CA2508375C - Antibodies directed to tumor necrosis factor and uses thereof - Google Patents

Antibodies directed to tumor necrosis factor and uses thereof Download PDF

Info

Publication number
CA2508375C
CA2508375C CA2508375A CA2508375A CA2508375C CA 2508375 C CA2508375 C CA 2508375C CA 2508375 A CA2508375 A CA 2508375A CA 2508375 A CA2508375 A CA 2508375A CA 2508375 C CA2508375 C CA 2508375C
Authority
CA
Canada
Prior art keywords
antibody
tnfa
variable region
amino acid
antibodies
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CA2508375A
Other languages
French (fr)
Other versions
CA2508375A1 (en
Inventor
Orit Foord
Larry Green
Xiao Feng
Scott Klakamp
Mary Haak-Frendscho
Meina L. Liang
Rozanne Lee
Raffaella Faggioni
Giorgio Senaldi
Kathy Manchulenko
Qiaojuan Jane Su
John S. Babcook
Jaspal S. Kang
Craig Pigott
Palaniswami Rathanaswami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Amgen Fremont Inc
Original Assignee
Amgen Fremont Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Amgen Fremont Inc filed Critical Amgen Fremont Inc
Publication of CA2508375A1 publication Critical patent/CA2508375A1/en
Application granted granted Critical
Publication of CA2508375C publication Critical patent/CA2508375C/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/24Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against cytokines, lymphokines or interferons
    • C07K16/241Tumor Necrosis Factors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/12Drugs for disorders of the urinary system of the kidneys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/06Antipsoriatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/06Immunosuppressants, e.g. drugs for graft rejection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/21Immunoglobulins specific features characterized by taxonomic origin from primates, e.g. man
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/33Crossreactivity, e.g. for species or epitope, or lack of said crossreactivity
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/73Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation
    • C07K2317/732Antibody-dependent cellular cytotoxicity [ADCC]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/73Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation
    • C07K2317/734Complement-dependent cytotoxicity [CDC]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/76Antagonist effect on antigen, e.g. neutralization or inhibition of binding
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/90Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
    • C07K2317/92Affinity (KD), association rate (Ka), dissociation rate (Kd) or EC50 value

Abstract

Antibodies directed to the antigen TNFa and uses of such antibodies. In particular, fully human monoclonal antibodies directed to the antigen TNFa. Nucleotide sequences encoding, and amino acid sequences comprising, heavy and light chain immunoglobulin molecules, particularly sequences corresponding to contiguous heavy and light chain sequences spanning the framework regions and/or complementarity determining regions (CDR's), specifically from FR1 through FR4 or CDR1 through CDR3. Hybridomas or other cell lines expressing such immunoglobulin molecules and monoclonal antibodies.

Description

ANTIBODIES DIRECTED TO TUMOR NECROSIS FACTOR
AND USES THEREOF
FIELD
[0001] The present invention relates to antibodies directed to the antigen Tumor Necrosis Factor alpha (hereinafter TNFa) and uses of such antibodies. More specifically, the present invention relates to fully human monoclonal antibodies directed to the antigen TNFa and uses of these antibodies. Aspects of the invention also relate to hybridomas or other cell lines expressing such antibodies. The antibodies herein are useful as diagnostics and as treatments for diseases associated with the activity and/or overproduction of TNFa.
BACKGROUND
[0002] TNFa has been demonstrated to be involved in infectious diseases, immune disorders, autoimmune pathologies, graft vs host disease (GVHD), neoplasia/cancer and cancer-associated cachexia. See, Feldman M., 2002 Nat. Rev. Immunol., 2:364. In particular, TNFa levels are dramatically induced in gram negative sepsism, endotoxic shock (See, Michie et al., 1989 Br. J.
Surg. 76:670) Crohn's disease, and rheumatoid arthritis. The implications of TNFa in such a wide variety of indications highlights the importance of developing specific biological therapeutics targeting this inflammatory cytokine.
[0003] Several investigators report the characterization of monoclonal antibodies against TNFa which neutralize its activity in vitro. See, Liang CM, et al., 1986, Biochem. Biophys Res. Commun., 137:847, and Meager A, et al., 1987 Hybridoma 6:305. Some of these antibodies were used to map epitopes of human TNFa and develop enzyme immunoassays and to assist in the purification of recombinant 'TNFa. See Fendly BM, et al., 1987 Hybridoma, 6:359; Hirai M, et al., 1987 J. Immunol Mthods, 96:57; Moller A, et al., 1990 Cytokine, 2:162;
Bringman TS and Aggarwal BB, 1987, Hybridoma, 6:489. Unfortunately, the antibodies generated for these studies would not be useful as therapeutic neutralizing TNFa antibodies for treating human patients since they were derived from non-human species and lack specificity for TNFa.
[0004] Neutralizing antisera or mAbs to TNFa have shown efficacy in non-human mammals by abrogating adverse pathophysiological events and preventing death after lethal challenge in experimental endotoxemia. These effects have been demonstrated in rodent and, non-human primate model systems. See, Beutler B, et al., 1985 Science, 229:869;
Tracey KJ, et al., 1987 Nature, 330:662; Mathison JC, et al., 1988 1 Clin. Invest., 81:1925;
Shimamoto Y, et al., 1988, Immunol. Lett., 17:311; Opal SM, et al., 1990, J. Infect. Dis., 161:1148; Silva AT, et al., 1990, J. Infect. Dis., 162:454; Hinshaw LB, et al., 1990, Circ. Shock, 30:279.
[0005] Various forms of neutralizing antibodies currently exist and are reviewed by Feldman. See, Feldman M, 2002, Nat. Rev. hinnunol., 2:364. As described in this review, a great deal of effort has been expended to create a neutralizing antibody that would yield a therapeutically suitable antibody for chronic administration to humans. Currently, antibody/TNFR fusion (fcIg/TNFR) proteins (Enbrel ) have shown some utility, but are challenged by a short half-life in the serum leading to frequent administration (e.g., twice weekly) of the drug.
A neutralizing therapeutic antibody to TNFa for chronic treatment would exceed the half-life issue (one injection per 3-4 weeks) as long as the antibody itself was not immunogenic. Others have attempted to create neutralizing antibodies to TNFa which have the desired characteristics of low/no immunogenicity and a half life typical of their endogenous counterparts without success.
Examples of such antibodies include mouse/human chimeras, such as Infliximab (cA2 or Remicade ), and the humanized antibody CDP571 or Adalimumab (D2E7 or Humira?). These represent attempts to create neutralizing therapeutic antibodies which closely resemble their human counterparts.
[0006] Unfortunately, the full potential of these drugs may not be realized due to their inherent potential immunogenicity, compromised half-life and/or reduced avidity/affinity for TNFa.
Host immune responses induced by these chimeric antibodies can lead to clearance of the antibodies from the circulation and make repeated administration unsuitable for therapy due to loss of efficacy. These problems ultimately reduce the therapeutic benefit to the patient. Additional problems in scale-up and manufacturing may also be encountered using antibodies or fragments thereof, such as those mentioned above.
[0007] Thus, for the above reasons, there exists a need in the art to provide an alternative to patients in clinically indicated populations where TNFa is responsible for the pathophysiology of a particular disease. Fully human, high affinity, neutralizing monoclonal antibodies, or fragments thereof, for chronic administration provide the desired characteristics of a non-immunogenic therapeutic option with a half-life suitable for less frequent administration.
SUMMARY
[0008] Embodiments of the invention relate to human monoclonal antibodies that specifically bind to Tumor Necrosis Factor-a and have a heavy chain complementarity determining region 1 (CDR1) having an amino acid sequence of "Ser Tyr Asp Met His".
Antibodies described herein can also include a heavy chain complementarity determining region 2 (CDR2) having an amino acid sequence of "Val Ile, Trp Ser Asp Gly Ser Ile Lys Tyr Tyr Ala Asp Ser Val Lys Gly", a heavy chain complementarity determining region 3 (CDR3) having an amino acid sequence of "Glu Val Glu Ser Ala Met Gly Gly Phe Tyr Tyr Asn Gly Met Asp Val", a heavy chain amino acid comprising the amino acid sequence shown in SEQ ID NO: 70, and a heavy chain amino acid comprising the amino acid sequence shown in SEQ BD NO: 74.
[0009] Further embodiments include human monoclonal antibodies having a light chain complementarity determining region 1 (CDR1) having an amino acid sequence of "Arg Ala Ser Gln Gly Ile Arg Ile Asp Leu Gly". Antibodies herein can also include a light chain complementarity determining region 2 (CDR2) having an amino acid sequence of "Ala Ala Ser Thr Leu Gln Ser", a light chain complementarity determining region 3 (CDR3) having an amino acid sequence of "Leu Gln His Lys Ser Tyr Pro Leu Thr", a light chain amino acid comprising the amino acid sequence shown in SEQ ID NO: 72.
[0010] In other embodiments, the invention provides human monoclonal antibodies that specifically bind to Tumor Necrosis Factor-a and comprise a light chain complementarity determining region 1 (CDR1) having an amino acid sequence of "Arg Ala Ser Gln Gly Ile Arg Ile Asp Leu Gly", a light chain complementarity determining region 2 (CDR2) having an amino acid sequence of "Ala Ala Ser Thr Leu Gln Ser", and a light chain complementarity determining region 3 (CDR3) having an amino acid sequence of "Len Gln His Lys Ser Tyr Pro Leu Thr".
[0011] Still further embodiments include human monoclonal antibodies having a heavy chain complementarity determining region 1 (CDR1) having an amino acid sequence of "Ser Tyr Asp Met His", a heavy chain complementarity determining region 2 (CDR2) having an amino acid sequence of "Val Ile Trp Ser Asp Gly Ser Ile Lys Tyr Tyr Ala Asp Ser Val Lys Gly", and a heavy chain complementarity determining region 3 (CDR3) having an amino acid sequence of "Gin Val Glu Ser Ala Met Gly Gly Phe Tyr Tyr Asn Gly Met Asp Val".
[0012] In other embodiments the invention includes human monoclonal antibodies that specifically bind to Tumor Necrosis Factor-a and include a VH3-33 heavy chain gene, or conservative variants thereof. Antibodies described herein can also include an A3OVK1 light chain gene.
[0013] Further embodiments of the invention include human monoclonal antibodies that specifically bind to Tumor Necrosis Factor-a, wherein the antibodies comprise a heavy chain complementarity determining region 1 (CDR1) corresponding to canonical class 1. The antibodies provided herein can also include a heavy chain complementarity determining region 2 (CDR2) corresponding to canonical class 3, a light chain complementarity determining region 1 (CDR1) corresponding to canonical class 2, a light chain complementarity determining region 2 (CDR2) corresponding to canonical class 1, and a light chain complementarity determining region 3 (CDR3) corresponding to canonical class 1.
[0014] In other embodiments, the invention provides human monoclonal antibodies that specifically bind to Tumor Necrosis Factor-a and include a heavy chain complementarity determining region 1 (CDR1) having an amino acid sequence of "Arg Asn Tyr Met Ser".
Antibodies can further include a heavy chain complementarity determining region 2 (CDR2) having an amino acid sequence of "Val Ile Tyr Ser Gly Asp Arg Thr Tyr Tyr Ala Asp Ser Val Lys Gly", a heavy chain complementarity determining region 3 (CDR3) having an amino acid sequence of "Gly Glu Gly Gly Phe Asp Tyr", and a heavy chain amino acid having the amino acid sequence shown in SEQ NO: 50.
[0015] In further embodiments of the invention, human monoclonal antibodies can include a light chain complementarity determining region 1 (CDR1) having an amino acid sequence of "Arg Ala Ser Gin Ser Val Ser Ser Asn Leu Ala", a light chain complementarity determining region 2 (CDR2) having an amino acid sequence of "Gly Ala Ser Ile Arg Ala Thr", a light chain complementarity determining region 3 (CDR3) having an amino acid sequence of "Gin Gin Tyr Asn Tyr Trp Trp Thr", and a light chain amino acid comprising the amino acid sequence shown in SEQ ID NO: 52.
[0016] In still further embodiments, the invention includes human monoclonal antibodies that specifically bind to Tumor Necrosis Factor-a and have a light chain complementarity determining region 1 (CDR1) having an amino acid sequence of "Arg Ala Ser Gin Ser Val Ser Ser Asn Leu Ala", a light chain complementarity determining region 2 (CDR2) having an amino acid sequence of "Gly Ala Ser Ile Arg Ala Thr", a light chain complementarity determining region 3 (CDR3) having an amino acid sequence of "Gln Gin Tyr Asn Tyr Trp Trp Thr", a heavy chain complementarity determining region 1 (CDR1) having an amino acid sequence of "Arg Asn Tyr Met Ser", a heavy chain complementarity determining region 2 (CDR2) having an amino acid sequence of "Val Ile Tyr Ser Gly Asp Arg Thr Tyr Tyr Ala Asp Ser Val Lys Gly", and a heavy chain complementarity determining region 3 (CDR3) having an amino acid sequence of "Gly Glu Gly Gly Phe Asp Tyr".
[0017] In other embodiments, the invention provides human monoclonal antibodies that specifically bind to Tumor Necrosis Factor-a and have a VH3-53 heavy chain gene, or conservative variant thereof. Antibodies herein can also include an L2VK3 light chain gene.
[0018] In additional embodiments, the invention includes human monoclonal antibodies that specifically bind, to Tumor Necrosis Factor-a, wherein the antibodies comprise a heavy chain complementarity determining region 1 (CDR1) corresponding to canonical class 1.
The antibodies herein can also include a heavy chain complementarity determining region 2 (CDR2) corresponding to canonical class 1, a light chain complementarity determining region 1 (CDR1) corresponding to canonical class 2, a light chain complementarity determining region 2 (CDR2) corresponding to canonical class 1, and a light chain complementarity determining region 3 (CDR3) corresponding to canonical class 3.
[0019] The invention further provides methods for assaying the level of tumor necrosis factor alpha (TNFa) in a patient sample, comprising contacting an anti-TNFa antibody with a biological sample from a patient, and detecting the level of binding between said antibody and TNFa in said sample. In more specific embodiments, the biological sample is blood.
[0020] In other embodiments the invention provides compositions, including an antibody or functional fragment thereof, and a pharmaceutically acceptable carrier.
[0021] Still further embodiments of the invention include methods of effectively treating an animal suffering from a neoplastic disease, including selecting an animal in need of treatment for a neoplastic disease, and administering to said animal a therapeutically effective dose of a fully human monoclonal antibody that specifically binds to tumor necrosis factor alpha (TNFa).
[0022] Treatable neoplastic diseases can include breast cancer, ovarian cancer, bladder cancer, lung cancer, glioblastoma, stomach cancer, endometrial cancer, kidney cancer, colon cancer, pancreatic cancer, and prostrate cancer.
[0023] Further methods of the invention relate to effectively treating an immuno-mediated inflammatory disease. These methods include selecting an animal in need of treatment for an inflammatory condition, and administering to said animal a therapeutically effective dose of a fully human monoclonal antibody, wherein said antibody specifically binds to tumor necrosis factor alpha (TNFa). Treatable immuno-mediated inflammatory diseases include rheumatoid arthritis, glomerulonephritis, atherosclerosis, psoriasis, restenosis, autoimmune disease, Crohn's disease, graft-host reactions, septic shock, cachexia, anorexia, ankylosing spondylitis and multiple sclerosis.
[0024] Additional embodiments of the invention include methods of inhibiting tumor necrosis factor alpha (TNFa) induced apoptosis in an animal. These methods include selecting an animal in need of treatment for TNFa induced apoptosis, and administering to said animal a therapeutically effective dose of a fully human monoclonal antibody wherein said antibody specifically binds to TNFa.
[0025] Further embodiments of the invention include the use of an antibody of in the preparation of medicament for the treatment of neoplastic disease in an animal, wherein said monoclonal antibody specifically binds to tumor necrosis factor (TNFa).
Treatable neoplastic diseases can include breast cancer, ovarian cancer, bladder cancer, lung cancer, glioblastoma, stomach cancer, endometrial cancer, kidney cancer, colon cancer, pancreatic cancer, and prostrate cancer.
[0026] Further uses of the antibodies herein can be for the preparation of a medicament for the effective treatment of immuno-mediated inflammatory diseases in an animal, wherein said monoclonal antibody specifically binds to tumor necrosis factor (TNFa). Treatable immuno-mediated inflammatory diseases can include rheumatoid arthritis, glomerulonephritis, atherosclerosis, psoriasis, restenosis, autoimmune disease, Crohn's disease, graft-host reactions, septic shock, cachexia, anorexia, and multiple sclerosis.
[0027] In still further embodiments, the antibodies described herein can be used for the preparation of a medicament for the effective treatment of tumor necrosis factor induced apoptosis in an animal, wherein said monoclonal antibody specifically binds to tumor necrosis factor (TNFa).
[0028] Embodiments of the invention described herein related to monoclonal antibodies that bind 'TNFa and affect TNFa function. Other embodiments relate to fully human anti-TNFa antibodies and anti-TNFa antibody preparations with desirable properties from a therapeutic perspective, including strong binding affmity for TNFa, the ability to neutralize TNFa in vitro and in vivo, and the ability to inhibit TNFa induced apoptosis.
[0029] In a preferred embodiment, antibodies described herein bind to TNFa with very high affinities (Kd). For example a human, rabbit, mouse, chimeric or humanized antibody that is capable of binding TNFa with a Kd less than, but not limited to, 10-7, 10-8, 10-9, 10-10, 1041, 10-12, 10-13 or 10-14 M, or any range or value therein. The rabbit antibody R014, described herein, possesses a measured affinity in the 10-13 (fM) range. Antibody 299 V.1 and 299 V.2 were shown to possess affinities in the 10-13 or low 10-12 (M) range. Affinity and/or avidity measurements can be measured by KinExA and/or BIACORE , as described herein.
[0030] Accordingly, one embodiment described herein includes isolated antibodies, or fragments of those antibodies, that bind to TNFa. As known in the art, the antibodies can advantageously be, for example, monoclonal, chimeric and/or fully human antibodies.
Embodiments of the invention described herein also provide cells for producing these antibodies.
[0031] Another embodiment of the invention is a fully human antibody that binds to TNFa and comprises a heavy chain amino acid sequence having the complementarity determining region (CDR) with one of the sequences shown in Tables 31-34. It is noted that CDR
determinations can be readily accomplished by those of ordinary skill in the art. See for example, Kabat et al., Sequences of Proteins of Immunological Interest, Fifth Edition, NIB Publication 91-3242, Bethesda MD [1991], vols. 1-3.
[0032] Yet another embodiment is an antibody that binds to TNFa and comprises a light chain amino acid sequence having a CDR comprising one of the sequences shown in Tables 32 and 34. In certain embodiments the antibody is a fully human monoclonal antibody.
[0033] A further embodiment is an antibody that binds to TNFa and comprises a heavy chain amino acid sequence having one of the CDR sequences shown in Tables 31 and 33 and a light chain amino acid sequence having one of the CDR sequences shown in Tables 32 and 34.
In certain embodiments the antibody is a fully human monoclonal antibody.
[0034] Another embodiment of the invention is a fully human antibody that binds to other TNFa family members including, but not limited to, TNFB. A further embodiment herein is an antibody that cross-competes for binding to TNFa with the fully human antibodies of the invention.
[0035] It will be appreciated that embodiments of the invention are not limited to any particular form of an antibody or method of generation or production. For example, the anti-TNFa antibody may be a full-length antibody (e.g., having an intact human Fc region) or an antibody fragment (e.g., a Fab, Fab' or F(ah')2). In addition, the antibody may be manufactured from a hybridoma that secretes the antibody, or from a recombinantly produced cell that has been transformed or transfected with a gene or genes encoding the antibody.
[0036] Other embodiments of the invention include isolated nucleic acid molecules encoding any of the antibodies described herein, vectors having an isolated nucleic acid molecules encoding anti-TNFa antibodies or a host cell transformed with any of such nucleic acid molecules.
In addition, one embodiment of the invention is a method of producing an anti-TNFa antibody by culturing host cells under conditions wherein a nucleic acid molecule is expressed to produce the antibody followed by recovering the antibody.
[0037] A further embodiment herein includes a method of producing high affinity antibodies to TNFa by immunizing a mammal with human TNFa, or a fragment thereof, and one or more orthologous sequences or fragments thereof.
[0038] Other embodiments are based upon the generation and identification of isolated antibodies that bind specifically to TNFa. TNFa is expressed at elevated levels in neoplastic diseases, such as tumors, and other inflammatory diseases. Inhibition of the biological activity of TNFa can prevent inflammation and other desired effects, including TNFa induced apoptosis.
[0039] Another embodiment of the invention includes a method of diagnosing diseases or conditions in which an antibody prepared as described herein is utilized to detect the level of TNFa in a patient sample. In one embodiment, the patient sample is blood or blood serum. In further embodiments, methods for the identification of risk factors, diagnosis of disease, and staging of disease is presented which involves the identification of the overexpression of TNFa using anti-TNFa antibodies.
[0040] Another embodiment of the invention includes a method for diagnosing a condition associated with the expression of TNFa in a cell by contacting the cell with an anti-TNFa antibody, and thereafter detecting the presence of TNFa. Preferred conditions include, but are not limited to, neoplastic diseases including, ,without limitation, tumors, cancers, such as breast, ovarian, stomach, endometrial, salivary gland, lung, kidney, colon, colorectal, thyroid, pancreatic, prostate and bladder cancer. In another embodiment, an anti-TNFa antibody can be used to diagnose an inflammatory condition including, but is not limited to, atherosclerosis, restenosis, autoimmune disease, immuno-mediated inflammatory diseases (IMIDs) including but not limited to rheumatoid arthritis, psoriasis, uveitis (e.g., childhood and seronegative), lupus and other diseases mediated by immune complexes such as pemphigus and glomerulonephritis, congential hyperthyroidism (CH), delayed type hypersensitivity (DTH) such as contact hypersensitivity, sarcoidosis, Behcet's disease, chronic arthritis, psoriatic arthritis, ankylosing spondylitis, adult still disease, primary Sjogren's disease, scleroderma, giant cell arteritis, SAPHO
syndrome, primary biliary cirrhosis (PBC), sarcoidosis, myelodysplastic syndromes, Wegener's syndrome and other vasculitis, hematologic malignancies, cochleovestibular disorders, macrophage activation syndrome, asthma, interstitial lung disease, Hepatitis C, pulmonary fibrosis, ovulation induction, myelodysplastic syndromes, Crohn's disease, graft-host reactions, septic shock, cachexia, anorexia, and multiple sclerosis. Other conditions the antibodies can diagnose are disclosed in U.S. Patent No. 6,090,382 to Salfeld et al., and U.S. Patent No. 5,436,154 to Barbanti, et al..
[0041] In another embodiment, the invention includes an assay kit for detecting TNFa and TNFa family members in mammalian tissues or cells to screen for neoplastic diseases or inflammatory conditions. The kit includes an antibody that binds to TNFa and a means for indicating the reaction of the antibody with TNFa, if present. Preferably the antibody is a monoclonal antibody. In one embodiment, the antibody that binds TNFa is labeled. In another embodiment the antibody is an unlabeled first antibody and the kit further includes a means for detecting the first antibody. In one embodiment, the means includes a labeled second antibody that is an anti-immunoglobulin. Preferably the antibody is labeled with a marker selected from the group consisting of a fluorochrome, an enzyme, a radionuclide and a radiopaque material.
[0042] Other embodiments of the invention include pharmaceutical compositions having an effective amount of an anti-TNFa antibody in admixture with a pharmaceutically acceptable carrier or diluent. In yet other embodiments, the anti-TNFa antibody, or a fragment thereof, is conjugated to a therapeutic agent. The therapeutic agent can be, for example, a toxin or a radioisotope. Preferably, such antibodies can be used for the treatment of diseases, including for example, tumors, cancers, such as breast, ovarian, stomach, endometrial, salivary gland, lung, kidney, colon, colorectal, thyroid, pancreatic, prostate and bladder cancer, as well as other inflammatory conditions including but not limited to, atherosclerosis, restenosis, autoimmune disease, immuno-mediated inflammatory diseases (11VIlDs) including but not limited to rheumatoid arthritis, psoriasis, uveitis (e.g., childhood and seronegative), lupus and other diseases mediated by immune complexes such as pemphigus and glomerulonephritis, congential hyperthyroidism (CH), delayed type hypersensitivity (DTH) such as contact hypersensitivity, sarcoidosis, Behcet's disease, chronic arthritis, psoriatic arthritis, ankylosing ,spondylitis, adult still disease, primary SjOgren's disease, scleroderma, giant cell arteritis, SAPHO syndrome, primary biliary cirrhosis (PBC), sarcoidosis, myelodysplastic syndromes, Wegener's syndrome and other vasculitis, hematologic malignancies, cochleovestibular disorders, macrophage activation syndrome, asthma, interstitial lung disease, Hepatitis C, pulmonary fibrosis, ovulation inductionmyelodysplastic syndromes, Crohn's disease, graft-host reactions, septic shock, cachexia, anorexia, and multiple sclerosis.
Other conditions the antibodies can treat are disclosed in U.S. Patent No.
6,090,382 to Salfeld et al., and U.S. Patent No. 5,436,154 to Barbanti, et al.
[0043] Yet another embodiment includes methods for treating diseases or conditions associated with the expression of TNFa in a patient, by administering to the patient an effective amount of an anti-TNFa antibody. The method can be performed in vivo and the patient is preferably a human patient. In a preferred embodiment, the method concerns the treatment of tumors, tumors, cancers, such as breast, ovarian, stomach, endometrial, salivary gland, lung, kidney, colon, colorectal, thyroid, pancreatic, prostate and bladder cancer. In another embodiment, the inflammatory condition includes, but is not limited to, atherosclerosis, restenosis, autoimmune disease, immuno-mediated inflammatory diseases (IMIDs) including but not limited to rheumatoid arthritis, psoriasis, uveitis (e.g., childhood and seronegative), lupus and other diseases mediated by immune complexes such as pemphigus and glomerulonephritis, congential hyperthyroidism (CH), delayed type hypersensitivity (DTH) such as contact hypersensitivity, sarcoidosis, Behcet's disease, chronic arthritis, psoriatic arthritis, ankylosing spondylitis, adult still disease, primary Sjogren's disease, scleroderma, giant cell arteritis, SAPHO syndrome, primary biliary cirrhosis (PBC), sarcoidosis, myelodysplastic syndromes, Wegener's syndrome and other vasculitis, hematologic malignancies, cochleovestibular disorders, macrophage activation syndrome, asthma, interstitial lung disease, Hepatitis C, pulmonary fibrosis, ovulation induction, myelodysplastic syndromes, Crohn's disease, graft-host reactions, septic shock, cachexia, anorexia, and multiple sclerosis.
Other conditions the antibodies can treat are disclosed in U.S. Patent No.
6,090,382 to Salfeld et al., and U.S. Patent No. 5,436,154 to Barbanti, et al.
[0044] In another embodiment, the invention provides an article of manufacture including a container. The container includes a composition containing an anti-TNFa antibody, and a package insert or label indicating that the composition can be used to treat neoplastic or inflammatory diseases characterized by the overexpression of TNFa.
[0045] In some embodiments, the anti-TNFa antibody is administered to a patient, followed by administration of a clearing agent to remove excess circulating antibody from the blood.
[0046] In some embodiments, anti-TNFa antibodies can be modified to enhance their capability of fixing complement and participating in complement-dependent cytotoxicity (CDC). In one embodiment, anti-TNFa antibodies can be modified, such as by an amino acid substitution, to alter their clearance from the body. Alternatively, ome other amino acid substitutions may slow clearance of the antibody from the body.
[0047] Yet another embodiment is the use of an anti-TNFa antibody in the preparation of a medicament for the treatment of diseases such as neoplastic diseases and inflammatory conditions. In one embodiment, the neoplastic diseases include tumors and cancers, such as breast, ovarian, stomach, endometrial, salivary gland, lung, kidney, colon, colorectal, thyroid, pancreatic, prostate and bladder cancer. In another embodiment, the inflammatory condition includes, but is not limited to, atherosclerosis, restenosis, autoimmune disease, immuno-mediated inflammatory diseases (IMIDs) including but not limited to rheumatoid arthritis, psoriasis, uveitis (e.g., childhood and seronegative), lupus and other diseases mediated by immune complexes such as pemphigus and glomerulonephritis, congential hyperthyroidism (CH), delayed type hypersensitivity (DTH) such as contact hypersensitivity, sarcoidosis, Behcet's disease, chronic arthritis, psoriatic arthritis, ankylosing spondylitis, adult still disease, primary SjOgren's disease, scleroderma, giant cell arteritis, SAPHO syndrome, primary biliary cirrhosis (PBC), sarcoidosis, myelodysplastic syndromes, Wegener's syndrome and other vasculitis, hematologic malignancies, cochleovestibular disorders, macrophage activation syndrome, asthma, interstitial lung disease, Hepatitis C, pulmonary fibrosis, ovulation induction, myelodysplastic syndromes, Crohn's disease, graft-host reactions, septic shock, cachexia, anorexia, and multiple sclerosis. Other conditions the antibodies can treat are disclosed in U.S. Patent No. 6,090,382 to Salfeld et al., and U.S. Patent No. 5,436,154 to Barbanti, et al..
BRIEF DESCRIPTION OF THE DRAWINGS
[0048] Fig. 1 is a bar graph which illustrates the effect that various hybridoma derived, human anti-TNFa binding antibodies have on neutralizing TNFa induced cell apoptosis in human WM 266 cells. The graph shows caspase activity as a measure of TNFa induced apoptosis.
[0049] Fig. 2 is a point graph that compares the anti-TNFa limited antigen binding between antibodies in B-cell culture supernatants to that of a control antibody (4.17 IgG2) over a concentration range. The triangles represent the B-cell culture supernatant clones, and the blocks represent Bar Antibody (4.17 IgG2). B-cell culture supernatants clones with points above the bar antibody curve are ranked as having potentially higher affinity.
[0050] Fig. 3 is a representative bar graph that compares the effectiveness of various XENOMAX B-cell culture supernatants at inhibiting TNFa induced cell apoptosis in human MCF-7 cells.
[0051] Fig. 4 is a representative point graph that shows calculated potency comparisons for neutralization of 'TNFa induced apoptosis on human MCF-7 cells by XENOMAX
B-cell culture supernatants. The triangles represent the potency of B-cell culture supernatants, while the squares represent the potency of a bar control, 3.2 IgG2.
[0052] Fig. 5 is a line graph of anti-TNF reagents binding E. coli expressed soluble human TNF by ELISA.
[0053] Fig. 6 is a line graph of anti-TNF reagents binding and cross-reacting to E. coli expressed soluble cymmolgous macaque monkey TNF by ELISA.
[0054] Fig. 7 is a representative line graph showing an example of neutralizing anti-TNFa antibody titration curves used to generate IC50 values. Anti-TNFa reagents were pre-incubated with 100 pg/ml of TNFa for 1 hour at 37 C. Neutralization was assayed using MCF-7 cells and detected as a ratio of propidium iodide and Heochst 33342 staining.
[0055] Fig. 8 is a representative line graph showing an example of neutralizing anti-TNFa reagents titration curves used to generate IC50 values. Anti-TNFa antibodies were pre-incubated with 100 pg/m1 of TNFa for 18 hours at 37 C. Neutralization was assayed using MCF-7 cells and detected as a ratio of propidium iodide and Heochst 33342 staining.
[0056] Fig. 9 is a bar graph that shows the average IC50 values for anti-TNFa neutralization. Neutralization and IC50 calculations were performed as described in the brief description of Figure 8.
[0057] Fig. 10 is a bar graph that shows the average 1050 values for anti-TNFa neutralization. Neutralization was performed on human WM266 cells and caspase activity was measured as an indication of TNFa induced apoptosis. Antibody IC50 calculations were performed as described in the brief description of Figure 7.
[0058] Fig. 11 is a line graph representing a whole blood assay for the inhibition of IL-8 induction by TNF, measured by ELISA. Titration curves were used to generate IC50 values.
[0059] Fig. 12 is a representative line graph of the in-vivo inhibition of TNFa induced hepatic failure using anti-TNF reagents. Liver injury induced by TNFa and D-GalN was assessed by measuring serum enzyme activities of alanine aminotransferase (ALT).
Titration curves were used to generate IC50 values.
[0060] Fig. 13 is a representative line graph of the in-vivo inhibition of TNFa induced IL-6 using anti-TNF reagents and measured by ELISA. Titration curves were used to generate ICso values DETAILED DESCRIPTION
[0061] Embodiments of the invention described herein relate to monoclonal antibodies that bind to TNFa. In some embodiments, the antibodies bind to TNFa and affect TNFa function.
Other embodiments provide fully human anti-TNFa antibodies and anti-TNFa antibody, preparations with desirable properties from a therapeutic perspective, including strong binding affinity for TNFa, the ability to neutralize TNFa in vitro, the ability to inhibit TNFa-induced hepatic injury in vivo, and the ability to inhibit TNFa-induced IL-6 production in vivo.
[0062] Accordingly, embodiments of the invention include isolated antibodies, or fragments of those antibodies, that bind to TNFa. As known in the art, the antibodies can advantageously be fully human monoclonal antibodies. Embodiments of the invention also provide cells for producing these antibodies.
[0063] In addition, embodiments of the invention provide for using these antibodies as a diagnostic tool or for treatment of a disease. For example, embodiments of the invention provide methods and antibodies for inhibiting expression of TNFa associated with infectious diseases, immune disorders, autoimmune pathologies, graft vs. host disease (GVHD), neoplasia, cancer associated cachexia, gram negative sepsism, endotoxic shock, Crohn's disease, and rheumatoid arthritis. Preferably, the antibodies are used to treat cancers, such as breast, ovarian, stomach, endometrial, salivary gland, lung, kidney, colon, colorectal, thyroid, pancreatic, prostate and bladder cancer, as well as other inflammatory conditions, including, but not limited to, rheumatoid arthritis, glomerulonephritis, atherosclerosis, psoriasis, organ transplants, restenosis and autoimmune diseases. In association with such treatment, articles of manufacture including antibodies as described herein are provided. Additionally, an assay kit having antibodies as described herein is provided to screen for tumors and inflammatory conditions.
[0064] Additionally, the nucleic acids described herein, and fragments and variants thereof, may be used, by way of nonlimiting example, (a) to direct the biosynthesis of the corresponding encoded proteins, polypeptides, fragments and variants as recombinant or heterologous gene products, (b) as probes for detection and quantification of the nucleic acids disclosed herein, (c) as sequence templates for preparing antisense molecules, and the like. Such uses are described more fully in the following disclosure.
[0065] Furtheimore, the proteins and polypeptides described herein, and fragments and variants thereof, may be used in ways that include (a) serving as an immunogen to stimulate the production of an anti-TNFa antibody, (b) a capture antigen in an immunogenic assay for such an antibody, (c) as a target for screening for substances that bind to a TNFa polypeptide described herein, and (d) a target for a TNFa specific antibody such that treatment with the antibody affects the molecular and/or cellular function mediated by the target.
[0066] Further embodiments, features, and the like regarding the anti-TNFa antibodies are provided in additional detail below.
Sequence Listing [0067] The heavy chain and light chain variable region nucleotide and amino acid sequences of representative human anti-TNFa antibodies are provided in the sequence listing, the contents of which are summarized in Table 1 below.
Table 1 mAb ID Sequence SEQ ID
No.: NO:
Nucleotide sequence encoding the variable region of the heavy chain 1 Amino acid sequence encoding the variable region of the heavy chain 2 Nucleotide sequence encoding the variable region of the light chain 3 Amino acid sequence encoding the variable region of the light chain 4 Nucleotide sequence encoding the variable region of the heavy chain 5 Amino acid sequence encoding the variable region of the heavy chain 6 Nucleotide sequence encoding the variable region of the light chain 7 Amino acid sequence encoding the variable region of the light chain 8 Nucleotide sequence encoding the variable region of the heavy chain 9 Amino acid sequence encoding the variable region of the heavy chain 10 Nucleotide sequence encoding the variable region of the light chain 11 Amino acid sequence encoding the variable region of the light chain 12 Nucleotide sequence encoding the variable region of the heavy chain 13 Amino acid sequence encoding the variable region of the heavy chain 14 Nucleotide sequence encoding the variable region of the light chain 15 Amino acid sequence encoding the variable region of the light chain 16 Nucleotide sequence encoding the variable region of the heavy chain 17 Amino acid sequence encoding the variable region of the heavy chain 18 70k/69g Nucleotide sequence encoding the variable region of the light chain 19 Amino acid sequence encoding the variable region of the light chain 20 Nucleotide sequence encoding the variable region of the heavy chain 21 Amino acid sequence encoding the variable region of the heavy chain 22 95 Nucleotide sequence encoding the variable region of the light chain Amino acid sequence encoding the variable region of the light chain 24 Nucleotide sequence encoding the variable region of the heavy chain 25 Amino acid sequence encoding the variable region of the heavy chain 26 Nucleotide sequence encoding the variable region of the light chain 27 Amino acid sequence encoding the variable region of the light chain 28 Nucleotide sequence encoding the variable region of the heavy chain 29 Amino acid sequence encoding the variable region of the heavy chain 30 Nucleotide sequence encoding the variable region of the light chain 31 Amino acid sequence encoding the variable region of the light chain 32 Nucleotide sequence encoding the variable region of the heavy chain 33 145k/ Amino acid sequence encoding the variable region of the heavy chain 140g Nucleotide sequence encoding the variable region of the light chain Amino acid sequence encoding the variable region of the light chain 36 Nucleotide sequence encoding the variable region of the heavy chain 37 Amino acid sequence encoding the variable region of the heavy chain 38 Nucleotide sequence encoding the variable region of the light chain 39 Amino acid sequence encoding the variable region of the light chain 40 Nucleotide sequence encoding the variable region of the heavy chain 41 Amino acid sequence encoding the variable region of the heavy chain 42 Nucleotide sequence encoding the variable region of the light chain 43 Amino acid sequence encoding the variable region of the light chain 44 Nucleotide sequence encoding the variable region of the heavy chain 45 Amino acid sequence encoding the variable region of the heavy chain 46 Nucleotide sequence encoding the variable region of the light chain 47 Amino acid sequence encoding the variable region of the light chain 48 Nucleotide sequence encoding the variable region of the heavy chain 49 Amino acid sequence encoding the variable region of the heavy chain 50 Nucleotide sequence encoding the variable region of the light chain 51 Amino acid sequence encoding the variable region of the light chain 52 Nucleotide sequence encoding the variable region of the heavy chain 53 Amino acid sequence encoding the variable region of the heavy chain 54 Nucleotide sequence encoding the variable region of the light chain 55 Amino acid sequence encoding the variable region of the light chain 56 Nucleotide sequence encoding the variable region of the heavy chain 57 Amino acid sequence encoding the variable region of the heavy chain 58 Nucleotide sequence encoding the variable region of the light chain 59 Amino acid sequence encoding the variable region of the light chain 60 Nucleotide sequence encoding the variable region of the heavy chain 61 Amino acid sequence encoding the variable region of the heavy chain 62 Nucleotide sequence encoding the variable region of the light chain 63 Amino acid sequence encoding the variable region of the light chain 64 Nucleotide sequence encoding the variable region of the heavy chain 65 Amino acid sequence encoding the variable region of the heavy chain 66 Nucleotide sequence encoding the variable region of the light chain 67 Amino acid sequence encoding the variable region of the ligl2t, chain 68 Nucleotide sequence encoding the variable region of the heavy chain 69 Amino acid sequence encoding the variable region of the heavy chain 70 299v1 Nucleotide sequence encoding the variable region of the light chain 71 Amino acid sequence encoding the variable region of the light chain 72 Nucleotide sequence encoding the variable region of the heavy chain 73 Amino acid sequence encoding the variable region of the heavy chain 74 299v2 Nucleotide sequence encoding the variable region of the light chain 71 Amino acid sequence encoding the variable region of the light chain 72 Nucleotide sequence encoding the variable region of the heavy chain 75 Amino acid sequence encoding the variable region of the heavy chain 76 Nucleotide sequence encoding the variable region of the light chain 77 Amino acid sequence encoding the variable region of the light chain 78 Nucleotide sequence encoding the variable region of the heavy chain 79 R014 Amino acid sequence encoding the variable region of the heavy chain 80 Nucleotide sequence encoding the variable region of the light chain 81 Amino acid sequence encoding the variable region of the light chain 82 Nucleotide sequence encoding the variable region of the heavy chain 83 1 1 Amino acid sequence encoding the variable region of the heavy chain .
Nucleotide sequence encoding the variable region of the light chain 85 Amino acid sequence encoding the variable region of the light chain 86 Nucleotide sequence encoding the variable region of the heavy chain 87 2 1 Amino acid sequence encoding the variable region of the heavy chain .
Nucleotide sequence encoding the variable region of the light chain 89 Amino acid sequence encoding the variable region of the light chain 90 Nucleotide sequence encoding the variable region of the heavy chain 91 2 2 Amino acid sequence encoding the variable region of the heavy chain .
Nucleotide sequence encoding the variable region of the light chain 93 Amino acid sequence encoding the variable region of the light chain 94 Nucleotide sequence encoding the variable region of the heavy chain 95 Amino acid sequence encoding the variable region of the heavy chain 96 2.3 Nucleotide sequence encoding the variable region of the light chain 97 Amino acid sequence encoding the variable region of the light chain 98 Nucleotide sequence encoding the variable region of the heavy chain 99 2 Amino acid sequence encoding the variable region of the heavy chain .4 Nucleotide sequence encoding the variable region of the light chain 101 Amino acid sequence encoding the variable region of the light chain 102 Nucleotide sequence encoding the variable region of the heavy chain 103 2 Amino acid sequence encoding the variable region of the heavy chain .5 Nucleotide sequence encoding the variable region of the light chain 105 Amino acid sequence encoding the variable region of the light chain 106 Nucleotide sequence encoding the variable region of the heavy chain 107 2 6 Amino acid sequence encoding the variable region of the heavy chain .
Nucleotide sequence encoding the variable region of the light chain 109 Amino acid sequence encoding the variable region of the light chain 110 2.7 Nucleotide sequence encoding the variable region of the heavy chain Amino acid sequence encoding the variable region of the heavy chain 112 Nucleotide sequence encoding the variable region of the light chain 113 Amino acid sequence encoding the variable region of the light chain 114 Nucleotide sequence encoding the variable region of the heavy chain 115 Amino acid sequence encoding the variable region of the heavy chain 116 2.8 Nucleotide sequence encoding the variable region of the light chain 117 Amino acid sequence encoding the variable region of the light chain 118 Nucleotide sequence encoding the variable region of the heavy chain 119 Amino acid sequence encoding the variable region of the heavy chain 120 2.9 Nucleotide sequence encoding the variable region of the light chain 121 Amino acid sequence encoding the variable region of the light chain 122 Nucleotide sequence encoding the variable region of the heavy chain 123 Amino acid sequence encoding the variable region of the heavy chain 124 2.10 _____________________________________________________________________ Nucleotide sequence encoding the variable region of the light chain 125 Amino acid sequence encoding the variable region of the light chain 126 Nucleotide sequence encoding the variable region of the heavy chain 127 Amino acid sequence encoding the variable region of the heavy chain 128 2.13 _____________________________________________________________________ Nucleotide sequence encoding the variable region of the light chain 129 Amino acid sequence encoding the variable region of the light chain 130 Nucleotide sequence encoding the variable region of the heavy chain 131 Amino acid sequence encoding the variable region of the heavy chain 132 2.14 _____________________________________________________________________ Nucleotide sequence encoding the variable region of the light chain 133 Amino acid sequence encoding the variable region of the light chain 134 Nucleotide sequence encoding the variable region of the heavy chain 135 2 15 Amino acid sequence encoding the variable region of the heavy chain .
Nucleotide sequence encoding the variable region of the light chain 137 Amino acid sequence encoding the variable region of the light chain 138 Nucleotide sequence encoding the variable region of the heavy chain 139 Amino acid sequence encoding the variable region of the heavy chain 140 2.16 _____________________________________________________________________ Nucleotide sequence encoding the variable region of the light chain 141 Amino acid sequence encoding the variable region of the light chain 142 Nucleotide sequence encoding the variable region of the heavy chain 143 2 17 Amino acid sequence encoding the variable region of the heavy chain .
Nucleotide sequence encoding the variable region of the light chain 145 Amino acid sequence encoding the variable region of the light chain 146 2.18 Nucleotide sequence encoding the variable region of the heavy chain Amino acid sequence encoding the variable region of the heavy chain 148 Nucleotide sequence encoding the variable region of the light chain 149 Amino acid sequence encoding the variable region of the light chain 150 Nucleotide sequence encoding the variable region of the heavy chain 151 Amino acid sequence encoding the variable region of the heavy chain 152 Nucleotide sequence encoding the variable region of the lambda light chain 2.19 Amino acid sequence encoding the variable region of the lambda light chain Nucleotide sequence encoding the variable region of the kappa light chain Amino acid sequence encoding the variable region of the kappa light chain Nucleotide sequence encoding the variable region of the heavy chain 157 Amino acid sequence encoding the variable region of the heavy chain 158 2.21 Nucleotide sequence encoding the variable region of the light chain 159 Amino acid sequence encoding the variable region of the light chain 160 Nucleotide sequence encoding the variable region of the heavy chain 161 3 1 Amino acid sequence encoding the variable region of the heavy chain .
Nucleotide sequence encoding the variable region of the light chain 163 Amino acid sequence encoding the variable region of the light chain 164 Nucleotide sequence encoding the variable region of the heavy chain 165 3 2 Amino acid sequence encoding the variable region of the heavy chain .
Nucleotide sequence encoding the variable region of the light chain 167 Amino acid sequence encoding the variable region of the light chain 168 Nucleotide sequence encoding the variable region of the heavy chain 169 Amino acid sequence encoding the variable region of the heavy chain 170 3.4 Nucleotide sequence encoding the variable region of the light chain 171 Amino acid sequence encoding the variable region of the light chain 172 Nucleotide sequence encoding the variable region of the heavy chain 173 Amino acid sequence encoding the variable region of the heavy chain 174 3.5 Nucleotide sequence encoding the variable region of the light chain 175 Amino acid sequence encoding the variable region of the light chain 176 Nucleotide sequence encoding the variable region of the heavy chain 177 3 6 Amino acid sequence encoding the variable region of the heavy chain .
Nucleotide sequence encoding the variable region of the light chain 179 Amino acid sequence encoding the variable region of the light chain 180 3.8 Nucleotide sequence encoding the variable region of the heavy chain Amino acid sequence encoding the variable region of the heavy chain 182 Nucleotide sequence encoding the variable region of the light chain 183 Amino acid sequence encoding the variable region of the light chain 184 Nucleotide sequence encoding the variable region of the heavy chain 185 Amino acid sequence encoding the variable region of the heavy chain 186 3.9 Nucleotide sequence encoding the variable region of the light chain 187 Amino acid sequence encoding the variable region of the light chain 188 Nucleotide sequence encoding the variable region of the heavy chain 189 Amino acid sequence encoding the variable region of the heavy chain 190 4.3 Nucleotide sequence encoding the variable region of the light chain 191 Amino acid sequence encoding the variable region of the light chain 192 Nucleotide sequence encoding the variable region of the heavy chain 193 Amino acid sequence encoding the variable region of the heavy chain 194 4.4 Nucleotide sequence encoding the variable region of the light chain 195 Amino acid sequence encoding the variable region of the light chain 196 Nucleotide sequence encoding the variable region of the heavy chain 197 Amino acid sequence encoding the variable region of the heavy chain 198 4.7 Nucleotide sequence encoding the variable region of the light chain 199 Amino acid sequence encoding the variable region of the light chain 200 Nucleotide sequence encoding the variable region of the heavy chain 201 4 8 Amino acid sequence encoding the variable region of the heavy chain .
Nucleotide sequence encoding the variable region of the light chain 203 Amino acid sequence encoding the variable region of the light chain 204 Nucleotide sequence encoding the variable region of the heavy chain 205 Amino acid sequence encoding the variable region of the heavy chain 206 4.9 Nucleotide sequence encoding the variable region of the light chain 207 Amino acid sequence encoding the variable region of the light chain 208 Nucleotide sequence encoding the variable region of the heavy chain 209 .
Nucleotide sequence encoding the variable region of the light chain 211 Amino acid sequence encoding the variable region of the light chain 212 Nucleotide sequence encoding the variable region of the heavy chain 213 Amino acid sequence encoding the variable region of the heavy chain 214 4.11 Nucleotide sequence encoding the variable region of the light chain 215 Amino acid sequence encoding the variable region of the light chain 216 Amino acid sequence encoding the variable region of the heavy chain 218 Nucleotide sequence encoding the variable region of the light chain 219 Amino acid sequence encoding the variable region of the light chain 220 Nucleotide sequence encoding the variable region of the heavy chain 221 Amino acid sequence encoding the variable region of the heavy chain 222 4.13 _____________________________________________________________________ Nucleotide sequence encoding the variable region of the light chain 223 Amino acid sequence encoding the variable region of the light chain 224 Nucleotide sequence encoding the variable region of the heavy chain 225 Amino acid sequence encoding the variable region of the heavy chain 226 4.14 _____________________________________________________________________ Nucleotide sequence encoding the variable region of the light chain 227 Amino acid sequence encoding the variable region of the light chain 228 Nucleotide sequence encoding the variable region of the heavy chain 229 Amino acid sequence encoding the variable region of the heavy chain 230 4.15 _____________________________________________________________________ Nucleotide sequence encoding the variable region of the light chain 231 Amino acid sequence encoding the variable region of the light chain 232 Nucleotide sequence encoding the variable region of the heavy chain 233 4 16 Amino acid sequence encoding the variable region of the heavy chain .
Nucleotide sequence encoding the variable region of the light chain 235 Amino acid sequence encoding the variable region of the light chain 236 Nucleotide sequence encoding the variable region of the heavy chain 237 Amino acid sequence encoding the variable region of the heavy chain 238 4.17 _____________________________________________________________________ Nucleotide sequence encoding the variable region of the light chain 239 Amino acid sequence encoding the variable region of the light chain 240 Nucleotide sequence encoding the variable region of the heavy chain , 241 4 18 Amino acid sequence encoding the variable region of the heavy chain .
Nucleotide sequence encoding the variable region of the light chain 243 Amino acid sequence encoding the variable region of the light chain 244 Nucleotide sequence encoding the variable region of the heavy chain 245 Amino acid sequence encoding the variable region of the heavy chain 246 4.19 _____________________________________________________________________ Nucleotide sequence encoding the variable region of the light chain 247 Amino acid sequence encoding the variable region of the light chain 248 Nucleotide sequence encoding the variable region of the heavy chain 249 4 20 Amino acid sequence encoding the variable region of the heavy chain .
Nucleotide sequence encoding the variable region of the light chain 251 Amino acid sequence encoding the variable region of the light chain 252 Nucleotide sequence encoding the variable region of the heavy chain 253 4 21 Amino acid sequence encoding the variable region of the heavy chain .
Nucleotide sequence encoding the variable region of the light chain 255 Amino acid sequence encoding the variable region of the light chain 256 Nucleotide sequence encoding the variable region of the heavy chain 257 4 22 Amino acid sequence encoding the variable region of the heavy chain .
Nucleotide sequence encoding the variable region of the light chain 259 Amino acid sequence encoding the variable region of the light chain 260 Nucleotide sequence encoding the variable region of the heavy chain 261 4 23 Amino acid sequence encoding the variable region of the heavy chain .
Nucleotide sequence encoding the variable region of the light chain 263 Amino acid sequence encoding the variable region of the light chain 264 Definitions [0068] Unless otherwise defined, scientific and technical terms used herein shall have the meanings that are commonly understood by those of ordinary skill in the art. Further, unless otherwise required by context, singular terms shall include pluralities and plural terms shall include the singular. Generally, nomenclatures utilized in connection with, and techniques of, cell and tissue culture, molecular biology, and protein and oligo- or polynucleotide chemistry and hybridization described herein are those well known and commonly used in the art. Standard techniques are used for recombinant DNA, oligonucleotide synthesis, and tissue culture and transformation (e.g., electroporation, lipofection). Enzymatic reactions and purification techniques are performed according to manufacturer's specifications or as commonly accomplished in the art or as described herein. The foregoing techniques and procedures are generally performed according to conventional methods well known in the art and as described in various general and more specific references that are cited and discussed throughout the present specification. See e.g., Sambrook et al. Molecular Cloning: A Laboratory Manual (2d ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (1989)). The nomenclatures utilized in connection with, and the laboratory procedures and techniques of, analytical chemistry, synthetic organic chemistry, and medicinal and pharmaceutical chemistry described herein are those well known and commonly used in the art. Standard techniques are used for chemical syntheses, chemical analyses, pharmaceutical preparation, formulation, and delivery, and treatment of patients.
[0069] As utilized in accordance with the present disclosure, the following terms, unless otherwise indicated, shall be understood to have the following meanings:
[0070] The term "TNFa" refers to the cytokine, Tumor Necrosis Factor-alpha (Pennica, D. et al., 1984, Nature 312:724-729). TNFa is also known in the art as cachectin.
[0071] The term "neutralizing" when referring to an antibody relates to an antibody's ability to eliminate or significantly reduce an effector function of a target antigen to which is binds.
Accordingly, a "neutralizing" anti-TNFa antibody is capable of eliminating or significantly reducing an effector function, such as TNFa activity.
[0072] The term "isolated polynucleotide" as used herein shall mean a polynucleotide of genomic, cDNA, or synthetic origin or some combination thereof, which by virtue of its origin the "isolated polynucleotide" (1) is not associated with all or a portion of a polynucleotide in which the "isolated polynucleotide" is found in nature, (2) is operably linked to a polynucleotide which it is not linked to in nature, or (3) does not occur in nature as part of a larger sequence.
[0073] The term "isolated protein" referred to herein means a protein of cDNA, recombinant RNA, or synthetic origin or some combination thereof, which by virtue of its origin, or source of derivation, the "isolated protein" (1) is not associated with proteins found in nature, (2) is free of other proteins from the same source, e.g. free of murine proteins, (3) is expressed by a cell from a different species, or (4) does not occur in nature.
[0074] The term "polypeptide" is used herein as a generic term to refer to native protein, fragments, or analogs of a polypeptide sequence. Hence, native protein, fragments, and analogs are species of the polypeptide genus. Preferred polypeptides in accordance with the invention comprise the human heavy chain immunoglobulin molecules and the human kappa light chain immunoglobulin molecules, as well as antibody molecules formed by combinations comprising the heavy chain immunoglobulin molecules with light chain immunoglobulin molecules, such as the kappa light chain immunoglobulin molecules, and vice versa, as well as fragments and analogs thereof.
[0075] The term "naturally-occurring" as used herein as applied to an object refers to the fact that an object can be found in nature. For example, a polypeptide or polynucleotide sequence that is present in an organism (including viruses) that can be isolated from a source in nature and which has not been intentionally modified by man in the laboratory or otherwise is naturally-occurring.
[0076] The term "operably linked" as used herein refers to positions of components so described that are in a relationship permitting them to function in their intended manner. For example, a control sequence "operably linked" to a coding sequence is connected in such a way that expression of the coding sequence is achieved under conditions compatible with the control sequences.
[0077] The term "control sequence" as used herein refers to polynucleotide sequences which are necessary to effect the expression and processing of coding sequences to which they are connected. The nature of such control sequences differs depending upon the host organism; in prokaryotes, such control sequences generally include promoter, ribosomal binding site, and transcription termination sequence; in eukaryotes, generally, such control sequences include promoters and transcription termination sequence. The term "control sequences"
is intended to include, at a minimum, all components whose presence is essential for expression and processing, and can also include additional components whose presence is advantageous, for example, leader sequences and fusion partner sequences.
[0078] The term "polynucleotide" as referred to herein means a polymeric form of nucleotides of at least 10 bases in length, either ribonucleotides or deoxynucleotides or a modified form of either type of nucleotide. The term includes single and double stranded forms of DNA.
[0079] The term "oligonucleotide" referred to herein includes naturally occurring, and modified nucleotides linked together by naturally occurring, and non-naturally occurring oligonucleotide linkages. Oligonucleotides are a polynucleotide subset generally comprising a length of 200 bases or fewer. Preferably, oligonucleotides are 10 to 60 bases in length and most preferably 12, 13, 14, 15, 16, 17, 18, 19, or 20 to 40 bases in length.
Oligonucleotides are usually single stranded, e.g. for probes; although oligonucleotides may be double stranded, e.g. for use in the construction of a gene mutant. Oligonucleotides can be either sense or antisense oligonucleotides.
[0080] The term "naturally occurring nucleotides" referred to herein includes deoxyribonucleotides and ribonucleotides. The term "modified nucleotides"
referred to herein includes nucleotides with modified or substituted sugar groups and the like.
The term "oligonucleotide linkages" referred to herein includes oligonucleotides linkages such as phosphorothioate, phosphorodithioate, phosphoroselenoate, phosphorodiselenoate, phosphoroanilothioate, phosphoraniladate, phosphoroamidate, and the like. See e.g., LaPlanche et al. Nucl. Acids Res. 14:9081 (1986); Stec et al. J. Am. Chem. Soc. 106:6077 (1984); Stein et al.
Nucl. Acids Res. 16:3209 (1988); Zon et al. Anti-Cancer Drug Design 6:539 (1991); Zon et al.
Oligonucleotides and Analogues: A Practical Approach, pp. 87-108 (F. Eckstein, Ed., Oxford University Press, Oxford England (1991)); Stec et al. U.S. Patent No.
5,151,510; Uhlmann and Peyman Chemical Reviews 90:543 (1990). An oligonucleotide can include a label for detection, if desired.
[0081] The term "selectively hybridize" referred to herein means to detectably and specifically bind. Polynucleotides, oligonucleotides and fragments thereof selectively hybridize to nucleic acid strands under hybridization and wash conditions that minimize appreciable amounts of detectable binding to nonspecific nucleic acids. High stringency conditions can be used to achieve selective hybridization conditions as known in the art and discussed herein.
Generally, the nucleic acid sequence homology between the polynucleotides, oligonucleotides, or antibody fragments and a nucleic acid sequence of interest will be at least 80%, and more typically with preferably increasing homologies of at least 85%, 90%, 95%, 99%, and 100%.
[0082] Two amino acid sequences are "homologous" if there is a partial or complete identity between their sequences. For example, 85% homology means that 85% of the amino acids are identical when the two sequences are aligned for maximum matching. Gaps (in either of the two sequences being matched) are allowed in maximizing matching; gap lengths of 5 or less are preferred with 2 or less being more preferred. Alternatively and preferably, two protein sequences (or polypeptide sequences derived from them of at least about 30 amino acids in length) are homologous, as this term is used herein, if they have an alignment score of at more than 5 (in standard deviation units) using the program ALIGN with the mutation data matrix and a gap penalty of 6 or greater. See Dayhoff, M.O., in Atlas of Protein Sequence and Structure, pp. 101-110 (Volume 5, National Biomedical Research Foundation (1972)) and Supplement 2 to this _ volume, pp. 1-10. The two sequences or parts thereof are more preferably homologous if their amino acids are greater than or equal to 50% identical when optimally aligned using the ALIGN
program.
[0083] The term "corresponds to" is used herein to mean that a polynucleotide sequence is homologous (i.e., is identical, not strictly evolutionarily related) to all or a portion of a reference polynucleotide sequence, or that a polypeptide sequence is identical to a reference polypeptide sequence.
[0084] In contradistinction, the term "complementary to" is used herein to mean that the complementary sequence is homologous to all or a portion of a reference polynucleotide sequence. For illustration, the nucleotide sequence "TATAC" corresponds to a reference sequence "TATAC" and is complementary to a reference sequence "GTATA".
[0085] The following terms are used to describe the sequence relationships between two or more polynucleotide or amino acid sequences: "reference sequence", "comparison window", "sequence identity", "percentage of sequence identity", and "substantial identity". A "reference sequence" is a defined sequence used as a basis for a sequence comparison. A
reference sequence may be a subset of a larger sequence, for example, as a segment of a full-length cDNA or gene sequence given in a sequence listing or may comprise a complete cDNA or gene sequence.
Generally, a reference sequence is at least 18 nucleotides or 6 amino acids in length, frequently at least 24 nucleotides or 8 amino acids in length, and often at least 48 nucleotides or 16 amino acids in length. Since two polynucleotides or amino acid sequences may each (1) comprise a sequence (i.e., a portion of the complete polynucleotide or amino acid sequence) that is similar between the two molecules, and (2) may further comprise a sequence that is divergent between the two polynucleotides or amino acid sequences, sequence comparisons between two (or more) molecules are typically performed by comparing sequences of the two molecules over a "comparison window"

