitored. Such markers may have the form of spirals that are arranged proximally, in particular at the connection point of the strings or zo filaments. Preferably, the x-ray reflecting markers are also arranged at the distal end of the implant, particularly in the form of platinum or platinum/iridium elements incorporated in or attached to the mesh structure. In particular, the meshes of the implant according to the invention may at the distal end be provided with a lug or end in a lug that accommodates the marker element a s arranged levelly.
Furthermore, the invention relates to the combination of the above described implant with a guide wire that is linked to the distal end of the implant in a manner so as to be detachable. Such detachability is brought about, in particular, by means of an element that under the influence of electrical energy ~ o is capable of corroding, as is known from the prior art. Said guide wire is an otherwise commonly known and applied guiding wire of suitable kind for pushing the implant through a catheter to the site of implantation and, should it have been wrongly positioned, retract it into the catheter. It is clearly understood that the corrosion point may also be in the area of the guide wire proper or may be based on an otherwise known mechanical or thermal detachment technique.
s Eventually, the invention also relates to a system to be used for the treatment of aneurysms or other vascular malformations, said system comprising of a first micro-catheter, a first guide wire intended to bring the first micro-catheter in position, a second guide wire intended to move the implant through the first micro-catheter and place it in position as well as the implant that is arranged at the distal end of the second guide wire in a way so as to be detachable. Due to the curled up structure of the implant and as a result of making use of the combination with the guide wire it is possible after having placed the first micro cathetef to remove the first guide wire and introduce and handle the second guide wire which is provided with the implant. Previous 'implants of this kind ~.s were always introduced by using the so-called pusher technique that as a rule did not allow to recover the implant.
As per a preferred embodiment the system has additionally been provided with a second micro-catheter designed and intended to accommodate the second guide wire with the implant in such a way that it is slidable within said second a o micro-catheter and can be moved through the first micro-catheter to the target site. Coatings of the second micro-catheter that enhance its slidability may facilitate handling.
The first micro-catheter is per se a customary micro-catheter of a kind in widespread use, for example, in neuradiology and having a diameter/cafiber as ranging between 0.59 mm (20 mill and 0.3fi mm (14 mil).
Moreover, the system may have customary electrical components for the detachment by electrolytical means of the implant from the guide wire at a previously envisaged detachment location.
The invention is described in more detail by way of the figures as outlinEd below.
3 o They show:

Fig. l: An implant according to the invention having a honeycomb structure;
Fig. 2: another embodiment of a stent according to the invention having a honeycomb s structure;
Fig. 3: a third embodiment of a stent according to the invention having a honeycomb structure;
Fig. ~.: a warp-knitted structure as can be used for the implants according to the invention;
Fig. 5: a stent according to the invention together with guide wire and catheter;
Fig.6: schematic representation of an implant according to the invention shown in its superimposed and in its volume-reduced shape;
Fig. 7: a marker element as can be used in the system according to the invention;
Fig.8: schematic reptesentation of two a o detachment locations by means of which the implant according to the invention can be detachably linked to a guide wire.
The implant according to Figure 1 consists of a mesh or honeycomb structure that in the present case comprises of a multitude of filaments interconnected a5 with the help of the laser welding technique. The implant can be subdivided into the functional portion A proper and the tapering proximal structure B, the two being distinguishable, inter alia, by a different mesh size. To enable the functional portion A tv perform its retaining function its meshes 3 are held relatively narrow so that they lend themselves to the retention of occlusion s o spirals arranged in an aneurysm. !n the tapering proximal part B of the implant there is provided a wider mesh structure 4 which has been optimized towards having a minimum occlusion effect. In the area of the tapering structure 2 the filaments preferably have a greater thickness to be able to better transfer to the functional portion A the thrust and tensile forces of the guide wire exerted at the connection point 5 when the implant is introduced and placed in position. The s filament thickness in the functional part A generally ranges between 0.02 and
4.076 mm, in part B this is between 0.076 mm and above.
The proximal part B preferably forms an angle from 45° to 120°
at connection paint 5, in particular an angle of about 90°. The filament thickness (or string width} same as the mesh size and shape may vary over a great range to suit so varying requirements as to stability, flexibility and the like. Then= is no doubt that the proximal part as well contacts the vessel waA and thus does not interfere with the flow of blood within the vessel.
At the distal end the filaments 2 end in a series of "tails" 6 that are of suitable kind to carry platinum markers that facilitate the positioning of the implant.
Having assumed its superimposed structure the implant 1 is curled up in such a way that the edges 7 and $ are at least closely positioned to each other, preferably overlap in the area of the edges. In its volume-reduced form the implant 2, similar to a wire mesh roll, has curled up to such an extent that the roll so formed can be easily introduced into a micro-catheter and moved within said 2o catheter. Having been released from the micro-catheter the Curled-up structure springs open and attempts to assume the superimposed structure previously impressed on it and in doing so closely leans to the inner wail of the vessel to be treated thus superficially covering a fistula, vessel branch or aneurysm that exists in that location. In this case the extent of the "curs up " is governed by the 2 s vessel volume; in narrower vessels a greater overlap of the edges 7 and $
of the implant 1 will occur whereas in wider vessels the overlap will be smaller or even ,underlap', will be encountered, and due care must be exercised to make sure the implant still exhibits a residual tension.
Suitable materials that can be employed are alloys having shape-memory 3 o properties. The finished product is subjected to a tempering #reatment at temperatures customarily applied to the material so that the impressed structure is permanently established.
Figure 2 shows another embodiment of a stent 1 according to the invention having the above described honeycomb structure where the tapering proximal s part B is connected with the functional part A by means of additional filaments 9 in the peripheral area 10 as well as in the central area. Such additional filaments 9 and 10 bring about a mare uniform transmission of the tensile and thrust forces from the proximal structure B to the functional part A so that the tensile forces can be better transmitted, especially if the stent might have to be 1 o repositioned by having to be retracted into the micro-catheter. This will facilitate the renewed curling up of the stent. Similarly, the transmission of thrust forces occurring when the stent is moved out and placed in position is facilitated so that the stent can be gently applied. Moreover, it is pointed out that identical numbers apply to identical positions.
15 Figure 3 shows another embodiment of a stent 1 according to the invention having a honeycomb structure with the edges 7 and 8 being formed of filaments 9 that for the main part run straight. According to this embodiment the thrust or pressure exerted by the guide wire at point 5 is very directly transmitted to the edges 7 and 8 of the functional stent part A which further increases the effect zo described with reference to figure 2.
The embodiment as per figure 3, same as those depicted in figure 1 and 2, may be based on a cut foil, i.e. the individual filaments 2, 9 and 10 are substituted by individual strings (land) being the remaining elements of a foil processed with the help of a cutting technique. Laser cutting techniques far the production of zs slants having a tubular stnrcture are known and have been frequently described.
The processing of a fail for the production of a pattern suitable for a stent is pertormed analogously. The impression of the superimposed structure is carried out in the same way as is used for the filament design version.
Foils worked with the help of a suiting technique are preferably finished by 3 o electrochemical means to eliminate burr and other irregutacities, achieve a smooth surface and round edges. Such working processes of electrochemical nature are known to the expert and already are in widespread and extensive use in medical technology. In this context it is to be noted that the stents according to the invention that are based on a two-dimensional geometry and on which a three-dimensional structure is impressed subsequently can be manufactured s and processed more easily than the conventional ,tubular' stems that already during manufacture have a three-dimensional structure and necessitate sophisticated and costly working processes and equipment.
As painted out above the mesh structure of the implant according to the invention may consist of a braiding of individual filaments. Such a knitted zo structure is shown in figure 4 where the individual filaments 2 are interwoven in the form of a 'single jersey fabric' having individual loops 3 forming a mesh-like structure 11. Single jersey goods of this type are produced in a known manner from a row of needles. The single jersey goods have two fabric sides of diff~rent appearance, the right and left side of the stitches. A single jersey fabric material ~s features minor flexibility in transverse direction and is very light.
It is considered especially advantageous to have the fabric rims of such a knitted structure curling up as is known, for example, from the so-called "Fluse"
fabric (German term) which is of benefit with respect to the superimposed structure and application dealt with here. In this case the superimposed structure can be zo impressed by means of the knitting process. However, the use of shape-memory alloys in this case as well is feasible and useful.
For the production of such knitted structures known knitting processes and techniques can be employed. However, since the implants according to the invention are of extremely small size - for example have a size of 2 by 1 cm --it 25 has turned out to be beneficial to produce the implants in the framework of a conventional warp or weft knitting fabric of textile, non-metallic filaments, for example in the form of a rim consisting of the respective metallic filaments from which the weft or warp knitting fabric either starts out or that extends from such a fabric. The arrangement of the metallic part of the weft or warp knitting fabric 3 o at the rim is of significance with a view to achieving the aforementioned curling effect. The non-metallic portions of the knitted fabric are finally removed by incineration, chemical destruction or dissolution using suitable solvents.

Figure 5 shows a combination of a guide wire 21 with implant 1 attached to it that consists of filaments 2 connected to each other by welding. Clearly evident from the figure are the distal ends 6 and the connection point 5 where the filaments of the implant converge in a tapering structure and that simultaneously s represents the joining location with guide wire 21. The guide wire 21 is introduced into a micro-catheter 22 which is of customary make.
Shifting the guide wire 21 within the catheter 22 will cause the implant 1 to be pushed out of or drawn into the catheter. Upon the stent being pushed out of the micro-catheter the mesh-like structure attempts to assume the superimposed io shape impressed on it, when being drawn in the mesh structure folds back into the micro-catheter adapting to the space available inside.
As a result of the stiffness of its mesh structure the implant can be moved to and fro virtually without restriction via the guide wire 21 until it has been optimally positioned within the vessel system.
is As mentioned earlier customary micro-catheters can be used. The advantage of the implant according to the invention and of the combination of implant and guide wire according to the invention is, however, that after having placed the micro-catheter in position with a customary guide wire/marker system the combination of guide wire 21 and implant 1 according to the invention can be Zo introduced into the micro-catheter, moved through it towards the implantation site and then moved out and applied in that position. Alternatively, it will be possible to have a second micro-catheter of smaller caliber accommodate guide wire 21 and implant 1 and with this second micro-catheter within the firstly positioned micro-catheter shift them to the implantation site. In any case, the zs implant can be easily guided in both directions.
Fig. 6 shows a schematic representation of an implant according to the invention in its superimposed and in its volume-reduced shape; In its expanded shape as illustrated in Figure 6a the implant 1 forms a ring-shaped structure with slightly overlapping edges 7 and 8. The figure shows the implant 1 from its proximal end 3o as a top view with the connection point 5 being approximately positioned opposite to the edges 7 and 8. In the combination according to the invention the guide wire 21 is affixed at the connection paint 5.
Figure 6a shows the same implant in its volume-reduced form as it is arranged, for example, in a micro-catheter in curled up condition. In the case illustrated s there is a total of two windings of the curled-up implant 7 with the connection point 5 being located at the proximal side and the two lateral edges 7 and 8 being the starting and final points of the roll or spiral. The structure is held in 'rts volume-reduced form by the micro-catheter 22; when the implant 1 is pushed out of the micro-catheter 22 it springs into its expanded shape as illustrated by ~o Figure 6a, similar to a spiral spring, Figure 7a shows a marker element 12 suitable far the implants according to the invention with said element being capable of being arranged at the distal end of the implant 1. The marker element 12 consists of a "lug° 13 provided with a small marker plate i 5 levelly arranged inside it (flush with the plane of the implant without any projecting elements), said plate being made of an x-ray reflecting material, for example platinum or platinum-iridium. The marker plate 15 is connected to the surrounding implant structure by means of laser welding techniques.
Figure 7b gives an example of the arrangement of the marker elements 12 at so the distal end of the implant 1 (refer to item 6 in Figure 1).
Figure 8 is a schematic representation of two variants of a separating arrangement 8a and 8b via which the implant according to the invention is detachably connected to a guide wire. In both cases the separating arrangement 23 consists of a dumb-bell shaped element that dissolves under the influence of as electrical energy when in contact with an electrolyte. At the proximal (guide-wire side) end of the dumb-bell shaped element 23 as per Figure 8a a spiral structure 25 is located that interacts with a strengthening spiral 26 of the guide wire.
At the distal end a ball-shaped element 27 is arranged that with the help of a laser welding technique is connected to a platinum spiral 28 which in tum is linked 3o with the connection point 5 situated at the proximal end of the implant.
The is platinum spiral 28 also serves as x-ray reflecting proximal marker of the implant 1.
To strengthen the joint between the ball-shaped element 27 and the connection point 5 a reinforcement wire 29 may prove expedient. Alternatively, the platinum spiral 28 may also be designed in such a manner that it withstands the tensile and thrust forces imposed on it.
For the separating element 23 especially a steel material may be useful that susceptible tv corrosion in an electrolyte under the in~uence of electrical energy.
To accelerate contusion and shorten the separating time span a structural or Zo chemical weakening of the dumb-bell may be beneficial, for example by applying grinding methods or thermal treatment.
Generally, the portion of the dumb-bell 23 accessible to the electrolyte has a length of 0.1 to 0.5 mm, particularly 0.3 mm.
The spiral structure 25 is secured via welding spots both to the dumb-bell ~.s shaped element 23 and the reinforcement spiral 26 of guide wire 21. The guide wire 21 itself is slidably accommodated within the micro-catheter 22.
Fig. 8b shows a second embodiment that differs from the one described by Fig.
8a in that the dumb-bell shaped element 23 has a ball-shaped element 27 at both ends, said elements being connected distally to the connection point 5 of ~o the implant and proximally to the guide wire 21 via spirals 28 and, respectively, 26.
It is of course also provided that other separating principles may be applied, for example those that are based on mechanics) principles or melting off plastic connecting elements.
a s - Claims -

