CA2495911A1 - Liquid jet surgical instruments incorporating channel openings aligned along the jet beam - Google Patents

Liquid jet surgical instruments incorporating channel openings aligned along the jet beam Download PDF

Info

Publication number
CA2495911A1
CA2495911A1 CA002495911A CA2495911A CA2495911A1 CA 2495911 A1 CA2495911 A1 CA 2495911A1 CA 002495911 A CA002495911 A CA 002495911A CA 2495911 A CA2495911 A CA 2495911A CA 2495911 A1 CA2495911 A1 CA 2495911A1
Authority
CA
Canada
Prior art keywords
channel
surgical instrument
nozzle
instrument
longitudinally
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CA002495911A
Other languages
French (fr)
Other versions
CA2495911C (en
Inventor
Timothy E. Moutafis
Donald C. Freeman, Jr.
Edward J. Bromander
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hydrocision Inc
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CA2495911A1 publication Critical patent/CA2495911A1/en
Application granted granted Critical
Publication of CA2495911C publication Critical patent/CA2495911C/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/3203Fluid jet cutting instruments

Abstract

Certain embodiments of the present invention provide a series of surgical instruments utilizing liquid jets for cutting, ablating, debriding, washing, etc., tissues and/or other materials from the interior and/or external surface of the body of a patient. Certain embodiments of the liquid jet surgical instruments provided according to the invention utilize a channel positioned adjacent to and downstream of a liquid jet-forming nozzle such that at least a portion of the liquid jet passes at least one of within the channel and adjacent to and along the length of at least a portion of a longitudinally-oriented opening in the channel, when the instrument is in operation. The use of such channels in certain embodiments of the inventive liquid jet surgical instruments can enable the instruments to provide enhanced control over the depth and degree of cutting and/or ablation of tissue; and/or can provide improved and enhanced functionality for cleaning, debriding, and/or trimming and cutting a tissue surface; and/or can provide longer effective liquid jet beam cutting/ablation lengths by reducing the degree of dispersion of the jet along its length, especially for instruments utilized in a surrounding gaseous environment.

Claims (61)