to identify and compare local regions of sequence similarity. A "comparison window", as used herein, refers to a conceptual segment of at least about 18 contiguous nucleotide positions or about 6 amino acids wherein the polynucleotide sequence or amino acid sequence is compared to a reference sequence of at least 18 contiguous nucleotides or 6 amino acid sequences and wherein the portion of the polynucleotide sequence in the comparison window may include additions, deletions, substitutions, and the like (i.e., gaps) of 20 percent or less as compared to the reference sequence (which does not comprise additions or deletions) for optimal alignment of the two sequences.
Optimal alignment of sequences for aligning a comparison window may be conducted by the local homology algorithm of Smith and Waterman Adv. Appl. Math. 2:482 (1981), by the homology alignment algorithm of Needleman and Wunsch J. Mol. Biol. 48:443 (1970), by the search for similarity method of Pearson and Lipman Proc. Natl. Acad. Sci. (U.S.A) 85:2444 (1988), by computerized implementations of these algorithms (GAP, BESTFIT, FASTA, and TFASTA in the Wisconsin Genetics Software Package Release 7.0, (Genetics Computer Group, 575 Science Dr., Madison, Wis.), GENEWORKSTM, or MACVECTOR software packages), or by inspection, and the best alignment (i.e., resulting in the highest percentage of homology over the comparison window) generated by the various methods is selected.
[0086] The term "sequence identity" means that two polynucleotide or amino acid sequences are identical (i.e., on a nucleotide-by-nucleotide or residue-by-residue basis) over the comparison window. The term "percentage of sequence identity" is calculated by comparing two optimally aligned sequences over the window of comparison, determining the number of positions at which the identical nucleic acid base (e.g., A, T, C, G, U, or I) or amino acid residue occurs in both sequences to yield the number of matched positions, dividing the number of matched positions by the total number of positions in the comparison window (i.e., the window size), and multiplying the result by 100 to yield the percentage of sequence identity. The terms "substantial identity" as used herein.,denotes a characteristic of a polynucleotide or amino acid sequence, wherein the polynucleotide or amino acid comprises a sequence that has at least 85 percent sequence identity, preferably at least 90 to 95 percent sequence identity, more preferably at least 99 percent sequence identity, as compared to a reference sequence over a comparison window of at least 18 nucleotide (6 amino acid) positions, frequently over a window of at least 24-48 nucleotide (8-16 amino acid) positions, wherein the percentage of sequence identity is calculated by comparing the reference sequence to the sequence which may include deletions or additions which total 20 percent or less of the reference sequence over the comparison window. The reference sequence may be a subset of a larger sequence.
[0087] As used herein, the twenty conventional amino acids and their abbreviations follow conventional usage. See Immunology - A Synthesis (2nd Edition, E.S.
Golub and D.R. Gren, Eds., Sinauer Associates, Sunderland, Mass. (1991)). Stereoisomers (e.g., D-amino acids) of the twenty conventional amino acids, unnatural amino acids such as a-, a-disubstituted amino acids, N-alkyl amino acids, lactic acid, and other unconventional amino acids may also be suitable components for polypeptides of the present invention. Examples of unconventional amino acids include: 4-hydroxyproline, y-carboxyglutamate, s-N,N,N-trimethyllysine, s-N-acetyllysine, 0-phosphoserine, N-acetylserine, N-formylmethionine, 3-methylhistidine, 5-hydroxylysine, a-N-methylarginine, and other similar amino acids and imino acids (e.g., 4-hydroxyproline). In the polyp eptide notation used herein, the left-hand direction is the amino terminal direction and the right-hand direction is the carboxy-terminal direction, in accordance with standard usage and convention.
[0088] Similarly, unless specified otherwise, the left-hand end of single-stranded polynucleotide sequences is the 5' end; the left-hand direction of double-stranded polynucleotide sequences is referred to as the 5' direction. The direction of 5' to 3' addition of nascent RNA
transcripts is referred to as the transcription direction; sequence regions on the DNA strand having the same sequence as the RNA and which are 5' to the 5' end of the RNA
transcript are referred to as "upstream sequences"; sequence regions on the DNA strand having the same sequence as the RNA and which are 3' to the 3' end of the RNA transcript are referred to as "downstream sequences".
[0089] As applied to polypeptides, the term "substantial identity" means that two peptide sequences, when optimally aligned, such as by the programs GAP or BESTFIT using default gap weights, share at least 80 percent sequence identity, preferably at least 90 percent sequence identity, more preferably at least 95' percent sequence identity, and most preferably at least 99 percent sequence identity. Preferably, residue positions which are not identical differ by conservative amino acid substitutions. Conservative amino acid substitutions refer to the interchangeability of residues having similar side chains. For example, a group of amino acids having aliphatic side chains is glycine, alanine, valine, leucine, and isoleucine; a group of amino acids having aliphatic-hydroxyl side chains is serine and threonine; a group of amino acids having amide-containing side chains is asparagine and glutamine; a group of amino acids having aromatic side chains is phenylalanine, tyrosine, and tryptophan; a group of amino acids having basic side chains is lysine, arginine, and histidine; and a group of amino acids having sulfur-containing side chains is cysteine and methionine. Preferred conservative amino acids substitution groups are:
valine-leucine-isoleucine, phenylalanine-tyrosine, lysine-arginine, alanine-valine, glutamic-aspartic, and asparagine-glutamine.
[0090] As discussed herein, minor variations in the amino acid sequences of antibodies or immunoglobulin molecules are contemplated as being encompassed by the present invention, providing that the variations in the amino acid sequence maintain at least 75%, more preferably at least 80%, 90%, 95%, and most preferably 99% sequence identity to the antibodies or immunoglobulin molecules described herein. In particular, conservative amino acid replacements are contemplated. Conservative replacements are those that take place within a family of amino acids that have related side chains. Genetically encoded amino acids are generally divided into families: (1) acidic=aspartate, glutamate; (2) basic=lysine, arginine, histidine; (3) non-polar=alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan; and (4) uncharged polar=glycine, asparagine, glutamine, cysteine, serine, threonine, tyrosine. More preferred families are: serine and threonine are an aliphatic-hydroxy family;
asparagine and glutamine are an amide-containing family; alanine, valine, leucine and isoleucine are an aliphatic family; and phenylalanine, tryptophan, and tyrosine are an aromatic family.
For example, it is reasonable to expect that an isolated replacement of a leucine with an isoleucine or valine, an aspartate with a glutamate, a threonine with a serine, or a similar replacement of an amino acid with a structurally related amino acid will not have a major effect on the binding function or properties of the resulting molecule, especially if the replacement does not involve an amino acid within a framework site. Whether an amino acid change results in a functional peptide can readily be determined by assaying the specific activity of the polypeptide derivative.
Assays are described in detail herein. Fragments or analogs of antibodies or immunoglobulin molecules can be readily prepared by those of ordinary skill in the art. Preferred amino- and carboxy-termini of fragments or analogs occur near boundaries of functional domains. Structural and functional domains can be identified by comparison of the nucleotide and/or amino acid sequence data to public or proprietary sequence databases. Preferably, computerized comparison methods are used to identify sequence motifs or predicted protein conformation domains that occur in other proteins of known structure and/or function. Methods to identify protein sequences that fold into a known three-dimensional structure are known. Bowie et al. Science 253:164 (1991). Thus, the foregoing examples demonstrate that those of skill in the art can recognize sequence motifs and structural conformations that may be used to define structural and functional domains in accordance with the antibodies described herein.
[0091] Preferred amino acid substitutions are those which: (1) reduce susceptibility to proteolysis, (2) reduce susceptibility to oxidation, (3) alter binding affinity for forming protein complexes, (4) alter binding affinities, and (4) confer or modify other physicochemical or functional properties of such analogs. Analogs can include various muteins of a sequence other than the naturally-occurring peptide sequence. For example, single or multiple amino acid substitutions (preferably conservative amino acid substitutions) may be made in the naturally-occurring sequence (preferably in the portion of the polypeptide outside the domain(s) forming intermolecular contacts. A conservative amino acid substitution should not substantially change the structural characteristics of the parent sequence (e.g., a replacement amino acid should not tend to break a helix that occurs in the parent sequence, or disrupt other types of secondary structure that characterizes the parent sequence). Examples of art-recognized polypeptide secondary and tertiary structures are described in Proteins, Structures and Molecular Principles (Creighton, Ed., W. H.

Freeman and Company, New York (1984)); Introduction to Protein Structure (C.
Branden and J.
Tooze, eds., Garland Publishing, New York, N.Y. (1991)); and Thornton et at.
Nature 354:105 (1991).
[0092] The term "polypeptide fragment" as used herein refers to a polypeptide that has an amino-terminal and/or carboxy-terminal deletion, but where the remaining amino acid sequence is identical to the corresponding positions in the naturally-occurring sequence deduced, for example, from a full-length cDNA sequence. Fragments typically are at least 5, 6, 8 or 10 amino acids long, preferably at least 14 amino acids long, more preferably at least 20 amino acids long, usually at least 50 amino acids long, and even more preferably at least 70 amino acids long. The term "analog" as used herein refers to polypeptides which are comprised of a segment of at .least 25 amino acids that has substantial identity to a portion of a deduced amino acid sequence and which has at least one of the following properties: (1) specific binding to a 'TNFa, under suitable binding conditions, (2) ability to block appropriate TNFa binding, or (3) ability to inhibit TNFa activity.
Typically, polypeptide analogs comprise a conservative amino acid substitution (or addition or deletion) with respect to the naturally-occurring sequence. Analogs typically are at least 20 amino acids long, preferably at least 50 amino acids long or longer, and can often be as long as a full-length naturally-occurring polypeptide.
[0093] Peptide analogs are commonly used in the pharmaceutical industry as non-peptide drugs with properties analogous to those of the template peptide.
These types of non-peptide compound are termed "peptide mimetics" or "peptidomimetics". Fauchere, J. Adv. Drug Res. 15:29 (1986); Veber and Freidinger TINS p.392 (1985); and Evans et al. J.
Med. Chem.
30:1229 (1987). Such compounds are often developed with the aid of computerized molecular modeling. Peptide mimetics that are structurally similar to therapeutically useful peptides may be used to produce an equivalent therapeutic or prophylactic effect. Generally, peptidomimetics are structurally similar to a paradigm polypeptide (i.e., a polypeptide that has a biochemical property or pharmacological activity), such as human antibody, but have one or more peptide linkages optionally replaced by a linkage selected from the group consisting of: --CH2NH--, --CH2S--, --CH2-CH2--, --CH=CH--(cis and trans), --COCH2--, --CH(OH)CH2--, and ¨CH2S0--, by methods well known in the art. Systematic substitution of one or more amino acids of a consensus sequence with a D-amino acid of the same type (e.g., D-lysine in place of L-lysine) may be used to generate more stable peptides. In addition, constrained peptides comprising a consensus sequence or a substantially identical consensus sequence variation may be generated by methods known in the art (Rizo and Gierasch Ann. Rev. Biochem. 61:387 (1992); for example, by adding internal cysteine residues capable of forming intramolecular disulfide bridges which cyclize the peptide.
[0094] "Antibody" or "antibody peptide(s)" refer to an intact antibody, or a binding fragment thereof, that competes with the intact antibody for specific binding.
Binding fragments are produced by recombinant DNA techniques, or by enzymatic or chemical cleavage of intact antibodies. Binding fragments include Fab, Fab', F(ab')2, Fv, and single-chain antibodies. An antibody other than a "bispecific" or "bifunctional" antibody is understood to have each of its binding sites identical. An antibody substantially inhibits adhesion of a receptor to a counterreceptor when an excess of antibody reduces the quantity of receptor bound to counterreceptor by at least about 20%, 40%, 60% or 80%, and more usually greater than about 85%
(as measured in an in vitro competitive binding assay).
[0095] The term "epitope" includes any protein determinant capable of specific binding to an immunoglobulin or T-cell receptor. Epitopic determinants usually consist of chemically active surface groupings of molecules such as amino acids or sugar side chains and usually have specific three dimensional structural characteristics, as well as specific charge characteristics. An antibody is said to specifically bind an antigen when the dissociation constant is [IM, preferably 100 nM and most preferably 10 nM.
[0096] The term "agent" is used herein to denote a chemical compound, a mixture of chemical compounds, a biological macromolecule, or an extract made from biological materials.
[0097] "Active" or "activity" in regard to a TNFa polypeptide refers to a portion of a TNFa polypeptide which has a biological or an immunological activity of a native TNFa polypeptide. "Biological" when used herein refers to a biological function that results from the activity of the native TNFa polypeptide. A preferred TNFa biological activity includes, for example, TNFa induced apoptosis.
[0098] "Mammal" when used herein refers to any animal that is considered a mammal.
Preferably, the mammal is human.
[0099] Digestion of antibodies with the enzyme, papain, results in two identical antigen-binding fragments, known also as "Fab" fragments, and a "Fc" fragment, having no antigen-binding activity but having the ability to crystallize. Digestion of antibodies with the enzyme, pepsin, results in the -a F(ab')2 fragment in which the two arms of the antibody molecule remain linked and comprise two-antigen binding sites. The F(ab')2 fragment has the ability to crosslink antigen.
[0100] "Fv" when used herein refers to the minimum fragment of an antibody that retains both antigen-recognition and antigen-binding sites.
[0101] "Fab" when used herein refers to a fragment of an antibody which comprises the constant domain of the light chain and the CH1 domain of the heavy chain.
[0102] The term "mAb" refers to monoclonal antibody.
[0103] The description of XENOMAX antibody sequences is coded as follows:
"AB"-referring to antibody, "TNFa"-referring to antibody's binding specificity, "X" referring to XENOMOUSE derived, "GP-referring to IgG1 isotype or "G2" referring to IgG2 isotype, the last three digits referring to the single cell number from which the antibody was derived, for example: AB-TNFa -XG1 -015.
[0104] The term "SC" refers to single cell and a particular XENOMAX
derived antibody may be referred to as SC followed by three digits, or just three digits, referring to the single cell number from which the antibody was derived herein.
[0105] The description of hybridoma derived antibody sequences is coded as follows:
"AB"-referring to antibody, "TNFa"-refers to the antibody's binding specificity, "X" refers to XENOMOUSE derived, "GP-refers to IgG1 isotype or "G2" refers to IgG2 isotype, "K" refers to kappa, "L' refers to lambda. the last three digits referring to the clone from which the antibody was derived, for example: AB-TNFa-XG2K-4.17 [0106] "Liposome" when used herein refers to a small vesicle that may be useful for delivery of drugs that may include the TNFa polypeptide of the invention or antibodies to such a TNF'a polypeptide to a mammal.
[0107] "Label" or "labeled" as used herein refers to the addition of a detectable moiety to a polypeptide, for example, a radiolabel, fluorescent label, enzymatic label chemiluminescent labeled or a biotinyl group. Radioisotopes or radionuclides may include 3H, 14c, 15N, 35s, , 90¨
Y 99Tc, 111111 1251, 131,, 1. fluorescent labels may include rhodamine, lanthanide phosphors or FITC and enzymatic labels may include horseradish peroxidase, I3-galactosidase, luciferase, alkaline phosphatase.
[0108] The term "pharmaceutical agent or drug" as used herein refers to a chemical compound or composition capable of inducing a desired therapeutic effect when properly administered to a patient. Other chemistry terms herein are used according to conventional usage in the art, as exemplified by The McGraw-Hill Dictionaiy of Chemical Terms (Parker, S., Ed., McGraw-Hill, San Francisco (1985)).
[0109] As used herein, "substantially pure" means an object species is the predominant species present (i.e., on a molar basis it is more abundant than any other individual species in the composition), and preferably a substantially purified fraction is a composition wherein the object species comprises at least about 50 percent (on a molar basis) of all macromolecular species present. Generally, a substantially pure composition will comprise more than about 80 percent of all macromolecular species present in the composition, more preferably more than about 85%, 90%, 95%, and 99%. Most preferably, the object species is purified to essential homogeneity (contaminant species cannot be detected in the composition by conventional detection methods) wherein the composition consists essentially of a single macromolecular species.
[0110] The term "patient" includes human and veterinary subjects.
[0111] The term "SLAM " refers to the "Selected Lymphocyte Antibody Method"
(Babcook et al., Proc. Natl. Acad. Sci. USA, 193:7843-7848 (1996), and Schrader, US Patent No.
5,627,052).

[01121 The term "XENOMAX " refers use of to the use of the "Selected Lymphocyte Antibody Method" (Babcook et al., Proc. Natl. Acad. Sci. USA, i93:7843-7848 (1996)), when used with XENOMOUSE animals.
Antibody Structure [01131 The basic antibody structural unit is known to comprise a tetramer. Each tetramer is composed of two identical pairs of polypeptide chains, each pair having one "light"
(about 25 kDa) and one "heavy" chain (about 50-70 kDa). The amino-terminal portion of each chain includes a variable region of about 100 to 110 or more amino acids primarily responsible for antigen recognition. The carboxy-terminal portion of each chain defines a constant region primarily responsible for effector function. Human light chains are classified as kappa and lambda light chains. Heavy chains are classified as mu, delta, gamma, alpha, or epsilon, and define the antibody's isotype as IgM, IgD, IgA, and IgE, respectively. Within light and heavy chains, the variable and constant regions are joined by a "J" region of about 12 or more amino acids, with the heavy chain also including a "D" region of about 10 more amino acids. See generally, Fundamental Immunology Ch. 7 (Paul, W., ed., 2nd ed. Raven Press, N.Y.
(1989)). The variable regions of each light/heavy chain pair form the antibody binding site.
[01141 Thus, an intact antibody has two binding sites. Except in bifunctional or bispecific antibodies, the two binding sites are the same.
[0115] The chains all exhibit the same general structure of relatively conserved framework regions (FR) joined by three hyper variable regions, also called complementarity determining regions or CDRs. The CDRs from the two chains of each pair are aligned by the framework regions, enabling binding to a specific epitope. From N-terminal to C-terminal, both light and heavy chains comprise the domains FR1, CDR1, FR2, CDR2, FR3, CDR3 and FR4. The assignment of amino acids to each dpmain is in accordance with the definitions of Kabat Sequences of Proteins of Immunological Interest (National Institutes of Health, Bethesda, Md. (1987 and 1991)), or Chothia & Lesk J. MoL Biol. 196:901-917 (1987); Chothia et al.
Nature 342:878-883 (1989).
[0116] A bispecific or bifunctional antibody is an artificial hybrid antibody having two different heavy/light chain pairs and two different binding sites. Bispecific antibodies can be produced by a variety of methods including fusion of hybridomas or linking of Fab' fragments.
See, e.g., Songsivilai & Lachmann Clin. Exp. ImmunoL 79: 315-321 (1990), Kostelny et al. J.
ImmunoL 148:1547-1553 (1992). Production of bispecific antibodies can be a relatively labor intensive process compared with production of conventional antibodies and yields and degree of purity are generally lower for bispecific antibodies. Bispecific antibodies do not exist in the form of fragments having a single binding site (e.g., Fab, Fab', and Fv).

Human Antibodies and Humanization of Antibodies [0117] Human antibodies avoid some of the problems associated with antibodies that possess murine or rat variable and/or constant regions. The presence of such murine or rat derived proteins can lead to the rapid clearance of the antibodies or can lead to the generation of an immune response against the antibody by a patient. In order to avoid the utilization of murine or rat derived antibodies, fully human antibodies can be generated through the introduction of human antibody function into a rodent so that the rodent produces fully human antibodies.
[0118] One method for generating fully human antibodies is through the use of XENOMOUSE strains of mice which have been engineered to contain 245 kb and 190 kb-sized gennline configuration fragments of the human heavy chain locus and kappa light chain locus. See Green et al. Nature Genetics 7:13-21 (1994). The XENOMOUSE strains are available from Abgenix, Inc. (Fremont, CA).
[0119] The production of the XENOMOUSE is further discussed and delineated in U.S. Patent Nos. 6,162,963, 6,150,584, 6,114,598, 6,075,181, 6,673,986, and 5,939,598 and Japanese Patent Nos. 3 068 180 B2, 3 068 506 B2, and 3 068 507 B2. See also Mendez et al.
Nature Genetics 15:146-156 (1997) and Green and Jakobovits I Exp. Med. 188:483-495 (1998).
See also European Patent No., EP 0 463 151 B1, grant published June 12, 1996, International Patent Application No., WO 94/02602, published February 3, 1994, International Patent Application No., WO 96/34096, published October 31, 1996, WO 98/24893, published June 11, 1998, WO 00/76310, published December 21, 2000.
[0120] In an alternative approach, others, including GenPharm International, Inc., have utilized a "minilocus" approach. In the minilocus approach, an exogenous Ig locus is mimicked through the inclusion of pieces (individual genes) from the Ig locus.
Thus, one or more VH genes, one or more DH genes, one or more JH genes, a mu constant region, and a second constant region (preferably a gamma constant region) are formed into a construct for insertion into an animal. This approach is described in U.S. Patent No. 5,545,807 to Surani et al. and U.S.
Patent Nos. 5,545,806, 5,569,825, 5,625,825, 5,625,126, 5,633,425, 5,661,016, 5,770,429, 5,789,650, 5,814,318, 5,877,397, 5,874,299, and 6,255,458 each to Lonberg and Kay, U.S. Patent No. 5,591,669 and 6,023,010 to Krimpenfort and Berns, U.S. Patent Nos.
5,612,205, 5,721,367, and 5,789,215 to Berns et al., and U.S. Patent No. 5,643,763 to Choi and Dunn.
See also European Patent No. 0 546 073 BI, International Patent Application Nos. WO
92/03918, WO
92/22645, WO 92/22647, WO 92/22670, WO 93/12227, WO 94/00569, WO 94/25585, WO
96/14436, WO 97/13852, and WO 98/24884 and U.S. Patent No. 5,981,175.