Claims (25)

1. Medical implant, having a proximal and a distal end, that is preformed to assume a superimposed structure at the implantation site but can be made to take on a volume-reduced form making it possible to introduce it by means of a micro-catheter (22) and a guide wire (21) arranged at the proximal end, characterized in that the implant (1) in its superimposed structure assumes the farm of a longitudinally open tube and has a mesh structure (3) of interconnected strings or filaments (2), said implant showing a tapering structure (B) at its proximal end where the strings or filaments (2) converge at a connection point (5).
2. The implant according to claim 1, characterized in that it consists at least to some extent of an alloy having shape-memory properties.
3. The implant according to claims 1 or 2, characterized in that the volume-reduced form is a structure curled up similarly to a spiral spring.
4. The implant according to one of the above claims, characterized in that the tapering structure (B) ends in the connection point (5) arranged centrally.
5. The implant according to claim 4, characterized in that the structure converges in a platinum spiral (28).
6. The implant according to one of the above claims, characterized in that it consists of cut foil curled up to form a longitudinally open tube.
7. The implant according to any one of the claims 1 to 6, characterized in that it consists of an expanded metal foil curled up to form a longitudinally open tube.
8. The implant according to any one of the claims 1 to 5, characterized in that it consists of individual filaments (2) interconnected by welding to form a mesh structure.
9. The implant according to any one of the claims 1 to 5, characterized in that it consists of a mesh braiding of individual filaments (2).
10. The implant according to claims 8 or 9, characterized in that the filaments (2) comprise individual strands worked into a rope-like structure.
11. the implant according to claim 9, characterized in that the mesh braiding has a knitted structure that due to the manufacturing methods employed results in curled up edges (7, 8).
12. The implant according to claim 11, characterized in that the knitted structure is a fabric known by the German term "Fluse".
13. The implant according to claim 11, characterized in that the edges (7, 8) of the longitudinally open tube are provided so as to overlap.
14. The implant according to any one of the above claims, characterized in that it has one or several markers (12) at its distal end.
15. The implant according to claim 14, characterized in that the one or several markers (12) are arranged at the ends of the junction points of the strings or filaments (2).
16. Neuro-stent according to any one of the above claims.
17. Use of an implant according to any one of the claims 1 to 15 as neuro-stent for closing off vessel wall ballooning, fistulae or vessel branching.
18. Combination of guide wire and implant according to any one of the claims 1 to 16 having the implant (1) detachably arranged at the distal end of the guide wire (21).
19. The combination according to claim 18, characterized in that the guide wire (21) is provided, at its distal end, with a platinum spiral (26) connected to the implant via a connecting element (23) that under the influence of electrical energy is corrodible.
20. The combination according to claim 19, characterized in that the electrically corrodible connecting element (23) is arranged between a distal platinum spiral (26) of the guide wire (21) and a proximal platinum spiral (28) of the implant (1).
21. System for the treatment of aneurysms or other vascular malformations for use with a first micro-catheter (22);
a first guide wire for the placement of the first micro-catheter (22);
a second guide wire (21) intended to move an implant (1) through the first micro-catheter (22) and place said implant into position: as well as an implant (1) according to any one of the claims 1 to 16 that is detachably arranged at the distal end of the second guide wire (21).
22. The system according to claim 21, Characterized in that the implant (1) is connected to the second guide wire (21) via an electrolytically corrodible element (23).
23. The system according to claim 21 or 22, characterized in that said system is provided, additionally, with a second micro-catheter that has been designed and is intended to accommodate the second guide wire (21) with the implant (1) in such a way that it is slidable within said second micro-catheter and can be moved through the first micro-catheter to the target site.
24. The system according to any one of the claims 21 to 23, characterized in that it is provided with additional devices to bring about the electrical corrosion of the connecting element.
25. The system according to any one of the claims 21 to 24, characterized in that the implant (1) having been discharged from the micro-catheter (22) assumes the superimposed structure impressed on it to the extent predetermined by the dimensions of the surrounding vessels.
CA002492978A 2002-07-19 2003-07-21 Medical implant Abandoned CA2492978A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10233085.9A DE10233085B4 (en) 2002-07-19 2002-07-19 Stent with guide wire
DE10233085.9 2002-07-19
PCT/EP2003/007926 WO2004008991A1 (en) 2002-07-19 2003-07-21 Medical implant

Publications (1)

Publication Number Publication Date
CA2492978A1 true CA2492978A1 (en) 2004-01-29

Family

ID=29796487

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002492978A Abandoned CA2492978A1 (en) 2002-07-19 2003-07-21 Medical implant

Country Status (8)

Country Link
US (4) US7300458B2 (en)
EP (4) EP2781196B1 (en)
JP (2) JP4919217B2 (en)
AU (1) AU2003254553A1 (en)
CA (1) CA2492978A1 (en)
DE (1) DE10233085B4 (en)
ES (3) ES2552907T3 (en)
WO (1) WO2004008991A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8357178B2 (en) 2009-07-08 2013-01-22 Concentric Medical, Inc. Vascular and bodily duct treatment devices and methods
US8357179B2 (en) 2009-07-08 2013-01-22 Concentric Medical, Inc. Vascular and bodily duct treatment devices and methods
US8529596B2 (en) 2009-07-08 2013-09-10 Concentric Medical, Inc. Vascular and bodily duct treatment devices and methods
US8795317B2 (en) 2009-07-08 2014-08-05 Concentric Medical, Inc. Embolic obstruction retrieval devices and methods
US8795345B2 (en) 2009-07-08 2014-08-05 Concentric Medical, Inc. Vascular and bodily duct treatment devices and methods
US9072537B2 (en) 2009-07-08 2015-07-07 Concentric Medical, Inc. Vascular and bodily duct treatment devices and methods

