CA2500426A1 - Catheter balloon with advantageous cone design - Google Patents

Catheter balloon with advantageous cone design Download PDF

Info

Publication number
CA2500426A1
CA2500426A1 CA002500426A CA2500426A CA2500426A1 CA 2500426 A1 CA2500426 A1 CA 2500426A1 CA 002500426 A CA002500426 A CA 002500426A CA 2500426 A CA2500426 A CA 2500426A CA 2500426 A1 CA2500426 A1 CA 2500426A1
Authority
CA
Canada
Prior art keywords
balloon
section
catheter
cone
median section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002500426A
Other languages
French (fr)
Inventor
Gary John Pederson, Jr.
Jan D. Seppala
John Robert Moberg
Steven Paul Mertens
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Boston Scientific Ltd Bermuda
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=32069166&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CA2500426(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Individual filed Critical Individual
Publication of CA2500426A1 publication Critical patent/CA2500426A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • A61M25/1002Balloon catheters characterised by balloon shape
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/95Instruments specially adapted for placement or removal of stents or stent-grafts
    • A61F2/958Inflatable balloons for placing stents or stent-grafts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/95Instruments specially adapted for placement or removal of stents or stent-grafts
    • A61F2/958Inflatable balloons for placing stents or stent-grafts
    • A61F2002/9583Means for holding the stent on the balloon, e.g. using protrusions, adhesives or an outer sleeve

Abstract

The present invention provides a catheter balloon having an advantageous cone design. In particular, the catheter balloon has at least one cone section with a volume in mm~ such that, when the ratio of one cone volume to the transverse cross-sectional area in mm of the inflated median section is at least about 2.1mm. In certain applications, the advantageous cone design can assist in the preferential expansion of the cone sections prior to any significant expansion of the median section. The balloon can thus advantageously be utilized as a component of a balloon catheter or prosthesis delivery system, also provided via the present invention. When so utilized, the inventive balloon can assist in reducing any shifting of the balloon and/or prosthesis during inflation or delivery, respectively. Methods of utilizing the balloon catheters in dilation procedures, as well as the prosthesis delivery systems to deliver prosthesis, are also provided.

Description

CATHETER BALLOON WITH ADVANTAGEOUS CONE DESIGN
Field of the invention The present invention pertains generally to catheter balloons useful in medical dilation and stmt delivery procedures. More specifically, the present invention relates to catheter balloons wherein the cone sections have a design that, in some applications, can provide the cone sections with the ability to preferentially inflate relative to the median section of the catheter balloon.
Background of the Invention Angioplasty is a widely utilized therapeutic treatment in which obstructed intraluminal passages are reopened or dilated. In a typical procedure, a catheter comprising an inflatable member, such as a balloon, is inserted percutaneously into a luminal passage of a patient, such as an artery, vein, airway, etc. Once inserted, the balloon is advanced to the desired treatment site, where the balloon may be inflated to dilate the luminal passage. In certain applications, the balloon catheter may be used to place an intravascular prosthesis, such as a stmt, within the luminal passage, which prosthesis could then operate to maintain the patency of the luminal passage.
Although vascular angioplasty and stenting are widely utilized and largely successful procedures, improvements to the same could yet be made. In dilation procedures, for example, it would be desirable for the inflatable member to controllably inflate, and at times preferentially inflate, to better control the position of the inflatable member. In procedures wherein an intravascular prosthesis is to be delivered, it would be desirable to enhance the robustness of the delivery of the prosthetic device.
Summary of the Invention The invention is generally directed to catheter balloons including cone sections having an advantageous design. In particular, the cone sections have a ratio of the volume of one cone section to the transverse cross-sectional area of the fully inflated median section that can provide for a more controlled inflation of the balloon. In certain applications, such as the delivery of a prosthesis from a catheter comprising the balloon, this cone configuration can assist in the preferential expansion of the cones prior to the median section of the balloon. Such a _2_ preferential expansion can further act to control the position of the implantable device. In such prosthesis delivery systems where socks or sleeves are desirably employed, the utilization of the inventive balloon can be particularly advantageous.
In particular, the preferential expansion of the cone sections of the inventive balloon prior to the median section can aid in the release of the stmt from such socks or sleeves.
In a first aspect, then, the invention provides a catheter balloon, and a method of forming the inventive catheter balloon. The catheter balloon generally has expandable cone sections proximal and distal to a median section of the balloon.
When the balloon is fully inflated, the median section has a transverse cross sectional area, and each cone section has a volume, so that the ratio of the volume, in mm3, of either of the cone sections to the transverse cross sectional area, in mm2, of the median section is at least about 2.lmm. Although this ratio, and the measurements utilized in calculating the ratio, is/are expressed in millimeters, the measurements can be taken in any units and the ratio calculated, so long as the measurements or the resulting ratio are converted to the units of millimeters by applying the appropriate conversion factor.
It has now been discovered that one way of providing a cone section with a sufficient volume to provide the aforementioned advantageous ratio is to provide the cone section with a stepped configuration having a plurality of sections, wherein at least one of the sections defines an internal angle relative to the median section of greater than 180 degrees. Thus, in an additional aspect, the invention provides a catheter balloon having cone sections proximal and distal to a median section of the balloon. At least one of the cone sections has a stepped configuration comprising a plurality of sections, wherein at least one of the sections defines an internal angle relative to the median section of greater than about 180 degrees.
In a fixrther aspect, the invention provides a balloon catheter and method of manufacturing the same. The balloon catheter generally comprises a catheter having an elongated shaft with an inflatable catheter balloon on a distal section of the catheter shaft. The catheter balloon generally has expandable cone sections proximal and distal to a median section of the balloon. When the balloon is fully inflated, the median section has a transverse cross sectional area in mmz, and each cone section has a volume, in mm3, so that the ratio of the volume of either of the cone sections to the transverse cross sectional area of the median section is at least about 2.lmm.
A further aspect of the invention provides a stent delivery system, the stmt delivery system generally comprising a balloon catheter wherein the balloon catheter has an elongated shaft with an inflatable balloon on a distal section of the catheter shaft. The catheter balloon generally has expandable cone sections proximal and distal to a median section of the balloon. When the balloon is fully inflated, the median section has a transverse cross sectional area in mm2, and each cone section has a volume in mm3, so that the ratio of the volume of either of the cone sections to the transverse cross sectional area of the median section is at least about
2.lmm. An expandable stmt is operatively disposed about at least a portion of the median section of the catheter balloon.
Advantageously, the catheter balloon of the present invention can aid in the retraction of sleeves or socks in stmt delivery systems including such sleeves or socks. Optionally, then, the stmt delivery system may further comprise at least one such sleeve or sock. The sleeve can be provided having a first end mounted on the distal shaft section distal to the catheter balloon and a second end defining a margin between the stmt and the sleeve, wherein the sleeve overlies the margin between the stmt and the median section when the catheter balloon is substantially uninflated.
The inventive catheter balloon, when utilized as a component of an angioplasty catheter or a stmt delivery system can provide for the improved performance thereof. When used in combination with a stmt delivery system, for example, the inventive cone design can assist in the preferential expansion of the cone sections. This preferential expansion can reduce any shifting of the stmt during delivery that may otherwise occur. As a result, the present invention additionally provides methods of dilating a bodily lumen, or for delivering a stmt.
The methods comprise the steps of providing a balloon catheter or stmt delivery system embodying features of the present invention, inserting the balloon catheter, or stmt delivery system, as the case may be, into a bodily lumen and inflating the balloon so that the median section expands to dilate the bodily lumen and/or to deliver the stmt.