1. A surgical instrument comprising:
a distal end adapted to perform a surgical procedure on a patient and a proximal end;
a pressure lumen configured and positioned to conduct a liquid from the proximal end towards the distal end of the instrument;
a nozzle in fluid communication with the pressure lumen that is shaped to form a liquid jet as the liquid flows therethrough; and an elongated channel, having a depth and a length, the length being measured along a longitudinal axis of the channel, the channel including a longitudinally-oriented opening to a surrounding environment extending along at least a portion of the length of the channel, the longitudinally-oriented opening having a total effective length, as measured along the length of the channel, and a width, as measured in a direction perpendicular to the longitudinal axis of the channel, wherein the channel is positioned adjacent to and downstream of the nozzle such that at least a portion of the liquid jet passes at least one of within the channel and adjacent to and along the length of at least a portion of the longitudinally-oriented opening of the channel, when the instrument is in operation, and wherein the total effective length of the longitudinally-oriented opening exceeds the maximum width of the longitudinally-oriented opening by at least about a factor of four.
2. The surgical instrument as in claim 1, wherein the liquid jet formed by the nozzle has a centerline directed along a first direction, the first direction being essentially parallel to a projection of the longitudinal axis of the channel on a plane co-planar with the longitudinally-oriented opening of the channel.
3. The surgical instrument as in claim 1, wherein the liquid jet formed by the nozzle has a centerline directed along a first direction, the first direction being essentially parallel to the longitudinal axis of the channel in all planes.
4. The surgical instrument as in claim 1, wherein the channel is positioned adjacent to and downstream of the nozzle such that at least a portion of the liquid jet passes adjacent to, externally of, and along the length of at least a portion of the longitudinally-oriented opening of the channel, when the instrument is in operation.
5. The surgical instrument as in claim 1, wherein the channel is positioned adjacent to and downstream of the nozzle such that at least a portion of the liquid jet passes within the channel, when the instrument is in operation.
6. The surgical instrument as in claim 2, wherein the first direction of the center line of the nozzle forms an angle with respect to the longitudinal axis of the channel in a plane containing the longitudinal axis of the channel and essentially perpendicular to the plane co-planar with the longitudinally-oriented opening of the channel, such that the liquid jet formed by the nozzle is separated from a bottommost portion of the channel by an amount that decreases along the length of the channel.
7. The surgical instrument as in claim 1, wherein the instrument includes a tissue-contacting surface adjacent to at least a portion of the longitudinally-oriented opening of the channel and wherein the channel further includes at least one vent aperture configured and positioned to provide fluid communication between an interior region of the channel and the surrounding environment when the longitudinally-oriented opening of the channel is occluded.
8. The surgical instrument as in claim 1, wherein at least one of the shape, position relative the nozzle, and the dimensions of the channel is selected so that the liquid jet formed by the nozzle undergoes less dispersion along its length, when the instrument is in operation, than would a liquid jet formed by an identical instrument, not including the channel.
9. The surgical instrument as in claim 1, wherein the nozzle is positioned at a location providing a selected separation distance between a center line of the nozzle and at least one of a bottommost inner surface of the channel and a tissue-contacting portion of the channel that includes the longitudinally-oriented opening therein so as to achieve a desired depth of cutting and/or ablation of the tissue with the liquid comprising the liquid jet emitted from the nozzle, when the instrument is in operation.
10. The surgical instrument as in claim 9, wherein the selected separation distance between the center line of the nozzle and at least one of the bottommost inner surface of the channel and the tissue-contacting portion of the channel is adjustable by an operator of the surgical instrument.
11. The surgical instrument as in claim 10, wherein the separation distance can be adjusted intraoperatively.
12. The surgical instrument as in claim 1, wherein the shape and size of the longitudinally-oriented opening defines an area of cutting and/or ablation of tissue, when the longitudinally-oriented opening is positioned adjacent to and in contact with tissue to be treated during operation of the instrument.
13. The surgical instrument as in claim 1, wherein at least one of the width of the longitudinally-oriented opening and the cross-sectional shape of the elongated channel, in a plane perpendicular to the longitudinal axis of the channel, is adjustable by an operator of the surgical instrument.
14. The surgical instrument as in claim 1, wherein the elongated channel is formed within a channel-providing insert of the surgical instrument that is configured so that it is removable from the instrument and replaceable with another insert having a differently configured channel therein, by an operator of the instrument.
15. The surgical instrument as in claim 1, wherein the maximum width of the longitudinally-oriented opening is at least as great as a diameter of the liquid jet at a point of maximum dispersion along its length.
16. The surgical instrument as in claim 15, wherein the width of the longitudinally-oriented opening is essentially constant along its length.
17. The surgical instrument as in claim 15, wherein the width of the longitudinally-oriented opening is not constant along its length and increases with increasing distance from the nozzle.
18. The surgical instrument as in claim 1, further comprising an evacuation lumen comprising a jet-receiving opening located opposite a jet opening of the nozzle and adjacent to and downstream of the elongated channel, wherein the evacuation lumen is constructed and positioned to enable it to collect liquid comprising the liquid jet formed by the nozzle, when the instrument is in operation.
19. The surgical instrument as in claim 18, wherein a downstream end of the elongated channel is connected in fluid communication with the jet-receiving opening of the evacuation lumen.
20. The surgical instrument as in claim 19, wherein the downstream end of the elongated channel is connected to the evacuation lumen by a sleeve element.
21. The surgical instrument as in claim 19, wherein the evacuation lumen is shaped and positionable to enable evacuation of essentially all of the liquid comprising the liquid jet from the jet-receiving opening to the proximal end of the instrument, without the need for an external source of suction.
22. A surgical instrument comprising:
a distal end adapted to perform a surgical procedure on a patient and a proximal end;
a pressure lumen configured and positioned to conduct a liquid from the proximal end towards the distal end of the instrument;
a nozzle in fluid communication with the pressure lumen that is shaped to form a liquid jet as the liquid flows therethrough; and a channel, having a depth and a length, the length being defined along a longitudinal axis of the channel, the channel including a longitudinally-oriented opening to a surrounding environment extending along at least a portion of the length of the channel, wherein the channel is positioned adjacent to and downstream of the nozzle such that at least a portion of the liquid jet passes adjacent to, externally of, and along a length of at least a portion of the longitudinally-oriented opening of the channel, when the instrument is in operation.
23. The surgical instrument as in claim 22, further comprising an evacuation lumen comprising a jet-receiving opening located opposite a jet opening of the nozzle and adjacent to and downstream of the channel, wherein the evacuation lumen is constructed and positioned to enable it to collect liquid comprising the liquid jet formed by the nozzle, when the instrument is in operation.
24. The surgical instrument as in claim 23, wherein a downstream end of the channel is connected in fluid communication with the jet-receiving opening of the evacuation lumen.
25. The surgical instrument as in claim 24, wherein the downstream end of the channel is connected to the evacuation lumen by a sleeve element.
26. The surgical instrument as in claim 24, wherein the evacuation lumen is shaped and positionable to enable evacuation of essentially all of the liquid comprising the liquid jet from the jet-receiving opening to the proximal end of the instrument, without the need for an external source of suction.
27. The surgical instrument as in claim 22, wherein the nozzle is positioned at a location providing a selected separation distance between a center line of the nozzle and at least one of a bottommost inner surface of the channel and a tissue-contacting portion of the channel that includes the longitudinally-oriented opening therein so as to achieve a desired depth of cutting and/or ablation of the tissue with the liquid comprising the liquid jet emitted from the nozzle, when the instrument is in operation.
28. The surgical instrument as in claim 22, wherein the channel is positioned adjacent to and downstream of the nozzle such that at least a portion of the liquid jet passes adjacent to, externally of, and along essentially the entire length of the longitudinally-oriented opening of the channel, when the instrument is in operation.
29. The surgical instrument as in claim 22, wherein the channel is positioned adjacent to and downstream of the nozzle such that the liquid jet initially passes adjacent to and externally of a first portion of the longitudinally-oriented opening of the channel and, downstream of the first portion, passes within the channel.
30. A surgical instrument comprising:
a distal end adapted to perform a surgical procedure on a patient and a proximal end;