[0121] Kirin has also demonstrated the generation of human antibodies from mice in which, through microcell fusion, large pieces of chromosomes, or entire chromosomes, have been introduced. See European Patent Application Nos. 773 288 and 843 961.
[0122] Human anti-mouse antibody (HAMA) responses have led the industry to prepare chimeric or otherwise humanized antibodies. While chimeric antibodies have a human constant region and a murine variable region, it is expected that certain human anti-chimeric antibody (HACA) responses will be observed, particularly in chronic or multi-dose utilizations of the antibody. Thus, it would be desirable to provide fully human antibodies against TNFa in order to vitiate concerns and/or effects of HAMA or HACA response.
Antibody Therapeutics [0123] As discussed herein, the function of the TNFa antibody appears important to at least a portion of its mode of operation. By õfunction, is meant, by way of example, the activity of the TNFa antibody in operation with TNFa. Accordingly, in certain respects, it may be desirable in connection with the generation of antibodies as therapeutic candidates against TNFa that the antibodies be capable of fixing complement and participating in CDC. There are a number of isotypes of antibodies that are capable of the same, including, without limitation, the following:
murine IgM, murine IgG2a, murine IgG2b, murine IgG3, human IgM, human IgGl, and human IgG3. It will be appreciated that antibodies that are generated need not initially possess such an isotype but, rather, the antibody as generated can possess any isotype and the antibody can be isotype switched thereafter using conventional techniques that are well known in the art. Such techniques include the use of direct recombinant techniques (see e.g., U.S.
Patent No. 4,816,397), cell-cell fusion techniques (see e.g., U.S. Patent Nos. 5,916,771 and 6,207,418), among others.
[0124] In the cell-cell fusion technique, a myeloma or other cell line is prepared that possesses a heavy chain with any desired isotype and another myeloma or other cell line is prepared that possesses the light chain. Such cells can, thereafter, be fused and a cell line expressing an intact antibody can be isolated.
[0125] By way of example, the TNFa antibody discussed herein is a human anti-TNFa IgG2 antibody. If such antibody possessed desired binding to the TNFa molecule, it could be readily isotype switched to generate a human IgM, human IgG1 , or human IgG3 isotype, while still possessing the same variable region (which defmes the antibody's specificity and some of its affinity). Such molecule would then be capable of fixing complement and participating in CDC.
[0126]
Accordingly, as antibody candidates are generated that meet desired "structural" attributes as discussed above, they can generally be provided with at least certain of the desired "functional" attributes through isotype switching.
Design and Generation of Other Therapeutics [0127] In accordance with the present invention and based on the activity of the antibodies that are produced and characterized herein with respect to TNFa, the design of other therapeutic modalities beyond antibody moieties is facilitated. Such modalities include, without limitation, advanced antibody therapeutics, such as bispecific antibodies, immunotoxins, and radiolabeled therapeutics, generation of peptide therapeutics, gene therapies, particularly intrabodies, antisense therapeutics, and small molecules.
[0128] In connection with the generation of advanced antibody therapeutics, where complement fixation is a desirable attribute, it may be possible to sidestep the dependence on complement for cell killing through the use of bispecifics, immunotoxins, or radiolabels, for example.
[0129] For example, in connection with bispecific antibodies, bispecific antibodies can be generated that comprise (i) two antibodies one with a specificity to TNFa and another to a second molecule that are conjugated together, single antibody that has one chain specific to TNFa and a second chain specific to a second molecule, or (iii) a single chain antibody that has specificity to TNFa and the other molecule. Such bispecific antibodies can be generated using techniques that are well known; for example, in connection with (i) and (ii) see e.g., Fanger et al.
Imnzunol Methods 4:72-81(1994) and Wright and Harris, supra. and in connection with (iii) see e.g., Traunecker et al. Int. J. Cancer (Suppl.) 7:51-52 (1992). In each case, the second specificity can be made to the heavy chain activation receptors, including, without limitation, CD16 or CD64 (see e.g., Deo et al. 18:127 (1997)) or CD89 (see e.g., Valerius et al. Blood 90:4485-4492 (1997)).
Bispecific antibodies prepared in accordance with the foregoing would be likely to kill cells expressing TNFa [0130] In connection with immunotoxins, antibodies can be modified to act as immunotoxins utilizing techniques that are well known in the art. See e.g., Vitefta Immunol Today 14:252 (1993). See also U.S. Patent No. 5,194,594. In connection with the preparation of radiolabeled antibodies, such modified antibodies can also be readily prepared utilizing techniques that are well known in the art. See e.g., Junghans et al. in Cancer Chemotherapy and Biotherapv 655-686 (2d edition, Chafner and Longo, eds., Lippincott Raven (1996)). See also U.S. Patent Nos.
4,681,581, 4,735,210, 5,101,827, 5,102,990 (RE 35,500), 5,648,471, and 5,697,902. Each of immunotoxins and radiolabeled molecules would be likely to kill cells expressing TNFa.
Preparation of Antibodies [0131] Antibodies, as described herein, were prepared through the utilization of the XENOMOUSE technology, as described below. Such mice, then, are capable of producing human immunoglobulin molecules and antibodies and are deficient in the production of murine immunoglobulin molecules and antibodies. Technologies utilized for achieving the same are disclosed in the patents, applications, and references disclosed in the background section herein. In particular, however, a preferred embodiment of transgenic production of mice and antibodies therefrom is disclosed in International Patent Application Nos. WO 98/24893, published June 11, 1998 and WO
00/76310, published December 21, 2000. See also Mendez et al. Nature Genetics 15:146-156 (1997).
[0132] Through use of such technology, fully human monoclonal antibodies to a variety of antigens have been produced. Essentially, XENOMOUSE lines of mice are immunized with an antigen of interest (e.g. TNFa), lymphatic cells (such as B-cells) are recovered from the mice that expressed antibodies, and the recovered cell lines are fused with a myeloid-type cell line to prepare immortal hybridoma cell lines. These hybridoma cell lines are screened and selected to identify hybridoma cell lines that produced antibodies specific to the antigen of interest. Provided herein are methods for the production of multiple hybridoma cell lines that produce antibodies specific to TNFa. Further, provided herein are characterization of the antibodies produced by such cell lines, including nucleotide and amino acid sequence analyses of the heavy and light chains of such antibodies.
[0133] Alternatively, instead of being fused to myeloma cells to generate hybridomas, the recovered cells, isolated from immunized XENOMOUSE lines of mice, are screened further for reactivity against the initial antigen, preferably TNFa protein. Such screening includes ELISA
with TNFa protein, a competition assay with known antibodies that bind the antigen of interest, in vitro neutralization of TNFa induced apoptosis and in vitro binding to transiently transfected CHO
cells expressing full length TNFa. Single B cells secreting antibodies of interest are then isolated using a TNFa-specific hemolytic plaque assay (Babcook et al., Proc. Natl.
Acad. Sci. USA, i93:7843-7848 (1996)). Cells targeted for lysis are preferably sheep red blood cells (SRBCs) coated with the TNFa antigen. In the presence of a B cell culture secreting the immunoglobulin of interest and complement, the formation of a plaque indicates specific TNFa-mediated lysis of the target cells. The single antigen-specific plasma cell in the center of the plaque can be isolated and the genetic information that encodes the specificity of the antibody is isolated from the single plasma cell. Using reverse-transcriptase PCR, the DNA encoding the variable region of the antibody secreted can be cloned. Such cloned DNA can then be further inserted into a suitable expression vector, preferably a vector cassette such as a pcDNA, more preferably such a pcDNA
vector containing the constant domains of immunoglobulin heavy and light chain. The generated vector can then be transfected into host cells, preferably CHO cells, and cultured in conventional nutrient media modified as appropriate for inducing promoters, selecting transformants, or amplifying the genes encoding the desired sequences. Herein, is described the isolation of multiple single plasma cells that produce antibodies specific to TNFa. Further, the genetic material that encodes the specificity of the anti-TNFa antibody is isolated, and introduced into a suitable expression vector which is then transfected into host cells.
[0134] In general, antibodies produced by the above-mentioned cell lines possessed fully human IgG1 or IgG2 heavy chains with human kappa light chains. The antibodies possessed high affinities, typically possessing Kd's of from about 10-9 through about 1043 M, when measured by either solid phase and solution phase.
[0135] As will be appreciated, anti-TNFa antibodies can be expressed in cell lines other than hybridoma cell lines. Sequences encoding particular antibodies can be used for transformation of a suitable mammalian host cell. Transformation can be by any known method for introducing polynucleotides into a host cell, including, for example packaging the polynucleotide in a virus (or into a viral vector) and transducing a host cell with the virus (or vector) or by transfection procedures known in the art, as exemplified by U.S. Patent Nos.
4,399,216, 4,912,040, 4,740,461, and 4,959,455. The transformation procedure used depends upon the host to be transformed. Methods for introducing heterologous polyuucleotides into mammalian cells are well known in the art and include dextran-mediated transfection, calcium phosphate precipitation, polybrene mediated transfection, protoplast fusion, electroporation, encapsulation of the polynucleotide(s) in liposomes, and direct microinjection of the DNA into nuclei.
[01361 Mammalian cell lines available as hosts for expression are well known in the art and include many immortalized cell lines available from the American Type Culture Collection (ATCC), including but not limited to Chinese hamster ovary (CHO) cells, HeLa cells, baby hamster kidney (BHK) cells, monkey kidney cells (COS), human hepatocellular carcinoma cells (e.g., Hep G2), and a number of other cell lines. Cell lines of particular preference are selected through determining which cell lines have high expression levels and produce antibodies with constitutive TNFa binding properties.
[0137] Anti-TNFa antibodies are useful in the detection of TNFa in patient samples and accordingly are useful as diagnostics for disease states as described herein. In addition, based on their ability to significantly neutralize TNFa activity (as demonstrated in the Examples below), anti-TNFa antibodies will have therapeutic effects in treating symptoms and conditions resulting from TNFa. In specific embodiments, the antibodies and methods herein relate to the treatment of symptoms resulting from TNFa including: fever, muscle ache, lethargy, headache, nausea, and inflammation. Further embodiments involve using the antibodies and methods described herein to treat: cachexia, anorexia, rheumatic diseases such as arthritis, inflammatory diseases such as Crohn's disease, and auto-immune diseases, such as psoriasis, graft-host reactions, and septic shock.
Therapeutic Administration and Formulations [0138]
Biologically active anti-TNFa antibodies as described herein may be used in a sterile pharmaceutical preparation or formulation to reduce the level of serum TNFa thereby effectively treating pathological conditions where, for example, serum 'TNFa is abnormally elevated. Anti-TNFa antibodies preferably possess adequate affinity to potently suppress TNFa to within the target therapeutic range, and preferably have an adequate duration of action to allow for infrequent dosing. A prolonged duration of action will allow for less frequent and more convenient dosing schedules by alternate parenteral routes such as subcutaneous or intramuscular injection.
[0139] When used for in vivo administration, the antibody formulation must be sterile.
This is readily accomplished, for example, by filtration through sterile filtration membranes, prior to or following lyophilization and reconstitution. The antibody ordinarily will be stored in lyophilized form or in solution. Therapeutic antibody compositions generally are placed into a container having a sterile access port, for example, an intravenous solution bag or vial having an adapter that allows retrieval of the formulation, such as a stopper pierceable by a hypodermic injection needle.
[0140] The route of antibody administration is 1-1,-accord with known methods, e.g., injection or infusion by intravenous, intraperitoneal, intracerebral, intramuscular, intraocular, intraarterial, intrathecal, inhalation or intralesional routes, or by sustained release systems as noted below. The antibody is preferably administered continuously by infusion or by bolus injection.
[0141] An effective amount of antibody to be employed therapeutically will depend, for example, upon the therapeutic objectives, the route of administration, and the condition of the patient. Accordingly, it is preferred that the therapist titer the dosage and modify the route of administration as required to obtain the optimal therapeutic effect.
Typically, the clinician will administer antibody until a dosage is reached that achieves the desired effect. The progress of this therapy is easily monitored by conventional assays or by the assays described herein.
[0142]
Antibodies, as described herein, can be prepared in a mixture with a pharmaceutically acceptable carrier. This therapeutic composition can be administered intravenously or through the nose or lung, preferably as a liquid or powder aerosol (lyophilized).

The composition may also be administered parenterally or subcutaneously as desired. When administered systemically, the therapeutic composition should be sterile, pyrogen-free and in a parenterally acceptable solution having due regard for pH, isotonicity, and stability. These conditions are known to those skilled in the art. Briefly, dosage formulations of the compounds described herein are prepared for storage or administration by mixing the compound having the desired degree of purity with physiologically acceptable carriers, excipients, or stabilizers. Such materials are non-toxic to the recipients at the dosages and concentrations employed, and include buffers such as TRIS HC1, phosphate, citrate, acetate and other organic acid salts; antioxidants such as ascorbic acid; low molecular weight (less than about ten residues) peptides such as polyarginine, proteins, such as serum albumin, gelatin, or immunoglobulins; hydrophilic polymers such as polyvinylpyrrolidinone; amino acids such as glycine, glutamic acid, aspartic acid, or arginine;
monosaccharides, disaccharides, and other carbohydrates including cellulose or its derivatives, glucose, mannose, or dextrins; chelating agents such as EDTA; sugar alcohols such as mannitol or sorbitol; counterions such as sodium and/or nonionic surfactants such as TWEEN, PLURONICS or polyethyleneglycol.
[0143] Sterile compositions for injection can be formulated according to conventional pharmaceutical practice as described in Remington: The Science and Practice of Pharmacy (20th ed, Lippincott Williams & Wilkens Publishers (2003)). For example, dissolution or suspension of the active compound in a vehicle such as water or naturally occurring vegetable oil like sesame, peanut, or cottonseed oil or a synthetic fatty vehicle like ethyl oleate or the like may be desired. Buffers, preservatives, antioxidants and the like can be incorporated according to accepted pharmaceutical practice.
[0144] Suitable examples of sustained-release preparations include semipermeable matrices of solid hydrophobic polymers containing the polypeptide, which matrices are in the form of shaped articles, films or microcapsules. Examples of sustained-release matrices include polyesters, hydrogels (e.g., poly(2-hydroxyethyl-methacrylate) as described by Langer et al., J.
Biomed Mater. Res., (1981) 15:167-277 and Langer, Chem. Tech., (1982) 12:98-105, or poly(vinylalcohol)), polylactides (U.S. Pat. No. 3,773,919, EP 58,481), copolymers of L-glutamic acid and gamma ethyl-L-glutamate (Sidman et al., Biopolymers, (1983) 22:547-556), non-degradable ethylene-vinyl acetate (Langer et al., supra), degradable lactic acid-glycolic acid copolymers such as the LUPRON DepotTM (injectable microspheres composed of lactic acid-glycolic acid copolymer and leuprolide acetate), and poly-D-(-)-3-hydroxybutyric acid (EP
133,988).
[0145] While polymers such as ethylene-vinyl acetate and lactic acid-glycolic acid enable release of molecules for over 100 days, certain hydrogels release proteins for shorter time periods. When encapsulated proteins remain in the body for a long time, they may denature or aggregate as a result of exposure to moisture at 37 C, resulting in a loss of biological activity and possible changes in immunogenicity. Rational strategies can be devised for protein stabilization depending on the mechanism involved. For example, if the aggregation mechanism is discovered to be intermolecular S-S bond formation through disulfide interchange, stabilization may be achieved by modifying sulfhydryl residues, lyophilizing from acidic solutions, controlling moisture content, using appropriate additives, and developing specific polymer matrix compositions.
[0146] Sustained-released compositions also include preparations of crystals of the antibody suspended in suitable formulations capable of maintaining crystals in suspension . These preparations when injected subcutaneously or intraperitonealy can produce a sustain release effect.
Other compositions also include liposomally entrapped antibodies. Liposomes containing such antibodies are prepared by methods known per se: U.S. Pat. No. DE 3,218,121;
Epstein et al., Proc.
Natl. Acad. Sci. USA, (1985) 82:3688-3692; Hwang et al., Proc. Natl. Acad.
Sci. USA, (1980) 77:4030-4034; EP 52,322; EP 36,676; EP 88,046; EP 143,949; 142,641; Japanese patent application 83-118008; U.S. Pat. Nos. 4,485,045 and 4,544,545; and EP 102,324.
[0147] The dosage of the antibody formulation for a given patient will be determined by the attending physician taking into consideration various factors known to modify the action of drugs including severity and type of disease, body weight, sex, diet, time and route of administration, other medications and other relevant clinical factors.
Therapeutically effective dosages may be determined by either in vitro or in vivo methods.
[0148] An effective amount of the antibodies, described herein, to be employed therapeutically will depend, for example, upon the therapeutic objectives, the route of administration, and the condition of the patient. Accordingly, it is preferred for the therapist to titer the dosage and modify the route of administration as required to obtain the optimal therapeutic effect. A typical daily dosage might range from about 0.001mg/kg to up to 100mg/kg or more, depending on the factors mentioned above. Typically, the clinician will,administer the therapeutic antibody until a dosage is reached that achieves the desired effect. The progress of this therapy is easily monitored by conventional assays or as described herein.
[0149] It will be appreciated that administration of therapeutic entities in accordance with the compositions and methods herein will be administered with suitable carriers, excipients, and other agents that are incorporated into formulations to provide improved transfer, delivery, tolerance, and the like. These formulations include, for example, powders, pastes, ointments, =
jellies, waxes, oils, lipids, lipid (cationic or anionic) containing vesicles (such as Lipofectinl), DNA conjugates, anhydrous absorption pastes, oil-in-water and water-in-oil emulsions, emulsions carbowax (polyethylene glycols of various molecular weights), semi-solid gels, and semi-solid mixtures containing carbowax. Any of the foregoing mixtures may be appropriate in treatments and therapies in accordance with the present invention, provided that the active ingredient in the formulation is not inactivated by the formulation and the formulation is physiologically compatible and tolerable with the route of administration. See also Baldrick P.
"Pharmaceutical excipient development: the need for preclinical guidance." Regul. Toxicol. Pharmacol.
32(2):210-8 (2000), Wang W. "Lyophilization and development of solid protein pharmaceuticals."
Int. J. Pharnz. 203(1-2):1-60 (2000), Charman WN "Lipids, lipophilic drugs, and oral drug delivery-some emerging concepts." J Pharm Sci .89(8):967-78 (2000), Powell et al. "Compendium of excipients for parenteral formulations" FDA J Pharm Sci Technol. 52:238-311 (1998) and the citations therein for additional information related to formulations, excipients and carriers well known to pharmaceutical chemists.
[0150] It is expected that the antibodies described herein will have therapeutic effect in treatment of symptoms and conditions resulting from TNFa. In specific embodiments, the antibodies and methods herein relate to the treatment of symptoms resulting from TNFa including:
fever, muscle ache, lethargy, headache, nausea, and inflammation. Further embodiments, involve using the antibodies and methods described herein to treat: cachexia, anorexia, rheumatic diseases such as arthritis, inflammatory diseases such as Crohn's disease, auto-immune diseases, such as psoriasis, graft-host reactions, and septic shock.
EXAMPLES
[0151] The following examples, including the experiments conducted and results achieved are provided for illustrative purposes only and are not to be construed as limiting upon the teachings herein.

ANTIGEN PREPARATION
TNFa-KLH Antigen Preparation for Immunization of XENOMOUSE animals [0152] Recombinant human TNFa was obtained from R&]i7µgYstems (Minneapolis, MN Cat. No. 210-TA/CF). The TNFa.-KLH antigen, used for the immunization of XENOMOUSE animals, was prepared as follows: human TNF-a (200n) (R&D) was mixed with 50 pg of keyhole limpet hemocyanin (KLH; Pierce, Rockford, IL) to a final volume of 165 il using distilled water. 250 i.t1 of conjugation buffer (0.1M MES, 0.9M NaC1, pH 4.7) was added and TNFa and KLH were crosslinked by the addition of 25 1.11 of 10mg/mL stock solution of 1-ethy1-3-[3-dimethylaminopropyl]carbodiimide hydrochloride (EDC, Pierce, Rockford, IL).
The conjugate was incubated for 2 hours at room temperature and the unreacted EDC was removed by centrifugation through a 1 kDa filter (Centrifugal filter; Millipore, Bedford, MA) using PBS pH
7.4.

TNFa-TCE Antigen Preparation for Immunization of XENOMOUSE animals [0153] Human TNFa was recombinantly generated as a fusion protein in frame with a universal T-cell epitope (TCE) (J. Immunol 1992 148(5):1499) for immunization of XENOMOUSE animals.
[0154] Human TNFa was cloned from human peripheral mononuclear cells (PBMCs).
mRNA was isolated from purified hPBMC's and cDNA was generated by reverse transcription.
Human TNFa was specifically amplified by PCR and cloned in frame with a universal T-cell epitope (TCE) derived from Tetanus toxin in the expression vector pGEX
(Amersham Pharmacia).
The fusion protein was expressed in E. Coli, purified on Glutathione Sepharose beads (CAT# 17-0756-01, Amersham Pharmacia), cleaved with thrombin (Sigma) and eluted as described by the manufacturer (Amersham Pharmacia).

ANTIBODY GENERATION
Immunization [0155] Human monoclonal antibodies against human TNFa were developed by sequentially immunizing XENOMOUSE mice (XENOMOUSE XMG2L3 or 3B-3L3 Abgenix, Inc. Fremont, CA).
[0156] To generate hybridomas, cohorts of XMG2L3 and 3B-L3 XENOMOUSE
mice were immunized with TNFa alone or TNFa with CPG via foot pad. The initial immunization was with 10 lug of antigen mixed 1:1 v/v with TITERMAX GOLD (Sigma, Oakville, ON) per.
mouse. A subsequent four boosts were performed with 10tig of antigen mixed with alum (Sigma, Oakville, ON), adsorbed overnight, per mouse, followed by one injection with TNFa in TITERMAX GOLD , one injection with alum and then a final boost of 10iLig of TNFa in PBS per mouse. 4,74t9 [0157] Cohorts receiving TNFa with CPG were first immunized with TNFa and TITERMAX GOLD as above, the next six boosts were with TNFa absorbed to Alum as previously stated along with CPG. The final boost was with TNFa in PBS and CPG. In particular, animals were immunized on days 0, 3, 9,16, 21, 25, 30 and 35. The animals were bled on days 28 and 39 to obtain sera for harvest selection as described below.
[0158] To generate mAbs by XENOMAX , cohorts of XMG2 XENOMOUSE mice were immunized with TNFa via foot pad (FP), TNFa-KLH (as prepared in Example 1) via base of the tail by subcutaneous injection and intraperitoneum (BIP), or with TNFa-TCE
(as prepared in Example 1) via base of the tail by subcutaneous injection and intraperitoneum.
For TNFa footpad immunizations, the initial immunization was with 21.1g of antigen mixed 1:1 v/v with TITERMAX
GOLD per mouse. A subsequent four boosts were performed with 2 1..ig of antigen mixed with alum (Sigma, Oakville, ON), adsorbed overnight, per mouse, followed by one injection with TNFa in TITERMAX GOLD , one injection with alum and then a final boost of 2i_tg of TNFa in PBS per mouse. In particular, animals were immunized on days 0, 3, 7,10, 14, 17, 21 and 24. The animals were bled on day 19 to obtain sera for harvest selection as described below.
[0159] The initial BIP immunization with 2 or 5pg TNFa-KLH or TNFa-TCE
respectively was mixed 1:1 v/v with Complete Freund's Adjuvant (CFA, Sigma, Oakville, ON) per mouse. Subsequent boosts were made first with 2 or Slig of antigen respectively, mixed 1:1 v/v with Incomplete Freund's Adjuvant (IFA, Sigma, Oakville, ON) per mouse, followed by a final boost in PBS per mouse. The animals were immunized on days 0, 14, 28, 42, 56, and day 75 or 93 (final boost). The animals were bled on day 63 to obtain sera for harvest selection as described below.
[0160] To generate rabbit anti-hTNFa monoclonal antibodies by SLAM, a cohort of New Zealand white rabbits were immunized as follows. A primary boost consisting of 250 tig of TNFa-TCE, emulsified 1;1 v/v with complete freund's adjuvant (CFA), was given subcutaneously in four sites along the rabbit's dorsal body. These were followed by 3 immunizations with 125 lig of TNFa-TCE emulsified 1:1 v/v with incomplete freunds adjuvant (IFA) intramuscularly via the hind legs. Each of the boosts were separated by 21 days. The animals were bled prior to the fourth immunization for serology, see Table 9 below.
Selection of animals for harvest [0161] Anti-hTNFa antibody titers were determined by ELISA. hTNFa was coated onto Costar Labcoat Universal Binding Polystyrene 96-well plates (Corning, Acton, MA) overnight at four degrees. The solution containing unbound TNFa was removed and the plates were treated with UV light (365mn) for 4 minutes (4000 microjoules). The plates were washed five times with dH20. XENOMOUSE sera from the TNFa immunized animals, or naïve XENOMOUSE
animals, were titrated in 2% milk/PBS at 1:2 dilutions in duplicate from a 1:100 initial dilution.
The last well was left blank. The plates were washed five times with dH20. A
goat anti-human IgG Pc-specific horseradish peroxidase (IMP, Pierce, Rockford, IL) conjugated antibody was added at a final concentration of 111g/mL for 1 hour at room temperature. The plates were washed five times with dH20. The plates were developed with the addition of TMB
chromogenic substrate (Gaithersburg, MD) for 30 minutes and the ELISA was stopped by the addition of 1 M phosphoric acid. The specific titer of individual XENOMOUSE animals was determined from the optical density at 450 nm and are shown in Tables 2 to 8 The titer represents the reciprocal dilution of the serum and therefore the higher the number the greater the humoral immune response to hTNFa.

[0162] Rabbit anti-TNFa titers were determined as above, but for detection of primary antibody, a goat anti-rabbit IgG heavy and light chain-specific horseradish peroxidase (HRP, Pierce, Rockford, IL) reagent was used in place of the anti-human reagent, see Table 9.
Table 2 FP, 3B-3L3 mice, h'TNFa G1 la Mouse ID Titer day 28 day 39 N474-3 1,100 N543-3 8,000 6,500 N574-5 16,000 16,000 [0163] All XENOMOUSE animals in Table 2 were selected for harvest and generation of hybridomas.
Table 3 FP, 3B-3L3 mice, hTNFa+CpG
G1 la Mouse ID Titer day 28 day 39 N643-8 19,000 70,000 N651-9 24,000 75,000 N673-7 19,000 60,000 N713-7 750 6,000 _ [0164] All XENOMOUSE animals in Table 3 were selected for harvest and generation of hybridomas.
Table 4 FP, XMG2L3 mice, hTNFa G2 ka, Mouse ID Titer day 28 day 39 N668-1 50,000 N668-2 40,000 N668-3 22,000 N668-7 150,000 175,000 N670-1 22,000 24,000 N676-6 55,000 73,000 N677-3 110,000 150,000 [0165] All XENOMOUSE animals in Table 4 were selected for harvest and generation of hybridomas.
Table 5 FP,XMG2L3mice, hTNFa+CpG
G2 kX
Mouse ID Titer day 28 day 39 N667-1 175,000 600,000 N667-3 200,000 500,000 N667-5 400,000 200,000 N677-2 325,000 600,000 N677-4 21,000 300,000 N677-5 300,000 600,000 T
[0166] All XENOMOUSE animals in Table 5 were selected for harvest and generation of hybridomas.
Table 6 FP, XMG2 mice, hTNFa IgG2/K
Mouse ID Titer Day 17 0651-8 <100 @ OD 0.666 [0167] XENOMOUSE animals (0651-2, 0651-3, 0651-5 and 0651-9) were selected for XENOMAX harvests based on the serology data in Table 6.
Table 7 B1P, XMG2 mice, hTNFa-KLH
IgG2/K
Mouse ID Titer Day 63 0797-4 >6400 @ OD 2.074 0797-7 >6400 @ OD 3.294 [0168] XENOMOUSE animals (0797-4, 0797-6, 0797-7 and 0797-10) were selected for XENOMAX harvests based on the serology data in Table 7.
Table 8 B1P, XMG2 mice, hTNFa-TCE
IgG2/K
Mouse Titer ID
Day 63 0796-4 >6400 @ OD 2.034 0796-7 >6400 @ OD 2.017 0796-8 >6400 @ OD 2.066 [0169] XENOMOUSE animals (0796-2, 0796-4, 0796-7, 0796-8 and 0796-10) were selected for XENOMAX harvests based on the serology data in Table 8.
Table 9 Rabbit IPI-5 Rabbit ID Titer Day 63 1P1-5 500,000 [0170] Blood from rabbit IPI-5 was harvested for generating rabbit monoclonal antibodies by SLAM.

GENERATION OF ANTI-HUMAN TNFa ANTIBODIES
Generation of Anti-hTNFa Antibodies by Hybridoma.
Recovery of lymphocytes, B-cell isolations, fusions and generation of hybridomas [0171] Immunized mice were sacrificed by cervical dislocation, and the lymph nodes harvested and pooled from each cohort. The lymphoid cells were dissociated by grinding in DMEM to release the cells from the tissues and the cells were suspended in DMEM. The cells were counted, and 0.9 mL DMEM per 100 million lymphocytes added to the cell pellet to resuspend the cells gently but completely. Using 10011L of CD90+ magnetic beads per 100 million cells, the cells were labeled by incubating the cells with the magnetic beads at 4 C for 15 minutes.
The magnetically labeled cell suspension containing up to 108 positive cells (or up to 2x109 total cells) was loaded onto a LS + column and the column washed with DMEM. The total effluent was collected as the CD90-negative fraction (most of these cells are B cells).
[0172] P3 myeloma cells and B cell-enriched lymph node cells were combined in a ratio of 1:1 (myeloma:lymph nodes) into a 50 mL conical tube in DMEM. The combined cells were centrifuged at 800xg (2000 rpm) for 5-7 min. and the supernatant immediately removed from the resulting pellet. Two to four mL of Pronase solution (CalBiochem, Cat.
#53702; 0.5mg/mL in PBS) was added to the cells to resuspend the cell pellet gently. The enzyme treatment was allowed to proceed for no more than two minutes and the reaction stopped by the addition of 3-5 mL of FBS. Enough ECF solution was added to bring the total volume to 40 mL and the mixture was centrifuged at 800xg (2000 rpm) for 5-7 min. The supernatant was removed and the cell pellet gently resuspended with a small volume of ECF solution, followed by enough ECF
solution to make a total volume of 40 mL. The cells were mixed well and counted, then centrifuged at 800xg (2000 rpm) for 5-7 min. The supernatant was removed and the cells resuspended in a small volume of ECF solution. Enough additional ECF solution was added to adjust the concentration to 2 x 106 cells/mL.
[0173] The cells were then placed in an Electro-Cell-Fusion (ECF) generator (Model ECM2001, Genetronic, Inc., San Diego, CA) and fused according to the manufacturer's instructions. After ECF, the cell suspensions were carefully removed from the fusion chamber under sterile conditions and transferred into a sterile tube containing the same volume of Hybridoma Medium in DMEM. The cells were incubated for 15-30 minutes at 37 C, then centrifuged at 400xg (1000 rpm) for five minutes. The cells were gently resuspended in a small volume of 1/2 HA medium (1 bottle of 50X HA from Sigma, Cat. #A9666 and 1 liter of Hybridoma Medium) and the volume adjusted appropriately with more V2 HA medium (based on 5x106 B cells per 96-well plate and 2004 per well). The cells were mixed well and pipetted into 96-well plates and allowed to grow. On day 7 or 10, one-half the medium was removed, and the cells re-fed with 'A HA medium.
Selection of candidate antibodies by ELISA
[0174] After 14 days of culture, hybridoma supernatants were screened for TNFa-specific monoclonal antibodies. The ELISA plates (Fisher, Cat. No. 12-565-136) were coated with 504/well of TNFa (2 g/mL) in Coating Buffer (0.1 M Carbonate Buffer, pH 9.6, NaHCO3 8.4 g/L), then incubated at 4 C overnight. After incubation, the plates were washed with Washing Buffer (0.05% Tween 20 in PBS) 3 times. 2004/well Blocking Buffer (0.5% BSA, 0.1% Tween 20, 0.01% Thimerosal in lx PBS) were added and the plates incubated at room temperature for 1 hour. After incubation, the plates were washed with Washing Buffer three times. 504/well of hybridoma supernatants, and positive and negative controls were added and the plates incubated at room temperature for 2 hours.
[0175] After incubation, the plates were washed three times with Washing Buffer.
1004/well of goat anti-huIgGfc-HRP detection antibody (Caltag, Cat. #H10507), goat anti-Mg kappa-HRP (Southern Biotechnology, Cat. # 2060-05) and goat anti-Mg lambda (Southern Biotechnology, Cat. # 2070-05) were added and the plates were incubated at room temperature for 1 hour. After the incubation, the plates were washed three times with Washing Buffer. 100 ul/well of TMB (BioFX Lab. Cat. #TMSK-0100-01) were added and the plates allowed to develop for about 10 minutes (until negative control wells barely started to show color), then 50 ul/well stop solution (TMB Stop Solution (BioFX Lab. Cat. #STPR-0100-01) were added and the plates read on an ELISA plate reader at wavelength 450nm. The number of positive wells is presented in Table 10.
Table 10 Group # hlgG/hkappa hlgG/hlamda Total # positive fusion 1+2 (3B-3L3) 9 9 18 fusion 3+4 (xgm2L3) 21 12 33 Secondary screen to determine the isotype and light chain usage for the anti-TNFa hybridoma supernatants using Luminex [0176] The Luminex platform is a fluorescence bead based technology which enables one to run multiple assays at once. The Luminex reader is able to ascertain positive signaling events on different coded microspheres. This allows one to coat each bead separately, then mix the differentially coated microspheres together and then in one step assay antibody binding to each of the different microspheres. For isotyping antibodies, microspheres were coated in such a manner in that each bead was able to specifically bind a particular heavy chain or light chain isotype. The microspheres were then mixed together and hybridoma supernatant for each antibody was added.
After a 20 minute incubation, the microspheres were washed, and the bound antibody was detected using a fluorescently labeled secondary antibody. The microspheres were then read using the Luminex reader. Table 10 shows number of each isotype found for the different fusion groups.
Neutralization of TNFa induced apoptosis assays by hybridoma anti-TNFa antibodies [0177] 47 anti-TNFa hybridoma antibodies were assayed for their ability to neutralize the biological effect of TNFa induced apoptosis on human WM 266.4 cells. IgG
was first enriched from each hybridoma supernatant by purification on Swell-Gel protein A
(Pierce), and then eluted, neutralized, and quantified. 20,000 WM266.6 cells were plated in 96-well plates in complete media (RPMI1640/10%FBS/G1n/P/S) and incubated at 37 C/10%CO2 overnight. Media was removed and 50 L of test antibodies and TNFa (pre-incubated for 30' at room temperature) were added in serum free media (RPMI1640/G1n/P/S). 504, cyclohexamide plates were incubated overnight as above under the following final assay conditions: V=100 I, cyclohexamide = 6 g/mL, TNFa = 600 pg/mL = 11.4 pM as a trimer, test antibodies concentrations vary as described.
10O L Caspase buffer and 0.3 L Caspase substrate (APO-ONE, Promega) were added to each well.
[0178] Caspase activity was determined on a Victor Wallac plate reader with the excitation wavelength @ 485 mu and the emission wavelength @ 530 mu. An example of the neutralization of apoptosis by hybridoma derived antibodies is provided in Figure 1. Figure 1 shows a bar graph illustrating the effect that various TNFa antibodies had on neutralizing apoptosis in human WM 266.4 cells. A control (pos) shows the induction of apoptosis by TNFa in the presence of cyclohexamide alone. Another control shows inhibition of apoptosis by 6 nM mouse anti-hTNFa antibody (R&D). The Y-axis represents the relative amount of caspase 3/7 activity as an indication of TNFa induced apoptosis. As Figure 1 illustrates, antibodies, including 3.2, 3.7 and 4.17 were very potent at neutralizing TNFa induced apoptosis at 3 nM.
Neutralization of apoptosis by propidium iodide incorporation assay [0179] The 47 anti-hTNFa hybridoma antibody supernatants were further assayed for their ability to neutralize the biological effect of TNFa induced apoptosis on human MCF-7 cells.
96-well plates were seeded at 5000 cells/well, 200121/well with phenol red free DMEM + 10% FCS.
The cells were incubated overnight at 37 C + 5% CO2. On each plate a titration of hybridoma antibody (quantitated by capture ELISA, as described in Example 2, and compared to a standard curve control Ab) was assayed along-side Rabbit 014 control Ab from 10 g/mL to a fmal concentration of 0.005ng/mL (titrated 1:5) in apoptosis medium (2.5% FCS, 5 iug/mL CHX in phenol red free DMEM), in triplicate, at a constant concentration of 100 pg/mL
(1.9 pM as a trimer) TNFa. Six well plates with TNFa alone and 6 wells with apoptosis medium alone were also included. TNFa +/- neutralizing antibody was pre-incubated for 1 hour at 37 C
+ 5% CO2. 200 L
of antibody was then transferred to the cells and incubated overnight at 37 C
+ 5% CO2.
[0180] Cells were stained with 0.5ug/mL PI and 2.5 g/mL Heochst 33342 for one hour. The percentage of apoptosis was determined by counting the number of dead cells (PI +ve) and dividing by the total number of cells (Heochst +ve). The ability of hybridoma derived, human anti-TNFa binding antibodies to neutralize TNFa induced apoptosis of MCF-7 cells was measured by propidium iodide uptake as a ratio of the number of total cells by Heochst 33342 staining.
SLAM derived rabbit mAb, R014, as well as various other human mAbs, including 3.2, 4.17 and 3.7 were very potent at neutralizing TNFa induced apoptosis of MCF-7 cells.
Isoptype switching and expression of IgG2 hybridomas 4.17 and 3.2 [0181] mRNA was extracted from hybridomas 4.17 and 3.2. Reverse transcriptase PCR was conducted to generate cDNA. The cDNA encoding the variable heavy and light chains was specifically amplified using PCR. The variable heavy chain region was cloned into an IgG1 expression vector. This vector was generated by cloning the constant domain of human IgG1 into the multiple cloning site of pcDNA3.1+/Hygro (Invitrogen, Burlington, ON). The variable light chain region was cloned into an IgK expression vector or IgX. These vectors were generated by cloning the constant domain of human IgK or IgX into the multiple cloning site of pcDNA3.1+/Neo (Invitrogen, Burlington, ON). The heavy chain and the light chain expression vectors were then co-lipofected into a 60 mm dish of 70% confluent human embryonal kidney 293 cells and the transfected cells were allowed to secrete a recombinant antibody with the identical specificity as the original plasma cell for 24-72 hours. The supernatant (3 mL) was harvested from the HEK 293 cells and the secretion of an intact antibody was demonstrated with a sandwich ELISA to specifically detect human IgG. The specificity was assessed through binding of the recombinant antibody to TNFa using ELISA.
Generation of Anti-hTNFa Antibodies by XENOMAX
Culture and selection of B cells [0182] B-cells from the animals were harvested and cultured. Those secreting TNFa-specific antibodies were isolated as described in Babcook et al., Proc. Natl.
Acad. Sci. USA, 93:7843-7848 (1996). ELISA was used to identify primary TNFa-specific wells.
About 18 million B-cells were cultured from XENOMOUSE animals in 480 96 well plates at 500 or 150 cells/well, and were screened on TNFa to identify the antigen-specific wells. 3,825 wells showed ODs significantly over background, a representative sample of which are shown in Table 11. Rabbit B-cells were also screened for their ability to secrete anti-TNFa antibodies and positives further assayed as described below.
Table 11 Positives above cut off OD of:
Plates ID's >0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.5 2 2.5 3 3.5 4 Plates 191-230 3840 3110 313 158 136 117 109 105 101 97 93 77 60 49 44 27 1 Plates 231-269 3744 2665 339 167 137 130 116 111 106 101 95 78 58 50 43 25 13 Total 325 Normalization of antigen specific antibody concentrations [0183] Using an ELISA method, supernatants for concentration of antigen specific antibody were normalized. Using an anti-target (TNFa) antibody of known concentration titrated in parallel, a standard curve can be generated and the amount of antigen specific antibody in the supernatant can be compared to the standard and it's concentration determined, see Table 12 below.