These and other advantages of the invention will become more apparent from the following detailed description of the invention and the accompanying exemplary drawings.
Brief Description of the Drawings The accompanying drawings, which are incorporated in and constitute a part of this application, illustrate several aspects of the invention and together with descriptions of the illustrated embodiments serve to explain the principles of the invention. A brief description of the drawings is as follows:
Figure 1 is a longitudinal cross-sectional view of a catheter balloon embodying features of the present invention;
Figure 2 is a schematic, perspective view of a further catheter balloon embodying features of the present invention;
Figure 2A is a longitudinal, partial cross-sectional view of the catheter balloon of Figure 2, wherein the view provided is as between lines 1-1 and 2-2 of the balloon at Figure 2, and the cross section is taken at line A-A;
Figure 3 is an elevational view, partially in section, of a balloon catheter embodying features of the present invention, wherein the balloon is in an unexpended state;
Figure 4 is a cross-sectional view of the balloon catheter shown in Figure 3, depicting the balloon partially expanded;
Figure 5 is a cross-sectional view of the balloon catheter shown in Figure 3, depicting the balloon fully expanded;
Figure 6 is a cross-sectional view of a stmt delivery system utilizing a balloon and embodying features of the present invention, wherein the balloon is in an unexpended state;
Figure 7 is a cross-sectional view of the stmt delivery system shown in Figure 6, depicting the balloon partially expanded;
Figure 8 is a cross-sectional view of the stmt delivery system shown in Figure 6, depicting the balloon and stmt expanded;
Figure 9 is a cross-sectional view of another stmt delivery system utilizing a balloon and embodying features of the present invention, wherein the balloon is in an unexpended state and the stmt delivery system comprises sleeves;