a pressure lumen configured and positioned to conduct a liquid from the proximal end towards the distal end of the instrument;
a nozzle in fluid communication with the pressure lumen that is shaped to form a liquid jet as the liquid flows therethrough; and a channel, having a depth and an length, the length being defined along a longitudinal axis of the channel, the channel including a tissue-contacting portion including a longitudinally-oriented opening to a surrounding environment extending along at least a portion of the length of the channel, wherein the channel includes at least one vent aperture configured and positioned to provide fluid communication between an interior region of the channel and the surrounding environment when the longitudinally-oriented opening of the tissue-contacting portion of the channel is occluded, and wherein the channel is positioned adjacent to and downstream of the nozzle such that at least a portion of the liquid jet passes at least one of within the channel and adjacent to and along a length of at least a portion of the longitudinally-oriented opening of the channel, when the instrument is in operation.
31. The surgical instrument as in claim 30, further comprising an evacuation lumen comprising a jet-receiving opening located opposite a jet opening of the nozzle and adjacent to and downstream of the channel, wherein the evacuation lumen is constructed and positioned to enable it to collect liquid comprising the liquid jet formed by the nozzle, when the instrument is in operation.
32. The surgical instrument as in claim 31, wherein a downstream end of the channel is connected in fluid communication with the jet-receiving opening of the evacuation lumen.
33. The surgical instrument as in claim 32, wherein the downstream end of the channel is connected to the evacuation lumen by a sleeve element.
34. The surgical instrument as in claim 32, wherein the evacuation lumen is shaped and positionable to enable evacuation of essentially all of the liquid comprising the liquid jet from the jet-receiving opening to the proximal end of the instrument, without the need for an external source of suction.
35. The surgical instrument as in claim 30, wherein the at least one vent aperture comprises an inlet opening at an upstream end of the channel.
36. The surgical instrument as in claim 30, wherein the at least one vent aperture comprises at least one vent hole positioned at a location along the length of the channel.
37. The surgical instrument as in claim 30, wherein the at least one vent aperture comprises at least one indentation in a tissue-contacting surface of the tissue-contacting portion of the channel.
38. The surgical instrument as in claim 30, wherein a total cross sectional area of the at least one vent aperture is between about 2% and about 150% of the total area of the longitudinally-oriented opening of the channel.
39. The surgical instrument as in claim 38, wherein the total cross sectional area of the at least one vent aperture is between about 2% and about 40% of the total area of the longitudinally-oriented opening of the channel.
40. The surgical instrument as in claim 39, wherein the total cross sectional area of the at least one vent aperture is between about 2% and about 10% of the total area of the longitudinally-oriented opening of the channel.
41. The surgical instrument as in claim 40, wherein the total cross sectional area of the at least one vent aperture is about 4% of the total area of the longitudinally-oriented opening of the channel.
42. The surgical instrument as in claim 38, wherein the total open area of the at least one vent aperture is adjustable by an operator of the surgical instrument.
43. The surgical instrument as in claim 42, wherein the total open area of the at least one vent aperture can be varied intraoperatively.
44. The surgical instrument as in claim 38, wherein the total open area of the at least one vent aperture is configured to be automatically adjustable based on a level of suction present within the interior region of the channel during operation of the surgical instrument.
45. A surgical instrument comprising:
a distal end adapted to perform a surgical procedure on a patient and a proximal end;
a pressure lumen configured and positioned to conduct a liquid from the proximal end towards the distal end of the instrument;
a nozzle in fluid communication with the pressure lumen that is shaped to form a liquid jet as the liquid flows therethrough; and a channel, having a depth and a length, the length being defined along a longitudinal axis of the channel, the channel including a longitudinally-oriented opening to a surrounding environment extending along at least a portion of the length of the channel, wherein at least one of the shape, position relative the nozzle, and dimensions of the channel is selected so that the liquid jet formed by the nozzle undergoes less dispersion along its length, when the instrument is in operation, than would a liquid jet formed by an identical instrument, not including the channel.
46. The surgical instrument as in claim 45, further comprising an evacuation lumen comprising a jet-receiving opening located opposite a jet opening of the nozzle and adjacent to and downstream of the channel, wherein the evacuation lumen is constructed and positioned to enable it to collect liquid comprising the liquid jet formed by the nozzle, when the instrument is in operation.
47. The surgical instrument as in claim 46, wherein a downstream end of the channel is connected in fluid communication with the jet-receiving opening of the evacuation lumen.
48. The surgical instrument as in claim 47, wherein the downstream end of the channel is connected to the evacuation lumen by a sleeve element.
49. The surgical instrument as in claim 47, wherein the evacuation lumen is shaped and positionable to enable evacuation of essentially all of the liquid comprising the liquid jet from the jet-receiving opening to the proximal end of the instrument, without the need for an external source of suction.
50. The surgical instrument as in claim 45, wherein a cross-sectional shape of the channel, in a plane perpendicular to the longitudinal axis of the channel, is adjustable by an operator of the surgical instrument.
51. The surgical instrument as in claim 50, wherein the cross sectional shape of the channel can be varied intraoperatively.
52. The surgical instrument as in claim 50, wherein a maximum width of the longitudinally-oriented opening, measured in a direction essentially perpendicular to the longitudinal axis, is adjustable by an operator of the surgical instrument.
53. The surgical instrument as in claim 52, wherein the width of the longitudinally-oriented opening can be varied intraoperatively.
54. A method of constructing a liquid jet surgical instrument for treating a tissue of a patient with a liquid stream, the method comprising:
providing a channel adjacent and downstream of a liquid jet-forming nozzle of the instrument, the channel having a length measured along a longitudinal axis of the channel, the channel including a tissue-contacting portion with a longitudinally-oriented opening to a surrounding environment extending along at least a portion of the length of the channel, wherein a shortest distance between the longitudinally-oriented opening and the bottommost inner surface of the channel defines a depth of the channel; and positioning the nozzle at a location resulting in a selected separation distance between a centerline of the nozzle and at least one of the bottommost inner surface of the channel and the tissue-contacting portion of the channel so as to achieve a desired depth of cutting and/or ablation of the tissue with the liquid emitted from the nozzle, when the instrument is in operation.
55. The method as in claim 54, wherein the selected separation distance is measured at a longitudinal position of a jet opening of the nozzle.
56. The method as in claim 55, wherein in the positioning step, the nozzle is positioned so as to achieve a non-zero depth of cutting and/or ablation of the tissue with the liquid emitted from the nozzle, when the instrument is in operation.
57. The method as in claim 54, wherein in the positioning step, the nozzle is positioned so as to achieve a cutting depth that is essentially equal to the selected separation distance between the center line of the nozzle and the tissue-contacting portion of the channel.
58. The method as in claim 55, wherein in the positioning step, the nozzle is positioned such that the depth of cutting and/or ablation of the tissue is essentially zero, resulting in washing and lavage of the tissue without substantial cutting and/or ablation of the tissue.
59. The method as in claim 58, wherein in the positioning step, the nozzle is positioned such that the selected separation distance between the center line of the nozzle and the bottommost inner surface of the channel is less than a separation distance between the tissue contacting portion of the channel and the bottommost inner surface of the channel such that the liquid jet passes within the channel, when the instrument is in operation.
60. The method as in claim 54, further comprising the step of adjusting the selected separation distance during use of the surgical instrument so as to change the depth of cutting and/or ablation of the tissue.
61. A method for decreasing dispersion of a liquid jet of a liquid jet surgical instrument, the method comprising:
providing a channel adjacent and downstream of a liquid jet-forming nozzle of the instrument, the channel having a length measured along a longitudinal axis of the channel, the channel including a tissue-contacting portion with a longitudinally-oriented opening to a surrounding environment extending along at least a portion of the length of the channel; and positioning the nozzle to direct a liquid jet such that it passes at least one of within the channel and adjacent to and along the length of at least a portion of the longitudinally-oriented opening of the channel.
CA2495911A 2001-11-21 2002-11-21 Liquid jet surgical instruments incorporating channel openings aligned along the jet beam Expired - Lifetime CA2495911C (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US33215601P 2001-11-21 2001-11-21
US60/332,156 2001-11-21
PCT/US2002/037691 WO2003045259A1 (en) 2001-11-21 2002-11-21 Liquid jet surgical instruments incorporating channel openings aligned along the jet beam