Table 12 ELISA OD on Antigen Extrapolated Concentration ng/mL *
1:40 1:80 1:160 1:320 Conc. At Conc. At Conc. At Conc. At mab ID Average dilution dilution dilution dilution 1:40 1:80 1:160 1:320 439A3 2.1 1.5 0.9 0.5 112 103 101 105 460Al2 1.7 1.1 0.6 0.4 69 63 66 401A7 1.6 1.1 0.6 0.4 66 62 64 327D12 2.4 1.7 1.1 0.7 131 129 130 402G10 1.1 0.6 0.4 0.3 36 28 32 360A5 2.4 1.6 1.1 0.7 130 138 134 436F1 2.3 1.6 1.1 0.7 145 134 139 410F1 1.3 0.8 0.5 0.3 46 46 46 356B4 1.7 1.1 0.7 0.4 65 66 66 433F4 0.5 0.3 0.2 0.2 12 12 454G7 1.9 1.3 0.7 0.4 88 75 81 * Data points outside the linear region of the ELISA reader were excluded.
Limited antigen assay [0184] The limited antigen analysis is a method that affinity ranks the antigen-specific antibodies prepared in B-cell culture supernatants relative to all other antigen-specific antibodies.
In the presence of a very low coating of antigen, only the highest affinity antibodies should be able to bind to any detectable level at equilibrium. (See, e.g., PCT Publication entitled "IDENTIFICATION OF HIGH AFFINITY MOLECULES BY LIMITED DILUTION
SCREENING" published on June 12, 2003).
[0185]
Biotinylated TNFa was bound to streptavidin plates at three concentrations;
lng/mL, 0.1ng/mL and 0.0 lng/mL for 1 hour at room temperature on 96-well culture plates. Each plate was washed 5 times with dH20, before 454, of 1% milk in PBS with 0.05%
sodium azide were added to the plate, followed by 5 1_, of B cell supernatant added to each well. After 18 hours at room temperature on a shaker, the plates were again washed 5 times with dH20. To each well was added 504, of Gt anti-Human (Fc)-HRP at 1 ug/mL. After 1 hour at room temperature, the plates were again washed 5 times with dH20 and 504, of TMB substrate were added to each well.
The reaction was stopped by the addition of 50uL of 1M phosphoric acid to each well and the plates were read at wavelength 450nm to give the results shown in Table 13.

Table 13 Coating Concentrations Well 1' Screen lng/ml 0.1ng/m1 0.01ng/m1 (OD) 401A7 2.92 1.94 0.33 0.19 433F4 2.96 1.12 0.24 0.20 337E7 2.53 0.97 0.47 0.19 164C7 1.97 0.81 0.24 0.16 356B4 2.87 0.69 0.17 0.15 402A4 2.33 0.61 0.35 0.18 286B9 2.56 0.32 0.32 0.27 203A2 2.33 0.23 0.15 0.19 286G8 2.06 0.21 0.19 0.19 286E11 2.93 0.18 0.23 0.19 286D12 0.78 0.18 0.21 0.25 286G1 0.82 0.17 0.16 0.18 286C4 0.75 0.17 0.17 0.19 286G6 0.97 0.16 0.18 0.14 287D1 0.58 0.16 0.19 0.16 Limited antigen analysis [0186] B-cell culture supernatants were prepared having concentrations of antigen specific antibody ranging from lOng/mL to 1000ng/mL. The results generated from limited antigen analysis were compared to a titration of 4.17 hybridoma derived antibody. In this assay many of the antibodies were not able to give detectable binding, however there were a number of wells including 401A7 and 433F4, which were clearly superior as measured by O.D. to the other culture supernatants and recombinant antibodies at all concentrations (Table 13). The remaining clones were further analyzed by combining the high antigen data which measures specific antibody concentration, (see above for details) and the limited antigen output. In this way it was possible to compare antibodies in B-cell culture supernatants to that of the control antibody over a concentration range as shown in Figure 2. Figure 2 is a point graph that compares the anti-TNFa limited antigen binding between antibodies in B-cell culture supernatants to that of a control antibody (4.17 IgG2) over a concentration range. The triangles represent the B-cell culture supernatant clones, and the blocks represent Bar Antibody (4.17 IgG2). B-cell culture supernatant clones with points above the bar antibody curve are ranked as having potentially higher affinity.
Neutralization of apoptosis by propidium iodide incorporation assay [0187] All 1455 anti-hTNFa antibodies identified from B-cell culture well supernatants from foot-pad immunized mice were further assayed for their ability to neutralize the biological effect of TNFa induced apoptosis on human MCF-7 cells. In addition, after limited antigen analysis of all 2,370 anti-hTNFa identified from B1P immunized animals, 145 antibodies having the highest kinetic ranking were further analyzed for neutralizing TNFa activity. 96 well plates were seeded at 5000 cells MCF-7/well, 2004/well with phenol red free DMEM + 10% FCS.
Plates were incubated overnight at 37 C + 5% CO2. On each plate B-cell culture antibody supernatant was assayed along-side the most potent neutralizing anti-TNFa hybridoma antibodies, 4.17 and 3.2 and/or Rabbit 014 control in apoptosis medium (2.5% FCS, 5 g/mL
CHX in phenol red free DMEM), at a constant concentration of 100 pg/mL (1.9 pM as a trimer) TNFa. Replicate wells with TNFa in apoptosis media and wells with apoptosis medium alone were included as controls. TNFa +/- test sample was pre-incubated for 1 hour at 37 C + 5% CO2.
2001AL TNFa +/-was transferred to cells and incubated overnight at 37 C + 5% CO2.
[0188] Cells were stained with 0.5 g/mL PI and 2.51.tg/mL Heochst 33342 for one hour. Percentage of apoptosis was determined by counting the number of dead cells (PI +ve) and dividing by the total number of cells (Heochst +ve). An example is show in Figure 3 which shows a representative bar graph that compares the effectiveness of various XENOMAX
B-cell culture supernatants at inhibiting TNFa induced cell apoptosis in human MCF-7 cells. A
number of B-cell culture well supernatants showed the ability to neutralize TNFa induced apoptosis. These supernatants included: 164C7, 179B1, 401A7, 410B1, 439A3 and 460Al2.
Neutralization potency determination of TNFa induced apoptosis by anti-hTNFa antibodies in polyclonal solutions [0189] Using the extrapolated concentrations of antigen specific antibodies in polyclonal B-cell culture supernatants, the apparent potency of neutralization of TNFa induced apoptosis on MCF-7 cells was calculated. By performing the assay in parallel with a standard anti-target reagent, in this case the hybridoma derived antibody 3.2 IgG2, it was possible to set a potency bar and look for antibodies with higher potential potency than the standard.
[0190] An example of calculated potency comparisons for neutralization of TNFa induced apoptosis on MCF-7 cells is shown in Figure 4. Fig. 4 is a representative point graph that shows calculated potency comparisons for neutralization of TNFa induced apoptosis on human MCF-7 cells by XENOMAX B-cell culture supernatants. The triangles represent the potency of B-cell culture supernatants, while the squares represent the potency of a bar control, 3.2 IgG2. A
number of B-cell culture supernatants showed greater neutralization of TNFa induced apoptosis at lower anti-TNFa antibody concentrations than that of the 3.2 control standard curve, indicating greater potency.
Inhibition of TNFa binding to p55 (TNFa receptor I) by Rabbit Antibodies [0191]
Rabbit anti-TNFa neutralizing antibodies were found by examining whether or not the antibodies from the B-cell culture supernatants were able to inhibit TNFa binding to its p55 receptor. The following procedure was followed. 96 well microtiter plates were coated overnight with TNFa. The following day, the plates were washed and incubated +1- anti-TNFa antibodies for 1 hr. Biotin-p55 was then spiked into the plates for lhr, washed with water and bound p55 was detected using Streptavidin-HRP. Plates were then washed and developed as done with other ELISAs described above. Antibodies which inhibited the binding of p55 were terrned neutralizing, see Table 14.
Table 14 Abs Assay 1 Assay 2 9C10 0.32 1.26 10G8 0.23 0.59 11A1 0.52 0.55 7A4 0.08 0.39 6A1 0.4 0.42 4A11 0.67 0.56 2Al2 0.37 1.19 6A6 0.29 0.92 TNFa alone 0.3 0.97 TNFa-specific Hemolytic Plaque Assay [0192] A
number of specialized reagents were used to conduct this assay. These reagents were prepared as follows.
Biotinylation of Sheep red blood cells (SRBC) [0193]
SRBCs were stored in RPMI media as a 25% stock. A 250 L SRBC packed-cell pellet was obtained by aliquoting 1.0 mL of SRBC to a fresh eppendorf tube. The SRBC were pelleted with a pulse spin at 8000 rpm (6800 rcf) in microfu.ge, the supernatant drawn off, the pellet re-suspended in 1.0 mL PBS at pH 8.6, and the centrifugation repeated. The wash cycle was repeated 2 times, then the SRBC pellet was transferred to a 15-mL falcon tube and made to 5 mL
with PBS pH 8.6. In a separate 50 mL falcon tube, 2.5mg of Sulfo-NHS biotin was added to 45 mL
of PBS pH 8.6. Once the biotin had completely dissolved, the 5 mL of SRBCs were added and the tube rotated at RT for 1 hour. The SRBCs were centrifuged at 3000rpm for 5 min and the supernatant drawn off. The Biotinylated SRBCs were transferred to an eppendorf tube and washed 3 times as above but with PBS pH 7.4 and then made up to 5 mL with immune cell media (RPMI
1640) in a 15 mL falcon tube (5% B-SRBC stock). Stock was stored at 4 C until needed.

Streptavidin (SA) coating of B-SRBC
[0194] 1 mL of the 5% B-SRBC stock was transferred into a fresh eppendorf tube.
The B-SRBC cells were washed 3 times as above and resuspended in 1.0 mL of PBS
at pH 7.4 to give a final concentration of 5% (v/v). 104 of a 10mg/mL streptavidin (CalBiochem, San Diego, CA) stock solution was added and the tube mixed and rotated at RT for 20min.
The washing steps were repeated and the SA-SRBC were re-suspended in 1 mL PBS pH 7.4 (5% (v/v)).
Human TNFa coating of SA-SRBC
[0195] The SA-SRBCs were coated with biotinylated-TNFa at lOug/mL, mixed and rotated at RT for 20 min. The SRBC were washed twice with 1.0 mL of PBS at pH
7.4 as above.
The TNFa-coated SRBC were re-suspended in RPMI (+10%FCS) to a final concentration of 5%
(v/v.
Determination of the quality of TNFa-SRBC by immunofluorescence (IF) [0196] 104, of 5% SA-SRBC and 104 of 5% TNFa-coated SRBC were each added to a separate fresh 1.5 mL eppendorf tube containing 40 L of PBS. A control human anti-TNFa antibody was added to each sample of SRBCs at 45 g/mL. The tubes were rotated at RT for 25 min, and the cells were then washed three times with 1004 of PBS. The cells were re-suspended in 504, of PBS and incubated with 40 ttg/mL Gt-anti Human IgG Fe antibody conjugated to A1exa488 (Molecular Probes, Eugene, OR). The tubes were rotated at RT for 25 min, and then washed with 100 L PBS and the cells re-suspended in 104 PBS. 104 of the stained cells were spotted onto a clean glass microscope slide, covered with a glass coverslip, observed under fluorescent light, and scored on an arbitrary scale of 0-4.
Preparation of plasma cells [0197] The contents of a single microculture well previously identified by various assays as containing a B cell clone secreting the immuno globulin of interest were harvested. Using a 100-1000pL pipetman, the contents of the well were recovered by adding 37 C
RPMI (10%
FCS). The cells were re-suspended by pipetting and then transferred to a fresh 1.5 mL eppendorf tube (final vol. approx 500-7004). The cells were centrifuged in a microfuge at 2500 rpm (660 rcf) for 1 minute at room temperature, then the tube was rotated 180 degrees and spun again for 1 minutes at 2500 rpm. The freeze media was drawn off and the immune cells resuspended in 1004 RPMI (10% FCS), then centrifuged. This washing with RPMI (10% FCS) was repeated and the cells re-suspended in 604 RPMI (10% FCS) and stored on ice until ready to use.
Plaque assay [0198] Glass slides (2 x 3 inch) were prepared in advance with silicone edges and allowed to cure overnight at RT. Before use the slides were treated with approx. 51.1L of SigmaCoat (Sigma, Oakville, ON) wiped evenly over glass surface, allowed to dry and then wiped vigorously.
To a 604, sample of cells was added 60),IL each of TNFa-coated SRBC (5% v/v stock), 4x guinea pig complement (Sigma, Oakville, ON) stock prepared in RPMI (10%FCS), and 4x enhancing sera stock (1:150 in RPMI (10%FCS)). The mixture -) was spotted (10-15 L) onto the prepared slides and the spots covered with undiluted paraffin oil. The slides were incubated at 37 C for a minimum of 45 minutes.
Plaque assay results [0199] TNFa coated sheep red blood cells were used to identify antigen-specific plasma cells from the wells (see Table 15).
Table 15 mAb ID Number of Single Single Cell Numbers Cells picked , 460Al2 12 268 Expression of Recombinant anti-TNFa Antibodies [0200] After isolation of the single plasma cells, mRNA was extracted and reverse transcriptase PCR was conducted to generate cDNA encoding the variable heavy and light chains.
The human variable heavy chain region was cloned and isotype switched into an IgG1 expression vector. This vector was generated by cloning the constant domain of human IgG1 into the multiple cloning site of pcDNA3.1+/Hygro (Invitrogen, Burlington, ON). The human variable light chain region was cloned into an IgK expression vector. These vectors were generated by cloning the constant domain of human IgK into the multiple cloning site of pcDNA3.1+/Neo (Invitrogen, Burlington, ON). The heavy chain and the light chain expression vectors were then co-lipofected into a 60 mm dish of 70% confluent human embryonal kidney 293 cells and the transfected cells were allowed to secrete a recombinant antibody with the identical specificity as the original plasma cell for 24-72 hours. The supernatant (3 mL) was harvested from the HEK 293 cells and the secretion of an intact antibody was demonstrated with a sandwich ELISA to specifically detect human IgG (Table 16). Specificity was assessed through binding of the recombinant antibody to TNFa using ELISA.
Table 16 Supernatant Titer total antibody antigen binding 11A8 >1:64 >1:64 27A9 1:16 1:64 103H1 >1:64 1:64 107A6 >1:64 >1:64 107G12 >1:64 >1:64 164C7 >1:64 >1:64 203A2 >1:64 >1:64 401A1 >1:64 >1:64 402G10 >1:64 >1:64 [0201] The secretion ELISA tests were performed as follows. Control plates were coated with 2mg/mL goat anti-human IgG H+L overnight as for binding plates, hTNFa was coated onto Costar Labcoat Universal Binding Polystyrene 96 well plates and held overnight at 4 C. The plates were washed five times with dH20. Recombinant antibodies were titrated 1:2 for 7 wells from the undiluted minilipofection supernatant. The plates were washed five times with dH20. A
goat anti-human IgG Pc-specific HRP-conjugated antibody was added at a final concentration of lp.g/mL for 1 hour at RT for the secretion and the two binding assays. The plates were washed five times with dH20. The plates were developed with the addition of TMB for 30 minutes and the ELISA was stopped by the addition of 1 M phosphoric acid. Each ELISA plate was analyzed to determine the optical density of each well at 450 am.
[0202] Rabbit antibody genes were rescued, cloned and expressed as above, but were cloned into vectors containing rabbit IgG1 heavy constant or kappa constant regions. Cells from well 7A4 (Table 14) were isolated, cloned and expressed as a fully rabbit antibody, R014 (AB-TNFa-R014).
Purification of Recombinant Anti-TNFa Antibodies [0203] For larger scale production, heavy and light chain expression vectors (2.5 jig of each chain/dish) were lipofected into ten 100 mm dishes that were 70%
confluent with HEK 293 cells. The transfected cells were incubated at 37 C for 4 days, the supernatant (6 mL) was harvested and replaced with 6 mL of fresh media. At day 7, the supernatant was removed and pooled with the initial harvest (120 niL total from 10 plates). Each antibody was purified from the supernatant using a Protein-A Sepharose (Amersham Biosciences, Piscataway, NJ) affinity chromatography (1 mL). The antibody was eluted from the Protein-A column with 500 mcL of 0.1 M Glycine pH 2.5. The eluate was' dialysed in PBS pH 7.4 and filter sterilized. The antibody was analyzed by non-reducing SDS-PAGE to assess purity and yield. Concentration was also measured by UV analysis at OD 250.

BINDING OF ANTI-TNFa ANTIBODIES TO TRANSMEMBRANE TNFa [0204] Both soluble and membrane-bound TNFa can interact with TNFa receptors and contribute to TNFa pro-inflammatory effects. Therefore, it was important to establish whether 299v2 and 263 can effectively bind to membrane-bound TNFa, in addition to the soluble version of the molecule. To this end, TNFa-transfected CHO cells were used as well as activated T cells.
[0205] Binding of anti-TNFa reagents to transmembrane mutant TNFa expressed on the surface of CHO cells was measured. Specifically, purified, quantitated IgG2 kappa and lambda hybridoma antibodies as well as isotype switched hybridoma and XENOMAX
derived IgG1 recombinant antibodies were assayed for their ability to bind transmembrane TNFa expressed on the surface of Chinese hamster ovary cells, CHO's. TNFa cDNA was mutated at various positions to prevent cleavage of TNFa from the surface of cells. The cDNA was then cloned into an expression vector. CHO cells were transfected and stable expressing cells were placed under drug selection to generate a DTNFa cell line. Anti-TNFa antibodies, as well as Etanercept, were titrated and added to DTNFa CHO cells on ice for 1 or 18 hours. Cells were washed in cold PBS and a secondary biotinylated anti-rabbit or human IgG was further incubated on ice for 10 minutes, washed and a tertiary SA-PE labeled antibody was added on ice for an additional 10 minutes.

Fluorescence activated cell sorting (FACS) was used to determine binding and staining profiles with antibodies at various concentrations.
[0206] At low concentrations, the human antibodies, as well as chimeric Infliximab and rabbit R014, bound the transmembrane form of TNFa on cells, whereas Etanercept clearly showed a lower binding signal. 299v2, 263, Infliximab, Adalimumab and Etanercept were incubated 18 hours at 4 degrees C on the DTNF-CHO cells at 0.1 ug/mL. With reference to the monoclonal antibodies, 299v2 and adalumimab apparently stained less than 263 and infliximab.
The resulting data suggests that Fe mediated effects such as antibody-dependant cytotoxicity (CDC) and antibody-dependant cellular cytotoxicity (ADCC) should be observed on cells expressing transmembrane TNFa. A number of the generated antibodies can have more potent Fe mediated effects than Infliximab and Etanercept. This may be of particular benefit for the treatment of diseases where cell surface TNFa may play a patho-physiological role such as Crohn's or psoriasis.
[0207] For the treatment of disease indications where soluble forms of TNFa may mediate the majority of the disease state, an antibody with low Fe mediated effector function may be desirable. This could be achieved by expressing the anti-TNFa antibody as an IgG2 or IgG4 isotype.
[0208] Binding of anti-TNFa reagents to activated PBMC was also measured.
PBMCs were isolated from a noimal donor and incubated with an anti-CD3 antibody to activate T
cells. T cell activation implies surface TNFa expression of membrane-bound TNFa. The ability of anti-TNFa reagents to bind to membrane-bound TNFa was again assessed at various concentrations by FACS analysis, gating on lymphocytes on the ground of light scattering and using a PE-conjugated anti-human IgG secondary antibody. The resulting staining data indicated that all the monoclonal antibodies 299v2, 263, Infliximab and adalumimab stained lymphocytes after T cell activation, while Etanercept does not. No anti-TNFa antibody stained lymphocytes if they were not subjected to T cell activation.

EPITOPE BINNING ASSAYS
Epitope mapping of anti TNFa Antibodies [0209] The following describes the method used to map epitopes of anti TNFa Antibodies. Chimeric TNFa proteins, using human and mouse TNFa, were constructed and expressed. An alignment of human and mouse TNFa is provided in Table 17.

Table 17 Human:VRSSSRTPSDKPVAHVVANPQAEGQLQWLNRRANA
Mouse:LRSSSQNSSDKPVAHVVANHQVEEQLEWLSQRANA
Human:LLANGVELRDNQLVVPSEGLYLIYSQVLFKGQGCP
Mouse:LLANGMDLKDNQLVVPADGLYLVYSQVLFKGQGCP
Human:STHVLLTHTISRIAVSYQTKVNLLSAIKSPCQRE
Mouse:DY-VLLTHTVSRFAISYQEKVNLLSAVKSPCPKD
Human:TPEGAEAKPWYEPIYLGGVFQLEKGDRLSAEINR
Mouse:TPEGAELKPWYEPIYLGGVFQLEKGDQLSAEVNL
Human:PDYLDFAESGQVYFGIIAL SEQ ID NO:265 Mouse:PKYLDFAESGQVYFGVIAL SEQ ID NO:266 [0210] Restriction cleavage sites common in human and murine TNFa-a genes were used for construction of in-frame fusion TNFa chimeric proteins. Seven constructs were made:
human TNFa, mouse TNFa, H/M BglI, M/H BglI, HIM HincII, HIM Pvull, Mill Pvull.
All proteins were expressed and secreted in detectable levels measured by an ELISA
assay using polyclonal antibodies against human and mouse TNFa. Chimeric TNFa proteins:
the amino acid joining points are at positions: BglI- 36/37, HincII-90/92, Pvull ¨ 124/126.
The difference on one amino acid in the last two cases is due to the absence of the histkline residue at position 73 in the murine TNFa sequence. An example of anti-TNFa antibodies binding to these proteins by ELISA is in Table 18.
Table 18 Construct Goat Goat 3.2 3.7 4.17 Human Anti- Anti- Ab Ab Ab residues Mouse human H-TNFa +++ ' + 1-M TNFa None H/MBgll ++++ +++ 1-36 M/HuBgll +-H- 36-Hu/IVI +++ 1-PVull M/Hu ++ 125-PVull Hu/M 1 H + ++ ++ 1-91 Hin C 11 1-91 [0211] In order to defme the binding site for different antibodies, a number of residues of hTNFa were mutated using site directed mutagenesis. A panel of antibodies was screened for binding by an ELISA assay. Human residues were replaced with the murine residues at position 27, 31, and 131. Histidine at position 73 was deleted, an example is illustrated in Table 19.
Table 19 Human 1-36 36-157 1-125 1-91 1-157 R31Q R31Q, R131Q His Amino acid mut Q27E mut 73de1 residues mut 250Ab - - - - +++ +++ +++ +++ +++
263Ab - - - - -H-+ +++ +++ +++
+++
269Ab - - - . - +++ +++ +++
+++ +++
282 Ab - -- - - +++ +++ +++ +++ +++
283 Ab - - - - +++ +++ +++ +++ +++
291 Ab +++ - +++ +++ +++ -- - +++
+++
299v2Ab +++ -- +++ +++ +++ - - i li +++
313 Ab +++ - +++ +++ -H-+ - - +++
+++
Infliximab - - - - +++ +++ +++
+++ +++
3.2.1 - - ++ ++ - ++ ++ +++ +-H-3.7.1 - ++ - - - ++ ++ +-H- +++
4.17.1 ++ - ++ ++ - + - +++ +++
Rabbit +++ - +++ +++ +++ +++ +++ +++ +++

[0212] As illustrated by Table 19, the binding site for Rabbit 014, 4.17, SC291, SC299 and SC313 are located in the first 36 amino acid residues of human TNFa. Amino Acids 31-35 have been shown to be involved in receptor recognition and triggering of biological response (Jones, E.Y., Stuart, D.I., and Walker, NPC., (1992) in Tumor Necrosis Factors: Structure, Function and Mechanism of Action (Aggarwal, B.B., and Vilcek, J., eds) pp 93-127, Marcel Dekker, Inc., New-York a non-conservative change of Arg31 was introduced for further epitope mapping. The single amino acid change at position 31 was shown to knock out the binding of SC291, SC299 and SC313 completely, while mAb 4.17 lost only 80% of its binding activity, an additional change at position 27 was required for the block the activity of 4.17.
[0213] The Binding site of MAb 3.2. lies between residues 1-91. Although replacement of G1n27 and arg31 did not affect its binding to human TNFa, the N-terminus appears to be necessary for its binding activity. Mab 3.7 epitope lies between residues 36-157.
[0214] None of the chimeras could be neutralized using monoclonal antibodies SC250, 5C263, 5C269, SC282, SC283 and Infiiximab. All these antibodies are highly specific for human TNFa, and their epitope is a constellation of residues located in a different, non contiguous position of the TNFa polypeptide. G1n27, Arg31, His73 and Argl 31 are not involved in the neutralizing binding site.
[0215] Table 20 summarize the results of additional epitope mapping performed on 299v2, 263, etanercept, infliximab and Adalimumab. As shown in the Table 20, 299v2, etanercept, and adalimumab bind to the chimeric proteins containing the region of human TNF between aa 1 and aa 36, while 263 and infliximab do not bind any of the chimeric proteins.
All the anti-TNF
antibodies bind to human TNF, but none to murine TNF. These results indicate that the binding regions of 299v2, etanercept, and adalimumab are most likely comprised within the first 36 aa of TNF, while those of 263 and infliximab are scattered over the entire molecule.
All anti-TNF
antibodies bind protein-denaturation sensitive regions, indicating that their binding regions are conformational.
Table 20 Human aa Residues Murine aa Residues Etanercept 299v2 Adalimumab Infliximab [0216] The TNFa receptors p75-hF'c and p55-hFc (Catalog number 372-RI-050 and 372-RI/CF from R&D) were further analyzed for binding to TNFa proteins as shown in Table 21.

Table 21 Human amino acid Constructs p55-hFc p75s-hFc residues Hu TNFa ++ ++ 1-157 Hu/MBgll ++ -H- 1-36 M/HuBgll 36-157 Hu/M PVull 1-125 Hu/M Hin C 11 ++ ++ 1-91 M/Hu Hin CH ++ ++ 91-157 ANTI-MACAQUE TNFa BINDING CROSS-REACTIVITY
Binding to human and monkey soluble recombinant TNFa [0217] Anti-TNFa antibodies were also tested for their ability to bind to soluble recombinant TNFa. Human and monkey (cynomolgous macaque) TNFa were expressed in E. coil as fusion proteins with GST. Binding was assessed by ELISA. 299v2, 263, etanercept, infliximab, and adalumimab ("anti-TNFa antibodies") were incubated in 96-well plates coated overnight with 0.5 ,g/m1 of human GST-TNFa, 2 g/ml of monkey GST-TNFa, and 10 ii,g/m1 of GST. Bound antibody was detected using an HRP-conjugated goat anti-human IgG antibody.
Results showed that anti-TNFa antibodies all bind to human TNFa with a similar dose-response (Figure 5). Anti-TNFa antibodies differently bind to monkey TNFa. While 299v2, etanercept, and adalumimab bind cynomolgus macaque TNFa in a similar fashion, 263 and infliximab appear not to bind to cynomolgous macaque TNFa (Figure 6).

KINETIC ANALYSIS
[0218] The kinetic measurements of the anti-TNFa antibodies were evaluated using KinExA and BIACORE technologies. The KinExA method involves solution-based determination of formal affinity measurements at equilibrium. To measure the binding kinetics of each human anti-TNFa antibody, two experiments in replicates of three were performed. In both experiments a known concentration of antigen was titrated and a different antibody concentration was added to each antigen titration and allowed to reach binding equilibrium.
To determine the Kd measurements on human TNFa, the Kd was calculated using a molar TNFa binding site concentration of one trimer (52.5 kDa), see Table 22, or three monomers (17.5 kDa), see Table 23.
The results were analyzed by dual curve analysis. Kinetic measurements for the rabbit R014 antibody were essentially performed as above, however, the unknown antigen concentration method was performed using the known antibody concentration to calculate the Kd. In addition, to negate the possibility of avidity effects, Fab fragments were generated by papain cleavage and the kinetic analysis was repeated (see Table 24).
[0219] Additional kinetic constants were also calculated from BIACORE data using the methods described in their product literature. An association rate constant (ka) is the value that represents strength (extent) of binding of an antibody with target antigen as calculated based on antigen-antibody reaction kinetics. A dissociation rate constant (kd) is the value that represents the strength (extent) of dissociation of this monoclonal antibody from target antigen as calculated based on antigen-antibody reaction kinetics. The dissociation constant (Kd) is the value obtained by dividing the dissociation rate constant (lcd) value from the association rate constant (ka), see Table 25.
Table 22 Ab Ka (N) Kd (M) High Kd (M) Low, % Error 299 V1 6.3 e-13 9.2 e-13 4.3 e-13 4.99 299v2 1.07 e-12 SD=0.48 (n=5) 263 3.73 e-12 SD=1.06 (n=4) 3.2 4.77 e-12 7.6 e-12 2.43 e-12 4.7 p75-hFc* 4.10 e-13 5D=0.15 (n=4) >5%**
Infliximab 4.70 e-12 6.90 e-12 2.93 e-12 5.45 Adulimumab 3.90 e-12 6.87 e-12 1.64 e-12 5.77 *A p75-hFc construct (R&D Systems) similar to etanercept (Enbrel) was used in these studies. When etanercept was used similar results were obtained (data not shown).
** Each experiment had errors between 6-7%.
Table 23 mAb Kd (W) Kd (M) High Kd (M) Low % Error 299V1 1.89e-12 2.76e-12 1.29e-12 4.99 299v2 3.20 e-12 SD=1.44 (n=5) 263 1.12 e-11 SD=3.17 (n=4) 3.2 1.43 e-11 2.30 e-11 7.30 e-12 4.7 p75-hFc* 1.23 e-12 SD=0.44 (n=4) >5%**
Infliximab 1.41 e-11 2.07 e-11 8.78 e-12 5.45 Adulimumab 1.17 e-11 2.06 e-11 4.94 e-12 5.77 *A p75-hFc construct (R&D Systems) similar to etanercept (Enbrel) was used in these studies. When etanercept was used similar results were obtained (data not shown).
** Each experiment had errors between 6-7%.
Table 24 mAb Ka (AT) Kd (M) High Kd (M) Low % Error Rabbit R014 7.87 e-13 2.47 e-12 1.56 e-13 2.74 Rabbit R014 Fab 6.38 e-13 1.94 e-10 2.09 e-15 16.9 Table 25 mAb Average Standard 95% Confidence 299 v2 Deviation (CV) Intervals ka (1\4-1s-1) 2.16 x 106 +/- 9.38 x 105 +/- 1.22 x 106 (N=5) (46%) (56%) ka (s-1) 1.03 x 10-5 +/- 5.48 x 10-6 +1- 6.81 x 10-6 (N=5) (53%) (66%) Ka (pM) 5.7 +/- 3.9 +/- 4.8 (68%) (84%) [0220] The binding affinity of 299v2 for cynomolgus macaque TNFa was also measured, since this antibody had been found capable of binding monkey TNFa in an ELISA. The KinExA method was also used to measure the Kd describing this binding affmity.
299v2 bound to monkey TNFa with an affinity of 626 pM, considering TNFa as a monomer, which is therefore approximately 200 times lower than the affinity for human TNFa.

IN VITRO ANTI-HTNFa ANTIBODIES CHARACTERIZATION.
Inhibition of TNFa induced apoptosis on human MCF-7 cells.
[0221] IgG2 kappa and lambda hybridomas were bulk cultured, purified and quantified as described previously. Isotype switched hybridoma and XENOMAX
derived IgG1 recombinant antibodies were expressed, purified and quantitated as described previously.
Antibodies were further assayed for their ability to neutralize the biological effect of TNFa induced apoptosis on human MCF-7 cells. 96-well plates were seeded at 5000 cells MCF-7/well, 2004/well with phenol red free DMEM + 10% FCS. The plates were incubated overnight at 37 C
+ 5% CO2. On each plate, a titration of each antibody was assayed, in final concentrations from 0.005 ng/ml to 10 jig/mi. Anti-TNF reagents were diluted in apoptosis medium (2.5% FCS, 5ug/mL
CHX in phenol red free DMEM), in triplicate or up to replicates of six, at a constant concentration of 100 pg/mL (1.9 pM as a trimer) TNFa. 6 well plates with TNFa alone in apoptosis media and 6 well plates with apoptosis medium alone were also included. TNFa +/-neutralizing antibody was pre-incubated for 1 hour or for 18 hours at 37 C + 5% CO2. 2004 TNFa +/-neutralizing antibody was transferred to cells and incubated overnight at 37 C +5% CO2.
[0222] Cells were stained with 0.5 g/mL PI and 2.5iug/mL Heochst 33342 for one hour. Percentage of apoptosis was determined by counting the number of dead cells (PI +ve) and dividing by the total number of cells (Heochst +ve). Neutralization was assayed using MCF-7 cells and detected as a ratio of propidium iodide and Heochst 33342 staining. An example of neutralizing antibody titration curves used to generate IC50 values by four parameter curve fitting is provided in Figures 7 and 8, as line graphs.
[0223] Results shown in Table 26 are the averages of data obtained from different experiments of in vitro inhibition of TNF induced apoptosis in MCF-7 cells at a 1 hour or 18 hour antibody pre-incubation time point with TNF. The longer 18 hour preincubation may allow affinity differences to be seen more readily, as antibody-antigen binding is nearer to equilibrium. 299v2 demonstrated the lowest IC5Os of any of the fully human mAbs as well as Infliximab. A strong correlation between affinity and neutralization potency is also observed.
Table 26 mAb 1050 1hr Pre-incubation (pM) 1050 18hr Pre-incubation (pM) Average St. Dev. Average St. Dev.
299v2 18.6 4.2 1.6 1.3 263 59.5 13.4 37.0 4.3 4.17 g1 256.3 238.a 40.4 6.2 3.2g1 93.8 11.0 38.6 ' 12.1 Infliximab 32.4 1.5 31.7 20.4 Adalimumab 75.8 12.8 34.5 8.3 Etanercept 3.4 1.8 2.2 0.8 [0224] An example of the average IC50 values for anti-TNFa neutralization of apoptosis is represented in Figure 9, a bar graph. As Figure 9 indicates, all antibodies are potent neutralizers of TNFa induced apoptosis. In particular, antibody 299v2 appears to have a better average potency than Infliximab, Adalimumab or Etanercept.
[0225] Table 27 shows the inhibition of TNF induced apoptosis on MCF-7 cells by the rabbit R014 inAb after 1 hour pre-incubation with TNF.
Table 27 Average SD (pM) *n=
Anti-TNFa 1C50(pM) R014 14.2 4.5 12 * number of experiments Inhibition of TNFa induced apoptosis on human W1V1 266.4 cells.
[0226] IgG2 kappa and lambda hybridomas were bulk cultured, purified and quantified as described above. Isotype switched hybridoma and XENOMAX derived IgG1 recombinant antibodies were expressed, purified and quantitated as above.
Antibodies were further =
assayed for their ability to neutralize the biological effect of TNFa induced apoptosis On human WM 266.4 cells. 20,000 W1v1266.6 cells were plated in 96-well plates in complete media (RPMI1640/10%FBS/G1n/P/S) and incubated at 37 C/10% CO2 overnight. Media was removed and 504 test antibodies plus TNFa @re-incubated for 30' at room temperature) was added in serum free media (RPMI1640/G1n/P/S). 501,1", cyclohexamide plates were incubated overnight as above final assay conditions: V=100 L, cyclohexamide = 6 g/mL, TNFa = 600 pg/mL =
11.4 pM as a trimer. Test antibodies concentrations vary as described. 100 L Caspase buffer and 0.3 L Caspase substrate (APO-ONE, Promega) were added per well. Caspase activity was determined on the Victor Wallac; excitation wavelength @ 485 nm; emission wavelength @ 530 nm.
An example of the antibodies ability to neutralize apoptosis by is shown in Figure 10. Fig.
10 is a bar graph that shows the average IC50 values for anti-TNFa neutralization. Neutralization was performed on human WM266 cells and caspase activity was measured as an indication of TNFa induced apoptosis. Antibody IC50 calculations were performed as described in the brief description of Figure 7.
[0227] A control shows induction of apoptosis by TNFa and cyclohexamide alone.
Other controls included Rabbit 014 Ab as well Infliximab and p75-11Fc (R&D), as an Etanercept surrogate. The graph shows caspase activity as a measure of TNFa induced apoptosis. As can be seen in Figure 10, SC299V1 and SC299V2 antibodies are consistently similar to each other and in addition to R014, 263 and perhaps 234 are more potent than Infliximab and p75-hFc. 4.17 IgG2, SC282 and 3.2 IgG2 were more potent than p75-hFc. As also indicated by Figure 10, all antibodies are potent neutralizers of TNFa induced apoptosis.
Inhibition of TNFa-induced IL-8 production in human whole blood.
[0228] Cultures of human whole blood reproduce naturally occurring conditions of clinical relevance that may not be present in cell cultures or in experimental animals. Whole blood cultures were used to assess the efficacy of anti-TNFa antibodies to neutralize TNFa-induced 1L-8 production. Whole blood was obtained from normal donors by venopuncture, collected in EDTA
tubes, and plated into 96-well plates. Anti-TNFa antibodies were diluted in RPMI medium and mixed with the whole blood. An irrelevant human IgG1 antibody was used as a control. This was followed by the addition of TNFa (final concentration 100 pg/ml, corresponding to 1.9 pM
considering TNFa as a trimer). Plates were then incubated for 6 hours at 37 C.
After incubation, Triton X-100 was added to the cultures at a final concentration of 0.5% v/v to cause cell lysis. IL-8 production was measured in the by ELISA. To express results, IL-8 induced by TNFa in the presence of the IgG1 control was set as 100%. Table 28 reports the IC5Os for the anti-TNFa antibodies calculated using inhibition curves (Fig 11). 299v2 and the Etanercept surrogate demonstrate the lowest IC5Os and highest potencies.
=
Table 28 Whole Blood 1050 (pM) 299v2 131 9 Infliximab 546 65 Adalimumab 896 159 p75-hFe* 166 32*
*A p75-hFc construct (R&D Systems) similar to etanercept (Enbrel) was used in these studies. When etanercept was used similar results were obtained (data not shown).

Antibody-dependent cell-mediated cytotoxicity [0229] Anti-TNFa antibodies were assayed to determine their ability to support the killing of TNFa-transfected CHO cells mediated by PBMCs, mainly NK cells.
Briefly, human PBMCs were obtained from a normal donor and resuspended at a concentration calibrated so that, added to the effector cells, would yield 1:100 effector/target cell ratios. At the same time, TNFa-transfected CHO cells, that stably express membrane-bound TNFa, were labeled with the membrane dye PKH-26. CHO cells were then seeded into 96-well dishes in triplicate with or without 5 ug/m1 antibody. After a 30 min incubation, effector cells were added, and the ADCC
reaction was allowed to occur overnight at 37 C. At this point, triplicate samples were pooled, stained with the dye TOPO-3 per manufacturer's instruction, and analyzed by FACS. Ratios of the number of PKH-26 and TOPO-3 double-positive cells (dead target cells) versus PKH-26 single-positive cells (live target cells) were calculated and used to express results as percentages. The results indicate that the monoclonal antibodies have the ability to support ADCC at remarkable variance with p75-hFc, that was used as etanercept surrogate (Table 29).
Complement-dependent cytotcrdcity [0230] Anti-INFa antibodies were also assayed for the ability to fix complement and thus mediate the killing of TNFa-transfected CHO cells. Briefly, CHO cells were seeded at 125000/well in 96-well plates and added with 5 pi,g/m1 antibody in duplicate.
After 3 hours of incubation on ice, rabbit complement was added to a final concentration of 10%, and the CDC
reaction was allowed to occur for 30 min at room temperature. At this point, cells were stained with 0.5 tig/m1 of PI and 2.5 lg/m1 of Heochst 33342 for 1 hour and counted using Autoscope.
Experiments were conducted in triplicate. Results were calculated and expressed as described above for the TNFa-induced apoptosis assay. As in the case of ADCC, the results indicate that the monoclonal antibodies have ability to incite CDC at variance with p75-hF'c, that was used as etanercept surrogate (Table 29).
Table 29 ADCC CDC
(%) (%) IGgl Ctrl 2 2 2 0 299v2 16 5 9 1 Infliximab 15 5 12 2 Adalimumab 8 4 12 1 p75-hFc * 2 1 2 2 **A p75-hFc construct (R&D Systems) similar to etanercept (Enbrel) was used in these studies.