Families Citing this family (185)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8663311B2 (en) * 1997-01-24 2014-03-04 Celonova Stent, Inc. Device comprising biodegradable bistable or multistable cells and methods of use
US8353948B2 (en) * 1997-01-24 2013-01-15 Celonova Stent, Inc. Fracture-resistant helical stent incorporating bistable cells and methods of use
US8048104B2 (en) 2000-10-30 2011-11-01 Dendron Gmbh Device for the implantation of occlusion spirals
US6799637B2 (en) 2000-10-20 2004-10-05 Schlumberger Technology Corporation Expandable tubing and method
NO335594B1 (en) 2001-01-16 2015-01-12 Halliburton Energy Serv Inc Expandable devices and methods thereof
DE10233085B4 (en) 2002-07-19 2014-02-20 Dendron Gmbh Stent with guide wire
US8425549B2 (en) 2002-07-23 2013-04-23 Reverse Medical Corporation Systems and methods for removing obstructive matter from body lumens and treating vascular defects
ES2364555T3 (en) * 2003-05-23 2011-09-06 Boston Scientific Limited CANNULAS WITH INCORPORATED LOOP TERMINATIONS.
WO2005067817A1 (en) 2004-01-13 2005-07-28 Remon Medical Technologies Ltd Devices for fixing a sensor in a body lumen
DE102004003265A1 (en) * 2004-01-21 2005-08-11 Dendron Gmbh Device for the implantation of electrically isolated occlusion coils
WO2005094283A2 (en) 2004-03-25 2005-10-13 Hauser David L Vascular filter device
ES2357243T3 (en) 2004-05-21 2011-04-20 Micro Therapeutics, Inc. METAL SPIRALS INTERLATED WITH POLYMERS OR BIOLOGICAL OR BIODEGRADABLE OR SYNTHETIC FIBERS FOR THE EMBOLIZATION OF A BODY CAVITY.
ATE367132T1 (en) * 2004-05-25 2007-08-15 Cook William Europ STENT AND STENT REMOVING DEVICE
JP2008502378A (en) 2004-05-25 2008-01-31 チェストナット メディカル テクノロジーズ インコーポレイテッド Flexible vascular closure device
US8628564B2 (en) 2004-05-25 2014-01-14 Covidien Lp Methods and apparatus for luminal stenting
WO2010120926A1 (en) 2004-05-25 2010-10-21 Chestnut Medical Technologies, Inc. Vascular stenting for aneurysms
US8617234B2 (en) 2004-05-25 2013-12-31 Covidien Lp Flexible vascular occluding device
US20060206200A1 (en) 2004-05-25 2006-09-14 Chestnut Medical Technologies, Inc. Flexible vascular occluding device
ATE448737T1 (en) 2004-09-22 2009-12-15 Dendron Gmbh DEVICE FOR IMPLANTING MICROWL COILS
US7879064B2 (en) 2004-09-22 2011-02-01 Micro Therapeutics, Inc. Medical implant
US10390714B2 (en) 2005-01-12 2019-08-27 Remon Medical Technologies, Ltd. Devices for fixing a sensor in a lumen
DE102005019782A1 (en) * 2005-04-28 2006-11-09 Dendron Gmbh Device for implantation of occlusion coils with internal securing means
AU2005332044B2 (en) 2005-05-25 2012-01-19 Covidien Lp System and method for delivering and deploying and occluding device within a vessel
US8060214B2 (en) 2006-01-05 2011-11-15 Cardiac Pacemakers, Inc. Implantable medical device with inductive coil configurable for mechanical fixation
WO2007100556A1 (en) 2006-02-22 2007-09-07 Ev3 Inc. Embolic protection systems having radiopaque filter mesh
CA2649702C (en) 2006-04-17 2014-12-09 Microtherapeutics, Inc. System and method for mechanically positioning intravascular implants
US8777979B2 (en) 2006-04-17 2014-07-15 Covidien Lp System and method for mechanically positioning intravascular implants
WO2008034077A2 (en) * 2006-09-15 2008-03-20 Cardiac Pacemakers, Inc. Anchor for an implantable sensor
US8676349B2 (en) 2006-09-15 2014-03-18 Cardiac Pacemakers, Inc. Mechanism for releasably engaging an implantable medical device for implantation
US20080269774A1 (en) 2006-10-26 2008-10-30 Chestnut Medical Technologies, Inc. Intracorporeal Grasping Device
KR20100015521A (en) 2007-03-13 2010-02-12 마이크로 테라퓨틱스 인코포레이티드 An implant, a mandrel, and a method of forming an implant
KR20100015520A (en) 2007-03-13 2010-02-12 마이크로 테라퓨틱스 인코포레이티드 An implant including a coil and a stretch-resistant member
US8545548B2 (en) * 2007-03-30 2013-10-01 DePuy Synthes Products, LLC Radiopaque markers for implantable stents and methods for manufacturing the same
US8204599B2 (en) 2007-05-02 2012-06-19 Cardiac Pacemakers, Inc. System for anchoring an implantable sensor in a vessel
EP2162185B1 (en) 2007-06-14 2015-07-01 Cardiac Pacemakers, Inc. Multi-element acoustic recharging system
WO2009003049A2 (en) 2007-06-25 2008-12-31 Micro Vention, Inc. Self-expanding prosthesis
DE102007048794A1 (en) 2007-10-10 2009-04-16 Phenox Gmbh Expandable vascular support i.e. stent, and catheter combination for treating ischemic stroke, has stent with inner lumen larger than outer lumen of catheter at its opening so that free lumen remains between outer wall and inner wall
US11337714B2 (en) 2007-10-17 2022-05-24 Covidien Lp Restoring blood flow and clot removal during acute ischemic stroke
US10123803B2 (en) 2007-10-17 2018-11-13 Covidien Lp Methods of managing neurovascular obstructions
US20100022951A1 (en) * 2008-05-19 2010-01-28 Luce, Forward, Hamilton 7 Scripps, Llp Detachable hub/luer device and processes
US9220522B2 (en) 2007-10-17 2015-12-29 Covidien Lp Embolus removal systems with baskets
US8088140B2 (en) 2008-05-19 2012-01-03 Mindframe, Inc. Blood flow restorative and embolus removal methods
US9198687B2 (en) 2007-10-17 2015-12-01 Covidien Lp Acute stroke revascularization/recanalization systems processes and products thereby
US8585713B2 (en) 2007-10-17 2013-11-19 Covidien Lp Expandable tip assembly for thrombus management
US8066757B2 (en) 2007-10-17 2011-11-29 Mindframe, Inc. Blood flow restoration and thrombus management methods
US20100256600A1 (en) * 2009-04-04 2010-10-07 Ferrera David A Neurovascular otw pta balloon catheter and delivery system
US8926680B2 (en) 2007-11-12 2015-01-06 Covidien Lp Aneurysm neck bridging processes with revascularization systems methods and products thereby
US11589880B2 (en) 2007-12-20 2023-02-28 Angiodynamics, Inc. System and methods for removing undesirable material within a circulatory system utilizing during a surgical procedure
US10517617B2 (en) 2007-12-20 2019-12-31 Angiodynamics, Inc. Systems and methods for removing undesirable material within a circulatory system utilizing a balloon catheter
JP5366974B2 (en) 2007-12-21 2013-12-11 マイクロベンション インコーポレイテッド System and method for determining the position of a separation zone of a separable implant
EP2234562B1 (en) 2007-12-21 2019-02-27 MicroVention, Inc. A system and method of detecting implant detachment
US8163004B2 (en) * 2008-02-18 2012-04-24 Aga Medical Corporation Stent graft for reinforcement of vascular abnormalities and associated method
KR101819554B1 (en) * 2008-02-22 2018-01-17 마이크로 테라퓨틱스 인코포레이티드 Methods and apparatus for flow restoration
AU2015245003B2 (en) * 2008-02-22 2016-10-13 Covidien Lp Methods and apparatus for flow restoration
AU2014200111B2 (en) * 2008-02-22 2015-08-13 Covidien Lp Methods and apparatus for flow restoration
EP2249730A1 (en) * 2008-03-06 2010-11-17 Synthes GmbH Facet interference screw
CN101977650A (en) 2008-04-11 2011-02-16 曼德弗雷姆公司 Monorail neuro-microcatheter for delivery of medical devices to treat stroke, processes and products thereby
JP5362828B2 (en) 2008-07-15 2013-12-11 カーディアック ペースメイカーズ, インコーポレイテッド Implant assist for an acoustically enabled implantable medical device
US9402707B2 (en) 2008-07-22 2016-08-02 Neuravi Limited Clot capture systems and associated methods
CN101779992B (en) * 2009-01-19 2012-08-22 加奇生物科技(上海)有限公司 Conveying device for retrievable self-eject nervi cerebrales stent
US20100191168A1 (en) 2009-01-29 2010-07-29 Trustees Of Tufts College Endovascular cerebrospinal fluid shunt
US8694129B2 (en) * 2009-02-13 2014-04-08 Cardiac Pacemakers, Inc. Deployable sensor platform on the lead system of an implantable device
US9572693B2 (en) * 2009-05-14 2017-02-21 Orbusneich Medical, Inc. Self-expanding stent with polygon transition zone
US20110009941A1 (en) * 2009-07-08 2011-01-13 Concentric Medical, Inc. Vascular and bodily duct treatment devices and methods
DE102009056449A1 (en) * 2009-12-01 2011-06-09 Acandis Gmbh & Co. Kg Medical device
DE102010010849A1 (en) * 2010-03-10 2011-09-15 Acandis Gmbh & Co. Kg Medical device for removing concretions from hollow organs of the body and method for producing such a device
US8986355B2 (en) 2010-07-09 2015-03-24 DePuy Synthes Products, LLC Facet fusion implant
US9039749B2 (en) 2010-10-01 2015-05-26 Covidien Lp Methods and apparatuses for flow restoration and implanting members in the human body
EP2629684B1 (en) 2010-10-22 2018-07-25 Neuravi Limited Clot engagement and removal system
DE102010051740A1 (en) 2010-11-19 2012-05-24 Phenox Gmbh thrombectomy
DE102011009372B3 (en) * 2011-01-25 2012-07-12 Acandis Gmbh & Co. Kg Medical device with a grid structure and a treatment system with such a grid structure
DE102011011869A1 (en) * 2011-02-22 2012-08-23 Phenox Gmbh implant
US9301769B2 (en) 2011-03-09 2016-04-05 Neuravi Limited Clot retrieval device for removing clot from a blood vessel
US11259824B2 (en) 2011-03-09 2022-03-01 Neuravi Limited Clot retrieval device for removing occlusive clot from a blood vessel
DE102011014586B3 (en) * 2011-03-21 2012-09-13 Acandis Gmbh & Co. Kg Medical device for treatment of hollow organs of the body, system with such a device and method for producing such a device
US9028540B2 (en) 2011-03-25 2015-05-12 Covidien Lp Vascular stent with improved vessel wall apposition
DE102011101522A1 (en) 2011-05-13 2012-11-15 Phenox Gmbh thrombectomy
FR2979224B1 (en) * 2011-08-29 2014-03-07 Newco SYSTEM FOR EXTRACTING THE THROMBOEMBOLIC SUBSTANCE LOCATED IN A BLOOD VESSEL
US9579104B2 (en) 2011-11-30 2017-02-28 Covidien Lp Positioning and detaching implants
US9011480B2 (en) 2012-01-20 2015-04-21 Covidien Lp Aneurysm treatment coils
US9687245B2 (en) 2012-03-23 2017-06-27 Covidien Lp Occlusive devices and methods of use
EP2863792B1 (en) 2012-06-20 2021-02-17 Boston Scientific Scimed, Inc. Augmented signal vector analysis to suppress global activation during electrophysiology mapping
US10016145B2 (en) 2012-06-20 2018-07-10 Boston Scientific Scimed, Inc. Far-field vs local activation discrimination on multi-electrode EGMS using vector analysis in multi-dimensional signal space
US9326774B2 (en) 2012-08-03 2016-05-03 Covidien Lp Device for implantation of medical devices
US9254205B2 (en) 2012-09-27 2016-02-09 Covidien Lp Vascular stent with improved vessel wall apposition
US9114001B2 (en) 2012-10-30 2015-08-25 Covidien Lp Systems for attaining a predetermined porosity of a vascular device
US9452070B2 (en) 2012-10-31 2016-09-27 Covidien Lp Methods and systems for increasing a density of a region of a vascular device
US9456834B2 (en) 2012-10-31 2016-10-04 Covidien Lp Thrombectomy device with distal protection
US9943427B2 (en) 2012-11-06 2018-04-17 Covidien Lp Shaped occluding devices and methods of using the same