Figure 10 is a cross-sectional view of the stmt delivery system shown in Figure 9, depicting the balloon partially expanded; and Figure 11 is a cross-sectional view of the stmt delivery system shown in Figure 9, depicting the balloon and stmt expanded.
Detailed Description The embodiments of the present invention described below are not intended to be exhaustive or to limit the invention to the particular embodiments disclosed in the following detailed description. Rather, the embodiments are described so that others skilled in the art can understand the principles and practices of the present invention.
The present invention provides balloons suitable for use in catheters comprising cone sections having an advantageous design. In particular, the inventive catheter balloon has cone sections having a volume so that the ratio of the volume of one cone (in mm3) to the transverse cross sectional area of the fully inflated median section (in mm~) is at least about 2.lmm. Although this ratio, and the measurements utilized in calculating the ratio, is/are expressed in millimeters, the measurements can be taken in any units and the ratio calculated, so long as the measurements or the resulting ratio are converted to the units of millimeters by applying the appropriate conversion factor.
It has now been discovered that catheter balloons having such cone sections can be more controllably inflated, and in certain applications, can provide preferential expansion of the cone sections prior to any significant expansion of the median section of the balloon. Balloons having such a cone design can be utilized in balloon catheters or prosthesis delivery systems where this capability can act to reduce any shifting of the prosthesis during expansion and delivery thereof that may otherwise occur.
One exemplary catheter balloon embodying features of the invention is shown in Figure 1. Specifically, Figure 1 illustrates, in cross-sectional side view, an expanded inflatable balloon 10. Inflatable balloon 10 is described, for purposes of illustrating the design features of the invention, as having at least three regions.
A first region is the centermost section, or the median section 12 of balloon 10, and is indicated by 'B' in Figure 1. Median section 12, when inflated, runs generally parallel with, and engages, a patient's luminal passage, such as a vessel wall, or inner diameter of a stmt. Median section 12 can comprise the majority of the length of inflatable balloon 10, and typically has the greatest diameter of the three regions when balloon 10 is fully inflated.
Second regions of balloon 10 are comprised of the waists 16 on the first and second ends of balloon 10. Waists 16 are used to adhere balloon 10 to one or a more catheter shafts (not shown). Waists 16 are indicated by 'C' in Figure 1.
Third regions, indicated by 'A' in Figure 1, are comprised of the cone sections 14 of balloon 10 provided between the median section 12 and the waists 16.
As illustrated in Figure l, inflatable balloon 10 includes a single median section 12, proximal and distal cone sections 14 and proximal and distal waists 16.
However, other configurations are possible and are within the scope of the present invention.
As examples, other regions can be provided between the described sections 12, and 16 to perform other functions.
Cone sections 14 include a first section 20, defined by lines 3-3 and 4-4, a second section 22, defined by lines 2-2 and 3-3, and a third section 24, defined by lines 1-1 and 2-2. First section 20 is proximal to median section 12, and forms a first angle a relative to median section 12. First angle a is desirably between about 90° and about 180°. Second section 22 is proximal to first section 20 and forms an angle (3 relative to first section 20 as shown. Angle (3 is desirably between about 180° and 360°, typically between about 180° and 270°. Third section 24 is proximal to second section 22 and forms an angle 8 relative to second section 22 that is desirably between about 30° and 180°.
It has now been discovered that, by providing a preselected ratio of the volume of one cone section 14 to the transverse cross sectional area of fully inflated median section 12, a catheter balloon 10 can be produced that can provide a more controllable inflation that balloons not having the preselected ratio. More particularly, it has now been discovered that when the ratio of the volume of one cone section 14 (in mm3) to the transverse cross-sectional area of the fully inflated median section 12 (in mm2) is at least about 2.lmm, preferably at least about 2.25mm, more preferably, at least about 2.Smm, the advantages of the present invention can be seen. Of course, and as mentioned above, the volume and transverse cross-sectional area measurements can be taken, and the ratio of the same calculated, in any units, so long as the units of either both of the measurements, or the calculated ratio, are mathematically converted to millimeters via application of the appropriate conversion factor.
It is believed that there is no maximum to this ratio, since, in general, a greater ratio suggests a more controllable inflation of the cone sections 14.
The ratio can be, for example, 3.Omm, 3.Smm, 4.Omm, 4.Smm, S.Omm, etc. However, and for purposes of illustration only, it is believed that the inventive relationship is particularly advantageous when the ratio of the volume of one cone section 14 (in mm3) to the transverse cross sectional area of fully inflated median section 12 (in mmz) is from about 2.lmm to about 4.Omm, more preferably from about 2.lmm to about 2.Smm.
The volume and/or shape of cone sections 14 on either side of median section 12 need not be identical, so long as the specified ratio can be achieved utilizing the volume of at least one cone section. That is, although the embodiment illustrated in Figure 1 of balloon 10 is symmetrical and median section 12 is at a central location on the balloon, alternative balloon designs may be used for particular applications and anatomies. Additionally, the inventive concept can be applied to any size catheter balloon 10, so long as the advantageous ratio of the volume of one cone section 14 to the transverse cross sectional area of the median section 12 is provided.
Finally, shape or geometry of cone sections 14 is not critical, and although a stepped cone configuration is illustrated in Figure 1, cone sections 14 need not exhibit this configuration. Rather, cone sections 14 can be stepped, tapered or any other suitable configuration, as long as the ratio of the volume of one cone section 14 (in mm3) to the transverse cross sectional area of fully inflated median section 12 (in mm2) is at least about 2.lmm.
In this regard, an additional suitable balloon configuration embodying features of the present invention is shown in Figures 2 and 2A. In particular, Figure 2 shows a balloon catheter wherein the balloon includes 'bulged' cone sections 14 in addition to waists 16 and median section 12. In particular, waists 16 are indicated _g_ by 'C' in Figure 2A. Cone sections 14 are indicated by 'A' in Figure 2A and are provided between median section 12 and waists 16.
Cone volume and cross sectional area can be easily calculated for all cone and balloon geometries based on known mathematical formulas and are calculated based upon the balloon 10 when median section 12, or median section 12 and one or both of cone sections 14, is/are fully inflated. As used and discussed herein, all measurements and calculations were made and carried out in dimensions of millimeters. For example, if cone sections 14 are tapered, cone volume of cone sections would be calculated based on the cumulative volume of the defined geometric 3D shapes. Generally, tapering cone sections 14 provides cone sections with right circular cone geometry, for which volume can be calculated by applying the formula V = (1/3) ~ r2 h. If cone sections are stepped, as is shown in Figure 1, cone volume would be calculated using the same formula as above, applied to two areas defined by the intervening angle(s). That is, the cone volume of the cone defined by lines 1-1 and 2-2, by lines 2-2 and 3-3 and by lines 3-3 and 4-4 would be calculated and added together to obtain the volume of one cone section 14 of balloon 10. The volume of cone sections 14 can be further easily determined by filling cone sections 14 with water, and weighing the water.
The transverse cross sectional area of median section 12 is calculated based upon median section 12 when fully inflated and can be calculated using the known mathematical formula A = ~ r2.
Also, as performed in connection with the present application, transverse cross sectional area and cone volume are calculated as indicated above, regardless of any other parts and/or substances that may be introduced into the cone sections 14 or median section 12 once the balloon has been formed. That is, if catheter balloon 10 is to be included on a balloon catheter, as shown in Figure 2, the volume of cone sections 14, or transverse cross-sectional area of median section 12, would be calculated without reducing the calculated volume or cross sectional area by that volume or cross sectional area that is taken up by, e.g., an inner tubular member and an outer tubular member, not shown in Figure 2 once the balloon catheter has been assembled. Further, the wall thickness of the balloon is assumed to be negligible, i.e., the calculations of cross-sectional area and volume that were performed were based upon the outer diameter of the respective balloon sections.
The catheter balloon of the present invention can be produced by any suitable technique, including conventional techniques for producing catheter balloons. For example, a catheter balloon embodying features of the present invention can be formed by molding. In order to mold the balloon illustrated in Figure 1, or any other balloon within the scope of the invention, an extruded polymeric tube can be radially expanded and axially expanded within a mold generally having the desired shape of the balloon at elevated temperatures.
The resulting balloon may be heat treated one or more times as is conventionally known, e.g., to reduce shrinkage of the balloon. Non-limiting examples of methods for manufacturing balloons are disclosed in U.S. Patent Nos. 4,950,239; 4,490,421;
5,195,969; 5,556,383; 6,210,364; 5,270,086; and 6,168,748.
Catheter balloon 10 may be formed from any material, or combination of materials, typically used to form catheter balloons. The particular materials) chosen will depend upon the intended use of the catheter balloon. In those uses in which a compliant material is desired, low pressure, relatively soft or flexible polymeric materials such a thermoplastic polymers, thermoplastic elastomers, polyethylene (high density, low density, intermediate density, linear low density), various co-polymers and blends of polyethylene, ionomers, polyesters, polyurethanes and polyurethane copolymers (such as, e.g., Pellethane ° ), polycarbonates, polyamides (such as, e.g., Nylon 12), poly-vinyl chloride, acrylonitrile-butadiene-styrene copolymers, polyether-polyester copolymers (such as, e.g., Hytrel~ and Arnitel~), and polyether-polyamide copolymers (such as, e.g., Pebax~)are useful. When a non-compliant balloon material is desired, materials having relatively rigid properties such as polyethylene terphthalate), polyimide, thermoplastic polyimide, polyamides, polyesters, polycarbonates, polyphenylene sulfides, polypropylene and rigid polyurethanes are useful.
As mentioned above, catheter balloon 10 may be comprised of a combination of materials, and may be coextruded, single layered or multilayered. Catheter balloon 10 may further be coated with any known suitable coating, if desired.
Such coatings may be desirable, for example, in those applications where a lubricious balloon surface is desired.
The balloon material may further be crosslinked or uncrosslinked, depending upon the nature of the material and the characteristics desired for a particular application. Generally speaking, crosslinking a balloon material can result in greater control over the final inflated balloon size. That is, after crosslinking, initial pressurization, expansion, and preshrinking, a balloon so treated may thereafter expand in a more controlled manner to a reproducible diameter in response to a given inflation pressure, relative to an uncrosslinked balloon comprising similar material. If desired, crosslinking can be performed by any conventional crosslinking process, such as, for example, thermal treatment and/or E-beam exposure.
Once formed, the thickness of any portion of balloon wall 18, shown in Figure l, may be varied if desired. Varied balloon thickness can be useful, for example, in order to facilitate folding of balloon 10 around a catheter shaft to achieve a desired low profile, or to achieve various balloon pressure ratings.
Material may be added, removed or combinations thereof to achieve the desired result. Typically, varying the thickness of balloon wall 18 is desired in median section 12 and/or cone sections 14 of balloon 10. Exemplary means of modifying the thiclcness of the cone sections of a balloon are disclosed in commonly assigned U.S. Patent No. 5,733,301, the entirety of which is hereby incorporated by reference herein for all purposes.
Figure 3 illustrates a balloon catheter embodying features and advantages of the invention. Balloon catheter 300 generally includes an elongated catheter shaft 301 having proximal section 302 and distal section 303, an inflatable balloon disposed on the distal section 303 of catheter shaft 301, and manifold 304 mounted on proximal section 302 of shaft 301 to permit controllable sliding over guidewire 311 and for fluid introduction within shaft 301. Radiopaque markers 314 may be provided on catheter shaft 301, as for example, on inner tubular member 307 near the proximal and distal ends of median section 32 of balloon 30. In Figure 3, balloon catheter 300 is illustrated within a patient's body lumen 305 prior to expansion of balloon 30, i.e., with balloon 30 in a low profile, unexpanded state for advancement within the patient.