IN VIVO ANTI-H.TNFa ANTIBODIES CHARACTERIZATION.
Inhibition of TNFa -induced hepatic injury in mice [0231] To test whether anti-human TNFa antibodies neutralize human TNFa in vivo, the ability of anti-human TNFa antibodies to protect against the hepatic injury induced by human TNFa and D-galactosamine (D-GalN) administration in mice was studied (Lehmann V et al., J.
Exp. Med., 1987 165(3): 657-63). Administration of TNFa with D-GalN induces fulminant liver injury that resembles the liver injury induced by LPS and D-GalN, characterized by widespread apoptotic death of hepatocytes, ultimately resulting in shock and lethality. D-GalN treatment renders mice 100-1000 more sensitive to the lethal effects of lipopolysaccharide (LPS) as well as murine TNFa (Lehmann V, et al., J. Exp. Med., 1987 165(3): 657-63). The apoptotic liver injury induced by LPS and D-GalN has been shown to be dependent on endogenously produced TNFa (Leist M, et al., Am. J Pathol., 1995, 146(5): 1220-34.). It has also been demonstrated that this liver injury is dependent exclusively on secreted TNFa signaling through the p55 receptor (Nowak M, et al., Am. J. Physiol. 2000, 278(5): R1202-9), suggesting that D-GalN also sensitizes to the lethal effects of human TNFa, which in mice binds only p55 TNFa receptor. Liver injury induced by hTNFa and D-GalN was assessed by measuring serum enzyme activity of alanine aminotransferase (ALT).
[0232] The experiments were performed as described. 8 to 10 weeks old Balb/c female mice, weighing approximately 20 g, were obtained from Charles River Laboratories. 8-10 mice per group were used. The dose and route of administration as well as the time for measuring the ALT levels in the serum were defined in preliminary experiments. Mice were injected with D-GalN (Sigma) (900mg/kg, ip) 90 min before human TNF (R&D System) (1 g/mouse, iv). The intravenous administration of 1 g/mouse of TNF resulted in circulating levels of TNF of 19 nM
(considering TNF as a trimer). Hepatocyte damage was assessed 6 hours after TNF/ GalN
administration by measuring ALT using a commercial diagnostic kit (Sigma). To compare the ability of 299v2, 263, Etanercept, Adalimumab and infliximab to inhibit TNFa in vivo, dose-response experiments were performed by injecting anti-TNF reagents (1-10 i.v.
lug/mouse) 90 min before TNF (1 fig/mouse, iv). Control mice received saline before TNF. Data were expressed as %
of control and neutralization curves were generated (Figure 12). IC5Os were calculated using a four parameter fit curve. Table 30 shows the IC5Os for the different anti-TNF
reagents averaged from different experiments.

Inhibition of TNFa-induced IL-6 production in mice [0233] As another approach to testing the ability of anti-TNFa antibodies to inhibit TNFa in vivo, anti-TNFa antibodies were used to block the production of IL-6 induced in mice by human. TNFa engenders many acute biological actions, including the induction of IL-6 (Benigni et al., J. Immunol. 157:5563, 1996). 8-10 mice per group were used. As initially established in time-course experiments, injection of human TNFa into mice causes a rapid rise in serum IL-6 levels that peak at 2 hours after injection. Based on the results of other preliminary experiments aimed to define the dose and the route of administration of TNFa, mice were injected intravenously with 1 pemouse of human TNFa. IL-6 levels were measured 2 hours after TNFa administration using a commercial ELISA kit (R&D System). Dose-response experiments were performed by injecting anti-TNFa antibodies (1-10 i.v. g/mouse) 90 min before TNFa (1 jig/mouse, iv). Control mice received saline before TNFa. Data were expressed as a percentage of control and neutralization curves were generated (Fig. 13). IC5Os were calculated using a four parameter fit curve. Table 30 shows the IC5Os for the different anti-TNFa antibodies averaged from different experiments.
Table 30 In vivo Potency (nM) 299v2 50 4 43 1 Infliximab 41 10 43 21 Adalimumab 40 1 36 5 Etanercept 27 16 27 14 STRUCTURAL ANALYSIS OF ANTI-TNFa ANTIBODIES
[0234] The variable heavy chains and the variable light chains for the antibodies shown in Table 1 above were sequenced to determine their DNA sequences. The complete sequence information for all anti-TNFa antibodies are shown in the sequence listing submitted herewith, including nucleotide and amino acid sequences.
[0235] Table 31 is a table comparing various XENOMAX derived antibody heavy chain regions to a particular germ line heavy chain region. Table 32 is a table comparing various XENOMAX derived antibody light chain regions to a particular germ line light chain region.
Table 33 is a table comparing various hybridoma derived antibody heavy chain regions to a particular germ line heavy chain region. Table 34 is a table comparing various hybridoma derived antibody light chain regions to a particular germ line light chain region.

Table 31. Xenomax Heavy Chain Analysis SEQ :ID
Single Cell V Heavy/D/J FR1 NO
w o 267 - Germline QVQLVESGGGVVQPGRSLRLSCAASGFTFS SYGMH WVRQAPGKGLEWVA o .6.
74 299 v. 2 VH3-33/D5-5/JH6b QVQLVESGGGVVQPGRSLRLSCAASGFTFS

un 70 299 v. 1 VH3 -33/D5 -5/JH6b QVQLVESGGGVVQPGRSLRLSCAASGFTFS
SYDMH WVRQAPGKGLEWVA o o 38 148 VH3 -33/D5-5/JH6b QVQLVESGGGVVQPGRSLRLSCAASGFTFS
NYDMH WVRQAPGKGLEWVA m w 78 313 VH3-33/D5-24/JH6b QVQLVESGGGVVQPGRSLRLSCAASGFTFS
NHDIH WVRQAPGKGLEWVA
6 15 VH3-33/D6-6/JH6b QVQLVESGGGVVQPGRSLRLSCAASGFTFS
SYDIH WVRQAPGKGLEWVA
22 95 VH3 -33/D6 -19/JH6b QVQLVESGGGVVQPGRSLRLSCAASGFTFS
NYDMH WVRQAPGKGLEWVA
268 - Germline EVQLVESGGGLIQPGGSLRLSCAASGFTVS SNYMS WVRQAPGKGLEWVS
46 250 VH3-53/D3-16/JH4b EVQLVESGGGLIQPGGSLRLSCAASGFTVS
SNYMS WVRQAPGKGLEWVS
50 263 VH3 -53/D3 -16/JH4b EVQLVESGGGLIQPGGSLRLSCAASGFTVS
SNYMS WVRQAPGKGLEWVS
54 269 VH3-53/D3-16/JH4b EVQLVESGGGLIQPGGSLRLSCAASEFTVS
SNYMS WVRQAPGKGLEWVS n 269 - Germline QVQLVESGGGVVQPGRSLRLSCAASGFTFS SYGMH WVRQAPGKGLEWVA o 58 280 VH3 -33/D4-17/JH6b QVQLVESGGGVVQPGRSLRLSCAASGFTVS
SYGMH WVRQAPGKGLEWVA 1.) m o 62 282 VH3 -33/D4-17/JH6b QVQLVESGGGVVQPGRELRLSCAASGFTVS
SYGMH WVRQAPGKGLEWVA co w --.1 66 291 VH3 -33/D1 -26/JH6b QVQLVESGGSVVQPGRSLRLSCAASGFTFS NYGIH WVRQAPGKGLEWVA
1-, m 270 - Germline QVQLVESGGGVVQPGRSLRLSCAASGFTFS SYGMH WVRQAPGKGLEWVA 1.) 42 234 VH3-30/D1-26/JH6b QVQLVESGGGVVQPGRSLRLSCAASGFTFS
SYDMH WVRQAPGKGLEWVA o o m O
34 140 VH3-30/D1-20/JH6b QVQLVESGGGVVQPGRSLRLSCAASGFTFS
SYGMH WVRQAPGKGLEWVA
14 28 VH3 -30/D3 -3/JH6b QVQLVESGGGVVQPGRSLRLSCAASGFTFS
NYGMH WVRQAPGKGLEWVT m 271 - Germline H

HYYWS WIRQPAGKGLEWIG
272 - Germline QVQLQESGPGLVKPSQTLSLTCTVSGGSIS SGGYYWS WIRQHPGKGLEWIG
2 2 VH4-31/D1-20/JH6b QVQLQESGPGLVKPSQTLSLTCTVSGGSIS
SGGYYWS WIRQHPGKGLEWIG
25 VH4-31/D1-20/JH6b QVQLQESGPGLVKPSQTLSLTCTVSGGSIS SGGYYWS
WIRQHPGKGLEWIG
30 131 VH4 -31/D1 -20/JH6b QVQLQESGPGLVKPSQTLSLTCTVSGGSIS
SGGYYWS WIRQHPGKGLEWIG
26 123 VH4-31/D1-20/JH6b QVQLQESGPGLVKPSQTLSLTCTVSGGSIS
SGGYYWS WIRQHPGKGLEWIG
n ,-i cp t.., -a-, oe t.., oe SEQ ID

Single Cell CDR2 FR3 NO:
w o WGQGTTVTVSS o .6.
74 299 v. 2 VIWSDGSIKYYADSVKG RFTISRDNSKNTLYLQMNSLRAEDTAVYYCAR
EVESAMGGFYYNGMDV WGQGTTVTVSS CB;
un 70 299 v. 1 VIWSDGSIKYYADSVKG RFTISRDNSKNTLYLQMNSLRAEDTAVYYCAR
EVESAMGGFYYNGMDV WGQGATVTVSS o o m ETAILRGYYYYDMDV WGQGTTVTVSS w EKMATIKGYYYYGMDV WGQGTTVTVSS
_ RFTISRDNSENTLYLQNINSLRAEDTAVYYCAR EEQLVRGGYYYYGMDV WGQGTTVTVSS

EIAVAGGYYYGLDV WGQGTTVTVSS

WGQGTLVTVSS

GEGGFDY WGQGTLVTVSS

GEGGFDY WGQGTLVTVSS

GEGGFDY WGQGTLVTVSS n WGQGTTVTVSS o r) DNGVYVGYAYYYGMDV WGQGTTVTVSS m o DNGVYVGYAYYYGMDV WGQGTTVTVSS co w --.) 66 291 VIWSDGSNKYYADSVKG
RFTISRDNSKNTLYLQMNSLRAEDTAVYYCAR ELPNSGSYSGYYYYYGMDV WGQGTTVTVSS -m r.) WGQGTTVTVSS r) o EVRSGSYYYYYSMDV WGQGTTVTVSS o m (1) DQDNWNYYYGMDV WGQGTTVTVSS

YYDFWSGYLPGMDV WGQGTTVTVSS m (1) WGRGTLVTVSS H

GWSYWYFDL WGRGTLVTVSS

WGQGTTVTVSS

RVTISVDTSKNQFSLKLSSVTAADTAVYYCAR DSNQYNWNDEVYDYGLDV WGQGTTVTVSS

DSNQYNWNDEVYDYGLDV WGQGTTVTVSS
_ DSNQYNWNDEVYDYGLDV WGQGTTVTVSS

DSNQYNWNDEVYDYGLDV WGQGTTVTVSS
n ,-i cp w c, c, w -a-, w m w m Table32.MmumnaKIAghtaminAmobrsis SEQ IDw Single Cell V Kappa/J FR1 NO:
o .6.
273 - Germline DIQMTQSPSSLSASVGDRVTITC

un o RASQGIRIDLG WYQQKPGKAPKRLIY o m RASQGIRNDLG WYQQKPGKAPERLIY w RASQGIRNDLG WYQQKPGKAPKRLIY
44 234 A3OVK1/JK4. DIQMTQSPSSLSASVGDRVTITC
RASQDIRNDLG WYQQKPGKAPKRLIY

RASQGIRNDLG WYQQKPGKAPERLIY

RASQGIRNDLG WYQQKPGKAPKRLIY

RASQGIRNDLG WYQQKPGKAPKRLIY

RASQGIRNDLG WYQQKPGKAPKRLIY

RASQGIRNDLG WYQQKPGKAPKRLIY n RASQGIRNDLG WYQQKPGKAPKRLIS o RASQGIRNDLG WYQQKPGKAPKRLIY 1.) m o 274 - Germline DIQMTQSPSSLSASVGDRVTITC
RASQGIRNDLG WYQQKPGKAPKRLIY co w --.1 60 280 A3OVK1/JK1 DIQMTQSPSSLSASVGDRVTITC

w m RASQGIRNDLG WYQQKPGKAPKRLIY 1.) o RASQGIRNDLT WYQQKPGKAPERLIY o , m 275 - Germline DVVMTQSPLSLPVTLGQPASISC
RSSQSLVYSDGNTYLN WFQQRPGQSPRRLIY O

RSSQSLVYSDGSTYLN WFQQRPGQSPRRLIY m O
276 - Germline DIVMTQSPLSLPVTPGEPASISC
RSSQSLLHSNGYNYLD WYLQKPGQSPQLLIY H

RSSQSLLHSNGYNYLD WYLQKPGQSPQLLIF
277 - Germline EIVMTQSPATLSVSPGERATLSC
RASQSVSSNLA WYQQKPGQAPRILIY

RASQSVTSNLA WYQQKPGQAPRLLIH

RASQSVSSNLA WYQQKPGQAPRLLIH

RASQSVSSNLA WYQQKPGQAPRLLIH
,-o n ,¨i cp w =
=
-a-, no w no ,-i oc, el oc, m o m , o o el ci) C.) po xianxIsCaa JANIXNACZ
DiaAtERIESCriSsiaaaasIes9sesarans Dia' SFIS 693 92 }I I EA)1.1,5093 Imtvixt\u03 DAXAVZCESDISSIELIZHISS9S9Sardar19 MU SVO 93 32 }II EAMISOSZ .1,MMANAW
OXXAVZCESOUSSIELIZSISSSS9Sarddrle ITTT2II SVO 023 8v MISAMISOSI ININJNNACZ
oxidaaaasOassiELI3EISseses,auvais ivEISVS - L LZ
H
0 xianmeOsa . IMICtIVON
OAXASACITardAgSDIrlIZGLIBSDSSSZaidAS SVEASSrl 2T71 - 92 ko1 MIZA)-IISCO3 IN1CFIV0111 0.XXASAGEVTAESDIZIZGEBSSS9SaTCEAS Tc1INS9r1 - 9L3 o Lc)1 MIS.A.)1ISSOZ LaaaararseN
DAXASAGEVEAESDIrld..1319S5S9SZUCEAD SUMNLAAM 0 L 03 o o )-IIE.ANIS59,3 I'l#4#(1MHISN
DAAASACIEV2AUSDITLICII9S9S5S3210EAS SUMNIMA.)-1 - 2 L 3 C \I
MIEA)1.1,3052 Itild3SNHOrl DAAIVICEdalS S I
ITIZSISS9S5SZESdAD SCrIS SW 83 91 Lc) .7r r- xia./aLeOsz IMASNHal DXLIVZGEdOrISSILL'IL3EISS9S9S321SdA5 SH'IS SW 383 T79 N
co co )1Ianx.LeCez tlUdXSNHal DA.I.ValEdO'ISSIIIIIZEISS9S9S,DISdAS SaISSVFI 083 09 o Lc) C \I xizAxIsOaa aildASNHal DALIVIGadal881ITLasISSS89832SdAS
sOassw - D,LZ
o )1IE_AMI9S93 IrldANNHal DiaLVZGEdalSsiEmaaassesssausans sOassw 231 83 U )1=1,5593 IrldASNHal DXXIV3GadalSSIELLISIDSSSSS,DiSdAS EIS 8N 8 T9' I 0t7 NIOAMISSOZ EldASHHal omuacoa0asSAYLIZZISSSSSSZUSdAS
SCI'S SW 56 v3 )1ISA)-IISeaa IrldASNHO'l 3AXIVZCEdOrIS S I I'LLZEd9S5SS
SaTSdAS sOassw ST 8 xianyiessa EacaASHHOU OAXEdaladalS S I
IfILEELSS9SOSZUSdAS sOassw 1 T 32 MISA>1.19593 rIciXSNHal OXXIMIGEdOrIS S I
IrlI3EISSDS9S211SdA5 ". SaIS SY/ 23 31 MIS.AMISSS3 trldXNNHal D.RXIV3(1Edn'IS SI
ZILZSISS9SSSIESdAS SD:SSW Z T7 )1IaA}IISSSZ I'IdASNHal oxxazHaaaaissiymaaassesesausans saissw m HIS.ANIS9S1 Erld.X.30Hal DAXIVIaanrisSIIIIZSISSSSOSalScIAS SaIS SW 163 89 oc, .1rIdA8NHal DALINECEdaISS I ITIZEdS
SSSSSaTSdAS STISSW CIE 08 in = MIZA>11,5553 Eld28}1Hal 3.usuEctaaCassiz8iaaLesesesaisans SaIISW 663 3L
.7r o MIE.A>1.1059,3 ElaxsmiDa omvaaaaiss I IFILISIOSSSSSZUScIAS SOFIS SW - 2 LZ
o el : ON
0 VE3 11CD Miff ZUGIO TTeD et6TITS
ai as Table 33. Hybridoma Heavy Chain Analysis AB-TNFa-XG2 t..) o o CDR2 FR3 CDR3 FR4 .6.
NAME NO:
'a un 278 Germline QVQLVESGGGVVQPGRSLRLS GFTFSSYGMH WVRQAPGKGLE VIWYDGSNKYY
RFTISRDNSKNTLYLQMNSLR WGQGTTVTVSS
o CAAS WVA

c4.) 2.14 132 VH3-33/D6-QVQLVESGGGVVQPGRSLRLS GLIFSSYGMH WVRQAPGKGLE
VIWYDGSNKYY RFTISRDNSKNTLYLQMNSLR ERDSSGWYYYG WGQGTTVTVSS
19/JH6b CAAS WVA
ADSVKG AEDTAVYYCAR MDV
2.13 128 Tr QVQLVESGGGVVQPGRSLRLS GLIFSNYGMH WVRQAPGKGLE
VIWYDGSNKYY RFTISRDNSKNTLYLQMNSLR EGIAVAGPPYY WGQGTTVTVSS
CAAS WVA
ADSVKG AEDTAVYYCAR YYGMDV
IT
2.10 124 QVQLVESGGGVVQPGRSLRLS GFTFSSYGMH WVRQAPGKGLE
VIWYDGSIKYY RFTISRDNSKNTLYLQMNSLR ERDSSGWYYYG WGQGTTVTVSS
CAAS WVA
ADSVKG AEDTAVYYCAR MDV
279 Germline EVQLLESGGGLVQPGGSLRLS GFTFSSYAMS WVRQAPGKGLE AISGSGGSTYY
RFTISRDNSKNTLYLQMNSLR WGQGTLVTVSS
CAAS WVS
ADSVKG AEDTAVYYCAK
4.23 262 VH3-23/D3-EVQLLESGGGLVQPGGSLRLS GFTFSSYAMS WVRQAPGKGLE
AISGSGGSTYY RFTISRDNSKNTLYLQMNSLR DYYDSSGYHPF WGQGTLVTVSS .. 0 22/JH4b CAAS WVS
ADSVKG AEDTAVYYCAK DY
280 Germline EVQLVESGGGLVKPGGSLRLS GFTFSSYSMN WVRQAPGKGLE SISSSSSYIYY
RFTISRDNAKNSLYLQMNSLR WGQGTTVTVSS o K.) CAAS WVS
ADSVKG AEDTAVYYCA# m o 2.21 158 VH3-21/D1-EVQLVESGGGLVKPGGSLRLS GFTFSSYSMN WVRQAPGKGLE
SISSSSSYIYY RFTISRDNAKNSLYLQMNSLR GGITGTTNYYG WGQGTTVTVSS .. m w 20/JH6b CAAS WVS

--I
un 281 Germline QVQLVESGGGVVQPGRSLRLS GFTFSSYGMH WVRQAPGKGLE VIWYDGSNKYY
RFTISRDNSKNTLYLQMNSLR WGQGTLVTVSS m CAAS WVA
ADSVKG AEDTAVYYCAR K.) o 4.7 198 VH3-33/D6-QVQLVESGGGVVQPGRSLRLS GFTFSSYGMH WVRQAPGKGLE
IIWYDGSNEYY RFTISRDNSKNTLFLQMNSLR DPLRIVVAGDF WGQGTLVTVSS o m 19/JH4b CAAS WVA
GDSVKG AEDTAVYYCAR DY
O
4.11 214 IT
QVQLVESGGGVVQPGRSLRLS GFTFSSYGMH WVRQAPGKGLE
IIWYDGSNEYY RFTISRDNSKNTLFLQMNSLR DPLRIVVAGDF WGQGTLVTVSS m CAAS WVA

282 Germline EVQLVESGGGLIQPGGSLRLS GFTVSSNYMS WVRQAPGKGLE VIYSGGSTYYA
RFTISRDNSKNTLYLQMNSLR WGQGTMVTVSS H
CAAS WVS
DSVKG AEDTAVYYCAR
3.9 186 VH3-53/--/JH3b EVQLVESGGGLIQPGGSLRLS GFTVSSNYMS WVRQAPGKGLE
VIYSGGSTYYA RFTISRDNSKNTLYLQMNSLR GPGAFDI WGQGTMVTVSS
CAAS WVS
DSVKG AEDTAVYYCAR
3.8 182 IT
EVQLVESGGGLIQPGGSLRLS GFTVSNNYMH WVRQAPGKGLE VIYSGGNTYYA
RFTISRDNSKNTLFLQMNSLK GPGAFDI WGQGTMVTVSS
CAAS WVS
DSVKG TEDTAVYYCAR
283 Germline EVQLVQSGAEVKKPGESLKIS GYSFTSYWIG WVRQMPGKGLE IIYPGDSDTRY
QVTISADKSISTAYLQWSSLK WGQGTTVTVSS
CKGS WMG
SPSFQG ASDTAMYYCAR IV
2.4 100 VH5-51/D3-3/JH6b EVQLVQSGAEVKKPGESLKIS GYSFTSDWIG WVRQMPGKGLE
IIYPGDSDTRY QVTISADKSITTAYLQWSSLK SGYGMDV WGQGTTVTVSS r) CKGS WMG
SPSFQG ASDTAMYYCAR
284 Germline QVQLVQSGAEVKKPGASVKVS GYTFTSYGIS WVRQAPGQGLE WISAYNGNTNY
RVTMTTDTSTSTAYMELRSLR WGQGTLVTVSS
CP
CKAS WMG
AQKLQG SDDTAVYYCAR t,.) o 3.4 170 VH1-18/D6-QVQLVQSGAEVKKPGASVKVS GYTFTFYSIT WVRQAPGQGLE
WISAYNDNTNY RVTMTTDTSTSTAYMELRSLR TFTSGFDY WGQGTLVTVSS O
c4.) 19 /JH4b CKAS WMG
AQKLQG SDDTAVYYCAR 'a 285 Germline QVQLVESGGGVVQPGRSLRLS GFTFSSYGMH WVRQAPGKGLE VIWYDGSNKYY
RFTISRDNSKNTLYLQMNSLR WGQGTLVTVSS c4.) oe CAAS WVA
ADSVKG AEDTAVYYCAR t,.) oe 2.3 96 VH3-33/D4-QVQLVESGGGVVQPGRSLRLS GFTFSSYGMN WVRQAPGKGLE
VIWYDGSNKYY RFTISRDNSKNTLYVQMNSLR ESDYGGNPYFD WGQGTLVTVSS
23/JH4b CAAS WVA
GDSVKG AEDTAVYYCAR Y

NAME NO:
C
4.8 202 tl QVHLVESGGGVVQPGRSLRLS GFTFSSYGMH WVRQAPGKGLE
VIWHDGSNKYY RFTISRDNSKNTLYLQMNSLR ESDYGGYPYFD WGQGILATVSS t,.) o CAAS WVA ADSVKG AEDTAVYYCTR Y o .6, II
4.4 194 QVHLVESGGGVVQPGRSLRLS GFTFSSYGMH WVRQAPGKGLE
VIWHDGSNKYY RFTISRDNSKNTLYLQMNSLR ESDYGGYPYFD WGQGILATVSS 'a CAAS WVA ADSVKG AEDTAVYYCTR Y
:A
o 4.3 190 TI
QVQLVESGGGVVQPGRSLRLS GFTFSSYGMH WVRQAPGKGLE
VIWYDGSNKYY RFTISRDNSKNTLYLQMNSLR ESDYGGNPYFD WGQGTLAAVSS o oe CAAS WVA ADSVKG AEDTAVYYCAR Y
c4.) 286 Germline EVQLVESGGGLIQPGGSLRLS GFTVSSNYMS WVRQAPGKGLE VIYSGGSTYYA
RFTISRDNSKNTLYLQMNSLR WGQGTLVTVSS
CAAS WVS DSVKG AEDTAVYYCAR
2.17 144 VH3-53/D7-EVQLVESGGGLIQPGGSLRLS GFTVSSNYVN WVRQAPGKGLE VIYNAGSAYYA
RFTISRDNSKNTLFLQMNSLR GTGAFDY WGQGTLVTVSS
27/JH4b CAAS WVS
DSVKG AEDTAVYYCAR
287 Germline QVQLVESGGGVVQPGRSLRLS GFTFSSYGMH WVRQAPGKGLE VISYDGSNKYY
RFTISRDNSKNTLYLQMNSLR WGQGTTVTVSS
CAAS WVA _ ADSVKG AEDTAVYYCAR
4.13 222 VH3-30/D4-QVQLVESGGGVVQPGRSLRLS GFTFSSYDMH WVRQAPGKGLE
IISYDGSIKYY RFTISRDNSKNTLYLQMNSLR ENAVTYGGYYH WGQGTTVTVSS
17/JH6b CAAS WVA
ADSVKG AEDTAVYYCAR YGMDV
n 288 Germline QVQLVESGGGLVKPGGSLRLS GFTFSDYYMS WIRQAPGKGLE YISSSGSTIYY
RFTISRDNAKNSLYLQMNSLR WGQGTTVTVSS
CAAS WVS ADSVKG AEDTAVYYCAR
o 1.1 84 VH3-11/--/JH6b QVQLVESGGGLVKPGGSLRLS GFTFSDYYMS WIRQAPGKGLE
YISRSGSTIYY RFTISRDNAKNSLYLQMNSLR SLGGMDV WGQGTTVTVSS K.) m CAAS WVS ADSVKG AEDTAVYYCAR
o op II
2.16 140 QVQLVESGGGLVKPGGSLRLS GFTFSDYYMS WIRQAPGKGLE YISRSGSTIYY
RFTISRDNAKNSLYLQMNSLR SLGGMDV WGQGTTVTVSS w --I
-.3 o CAAS WVS
ADSVKG AEDTAVYYCAR m CAAS WVS ADSVKG AEDTAVYYCAR
o o 289 Germline QVQLVESGGGVVQPGRSLRLS GETFSSYGMH WVRQAPGKGLE VIWYDGSNKYY
RFTISRDNSKNTLYLQMNSLR WGQGTTVTVSS m CAAS WVA ADSVKG AEDTAVYYCAR
o m O
4.12 218 VH3-33/D4-QVQLVESGGGVVQPGRSLRLS GFTFSSYGMH WVRQAPGKGLE
VIWYDGSNKYY RFTISRDNSKNTLYLQMNSLR ETTVTKEGYYY WGQGTTVTVSS
17/JH6b CAAS WVA
ADSVKG AEDTAVYYCAR YGMDV p 4.9 206 QVQLVESGGGVVQPGRSLRLS GFTFSSYGMH WVRQAPGKGLE
VIWYDGSNKYY RFTISRDNSKNTLYLQMNSLR ETTVTKEGYYY WGQGTTVTVSS
CAAS WVA ADSVKG AEDTAVYYCAR YGMDV
290 Germline QVQLVQSGAEVKKPGASVKVS GYTFTSYGIS WVRQAPGQGLE WISAYNGNTNY
RVTMTTDTSTSTAYMELRSLR WGQGTLVTVSS
CKAS WMG AQKLQG SDDTAVYYCAR
2.6 108 VH1-18/D1-7/JH4b QVQLVQSGAEVKKPGASVKVS GYTFTSYGIS WVRQAPGQGLE
WISAYNVNTNY RVTMTTDTSTNTAYMELRSLR DPITETMEDYF WGQGTLVTVSS
CKAS WMG AQKLQG SDDTAVYYCAR DY
291 Germline EVQLVQSGAEVKKPGESLKIS GYSFTSYWIG WVRQMPGKGLE IIYPGDSDTRY
QVTISADKSISTAYLQWSSLK WGQGTLVTVSS
IV
CKGS WMG SPSFQG ASDTAMYYCAR
r) 3.2 166 VH5-51/D7-EVQLVQSGAEVKKPGESLKIS GYSFTSYWIG WVRQMPGKGLE IIYLGDSDTRY
QVTISADKSISTAYLQWSSLK SNWGLDY WGQGTLVTVSS
27/JH4b CKTS WMG
SPSFQG ASDTAMYYCAR
292 Germline QVQLVESGGGVVQPGRSLRLS GFTFSSYGMH WVRQAPGKGLE VIWYDGSNKYY
RFTISRDNSKNTLYLQMNSLR WGQGTTVTVSS CP
CAAS WVA ADSVKG AEDTAVYYCAR o o 4.16 234 VH3-33/D2-QVQLVESGGGVVQPGRSLRLS GFTESNYGMH WVRQAPGKGLE
VIWYDGSIKYY RFTISRDNSKNTLYLQMNSLR EKDCGGDCYSH WGQGTTVTVSS c4.) 21 /JH6b CTTS WVA
VDSVKG AEDTAVYYCAR YGMDV 'a c4.) _ 4.15 230 QVQLVESGGGVVQPGRSLRLS GFTFSNYGMH WVRQAPGKGLE
VIWYDGSIKYY RFTISRDNSKNTLYLQMNSLR EKDCGGDCYSH WGQGTTVTVSS oe CTTS WVA VDSVKG AEDTAVYYCAR YGMDV
oe 1-, _ II
4.14 226 QVQLVESGGGVVQPGRSLRLS GETFSNYGMH WVRQAPGKGLE
VIWYDGSIKYY RFTISRDNSKNTLYLQMNSLR EKDCGGDCYSH WGQGTTVTVSS
CTTS WVA VDSVKG AEDTAVYYCAR YGMDV

NAME NO:
4.17 238 Tf QVQLVESGGGVVQPGRSLRLS GFTFSNYGMH WVRQAPGKGLE
VIWYDGSIKYY RFTISRDNSKNTLYLQMNSLR EKDCGGDCYSH WGQGTTVTVSS C
N
CTTS WVA
VDSVKG AEDTAVYYCAR YGMDV o o 293 Germline QVQLVESGGGVVQPGRSLRLS GFTFSSYGMH WVRQAPGKGLE VIWYDGSNKYY
RFTISRDNSKNTLYLQMNSLR WGQGTTVTVSS .6.
CAAS WVA
ADSVKG AEDTAVYYCAR 'a un 2.1 88 VH3-33/--/JH6b QVQLVESGGDVVQPGRSLRLS GFTFSSSGMH
WVRQAPGKGLE IIWYDGSNKYY RFTISRDNSKNTLYLQMNSLR DDYYYGMDV WGQGTTVTVSS =
o CAAS WVA
ADSVKG AEDTAVYYCAR oe c4.) 294 Germline QVQLVESGGGVVQPGRSLRLS GFTFSSYGMH WVRQAPGKGLE VIWYDGSNKYY
RFTISRDNSKNTLYLQMNSLR WGQGTLVTVSS
CAAS WVA
ADSVKG AEDTAVYYCAR
2.2 92 VH3-33/D4-QVQLVESGGGVVQPGRSLRLS GFTFSSYGMH WVRQAPGKGLE
VIWYDGNNKYY RFTISRDNSKNTLYLQMNSLR ESDYGGNPYFD WGQGTTVTVSS
23/JH4a CAAS WVA
ADSVKG AEDTAVYYCAR Y
295 Germline QVQLQESGPGLVKPSETLSLT GGSISSYYWS WIRQPPGKGLE YIYYSGSTNYN
RVTISVDTSKNQFSLKLSSVT WGQGTLVTVSS
CTVS WIG
PSLKS AADTAVYYCAR
3.6 178 VH4-59/D6-QVQLQESGPGLVKPSETLSLT GGSISSYYWS WIRQPPGKGLE
YFYYSGSTNYN RVTISVDTSKNQFSLKLRSVT DRFTSGWFDY WGQGTLVTVSS
19/JH4b CTVS WIG
PSLKS AADTAVYYCAR
296 Germline EVQLVESGGGLVQPGGSLRLS GFTFSSYSMN WVRQAPGKGLE YISSSSSTIYY

CAAS WVS
ADSVKG DEDTAVYYCAR
4.22 258 VH3-48/D1-EVQLVESGGGLVUGGSLRLS GFTFSNYGMN WVRQAPGKGLE YISNSITSKYY
RFTISRDNAKNSLYLQMNSLR GPGGFDY WGQGTLVTVSS o K.) 14/JH4b CAAS WVS
ADSVKG DVDTAVYHCAR in o 297 Germline EVQLVESGGGLIQPGGSLRLS GFTVSSNYMS WVRQAPGKGLE VIYSGGSTYYA
RFTISRDNSKNTLYLQMNSLR WGQGTLVTVSS op w CAAS WVS
DSVKG AEDTAVYYCAR
--I
--I 2.9 120 VH3-53/--/JH4b EVQLVESGGGLIQPGGSLRLS GFTVSSNYMS WVRQAPGKGLE
VIYSGGGTYYA RFTISRDNSKNTLYLQMNSLR GPGSFDY WGQGTLVTVSS in CAAS WVS
DSVKG AEDTAVYYCAR K.) o 298 Germline QVQLVQSGAEVKKPGASVKVS GYTFTGYYMH WVRQAPGQGLE WINPNSGGTNY
RVTMTRDTSISTAYMELSRLR WGQGTTVTVSS o in CKAS WMG
AQKFQG SDDTAVYYCAR
o 3.1 162 VH1-2/D6-19/JH6b QVQLVQSGAEVKKPGASVKVS GYTFTGYYMH WVRQAPGQGLE
WINPNSGGTNY RVTMTRDTSISTAYMELSRLR APLWTVRSWYY WGQGTTVTVSS m CKAS WMG
AQKFQG SDDTAVYYCAR YGMDV o , 299 Germline QVQLVESGGGVVQPGRSLRLS GFTFSSYGMH WVRQAPGKGLE VIWYDGSNKYY
RFTISRDNSKNTLYLQMNSLR WGQGTTVTVSS H
CAAS WVA
ADSVKG AEDTAVYYCAR
4.19 246 VH3-33/D3-9/JH6b QVQLVESGGGVVQPGRSLRLS GFTFSSYGMH WVRQAPGKGLE
VIWYDGRNKYN RFTISRDNSKNTLNLQMNSLR DLTYYDILGGM WGQGTTVTVSS
CAAS WVA
ADSVKG AEDTAVYYCAR DV
4.18 242 ,, QVQLVESGGGVVQPGRSLRLS GFTFSSYGMH WVRQAPGKGLE
VIWYDGRNKYN RFTISRDNSKNTLNLQMNSLR DLTYYDILGGM WGQGTTVTVSS
CAAS WVA
ADSVKG AEDTAVYYCAR DV
II
2.8 116 QVQLVESGGGVVQPGRSLRLS GFTFSSYGMH WVRQAPGKGLE
VIWYDGRNKYN RFTISRDNSKNTLNLQMNSLR DLTYYDILGGM WGQGTTVTVSS
CAAS WVA
ADSVKG AEDTAVYYCAR DV
IV
4.20 250 TV
QVQLVESGGGVVQPGRSLRLS GFTFSSYGMH WVRQAPGKGLE
VIWYDGRNKYN RFTISRDNSKNTLNLQMNSLR DLTYYDILGGM WGQGTTVTVSS r) CAAS WVA
ADSVKG AEDTAVYYCAR DV
II
2.7 112 QVQLVESGGGVVQPGRSLRLS GFTFSSYGMH WVRQAPGKGLE
VIWYDGRNKYN RFTISRDNSKNTLNLQMNSLR DLTYYDILGGM WGQGTTVTVSS
CP
CAAS WVA
ADSVKG AEDTAVYYCAR DV N
o 300 Germline EVQLVESGGGLIQPGGSLRLS GFTVSSNYMS WVRQAPGKGLE VIYSGGSTYYA
RFTISRDNSKNTLYLQMNSLR WGQGTTVTVSS o c4.) CAAS WVS
DSVKG AEDTAVYYCAR 'a 2.19 152 VH3-53/--/JH6b EVQLVESGGGLIQPGGSLRLS GFTVSSNYMS WVRQAPGKGLE
VIYSGGSTYYA RFTISRDNSKNTLYLQMNSLR GEGGMDV WGQGTTVTVSS c4.) oe CAAS WVS
DSVKG AEDTAVYYCAR N
Oe IT
2.15 136 EVQLVESGGGLIQPGGSLRLS GFTVSSNYMS WVRQAPGKGLE VIYSGGSTYYA
RFTISRDNSKNTLYLQMNSLR GEGGMDV WGQGTTVTVSS
CAAS WVS
DSVKG AEDTAVYYCAR

CA
NAME NO:

t4.) 301 Germline QVQLVESGGGVVQPGRSLRLS GFTFSSYGMH
WVRQAPGKGLE VIWYDGSNKYY RFTISRDNSKNTLYLQMNSLR WGQGTTVTVSS
CAAS WVA
ADSVKG AEDTAVYYCAR
2.5 104 VH3-33/D3- QVQLVESGGGVVQPGRSLRLS GFTFSSYDMH WVRQAPGKGLE
VIWYDGSNKYH RFTISRDNSKNTLYLQMNSLR ENTMVRGGDYY WGQGTTVTVSS
10/JH6b CAAS WVA
ADSVKG AEDTAVYYCAR YGMDV
3.5 174 QVQLVESGGGVVQPGRSLRLS GFTESSYDMH WVRQAPGKGLE
VIWYDGSNKYH RFTISRDNSKNTLYLQMNSLR ENTMVRGGDYY WGQGTTVTVSS
CAAS WVA
ADSVKG AEDTAVYYCAR YGMDV
302 Germline QVQLVESGGGVVQPGRSLRLS GFTFSSYGMH
WVRQAPGKGLE VIWYDGSNKYY RFTISRDNSKNTLYLQMNSLR WGQGTLVTVSS
CAAS WVA
ADSVKG AEDTAVYYCAR
4.10 210 VH3-33/D4- QVQLVESGGGVVQPGRSLRLS GFTFSSYGMH WVRQAPGKGLE
VIWYDGSNKYY RFTISRDNSKNTLYLQMNSLR SRYGDWGWFDP WGQGTLVTVSS
17/JH5b CAAS WVA
ADSVKG AEDTAVYYCAR
303 Germline QVQLVESGGGVVQPGRSLRLS GFTFSSYGMH
WVRQAPGKGLE VIWYDGSNKYY RFTISRDNSKNTLYLQMNSLR WGQGTTVTVSS
CAAS WVA
ADSVKG AEDTAVYYCAR
4.21 254 VH3-33/D6-19-D7- QVQLVESGGGVVQPGRSLRLS GFTFSSYGMH WVRQAPGKGLE
VIWYDGSNKYY RFTISRDNSKNTLYLQMNSLR GNRVVVAGTRV WGQGTTVTVSS
27/JH6b CAAS WVA
ADSVKG AEDTAVYYCAR TPANWGYYYYG

MDV

r) oe oe Table 34. Hybridoma Light Chain Analysis AB-TNFa-XG2K
.