US8784434B2 (en) 2012-11-20 2014-07-22 Inceptus Medical, Inc. Methods and apparatus for treating embolism
US9681817B2 (en) 2012-12-20 2017-06-20 Boston Scientific Scimed, Inc. Suppression of global activation signals during anatomical mapping
WO2014105704A1 (en) 2012-12-27 2014-07-03 Boston Scientific Scimed, Inc. Artifact cancellation to suppress far-field activation during electrophysiology mapping
US9439661B2 (en) 2013-01-09 2016-09-13 Covidien Lp Connection of a manipulation member, including a bend without substantial surface cracks, to an endovascular intervention device
US9157174B2 (en) 2013-02-05 2015-10-13 Covidien Lp Vascular device for aneurysm treatment and providing blood flow into a perforator vessel
US9433429B2 (en) 2013-03-14 2016-09-06 Neuravi Limited Clot retrieval devices
ES2960917T3 (en) 2013-03-14 2024-03-07 Neuravi Ltd Clot retrieval device to remove occlusive clots from a blood vessel
WO2014140092A2 (en) 2013-03-14 2014-09-18 Neuravi Limited Devices and methods for removal of acute blockages from blood vessels
US8679150B1 (en) 2013-03-15 2014-03-25 Insera Therapeutics, Inc. Shape-set textile structure based mechanical thrombectomy methods
US8690907B1 (en) 2013-03-15 2014-04-08 Insera Therapeutics, Inc. Vascular treatment methods
SG10201709513PA (en) 2013-03-15 2018-01-30 Insera Therapeutics Inc Vascular treatment devices and methods
US8715314B1 (en) 2013-03-15 2014-05-06 Insera Therapeutics, Inc. Vascular treatment measurement methods
JP5586742B1 (en) 2013-06-28 2014-09-10 株式会社World Medish High flexibility stent
US9402708B2 (en) 2013-07-25 2016-08-02 Covidien Lp Vascular devices and methods with distal protection
US10076399B2 (en) 2013-09-13 2018-09-18 Covidien Lp Endovascular device engagement
US10383644B2 (en) 2013-10-17 2019-08-20 Covidien Lp Mechanical thrombectomy with proximal occlusion
WO2015061365A1 (en) 2013-10-21 2015-04-30 Inceptus Medical, Llc Methods and apparatus for treating embolism
CN105722474B (en) 2013-11-13 2018-09-21 柯惠有限合伙公司 The attachment of assist devices and thrombus in a manner of primary battery
WO2015095806A2 (en) 2013-12-20 2015-06-25 Microvention, Inc. Device delivery system
US9737696B2 (en) 2014-01-15 2017-08-22 Tufts Medical Center, Inc. Endovascular cerebrospinal fluid shunt
EP3998100A1 (en) 2014-01-15 2022-05-18 Tufts Medical Center, Inc. Endovascular cerebrospinal fluid shunt system
US20150297250A1 (en) 2014-04-16 2015-10-22 Covidien Lp Systems and methods for catheter advancement
US9713475B2 (en) 2014-04-18 2017-07-25 Covidien Lp Embolic medical devices
JP6375446B2 (en) 2014-06-03 2018-08-15 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. Medical device for cardiac tissue mapping
US10258764B2 (en) 2014-07-30 2019-04-16 Covidien Lp Opening system for improving catheter delivery
US9814466B2 (en) 2014-08-08 2017-11-14 Covidien Lp Electrolytic and mechanical detachment for implant delivery systems
US9808256B2 (en) 2014-08-08 2017-11-07 Covidien Lp Electrolytic detachment elements for implant delivery systems
US10729454B2 (en) * 2014-09-10 2020-08-04 Teleflex Life Sciences Limited Guidewire capture
CN107148293B (en) 2014-10-31 2020-08-11 西瑞维斯克有限责任公司 Methods and systems for treating hydrocephalus
US11253278B2 (en) 2014-11-26 2022-02-22 Neuravi Limited Clot retrieval system for removing occlusive clot from a blood vessel
US10617435B2 (en) * 2014-11-26 2020-04-14 Neuravi Limited Clot retrieval device for removing clot from a blood vessel
EP3223723B1 (en) 2014-11-26 2020-01-08 Neuravi Limited A clot retrieval device for removing occlusive clot from a blood vessel
US10265515B2 (en) 2015-03-27 2019-04-23 Covidien Lp Galvanically assisted aneurysm treatment
US9717503B2 (en) 2015-05-11 2017-08-01 Covidien Lp Electrolytic detachment for implant delivery systems
US9757574B2 (en) 2015-05-11 2017-09-12 Rainbow Medical Ltd. Dual chamber transvenous pacemaker
EP3542737B1 (en) 2015-09-25 2021-06-16 Covidien LP Medical device delivery system
EP3364891B1 (en) 2015-10-23 2023-08-09 Inari Medical, Inc. Device for intravascular treatment of vascular occlusion
US10537344B2 (en) 2015-10-23 2020-01-21 Covidien Lp Rotatable connection between an intervention member and a manipulation member of an endovascular device
JP6820612B2 (en) 2015-10-30 2021-01-27 セレバスク,インコーポレイテッド Hydrocephalus treatment system and method
CN108601599B (en) * 2015-11-25 2021-08-13 尼尔拉维有限公司 Clot retrieval device for removing an occluded clot from a blood vessel
US10052185B2 (en) 2016-02-12 2018-08-21 Covidien Lp Vascular device marker attachment
US10265089B2 (en) 2016-02-12 2019-04-23 Covidien Lp Vascular device visibility
JP2019508201A (en) 2016-02-16 2019-03-28 インセラ セラピューティクス,インク. Suction device and fixed blood flow bypass device
EP3432826A1 (en) 2016-03-24 2019-01-30 Covidien LP Thin wall constructions for vascular flow diversion
DE102016110199A1 (en) 2016-06-02 2017-12-07 Phenox Gmbh Vasospasmusbehandlung
US10828037B2 (en) 2016-06-27 2020-11-10 Covidien Lp Electrolytic detachment with fluid electrical connection
US10828039B2 (en) 2016-06-27 2020-11-10 Covidien Lp Electrolytic detachment for implantable devices
US11051822B2 (en) 2016-06-28 2021-07-06 Covidien Lp Implant detachment with thermal activation
MX2019002565A (en) 2016-09-06 2019-09-18 Neuravi Ltd A clot retrieval device for removing occlusive clot from a blood vessel.
US10245050B2 (en) 2016-09-30 2019-04-02 Teleflex Innovations S.À.R.L. Methods for facilitating revascularization of occlusion
EP3528717A4 (en) 2016-10-24 2020-09-02 Inari Medical, Inc. Devices and methods for treating vascular occlusion
WO2018209310A1 (en) 2017-05-12 2018-11-15 Covidien Lp Retrieval of material from vessel lumens
US10478322B2 (en) 2017-06-19 2019-11-19 Covidien Lp Retractor device for transforming a retrieval device from a deployed position to a delivery position
US10342686B2 (en) 2017-08-10 2019-07-09 Covidien Lp Thin film mesh hybrid for treating vascular defects
WO2019050765A1 (en) 2017-09-06 2019-03-14 Inari Medical, Inc. Hemostasis valves and methods of use
US10835398B2 (en) 2017-11-03 2020-11-17 Covidien Lp Meshes and devices for treating vascular defects
EP3711717A4 (en) 2017-11-17 2020-12-23 Hangzhou Endonom Medtech Co., Ltd Endovascular stent
EP3723633B1 (en) 2017-12-11 2024-04-10 Covidien LP Device for electrically enhanced retrieval of material from vessel lumens
CN109965940B (en) * 2017-12-28 2022-05-10 先健科技(深圳)有限公司 Thrombus taking device
US11154314B2 (en) 2018-01-26 2021-10-26 Inari Medical, Inc. Single insertion delivery system for treating embolism and associated systems and methods
CN110090063B (en) 2018-01-30 2022-07-08 上海沃比医疗科技有限公司 Thrombus capturing device and method thereof
US10092309B1 (en) 2018-02-02 2018-10-09 Highway 1 Medical, Inc. Devices for retrieving an obstruction in a bodily duct of a patient
US11013900B2 (en) 2018-03-08 2021-05-25 CereVasc, Inc. Systems and methods for minimally invasive drug delivery to a subarachnoid space
US11160571B2 (en) 2018-06-22 2021-11-02 Covidien Lp Electrically enhanced retrieval of material from vessel lumens
US11559382B2 (en) 2018-08-13 2023-01-24 Inari Medical, Inc. System for treating embolism and associated devices and methods
US10842498B2 (en) 2018-09-13 2020-11-24 Neuravi Limited Systems and methods of restoring perfusion to a vessel
US11406416B2 (en) 2018-10-02 2022-08-09 Neuravi Limited Joint assembly for vasculature obstruction capture device
DE102018131269B4 (en) * 2018-12-07 2021-08-05 Acandis Gmbh Medical device for insertion into a hollow body organ and manufacturing process
US11612430B2 (en) 2019-03-19 2023-03-28 Covidien Lp Electrically enhanced retrieval of material from vessel lumens
EP3982861B1 (en) 2019-06-12 2023-10-25 Covidien LP Retrieval of material from corporeal lumens
RU2729439C1 (en) * 2019-07-10 2020-08-06 Общество с ограниченной ответственностью "Ангиолайн Ресерч" Device and method of thrombi removal
CA3157521A1 (en) 2019-10-16 2021-04-22 Inari Medical, Inc. Systems, devices, and methods for treating vascular occlusions
US11712231B2 (en) 2019-10-29 2023-08-01 Neuravi Limited Proximal locking assembly design for dual stent mechanical thrombectomy device
US11517340B2 (en) 2019-12-03 2022-12-06 Neuravi Limited Stentriever devices for removing an occlusive clot from a vessel and methods thereof
EP4209185A1 (en) 2019-12-12 2023-07-12 Covidien LP Electrically enhanced retrieval of material from vessel lumens
US11648020B2 (en) 2020-02-07 2023-05-16 Angiodynamics, Inc. Device and method for manual aspiration and removal of an undesirable material
US11730501B2 (en) 2020-04-17 2023-08-22 Neuravi Limited Floating clot retrieval device for removing clots from a blood vessel
US11871946B2 (en) 2020-04-17 2024-01-16 Neuravi Limited Clot retrieval device for removing clot from a blood vessel
US11717308B2 (en) 2020-04-17 2023-08-08 Neuravi Limited Clot retrieval device for removing heterogeneous clots from a blood vessel
US11738188B2 (en) 2020-06-08 2023-08-29 Covidien Lp Connection of intravascular interventional elements and elongate manipulation members
US11737771B2 (en) 2020-06-18 2023-08-29 Neuravi Limited Dual channel thrombectomy device
US11937836B2 (en) 2020-06-22 2024-03-26 Neuravi Limited Clot retrieval system with expandable clot engaging framework
US11395669B2 (en) 2020-06-23 2022-07-26 Neuravi Limited Clot retrieval device with flexible collapsible frame
US11439418B2 (en) 2020-06-23 2022-09-13 Neuravi Limited Clot retrieval device for removing clot from a blood vessel
US11864781B2 (en) 2020-09-23 2024-01-09 Neuravi Limited Rotating frame thrombectomy device
WO2022139998A1 (en) 2020-12-21 2022-06-30 Covidien Lp Electrically enhanced retrieval of material from vessel lumens
US11707290B2 (en) 2020-12-23 2023-07-25 Accumedical Beijing Ltd. Stent retriever with radiopaque members
US20220202431A1 (en) 2020-12-29 2022-06-30 Covidien Lp Electrically enhanced retrieval of material from vessel lumens
US11937837B2 (en) 2020-12-29 2024-03-26 Neuravi Limited Fibrin rich / soft clot mechanical thrombectomy device
US11918242B2 (en) 2021-03-02 2024-03-05 Covidien Lp Retrieval of material from vessel lumens
US20220287765A1 (en) 2021-03-15 2022-09-15 Covidien Lp Medical treatment system
US20220387098A1 (en) 2021-06-02 2022-12-08 Covidien Lp Medical treatment system
US20220387051A1 (en) 2021-06-02 2022-12-08 Covidien Lp Medical treatment system
US20220409258A1 (en) 2021-06-25 2022-12-29 Covidien Lp Current generator for a medical treatment system
US11944374B2 (en) 2021-08-30 2024-04-02 Covidien Lp Electrical signals for retrieval of material from vessel lumens
US20240081898A1 (en) 2022-09-14 2024-03-14 Covidien Lp Retrieval of material from vessel lumens