In the embodiment illustrated, catheter shaft 301 has an outer tubular member 306 and an inner tubular member 307 disposed within outer tubular member 306, and defining along with outer tubular member 306, inflation lumen 308. Inflation lumen 308 is in fluid communication with the interior chamber 309 of inflatable balloon 30. Inner tubular member 307 has an inner lumen 310 extending therethrough to slidably receive a guidewire 311 suitable for advancement through a patient's body lumen 305. The distal extremity of inflatable balloon 30 is sealingly secured to the distal extremity of inner tubular member 307 and the proximal extremity of the balloon 30 is sealingly secured to the distal extremity of the outer tubular member 306. Balloon 30 can be inflated by any fluid, e.g., radiopaque, injected through inflation port 312, or otherwise provided through inflation lumen 308, or by other means, such as from a passageway formed between the outside of the catheter shaft and the member forming balloon 30, depending on the particular design of the catheter. The details and mechanics of fluid transfer and introduction within balloons vary according to the specific design of the catheter, and are well know in the art.
Various designs for balloon catheters are well known in the art, and all of these and other developed balloon catheters may incorporate the balloon features of the present invention. Examples include over-the-wire catheters, single operator or rapid exchange catheters, and fixed-wire catheters, to name a few. Further, catheter shaft 301, and the outer tubular member 306 and inner tubular member 307 incorporated therein, can have the dimensions of any conventional dilatation or stmt delivery catheters, and inner and outer tubular members incorporated into the same.
Shaft diameters of conventional catheter shafts generally range e.g., from about 4 to about 15 French.
Figures 4 and 5 illustrate the advantages that can be seen incorporating the inventive balloon 30 into balloon catheter 300 and then utilizing balloon catheter 300 in a treatment procedure. In particular, Figure 4 shows inflatable balloon placed within lesion 38 located within a bodily lumen 305 and partially inflated.
Figure 5 shows inflatable balloon 30 fully inflated so as to be dilating lesion 38 within bodily lumen 305.