Publications (2)

Publication Number Publication Date
CA2495911A1 true CA2495911A1 (en) 2003-06-05
CA2495911C CA2495911C (en) 2011-06-07

Family

ID=23296949

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2495911A Expired - Lifetime CA2495911C (en) 2001-11-21 2002-11-21 Liquid jet surgical instruments incorporating channel openings aligned along the jet beam

Country Status (8)

Country Link
US (2) US7431711B2 (en)
EP (1) EP1485032B1 (en)
JP (1) JP4346443B2 (en)
AT (1) ATE367122T1 (en)
CA (1) CA2495911C (en)
DE (1) DE60221294T2 (en)
ES (1) ES2290358T3 (en)
WO (1) WO2003045259A1 (en)

Families Citing this family (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6375635B1 (en) * 1999-05-18 2002-04-23 Hydrocision, Inc. Fluid jet surgical instruments
US6451017B1 (en) * 2000-01-10 2002-09-17 Hydrocision, Inc. Surgical instruments with integrated electrocautery
US8235919B2 (en) 2001-01-12 2012-08-07 Celleration, Inc. Ultrasonic method and device for wound treatment
US7914470B2 (en) 2001-01-12 2011-03-29 Celleration, Inc. Ultrasonic method and device for wound treatment
JP4073313B2 (en) 2001-04-27 2008-04-09 ハイドロシジョン・インコーポレーテッド High pressure pumping cartridge for medical and surgical pumping and infusion devices
ATE433778T1 (en) * 2001-08-08 2009-07-15 Hydrocision Inc MEDICAL DEVICE HAVING A HANDPIECE WITH A HIGH PRESSURE QUICK COUPLING
DE60227288D1 (en) * 2001-09-17 2008-08-07 Hydrocision Inc SURGICAL ROTATING ABRASION DEVICE
US20030055404A1 (en) * 2001-09-17 2003-03-20 Moutafis Timothy E. Endoscopic rotary abraders
US20040030254A1 (en) * 2002-08-07 2004-02-12 Eilaz Babaev Device and method for ultrasound wound debridement
US10363061B2 (en) * 2002-10-25 2019-07-30 Hydrocision, Inc. Nozzle assemblies for liquid jet surgical instruments and surgical instruments for employing the nozzle assemblies
US8162966B2 (en) 2002-10-25 2012-04-24 Hydrocision, Inc. Surgical devices incorporating liquid jet assisted tissue manipulation and methods for their use
US8034003B2 (en) 2003-09-11 2011-10-11 Depuy Mitek, Inc. Tissue extraction and collection device
GB0403512D0 (en) * 2004-02-17 2004-03-24 Eschmann Holdings Ltd Surgical dissection instrument using a high-pressure liquid jet
US20060129086A1 (en) * 2004-12-13 2006-06-15 Depuy Mitek, Inc. Interchangeable tissue macerating and sculpting methods and devices
US20060149193A1 (en) * 2005-01-05 2006-07-06 Biomec, Inc. High pressure liquid jet ablation of tissue and apparatus
GB0502384D0 (en) * 2005-02-04 2005-03-16 Instrumedical Ltd Electro-surgical needle apparatus
US7550693B2 (en) * 2005-02-04 2009-06-23 Honeywell International Inc. Hand-held laser welding wand with improved optical assembly serviceability features
DE202006018986U1 (en) * 2006-12-16 2008-04-17 Human Med Ag Applicator for a water jet device, in particular for the treatment of wounds and ulcers
WO2008083278A2 (en) * 2006-12-29 2008-07-10 Dion Ernest A Wound bed preparation
US8491521B2 (en) 2007-01-04 2013-07-23 Celleration, Inc. Removable multi-channel applicator nozzle
US20080214965A1 (en) * 2007-01-04 2008-09-04 Celleration, Inc. Removable multi-channel applicator nozzle
US8430837B2 (en) 2007-02-05 2013-04-30 Boston Scientific Scimed, Inc. Thrombectomy apparatus and method
US8500697B2 (en) * 2007-10-19 2013-08-06 Pressure Products Medical Supplies, Inc. Transseptal guidewire
GB0724824D0 (en) * 2007-12-20 2008-01-30 Smith & Nephew Test apparatus
GB0724836D0 (en) 2007-12-20 2008-01-30 Smith & Nephew Waste control apparatus
US7963947B2 (en) * 2008-01-16 2011-06-21 Pressure Products Medical Supplies, Inc. Apparatus, system, and method of shielding the sharp tip of a transseptal guidewire
US8162880B2 (en) * 2008-01-18 2012-04-24 Swaminathan Jayaraman Delivery of therapeutic and marking substance through intra lumen expansion of a delivery device
US8088163B1 (en) 2008-02-06 2012-01-03 Kleiner Jeffrey B Tools and methods for spinal fusion
GB0804654D0 (en) 2008-03-13 2008-04-16 Smith & Nephew Vacuum closure device
WO2010008453A2 (en) * 2008-06-23 2010-01-21 Allosource Aseptic, high pressure water cleaning chamber
USD853560S1 (en) 2008-10-09 2019-07-09 Nuvasive, Inc. Spinal implant insertion device
US9510854B2 (en) 2008-10-13 2016-12-06 Boston Scientific Scimed, Inc. Thrombectomy catheter with control box having pressure/vacuum valve for synchronous aspiration and fluid irrigation
US8864654B2 (en) 2010-04-20 2014-10-21 Jeffrey B. Kleiner Method and apparatus for performing retro peritoneal dissection
US8366748B2 (en) 2008-12-05 2013-02-05 Kleiner Jeffrey Apparatus and method of spinal implant and fusion
US9717403B2 (en) 2008-12-05 2017-08-01 Jeffrey B. Kleiner Method and apparatus for performing retro peritoneal dissection
US9247943B1 (en) 2009-02-06 2016-02-02 Kleiner Intellectual Property, Llc Devices and methods for preparing an intervertebral workspace