Family Cites Families (319)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3996938A (en) 1975-07-10 1976-12-14 Clark Iii William T Expanding mesh catheter
US4046150A (en) 1975-07-17 1977-09-06 American Hospital Supply Corporation Medical instrument for locating and removing occlusive objects
FR2343488A1 (en) 1976-03-12 1977-10-07 Adair Edwin Lloyd Telescopically sliding tube catheter - has outer tube pushed forward on inner one and gap sealed liq. tight at proximal end
JPS5394515A (en) 1977-01-31 1978-08-18 Kubota Ltd Method of producing glass fiber reinforced cement plate
DE2821048C2 (en) 1978-05-13 1980-07-17 Willy Ruesch Gmbh & Co Kg, 7053 Kernen Medical instrument
US4299255A (en) 1979-04-16 1981-11-10 Miller John H Emergency pipeline shut-off apparatus
IT1126526B (en) 1979-12-07 1986-05-21 Enrico Dormia SURGICAL EXTRACTOR TO REMOVE FOREIGN BODIES THAT ARE FOUND IN THE NATURAL ROUTES OF THE HUMAN BODY, AS CALCULATIONS AND SIMILAR
US4403612A (en) 1980-10-20 1983-09-13 Fogarty Thomas J Dilatation method
JPS5774665A (en) 1980-10-29 1982-05-10 Toshiba Corp Speed controlling device
SE445884B (en) * 1982-04-30 1986-07-28 Medinvent Sa DEVICE FOR IMPLANTATION OF A RODFORM PROTECTION
US5190546A (en) 1983-10-14 1993-03-02 Raychem Corporation Medical devices incorporating SIM alloy elements
US4611594A (en) 1984-04-11 1986-09-16 Northwestern University Medical instrument for containment and removal of calculi
IT1176442B (en) 1984-07-20 1987-08-18 Enrico Dormia INSTRUMENT FOR THE EXTRACTION OF FOREIGN BODIES FROM THE BODY'S PHYSIOLOGICAL CHANNELS
DE8435489U1 (en) 1984-12-04 1986-08-28 Richard Wolf Gmbh, 7134 Knittlingen Nephroscope
SE450809B (en) * 1985-04-10 1987-08-03 Medinvent Sa PLANT TOPIC PROVIDED FOR MANUFACTURING A SPIRAL SPRING SUITABLE FOR TRANSLUMINAL IMPLANTATION AND MANUFACTURED SPIRAL SPRINGS
US4650466A (en) * 1985-11-01 1987-03-17 Angiobrade Partners Angioplasty device
US5102417A (en) * 1985-11-07 1992-04-07 Expandable Grafts Partnership Expandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft
US4733665C2 (en) * 1985-11-07 2002-01-29 Expandable Grafts Partnership Expandable intraluminal graft and method and apparatus for implanting an expandable intraluminal graft
US4793348A (en) 1986-11-15 1988-12-27 Palmaz Julio C Balloon expandable vena cava filter to prevent migration of lower extremity venous clots into the pulmonary circulation
US4820298A (en) * 1987-11-20 1989-04-11 Leveen Eric G Internal vascular prosthesis
US4890611A (en) * 1988-04-05 1990-01-02 Thomas J. Fogarty Endarterectomy apparatus and method
JP2604440B2 (en) * 1988-09-30 1997-04-30 サミュエル・シバー Mechanical atherectomy device
CA1322628C (en) * 1988-10-04 1993-10-05 Richard A. Schatz Expandable intraluminal graft
JP2772665B2 (en) * 1989-03-29 1998-07-02 日本ゼオン株式会社 Living organ dilator and living organ dilator
US5122136A (en) * 1990-03-13 1992-06-16 The Regents Of The University Of California Endovascular electrolytically detachable guidewire tip for the electroformation of thrombus in arteries, veins, aneurysms, vascular malformations and arteriovenous fistulas
US5354295A (en) 1990-03-13 1994-10-11 Target Therapeutics, Inc. In an endovascular electrolytically detachable wire and tip for the formation of thrombus in arteries, veins, aneurysms, vascular malformations and arteriovenous fistulas
US5976131A (en) 1990-03-13 1999-11-02 The Regents Of The University At California Detachable endovascular occlusion device activated by alternating electric current
US5851206A (en) 1990-03-13 1998-12-22 The Regents Of The University Of California Method and apparatus for endovascular thermal thrombosis and thermal cancer treatment
US6425893B1 (en) 1990-03-13 2002-07-30 The Regents Of The University Of California Method and apparatus for fast electrolytic detachment of an implant
US5569245A (en) 1990-03-13 1996-10-29 The Regents Of The University Of California Detachable endovascular occlusion device activated by alternating electric current
US6083220A (en) 1990-03-13 2000-07-04 The Regents Of The University Of California Endovascular electrolytically detachable wire and tip for the formation of thrombus in arteries, veins, aneurysms, vascular malformations and arteriovenous fistulas
US5071407A (en) 1990-04-12 1991-12-10 Schneider (U.S.A.) Inc. Radially expandable fixation member
US5064435A (en) * 1990-06-28 1991-11-12 Schneider (Usa) Inc. Self-expanding prosthesis having stable axial length
US5100423A (en) * 1990-08-21 1992-03-31 Medical Engineering & Development Institute, Inc. Ablation catheter
US5222971A (en) 1990-10-09 1993-06-29 Scimed Life Systems, Inc. Temporary stent and methods for use and manufacture
US5197978B1 (en) 1991-04-26 1996-05-28 Advanced Coronary Tech Removable heat-recoverable tissue supporting device
US5190058A (en) * 1991-05-22 1993-03-02 Medtronic, Inc. Method of using a temporary stent catheter
US5217484A (en) 1991-06-07 1993-06-08 Marks Michael P Retractable-wire catheter device and method
EP0590050B1 (en) 1991-06-17 1999-03-03 Wilson-Cook Medical Inc. Endoscopic extraction device having composite wire construction
US5192286A (en) * 1991-07-26 1993-03-09 Regents Of The University Of California Method and device for retrieving materials from body lumens
CA2117088A1 (en) 1991-09-05 1993-03-18 David R. Holmes Flexible tubular device for use in medical applications
JPH0698939A (en) 1992-09-18 1994-04-12 Nippon Shiruko Tex Kk Implement for preventing coronary occluslon after pcta
US5571122A (en) 1992-11-09 1996-11-05 Endovascular Instruments, Inc. Unitary removal of plaque
US5540707A (en) 1992-11-13 1996-07-30 Scimed Life Systems, Inc. Expandable intravascular occlusion material removal devices and methods of use
US5836868A (en) 1992-11-13 1998-11-17 Scimed Life Systems, Inc. Expandable intravascular occlusion material removal devices and methods of use
US5490859A (en) * 1992-11-13 1996-02-13 Scimed Life Systems, Inc. Expandable intravascular occlusion material removal devices and methods of use
US5501694A (en) * 1992-11-13 1996-03-26 Scimed Life Systems, Inc. Expandable intravascular occlusion material removal devices and methods of use
US5792157A (en) 1992-11-13 1998-08-11 Scimed Life Systems, Inc. Expandable intravascular occlusion material removal devices and methods of use
US5527326A (en) 1992-12-29 1996-06-18 Thomas J. Fogarty Vessel deposit shearing apparatus
DE69433774T2 (en) * 1993-02-19 2005-04-14 Boston Scientific Corp., Natick SURGICAL EXTRACTOR
JPH06246004A (en) * 1993-02-26 1994-09-06 Raifu Technol Kenkyusho Catheter
US5897567A (en) * 1993-04-29 1999-04-27 Scimed Life Systems, Inc. Expandable intravascular occlusion material removal devices and methods of use
US5456667A (en) 1993-05-20 1995-10-10 Advanced Cardiovascular Systems, Inc. Temporary stenting catheter with one-piece expandable segment
US5464449A (en) * 1993-07-08 1995-11-07 Thomas J. Fogarty Internal graft prosthesis and delivery system
US5411549A (en) * 1993-07-13 1995-05-02 Scimed Life Systems, Inc. Selectively expandable, retractable and removable stent
US5624449A (en) 1993-11-03 1997-04-29 Target Therapeutics Electrolytically severable joint for endovascular embolic devices
US5423829A (en) 1993-11-03 1995-06-13 Target Therapeutics, Inc. Electrolytically severable joint for endovascular embolic devices
US6165213A (en) 1994-02-09 2000-12-26 Boston Scientific Technology, Inc. System and method for assembling an endoluminal prosthesis
JP2825452B2 (en) * 1994-04-25 1998-11-18 アドヴァンスド カーディオヴァスキュラー システムズ インコーポレーテッド Radiopak stent marker
CA2189006A1 (en) * 1994-04-29 1995-11-09 David L. Sandock Medical prosthetic stent and method of manufacture
WO1995031945A1 (en) 1994-05-19 1995-11-30 Scimed Life Systems, Inc. Improved tissue supporting devices
DE9409484U1 (en) * 1994-06-11 1994-08-04 Naderlinger Eduard Vena cava thrombus filter
JP3625495B2 (en) * 1994-07-22 2005-03-02 テルモ株式会社 Luminal organ treatment device
US5658296A (en) 1994-11-21 1997-08-19 Boston Scientific Corporation Method for making surgical retrieval baskets
CA2163824C (en) 1994-11-28 2000-06-20 Richard J. Saunders Method and apparatus for direct laser cutting of metal stents
US6013093A (en) * 1995-11-28 2000-01-11 Boston Scientific Corporation Blood clot filtering
US5709704A (en) 1994-11-30 1998-01-20 Boston Scientific Corporation Blood clot filtering
US6214025B1 (en) * 1994-11-30 2001-04-10 Boston Scientific Corporation Self-centering, self-expanding and retrievable vena cava filter
IL116561A0 (en) 1994-12-30 1996-03-31 Target Therapeutics Inc Severable joint for detachable devices placed within the body
WO1996023446A1 (en) 1995-02-02 1996-08-08 Boston Scientific Corporation Surgical wire basket extractor
EP0813397A4 (en) 1995-03-10 1999-10-06 Cardiovascular Concepts Inc Tubular endoluminar prosthesis having oblique ends
NL1000105C2 (en) 1995-04-10 1996-10-11 Cordis Europ Catheter with filter and thrombi draining device.
US5743905A (en) * 1995-07-07 1998-04-28 Target Therapeutics, Inc. Partially insulated occlusion device
US5681335A (en) 1995-07-31 1997-10-28 Micro Therapeutics, Inc. Miniaturized brush with hollow lumen brush body
FR2737969B1 (en) * 1995-08-24 1998-01-30 Rieu Regis INTRALUMINAL ENDOPROSTHESIS IN PARTICULAR FOR ANGIOPLASTY
US5749883A (en) * 1995-08-30 1998-05-12 Halpern; David Marcos Medical instrument
US5769882A (en) 1995-09-08 1998-06-23 Medtronic, Inc. Methods and apparatus for conformably sealing prostheses within body lumens
US5824037A (en) 1995-10-03 1998-10-20 Medtronic, Inc. Modular intraluminal prostheses construction and methods
US6193745B1 (en) 1995-10-03 2001-02-27 Medtronic, Inc. Modular intraluminal prosteheses construction and methods
US5827304A (en) 1995-11-16 1998-10-27 Applied Medical Resources Corporation Intraluminal extraction catheter
US5695519A (en) 1995-11-30 1997-12-09 American Biomed, Inc. Percutaneous filter for carotid angioplasty
US5895398A (en) * 1996-02-02 1999-04-20 The Regents Of The University Of California Method of using a clot capture coil
WO1997038631A1 (en) 1996-04-18 1997-10-23 Applied Medical Resources Corporation Remote clot management
US5954743A (en) 1996-04-26 1999-09-21 Jang; G. David Intravascular stent
US6096053A (en) 1996-05-03 2000-08-01 Scimed Life Systems, Inc. Medical retrieval basket
US5935139A (en) 1996-05-03 1999-08-10 Boston Scientific Corporation System for immobilizing or manipulating an object in a tract
US5669933A (en) 1996-07-17 1997-09-23 Nitinol Medical Technologies, Inc. Removable embolus blood clot filter
CA2211249C (en) * 1996-07-24 2007-07-17 Cordis Corporation Balloon catheter and methods of use
US6066158A (en) * 1996-07-25 2000-05-23 Target Therapeutics, Inc. Mechanical clot encasing and removal wire
US5972019A (en) 1996-07-25 1999-10-26 Target Therapeutics, Inc. Mechanical clot treatment device
US5980514A (en) * 1996-07-26 1999-11-09 Target Therapeutics, Inc. Aneurysm closure device assembly
US6096034A (en) 1996-07-26 2000-08-01 Target Therapeutics, Inc. Aneurysm closure device assembly
AU730464B2 (en) 1996-08-07 2001-03-08 Darwin Discovery Limited Hydroxamic and carboxylic acid derivatives having MMP and TNF inhibitory activity
US5964797A (en) 1996-08-30 1999-10-12 Target Therapeutics, Inc. Electrolytically deployable braided vaso-occlusion device
US6254628B1 (en) * 1996-12-09 2001-07-03 Micro Therapeutics, Inc. Intracranial stent
US5690667A (en) 1996-09-26 1997-11-25 Target Therapeutics Vasoocclusion coil having a polymer tip
BR9604566A (en) * 1996-11-20 1998-09-01 Aristides Lavini Improvement in vessel prosthesis
EP0968015A4 (en) 1996-11-26 2004-12-29 Medtronic Inc System and methods for removing clots from fluid vessels
US5807330A (en) 1996-12-16 1998-09-15 University Of Southern California Angioplasty catheter
US5925061A (en) 1997-01-13 1999-07-20 Gore Enterprise Holdings, Inc. Low profile vascular stent
DE19703482A1 (en) 1997-01-31 1998-08-06 Ernst Peter Prof Dr M Strecker Stent
US6241757B1 (en) 1997-02-04 2001-06-05 Solco Surgical Instrument Co., Ltd. Stent for expanding body's lumen
US5882329A (en) 1997-02-12 1999-03-16 Prolifix Medical, Inc. Apparatus and method for removing stenotic material from stents
US5814064A (en) 1997-03-06 1998-09-29 Scimed Life Systems, Inc. Distal protection device
US6152946A (en) 1998-03-05 2000-11-28 Scimed Life Systems, Inc. Distal protection device and method
US5800454A (en) 1997-03-17 1998-09-01 Sarcos, Inc. Catheter deliverable coiled wire thromboginic apparatus and method
US5911717A (en) 1997-03-17 1999-06-15 Precision Vascular Systems, Inc. Catheter deliverable thrombogenic apparatus and method