Referring in particular to Figure 4, balloon 30 includes median section 32 centrally located on balloon 30 and cone sections 34 adjacent to the proximal and distal ends of median section 32. As shown, cone sections 34 taper or curve to join waists 36, but may be of any other geometry. Waist 36 of balloon 30 distal to median section 32 is sealingly secured to inner tubular member 307 while waist of balloon 30 proximal to median section 32 is sealingly secured to outer tubular member 306, using any suitable means, such as adhesive and/or fusion bonding.
Turning now to Figures 6-8, there is illustrated a stmt delivery system 600 embodying features of the invention. The stmt delivery system illustrated can be largely identical to the balloon catheter discussed above in connection with Figure 2, and like features and the relationships between features will not be discussed further, as a description thereof can be found hereinabove.
Referring in particular to Figure 6, balloon 60 has stmt 613 mounted thereon in order to form stmt delivery system 600. Stent delivery system 600 is illustrated within a patient's body lumen 605, prior to expansion of balloon 60, with balloon 60 and stmt 613 in a low profile, unexpanded state for advancement within the patient.
Figure 7 shows balloon 60 partially inflated at a first, low pressure. Partial inflation of balloon 60 causes the inflation of cone sections 64, without causing significant expansion of median section 62, or stmt 613 mounted on median section 62. When so partially inflated, median section 62 remains in a deflated, low profile configuration, while cone sections 64 have expanded to an inflated outer diameter greater than that of the outer diameter of median section 62 and stmt 613.
As is best illustrated by Figure 8, when the inflation pressure is increased, median section 62 expands against the vessel wall 605, thereby expanding stmt mounted thereon. In this position, stmt 613 is fully deployed and capable of maintaining the patency of lumen 605. Advantageously, and due at least in part to the preferential expansion of cone sections 64, any potential shifting of stmt within lumen 605 that may have otherwise occurred can be reduced, and as a result, a more robust stmt delivery can be obtained.
Stent 613 may be mounted onto balloon 60 by any known method, e.g., by causing stmt 613 to contract, by folding or wrapping stmt 613 around and onto balloon 60, by crimping stmt 613 onto balloon 60, either by hand or with a crimping tool, or by any other known method. Stent 613 may also be formed of non-knitted material so that the axial length of stmt 613 decreases as stmt 613 expands, thus enhancing the release of stmt 613 from stmt delivery system 600. Further, stmt 613 may be any kind of stmt, including plastically deformable or elastically deformable stems, or may be a superelastic stmt. Finally, stmt 613 may be formed with different knitting parameters, wall thicknesses, loop size or may be formed from of any of a variety of stmt materials. For example, stmt 613 may be comprised of stainless steel, titanium, niobium, tantalum, a nickel-titanium alloy, any other suitable metallic alloy, a plastic material, or various other materials. Stent 613 may additionally be coated with a film or membrane if desired.
Figures 9-11 illustrate a further stmt delivery system embodying features of the invention. The balloon catheter upon which stmt 913 is mounted to form stmt delivery system 900 can be largely identical to that described in connection with Figure 3 hereinabove, and will not be substantially described further in connection with Figures 9-11.
Referring to Figure 9, stmt delivery system 900 includes a balloon catheter, including balloon 90, which may be attached to the catheter by any known procedure. Balloon 90 is shown in its contracted state in Figure 9. Stent 913 is held in position about median section 92 of balloon 90 by two sleeves, 915. As discussed above, stmt 913 may be formed of any suitable material and of a length and circumference suitable for the intended use. Stent 913 is radially compressed against median section 92 of balloon 90 to provide a compressed diameter, suitable for insertion and advancement within a patient. Sleeves 915 are axially fixed on the catheter at one end, e.g., as by adhesive, thermal bonding, etc., and at the other end, overlap stmt 913 at each end or margin, of stmt 913. Although shown with two sleeves 915, stmt delivery system 900 may be provided with only one sleeve 915.
Figure 10 shows balloon 90 partially inflated at a first, low pressure. The first pressure causes the inflation of cone sections 94, without causing significant expansion of median section 92 or stmt 913 mounted on median section 92. The inflation of cone sections 94, in turn, drives sleeves 915 away from the median section 92 and to release the margins of stmt 913 from under sleeves 915. When so partially inflated, median section 92 remains in a deflated, low profile configuration, and stmt 913 remains in its unexpanded state, while cone sections 94 have expanded to an inflated outer diameter greater than that of the outer diameter of median section 92 and stmt 913. Preferably cones inflate to expand size of median section 92 of balloon 90 and to contact body lumen.
Referring to Figure 11, when balloon 90 is fully inflated, median section 92 expands against the vessel wall, thereby expanding stmt 913 mounted thereon.
In this position, stmt 913 is released from sleeves 915, is fully deployed and capable of maintaining the patency of lumen 905.
Advantageously, and due at least in part to the preferential expansion of cone sections 94, prior to any significant expansion of median section 92 and/or stmt 913, any potential shifting of stmt 913 within lumen 905 that might otherwise occur, can be reduced or eliminated, and as a result, a more robust stmt delivery can be obtained. Further, the preferential expansion of cone sections 94 beneficially aids in the release of stmt 913 from sleeves 915.
The use of stmt delivery system 900 in the delivery of stems comprised of a flexible material is particularly advantageous in that such flexible stems typically expand when introduced into the body, thereby rendering release from socks 915 difficult. However, the stmt, balloon, and balloon catheter of stmt delivery system 900 may be formed of any material, as described hereinabove.
Sleeves 915 may be formed of any material and by any known method.
Non-limiting examples of sleeves, and the materials and methods of making sleeves, are disclosed in U.S. Patent Nos. 4,950,227; 5,944,726; and 5,980530.
The balloon 90, stmt 913 and stmt delivery system 900 may be manufactured by any suitable method, as described hereinabove. Furthermore, stmt delivery systems comprising sleeves, and methods of manufacturing the same are known, and are described in, for example, U.S. Patent Number 4,950,227, the entire disclosure of which is hereby incorporated by reference for all purposes.
The discovery of the advantages of the herein disclosed ratio between the cone volume and the cross sectional area of a balloon, when applied to a catheter balloon embodying the features of the invention, results in a catheter balloon that can expand in a controllable fashion. The inventive catheter balloon is advantageously employed as a component of balloon catheter systems and stmt delivery systems, as described above. When utilized in such systems, the inventive balloon provides the advantages of decreased shifting the median section of the balloon and/or of a stmt mounted thereon, and enhanced release of a stmt from sleeves, or socks, if the same are provided on the inventive stmt delivery system.
The inventive balloon, balloon catheter, and stmt delivery system thus provide advantages when utilized to treat a patient. As a result, the present invention further provides methods of dilating a bodily lumen, as well as a methods of delivering a stmt, or other prosthetic device.
The inventive method of dilating a lumen generally comprises the steps of providing a balloon catheter, wherein the balloon catheter comprises at least a balloon embodying the features of the present invention. The balloon catheter is inserted into the lumen and the balloon advanced to the site that is desirably dilated.
The balloon is then inflated to cause the radial expansion of the balloon and the dilation of the lumen. The balloon may then be deflated and withdrawn from the lumen.
The inventive method of delivering a stmt or other prosthetic device, generally comprises the steps of providing a stmt delivery device, wherein the stmt delivery device comprises at least a balloon embodying features of the invention.
The stmt delivery system is inserted into the lumen and the stmt directed to the site where it is desirably delivered. Once so positioned, the balloon is inflated, during which inflation the cone sections inflate prior to any significant expansion of the median section thereof. The median section, as well as the stmt mounted thereon then expand until the stmt reaches the lumen wall. Because the cone sections preferentially inflate prior to any significant expansion of the median section of the balloon and/or the stmt mounted thereon, the cone sections can reduce any shifting of the stmt from the desired delivery site that may otherwise occur. Once so delivered, the stmt would be capable of maintaining the patency of the lumen wall.
The balloon may then be deflated and removed from the bodily lumen.
A stmt delivery system in accordance with the present invention may be utilized to deliver stems to, for example, coronary arteries, peripheral arteries, and visceral arteries as well as to the biliary, urinary, respiratory , reproductive or gastrointestinal tracts. Further, although stems are mentioned with particularity, and delivery system of the present invention can be utilized to deliver any prosthetic device suitably delivered with an inflatable member.
Numerous characteristics and advantages of the invention described by this document have been set forth in the foregoing description. It is to be understood, however, that while particular forms or embodiments of the invention have been illustrated, various modifications, including modifications to shape, and arrangement of parts, and the like, can be made without departing from the spirit and scope of the invention.