t..) o o .6.
-E:=3 ul CDR2 FR3 CDR3 FR4 o NAME NO:
o oe 304 Germline QSVLTQPPSVSGAPGQRVTIS TGSSSNIGAGY
WYQQLPGTAPK GNSNRPS GVPDRFSGSKSGTSASLAITG QSYDSSLSGSV FGGGTKLTVL c4.) C DVH LLIY
LQAEDEADYYC
2.4 102 V1-13/JL2 QSLLTQPPSVSGAPGQRVTIS TGSSSNIGAGY WYQQFPGTAPK
GNSNRPS GVPDRFSGSKSGTSASLAITG QSYDSSLSGSV FGGGTKLTVL
C DVH LLIY
LQAEDEADYYC
4.7 200 IT QSVLTQPPSVSGAPGLRVTIS TGNSSNIGAGY WYQQLPGTAPK
GNSNRPS GVPDRFSGSKSGTSASLAITG QSYDSSLSGSV FGGGTKLTVL
C DVH LLIY
LQAEDETDYYC
305 Germline DIQMTQSPSSLSASVGDRVTI RASQGIRNDLG
WYQQKPGKAPK AASSLQS GVPSRFSGSGSGTEFTLTISS LQHNSYPLT FGGGTKVEIK
TC RLIY
LQPEDFATYYC
4.9 208 A30/JK4 DIQMTQSPSSLSASVGDRVTI RASQGIRNDLG WYQQKPGKAPK
AASSLQS GVPSRFSGSGSGTEFTLTISS LQHNSYPLT FGGGTKVEIK n TC RLIY
LQPEDFATYYC
4.21 256 II DIQMTQSPSSLSASVGDRVTI RASQGIRNDLG WYQQKPGKAPK
VASSLQS GVPSRFSGSGSGTEFTLTISS LQHNSYPLT FGGGTKVEIK o K.) TC CLIY
LQPEDFATYYC m 4.20 252 II DIQMTQSPSSLSASVGDRVTI RASQGIRHDLG WYQQKPGKAPE
GASSLQS GVPSRFSGSGSGTEFTLTISS LQHNSYPLT FGGGTKVEIK o op TC RLIY
LQPEDFATYYC w --I 4.17 240 II DIQMTQSPSSLSASVGDRVTI RASQGIRNDLG
WYQQKPGKAPK AASSLQS GVPSRFSGSGSGTEFTLTISS LQHMSLPLT FGGGTKVEIK m o TC RLIY
LQPEDFATYYC K.) 4.16 236 II DIQMTQSPSSLSASVGDRVTI RASQGIRNDLG WYQQKPGKAPK
AASSLQS GVPSRFSGSGSGTEFTLTISS LQHMSLPLT FGGGTKVEIK o o TC RLIY
LQPEDFATYYC m 2.14 134 II DIQMTQSPSSLSASVGDRVTI RASQAIRNDLG WYQQKPGKAPK
AASSLQS GVPSRFSGSRSGTEFTLTISS LQHRSYPLT FGGGTKVEIK o m TC RLIY

o 4.15 232 II DIQMTQSPSSLSASVGDRVTI RASQGIRNDLG WYQQKPGKAPK
AASSLQS GVPSRFSGSGSGTEFTLTISS LQHMSLPLT FGGGTKVEIK
TC RLIY
LQPEDFATYYC
,, 3.9 188 DIQMTQSPSSLSASVGDRVTI RASQGIRNDLG WFQQKPGKAPK
AASNFLS GVPSRFSGSGSGTEFTLTISS LQHNPYPPRLT FGGGTKVEIK
TC RLIY
LQPEDFTTYYC
II
4.14 228 DIQMTQSPSSLSASVGDRVTI RASQGIRNDLG WYQQKPGKAPK
AASSLQS GVPSRFSGSGSGTEFTLTISS LQHMSLPLT FGGGTKVEIK
TC RLIY
LQPEDFATYYC
4.13 224 II DIQMTQSPSSLSTSVGDRVTI RASQGIRNDLG WYQQKPGKAPK
AASSLQS GVPSRFSGSGSGTEFTLTISS LQHNSYPLT FGGGTKVEIK
- TC RLIY
LQPEDFATYYC
4.12 220 IT DIQMTQSPSSLSASVGDRVTI RASQGIRNDLG WYQQKPGKAPK
AASSLQS GVPSRFSGSGSGTEFTLTISS LQHNSYPLT FGGGTKVEIK IV
TC RLIY
LQPEDFATYYC r) II
2.10 126 DIQMTQSPSSLSASVGDRVTI RASQGIRNDLG WYQQKPGKAPK
AASSLQS GVPSRFSGSGSGTEFTLTVSS LQHNSLPLT FGGGTKVEIK
TC RLIY
LQPEDFATYYC CP
3.6 180 II DIQMTQSPSSLSASVGDRVTI RASQGIRNDLG WYQQKPRKAPK
AASSLQS GVPSRFSGSGSGPEFTLTISS LQHNSYPLT FGGGTKVEIK t,.) o TC RLIF
LQPEDFATYYC o C41) IT
3.5 176 DIQMTQSPSSLSASVGDRVTI RASQGIRNDLG WYQQKPRKAPK
AASSLQS GVPSRFSGSGSGPEFTLTISS LQHNSYPLT FGGGTKVEIK
c4.) TC RLIF
LQPEDFATYYC pc oe 1-, , NAME NO:
C) 306 Germaine DIQMTQSPSSLSASVGDRVTI RASQGISNYLA
WYQQKPGKVPK AASTLQS GVPSRFSGSGSGTDFTLTISS QKYNSAPFT FGPGTKVDIK
TC , LLIY

o 4.23 264 A20/JK3 DIQMTQSPSSLSASVGDRVTI RASQGISNYLA
WYQQKPGKVPK AASTLQS GVPSRFSGSGSGTDFTLTVSS QMYNSVPFT FGPGTKVDIK .6.
TC FLIY
LQPEDVATYYC 'a un 307 Germaine DIQMTQSPSSLSASVGDRVTI RASQGIRNDLG
WYQQKPGKAPK AASSLQS GVPSRFSGSGSGTEFTLTISS LQHNSYPWT FGQGTKVEIK =
o TC RLIY

c4.) 4.22 260 A30/JK1 DIQMTQSPSSLSASVGDRVTI RASQGIRNDLG
WYQQKPGKAPK VASSLQS GVPSRFSGSGSGTEFTLTISS LQHNSYPWT FGQGTKVEIK
TC CLIY
LQPEDFATYYC
308 Germaine DIQMTQSPSSLSASVGDRVTI RASQSISSYLN
WYQQKPGKAPK AASSLQS GVPSRFSGSGSGTDFTLTISS QQSYSTPIT FGQGTRLEIK
TC LLIY
LQPEDFATYYC
2.16 142 012/JK5 DIQMTQSPSSLSASVGDRVAI RTSQSISSYLN
WYQQKPGKAPE AASNLQS GVPSRFSGSGSGTDFTLTISS QQSSSTLIT FGQGTRLEIK
TC LLIY
LQPEDFATYYC

2.19 156 DIQMTQSPSSLSASVGDRVTI RTSQSISSYLN
WYQQKPGKAPE AASNLQR GVPSRFSGSGSGTDFTLTISS QQSSSTLIT FGQGTRLEIK
TC VLIY
LQPEDFATYYC
II
2.18 150 DIQMTQSPSSLSASVGDRVTI RTSQSISSYLN
WYHQKPGKAPE AAFNLQS GVPSRFSGSGSGTDFTLTISS QQSSSTLIT FGQGTRLEIK n TC LLIY
LQPEDFATYYC
II
2.21 160 DIQMTQSPSSLSASVGDRVTI RTSQSISSYLN
WYQQKPGKAPE AAFNLQS GVPSRISGSGSGTDFTLTISS QQSSSTLIT FGQGTRLEIK o K.) TC LLIY
LHPEDFATYYC m o 309 Germaine QSVLTQPPSVSAAPGQKVTIS SGSSSNIGNNY
WYQQLPGTAPK DNNKRPS GIPDRFSGSKSGTSATLGITG GTWDSSLSAGV FGGGTKLTVL op w C VS LLIY
LQTGDEADYYC ---:
oe o 3.1 164 V1-19/JL3 QSVLTQPPSMSAAPGQKVTIS
SGSSSNIGNNY WYQQLPGIAPK DNNKRPS GIPDRFSGSKSGTSATLGITG GTWDSSLSAGV FGGGTKLTVL
m ,..0 VS LLIY
LQTGDEADYYC 1\-) o 1.1 86 QSVLTQPPSVSAAPGQKVTIS SGSSSNIGNNY
WYQQFPGTAPK DNNSRPS GIPDRFSGSKSGTSATLGITG GTWDSSLSAGV FGGGTKLTVL o m C VS LLIY

o 310 Germaine EIVMTQSPATLSVSPGERATL RASQSVSSNLA
WYQQKPGQAPR GASTRAT GIPARFSGSGSGTEFTLTISS QQYNNWPIT FGQGTRLEIK m SC LLIY
LQSEDFAVYYC o 3.8 184 L2/JK5 EIVMTQSPATLSVSPGERVTL RASQSATSNLA
WYQQKPGQAPR GASTRAT GIPARFSGSGSGTEFTLTISS QQYNNWPFT FGQGTRLEIK H
SC LLIY
LQSEDFAVYYC
311 Germaine QSVLTQPPSVSAAPGQKVTIS SGSSSNIGNNY
WYQQLPGTAPK DNNKRPS GIPDRFSGSKSGTSATLGITG GTWDSSLSAGV FGGGTKLTVL
C VS LLIY
LQTGDEADYYC
2.1 90 V1-19/JL2 QSALTQPPSVSAAPGQKVTIS SGSSSNIGSNY
WCQQLPRTAPK DNNKRPS GIPDRFSGSKSGTSATLVITG GAWDSSLSAGV FGGGTKLTVL
C VS LLIY
LQTGDEADYYC
312 Germaine DIQMTQSPSSVSASVGDRVTI RASQGISSWLA
WYQQKPGKAPK AASSLQS GVPSRFSGSGSGTDFTLTISS QQANSFPWT FGQGTKVEIK
TC LLIY
LQPEDFATYYC
IV
2.9 122 L5/JK1 DIQMTQSPSSVSASVGDRVTI RASQGISSWLA
WYQQKPGKAPK AASSLQS GVPSRFSGSGSGTDFTLTISS QQANSFPWT FGQGTKVEIK r) TC LLIY
LQPEDFASYYC
313 Germaine EIVMTQSPATLSVSPGERATL RASQSVSSNLA
WYQQKPGQAPR GASTRAT GIPARFSGSGSGTEFTLTISS QQYNNWPLT FGGGTKVEIK
CP
SC LLIY
LQSEDFAVYYC l,.) o 4.11 216 L2/JK4 EIVMTQSPATLSVSPGERATL RASQSVISNLA
WYQQQPGQAPR GASTRAT GEPARFSGSGSGTEFTLTISS QQYNNWPLT FGGGTKVEIK o c4.) SC LLIY
LQSEDFAVYYC
'a 2.17 146 11 EIVMTQSPATLSVSPGERATL RASQSVSSNLA
WYQQKPGQAPR GASTRAT GIPARFSGSRTGTEFTLTISS QQYNNWPLT FGGGTKVEIK c4.) oe SC LLIY
LQSEDFAVYYC t,.) oe 1-, NAME NO:
314 Germline EIVMTQSPATLSVSPGERATL RASQSVSSNLA
WYQQKPGQAPR GASTRAT GIPARFSGSGSGTEFTLTISS QQYNNWPFT FGPGTKVDIK C
SC LLIY
LQSEDFAVYYC t,.) o 4.18 244 L2/JK3 EIVMTQSPATLSVSPGERATL RASQSVTSNLA WYQQKPGQAPR
GASTRAT GIPARFSGSGSGTEFTLTISS QQYHTWPFT FGPGTKVDIK o .6.
SC LLIY
LPSEDFAVYYC 'a 2.15 138 TT EIVMTQSPSTLSVSPGERATL RASQSVSSNLAWYQQKPGQAPR
GASIRAT GIPARFSGSGSGTEYTLTISS QQYNNWPFT FGPGTKVDIK :A
o SC LLIY
LQSEDFAVYYC o Oe II
4.19 248 EIVMTQSPSTLSVSPGERATL RASQSVTSNLA WYQQKPGQAPR
GASTRAT GIPARFSGSGSGTEFTLTISS QQYHTWPFT FGPGTKVDIK c4.) SC LLIY
LPSEDFAVYYC
315 Germline QSVLTQPPSASGTPGQRVTIS SGSSSNIGSNT
WYQQLPGTAPK SNNQRPS GVPDRFSGSKSGTSASLAISG AAWDDSLNGPV FGGGTKLTVL
C VN LLIY
LQSEDEADYYC
4.10 212 V1-16/JL3 QSVLTQPPSASGTPGQRVTIS SGSSSNIGSNT WYQQLPGTAPK
SNNQRPS GVPDRFSGSKSGTSASLAISG AAWDDSLNGPV FGGGTKLTVL
C VN LLIY
LQSEDEADYYC
316 Germline SSELTQDPAVSVALGQTVRIT QGDSLRSYYAS
WYQQKPGQAPV GKNNRPS GIPDRFSGSSSGNTASLTITG NSRDSSGNHLV FGGGTKLTVL
C LVIY
AQAEDEADYYC
2.5 106 V2-13/JL3 SSELTQDPAVSVALGQTVRIT QGDSLRRYYAS WYQQKPGQAPI
GKNNRPS GIPDRFSGSSSGNTASLTITG NSRDSSGNHLV FGGGTKLTVL n C LVIY
AQAEDEADYYC
TV
3.4 172 SSELTQDPAVSVALGQTVRIT QGDSLRRYYAS WYQQKPGQAPI
GKNNRPS GIPDRFSGSSSGNTASLTITG NSRDSSGNHLV FGGGTKLTVL o K.) C LVIY
AQAEDEADYYC m o 317 Germline SYELTQPPSVSVSPGQTARIT SGDALPKKYAY
WYQQKSGQAPV EDSKRPS GIPERFSGSSSGTMATLTISG YSTDSSGNHVV FGGGTKLTVL op C LVIY
AQVEDEADYYC w oe ---:
1-, 2.19 154 V2-7/JL2 SYELTQPPSVSVSPGQTARIT SGDALPKKYVY
WYQQKSGQAPV EDSKRPS GIPERFSGSSSGTMATLTING YSTDSSGNHVV FGGGTKLTVL m C LVIY
AQVEDEADYYC K.) o 318 Germaine DIQMTQSPSSLSASVGDRVTI QASQDISNYLN
WYQQKPGKAPK DASNLET GVPSRFSGSGSGTDFTFTISS QQYDNLPIT FGQGTRLEIK o m TC LLIY

2.13 130 018/JK5 DIQMTQSPSSLSASVGDRVTI QASQDISNYLN WYQQKPGKAPK
DASNLET GVPSRFSGSGSGTDFTFTISS HQCDNLPH FGQGTRLEIK o m TC LLIY
LQPEDIATYYC o 319 Germline SSELTQDPAVSVALGQTVRIT QGDSLRSYYAS
WYQQKPGQAPV GKNNRPS GIPDRFSGSSSGNTASLTITG NSRDSSGNHVV FGGGTKLTVL H
C LVIY
AQAEDEADYYC
2.3 98 V2-13/JL2 SSELTQDPAVSVALGQTVRIT QGDSLRIYYAS WYQQKPGQAPV
GKNNRPS GIPDRFSGSSSGNTASLTVTG KSRDSSFNHVT FGGGTKLTVL
C LVIY
AQAEDEADYYC
IT
2.6 110 SSELTQDPAVSVALGQTVRIT QGDSLRNYYAS WYQQKPGQAPI
GKNNRPS GIPDRFSGSSSGNTASLTITG NSRDSSGNHVT FGGGTKLTVL
C LVIY
AQAEDEADYYC
II
4.3 192 SSELTQDPAVSVALGQTVRIT QGDSLRSYYAS WYQQKPGQAPV
GKNNRPS GIPDRFSGSSSENTASLTITG KSRDSSFNHVT FGGGTKLTVL
C LVIY
AQAEDEADYYC
IV
TV
4.8 204 SSELTQDPAVSVALGQTVRIT QGDILRSYYAS WYQQKPGQAPI
GKNNRPS GIPDRFSGSSSGNTASLTITG KSRDSSYNHVT FGGGTKLTVL r) C LVIY
AQAEDEADYYC
TI
2.8 118 SSELTQDPAVSVALGQTVRIT QGDSLRRYYAS WYQQKPGQAPI
GKKNRPS GIPDRFSGSSSGNTASLTITG KSRDSSGNHVT FGGGTKLTVL
C VVIY
AQAEDEADYYC CP
W
TI
2.2 94 SSELTQDPAVSVALGQTVRIT QGDSLRSYYAS WYQQRPGQAPV
GRNNRPS GIPDRFSGSSSGLTASLTVTG NSRDSSYNHVA FGGGTKLTVL
o C LVIY
AQAEDEADYYC C41) VI
4.4 196 SSELTQDPAVSVALGQTVRIT QGDILRSYYAS WYQQKPGQAPV
GKNNRPS GIPDRFSGSSSGNTASLTITG KSRDSSYNHVT FGGGTKLTVL 'a c4.) C LVIY
AQAEDEADYYC oe t,=.) oe 1-, NAME NO:
320 Germline QSVLTQPPSVSGAPGQRVTIS TGSSSNIGAGY
WYQQLPGTAPK GNSNRPS GVPDRFSGSKSGTSASLAITG QSYDSSLSGSV FGGGTKLTVL c4.) DVH LLIY
LQAEDEADYYC
3.2 168 V1-13/JL3 QSVLTQPPSVSGAPGQRVTIS TGSSSNIGAGY WYQQFPGTAPK
GNSNRPS GVPDRFSGSKSGTSASLAITG QSYDSSLSGSV FGGGTKLTVL
DVH LLIQ
LQAEDEADYYC
2.7 114 QSVLTQSPSVSGAPGQRVTIS TGSSSNIGAGY WYQQLPGTAPR
GNNNRPS GVPDRFSGSKSGTSASLAITG QSYDSSLSGSV FGGGTKLTVL
DVH LLIY
LQAEDEADYYC

oe r) oe oe DETERMINATION OF CANONICAL CLASSES OF ANTIBODIES
[0236] Chothia, et al have described antibody structure in terms of "canonical classes"
for the hypervariable regions of each immunoglobulin chain (J Mol Biol. 1987 Aug 20;196(4):901-17). The atomic structures of the Fab and VL fragments of a variety of immunoglobulins were analyzed to determine the relationship between their amino acid sequences and the three-dimensional structures of their antigen binding sites. Chothia, et al. found that there were relatively few residues that, through their packing, hydrogen bonding or the ability to assume unusual phi, psi or omega conformations, were primarily responsible for the main-chain conformations of the hypervariable regions. These residues were found to occur at sites within the hypervariable regions and in the conserved beta-sheet framework. By examining sequences of immunoglobulins having unknown structure, Chothia, et al show that many immunoglobuins have hypervariable regions that are similar in size to one of the known structures and additionally contained identical residues at the sites responsible for the observed conformation.
[0237] Their discovery implied that these hypervariable regions have conformations close to those in the known structures. For five of the hypervariable regions, the repertoire of conformations appeared to be limited to a relatively small number of discrete structural classes. These commonly occurring main-chain conformations of the hypervariable regions were termed "canonical structures". Further work by Chothia, et al. (Nature. 1989 Dec 21-28;342(6252):877-83) and others (Martin, et al. J Mol Biol. 1996 Nov 15;263(5):800-15) confirmed that that there is a small repertoire of main-chain conformations for at least five of the six hypervariable regions of antibodies.
[0238] Each of the antibodies described above was analyzed to determine the canonical class for each of the antibody's complementarity determining regions (CDRs).
As is known, canonical classes have only been assigned for CDR1 and CDR2 of the antibody heavy chain, along with CDR1, CDR2 and CDR3 of the antibody light chain. The tables below (35 and 36) summarize the results of the analysis. The Canonical Class data is in the form of *HCDR1-LCDR2-LCDR3, wherein "HCDR" refers to the heavy chain CDR and "LCDR" refers to the light chain CDR. Thus, for example, a canonical class of 1-3-2-1-5 refers to an antibody that has a HCDR1 that falls into canonical class 1, a HCDR2 that falls into canonical class 3, a LCDR1 that falls into canonical class 2, a LCDR2 that falls into canonical class 1, and a LCDR3 that falls into canonical class 5.
[0239] Assignments were made to a particular canonical class where there was 70% or greater identity of the amino acids in the antibody with the amino acids defined for each canonical class. Where there was less than 70% identity, the canonical class assignment is marked with an asterisk ("*") to indicate that the best estimate of the proper canonical class was made, based on the length of each CDR and the totality of the data. The amino acids defined for each antibody can be found, for example, in the articles by Chothia, et al. referred to above.
Table 35 Antibody Canonical Class 3.6 1-1*-2-1-1 2.19 1-1 -2*-1 -5 3.9 1-1-2-1-*
2.15 1-1-2-1-1 2.17 1-1-2-1-1 2.9 1-1-2-1-1 3.8 1-1-2-1-1 69 1-1*-4-1-1 3.4 1-3*-1*-1-5*
2.6 1-3*-2*-1-5*
4.22 1-3*-2-1 -1 2.4 1-3*-6-1-5 3.2 1-3*-6-1 -5 2.2 1-3-2*-1-5*
2.3 1-3-2*-1 -5*
2.5 1 -3 -2*-1 -5*
2.8 1-3-2*-1-5*
4.3 1-3 -2*-1 -5*
4.4 1-3-2*-1-5*
4.8 1-3-2*-1-5*

2.10 1-3-2-1-1 2.13 1-3-2-1-1 2.14 1-3-2-1-1 2.16 1-3-2-1-1 2.18 1-3-2-1-1 2.21 1-3-2-1-1 299v1 1-3-2-1-1 299v2 1-3-2-1-1 3.5 1-3-2-1-1 Antibody Canonical Class 4.11 1-3-2-1-1 4.12 1-3-2-1-1 4.13 1-3-2-1-1 4.14 1-3-2-1-1 4.15 1-3-2-1-1 4.16 1-3-2-1-1 4.17 1-3-2-1-1 4.18 1-3-2-1-1 4.19 1-3-2-1-1 4.20 1-3-2-1-1 4.21 1-3-2-1-1 4.23 1-3-2-1-1 4.9 1-3-2-1-1 140 1-3-4-1-*
1.1 1-3-5-1-5 2.1 1-3-5-1-5 3.1 1-3-5-1-5 4.10 1-3-5-1-5 2.7 1-3-6-1-5 4.7 1-3-6-1-5 DOMAIN ANALYSIS OF ANTI-TNF-a ANTIBODIES THROUGH EXPRESSION AND
BINDING ASSAYS TO TNF-a EPITOPES
Sequencing/Binning results [0240] The variable (V) regions of immunoglobulin chains are encoded by multiple germ line DNA segments, which are joined into functional variable regions (VHDJH or VKJK) during B-cell ontogeny. The Molecular and genetic diversity of the antibody response to TNF-a was studied in detail. These assays revealed several points specific to anti TNF-a.
Analysis of 65 individual antibodies specific to TNF-a yielded 13 germline VH genes, 54 of them from the VH3 family, with 34 of them using the VH3-33 gene segment. The most frequent gene, VH3-33 germline gene was expressed in 34 of the 65 antibodies analyzed, and was limited to 2 different bins with clear linkage to the type of the light chain involved in the binding (Kappa A30 versus L2 or lambda). Selection of functional antibodies and binning showed that antibodies in specific bin expressed the same Ig VH
and in some cases the same VHDJH rearrangements. Furthermore, it was also discovered that pairs of H and L chain were conserved within the bin. These fmdings suggest that, for any given epitope, only a few members of the germ line repertoire are used to form the corresponding paratope, and for each antigenic epitope a limited number of L- and H ¨chain genes can pair to form a specific paratope.
[0241] The location of biologically relevant epitopes on human TNF-a was evaluated by expression and binding assay of mAbs specific for human TNF-a to a set of chimeric human/mouse TNF-a molecules. The antibodies described above fall into 4 major binning groups, all linked to several sites crucial for hTNF-a biological activity. The N-terminal domain of TNF-a was found to be involved in receptor binding.
[0242] In the first group antibodies, which neutralize TNF-a activity through direct binding to TNF-a receptor binding domain, all recognized sequences in the first 36 residues of the secreted TNF-a molecule. The results showed that both receptors bind to the same N-terminal region.
Van Ostade et al, ((1993) nature, 361:266-269) reported that the P75 Receptor binding domain was localized in loops at the base of the molecule, and that single amino substitutions at position 29 and 32 reduced binding activities with the p75 receptor. Antibodies in group I
(VH3-33/JH6b coupled with kappa chain A30/JK4) all have canonical class 1-3-2-1-1. All tested antibodies exhibit binding to the first 36 residues, with Lysl 1 and Arg31 present. Antibodies expressing VH3-334h6b coupled with lambda as a light chain showed different specificity.
[0243] Van Ostade et al ((1991) EMBO 10:827-836) demonstrated that by means of random and site directed mutagenesis, the integrity of four regions amino-acid 32-34, 84-91, 117-119 and 143-148 is important for maintaining the biological activity. Antibodies using the VH3-33/JH4b coupled with L2 kappa chain were shown to recognize different discontinuous domains of the TNF-a molecule. These antibodies were highly specific for human TNF-a, and their epitope is a constellation of residues located in different, noncontiguous positions of the TNF
Polypeptide.
[0244] The third group of antibodies includes antibodies utilizing VH3-33 coupled to lambda light chain as mAb 3.2 . The binding site of this group lies between residues 1-91. Although replacement of G1n27 and arg31 did not affect the binding to human TNF-a, the N-terminus appeared important for their binding activity. The results are provided below in Table 36.

Table 36 TNF
Epitope niAb VII DH JH VK JK VL IL
Canonical Class 3.1 VH1-2 D6-19 JH6b V1-19 JL3 1-3*-2*-1-5*
1-91 2.6 VH1-18 D1-7 JH4b V2-13 JL2 1-3*-1*-1-5*
1-125 3.4 VH1-18 D6-19 J114b V2-13 JL3 1.1 VH3-11 D3-16 JH6b V1-19 JL3 2.16 VH3-11 D3-16 JH6b 012 JK5 2.18 VH3-11 D3-16 JH6b 012 1IC5 1-125 2.21 VH3-21 D1-20 JH6b 012 JK5 4.23 VH3-23 D3-22 JH4b A20 31(3 4.13 VH3-30 D4-17 JH6b A30 31(4 SC234 VH3-30 D1-26 JH6b A30 1IC4 1-3-4-1-*
SC140 VH3-30 D1-20 JH6b A19 JK1 SC28 VH3-30 D3-3 JH6b A30 JK1 1-157 4.11 VH3-33 D6-19 1H4b L2 31(4 4.19 VH3-33 D3-9 J116b L2 31(3 1-157 4.18 VH3-33 D3-9 JH6b L2 1IC3 4.7 VH3-33 D6-19 JH4b V1-13 JL2 TNF
Epitope inAb VII Dll MI VK JK VL JL
Canonical Class 1-3-2*-1-5*
2.8 VH3-33 D3-9 .TH6b V2-13 JL2 36-91 2.7 VH3-33 D3-9 JI-16b V1-13 JL3 2.1 VH3-33 1H6 V1-19 JL2 1-3-2 *-1-5 *
2.2 VH3-33 D4-23 TH4a V2-13 JL2 1-3-2 *-1-5 *
2.5 VH3-33 D3-10 J116b V2-13 JL3 1-3-2*-1-5*
4.4 VH3-33 D4-23 J114b V2-13 JL2 1-3-2*-1-5*
1-157 4.3 VH3-33 D4-23 J114b V2-13 JL2 4.10 VH3-33 D4-17 J115b V1-16 JL3 1-3-2 *-1-5*
2.3 V113-33 D4-23 J114b V2-13 JL2 1-3-2 *-1-5*
4.8 VH3-33 D4-23 1114b V2-13 JL2 2.13 VH3-33 D6-19 1116b 018 11K5 4.20 VH3-33 D3-9 TH6b A30 JK4 4.21 VH3-33 TH6b A30 11(4 2.14 VH3-33 D6-19 TH6b MO JK4 1-36 2.10 VH3-33 D6-19 J116b A30 1K4 3.5 VH3-33 D3-10 J116b MO JK4 4.12 VH3-33 D4-17 J1-16b MO 11(4 TNF
Epitope niAb VII DH JH VK JK VL ,TL
Canonical Class 4.9 VH3-33 D4-17 JH6b A30 JK4 SC280 VH3-33 D4-17 JH6b A30 JK1 SC282 VH3-33 D4-17 JH6b A30 .31(1 1-3-2-1-1 SC291 VH3-33 D1-26 JH6b A30 JK4 4.16 VH3-33 D2-21 JH6b A30 JK4 1-36 4.17 VH3-33 D2-21 JH6b A30 JK4 4.14 VH3-33 D2-21 JH6b A30 JK4 1-3-2-1-1 =
4.15 VH3-33 D2-21 JH6b A30 JK4 1-36 SC299 VH3-33 D5-5 JH6b A30 JK4 1-3-2-1-1 SC313 VH3-33 D5-24 JH6b A30 JK4 1-3-2-1-1 SC148 VH3-33 D5-5 JH6b A30 JK4 SC15 VH3-33 D6-6 JH6b A30 JK4 SC95 VH3-33 D6-19 JH6b A30 JK4 1-3 *-2-1-1 4.22 VH3-48 D1-14 JH4b A30 JK1 3.7 VH3-53 D3-1 JH3 L2 31(4 2.17 VH3-53 D7-27 3114b L2 31(4 1-157 2.9 VH3-53 D7-27 JH4b L5 JK1 1-1-2*-1-5 1-125 2.19 VH3-53 D1-1 JH6 012 JK5 2.15 VH3-53 D1-1 3E6 L2 31(3 V2-7 JL2 3.8 VH3-53 D1-14 JH3b L2 JK5 TNF
Epitope inAb VII DR JII VIC JK VL JL
Canonical Class 1-157 3.9 VH3-53 D1-14 JH3b A30 JK4 1-1-2-1-*

SC250 VH3-53 D3-16 JH4b L2 11(1 1-157 SC263 VH3-53 D3-16 J114b _ L2 JK1 SC269 VH3-53 D3-16 JI-I4b L2 JK1 SC69 VH4-4 D2-2 JH2 Al JK4 1-1*-4-1-1 SC2 VH4-31 D1-20 JH6b A30 JK4 SC25 VH4-31 D1-20 JH6b A30 JK4 SC131 VH4-31 D1-20 JH6b A30 11(4 SC123 VH4-31 D1-20 JH6b A30 JK4 1-1*-2-1-1 1-157 3.6 VI14-59 D6-19 JH4b A30 11(4 1-3*-6-1-5 1-91 3.2 VH5-51 D7-27 JH4b V1-13 JL3 1-3*-6-1-5 36-91 2.4 VH5-51 D3-3 J116b V1-13 JL2 USES OF ANTI-TNFa ANTIBODIES AND ANTIBODY CONJUGATES FOR ARTBRITIS
TREATMENT
[0245] To determine the in vivo effects of anti-TNFa antibody treatment in human patients with arthritis, such human patients are injected over a certain amount of time with an effective amount of anti-TNFa antibody. At periodic times during the treatment, the human patients are monitored to determine whether their arthritis is being treated.
[0246] An arthritic patient treated with anti-TNFa antibodies has a lower level of arthritic symptoms, including inflammation, as compared to arthritic patients treated with control antibodies. Control antibodies that may be used include antibodies of the same isotype as the anti-TNFa antibodies tested and further, may not have the ability to bind to TNFa antigen.

USE OF ANTI-TNFa ANTIBODIES AS A DIAGNOSTIC AGENT
Detection of TNFa antigen in a sample [0247] An Enzyme-Linked Immunosorbent Assay (ELISA) for the detection of TNFa antigen in a sample may be developed. In the assay, wells of a microliter plate, such as a 96-well microliter plate or a 384-well microliter plate, are adsorbed for several hours with a first fully human monoclonal antibody directed against the antigen. The immobilized antibody serves as a capture antibody for any of the antigen that may be present in a test sample. The wells are rinsed and treated with a blocking agent such as milk protein or albumin to prevent nonspecific adsorption of the analyte.
[0248] Subsequently the wells are treated with a test sample suspected of containing the antigen, or with a solution containing a standard amount of the antigen. Such a sample may be, for example, a serum sample from a subject suspected of having levels of circulating antigen considered to be diagnostic of a pathology.
[0249] After rinsing away the test sample or standard, the wells are treated with a second fully human monoclonal anti-TNFa antibody that is labeled by conjugation with biotin. The labeled anti-TNFa antibody serves as a detecting antibody. After rinsing away excess second antibody, the wells are treated with avidin-conjugated horseradish peroxidase (HRP) and a suitable chromogenic substrate. The concentration of the antigen in the test samples is determined by comparison with a standard curve developed from the standard samples.
[0250] This ELISA assay provides a highly specific and very sensitive assay for the detection of the TNFa antigen in a test sample.
Determination of TNFa antigen concentration in patients [0251] A sandwich ELISA is developed to quantify TNFa levels in human serum. The 2 fully human monoclonal anti-TNFa antibodies from the sandwich ELISA, recognizes different epitopes on the TNFa molecule. The ELISA is performed as follows: 50 1_, of capture anti-TNFa antibody in coating buffer (0.1 M NaHCO3, pH 9.6) at a concentration of 2i_tg/mL is coated on ELISA plates (Fisher). After incubation at 4 C overnight, the plates are treated with 2001AL of blocking buffer (0.5% BSA, 0.1% Tween 20, 0.01% Thimerosal in PBS) for 1 hour at 25 C. The plates are washed (3x) using 0.05% Tween 20 in PBS (washing buffer, WB).
Normal or patient sera (Clinomics, Bioreclaimation) are diluted in blocking buffer containing 50%
human serum. The plates are incubated with serum samples overnight at 4 C, washed with WB, and then incubated with 100pL/well of biotinylated detection anti-TNFa antibody for 1 hour at 25 C.
After washing, the plates are incubated with FIRP-Streptavidin for 15 min, washed as before, and then treated with 100pL/well of o-phenylenediamine in H202 (Sigma developing solution) for color generation. The reaction is stopped with 50pL/well of H2SO4 (2M) and analyzed using an ELISA
plate reader at 492 urn. Concentration of TNFa antigen in serum samples is calculated by comparison to dilutions of purified TNFa antigen using a four parameter curve fitting program.
EQUIVALENTS
[0252] The foregoing written specification is considered to be sufficient to enable one skilled in the art to practice the invention. The foregoing description and Examples detail certain preferred embodiments of the invention and describes the best mode contemplated by the inventors.
It will be appreciated, however, that no matter how detailed the foregoing may appear in text, the invention may be practiced in many ways and the invention should be construed in accordance with the appended claims and any equivalents thereof.