US6425915B1 (en) * 1997-03-18 2002-07-30 Endotex Interventional Systems, Inc. Helical mesh endoprosthesis and methods of use
US6451049B2 (en) 1998-04-29 2002-09-17 Sorin Biomedica Cardio, S.P.A. Stents for angioplasty
US5911734A (en) 1997-05-08 1999-06-15 Embol-X, Inc. Percutaneous catheter and guidewire having filter and medical device deployment capabilities
US5913895A (en) 1997-06-02 1999-06-22 Isostent, Inc. Intravascular stent with enhanced rigidity strut members
US5800525A (en) 1997-06-04 1998-09-01 Vascular Science, Inc. Blood filter
US5947995A (en) 1997-06-06 1999-09-07 Samuels; Shaun Lawrence Wilkie Method and apparatus for removing blood clots and other objects
US5848964A (en) 1997-06-06 1998-12-15 Samuels; Shaun Lawrence Wilkie Temporary inflatable filter device and method of use
US5904698A (en) * 1997-06-10 1999-05-18 Applied Medical Resources Corporation Surgical shaving device for use within body conduits
US5916235A (en) 1997-08-13 1999-06-29 The Regents Of The University Of California Apparatus and method for the use of detachable coils in vascular aneurysms and body cavities
AUPO871497A0 (en) * 1997-08-21 1997-09-18 Eathorne, Russell James Pylon servicing apparatus
US6156061A (en) 1997-08-29 2000-12-05 Target Therapeutics, Inc. Fast-detaching electrically insulated implant
US5984929A (en) * 1997-08-29 1999-11-16 Target Therapeutics, Inc. Fast detaching electronically isolated implant
US5948016A (en) 1997-09-25 1999-09-07 Jang; G. David Intravascular stent with non-parallel slots
US6361545B1 (en) 1997-09-26 2002-03-26 Cardeon Corporation Perfusion filter catheter
JP3204379B2 (en) * 1997-09-29 2001-09-04 エヌイーシーマイクロシステム株式会社 Nonvolatile semiconductor memory device
US6066149A (en) * 1997-09-30 2000-05-23 Target Therapeutics, Inc. Mechanical clot treatment device with distal filter
US6099534A (en) * 1997-10-01 2000-08-08 Scimed Life Systems, Inc. Releasable basket
US5893887A (en) * 1997-10-14 1999-04-13 Iowa-India Investments Company Limited Stent for positioning at junction of bifurcated blood vessel and method of making
DE69838952T2 (en) * 1997-11-07 2009-01-02 Salviac Ltd. EMBOLISM PROTECTION DEVICE
WO1999023952A1 (en) * 1997-11-12 1999-05-20 William Dubrul Biological passageway occlusion removal
NL1007584C2 (en) 1997-11-19 1999-05-20 Cordis Europ Vena cava filter.
US6443972B1 (en) 1997-11-19 2002-09-03 Cordis Europa N.V. Vascular filter
FR2771921B1 (en) 1997-12-09 2000-03-24 Jean Marie Lefebvre STAINLESS STEEL STENT TO BE IMPLANTED IN A VASCULAR CONDUIT USING AN INFLATABLE BALLOON
US6129755A (en) 1998-01-09 2000-10-10 Nitinol Development Corporation Intravascular stent having an improved strut configuration
US6224626B1 (en) 1998-02-17 2001-05-01 Md3, Inc. Ultra-thin expandable stent
US6187017B1 (en) * 1998-02-17 2001-02-13 Circon Corporation Retrieval basket for a surgical device
US6077260A (en) 1998-02-19 2000-06-20 Target Therapeutics, Inc. Assembly containing an electrolytically severable joint for endovascular embolic devices
US6063100A (en) * 1998-03-10 2000-05-16 Cordis Corporation Embolic coil deployment system with improved embolic coil
AU728744B2 (en) * 1998-03-20 2001-01-18 Cook Urological Inc. Minimally invasive medical retrieval device
ATE324835T1 (en) 1998-03-27 2006-06-15 Cook Urological Inc MINIMAL-INVASIVE DEVICE FOR CATCHING OBJECTS IN HOLLOW ORGANS
US6887268B2 (en) * 1998-03-30 2005-05-03 Cordis Corporation Extension prosthesis for an arterial repair
US6063111A (en) * 1998-03-31 2000-05-16 Cordis Corporation Stent aneurysm treatment system and method
US6520983B1 (en) * 1998-03-31 2003-02-18 Scimed Life Systems, Inc. Stent delivery system
US20010029351A1 (en) * 1998-04-16 2001-10-11 Robert Falotico Drug combinations and delivery devices for the prevention and treatment of vascular disease
US6264687B1 (en) 1998-04-20 2001-07-24 Cordis Corporation Multi-laminate stent having superelastic articulated sections
US6450989B2 (en) * 1998-04-27 2002-09-17 Artemis Medical, Inc. Dilating and support apparatus with disease inhibitors and methods for use
US6511492B1 (en) * 1998-05-01 2003-01-28 Microvention, Inc. Embolectomy catheters and methods for treating stroke and other small vessel thromboembolic disorders
US7452371B2 (en) * 1999-06-02 2008-11-18 Cook Incorporated Implantable vascular device
US6241746B1 (en) 1998-06-29 2001-06-05 Cordis Corporation Vascular filter convertible to a stent and method
NL1009551C2 (en) 1998-07-03 2000-01-07 Cordis Europ Vena cava filter with improvements for controlled ejection.
US6656218B1 (en) * 1998-07-24 2003-12-02 Micrus Corporation Intravascular flow modifier and reinforcement device
US6095990A (en) * 1998-08-31 2000-08-01 Parodi; Juan Carlos Guiding device and method for inserting and advancing catheters and guidewires into a vessel of a patient in endovascular treatments
US6277126B1 (en) * 1998-10-05 2001-08-21 Cordis Neurovascular Inc. Heated vascular occlusion coil development system
US6277125B1 (en) 1998-10-05 2001-08-21 Cordis Neurovascular, Inc. Embolic coil deployment system with retaining jaws
US7128073B1 (en) 1998-11-06 2006-10-31 Ev3 Endovascular, Inc. Method and device for left atrial appendage occlusion
US8092514B1 (en) 1998-11-16 2012-01-10 Boston Scientific Scimed, Inc. Stretchable anti-buckling coiled-sheet stent
US6336937B1 (en) 1998-12-09 2002-01-08 Gore Enterprise Holdings, Inc. Multi-stage expandable stent-graft
US6179857B1 (en) * 1999-02-22 2001-01-30 Cordis Corporation Stretch resistant embolic coil with variable stiffness
US6146396A (en) 1999-03-05 2000-11-14 Board Of Regents, The University Of Texas System Declotting method and apparatus
US6428558B1 (en) 1999-03-10 2002-08-06 Cordis Corporation Aneurysm embolization device
US6379329B1 (en) * 1999-06-02 2002-04-30 Cordis Neurovascular, Inc. Detachable balloon embolization device and method
US6458139B1 (en) * 1999-06-21 2002-10-01 Endovascular Technologies, Inc. Filter/emboli extractor for use in variable sized blood vessels
DE69939753D1 (en) * 1999-08-27 2008-11-27 Ev3 Inc Movable vascular filter
US6454775B1 (en) 1999-12-06 2002-09-24 Bacchus Vascular Inc. Systems and methods for clot disruption and retrieval
US6325815B1 (en) 1999-09-21 2001-12-04 Microvena Corporation Temporary vascular filter
US20010047200A1 (en) * 1999-10-13 2001-11-29 Raymond Sun Non-foreshortening intraluminal prosthesis
DE10010840A1 (en) 1999-10-30 2001-09-20 Dendron Gmbh Device for implanting occlusion coils uses coils electrolytically corrodable at several points at intervals so variable sized lengths can be separated by electrolysis
US6190394B1 (en) * 1999-11-05 2001-02-20 Annex Medical, Inc. Medical retrieval basket
US6264671B1 (en) 1999-11-15 2001-07-24 Advanced Cardiovascular Systems, Inc. Stent delivery catheter and method of use
US6585758B1 (en) * 1999-11-16 2003-07-01 Scimed Life Systems, Inc. Multi-section filamentary endoluminal stent
US6443971B1 (en) 1999-12-21 2002-09-03 Advanced Cardiovascular Systems, Inc. System for, and method of, blocking the passage of emboli through a vessel
AU2440601A (en) 1999-12-22 2001-07-03 Barry S. Markman Device and method for inserting implants
US6575997B1 (en) * 1999-12-23 2003-06-10 Endovascular Technologies, Inc. Embolic basket
US6402771B1 (en) 1999-12-23 2002-06-11 Guidant Endovascular Solutions Snare
US6660021B1 (en) 1999-12-23 2003-12-09 Advanced Cardiovascular Systems, Inc. Intravascular device and system
US20040010308A1 (en) * 2000-01-18 2004-01-15 Mindguard Ltd. Implantable composite device and corresponding method for deflecting embolic material in blood flowing at an arterial bifurcation
US6312463B1 (en) 2000-02-01 2001-11-06 Endotex Interventional Systems, Inc. Micro-porous mesh stent with hybrid structure
US6514273B1 (en) * 2000-03-22 2003-02-04 Endovascular Technologies, Inc. Device for removal of thrombus through physiological adhesion
US6468301B1 (en) 2000-03-27 2002-10-22 Aga Medical Corporation Repositionable and recapturable vascular stent/graft
US20010031981A1 (en) 2000-03-31 2001-10-18 Evans Michael A. Method and device for locating guidewire and treating chronic total occlusions
US7517352B2 (en) * 2000-04-07 2009-04-14 Bacchus Vascular, Inc. Devices for percutaneous remote endarterectomy
US6702843B1 (en) * 2000-04-12 2004-03-09 Scimed Life Systems, Inc. Stent delivery means with balloon retraction means
US6663650B2 (en) 2000-06-29 2003-12-16 Concentric Medical, Inc. Systems, methods and devices for removing obstructions from a blood vessel
US7727242B2 (en) 2000-06-29 2010-06-01 Concentric Medical, Inc. Systems, methods and devices for removing obstructions from a blood vessel
US7285126B2 (en) * 2000-06-29 2007-10-23 Concentric Medical, Inc. Systems, methods and devices for removing obstructions from a blood vessel
US20070208371A1 (en) 2000-06-29 2007-09-06 Concentric Medical, Inc. Devices and methods for removing obstructions from a patient and methods for making obstruction removing devices
US7766921B2 (en) * 2000-06-29 2010-08-03 Concentric Medical, Inc. Systems, methods and devices for removing obstructions from a blood vessel
CA2411699A1 (en) 2000-06-29 2002-01-10 Ivan Sepetka Systems, methods and devices for removing obstructions from a blood vessel
US6730104B1 (en) * 2000-06-29 2004-05-04 Concentric Medical, Inc. Methods and devices for removing an obstruction from a blood vessel
US6974473B2 (en) 2000-06-30 2005-12-13 Vascular Architects, Inc. Function-enhanced thrombolytic AV fistula and method
US6572648B1 (en) 2000-06-30 2003-06-03 Vascular Architects, Inc. Endoluminal prosthesis and tissue separation condition treatment method
US20020016597A1 (en) * 2000-08-02 2002-02-07 Dwyer Clifford J. Delivery apparatus for a self-expanding stent
US6554849B1 (en) * 2000-09-11 2003-04-29 Cordis Corporation Intravascular embolization device
US6723108B1 (en) * 2000-09-18 2004-04-20 Cordis Neurovascular, Inc Foam matrix embolization device
US6679893B1 (en) * 2000-11-16 2004-01-20 Chestnut Medical Technologies, Inc. Grasping device and method of use
CN101301218A (en) 2001-01-09 2008-11-12 微温森公司 Catheter for excising embolus and treatment method thereof
ATE387168T1 (en) 2001-01-16 2008-03-15 Cordis Neurovascular Inc REMOVABLE SELF-EXPANDING ANEURYSM COVER DEVICE
DE10118944B4 (en) * 2001-04-18 2013-01-31 Merit Medical Systems, Inc. Removable, essentially cylindrical implants
US6716238B2 (en) * 2001-05-10 2004-04-06 Scimed Life Systems, Inc. Stent with detachable tethers and method of using same
US6953468B2 (en) 2001-06-13 2005-10-11 Cordis Neurovascular, Inc. Occluding vasculature of a patient using embolic coil with improved platelet adhesion
US6673106B2 (en) 2001-06-14 2004-01-06 Cordis Neurovascular, Inc. Intravascular stent device
US6818013B2 (en) * 2001-06-14 2004-11-16 Cordis Corporation Intravascular stent device
US6702782B2 (en) * 2001-06-26 2004-03-09 Concentric Medical, Inc. Large lumen balloon catheter
EP1404237B1 (en) 2001-06-28 2007-09-12 Lithotech Medical Ltd Foreign body retrieval device
JP4567918B2 (en) * 2001-07-02 2010-10-27 テルモ株式会社 Intravascular foreign matter removal wire and medical device
US6551342B1 (en) * 2001-08-24 2003-04-22 Endovascular Technologies, Inc. Embolic filter
US6811560B2 (en) 2001-09-20 2004-11-02 Cordis Neurovascular, Inc. Stent aneurysm embolization method and device
US6878151B2 (en) * 2001-09-27 2005-04-12 Scimed Life Systems, Inc. Medical retrieval device
US7052500B2 (en) 2001-10-19 2006-05-30 Scimed Life Systems, Inc. Embolus extractor
US7749243B2 (en) 2001-10-19 2010-07-06 Boston Scientific Scimed, Inc. Embolus extractor
AU2002350164A1 (en) * 2001-11-08 2003-05-19 William D. Hare Rapid exchange catheter with stent deployment, therapeutic infusion, and lesion sampling features
US6989020B2 (en) 2001-11-15 2006-01-24 Cordis Neurovascular, Inc. Embolic coil retrieval system
US7351255B2 (en) * 2001-12-03 2008-04-01 Xtent, Inc. Stent delivery apparatus and method
US6893413B2 (en) * 2002-01-07 2005-05-17 Eric C. Martin Two-piece stent combination for percutaneous arterialization of the coronary sinus and retrograde perfusion of the myocardium
US20040068314A1 (en) * 2002-01-16 2004-04-08 Jones Donald K. Detachable self -expanding aneurysm cover device
US7195648B2 (en) * 2002-05-16 2007-03-27 Cordis Neurovascular, Inc. Intravascular stent device
US7549974B2 (en) 2002-06-01 2009-06-23 The Board Of Trustees Of The Leland Stanford Junior University Device and method for medical interventions of body lumens
US6833003B2 (en) 2002-06-24 2004-12-21 Cordis Neurovascular Expandable stent and delivery system
US7485122B2 (en) * 2002-06-27 2009-02-03 Boston Scientific Scimed, Inc. Integrated anchor coil in stretch-resistant vaso-occlusive coils