USD656610S1 (en) 2009-02-06 2012-03-27 Kleiner Jeffrey B Spinal distraction instrument
USD750249S1 (en) 2014-10-20 2016-02-23 Spinal Surgical Strategies, Llc Expandable fusion cage
US9173694B2 (en) 2009-09-18 2015-11-03 Spinal Surgical Strategies, Llc Fusion cage with combined biological delivery system
USD723682S1 (en) 2013-05-03 2015-03-03 Spinal Surgical Strategies, Llc Bone graft delivery tool
US20170238984A1 (en) 2009-09-18 2017-08-24 Spinal Surgical Strategies, Llc Bone graft delivery device with positioning handle
US10973656B2 (en) 2009-09-18 2021-04-13 Spinal Surgical Strategies, Inc. Bone graft delivery system and method for using same
US9186193B2 (en) 2009-09-18 2015-11-17 Spinal Surgical Strategies, Llc Fusion cage with combined biological delivery system
US9060877B2 (en) 2009-09-18 2015-06-23 Spinal Surgical Strategies, Llc Fusion cage with combined biological delivery system
US10245159B1 (en) 2009-09-18 2019-04-02 Spinal Surgical Strategies, Llc Bone graft delivery system and method for using same
US8906028B2 (en) 2009-09-18 2014-12-09 Spinal Surgical Strategies, Llc Bone graft delivery device and method of using the same
US8685031B2 (en) 2009-09-18 2014-04-01 Spinal Surgical Strategies, Llc Bone graft delivery system
US9629729B2 (en) 2009-09-18 2017-04-25 Spinal Surgical Strategies, Llc Biological delivery system with adaptable fusion cage interface
US20110144674A1 (en) * 2009-10-16 2011-06-16 Keith Patrick Heaton Debridement cutting heads, methods, and systems employing reduced pressure
US8337175B2 (en) * 2009-12-22 2012-12-25 Smith & Nephew, Inc. Disposable pumping system and coupler
JP5862020B2 (en) * 2011-02-28 2016-02-16 セイコーエプソン株式会社 Fluid ejection device
JP5723035B2 (en) 2011-12-03 2015-05-27 ウロボロス メディカル, インコーポレイテッドOuroboros Medical, Inc. Safe cutting head and cutting system for rapid resection of target tissue
US9238122B2 (en) 2012-01-26 2016-01-19 Covidien Lp Thrombectomy catheter systems
US9144459B2 (en) 2012-07-19 2015-09-29 Cook Medical Technologies Llc Endoscopic ultrasound ablation needle
US9949753B2 (en) * 2012-09-14 2018-04-24 The Spectranetics Corporation Tissue slitting methods and systems
WO2014074806A1 (en) 2012-11-08 2014-05-15 Smith & Nephew, Inc-- Improved reattachment of detached cartilage to subchondral bone
AU2013342255B2 (en) 2012-11-08 2017-05-04 Smith & Nephew, Inc. Methods and compositions suitable for improved reattachment of detached cartilage to subchondral bone
US9867636B2 (en) * 2013-03-15 2018-01-16 The Regents Of The University Of California Method, apparatus, and a system for a water jet
KR20160040226A (en) 2013-07-19 2016-04-12 아우로보로스 메디컬, 아이엔씨 An anti-clogging device for a vacuum-assisted, tissue removal system
US11224767B2 (en) 2013-11-26 2022-01-18 Sanuwave Health, Inc. Systems and methods for producing and delivering ultrasonic therapies for wound treatment and healing
WO2015171754A1 (en) * 2014-05-07 2015-11-12 Massachusetts Institute Of Technology Debridement apparatus using linear lorentz-force motors
US9883877B2 (en) 2014-05-19 2018-02-06 Walk Vascular, Llc Systems and methods for removal of blood and thrombotic material
US10561440B2 (en) 2015-09-03 2020-02-18 Vesatek, Llc Systems and methods for manipulating medical devices
USD797290S1 (en) 2015-10-19 2017-09-12 Spinal Surgical Strategies, Llc Bone graft delivery tool
US20180344329A1 (en) * 2015-12-01 2018-12-06 Surgify Medical Oy A medical device for separating tissues, a medical system and a method thereto
US10492805B2 (en) 2016-04-06 2019-12-03 Walk Vascular, Llc Systems and methods for thrombolysis and delivery of an agent
US10492821B2 (en) 2016-06-24 2019-12-03 Hydrocision, Inc. Selective tissue removal treatment device
US10485568B2 (en) 2016-06-24 2019-11-26 Hydrocision, Inc. Selective tissue removal treatment device
CN108065986A (en) * 2016-11-14 2018-05-25 惠州科赛医疗有限公司 Medical cutter head structure, medical water jet instrument and its forming method
WO2018086135A1 (en) * 2016-11-14 2018-05-17 惠州科赛医疗有限公司 Medical tool bit structure, medical water jet instrument and molding method therefor
AU2018306814A1 (en) 2017-07-25 2020-02-13 Stryker European Operations Holdings Llc Irrigation sleeves for use with surgical systems
EP3694426A4 (en) 2017-10-09 2021-07-14 The Board of Regents of the University of Oklahoma Surgical evacuation apparatus and method
US11678905B2 (en) 2018-07-19 2023-06-20 Walk Vascular, Llc Systems and methods for removal of blood and thrombotic material
CN113082342B (en) * 2021-03-30 2022-08-02 绵阳美科电子设备有限责任公司 Disposable pipeline system for cutting or flushing wound surface by adopting high-pressure fluid
WO2023122352A1 (en) * 2021-12-24 2023-06-29 Hydrocision, Inc. Deployable dynamic stent and adjustable cutting jet device