Claims (18)

What is claimed is:
1. A catheter balloon comprising:
a median section having a proximal and distal end and a transverse cross sectional area in mm2 when the balloon is inflated; and a first cone section proximal to the proximal end of the median section and a second cone section distal to the distal end of the median section, each such first and second cone sections having a volume in mm3 when the balloon is inflated, wherein the ratio of the volume of either of the cone sections to the transverse cross sectional area of the median section of at least about 2.1mm.
2. The catheter balloon of claim 1, wherein the ratio of the volume of either of the cone sections to the transverse cross sectional area of the median section is from about 2.1mm to about 4.0mm.
3. The catheter balloon of claim 2, wherein the ratio of the volume of either of the cone sections to the transverse cross sectional area of the median section is from about 2.1mm to about 2.5mm.
4. A catheter balloon comprising:
a median section having a proximal and distal end; and a first cone section proximal to the proximal end of the median section and a second cone section distal to the distal end of the median section, at least one of such cone sections having a stepped configuration comprising a plurality of sections and wherein at least one of the sections defines an internal angle relative to the median section of greater than 180 degrees.
5. A balloon catheter comprising:
an elongated shaft having a proximal end, a distal end, and an inflation lumen extending through at least a section thereof; and a catheter balloon mounted on a distal shaft section having an interior in fluid communication with the inflation lumen and further comprising a median section having a proximal and distal end and a transverse cross sectional area in mm2 when the balloon is inflated; and a first cone section proximal to the proximal end of the median section and a second cone section distal to the distal end of the median section, each such first and second cone sections having a volume in mm3 when the balloon is inflated, wherein the ratio of the volume of either of the cone sections to the transverse cross sectional area of the median section of at least about 2.1mm.
6. The balloon catheter of claim 5, wherein the ratio of the volume of either of the cone sections to the transverse cross sectional area of the median section is from about 2.1mm to about 4.0mm.
7. The balloon catheter of claim 6, wherein the ratio of the volume of either of the cone sections to the transverse cross sectional area of the median section is from about 2.1mm to about 2.5mm.
8. The balloon catheter of claim 5, further comprising an expandable stent disposed about at least a portion of the median section of the catheter balloon.
9. The balloon catheter of claim 5, wherein the expandable stent has an end portion defining a margin between the end portion of the stent and the median section of the catheter balloon and the balloon catheter further comprises a sleeve having a first end mounted on the distal shaft section distal to the catheter balloon and a second end defining a margin between the stent and the sleeve, wherein the sleeve overlies the margin between the stent and the median section of the catheter balloon.
10. The balloon catheter of claim 5 wherein the catheter is a fixed wire catheter.
11.The balloon catheter of claim 5 wherein the catheter is an over-the-wire catheter.
12. The balloon catheter of claim 5 wherein the catheter is a rapid exchange catheter.
13. A method of forming a catheter balloon comprising:
(a) selecting a material from which to form the balloon;
(b) forming the balloon so that the balloon comprises (i) a median section having a proximal and distal end and a transverse cross sectional area in mm2 when the balloon is inflated;
and (ii) a first cone section proximal to the proximal end of the median section and a second cone section distal to the distal end of the median section, each such first and second cone sections having a volume in mm3 when the balloon is inflated, wherein the ratio of the volume of either of the cone sections to the transverse cross sectional area of the median section of at least about 2.1mm.
14. The method of claim 13, wherein the ratio of the volume of either of the cone sections to the transverse cross sectional area of the median section is from about 2.1mm to about 4.0mm.
15. The balloon catheter of claim 14, wherein the ratio of the volume of either of the cone sections to the transverse cross sectional area of the median section is from about 2.1mm to about 2.5mm.
16. A method for dilating a bodily lumen within a patient's body comprising:
(a) providing a balloon catheter, comprising (i) an elongated shaft having a proximal end, a distal end, and an inflation lumen extending with at least a section thereof; and (ii) a catheter balloon mounted on the distal shaft section having an interior in fluid communication with the inflation lumen, the balloon comprising a median section having a proximal and distal end and a transverse cross sectional area in mm3 when the balloon is inflated; and a first cone section proximal to the proximal end of the median section and a second cone section distal to the distal end of the median section, each such first and second cone sections having a volume in mm3 when the balloon is inflated, wherein the ratio of the volume of either of the cone sections to the transverse cross sectional area of the median section of at least about 2.1mm;
(b) inserting the balloon catheter into bodily lumen of the patient's body to be dilated;
(c) inflating the balloon so that the median section expands to dilate the bodily lumen.
17. A method for delivering a stent to a bodily lumen within a patient's body comprising:
(a) providing a stent delivery system, comprising (i) an elongated shaft having a proximal end, a distal end, and an inflation lumen extending with at least a section thereof;
(ii) a catheter balloon mounted on the distal shaft section having an interior in fluid communication with the inflation lumen, the balloon comprising:
a median section having a proximal and distal end and a transverse cross sectional area in mm2 when the balloon is inflated; and a first cone section proximal to the proximal end of the median section and a second cone section distal to the distal end of the median section, each such first and second cone sections having a volume in mm3 when the balloon is inflated, wherein the ratio of the volume of either of the cone sections to the transverse cross sectional area of the median section of at least about 2.1mm; and (iii) an expandable stent disposed about at least a portion of the median section of the balloon;
(b) inserting the stent delivery system into the bodily lumen of the patient's body;
(c) inflating the balloon to produce the radial expansion of the median section and the stent disposed thereon, thereby delivering the stent.
18. The method of claim 17, wherein the stent delivery system further comprises a sleeve having a first end mounted on the distal shaft section distal to the catheter balloon and a second end defining a margin between the stem and the sleeve, wherein the sleeve overlies the margin between the stent when the catheter balloon is substantially uninflated and the inflation of the balloon further causes the second end of the sleeve to retract so that the sleeve no longer covers the stent and delivering the stent.
CA002500426A 2002-10-15 2003-07-31 Catheter balloon with advantageous cone design Abandoned CA2500426A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10/271,524 US7226472B2 (en) 2002-10-15 2002-10-15 Catheter balloon with advantageous cone design
US10/271,524 2002-10-15
PCT/US2003/024066 WO2004035127A1 (en) 2002-10-15 2003-07-31 Catheter balloon with advantageous cone design

Publications (1)

Publication Number Publication Date
CA2500426A1 true CA2500426A1 (en) 2004-04-29

Family

ID=32069166

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002500426A Abandoned CA2500426A1 (en) 2002-10-15 2003-07-31 Catheter balloon with advantageous cone design