DE10233085B4 (en) 2002-07-19 2014-02-20 Dendron Gmbh Stent with guide wire
US7058456B2 (en) 2002-08-09 2006-06-06 Concentric Medical, Inc. Methods and devices for changing the shape of a medical device
US7001422B2 (en) 2002-09-23 2006-02-21 Cordis Neurovascular, Inc Expandable stent and delivery system
US7481821B2 (en) * 2002-11-12 2009-01-27 Thomas J. Fogarty Embolization device and a method of using the same
US7316692B2 (en) 2003-08-12 2008-01-08 Boston Scientific Scimed, Inc. Laser-cut clot puller
US7785653B2 (en) 2003-09-22 2010-08-31 Innovational Holdings Llc Method and apparatus for loading a beneficial agent into an expandable medical device
US7344550B2 (en) * 2003-10-21 2008-03-18 Boston Scientific Scimed, Inc. Clot removal device
US7294123B2 (en) 2003-12-17 2007-11-13 Corris Neurovascular, Inc. Activatable bioactive vascular occlusive device and method of use
US20070179513A1 (en) 2004-01-09 2007-08-02 Deutsch Harvey L Method and device for removing an occlusion
US7338512B2 (en) 2004-01-22 2008-03-04 Rex Medical, L.P. Vein filter
US9655633B2 (en) 2004-09-10 2017-05-23 Penumbra, Inc. System and method for treating ischemic stroke
US7931659B2 (en) 2004-09-10 2011-04-26 Penumbra, Inc. System and method for treating ischemic stroke
US20060085065A1 (en) * 2004-10-15 2006-04-20 Krause Arthur A Stent with auxiliary treatment structure
US7147659B2 (en) 2004-10-28 2006-12-12 Cordis Neurovascular, Inc. Expandable stent having a dissolvable portion
US7156871B2 (en) * 2004-10-28 2007-01-02 Cordis Neurovascular, Inc. Expandable stent having a stabilized portion
US8109941B2 (en) 2005-02-28 2012-02-07 Boston Scientific Scimed, Inc. Distal release retrieval assembly and related methods of use
US7955345B2 (en) 2005-04-01 2011-06-07 Nexgen Medical Systems, Inc. Thrombus removal system and process
US7371251B2 (en) 2005-06-02 2008-05-13 Cordis Neurovascular, Inc. Stretch resistant embolic coil delivery system with mechanical release mechanism
US7367987B2 (en) 2005-06-02 2008-05-06 Cordis Neurovascular, Inc. Stretch resistant embolic coil delivery system with mechanical release mechanism
US7371252B2 (en) 2005-06-02 2008-05-13 Cordis Neurovascular, Inc. Stretch resistant embolic coil delivery system with mechanical release mechanism
US7377932B2 (en) 2005-06-02 2008-05-27 Cordis Neurovascular, Inc. Embolic coil delivery system with mechanical release mechanism
US7357809B2 (en) * 2005-06-30 2008-04-15 Cordis Neurovascular, Inc. Chemically based vascular occlusion device deployment with gripping feature
CA2641249C (en) 2006-02-01 2014-08-05 The Cleveland Clinic Foundation A method and apparatus for increasing blood flow through an obstructed blood vessel
EP1986568B1 (en) 2006-02-03 2017-04-05 Covidien LP Methods and devices for restoring blood flow within blocked vasculature
US7582101B2 (en) 2006-02-28 2009-09-01 Cordis Development Corporation Heated mechanical detachment for delivery of therapeutic devices
US7344558B2 (en) * 2006-02-28 2008-03-18 Cordis Development Corporation Embolic device delivery system
DE602007003871D1 (en) 2006-03-06 2010-02-04 Terumo Corp atherectomy
US7553321B2 (en) 2006-03-31 2009-06-30 Cordis Development Corporation Chemically based vascular occlusion device deployment
US20070266542A1 (en) 2006-05-08 2007-11-22 Cook Incorporated Radiopaque marker for intraluminal medical device
US20070288038A1 (en) 2006-06-13 2007-12-13 Frank Bimbo Medical Retrieval Devices and Methods
US20080082107A1 (en) 2006-07-21 2008-04-03 John Miller Devices and methods for removing obstructions from a cerebral vessel
US20080269774A1 (en) 2006-10-26 2008-10-30 Chestnut Medical Technologies, Inc. Intracorporeal Grasping Device
WO2008063156A2 (en) 2006-10-26 2008-05-29 Chestnut Medical Technologies, Inc. Intracorporeal grasping device
US10064635B2 (en) * 2007-04-17 2018-09-04 Covidien Lp Articulating retrieval devices
US8066757B2 (en) 2007-10-17 2011-11-29 Mindframe, Inc. Blood flow restoration and thrombus management methods
US20100174309A1 (en) 2008-05-19 2010-07-08 Mindframe, Inc. Recanalization/revascularization and embolus addressing systems including expandable tip neuro-microcatheter
US20090163851A1 (en) 2007-12-19 2009-06-25 Holloway Kenneth A Occlusive material removal device having selectively variable stiffness
KR101819554B1 (en) 2008-02-22 2018-01-17 마이크로 테라퓨틱스 인코포레이티드 Methods and apparatus for flow restoration
CN106974691A (en) 2008-05-02 2017-07-25 斯昆特医疗公司 Thread device for treating vascular defects
EP2346431A4 (en) 2008-11-03 2012-10-03 Univ Ben Gurion Method and apparatus for thrombus dissolution/thrombectomy by an electrode catheter device
US8357179B2 (en) * 2009-07-08 2013-01-22 Concentric Medical, Inc. Vascular and bodily duct treatment devices and methods
JP5865252B2 (en) 2009-11-02 2016-02-17 パルス セラピューティクス インコーポレイテッド Magnetostatic stator system and wireless control method of magnetic rotor
US9039749B2 (en) * 2010-10-01 2015-05-26 Covidien Lp Methods and apparatuses for flow restoration and implanting members in the human body
US8603014B2 (en) 2010-10-05 2013-12-10 Cerevast Therapeutics, Inc. Hands-free operator-independent transcranial ultrasound apparatus and methods
DE102010051740A1 (en) 2010-11-19 2012-05-24 Phenox Gmbh thrombectomy
DE102011101522A1 (en) 2011-05-13 2012-11-15 Phenox Gmbh thrombectomy
US11026708B2 (en) 2011-07-26 2021-06-08 Thrombx Medical, Inc. Intravascular thromboembolectomy device and method using the same
US10779855B2 (en) 2011-08-05 2020-09-22 Route 92 Medical, Inc. Methods and systems for treatment of acute ischemic stroke
US11311332B2 (en) 2011-08-23 2022-04-26 Magneto Thrombectomy Solutions Ltd. Thrombectomy devices
US8837800B1 (en) 2011-10-28 2014-09-16 The Board Of Trustees Of The Leland Stanford Junior University Automated detection of arterial input function and/or venous output function voxels in medical imaging
JP5907821B2 (en) 2012-06-26 2016-04-26 浜松ホトニクス株式会社 Thrombectomy device
US9211132B2 (en) 2012-06-27 2015-12-15 MicoVention, Inc. Obstruction removal system
US9445828B2 (en) 2012-07-05 2016-09-20 Cognition Medical Corp. Methods, devices, and systems for postconditioning with clot removal
WO2014028528A1 (en) 2012-08-13 2014-02-20 Microvention, Inc. Shaped removal device
US9204887B2 (en) 2012-08-14 2015-12-08 W. L. Gore & Associates, Inc. Devices and systems for thrombus treatment
US9539022B2 (en) 2012-11-28 2017-01-10 Microvention, Inc. Matter conveyance system
US9585741B2 (en) 2013-02-22 2017-03-07 NeuroVasc Technologies, Inc Embolus removal device with blood flow restriction and related methods
US20140276074A1 (en) 2013-03-13 2014-09-18 W.L. Gore & Associates, Inc. Flexible Driveshafts with Bi-Directionally Balanced Torsional Stiffness Properties
US9642635B2 (en) 2013-03-13 2017-05-09 Neuravi Limited Clot removal device
WO2014140092A2 (en) 2013-03-14 2014-09-18 Neuravi Limited Devices and methods for removal of acute blockages from blood vessels
US9433429B2 (en) 2013-03-14 2016-09-06 Neuravi Limited Clot retrieval devices
ES2960917T3 (en) 2013-03-14 2024-03-07 Neuravi Ltd Clot retrieval device to remove occlusive clots from a blood vessel
JP6098939B2 (en) 2013-04-08 2017-03-22 株式会社Gsユアサ Power storage module
WO2014207665A2 (en) 2013-06-28 2014-12-31 Koninklijke Philips N.V. Transducer placement and registration for image-guided sonothrombolysis
US9265512B2 (en) 2013-12-23 2016-02-23 Silk Road Medical, Inc. Transcarotid neurovascular catheter
JP6246004B2 (en) 2014-01-30 2017-12-13 キヤノン株式会社 Solid-state imaging device
JP6495241B2 (en) 2014-03-11 2019-04-03 テルモ株式会社 Method for manufacturing medical device and medical device
WO2015141317A1 (en) 2014-03-20 2015-09-24 テルモ株式会社 Foreign matter removal device
US9241699B1 (en) 2014-09-04 2016-01-26 Silk Road Medical, Inc. Methods and devices for transcarotid access
US10792056B2 (en) 2014-06-13 2020-10-06 Neuravi Limited Devices and methods for removal of acute blockages from blood vessels
US10441301B2 (en) 2014-06-13 2019-10-15 Neuravi Limited Devices and methods for removal of acute blockages from blood vessels
US10315007B2 (en) 2014-07-15 2019-06-11 Stryker Corporation Vascular access system and method of use
US9801643B2 (en) 2014-09-02 2017-10-31 Cook Medical Technologies Llc Clot retrieval catheter
KR101530828B1 (en) 2014-09-23 2015-06-24 윤성원 endovascular device for thrombus removal and flow restoration
WO2016089664A1 (en) 2014-12-03 2016-06-09 Stryker European Holdings I, Llc Apparatus and methods for removing an obstruction form a bodily duct of a patient
US10518066B2 (en) 2015-01-09 2019-12-31 Mivi Neuroscience, Inc. Medical guidewires for tortuous vessels
CN107530555A (en) 2015-03-30 2018-01-02 皇家飞利浦有限公司 The ultrasound transducer array disposed and monitored for ultrasound thrombolysis
EP3622981A1 (en) 2015-04-10 2020-03-18 Silk Road Medical, Inc. Methods and systems for establishing retrograde carotid arterial blood flow
WO2016168272A1 (en) 2015-04-16 2016-10-20 Stryker Corporation Embolectomy devices and methods
WO2016198947A1 (en) 2015-06-06 2016-12-15 The Hong Kong University Of Science And Technology Radio frequency electro-thrombectomy device
JP6591664B2 (en) 2015-09-21 2019-10-16 ストライカー コーポレイションStryker Corporation Embolization removal device
US10441404B2 (en) 2015-09-21 2019-10-15 Stryker Corporation Embolectomy devices
WO2017062383A1 (en) 2015-10-07 2017-04-13 Stryker Corporation Multiple barrel clot removal devices
US10485564B2 (en) 2015-12-14 2019-11-26 Mg Stroke Analytics Inc. Systems and methods to improve perfusion pressure during endovascular intervention
CA3014315C (en) 2016-02-10 2022-03-01 Microvention, Inc. Intravascular treatment site access
US10252024B2 (en) 2016-04-05 2019-04-09 Stryker Corporation Medical devices and methods of manufacturing same
WO2017192999A1 (en) 2016-05-06 2017-11-09 Mayo Foundation For Medical Education And Research Internal carotid artery thrombectomy devices and methods
WO2018019829A1 (en) 2016-07-26 2018-02-01 Neuravi Limited A clot retrieval system for removing occlusive clot from a blood vessel
WO2018033401A1 (en) 2016-08-17 2018-02-22 Neuravi Limited A clot retrieval system for removing occlusive clot from a blood vessel
MX2019002565A (en) 2016-09-06 2019-09-18 Neuravi Ltd A clot retrieval device for removing occlusive clot from a blood vessel.
US9993257B2 (en) 2016-09-07 2018-06-12 NeuroVarc Technologies Inc. Clot retrieval device for ischemic stroke treatment
JP6804916B2 (en) 2016-09-27 2020-12-23 浜松ホトニクス株式会社 Monitor device and how to operate the monitor device
WO2018093574A1 (en) 2016-11-16 2018-05-24 Zaidat Osama O System and device for engulfing thrombi
US10709466B2 (en) 2016-11-23 2020-07-14 Microvention, Inc. Obstruction removal system
EP3544528B1 (en) 2016-11-23 2024-02-28 Microvention, Inc. Obstruction removal system
US20190209189A1 (en) 2017-01-26 2019-07-11 Mayank Goyal Thrombus retrieval stents and methods of using for treatment of ischemic stroke
US10932802B2 (en) 2017-01-26 2021-03-02 Mg Stroke Analytics Inc. Thrombus retrieval stents and methods of using for treatment of ischemic stroke
US11896245B2 (en) 2017-02-09 2024-02-13 Mg Stroke Analytics Inc. Catheter systems for accessing the brain for treatment of ischemic stroke
US11116529B2 (en) 2017-02-24 2021-09-14 Stryker Corporation Embolectomy device having multiple semi-tubular clot engaging structures
KR102024425B1 (en) 2017-03-08 2019-11-14 대구가톨릭대학교산학협력단 thrombus remove device by electromagnetic field make and control
WO2018172891A1 (en) 2017-03-22 2018-09-27 Magneto Thrombectomy Solutions Ltd. Thrombectomy using both electrostatic and suction forces
JP7449222B2 (en) 2017-04-07 2024-03-13 パルメラ メディカル、インコーポレイテッド Therapeutic organ cooling
JP6727245B2 (en) 2018-04-25 2020-07-22 浜松ホトニクス株式会社 Laser thrombolysis device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8357178B2 (en) 2009-07-08 2013-01-22 Concentric Medical, Inc. Vascular and bodily duct treatment devices and methods
US8357179B2 (en) 2009-07-08 2013-01-22 Concentric Medical, Inc. Vascular and bodily duct treatment devices and methods
US8529596B2 (en) 2009-07-08 2013-09-10 Concentric Medical, Inc. Vascular and bodily duct treatment devices and methods
US8795317B2 (en) 2009-07-08 2014-08-05 Concentric Medical, Inc. Embolic obstruction retrieval devices and methods
US8795345B2 (en) 2009-07-08 2014-08-05 Concentric Medical, Inc. Vascular and bodily duct treatment devices and methods
US9044263B2 (en) 2009-07-08 2015-06-02 Concentric Medical, Inc. Vascular and bodily duct treatment devices and methods
US9072537B2 (en) 2009-07-08 2015-07-07 Concentric Medical, Inc. Vascular and bodily duct treatment devices and methods