SEQUENCE LISTING
<110> ABGENIX, INC.
<120> ANTIBODIES DIRECTED TO TUMOR NECROSIS FACTOR AND USES THEREOF
<130> 80509-184 <140> PCT/US2003/050683 <141> 2003-12-02 <150> U.S. 60/430729 <151> 2002-12-02 <160> 320 <170> FastSEQ for Windows Version 4.0 <210> 1 <211> 384 <212> DNA
<213> Homo sapiens <400> 1 caggtgcagt tgcaggagtc gggcccagga ctggtgaagc cttcacagac cctgtccctc 60 acctgcactg tctctggtgg ctccatcagc agtggtggtt actactggag ctggatccgc 120 cagcacccag ggaagggcct ggagtggatt gggaacatct attacagtgg gagcacctac 180 tacaacccgt ccctcaagag tcgagttacc atatcagtag acacgtctaa gaaccagttc 240 tccctgaagc tgagctctgt gactgccgcg gacacggccg tgtattactg tgcgagagat 300 agtaaccaat ataactggaa cgacgaggtc tacgactacg gtttggacgt ctggggccaa 360 gggaccacgg tcaccgtgtc ctca 384 <210> 2 <211> 128 <212> PRT
<213> Homo sapiens <400> 2 Gin Val Gin Leu Gin Glu Ser Gly Pro Gly Leu Val Lys Pro Ser Gin Thr Leu Ser Leu Thr Cys Thr Val Ser Gly Gly Ser Ile Ser Ser Gly Gly Tyr Tyr Trp Ser Trp Ile Arg Gin His Pro Gly Lys Gly Leu Glu Trp Ile Gly Asn Ile Tyr Tyr Ser Gly Ser Thr Tyr Tyr Asn Pro Ser Leu Lys Ser Arg Val Thr Ile Ser Val Asp Thr Ser Lys Asn Gin Phe Ser Leu Lys Leu Ser Ser Val Thr Ala Ala Asp Thr Ala Val Tyr Tyr Cys Ala Arg Asp Ser Asn Gin Tyr Asn Trp Asn Asp Glu Val Tyr Asp Tyr Gly Leu Asp Val Trp Gly Gin Gly Thr Thr Val Thr Val Ser Ser <210> 3 <211> 321 <212> DNA
<213> Homo sapiens <400> 3 gacatccaga tgacccagtc tccatcctcc ctgtctgcat ctgtaggaga cagagtcacc 60 atcacttgcc gggcaagtca gggcattaga aatgatttag gctggtatca gcagaaacca 120 gggaaagccc ctaagcgcct gatctatgct gcatccagtt tgcaaagtgg ggtcccatca 180 aggttcagcg gcagtggatc tgggacagaa ttcactctca caatcagcag cctgcagcct 240 gaagattttg caacttatta ctgtctacaa cataataatt accctctcac tttcggcgga 300 gggaccaagg tggagatcaa a 321 <210> 4 <211> 107 <212> PRT
<213> Homo sapiens <400> 4 Asp Ile Gin Met Thr Gin Ser Pro Ser Ser Leu Ser Ala Ser Val Gly Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gin Gly Ile Arg Asn Asp Leu Gly Trp Tyr Gin Gin Lys Pro Gly Lys Ala Pro Lys Arg Leu Ile Tyr Ala Ala Ser Ser Leu Gin Ser Gly Val Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Glu Phe Thr Leu Thr Ile Ser Ser Leu Gin Pro Glu Asp Phe Ala Thr Tyr Tyr Cys Leu Gin His Asn Asn Tyr Pro Leu Thr Phe Gly Gly Gly Thr Lys Val Glu Ile Lys <210> 5 <211> 375 <212> DNA
<213> Homo sapiens <400> 5 caggtgcagc tggtggagtc tgggggaggc gtggtccagc ctgggaggtc cctgagactc 60 tcctgtgcag cgtctggatt caccttcagt agctatgaca ttcactgggt ccgccaggct 120 ccaggcaagg ggctggagtg ggtggcagtt atatggtatg atggaagtat taaatactat 180 gcagactccg tgaagggccg attcaccatc tccagagaca attccaagaa cacgctgtat 240 ctacaaatga acagcctgag agccgaggac acggctgtgt attactgtgc gagagaggag 300 cagctcgtcc ggggagggta ctactactac ggtatggacg tctggggcca agggaccacg 360 gtcaccgtct cctca 375 <210> 6 <211> 125 <212> PRT
<213> Homo sapiens <400> 6 Gin Val Gin Leu Val Glu Ser Gly Gly Gly Val Val Gin Pro Gly Arg Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr Asp Ile His Trp Val Arg Gin Ala Pro Gly Lys Gly Leu Glu Trp Val Ala Val Ile Trp Tyr Asp Gly Ser Ile Lys Tyr Tyr Ala Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr Leu Gin Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys , Ala Arg Glu Glu Gln Leu Val Arg Gly Gly Tyr Tyr Tyr Tyr Gly Met Asp Val Trp Gly Gin Gly Thr Thr Val Thr Val Ser Ser <210> 7 <211> 321 <212> DNA
<213> Homo sapiens <400> 7 gacatccaga tgacccagtc tccatcctcc ctgtctgcat ctataggaga cagagtcacc 60 atcacttgcc gggcaagtca gggcattaga aatgatttag gctggtatca gcagaaacca 120 gggaaagccc ctaagcgcct gatctatgct gcatccagtt tgcaaagtgg ggtcccgtca 180 aggttcagcg gcagtggatc tgggccagaa ttcactctca caatcagcag cctgcagcct 240 gaagattttg caacttatta ctgtctacag cataatagtt acccgctcac tttcggcgga 300 gggaccaagg tggagatcaa a 321 <210> 8 <211> 107 <212> PRT
<213> Homo sapiens <400> 8 Asp Ile Gin Met Thr Gin Ser Pro Ser Ser Leu Ser Ala Ser Ile Gly Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gin Gly Ile Arg Asn Asp Leu Gly Trp Tyr Gin Gin Lys Pro Gly Lys Ala Pro Lys Arg Leu Ile Tyr Ala Ala Ser Ser Leu Gin Ser Gly Val Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Pro Glu Phe Thr Leu Thr Ile Ser Ser Leu Gin Pro Glu Asp Phe Ala Thr Tyr Tyr Cys Leu Gin His Asn Ser Tyr Pro Leu Thr Phe Gly Gly Gly Thr Lys Val Glu Ile Lys <210> 9 <211> 384 <212> DNA
<213> Homo sapiens <400> 9 caggtgcagc tgcaggagtc gggcccagga ctggtgaagc cttcacagac cctgtccctc 60 acctgcactg tctctggtgg ctccatcagc agtggtggtt actactggag ctggatccgc 120 cagcacccag ggaagggcct ggagtggatt gggaacatct attacagtgg gagcacctac 180 tacaacccgt ccctcaagag tcgagttacc atatcagtag acacgtctaa gaaccagttc 240 tccctgaagc tgagctctgt gactgccgcg gacacggccg tgtattactg tgcgagagat 300 agtaaccaat ataactggaa cgacgaggtc tacgactacg gtttggacgt ctggggccaa 360 gggaccacgg tcaccgtgtc ctca 384 <210> 10 <211> 128 <212> PRT
<213> Homo sapiens ' <400> 10 Gin Val Gin Leu Gin Glu Ser Gly Pro Gly Leu Val Lys Pro Ser Gin Thr Leu Ser Leu Thr Cys Thr Val Ser Gly Gly Ser Ile Ser Ser Gly Gly Tyr Tyr Trp Ser Trp Ile Arg Gin His Pro Gly Lys Gly Leu Glu Trp Ile Gly Asn Ile Tyr Tyr Ser Gly Ser Thr Tyr Tyr Asn Pro Ser Leu Lys Ser Arg Val Thr Ile Ser Val Asp Thr Ser Lys Asn Gin Phe Ser Leu Lys Leu Ser Ser Val Thr Ala Ala Asp Thr Ala Val Tyr Tyr Cys Ala Arg Asp Ser Asn Gin Tyr Asn Trp Asn Asp Glu Val Tyr Asp 100 105* 110 Tyr Gly Leu Asp Val Trp Gly Gin Gly Thr Thr Val Thr Val Ser Ser <210> 11 <211> 321 <212> DNA
<213> Homo sapiens <400> 11 gacatccaga tgacccagtc tccatcctcc ctgtctgcat ctgtaagaga cagagtcacc 60 atcacttgcc gggcaagtca gggcattaga aatgatttag gctggtatca gcagaaacca 120 gggaaagccc ctaagcgcct gatctatgct gcatccagtt tgcaaagtgg ggtcccatca 180 aggttcagcg gcagtggatc tgggacagaa ttcactctca caatcagcag cctgcagcct 240 gaagattttg caacttatta ctgtctacag cataatagtt accctctcac tttcggcgga 300 gggaccaagg tggagatcaa a 321 <210> 12 <211> 107 <212> PRT
<213> Homo sapiens <400> 12 Asp Ile Gin Met Thr Gin Ser Pro Ser Ser Leu Ser Ala Ser Val Arg Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gin Gly Ile Arg Asn Asp Leu Gly Trp Tyr Gin Gin Lys Pro Gly Lys Ala Pro Lys Arg Leu Ile Tyr Ala Ala Ser Ser Leu Gin Ser Gly Val Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Glu Phe Thr Leu Thr Ile Ser Ser Leu Gin Pro Glu Asp Phe Ala Thr Tyr Tyr Cys Leu Gin His Asn Ser Tyr Pro Leu Thr Phe Gly Gly Gly Thr Lys Val Glu Ile Lys <210> 13 <211> 369 <212> DNA
<213> Homo sapiens <400> 13 caggtgcagc tggtggagtc tgggggaggc gtggtccagc ctgggaggtc cctgagactc 60 tcctgtgcag cctctggatt caccttcagt aactatggca tgcactgggt ccgccaggct 120 ccaggcaagg ggctggagtg ggtgacaatt atatcatatg atggaagtaa taaatactat 180 gcagactccg tgaagggccg attcaccatc tccagagaca attccaagaa cacgctgtat 240 ctgcaaatga acagcctgag agctgaggac acggctgtgt attactgtgt gacgtattac 300 gatttttgga gtggttatct cccaggtatg gacgtctggg gccaagggac cacggtcacc 360 gtctcctca 369 <210> 14 <211> 123 <212> PRT
<213> Homo sapiens <400> 14 Gin Val Gin Leu Val Glu Ser Gly Gly Gly Val Val Gin Pro Gly Arg Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Asn Tyr Gly Met His Trp Val Arg Gin Ala Pro Gly Lys Gly Leu Glu Trp Val Thr Ile Ile Ser Tyr Asp Gly Ser Asn Lys Tyr Tyr Ala Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr Leu Gin Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Val Thr Tyr Tyr Asp Phe Trp Ser Gly Tyr Leu Pro Gly Met Asp Val Trp Gly Gin Gly Thr Thr Val Thr Val Ser Ser <210> 15 <211> 321 <212> DNA
<213> Homo sapiens <400> 15 gacatccaga tgacccagtc tccatcctcc ctgtctgcat ctgtaggaga cagagtcacc 60 atcacttgcc gggcaagtca gggcattaga aatgatttaa cctggtatca gcagaaacca 120 gggaaagccc ctaagcgcct gatctatgct gcatccagtt tgcaaagtgg ggtcccatca 180 aggttcagcg gcagtggatc tgggacagaa ttcactctca caatcagcag cctgcagcct 240 gaagattttg caacttatta ctgtctacag cataatagtt tcccgtggac gttcggccaa 300 gggaccaagg tggaaatcaa a 321 <210> 16 <211> 107 <212> PRT
<213> Homo sapiens <400> 16 Asp Ile Gin Met Thr Gin Ser Pro Ser Ser Leu Ser Ala Ser Val Gly Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gin Gly Ile Arg Asn Asp Leu Thr Trp Tyr Gin Gin Lys Pro Gly Lys Ala Pro Lys Arg Leu Ile Tyr Ala Ala Ser Ser Leu Gin Ser Gly Val Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Glu Phe Thr Leu Thr Ile Ser Ser Leu Gin Pro Glu Asp Phe Ala Thr Tyr Tyr Cys Leu Gin His Asn Ser Phe Pro Trp Thr Phe Gly Gin Gly Thr Lys Val Glu Ile Lys , , <210> 17 <211> 351 <212> DNA
<213> Homo sapiens <400> 17 caggtgcagc tgcaggagtc gggcccagga ctggtgaagc cttcggagac cctgtccctc 60 acctgcactg tctctggtgg ctccatcaat cattactact ggagctggat ccggcagccc 120 gccgggaagg gcctggaatg gattgggcgt atctatccca ctgggagcac caactacaac 180 ccctccctca agagtcgagt caccatgtca gtagacacgt ccaagaacca gttctccctg 240 aagctgagct ctgtgaccgc cgcggacacg gccgtatatt actgtgcggg cggctggtcg 300 tactggtact tcgatctctg gggccgtggc accctggtca ctgtctcctc a 351 <210> 18 <211> 117 <212> PRT
<213> Homo sapiens <400> 18 Gin Val Gin Leu Gin Glu Ser Gly Pro Gly Leu Val Lys Pro Ser Glu Thr Leu Ser Leu Thr Cys Thr Val Ser Gly Gly Ser Ile Asn His Tyr Tyr Trp Ser Trp Ile Arg Gin Pro Ala Gly Lys Gly Leu Glu Trp Ile Gly Arg Ile Tyr Pro Thr Gly Ser Thr Asn Tyr Asn Pro Ser Leu Lys Ser Arg Val Thr Met Ser Val Asp Thr Ser Lys Asn Gin Phe Ser Leu Lys Leu Ser Ser Val Thr Ala Ala Asp Thr Ala Val Tyr Tyr Cys Ala Gly Gly Trp Ser Tyr Trp Tyr Phe Asp Leu Trp Gly Arg Gly Thr Leu Val Thr Val Ser Ser <210> 19 <211> 342 <212> DNA
<213> Homo sapiens <400> 19 gatgttgtga tgactcagtc tcctctctcc ctgcccgtca cccttggaca gccggcctcc 60 atctcctgca ggtctagtca aagcctcgta tacagtgatg gaagcaccta cttgaattgg 120 tttcagcaga ggccaggcca atctccaagg cgcctaattt ataaggtttc taactgggac 180 tctggggtcc cagacagatt cagcggcagt gggtcaggca ctgatttcac actgaaaatc 240 agcagggtgg aggctgaaga tgttggggtt tattactgca tgcaaggttc acactggcct 300 cgggagttca ctttcggcgg agggaccaag gtggagatca aa 342 <210> 20 <211> 114 <212> PRT
<213> Homo sapiens <400> 20 Asp Val Val Met Thr Gin Ser Pro Leu Ser Leu Pro Val Thr Leu Gly Gin Pro Ala Ser Ile Ser Cys Arg Ser Ser Gin Ser Leu Val Tyr Ser Asp Gly Ser Thr Tyr Leu Asn Trp Phe Gin Gin Arg Pro Gly Gin Ser , , Pro Arg Arg Leu Ile Tyr Lys Val Ser Asn Trp Asp Ser Gly Val Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys Ile Ser Arg Val Glu Ala Glu Asp Val Gly Val Tyr Tyr Cys Met Gin Gly Ser His Trp Pro Arg Glu Phe Thr Phe Gly Gly Gly Thr Lys Val Glu Ile Lys <210> 21 <211> 369 <212> DNA
<213> Homo sapiens <400> 21 caggtgcagc tggtggagtc tgggggaggc gtggtccagc ctgggaggtc cctgagactc 60 tcctgtgcag cgtctggatt caccttcagt aactatgaca tgcactgggt ccgccaggct 120 ccaggcaagg ggctggagtg ggtggcagtt atatggtatg atggaagtat taaatactat 180 gcagactccg tgaagggccg attcaccatc tccagagaca attccaagaa cacgctgcat 240 ctgcaaatga acagcctgag agccgaggac acggctgtgt attactgtgc gagagagata 300 gcagtggctg gaggttacta ctacggtttg gacgtctggg gccaagggac cacggtcacc 360 gtctcctca 369 <210> 22 <211> 123 <212> PRT
<213> Homo sapiens <400> 22 Gin Val Gin Leu Val Glu Ser Gly Gly Gly Val Val Gin Pro Gly Arg Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Asn Tyr Asp Met His Trp Val Arg Gin Ala Pro Gly Lys Gly Leu Glu Trp Val Ala Val Ile Trp Tyr Asp Gly Ser Ile Lys Tyr Tyr Ala Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu His Leu Gin Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala Arg Glu Ile Ala Val Ala Gly Gly Tyr Tyr Tyr Gly Leu Asp Val Trp Gly Gin Gly Thr Thr Val Thr Val Ser Ser <210> 23 <211> 321 <212> DNA
<213> Homo sapiens <400> 23 gacatccaga tgacccagtc tccatcctcc ctgtctgcat ctgtaggaga cagagtcacc 60 atcacttgcc gggcaagtca gggcattaga aatgatttag gctggtatca gcagaaacca 120 gggaaagccc ctaagcgcct gatctatgct gcatccagtt tgcaaagtgg ggtcccatca 180 aggttcagcg gcagtggatc tgggacagaa ttcactctca cagtcagcag cctgcagcct 240 gaagattttg caacttatta ctgtctacag catcatagtt acccgctcac tttcggcgga 300 gggaccaagg tacagatcaa t 321 , , <210> 24 <211> 107 <212> PRT
<213> Homo sapiens <400> 24 Asp Ile Gin Met Thr Gin Ser Pro Ser Ser Leu Ser Ala Ser Val Gly Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gin Gly Ile Arg Asn Asp Leu Gly Trp Tyr Gin Gin Lys Pro Gly Lys Ala Pro Lys Arg Leu Ile Tyr Ala Ala Ser Ser Leu Gin Ser Gly Val Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Glu Phe Thr Leu Thr Val Ser Ser Leu Gin Pro Glu Asp Phe Ala Thr Tyr Tyr Cys Leu Gin His His Ser Tyr Pro Leu Thr Phe Gly Gly Gly Thr Lys Val Gin Ile Asn <210> 25 <211> 384 <212> DNA
<213> Homo sapiens <400> 25 caggtgcagc tgcaggagtc gggcccagga ctggtgaagc cttcacagac cctgtccctc 60 acctgcactg tctctggtgg ctccatcagc agtggtggtt actactggag ctggatccgc 120 cagcacccag ggaagggcct ggagtggatt gggaacatct attacagtgg gagcacctac 180 tacaccccgt ccctcaagag tcgagttacc atatcagtag acacgtctaa gaaccagttc 240 tccctgaagc tgagctctgt gactgccgcg gacacggccg tgtattactg tgcgagagat 300 agtaaccaat ataactggaa cgacgaggtc tacgactacg gtttggacgt ctggggccaa 360 gggaccacgg tcaccgtgtc ctca 384 <210> 26 <211> 128 <212> PRT
<213> Homo sapiens <400> 26 Gin Val Gin Leu Gin Glu Ser Gly Pro Gly Leu Val Lys Pro Ser Gin Thr Leu Ser Leu Thr Cys Thr Val Ser Gly Gly Ser Ile Ser Ser Gly Gly Tyr Tyr Trp Ser Trp Ile Arg Gin His Pro Gly Lys Gly Leu Glu Trp Ile Gly Asn Ile Tyr Tyr Ser Gly Ser Thr Tyr Tyr Thr Pro Ser Leu Lys Ser Arg Val Thr Ile Ser Val Asp Thr Ser Lys Asn Gin Phe Ser Leu Lys Leu Ser Ser Val Thr Ala Ala Asp Thr Ala Val Tyr Tyr Cys Ala Arg Asp Ser Asn Gin Tyr Asn Trp Asn Asp Glu Val Tyr Asp Tyr Gly Leu Asp Val Trp Gly Gin Gly Thr Thr Val Thr Val Ser Ser <210> 27 <211> 321 , <212> DNA
<213> Homo sapiens <400> 27 gacatccaga tgacccagtc tccatcctcc ctgtctgcat ctgtaggaga cagagtcacc 60 atcacttgcc gggcaagtca gggcattaga aatgatttag gctggtatca gcagaaacca 120 gggaaagccc ctaagcgcct gatctatgct gcatccagtt tgcaaagtgg ggtcccatca 180 aggttcagcg gcagtggatc tgggacagaa ttcactctca caatcagcag cctgcagcct 240 gaagattttg caacttatta ctgtctacag cataataatt accctctcac tttcggcgga 300 gggaccaagg tggagatcaa a 321 <210> 28 <211> 107 <212> PRT
<213> Homo sapiens <400> 28 Asp Ile Gin Met Thr Gin Ser Pro Ser Ser Leu Ser Ala Ser Val Gly Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gin Gly Ile Arg Asn Asp Leu Gly Trp Tyr Gin Gin Lys Pro Gly Lys Ala Pro Lys Arg Leu Ile Tyr Ala Ala Ser Ser Leu Gin Ser Gly Val Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Glu Phe Thr Leu Thr Ile Ser Ser Leu Gin Pro Glu Asp Phe Ala Thr Tyr Tyr Cys Leu Gin His Asn Asn Tyr Pro Leu Thr Phe Gly Gly Gly Thr Lys Val Glu Ile Lys <210> 29 <211> 384 <212> DNA
<213> Homo sapiens <400> 29 caggtgcagc tgcaggagtc gggcccagga ctggtgaagc cttcacagac cctgtccctc 60 acctgcactg tctctggtgg ctccatcagc agtggtggtt actactggag ctggatccgc 120 cagcacccag ggaagggcct ggagtggatt gggaacatct attacagtgg gagcacctac 180 tacaacccgt ccctcaagag tcgagttacc atatcagtag acacgtctaa gaaccagttc 240 tccctgaagc tgagctctgt gactgccgcg gacacggccg tgtattactg tgcgagagat 300 agtaaccagt ataactggaa cgacgaggtc tacgactacg gtttggacgt ctggggccaa 360 gggaccacgg tcaccgtctc ctca 384 <210> 30 <211> 128 <212> PRT
<213> Homo sapiens <400> 30 Gin Val Gin Leu Gin Glu Ser Gly Pro Gly Leu Val Lys Pro Ser Gin Thr Leu Ser Leu Thr Cys Thr Val Ser Gly Gly Ser Ile Ser Ser Gly Gly Tyr Tyr Trp Ser Trp Ile Arg Gin His Pro Gly Lys Gly Leu Glu Trp Ile Gly Asn Ile Tyr Tyr Ser Gly Ser Thr Tyr Tyr Asn Pro Ser Leu Lys Ser Arg Val Thr Ile Ser Val Asp Thr Ser Lys Asn Gin Phe Ser Leu Lys Leu Ser Ser Val Thr Ala Ala Asp Thr Ala Val Tyr Tyr Cys Ala Arg Asp Ser Asn Gln Tyr Asn Trp Asn Asp Glu Val Tyr Asp Tyr Gly Leu Asp Val Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser <210> 31 <211> 321 <212> DNA
<213> Homo sapiens <400> 31 gacatccaaa tgacccagtc tccatccgcc ctgtctgcat ctgtaggaga cagagtcacc 60 atcacttgcc gggcaagtca gggcattaga aatgatttag gctggtatca gcagaaacca 120 gggaaagccc ctaagcgcct gatctatgct gcatccagtt tgcaaagtgg ggtcccatca 180 aggttcagcg gcagtggatc tgggacagaa ttcactctca caatcagcag cctgcagcct 240 gaagattttg caacttatta ctgtcttcag cataaaagtt accctctcac tttcggcgga 300 gggaccaagg tggagatcaa a 321 <210> 32 <211> 107 <212> PRT
<213> Homo sapiens <400> 32 Asp Ile Gln Met Thr Gln Ser Pro Ser Ala Leu Ser Ala Ser Val Gly Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Gly Ile Arg Asn Asp Leu Gly Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Arg Leu Ile Tyr Ala Ala Ser Ser Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Glu Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro Glu Asp Phe Ala Thr Tyr Tyr Cys Leu Gln His Lys Ser Tyr Pro Leu Thr Phe Gly Gly Gly Thr Lys Val Glu Ile Lys <210> 33 <211> 366 <212> DNA
<213> Homo sapiens <400> 33 caggtgcagc tggtggagtc tgggggaggt gtggtccagc ctgggaggtc cctgagactc 60 tcctgtgcag cctctggatt caccttcagt agctatggca tgcactgggt ccgccaggct 120 ccaggcaagg ggctggagtg ggtggcagtt atatcatatg atggaagtaa taaatactat 180 gcagactccg tgaagggccg attcaccatc tccagagaca attccaagaa cacgctgtat 240 ctgcaaatga acagcctgag agctgaggac acggctgtgt attactgtgc gagagatcag 300 gataactgga actactacta cggtatggac gtctggggcc aagggaccac ggtcaccgtc 360 tcctca 366 <210> 34 <211> 122 <212> PRT
<213> Homo sapiens , <400> 34 Gin Val Gin Leu Val Glu Ser Gly Gly Gly Val Val Gin Pro Gly Arg Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr Gly Met His Trp Val Arg Gin Ala Pro Gly Lys Gly Leu Glu Trp Val Ala Val Ile Ser Tyr Asp Gly Ser Asn Lys Tyr Tyr Ala Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr Leu Gin Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala Arg Asp Gin Asp Asn Trp Asn Tyr Tyr Tyr Gly Met Asp Val Trp Gly Gin Gly Thr Thr Val Thr Val Ser Ser <210> 35 <211> 333 <212> DNA
<213> Homo sapiens <400> 35 gatattgtga tgactcagtc tccactctcc ctgcccgtca cccctggaga gccggcctcc 60 atctcctgca ggtctagtca gagcctcctt catagtaatg gatacaacta tttggattgg 120 tacctgcaga agccagggca gtctccacag ctcctgatct ttttgggttc ttatcgggcc 180 tccggggtcc ctgacaggtt cagtggcagt ggatcaggca cagattttac actgaaaatc 240 agcagagtgg aggctgagga tgttggggtt tattactgca tgcaagctct acaaacttgg 300 acgttcggcc aagggaccaa ggtggaaatc aaa 333 <210> 36 <211> 111 <212> PRT
<213> Homo sapiens <400> 36 Asp Ile Val Met Thr Gin Ser Pro Leu Ser Leu Pro Val Thr Pro Gly Glu Pro Ala Ser Ile Ser Cys Arg Ser Ser Gin Ser Leu Leu His Ser Asn Gly Tyr Asn Tyr Leu Asp Trp Tyr Leu Gin Lys Pro Gly Gin Ser Pro Gin Leu Leu Ile Phe Leu Gly Ser Tyr Arg Ala Ser Gly Val Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys Ile Ser Arg Val Glu Ala Glu Asp Val Gly Val Tyr Tyr Cys Met Gin Ala Leu Gin Thr Trp Thr Phe Gly Gin Gly Thr Lys Val Glu Ile Lys <210> 37 <211> 372 <212> DNA
<213> Homo sapiens <400> 37 caggtgcagc tggtggagtc tgggggaggc gtggtccagc ctgggaggtc cctgagactc 60 tcctgtgcag cgtctggatt caccttcagt aactatgaca tgcactgggt ccgccaggct 120 , , ccaggcaagg ggctggagtg ggtggcagtt atatggtatg atggaagtat taaatactat 180 gcagactccg tgaagggccg attcaccatc tccagagaca attccaagaa cacgctgtat 240 ctgcaaatga acagcctgag agccgaggac acggctgtgt atttctgtgc gagagagaca 300 gctatcctta ggggctacta ctactacgat atggacgtct ggggccaagg gaccacggtc 360 accgtctcct ca 372 <210> 38 <211> 124 <212> PRT
<213> Homo sapiens <400> 38 Gin Val Gin Leu Val Glu Ser Gly Gly Gly Val Val Gin Pro Gly Arg Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Asn Tyr Asp Met His Trp Val Arg Gin Ala Pro Gly Lys Gly Leu Glu Trp Val Ala Val Ile Trp Tyr Asp Gly Ser Ile Lys Tyr Tyr Ala Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr Leu Gin Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Phe Cys Ala Arg Glu Thr Ala Ile Leu Arg Gly Tyr Tyr Tyr Tyr Asp Met Asp Val Trp Gly Gin Gly Thr Thr Val Thr Val Ser Ser <210> 39 <211> 321 <212> DNA
<213> Homo sapiens <400> 39 gacatccaga tgacccagtc tccatcctcc ctgtctgcat ctgtaggaga cagagtcacc 60 atcacttgcc gggcaagtca gggcattaga aatgatttag gctggtatca gcagaaacca 120 gggaaagccc ctaagcgcct gatctctgct gcatccagtt tgcaaggtgg ggtcccatca 180 aggttcagcg gcagtggatc tgggacagaa ttcactctca caatcagcag cctgcagcct 240 gaagattttg caacttatta ctgtctacag cataatagtt accctctcac tttcggcgga 300 gggaccaagg tggagatcaa a 321 <210> 40 <211> 107 <212> PRT
<213> Homo sapiens <400> 40 Asp Ile Gin Met Thr Gin Ser Pro Ser Ser Leu Ser Ala Ser Val Gly Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Gly Ile Arg Asn Asp Leu Gly Trp Tyr Gin Gin Lys Pro Gly Lys Ala Pro Lys Arg Leu Ile Ser Ala Ala Ser Ser Leu Gin Gly Gly Val Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Glu Phe Thr Leu Thr Ile Ser Ser Leu Gin Pro Glu Asp Phe Ala Thr Tyr Tyr Cys Leu Gin His Asn Ser Tyr Pro Leu Thr Phe Gly Gly Gly Thr Lys Val Glu Ile Lys , , <210> 41 <211> 372 <212> DNA
<213> Homo sapiens <400> 41 caggtgcagt tggtggagtc tgggggaggc gtggtccagc ctgggaggtc cctgagactc 60 tcctgtgcag cctctggatt caccttcagt agctatgaca tgcactgggt ccgccaggct 120 ccaggcaagg ggctggagtg ggtggcagtt atatcatatg atggaagtat taaatactat 180 gcagactccg tgaagggccg attcaccatc tccagagaca attccaagaa cacgctgtat 240 ctgcaagtga acagcctgag agctgaggac acggctgtgt attactgtgc gagagaggtc 300 cgtagtggga gctactacta ttactacagt atggacgtct ggggccaagg gaccacggtc 360 accgtctcct ca 372 <210> 42 <211> 124 <212> PRT
<213> Homo sapiens <400> 42 Gin Val Gin Leu Val Glu Ser Gly Gly Gly Val Val Gin Pro Gly Arg Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr Asp Met His Trp Val Arg Gin Ala Pro Gly Lys Gly Leu Glu Trp Val Ala Val Ile Ser Tyr Asp Gly Ser Ile Lys Tyr Tyr Ala Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr Leu Gin Val Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala Arg Glu Val Arg Ser Gly Ser Tyr Tyr Tyr Tyr Tyr Ser Met Asp Val Trp Gly Gin Gly Thr Thr Val Thr Val Ser Ser <210> 43 <211> 321 <212> DNA
<213> Homo sapiens <400> 43 gacatccaga tgacccagtc tccatcctcc ctgtctgcat ctgtaggaga cagagtcacc 60 atcacttgcc gggcaagtca ggacatcaga aatgatttag gctggtatca gcagaaacca 120 gggaaagccc ctaagcgcct gatctatgct gcgtccagtt tgcaaagtgg ggtcccatca 180 aggttcagcg gcagtggatc tgggccagaa ttcactctca caatcagcag cctgcagcct 240 gaagattttg caacttatta ctgtctacaa cataatagtt atccgctcac tttcggcgga 300 gggaccaagg tggagatcaa a 321 <210> 44 <211> 107 <212> PRT
<213> Homo sapiens <400> 44 Asp Ile Gin Met Thr Gin Ser Pro Ser Ser Leu Ser Ala Ser Val Gly Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gin Asp Ile Arg Asn Asp Leu Gly Trp Tyr Gln Gin Lys Pro Gly Lys Ala Pro Lys Arg Leu Ile ' , Tyr Ala Ala Ser Ser Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Pro Glu Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro Glu Asp Phe Ala Thr Tyr Tyr Cys Leu Gln His Asn Ser Tyr Pro Leu Thr Phe Gly Gly Gly Thr Lys Val Glu Ile Lys <210> 45 <211> 345 <212> DNA
<213> Homo sapiens <400> 45 gaggtgcagc tggtggagtc tggaggaggc ttgatccagc ctggggggtc cctgagactc 60 tcctgtgcag cctctgggtt caccgtcagt agcaactaca tgagctgggt ccgccaggct 120 ccagggaagg ggctggaatg ggtctcagtt atttatagcg gtgataggac atactacgca 180 gactccgtga agggccgatt caccatctcc agagacaatt ccaagaacac gctgtatctt 240 caaatgaaca gcctgagagc cgaggacacg gccgtgtatt actgtgcgcg aggggagggg 300 ggatttgact actggggcca gggaaccctg gtcaccgtct cctca 345 <210> 46 <211> 115 <212> PRT
<213> Homo sapiens <400> 46 Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Ile Gln Pro Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Val Ser Ser Asn Tyr Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val Ser Val Ile Tyr Ser Gly Asp Arg Thr Tyr Tyr Ala Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala Arg Gly Glu Gly Gly Phe Asp Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser <210> 47 <211> 318 <212> DNA
<213> Homo sapiens <400> 47 gaaatagtga tgacgcagtc tccagccacc ctgtctgtgt ctccagggga aagagccacc 60 ctctcctgca gggccagtca gagtgttacc agcaacttag cctggtacca gcagaaacct 120 ggccaggctc ccagactcct catccatggt gcatccatta gggccactgg tctcccagcc 180 aggttcagtg gcagtgggtc tgggacagag ttcactctca ccatcagtag cctgcagtct 240 gaagattttg cagtctatta ctgtcagcag tataattatt ggtggacgtt cggccaaggg 300 accaaggtgg aaatcaaa 318 <210> 48 <211> 106 <212> PRT

' <213> Homo sapiens <400> 48 Glu Ile Val Met Thr Gin Ser Pro Ala Thr Leu Ser Val Ser Pro Gly Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Gin Ser Val Thr Ser Asn Leu Ala Trp Tyr Gin Gin Lys Pro Gly Gin Ala Pro Arg Leu Leu Ile His Gly Ala Ser Ile Arg Ala Thr Gly Leu Pro Ala Arg Phe Ser Gly Ser Gly Ser Gly Thr Glu Phe Thr Leu Thr Ile Ser Ser Leu Gin Ser Glu Asp Phe Ala Val Tyr Tyr Cys Gin Gin Tyr Asn Tyr Trp Trp Thr Phe Gly Gin Gly Thr Lys Val Glu Ile Lys <210> 49 <211> 345 <212> DNA
<213> Homo sapiens <400> 49 gaggtgcagc tggtggagtc tggaggaggc ttgatccagc ctggggggtc cctgagactc 60 tcctgtgcag cctctgggtt caccgtcagt aggaactaca tgagctgggt ccgccaggct 120 ccagggaagg ggctggaatg ggtctcagtt atttatagcg gtgataggac atactacgca 180 gactccgtga agggccgatt caccatctcc agagacaatt ccaagaacac gctgtatctt 240 caaatgaaca gcctgagagc cgaggacacg gccgtgtatt actgtgcgcg aggggagggg 300 ggatttgact actggggcca gggaaccctg gtcaccgtct cctca 345 <210> 50 <211> 115 <212> PRT
<213> Homo sapiens <400> 50 Glu Val Gin Leu Val Glu Ser Gly Gly Gly Leu Ile Gin Pro Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Val Ser Arg Asn Tyr Met Ser Trp Val Arg Gin Ala Pro Gly Lys Gly Leu Glu Trp Val Ser Val Ile Tyr Ser Gly Asp Arg Thr Tyr Tyr Ala Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr Leu Gin Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala Arg Gly Glu Gly Gly Phe Asp Tyr Trp Gly Gin Gly Thr Leu Val Thr Val Ser Ser <210> 51 <211> 318 <212> DNA
<213> Homo sapiens <400> 51 gaaatagtga tgacgcagtc tccagccacc ctgtctgtgt ctccagggga aagagccacc 60 ctctcctgca gggccagtca gagtgttagc agcaacttag cctggtacca gcagaaacct 120 ggccaggctc ccagactcct catccatggt gcatccatta gggccactgg tctcccagcc 180 aggttcagtg gcagtgggtc tgggacagag ttcactctca ccatcagtag cctccagtct 240 gaagattttg cagtctatta ctgtcagcag tataattatt ggtggacgtt cggccaaggg 300 accaaggtgg aaatcaaa 318 <210> 52 <211> 106 <212> PRT
<213> Homo sapiens <400> 52 Glu Ile Val Met Thr Gin Ser Pro Ala Thr Leu Ser Val Ser Pro Gly Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Gin Ser Val Ser Ser Asn Leu Ala Trp Tyr Gin Gin Lys Pro Gly Gin Ala Pro Arg Leu Leu Ile His Gly Ala Ser Ile Arg Ala Thr Gly Leu Pro Ala Arg Phe Ser Gly Ser Gly Ser Gly Thr Glu Phe Thr Leu Thr Ile Ser Ser Leu Gin Ser Glu Asp Phe Ala Val Tyr Tyr Cys Gin Gin Tyr Asn Tyr Trp Trp Thr Phe Gly Gin Gly Thr Lys Val Glu Ile Lys <210> 53 <211> 345 <212> DNA
<213> Homo sapiens <400> 53 gaggtgcagc tggtggagtc tggaggaggc ttgatccagc ctggggggtc cctgagactc 60 tcctgtgcag cctctgagtt caccgtcagt aggaactaca tgagctgggt ccgccaggct 120 ccagggaagg gactggaatg ggtctcagtt atttatagcg gtgataggac atactacgca 180 gactccgtga agggccgatt caccatctcc agagacaatt ccaagaacac gctgtatctt 240 caaatgaaca gcctgagagc cgaggacacg gccgtgtatt actgtgcgcg aggggagggg 300 ggatttgact actggggcca gggaaccctg gtcaccgtct cctca 345 <210> 54 <211> 115 <212> PRT
<213> Homo sapiens <400> 54 Glu Val Gin Leu Val Glu Ser Gly Gly Gly Leu Ile Gin Pro Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Glu Phe Thr Val Ser Arg Asn Tyr Met Ser Trp Val Arg Gin Ala Pro Gly Lys Gly Leu Glu Trp Val Ser Val Ile Tyr Ser Gly Asp Arg Thr Tyr Tyr Ala Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr Leu Gin Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala Arg Gly Glu Gly Gly Phe Asp Tyr Trp Gly Gin Gly Thr Leu Val Thr Val Ser Ser ' , <210> 55 <211> 318 <212> DNA
<213> Homo sapiens <400> 55 gaaatagtga tgacgcagtc tccagccacc ctgtctgtgt ctccagggga aagagccacc 60 ctctcctgca gggccagtca gagtgttagc agcaacttag cctggtacca gcagaaacct 120 ggccaggctc ccagactcct catccatggt gcatccatta gggccactgg tctcccagcc 180 aggttcagtg gcagtgggtc tgggacagag ttcactctca ccatcagtag cctgcagtct 240 gaagattttg cagtctatta ctgtcagcag tataattatt ggtggacgtt cggccaaggg 300 accaaggtgg aaatcaaa 318 <210> 56 <211> 106 <212> PRT
<213> Homo sapiens <400> 56 Glu Ile Val Met Thr Gin Ser Pro Ala Thr Leu Ser Val Ser Pro Gly Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Gin Ser Val Ser Ser Asn Leu Ala Trp Tyr Gin Gin Lys Pro Gly Gin Ala Pro Arg Leu Leu Ile His Gly Ala Ser Ile Arg Ala Thr Gly Leu Pro Ala Arg Phe Ser Gly Ser Gly Ser Gly Thr Glu Phe Thr Leu Thr Ile Ser Ser Leu Gin Ser Glu Asp Phe Ala Val Tyr Tyr Cys Gin Gin Tyr Asn Tyr Trp Trp Thr Phe Gly Gin Gly Thr Lys Val Glu Ile Lys <210> 57 <211> 375 <212> DNA
<213> Homo sapiens <400> 57 caggtgcaac tggtggagtc tgggggaggc gtggtccagc ctgggaggtc cctgagactc 60 tcctgtgcag cgtctggatt caccgtcagt agctatggca tgcactgggt ccgccaggct 120 ccaggcaagg ggctggagtg ggtggcagtt atatggtcta atggaagtaa taagtactat 180 gcagactccg tgaagggccg attcaccatc tccagagaca attccaagaa cacgctgtat 240 ctgcaaatga acagcctgag agccgaggac acggctgtgt attactgtgc gagagataac 300 ggtgtctacg tgggatacgc ctactattac ggtatggacg tctggggcca agggaccacg 360 gtcaccgtct cctca 375 <210> 58 <211> 125 <212> PRT
<213> Homo sapiens <400> 58 Gin Val Gin Leu Val Glu Ser Gly Gly Gly Val Val Gin Pro Gly Arg Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Val Ser Ser Tyr Gly Met His Trp Val Arg Gin Ala Pro Gly Lys Gly Leu Glu Trp Val Ala Val Ile Trp Ser Asn Gly Ser Asn Lys Tyr Tyr Ala Asp Ser Val ' Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr Leu Gin Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala Arg Asp Asn Gly Val Tyr Val Gly Tyr Ala Tyr Tyr Tyr Gly Met Asp Val Trp Gly Gin Gly Thr Thr Val Thr Val Ser Ser <210> 59 <211> 321 <212> DNA
<213> Homo sapiens <400> 59 gacatccaga tgacccagtc tccatcctcc ctgtctgcat ctgtaggaga cagagtcacc 60 atcacttgcc gggcaagtca gggcattaga aatgatttag gctggtatca gcagaaacca 120 gggaaagccc ctaagcgcct gatctatgct gcatccagtt tgcaaagtgg ggtcccatca 180 aggttcagcg gcagtggatc tgggacagaa ttcactctca caatcagcag cctgcagcct 240 gaagattttg caacttatta ctgtctacag cataatagtt accctcggac gttcggccaa 300 gggaccaagg tggaaatcaa a 321 <210> 60 <211> 107 <212> PRT
<213> Homo sapiens <400> 60 Asp Ile Gin Met Thr Gin Ser Pro Ser Ser Leu Ser Ala Ser Val Gly Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gin Gly Ile Arg Asn Asp Leu Gly Trp Tyr Gin Gin Lys Pro Gly Lys Ala Pro Lys Arg Leu Ile Tyr Ala Ala Ser Ser Leu Gin Ser Gly Val Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Glu Phe Thr Leu Thr Ile Ser Ser Leu Gin Pro Glu Asp Phe Ala Thr Tyr Tyr Cys Leu Gin His Asn Ser Tyr Pro Arg Thr Phe Gly Gin Gly Thr Lys Val Glu Ile Lys <210> 61 <211> 375 <212> DNA
<213> Homo sapiens <400> 61 caggtgcaac tggtggagtc tgggggaggc gtggtccagc ctgggaggtc cctgagactc 60 tcctgtgcag cgtctggatt caccgtcagt agctatggca tgcactgggt ccgccaggct 120 ccaggcaagg ggctggagtg ggtggcagtt atatggtcta atggaagtaa taagtactat 180 gcagactccg tgaagggccg attcaccatc tccagagaca attccaagaa cacgctgtat 240 ctgcaaatga acagcctgag agccgaggac acggctgtgt attactgtgc gagagataac 300 ggtgtctacg tgggatacgc ctactattac ggtatggacg tctggggcca agggaccacg 360 gtcaccgtct cctca 375 <210> 62 <211> 125 <212> PRT