Country Status (8)

Country Link
US (1) US7226472B2 (en)
EP (1) EP1554006B1 (en)
JP (1) JP2006502799A (en)
AT (1) ATE482739T1 (en)
AU (1) AU2003254294A1 (en)
CA (1) CA2500426A1 (en)
DE (1) DE60334390D1 (en)
WO (1) WO2004035127A1 (en)

Families Citing this family (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7815590B2 (en) 1999-08-05 2010-10-19 Broncus Technologies, Inc. Devices for maintaining patency of surgically created channels in tissue
US7422579B2 (en) * 2001-05-01 2008-09-09 St. Jude Medical Cardiology Divison, Inc. Emboli protection devices and related methods of use
US8845672B2 (en) 2002-05-09 2014-09-30 Reshape Medical, Inc. Balloon system and methods for treating obesity
US7717953B2 (en) 2004-10-13 2010-05-18 Tryton Medical, Inc. Delivery system for placement of prosthesis at luminal OS
US8109987B2 (en) 2003-04-14 2012-02-07 Tryton Medical, Inc. Method of treating a lumenal bifurcation
US7481834B2 (en) * 2003-04-14 2009-01-27 Tryton Medical, Inc. Stent for placement at luminal os
US7731747B2 (en) 2003-04-14 2010-06-08 Tryton Medical, Inc. Vascular bifurcation prosthesis with multiple thin fronds
US7972372B2 (en) 2003-04-14 2011-07-05 Tryton Medical, Inc. Kit for treating vascular bifurcations
US8083791B2 (en) 2003-04-14 2011-12-27 Tryton Medical, Inc. Method of treating a lumenal bifurcation
US7758630B2 (en) 2003-04-14 2010-07-20 Tryton Medical, Inc. Helical ostium support for treating vascular bifurcations
US8002740B2 (en) * 2003-07-18 2011-08-23 Broncus Technologies, Inc. Devices for maintaining patency of surgically created channels in tissue
US8308682B2 (en) 2003-07-18 2012-11-13 Broncus Medical Inc. Devices for maintaining patency of surgically created channels in tissue
US20070038283A1 (en) * 2004-02-06 2007-02-15 Mustapha Jihad A Ostial stent and balloon
US7713233B2 (en) * 2004-04-12 2010-05-11 Boston Scientific Scimed, Inc. Balloons having a crosslinkable layer
US7766960B2 (en) * 2004-04-30 2010-08-03 Novostent Corporation Delivery catheter that controls foreshortening of ribbon-type prostheses and methods of making and use
US8353867B2 (en) * 2004-05-04 2013-01-15 Boston Scientific Scimed, Inc. Medical devices
US8409167B2 (en) 2004-07-19 2013-04-02 Broncus Medical Inc Devices for delivering substances through an extra-anatomic opening created in an airway
US20060064064A1 (en) * 2004-09-17 2006-03-23 Jang G D Two-step/dual-diameter balloon angioplasty catheter for bifurcation and side-branch vascular anatomy
US20080188803A1 (en) * 2005-02-03 2008-08-07 Jang G David Triple-profile balloon catheter
US9034025B2 (en) 2005-05-23 2015-05-19 Ostial Corporation Balloon catheters and methods for use
US20070100368A1 (en) 2005-10-31 2007-05-03 Quijano Rodolfo C Intragastric space filler
US20080132988A1 (en) * 2006-12-01 2008-06-05 Scimed Life Systems, Inc. Balloon geometry for delivery and deployment of shape memory polymer stent with flares
US20090069878A1 (en) * 2007-08-27 2009-03-12 Boston Scientific Scimed, Inc. Bifurcation post-dilatation balloon and methods
US8333795B2 (en) 2007-08-27 2012-12-18 Boston Scientific Scimed, Inc. Bulging balloon for bifurcation catheter assembly and methods
US20090312830A1 (en) * 2008-06-17 2009-12-17 Mcnulty Sean Balloon arc profile control
US8715331B2 (en) * 2008-08-06 2014-05-06 Boston Scientific Scimed, Inc. Stent edge protection and methods
JP5733759B2 (en) 2008-08-28 2015-06-10 カルロス ヴォンダーウォールデ Intravascular device with directional expansion
US9913964B2 (en) * 2008-12-29 2018-03-13 Acclarnet, Inc. System and method for dilating an airway stenosis
US8683881B2 (en) * 2009-04-03 2014-04-01 Reshape Medical, Inc. Intragastric space fillers and methods of manufacturing including in vitro testing
US8382818B2 (en) 2009-07-02 2013-02-26 Tryton Medical, Inc. Ostium support for treating vascular bifurcations
US9050174B2 (en) 2009-07-23 2015-06-09 Reshape Medical, Inc. Deflation and removal of implantable medical devices
EP2539011A4 (en) 2010-02-25 2014-03-26 Reshape Medical Inc Improved and enhanced explant processes and mechanisms for intragastric devices
EP2555705A4 (en) 2010-04-06 2014-01-15 Reshape Medical Inc Inflation devices for intragastric devices with improved attachment and detachment and associated systems and methods
US10780251B2 (en) * 2010-09-17 2020-09-22 W. L. Gore & Associates, Inc. Expandable medical devices
US9707108B2 (en) 2010-11-24 2017-07-18 Tryton Medical, Inc. Support for treating vascular bifurcations
US9056025B2 (en) * 2010-12-15 2015-06-16 Svelte Medical Systems, Inc. Means and method for preventing embolization of drug eluting stents
US8709034B2 (en) 2011-05-13 2014-04-29 Broncus Medical Inc. Methods and devices for diagnosing, monitoring, or treating medical conditions through an opening through an airway wall
JP2014521381A (en) 2011-05-13 2014-08-28 ブロンカス テクノロジーズ, インコーポレイテッド Methods and devices for tissue ablation
WO2013003757A2 (en) 2011-06-30 2013-01-03 The Spectranetics Corporation Reentry catheter and method thereof
US8956376B2 (en) 2011-06-30 2015-02-17 The Spectranetics Corporation Reentry catheter and method thereof
US8998936B2 (en) 2011-06-30 2015-04-07 The Spectranetics Corporation Reentry catheter and method thereof
WO2013078235A1 (en) 2011-11-23 2013-05-30 Broncus Medical Inc Methods and devices for diagnosing, monitoring, or treating medical conditions through an opening through an airway wall
CN103974676B (en) * 2011-12-09 2016-12-07 波士顿科学西美德公司 Utilize under the inner membrance of biological absorbable support the most logical
DE102012102620A1 (en) * 2012-03-27 2013-10-02 Acandis Gmbh & Co. Kg Medical expansion element, method for producing such an expansion element and occlusion catheter with such an expansion element
EP2841024B1 (en) 2012-04-26 2017-05-03 Tryton Medical, Inc. Support for treating vascular bifurcations
US9402983B1 (en) * 2012-10-31 2016-08-02 Sainath Intellectual Properties, Llc Variably expanding balloon catheter
CN205287203U (en) * 2014-09-04 2016-06-08 雅培心血管系统有限公司 Utricule pipe
JP6227193B2 (en) * 2015-07-22 2017-11-08 オリンパス株式会社 Endoscopic treatment tool
DE102015112390A1 (en) * 2015-07-29 2017-02-02 Bentley Innomed Gmbh balloon catheter
WO2017033904A1 (en) * 2015-08-27 2017-03-02 株式会社グッドマン Balloon for catheter, balloon catheter, and molding die
US10406011B2 (en) * 2016-04-28 2019-09-10 Medtronic Vascular, Inc. Implantable medical device delivery system
US10433857B2 (en) * 2016-06-24 2019-10-08 Bryan Medical, Inc. Balloon dilation catheter
CN110072588B (en) 2016-10-18 2022-06-07 波士顿科学国际有限公司 Guide extension catheter
US11083607B2 (en) * 2017-10-04 2021-08-10 Zorion Medical, Inc. Delivery balloon with retractable retention cuffs
WO2024012380A1 (en) * 2022-07-13 2024-01-18 杭州启明医疗器械股份有限公司 Catheter implant system, and included associated device, prosthetic heart valves and method