Family Cites Families (119)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1889425A (en) 1931-03-02 1932-11-29 C M Sorensen Co Inc Medical douche
US1902418A (en) * 1931-11-02 1933-03-21 Jensen Salsbery Lab Inc Surgical instrument
US3565062A (en) * 1968-06-13 1971-02-23 Ultrasonic Systems Ultrasonic method and apparatus for removing cholesterol and other deposits from blood vessels and the like
US3590813A (en) * 1969-04-15 1971-07-06 Sunbeam Corp Oral hygiene appliance
US3818913A (en) * 1972-08-30 1974-06-25 M Wallach Surgical apparatus for removal of tissue
US3930505A (en) * 1974-06-24 1976-01-06 Hydro Pulse Corporation Surgical apparatus for removal of tissue
US4137804A (en) * 1974-07-12 1979-02-06 Gerber Garment Technology, Inc. Fluid cutting jet receiver
US4024866A (en) * 1974-12-02 1977-05-24 Hydro Pulse Corporation Surgical apparatus for removal of tissue
US4111490A (en) * 1975-09-05 1978-09-05 Liesveld Daniel J Method and apparatus for channel cutting of hard materials using high velocity fluid jets
US4245624A (en) * 1977-01-20 1981-01-20 Olympus Optical Co., Ltd. Endoscope with flexible tip control
US4368734A (en) * 1978-01-27 1983-01-18 Surgical Design Corp. Surgical instrument
US4294251A (en) * 1978-10-17 1981-10-13 Greenwald A Seth Method of suction lavage
US4282867A (en) * 1979-12-05 1981-08-11 Christopher Edward Cleaning fluid injection device
US4435902A (en) * 1980-12-16 1984-03-13 Flow Industries, Inc. Articulated boom water jet cutting apparatus
JPS59225049A (en) 1983-06-06 1984-12-18 株式会社 スギノマシン Operation nozzle apparatus
JPS60168554A (en) * 1984-02-13 1985-09-02 Sugino Mach:Kk Jet nozzle in liquid
US4583531A (en) * 1984-03-02 1986-04-22 Terry M. Mattchen Hand-held pulsating jet lavage
DE8426270U1 (en) 1984-09-06 1985-02-14 Veltrup, Elmar Michael, Dipl.-Ing., 4150 Krefeld DEVICE FOR REMOVING SOLID BODIES OR DEPOSITS FROM BODY VESSELS
US4637551A (en) * 1985-04-05 1987-01-20 Seeger Corporation Safety guard for airless spray apparatus
US4715848A (en) 1985-04-15 1987-12-29 Beroza Gregory A Gastro-intestinal lavage system and method
US5135482A (en) * 1985-12-31 1992-08-04 Arnold Neracher Hydrodynamic device for the elimination of an organic deposit obstructing a vessel of a human body
US4735620A (en) * 1986-01-16 1988-04-05 Ruiz Oscar F Non-whip catheter
US4694828A (en) * 1986-04-21 1987-09-22 Eichenbaum Daniel M Laser system for intraocular tissue removal
DE3715418A1 (en) * 1986-05-08 1987-11-12 Olympus Optical Co LITHOTOM
US4705500A (en) 1986-07-17 1987-11-10 Mentor O & O, Inc. Ophthalmic aspirator-irrigator
JPS6363450A (en) 1986-09-03 1988-03-19 トノクラ医科工業株式会社 Water jet operation apparatus
US4785796A (en) 1986-09-12 1988-11-22 Mattson Philip D Otoscope and flexible, disposable curette for use therewith
FR2611132B1 (en) * 1987-02-19 1994-06-17 Descartes Universite Rene BISTOURI A PLASMA
EP0280972A1 (en) 1987-03-04 1988-09-07 Siemens Aktiengesellschaft Hand piece for a liquid-jet cutting apparatus
US5002546A (en) * 1987-04-13 1991-03-26 Romano Jack W Curved bore drilling apparatus
US5057098A (en) * 1987-05-01 1991-10-15 Ophthalmocare, Inc. Apparatus and method for extracting cataract tissue
JPH01198539A (en) * 1987-10-26 1989-08-10 Marui Ika:Kk Water jet knife apparatus for cerebral surgery use
US4935006A (en) * 1987-11-12 1990-06-19 Hasson Harrith M Suction and irrigation device with right angle and oblique openings
US4827679A (en) * 1987-11-24 1989-05-09 Ltv Aerospace & Defense Company Fluid jet cutting system with self orienting catcher
EP0411170A1 (en) 1988-03-02 1991-02-06 Marui Ika Company Limited Water jet cutter and aspirator for brain surgery
US5052624A (en) * 1988-03-11 1991-10-01 Possis Corporation Ultra high pressure water cleaning tool
CH676661A5 (en) 1988-06-16 1991-02-28 Claude F Dr Rausis
US5027792A (en) * 1989-03-17 1991-07-02 Percutaneous Technologies, Inc. Endoscopic revision hip surgery device
FR2649925B1 (en) * 1989-07-18 1993-12-10 Aerospatiale Ste Nationale Indle CUTTING JET RECEPTACLE FOR A FLUID JET CUTTING MACHINE
US4937985A (en) * 1989-09-25 1990-07-03 Possis Corporation Abrasive waterjet receiver
US5037431A (en) * 1989-11-03 1991-08-06 The Curators Of The University Of Missouri Surgical liquid lance apparatus
US5018670A (en) * 1990-01-10 1991-05-28 Possis Corporation Cutting head for water jet cutting machine
NL9000356A (en) * 1990-02-14 1991-09-02 Cordis Europ DRAINAGE CATHETER.
US5135484A (en) * 1990-05-09 1992-08-04 Pioneering Technologies, Inc. Method of removing plaque from vessels
US5195958A (en) * 1990-05-25 1993-03-23 Phillips Edward H Tool for laparoscopic surgery
DE4018736A1 (en) 1990-06-12 1992-01-02 Wigbert S Prof Dr Med Rau Aspiration catheter removing blockage from blood vessel - has nozzles at end of suction tube to direct water jets rearwards
CA2048120A1 (en) 1990-08-06 1992-02-07 William J. Drasler Thrombectomy method and device
US5125582A (en) * 1990-08-31 1992-06-30 Halliburton Company Surge enhanced cavitating jet
US5250065A (en) * 1990-09-11 1993-10-05 Mectra Labs, Inc. Disposable lavage tip assembly
US5496267A (en) * 1990-11-08 1996-03-05 Possis Medical, Inc. Asymmetric water jet atherectomy
CA2048239A1 (en) 1990-11-08 1992-05-09 William J. Drasler Water jet atherectomy device
US5524821A (en) * 1990-12-20 1996-06-11 Jetec Company Method and apparatus for using a high-pressure fluid jet
US5242449A (en) * 1991-04-23 1993-09-07 Allergan, Inc. Ophthalmic instrument
DE4126886A1 (en) * 1991-08-14 1993-02-18 Hp Medica Gmbh RINSING CATHETER
US5205779A (en) * 1991-09-04 1993-04-27 Texas Beef Group Method and apparatus for automatically segmenting animal carcasses
US5162016A (en) 1991-09-04 1992-11-10 Texas Beef Group Abrasive for a water jet cutting head
US5697281A (en) 1991-10-09 1997-12-16 Arthrocare Corporation System and method for electrosurgical cutting and ablation
US5551448A (en) * 1991-10-18 1996-09-03 United States Surgical Corporation Endoscopic surgical instrument for aspiration and irrigation
AU656628B2 (en) * 1991-10-18 1995-02-09 United States Surgical Corporation Endoscopic surgical instrument for aspiration and irrigation
DE9200452U1 (en) * 1992-01-16 1992-06-04 Rau, Horst-Guenter, Dr.Med., 8000 Muenchen, De
DE4200976C2 (en) 1992-01-16 1995-08-24 Andreas Pein Device for separating a biological structure, in particular human tissue
DE4201992A1 (en) 1992-01-25 1993-07-29 Hp Medica Gmbh Fuer Medizintec HIGH PRESSURE LIQUID DISPENSOR FOR DISPENSING STERILE LIQUID