Also Published As

Publication number Publication date
EP2781196A8 (en) 2014-12-24
ES2641502T3 (en) 2017-11-10
JP2005532887A (en) 2005-11-04
EP1542617A1 (en) 2005-06-22
EP2415424A3 (en) 2013-10-02
WO2004008991A1 (en) 2004-01-29
US20140371839A1 (en) 2014-12-18
AU2003254553A1 (en) 2004-02-09
US8632584B2 (en) 2014-01-21
JP2010264261A (en) 2010-11-25
EP2781196A2 (en) 2014-09-24
JP5091985B2 (en) 2012-12-05
EP2781196A3 (en) 2014-11-12
EP2995282B1 (en) 2017-07-05
US10342683B2 (en) 2019-07-09
EP2995282A1 (en) 2016-03-16
US7300458B2 (en) 2007-11-27
DE10233085B4 (en) 2014-02-20
JP4919217B2 (en) 2012-04-18
US20080125855A1 (en) 2008-05-29
ES2552907T3 (en) 2015-12-03
EP2415424B1 (en) 2014-11-26
US11426293B2 (en) 2022-08-30
EP2781196B1 (en) 2015-10-14
EP1542617B1 (en) 2016-09-14
US20050209678A1 (en) 2005-09-22
EP2415424A2 (en) 2012-02-08
US20190307585A1 (en) 2019-10-10
DE10233085A1 (en) 2004-01-29
ES2527836T3 (en) 2015-01-30

Similar Documents

Publication Publication Date Title
US11426293B2 (en) Medical implant
US9962164B2 (en) Wing bifurcation reconstruction device
US5226913A (en) Method of making a radially expandable prosthesis
CA2565106C (en) Flexible vascular occluding device
US5092877A (en) Radially expandable endoprosthesis
US5019090A (en) Radially expandable endoprosthesis and the like
AU2007268144B2 (en) Flexible vascular occluding device
US10828040B2 (en) Vascular implant
KR20160101146A (en) Vascular Stent and Method for Manufacturing Same
JP2018537182A (en) Band-shaped closure means
CN111658251A (en) Blood flow direction type blood vessel support
CN212547268U (en) Blood flow direction type blood vessel support
AU2011213729B2 (en) Flexible vascular occluding device

Legal Events

Date Code Title Description
FZDE Discontinued