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4490421A (en) 1983-07-05 1984-12-25 E. I. Du Pont De Nemours And Company Balloon and manufacture thereof
US4950239A (en) 1988-08-09 1990-08-21 Worldwide Medical Plastics Inc. Angioplasty balloons and balloon catheters
US4950227A (en) 1988-11-07 1990-08-21 Boston Scientific Corporation Stent delivery system
DE69002295T2 (en) 1989-09-25 1993-11-04 Schneider Usa Inc MULTILAYER EXTRUSION AS A METHOD FOR PRODUCING BALLOONS FOR VESSEL PLASTICS.
US5195969A (en) 1991-04-26 1993-03-23 Boston Scientific Corporation Co-extruded medical balloons and catheter using such balloons
US5500180A (en) 1992-09-30 1996-03-19 C. R. Bard, Inc. Method of making a distensible dilatation balloon using a block copolymer
DE4480681C2 (en) 1994-02-17 2001-09-27 Scimed Life Systems Inc Process for the production of catheter balloons and oriented balloons produced thereafter
US6120523A (en) 1994-02-24 2000-09-19 Radiance Medical Systems, Inc. Focalized intraluminal balloons
ES2141928T5 (en) 1994-03-02 2009-04-16 Boston Scientific Limited BALLS OF ELASTOMERO COPOLIMERO IN BLOCKS FOR CATHETER.
ATE198280T1 (en) 1995-11-08 2001-01-15 Scimed Life Systems Inc METHOD FOR MAKING BALLOONS BY COLD DRAWING/NECKING
US5733301A (en) 1996-01-11 1998-03-31 Schneider (Usa) Inc. Laser ablation of angioplasty catheters and balloons
US5944726A (en) 1996-08-23 1999-08-31 Scimed Life Systems, Inc. Stent delivery system having stent securement means
US5980530A (en) 1996-08-23 1999-11-09 Scimed Life Systems Inc Stent delivery system
JP2000051361A (en) 1998-08-11 2000-02-22 Sumitomo Bakelite Co Ltd Dilating balloon catheter
US6200325B1 (en) 1999-03-31 2001-03-13 Advanced Cardiovascular Systems, Inc. Balloon catheter and stent deploying catheter system
JP2001009037A (en) 1999-06-25 2001-01-16 Terumo Corp Balloon for dilation of narrow segment and balloon catheter
US7037318B2 (en) 2000-12-18 2006-05-02 Boston Scientific Scimed, Inc. Catheter for controlled stent delivery
US6764504B2 (en) * 2001-01-04 2004-07-20 Scimed Life Systems, Inc. Combined shaped balloon and stent protector

Also Published As

Publication number Publication date
EP1554006A1 (en) 2005-07-20
DE60334390D1 (en) 2010-11-11
ATE482739T1 (en) 2010-10-15
US20050203563A9 (en) 2005-09-15
WO2004035127A1 (en) 2004-04-29
US20040073250A1 (en) 2004-04-15
EP1554006B1 (en) 2010-09-29
JP2006502799A (en) 2006-01-26
US7226472B2 (en) 2007-06-05
AU2003254294A1 (en) 2004-05-04

Similar Documents

Publication Publication Date Title
US7226472B2 (en) Catheter balloon with advantageous cone design
US6200325B1 (en) Balloon catheter and stent deploying catheter system
JP4125125B2 (en) Method for manufacturing stent delivery device
US6293959B1 (en) Balloon catheter and stent delivery system having enhanced stent retention and method
EP1000591B1 (en) Balloon catheter having enhanced stent retention
EP1000593B1 (en) Balloon catheter for stent delivery having microchannels and method
US20050121824A1 (en) Method of making an expandable medical device formed of a compacted porous polymeric material
US20010037140A1 (en) Catheter balloon with biased multiple wings
US20020138081A1 (en) Stent delivery system
US20030060832A1 (en) Stent delivery catheter with grooved balloon and methods of making same
US6289568B1 (en) Method for making a balloon catheter stent deployment system
US7147817B1 (en) Method of making a low profile balloon
AU2017295675B2 (en) High-pressure dilation catheter balloon
WO2005055879A1 (en) Stent-delivery catheter
US6562061B1 (en) Stent delivery balloon with securement structure
US7448122B1 (en) Method of compressing a polymeric layer of an expandable medical device
US20060178721A1 (en) Stent delivery balloon catheter having improved stent retention
US20070235899A1 (en) Dimple Forming Process for Stent Deployment Balloon

Legal Events

Date Code Title Description
EEER Examination request
FZDE Discontinued