US5217465A (en) * 1992-02-28 1993-06-08 Alcon Surgical, Inc. Flexible and steerable aspiration tip for microsurgery
US5322504A (en) * 1992-05-07 1994-06-21 United States Surgical Corporation Method and apparatus for tissue excision and removal by fluid jet
US5308673A (en) * 1992-05-07 1994-05-03 Minnesota Mining And Manufacturing Company Stitchbonded absorbent articles and method of making same
US5186714A (en) * 1992-05-18 1993-02-16 Yab Revo-Tech Inc. Multifunctional surgical instrument
US5230704A (en) * 1992-06-26 1993-07-27 Biomedical Dynamics Corporation Suction/irrigation instrument having reusable handle with disposable fluid path
US5620414A (en) * 1992-06-30 1997-04-15 Campbell, Jr.; Robert M. Apparatus and method for effecting surgical incision through use of a fluid jet
US5300022A (en) * 1992-11-12 1994-04-05 Martin Klapper Urinary catheter and bladder irrigation system
CA2150707A1 (en) * 1992-12-01 1994-06-09 Mir A. Imram Vibratory element for crossing stenoses
NL9300626A (en) * 1993-04-13 1994-11-01 Cordis Europ Hydrodynamic suction catheter.
NL9301181A (en) 1993-07-05 1995-02-01 Cordis Europ A method of manufacturing a catheter with at least one high pressure lumen and catheter.
CA2127637C (en) 1993-07-26 2006-01-03 Scott Bair Fluid jet surgical cutting tool
US5735815A (en) * 1993-07-26 1998-04-07 Sentinel Medical, Inc. Method of using fluid jet surgical cutting tool
US5476450A (en) 1993-11-04 1995-12-19 Ruggio; Joseph M. Apparatus and method for aspirating intravascular, pulmonary and cardiac obstructions
US6135977A (en) 1994-02-16 2000-10-24 Possis Medical, Inc. Rheolytic catheter
US5441482A (en) * 1994-05-11 1995-08-15 The Regents Of The University Of Minnesota Jet driven surgical suction device and method of using
US5454827A (en) * 1994-05-24 1995-10-03 Aust; Gilbert M. Surgical instrument
NL9401184A (en) * 1994-07-19 1996-03-01 Cordis Europ Suction catheter.
US5527330A (en) * 1994-08-18 1996-06-18 United States Surgical Corporation Fluid cutting instrument
US5556406A (en) * 1994-09-12 1996-09-17 Medjet Inc. Corneal template and surgical procedure for refractive vision correction
US5591184A (en) * 1994-10-13 1997-01-07 Sentinel Medical, Inc. Fluid jet surgical cutting instrument
US5468028A (en) 1994-12-19 1995-11-21 Dana Corporation Quick connect tube couplings
NL1000105C2 (en) 1995-04-10 1996-10-11 Cordis Europ Catheter with filter and thrombi draining device.
US5713878A (en) * 1995-06-07 1998-02-03 Surgi-Jet Corporation Hand tightenable high pressure connector
US5871462A (en) * 1995-06-07 1999-02-16 Hydrocision, Inc. Method for using a fluid jet cutting system
US5944686A (en) * 1995-06-07 1999-08-31 Hydrocision, Inc. Instrument for creating a fluid jet
US6216573B1 (en) * 1995-06-07 2001-04-17 Hydrocision, Inc. Fluid jet cutting system
US5782795A (en) * 1995-06-30 1998-07-21 Xomed Surgical Products, Inc. Surgical suction cutting instrument with internal irrigation
FR2737103B1 (en) * 1995-07-24 1997-10-03 Saphir Medical Sa LIQUID JET SURGICAL INSTRUMENT, SUCH AS LIQUID JET BISTOURI, FOR SINGLE USE
US5709697A (en) * 1995-11-22 1998-01-20 United States Surgical Corporation Apparatus and method for removing tissue
US5643299A (en) * 1996-01-16 1997-07-01 Sentinel Medical, Inc. Hydrojet apparatus for refractive surgery
US6402715B2 (en) * 1996-04-25 2002-06-11 Karl Storz Gmbh & Co. Kg Surgical instrument system
NL1003056C2 (en) 1996-05-07 1997-11-10 Cordis Europ Suction catheter with hemostasis device.
FR2750053B1 (en) * 1996-06-21 1999-01-15 Saphir Medical Sa BI-FUNCTION FLOW AND / OR PRESSURE GENERATOR-DISTRIBUTOR
US5788667A (en) * 1996-07-19 1998-08-04 Stoller; Glenn Fluid jet vitrectomy device and method for use
US5888200A (en) * 1996-08-02 1999-03-30 Stryker Corporation Multi-purpose surgical tool system
US6126682A (en) * 1996-08-13 2000-10-03 Oratec Interventions, Inc. Method for treating annular fissures in intervertebral discs
US5792167A (en) * 1996-09-13 1998-08-11 Stryker Corporation Surgical irrigation pump and tool system
FR2754716B1 (en) 1996-10-18 1998-11-13 Synthelabo HANDPIECE FOR SURGICAL WASHING DEVICE
US5766194A (en) * 1996-12-23 1998-06-16 Georgia Skin And Cancer Clinic, Pc Surgical apparatus for tissue removal
JPH11245862A (en) * 1998-03-01 1999-09-14 Bridgestone Corp Additional rubber pad
FR2779934B1 (en) * 1998-06-17 2001-01-05 Saphir Medical Sa PNEUMATICALLY CONTROLLED HANDPIECE FOR SURGICAL AND MEDICAL APPLICATIONS
FR2779935B1 (en) 1998-06-19 2000-12-29 Saphir Medical Sa METHOD FOR GENERATING AN IMPULSE TRAIN OF A PULSE-ASPIRE STERILE LIQUID JET AND A PULSED JET THUS PRODUCED FOR A HANDPIECE FOR SURGICAL APPLICATIONS
AU4151899A (en) * 1998-06-19 2000-01-05 Saphir Medical Method for generating a pulse train of sterile liquid jet for medical uses
FR2780268B1 (en) 1998-06-24 2000-09-29 Saphir Medical Sa TWO-WAY DISPENSING APPARATUS OF A STERILE WORKING LIQUID ACCORDING TO PREDETERMINED SEQUENCES FOR SURGICAL OR MEDICAL APPLICATIONS USING AT LEAST ONE HANDPIECE
US6280302B1 (en) * 1999-03-24 2001-08-28 Flow International Corporation Method and apparatus for fluid jet formation
US6375635B1 (en) * 1999-05-18 2002-04-23 Hydrocision, Inc. Fluid jet surgical instruments
US6511493B1 (en) * 2000-01-10 2003-01-28 Hydrocision, Inc. Liquid jet-powered surgical instruments
US6451017B1 (en) 2000-01-10 2002-09-17 Hydrocision, Inc. Surgical instruments with integrated electrocautery
US6419654B1 (en) * 2000-02-01 2002-07-16 Jeffrey S. Kadan Diagnostic needle arthroscopy and lavage system
US6491660B2 (en) 2001-01-23 2002-12-10 Scimed Life Systems, Inc. Frontal infusion system for intravenous burrs
US6544220B2 (en) * 2001-02-14 2003-04-08 Scimed Life Systems, Inc. Fluid jet PMR
US6645629B2 (en) 2001-03-15 2003-11-11 Mikuni Color, Ltd. Conductive antioxidant paint and graphite electrode
JP4073313B2 (en) 2001-04-27 2008-04-09 ハイドロシジョン・インコーポレーテッド High pressure pumping cartridge for medical and surgical pumping and infusion devices
ATE433778T1 (en) * 2001-08-08 2009-07-15 Hydrocision Inc MEDICAL DEVICE HAVING A HANDPIECE WITH A HIGH PRESSURE QUICK COUPLING
US20030055404A1 (en) * 2001-09-17 2003-03-20 Moutafis Timothy E. Endoscopic rotary abraders
DE60227288D1 (en) * 2001-09-17 2008-08-07 Hydrocision Inc SURGICAL ROTATING ABRASION DEVICE
US8162966B2 (en) 2002-10-25 2012-04-24 Hydrocision, Inc. Surgical devices incorporating liquid jet assisted tissue manipulation and methods for their use

Also Published As

Publication number Publication date
AU2002364122A1 (en) 2003-06-10
EP1485032B1 (en) 2007-07-18
WO2003045259A9 (en) 2004-04-29
DE60221294D1 (en) 2007-08-30
US8529498B2 (en) 2013-09-10
EP1485032A1 (en) 2004-12-15
US20030125660A1 (en) 2003-07-03
CA2495911C (en) 2011-06-07
JP4346443B2 (en) 2009-10-21
DE60221294T2 (en) 2008-04-03
WO2003045259A1 (en) 2003-06-05
JP2005510285A (en) 2005-04-21
US20090076440A1 (en) 2009-03-19
ATE367122T1 (en) 2007-08-15
ES2290358T3 (en) 2008-02-16
US7431711B2 (en) 2008-10-07

Similar Documents

Publication Publication Date Title
CA2495911A1 (en) Liquid jet surgical instruments incorporating channel openings aligned along the jet beam
JP2005510285A5 (en)
US11617611B2 (en) Hand-held instrument with dual zone fluid removal
US4562838A (en) Electrosurgery instrument
ES2874056T3 (en) Ultrasonic cutting blade with coolant conduction
CA2296305C (en) Pneumatic tissue dissector with exhaust system
US6039736A (en) Side-Fire coagulator
US5944686A (en) Instrument for creating a fluid jet
EP2314242B1 (en) Tissue coagulation device using inert gas
US9622768B2 (en) Water jet surgical instrument
EP1293170B1 (en) Argon plasma flex-endoscopy coagulator
US5460602A (en) Smoke evacuator for smoke generating devices
ES2864717T3 (en) Ultrasonic cutting blade with coolant conduction
AU774728B2 (en) Swirling system for ionizable gas coagulator
US11406413B2 (en) Ultrasonic surgical instrument and method for manufacturing same
KR20180133802A (en) Instrument with a multistream instrument head for argon plasma coagulation
AU2002364122B2 (en) Liquid jet surgical instruments incorporating channel openings aligned along the jet beam

Legal Events

Date Code Title Description
EEER Examination request
MKEX Expiry

Effective date: 20221121