, <213> Homo sapiens <400> 62 Gin Val Gin Leu Val Glu Ser Gly Gly Gly Val Val Gin Pro Gly Arg Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Val Ser Ser Tyr Gly Met His Trp Val Arg Gin Ala Pro Gly Lys Gly Leu Glu Trp Val Ala Val Ile Trp Ser Asn Gly Ser Asn Lys Tyr Tyr Ala Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr Leu Gin Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala Arg Asp Asn Gly Val Tyr Val Gly Tyr Ala Tyr Tyr Tyr Gly Met Asp Val Trp Gly Gin Gly Thr Thr Val Thr Val Ser Ser <210> 63 <211> 321 <212> DNA
<213> Homo sapiens <400> 63 gacatccaga tgacccagtc tccatcctcc ctgtctgcat ctgtaggaga cagagtcacc 60 atcacttgcc gggcaagtca gggcattaga aatgatttag gctggtatca gcaaaaacca 120 gggaaagccc ctaagcgcct gatctatgct gcatccagtt tgcacagtgg ggtcccatca 180 aggttcagcg gcagtggatc tgggacagaa ttcactctca caatcagcag cctgcagcct 240 gaagattttg caacttatta ctgtctacaa cataatagtt acccgtggac gttcggccaa 300 gggaccaagg tggaaatcaa a 321 <210> 64 <211> 107 <212> PRT
<213> Homo sapiens <400> 64 Asp Ile Gin Met Thr Gin Ser Pro Ser Ser Leu Ser Ala Ser Val Gly Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gin Gly Ile Arg Asn Asp Leu Gly Trp Tyr Gin Gin Lys Pro Gly Lys Ala Pro Lys Arg Leu Ile Tyr Ala Ala Ser Ser Leu His Ser Gly Val Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Glu Phe Thr Leu Thr Ile Ser Ser Leu Gin Pro Glu Asp Phe Ala Thr Tyr Tyr Cys Leu Gin His Asn Ser Tyr Pro Trp Thr Phe Gly Gin Gly Thr Lys Val Glu Ile Lys <210> 65 <211> 384 <212> DNA
<213> Homo sapiens <400> 65 ' , caggtgcagc tggtggagtc tgggggaagc gtggtccagc ctgggaggtc cctgagactc 60 tcctgtgcag cgtctggatt caccttcagt aactatggca tacactgggt ccgccaggct 120 ccaggcaagg ggctggagtg ggtggcagtt atatggtctg atggaagtaa taaatactat 180 gcagactccg tgaagggccg attcaccatc tccagagaca attccaagaa cacgctgtat 240 ctgcaaatga acagcctgag agccgaggac acggctgtgt attactgtgc gagagagctc 300 ccgaatagtg ggagctactc cggttactac tactactacg gtatggacgt ctggggccaa 360 gggaccacgg tcaccgtctc ctca 384 <210> 66 <211> 128 <212> PRT
<213> Homo sapiens <400> 66 Gin Val Gin Leu Val Glu Ser Gly Gly Ser Val Val Gin Pro Gly Arg Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Asn Tyr Gly Ile His Trp Val Arg Gin Ala Pro Gly Lys Gly Leu Glu Trp Val Ala Val Ile Trp Ser Asp Gly Ser Asn Lys Tyr Tyr Ala Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr Leu Gin Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala Arg Glu Leu Pro Asn Ser Gly Ser Tyr Ser Gly Tyr Tyr Tyr Tyr Tyr Gly Met Asp Val Trp Gly Gin Gly Thr Thr Val Thr Val Ser Ser <210> 67 <211> 321 <212> DNA
<213> Homo sapiens <400> 67 gacatccaga tgacccagtc tccatcctcc ctgtctgcat ctgtaggaga cagagtcacc 60 atcacttgcc gggcaagtca gggcattaga aatgatttag gctggtatca gcagaaacca 120 gggaaagccc ctaagcgcct gatctatgct gcatccagtt tgcaaagtgg ggtcccatca 180 aggttcagcg gcagtggatc tgggacagaa ttcactctca caatcagcag cctgcagcct 240 gaagattttg caacttatta ctgtctacag cattgttgtt accctctcac tttcggcgga 300 gggaccaagg tggaaatcaa a 321 <210> 68 <211> 107 <212> PRT
<213> Homo sapiens <400> 68 Asp Ile Gin Met Thr Gin Ser Pro Ser Ser Leu Ser Ala Ser Val Gly Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gin Gly Ile Arg Asn Asp Leu Gly Trp Tyr Gln Gin Lys Pro Gly Lys Ala Pro Lys Arg Leu Ile Tyr Ala Ala Ser Ser Leu Gin Ser Gly Val Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Glu Phe Thr Leu Thr Ile Ser Ser Leu Gin Pro Glu Asp Phe Ala Thr Tyr Tyr Cys Leu Gin His Cys Cys Tyr Pro Leu , , Thr Phe Gly Gly Gly Thr Lys Val Glu Ile Lys <210> 69 <211> 375 <212> DNA
<213> Homo sapiens <400> 69 caggtgcagc tggtggagtc tgggggaggc gtggtccagc ctgggaggtc cctgagactc 60 tcctgtgcag cgtctggatt caccttcagt agctatgaca tgcactgggt ccgccaggct 120 ccaggcaagg ggctggagtg ggtggcagtt atatggtctg atggaagtat taaatactat 180 gcagactccg tgaagggccg attcaccatc tccagagaca attccaagaa cacgctgtat 240 ctgcaaatga acagcctgag agccgaggac acggctgtgt attactgtgc gagagaagtg 300 gaatcagcta tgggagggtt ctactacaac ggtatggacg tctggggcca aggggccacg 360 gtcaccgtct cctca 375 <210> 70 <211> 125 <212> PRT
<213> Homo sapiens <400> 70 Gin Val Gin Leu Val Glu Ser Gly Gly Gly Val Val Gin Pro Gly Arg Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr Asp Met His Trp Val Arg Gin Ala Pro Gly Lys Gly Leu Glu Trp Val Ala Val Ile Trp Ser Asp Gly Ser Ile Lys Tyr Tyr Ala Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr Leu Gin Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala Arg Glu Val Glu Ser Ala Met Gly Gly Phe Tyr Tyr Asn Gly Met Asp Val Trp Gly Gin Gly Ala Thr Val Thr Val Ser Ser <210> 71 <211> 321 <212> DNA
<213> Homo sapiens <400> 71 gacatccaga tgacccagtc tccatcctcc ctgtctgcat ctgtagggga cagagtcacc 60 atcacttgcc gggcaagtca gggcattaga attgatttag gctggtatca gcagaaacca 120 gggaaagccc ctaagcgcct gatctatgct gcatccactt tgcaaagtgg ggtcccatca 180 aggttcagcg gcagtggatc ggggacagaa ttcattttca caatcagcag cctgcagcct 240 gaagattttg caagttatta ctgtctacag cataaaagtt accctctcac tttcggcgga 300 gggaccaagg tggagatcaa a 321 <210> 72 <211> 107 <212> PRT
<213> Homo sapiens <400> 72 Asp Ile Gin Met Thr Gin Ser Pro Ser Ser Leu Ser Ala Ser Val Gly , Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gin Gly Ile Arg Ile Asp Leu Gly Trp Tyr Gin Gin Lys Pro Gly Lys Ala Pro Lys Arg Leu Ile Tyr Ala Ala Ser Thr Leu Gin Ser Gly Val Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Glu Phe Ile Phe Thr Ile Ser Ser Leu Gin Pro Glu Asp Phe Ala Ser Tyr Tyr Cys Leu Gin His Lys Ser Tyr Pro Leu Thr Phe Gly Gly Gly Thr Lys Val Glu Ile Lys <210> 73 <211> 375 <212> DNA
<213> Homo sapiens <400> 73 caggtgcagc tggtggagtc tgggggaggc gtggtccagc ctgggaggtc cctgagactc 60 tcctgtgcag cgtctggatt caccttcagt agctatgaca tgcactgggt ccgccaggct 120 ccaggcaagg ggctggagtg ggtggcagtt atatggtctg atggaagtat taaatactat 180 gcagactccg tgaagggccg attcaccatc tccagagaca attccaagaa cacgctgtat 240 ctgcaaatga acagcctgag agccgaggac acggctgtgt attactgtgc gagagaagtg 300 gaatcagcta tgggagggtt ctactacaac ggtatggacg tctggggcca agggaccacg 360 gtcaccgtct cctca 375 <210> 74 <211> 125 <212> PRT
<213> Homo sapiens <400> 74 Gin Val Gin Leu Val Glu Ser Gly Gly Gly Val Val Gin Pro Gly Arg Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr Asp Met His Trp Val Arg Gin Ala Pro Gly Lys Gly Leu Glu Trp Val Ala Val Ile Trp Ser Asp Gly Ser Ile Lys Tyr Tyr Ala Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr Leu Gin Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala Arg Glu Val Glu Ser Ala Met Gly Gly Phe Tyr Tyr Asn Gly Met Asp Val Trp Gly Gin Gly Thr Thr Val Thr Val Ser Ser <210> 75 <211> 375 <212> DNA
<213> Homo sapiens <400> 75 caggtgcagc tggtggagtc tgggggaggc gtggtccagc ctgggaggtc cctgagactc 60 tcctgtgcag cgtctggatt caccttcagt aaccatgaca tacactgggt ccgccaggct 120 ccaggcaagg ggctggagtg ggtggcagtt atatggtctg atggaagtaa taaatactat 180 gcagactccg tgaagggccg attcaccatc tccagagaca attccaagaa cacgctgtat 240 ctgcaaatga acagcctgag agccgaggac acggctgtgt attactgtgc gagagagaag 300 , atggctacaa ttaaggggta ctactactac ggtatggacg tctggggcca agggaccacg 360 gtcaccgtct cctca 375 <210> 76 <211> 125 <212> PRT
<213> Homo sapiens <400> 76 Gin Val Gin Leu Val Glu Ser Gly Gly Gly Val Val Gin Pro Gly Arg Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Asn His Asp Ile His Trp Val Arg Gin Ala Pro Gly Lys Gly Leu Glu Trp Val Ala Val Ile Trp Ser Asp Gly Ser Asn Lys Tyr Tyr Ala Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr Leu Gin Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala Arg Glu Lys Met Ala Thr Ile Lys Gly Tyr Tyr Tyr Tyr Gly Met Asp Val Trp Gly Gin Gly Thr Thr Val Thr Val Ser Ser <210> 77 <211> 321 <212> DNA
<213> Homo sapiens <400> 77 gacatccaga tgacccagtc tccatcctcc ctgtctgcat ctgtaggaga cagagtcacc 60 atcacttgcc gggcaagtca gggcattaga aatgatttag gctggtatca gcagaaacca 120 gggaaagccc ctaagcgcct gatctatgct gcatccagtt tggaaagtgg ggtcccatca 180 aggttcagcg gcagtggatc tgggccagaa ttcactctca caatcagcag cctgcagcct 240 gaagattttg caacttatta ctgtctacag cataatagtt acccgctcac tttcggcgga 300 gggaccaagg tggagatcca a 321 <210> 78 <211> 107 <212> PRT
<213> Homo sapiens <400> 78 Asp Ile Gin Met Thr Gin Ser Pro Ser Ser Leu Ser Ala Ser Val Gly Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gin Gly Ile Arg Asn Asp Leu Gly Trp Tyr Gin Gin Lys Pro Gly Lys Ala Pro Lys Arg Leu Ile Tyr Ala Ala Ser Ser Leu Glu Ser Gly Val Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Pro Glu Phe Thr Leu Thr Ile Ser Ser Leu Gin Pro Glu Asp Phe Ala Thr Tyr Tyr Cys Leu Gin His Asn Ser Tyr Pro Leu Thr Phe Gly Gly Gly Thr Lys Val Glu Ile Gin <210> 79 ' , <211> 336 <212> DNA
<213> Oryctolagus cuniculus <400> 79 cagtcactgg aggagtccgg gggtcgcctg gtcacgcctg ggacacccct gacactcacc 60 tgcacagtct ctggaatcga cctcagtagc aatacaatgg gctggttccg ccgggctcca 120 gggaaggggc tggagtggat cggaatcatt attagtagtg gtaccacata ctacgcgagc 180 tgggtaaaag gccgattcac catctccaaa acctcgacca cggtggatct gaaaatcacc 240 cgtccgacaa ccgaggacac ggccacatat ttctgtgcca gaggctggta cgagtttaac 300 ttgtggggcc caggcaccct ggtcaccgtc tcctca 336 <210> 80 <211> 112 <212> PRT
<213> Oryctolagus cuniculus <400> 80 Gin Ser Leu Glu Glu Ser Gly Gly Arg Leu Val Thr Pro Gly Thr Pro Leu Thr Leu Thr Cys Thr Val Ser Gly Ile Asp Leu Ser Ser Asn Thr Met Gly Trp Phe Arg Arg Ala Pro Gly Lys Gly Leu Glu Trp Ile Gly Ile Ile Ile Ser Ser Gly Thr Thr Tyr Tyr Ala Ser Trp Val Lys Gly Arg Phe Thr Ile Ser Lys Thr Ser Thr Thr Val Asp Leu Lys Ile Thr Arg Pro Thr Thr Glu Asp Thr Ala Thr Tyr Phe Cys Ala Arg Gly Trp Tyr Glu Phe Asn Leu Trp Gly Pro Gly Thr Leu Val Thr Val Ser Ser <210> 81 <211> 339 <212> DNA
<213> Oryctolagus cuniculus <400> 81 gatgttgtga tgacccagac tccagcctcc gtggaggcag ctgtgggagg cacagtcacc 60 atcaagtgcc aggccagtga gaacattgat atcttattgg cctggtatca gcagaaagta 120 gggcagcctc ccaagctcct gatctatagg gcatccaaac tggcctctgg ggccccatcg 180 cggttcagcg gcagtggatc tgggacagag ttcactctca ccatcagcga cctggagtgt 240 ggcgatgctg ccacttacta ctgtcaaagc aatgttggta gtactgctag aagtagttat 300 ggtaatgctt tcggcggagg gaccgaggtg gtggtcaaa 339 <210> 82 <211> 113 <212> PRT
<213> Oryctolagus cuniculus <400> 82 Asp Val Val Met Thr Gin Thr Pro Ala Ser Val Glu Ala Ala Val Gly Gly Thr Val Thr Ile Lys Cys Gin Ala Ser Glu Asn Ile Asp Ile Leu Leu Ala Trp Tyr Gin Gin Lys Val Gly Gin Pro Pro Lys Leu Leu Ile Tyr Arg Ala Ser Lys Leu Ala Ser Gly Ala Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Glu Phe Thr Leu Thr Ile Ser Asp Leu Glu Cys , Gly Asp Ala Ala Thr Tyr Tyr Cys Gin Ser Asn Val Gly Ser Thr Ala Arg Ser Ser Tyr Gly Asn Ala Phe Gly Gly Gly Thr Glu Val Val Val Lys <210> 83 <211> 348 <212> DNA
<213> Homo sapiens <400> 83 caggtgcagc tggtggagtc tgggggaggc ttggtcaagc ctggagggtc cctgagactc 60 tcctgtgcag cctctggatt caccttcagt gactactaca tgagctggat ccgccaggct 120 ccagggaagg ggctggagtg ggtttcatac attagtagaa gtggtagtac catatactac 180 gcagactctg tgaagggccg attcaccatc tccagggaca acgccaagaa ctcactgtat 240 ctgcaaatga acagcctgag agccgaggac acggccgtgt attactgtgc gagatcttta 300 ggcggtatgg acgtctgggg ccaagggacc acggtcaccg tctcctca 348 <210> 84 <211> 116 <212> PRT
<213> Homo sapiens <400> 84 Gin Val Gin Leu Val Glu Ser Gly Gly Gly Leu Val Lys Pro Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Asp Tyr Tyr Met Ser Trp Ile Arg Gin Ala Pro Gly Lys Gly Leu Glu Trp Val Ser Tyr Ile Ser Arg Ser Gly Ser Thr Ile Tyr Tyr Ala Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Ser Leu Tyr Leu Gin Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala Arg Ser Leu Gly Gly Met Asp Val Trp Gly Gin Gly Thr Thr Val Thr Val Ser Ser <210> 85 <211> 330 <212> DNA
<213> Homo sapiens <400> 85 cagtctgtgt tgacgcagcc gccctcagtg tctgcggccc caggacagaa ggtcaccatc 60 tcctgctctg gaagcagctc caacattggg aataattatg tatcctggta ccagcagttc 120 ccaggaacag cccccaaact cctcatttat gacaataata gccgaccctc agggattcct 180 gaccgattct ctggctccaa gtctggcacg tcagccaccc tgggcatcac cggactccag 240 actggggacg aggccgatta ttactgcgga acatgggata gcagcctgag tgctggggtg 300 ttcggcggag ggaccaagct gaccgtccta 330 <210> 86 <211> 110 <212> PRT
<213> Homo sapiens , <400> 86 Gln Ser Val Leu Thr Gln Pro Pro Ser Val Ser Ala Ala Pro Gly Gln Lys Val Thr Ile Ser Cys Ser Gly Ser Ser Ser Asn Ile Gly Asn Asn Tyr Val Ser Trp Tyr Gln Gln Phe Pro Gly Thr Ala Pro Lys Leu Leu Ile Tyr Asp Asn Asn Ser Arg Pro Ser Gly Ile Pro Asp Arg Phe Ser Gly Ser Lys Ser Gly Thr Ser Ala Thr Leu Gly Ile Thr Gly Leu Gln Thr Gly Asp Glu Ala Asp Tyr Tyr Cys Gly Thr Trp Asp Ser Ser Leu Ser Ala Gly Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu <210> 87 <211> 354 <212> DNA
<213> Homo sapiens <400> 87 caggtgcagc tggtggagtc tgggggagac gtggtccagc ctgggaggtc cctgagactc 60 tcctgtgcag cgtctggatt caccttcagt agctctggca tgcactgggt ccgccaggct 120 ccaggcaagg ggctggagtg ggtggcaatt atatggtatg atggaagtaa taaatactat 180 gcagactccg tgaagggccg attcaccatc tccagagaca attccaagaa cacgctgtat 240 ctgcaaatga acagcctgag agccgaggac acggctgtgt attactgtgc gagagatgac 300 tactactacg gtatggacgt ctggggccaa gggaccacgg tcaccgtctc ctca 354 <210> 88 <211> 118 <212> PRT
<213> Homo sapiens <400> 88 Gln Val Gln Leu Val Glu Ser Gly Gly Asp Val Val Gln Pro Gly Arg Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Ser Gly Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val Ala Ile Ile Trp Tyr Asp Gly Ser Asn Lys Tyr Tyr Ala Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala Arg Asp Asp Tyr Tyr Tyr Gly Met Asp Val Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser <210> 89 <211> 330 <212> DNA
<213> Homo sapiens <400> 89 cagtctgcgt tgacgcagcc gccctcagtg tctgcggccc caggacagaa ggtcaccatc 60 tcctgctctg gaagcagctc caacattggg agtaattatg tatcctggtg ccagcagctc 120 , ccaagaacag cccccaaact cctcatttat gacaataata agcgaccctc agggattcct 180 gaccgattct ctggctccaa gtctggcacg tcagccaccc tggtcatcac cggactccag 240 actggggacg aggccgatta ttactgcgga gcatgggata gcagcctgag tgctggggta 300 ttcggcggag ggaccaagct gaccgtccta 330 <210> 90 <211> 110 <212> PRT
<213> Homo sapiens <400> 90 Gln Ser Ala Leu Thr Gln Pro Pro Ser Val Ser Ala Ala Pro Gly Gln Lys Val Thr Ile Ser Cys Ser Gly Ser Ser Ser Asn Ile Gly Ser Asn Tyr Val Ser Trp Cys Gln Gln Leu Pro Arg Thr Ala Pro Lys Leu Leu Ile Tyr Asp Asn Asn Lys Arg Pro Ser Gly Ile Pro Asp Arg Phe Ser Gly Ser Lys Ser Gly Thr Ser Ala Thr Leu Val Ile Thr Gly Leu Gln Thr Gly Asp Glu Ala Asp Tyr Tyr Cys Gly Ala Trp Asp Ser Ser Leu Ser Ala Gly Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu <210> 91 <211> 363 <212> DNA
<213> Homo sapiens <400> 91 caggtgcagc tggtggagtc tgggggaggc gtggtccagc ctgggaggtc cctgagactc 60 tcctgtgcag cgtctggatt caccttcagt agctatggca tgcactgggt ccgccaggct 120 ccaggcaagg ggctggagtg ggtggcagtt atatggtatg atggaaataa taaatactat 180 gcagactccg tgaagggccg attcaccatc tccagagaca attccaagaa cacgctatat 240 ctgcaaatga acagcctgag agccgaggac acggctgtgt attactgtgc gagagagagc 300 gactacggtg gtaaccctta ctttgactac tggggccaag ggaccctggt caccgtctcc 360 tca 363 <210> 92 <211> 121 <212> PRT
<213> Homo sapiens <400> 92 Gln Val Gln Leu Val Glu Ser Gly Gly Gly Val Val Gln Pro Gly Arg Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr Gly Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val Ala Val Ile Trp Tyr Asp Gly Asn Asn Lys Tyr Tyr Ala Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala Arg Glu Ser Asp Tyr Gly Gly Asn Pro Tyr Phe Asp Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser <210> 93 <211> 324 <212> DNA
<213> Homo sapiens <400> 93 tcttctgagc tgactcagga ccctgctgtg tctgtggcct tgggacagac agtcaggatc 60 acatgccaag gagacagcct cagaagctat tatgcaagct ggtaccagca gaggccagga 120 caggcccctg tacttgtcat ctatggtaga aacaaccggc cctcagggat cccagaccga 180 ttctctggct ccagctcagg actcacagct tccttgaccg tcactggggc tcaggcggaa 240 gatgaggctg actattactg taactcccgg gacagcagtt ataaccatgt ggcattcggc 300 ggagggacca agctgaccgt ccta 324 <210> 94 <211> 108 <212> PRT
<213> Homo sapiens <400> 94 Ser Ser Glu Leu Thr Gin Asp Pro Ala Val Ser Val Ala Leu Gly Gin Thr Val Arg Ile Thr Cys Gin Gly Asp Ser Leu Arg Ser Tyr Tyr Ala Ser Trp Tyr Gin Gin Arg Pro Gly Gin Ala Pro Val Leu Val Ile Tyr Gly Arg Asn Asn Arg Pro Ser Gly Ile Pro Asp Arg Phe Ser Gly Ser Ser Ser Gly Leu Thr Ala Ser Leu Thr Val Thr Gly Ala Gin Ala Glu Asp Glu Ala Asp Tyr Tyr Cys Asn Ser Arg Asp Ser Ser Tyr Asn His Val Ala Phe Gly Gly Gly Thr Lys Leu Thr Val Leu <210> 95 <211> 363 <212> DNA
<213> Homo sapiens <400> 95 caggtgcagc tggtggagtc tgggggaggc gtggtccagc ctgggaggtc cctgagactc 60 tcctgtgcag cgtctggatt caccttcagt agctatggca tgaactgggt ccgccaggct 120 ccaggcaagg ggctggagtg ggtggcagtt atatggtatg atggaagtaa taaatactat 180 ggagactccg tgaagggccg attcaccatc tccagagaca attccaagaa cacgctgtat 240 gtgcaaatga acagcctgag agccgaggac acggctgtgt attactgtgc gagagagagc 300 gactacggtg gtaaccctta ctttgactac tggggccagg gaaccctggt caccgtctcc 360 tca 363 <210> 96 <211> 121 <212> PRT
<213> Homo sapiens <400> 96 Gin Val Gin Leu Val Glu Ser Gly Gly Gly Val Val Gin Pro Gly Arg Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr Gly Met Asn Trp Val Arg Gin Ala Pro Gly Lys Gly Leu Glu Trp Val Ala Val Ile Trp Tyr Asp Gly Ser Asn Lys Tyr Tyr Gly Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr Val Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala Arg Glu Ser Asp Tyr Gly Gly Asn Pro Tyr Phe Asp Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser <210> 97 <211> 324 <212> DNA
<213> Homo sapiens <400> 97 tcttctgagc tgactcagga ccctgctgtg tctgtggcct tgggacagac agtcaggatc 60 acatgccaag gagacagcct cagaatctat tatgcaagct ggtaccagca gaagccagga 120 caggcccctg tacttgtcat ctatggtaaa aacaaccggc cctcagggat cccagaccga 180 ttctctggct ccagctcagg aaacacagct tccttgaccg tcactggggc tcaggcggaa 240 gatgaggctg actattactg taagtcccgg gacagcagtt ttaaccatgt gacattcggc 300 ggagggacca agctgaccgt ccta 324 <210> 98 <211> 108 <212> PRT
<213> Homo sapiens <400> 98 Ser Ser Glu Leu Thr Gln Asp Pro Ala Val Ser Val Ala Leu Gly Gln Thr Val Arg Ile Thr Cys Gln Gly Asp Ser Leu Arg Ile Tyr Tyr Ala Ser Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Val Leu Val Ile Tyr Gly Lys Asn Asn Arg Pro Ser Gly Ile Pro Asp Arg Phe Ser Gly Ser Ser Ser Gly Asn Thr Ala Ser Leu Thr Val Thr Gly Ala Gln Ala Glu Asp Glu Ala Asp Tyr Tyr Cys Lys Ser Arg Asp Ser Ser Phe Asn His Val Thr Phe Gly Gly Gly Thr Lys Leu Thr Val Leu <210> 99 <211> 348 <212> DNA
<213> Homo sapiens <400> 99 gaggtgcagc tggtgcagtc tggagcagag gtgaaaaagc ccggggagtc tctgaagatc 60 tcctgtaagg gttctggata cagctttacc agtgactgga tcggctgggt gcgccagatg 120 cccgggaaag gcctggagtg gatggggatc atctatcctg gtgactctga taccagatac 180 agcccgtcct tccaaggcca ggtcaccatc tcagccgaca agtccatcac caccgcctac 240 ctgcagtgga gcagcctgaa ggcctcggac accgccatgt attactgtgc gaggagtggt 300 tacggtatgg acgtctgggg ccaagggacc acggtcaccg tctcctca 348 <210> 100 <211> 116 <212> PRT
<213> Homo sapiens , <400> 100 Glu Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Glu Ser Leu Lys Ile Ser Cys Lys Gly Ser Gly Tyr Ser Phe Thr Ser Asp Trp Ile Gly Trp Val Arg Gln Met Pro Gly Lys Gly Leu Glu Trp Met Gly Ile Ile Tyr Pro Gly Asp Ser Asp Thr Arg Tyr Ser Pro Ser Phe Gln Gly Gln Val Thr Ile Ser Ala Asp Lys Ser Ile Thr Thr Ala Tyr Leu Gln Trp Ser Ser Leu Lys Ala Ser Asp Thr Ala Met Tyr Tyr Cys Ala Arg Ser Gly Tyr Gly Met Asp Val Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser <210> 101 <211> 334 <212> DNA
<213> Homo sapiens <400> 101 cagtctctgc tgacgcagcc gccctcagtg tctggggccc cagggcagag ggtcaccatc 60 tcctgcactg ggagcagctc caacatcggg gcaggttatg atgtacactg gtaccagcag 120 tttccaggaa cagcccccaa actcctcatc tatggtaaca gcaatcggcc ctcaggggtc 180 cctgaccgat tctctggctc caagtctggc acctcagcct ccctggccat cactgggctc 240 caggctgagg atgaggctga ttattactgc cagtcctatg acagcagcct gagtggttcg 300 gtattcggcg gagggaccaa gctgaccgtc ctag 334 <210> 102 <211> 111 <212> PRT
<213> Homo sapiens <400> 102 Gln Ser Leu Leu Thr Gln Pro Pro Ser Val Ser Gly Ala Pro Gly Gln Arg Val Thr Ile Ser Cys Thr Gly Ser Ser Ser Asn Ile Gly Ala Gly Tyr Asp Val His Trp Tyr Gln Gln Phe Pro Gly Thr Ala Pro Lys Leu Leu Ile Tyr Gly Asn Ser Asn Arg Pro Ser Gly Val Pro Asp Arg Phe Ser Gly Ser Lys Ser Gly Thr Ser Ala Ser Leu Ala Ile Thr Gly Leu Gln Ala Glu Asp Glu Ala Asp Tyr Tyr Cys Gln Ser Tyr Asp Ser Ser Leu Ser Gly Ser Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu <210> 103 <211> 375 <212> DNA
<213> Homo sapiens <400> 103 caggtgcagc tggtggagtc tgggggaggc gtggtccagc ctgggaggtc cctgagactc 60 tcctgtgcag cgtctggatt taccttcagt agttatgaca tgcactgggt ccgccaggct 120 ccaggcaagg ggctggagtg ggtggcagtt atatggtatg atggaagtaa taaataccat 180 gcagactccg tgaagggccg attcaccatc tccagagaca attccaagaa cacgctgtat 240 , ctgcaaatga acagcctgag agccgaggac acggctgtgt attactgtgc gagagagaat 300 actatggttc ggggggggga ctactactac ggtatggacg tctggggcca agggaccacg 360 gtcaccgtct cctca 375 <210> 104 <211> 125 <212> PRT
<213> Homo sapiens <400> 104 Gin Val Gin Leu Val Glu Ser Gly Gly Gly Val Val Gin Pro Gly Arg Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr Asp Met His Trp Val Arg Gin Ala Pro Gly Lys Gly Leu Glu Trp Val Ala Val Ile Trp Tyr Asp Gly Ser Asn Lys Tyr His Ala Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr Leu Gin Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala Arg Glu Asn Thr Met Val Arg Gly Gly Asp Tyr Tyr Tyr Gly Met Asp Val Trp Gly Gin Gly Thr Thr Val Thr Val Ser Ser <210> 105 <211> 324 <212> DNA
<213> Homo sapiens <400> 105 tcttctgagc tgactcagga ccctgctgtg tctgtggcct tgggacagac agtcaggatc 60 acatgccaag gagacagcct cagaaggtat tatgcaagct ggtaccagca gaagccagga 120 caggccccta tacttgtcat ctatggtaaa aacaaccggc cctcagggat cccagaccga 180 ttctctggct ccagctcagg aaacacagct tccttgacca tcactggggc tcaggcggaa 240 gatgaggctg actattactg taactcccgg gacagcagtg gtaaccatct ggtgttcggc 300 ggagggacca agctgaccgt ccta 324 <210> 106 <211> 108 <212> PRT
<213> Homo sapiens <400> 106 Ser Ser Glu Leu Thr Gin Asp Pro Ala Val Ser Val Ala Leu Gly Gin Thr Val Arg Ile Thr Cys Gin Gly Asp Ser Leu Arg Arg Tyr Tyr Ala Ser Trp Tyr Gin Gin Lys Pro Gly Gin Ala Pro Ile Leu Val Ile Tyr Gly Lys Asn Asn Arg Pro Ser Gly Ile Pro Asp Arg Phe Ser Gly Ser Ser Ser Gly Asn Thr Ala Ser Leu Thr Ile Thr Gly Ala Gin Ala Glu Asp Glu Ala Asp Tyr Tyr Cys Asn Ser Arg Asp Ser Ser Gly Asn His Leu Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu , <210> 107 <211> 366 <212> DNA
<213> Homo sapiens <400> 107 caggttcagc tggtgcagtc tggagctgag gtgaagaagc ctggggcctc agtgaaggtc 60 tcctgcaagg cttctggtta cacctttacc agctatggta tcagctgggt gcgacaggcc 120 cctggacaag ggcttgagtg gatgggatgg atcagcgctt acaatgttaa cacaaactat 180 gcacagaagc tccagggcag agtcaccatg accacagaca catccacgaa cacagcctac 240 atggaactga ggagcctgag atctgacgac acggccgtgt attactgtgc gagagatcct 300 ataactgaaa ctatggagga ctactttgac tactggggcc agggaaccct ggtcaccgtc 360 tcctca 366 <210> 108 <211> 122 <212> PRT
<213> Homo sapiens <400> 108 Gin Val Gin Leu Val Gin Ser Gly Ala Glu Val Lys Lys Pro Gly Ala Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Ser Tyr Gly Ile Ser Trp Val Arg Gin Ala Pro Gly Gin Gly Leu Glu Trp Met Gly Trp Ile Ser Ala Tyr Asn Val Asn Thr Asn Tyr Ala Gin Lys Leu Gin Gly Arg Val Thr Met Thr Thr Asp Thr Ser Thr Asn Thr Ala Tyr Met Glu Leu Arg Ser Leu Arg Ser Asp Asp Thr Ala Val Tyr Tyr Cys Ala Arg Asp Pro Ile Thr Glu Thr Met Glu Asp Tyr Phe Asp Tyr Trp Gly Gin Gly Thr Leu Val Thr Val Ser Ser <210> 109 <211> 324 <212> DNA
<213> Homo sapiens <400> 109 tcttctgagc tgactcagga ccctgctgtg tctgtggcct tgggacagac agtcaggatc 60 acatgccaag gagacagcct cagaaactat tatgcaagtt ggtaccagca gaagccagga 120 caggccccta tacttgtcat ctatggtaaa aacaaccggc cctcagggat cccagaccga 180 ttctctggct ccagctcagg aaacacagct tccttgacca tcactggggc tcaggcggaa 240 gatgaggctg actattactg taactcccgg gacagcagtg gtaatcatct ggtattcggc 300 ggagggacca agttgaccgt ccta 324 <210> 110 <211> 107 <212> PRT
<213> Homo sapiens .
<400> 110 Ser Ser Glu Leu Thr Gin Asp Pro Ala Val Ser Val Ala Leu Gly Gin Thr Val Arg Ile Thr Cys Gin Gly Asp Ser Leu Arg Asn Tyr Tyr Ala Ser Trp Tyr Gin Gin Lys Pro Gly Gin Ala Pro Ile Leu Val Ile Tyr ' Gly Lys Asn Asn Arg Pro Ser Gly Ile Pro Asp Arg Phe Ser Gly Ser Ser Ser Gly Asn Thr Ala Ser Leu Thr Ile Thr Gly Ala Gln Ala Glu Asp Glu Ala Asp Tyr Tyr Cys Asn Ser Arg Asp Ser Ser Gly Asn His Leu Val Phe Gly Gly Gly Thr Lys Leu Thr Val <210> 111 <211> 366 <212> DNA
<213> Homo sapiens <400> 111 caggtgcagc tggtggagtc tgggggaggc gtggtccagc ctgggaggtc cctgagactc 60 tcctgtgcag cgtctggatt caccttcagc agctatggca tgcactgggt ccgccaggct 120 ccaggcaagg ggctggagtg ggtggcagtt atatggtatg atggaagaaa taaatacaat 180 gcagactccg tgaagggccg attcaccatc tccagagaca attccaagaa cacgctgaat 240 ctgcaaatga acagcctgag agccgaggac acggctgtgt attactgtgc gagagattta 300 acgtattacg atattttggg cggtatggac gtctggggcc aagggaccac ggtcaccgtc 360 tcctca 366 <210> 112 <211> 122 <212> PRT
<213> Homo sapiens <400> 112 Gin Val Gin Leu Val Glu Ser Gly Gly Gly Val Val Gin Pro Gly Arg 1 5 . 10 15 Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr Gly Met His Trp Val Arg Gin Ala Pro Gly Lys Gly Leu Glu Trp Val Ala Val Ile Trp Tyr Asp Gly Arg Asn Lys Tyr Asn Ala Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Asn Leu Gin Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala Arg Asp Leu Thr Tyr Tyr Asp Ile Leu Gly Gly Met Asp Val Trp Gly Gin Gly Thr Thr Val Thr Val Ser Ser <210> 113 <211> 333 <212> DNA
<213> Homo sapiens <400> 113 cagtctgtgc tgacgcagtc gccctcagtg tctggggccc cagggcagag ggtcaccatc 60 tcctgcactg ggagcagctc caacatcggg gcaggttatg atgtacactg gtaccagcag 120 cttccaggaa cagcccccag actcctcatc tatggtaaca acaatcgtcc ctcaggggtc 180 cctgaccgat tctctggctc caagtctggc acctcagcct ccctggccat cactgggctc 240 caggctgagg atgaggctga ttattactgc cagtcctatg acagcagcct gagtggttcg 300 gtgttcggcg gagggaccaa gctgaccgtc cta 333 <210> 114 , <211> 111 <212> PRT
<213> Homo sapiens <400> 114 Gin Ser Val Leu Thr Gin Ser Pro Ser Val Ser Gly Ala Pro Gly Gin Arg Val Thr Ile Ser Cys Thr Gly Ser Ser Ser Asn Ile Gly Ala Gly Tyr Asp Val His Trp Tyr Gin Gin Leu Pro Gly Thr Ala Pro Arg Leu Leu Ile Tyr Gly Asn Asn Asn Arg Pro Ser Gly Val Pro Asp Arg Phe Ser Gly Ser Lys Ser Gly Thr Ser Ala Ser Leu Ala Ile Thr Gly Leu Gin Ala Glu Asp Glu Ala Asp Tyr Tyr Cys Gin Ser Tyr Asp Ser Ser Leu Ser Gly Ser Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu <210> 115 <211> 366 <212> DNA
<213> Homo sapiens <400> 115 caggtgcagc tggtggagtc tgggggaggc gtggtccagc ctgggaggtc cctgagactc 60 tcctgtgcag cgtctggatt caccttcagc agctatggca tgcactgggt ccgccaggct 120 ccaggcaagg ggctggagtg ggtggcagtt atatggtatg atggaagaaa taaatacaat 180 gcagactccg tgaagggccg attcaccatc tccagagaca attccaagaa cacgctgaat 240 ctgcaaatga acagcctgag agccgaggac acggctgtgt attactgtgc gagagattta 300 acgtattacg atattttggg cggtatggac gtctggggcc aagggaccac ggtcaccgtc 360 tcctca 366 <210> 116 <211> 122 <212> PRT
<213> Homo sapiens <400> 116 Gin Val Gin Leu Val Glu Ser Gly Gly Gly Val Val Gin Pro Gly Arg Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr Gly Met His Trp Val Arg Gin Ala Pro Gly Lys Gly Leu Glu Trp Val Ala Val Ile Trp Tyr Asp Gly Arg Asn Lys Tyr Asn Ala Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Asn Leu Gin Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala Arg Asp Leu Thr Tyr Tyr Asp Ile Leu Gly Gly Met Asp Val Trp Gly Gin Gly Thr Thr Val Thr Val Ser Ser <210> 117 <211> 324 <212> DNA
<213> Homo sapiens , , <400> 117 tcttctgagc tgactcagga ccctgctgtg tctgtggcct tgggacagac agtcaggatc 60 acatgccaag gagacagcct cagaagatat tatgcaagct ggtaccagca gaagccagga 120 caggccccta tagttgtcat ctatggtaaa aaaaaccggc cctcagggat cccagaccga 180 ttctctggct ccagctcagg aaacacagct tccttgacca tcactggggc tcaggcggaa 240 gatgaggctg actattactg taagtcccgg gacagcagtg gtaaccatct ggtattcggc 300 ggagggacca agctgaccgt ccta 324 <210> 118 <211> 108 <212> PRT
<213> Homo sapiens <400> 118 Ser Ser Glu Leu Thr Gln Asp Pro Ala Val Ser Val Ala Leu Gly Gln Thr Val Arg Ile Thr Cys Gln Gly Asp Ser Leu Arg Arg Tyr Tyr Ala Ser Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Ile Val Val Ile Tyr Gly Lys Lys Asn Arg Pro Ser Gly Ile Pro Asp Arg Phe Ser Gly Ser Ser Ser Gly Asn Thr Ala Ser Leu Thr Ile Thr Gly Ala Gln Ala Glu Asp Glu Ala Asp Tyr Tyr Cys Lys Ser Arg Asp Ser Ser Gly Asn His Leu Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu <210> 119 <211> 345 <212> DNA
<213> Homo sapiens <400> 119 gaggtgcagc tggtggagtc tggaggaggc ttgatccagc ctggggggtc cctgagactc 60 tcctgtgcag cctctgggtt caccgtcagt agcaactaca tgagctgggt ccgccaggct 120 ccagggaagg gtctggagtg ggtctcagtt atttatagcg gtggtggcac atactacgca 180 gactccgtga agggccgatt caccatctcc agagacaatt ccaagaacac gctgtatctt 240 caaatgaaca gcctgagagc cgaggacacg gccgtgtatt actgtgcgag aggaccgggg 300 tcctttgact actggggcca gggaaccctg gtcaccgtct cctca 345 <210> 120 <211> 115 <212> PRT
<213> Homo sapiens <400> 120 Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Ile Gln Pro Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Val Ser Ser Asn Tyr Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val Ser Val Ile Tyr Ser Gly Gly Gly Thr Tyr Tyr Ala Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala , Arg Gly Pro Gly Ser Phe Asp Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser <210> 121 <211> 321 <212> DNA
<213> Homo sapiens <400> 121 gacatccaga tgacccagtc tccatcttcc gtgtctgcat ctgtaggaga cagagtcacc 60 atcacttgtc gggcgagtca gggtattagc agctggttag cctggtatca gcagaaacca 120 gggaaagccc ctaagctcct gatctatgct gcatccagtt tgcaaagtgg ggtcccatca 180 aggttcagcg gcagtggatc tgggacagat tttactctca ccatcagcag cctgcagcct 240 gaagattttg caagttacta ttgtcaacag gctaacagtt tcccgtggac gttcggccaa 300 gggaccaagg tggaaatcaa a 321 <210> 122 <211> 107 <212> PRT
<213> Homo sapiens <400> 122 Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Val Ser Ala Ser Val Gly Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Gly Ile Ser Ser Trp Leu Ala Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Lou Leu Ile Tyr Ala Ala Ser Ser Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro Glu Asp Phe Ala Ser Tyr Tyr Cys Gln Gln Ala Asn Ser Phe Pro Trp Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys <210> 123 <211> 369 <212> DNA
<213> Homo sapiens <400> 123 caggtgcagc tggtggagtc tgggggaggc gtggtccagc ctgggaggtc cctgagactc 60 tcctgtgcag cgtctggatt caccttcagt agctatggca tgcactgggt ccgccaggct 120 ccaggcaagg ggctggagtg ggtggcagtt atatggtatg atggaagtat taaatactat 180 gcagactccg tgaagggccg attcaccatc tccagagaca attccaagaa cacgctgtat 240 ctgcaaatga acagcctgag agccgaggac acggctgtgt attactgtgc gagagagcgg 300 gatagcagtg gctggtacta ctacggtatg gacgtctggg gccaagggac cacggtcacc 360 gtctcctca 369 <210> 124 <211> 123 <212> PRT
<213> Homo sapiens <400> 124 Gln Val Gln Leu Val Glu Ser Gly Gly Gly Val Val Gln Pro Gly Arg Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr Gly Met His Trp Val Arg Gin Ala Pro Gly Lys Gly Leu Glu Trp Val Ala Val Ile Trp Tyr Asp Gly Ser Ile Lys Tyr Tyr Ala Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr Leu Gin Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala Arg Glu Arg Asp Ser Ser Gly Trp Tyr Tyr Tyr Gly Met Asp Val Trp Gly Gin Gly Thr Thr Val Thr Val Ser Ser <210> 125 <211> 321 <212> DNA
<213> Homo sapiens <400> 125 gacatccaga tgacccagtc tccatcctcc ctgtctgcat ctgtaggaga cagagtcacc 60 atcacttgcc gggcaagtca gggcattaga aatgatttag gctggtatca gcagaaacca 120 gggaaagccc ctaagcgcct gatctatgct gcatccagtt tgcaaagtgg ggtcccatca 180 aggttcagcg gcagtggatc tgggacagaa ttcactctca cagtcagcag cctgcagcct 240 gaagattttg caacttatta ctgtctacag cataatagtc tcccgctcac tttcggcgga 300 gggaccaagg ttgagatcaa a 321 <210> 126 <211> 107 <212> PRT
<213> Homo sapiens <400> 126 Asp Ile Gin Met Thr Gin Ser Pro Ser Ser Leu Ser Ala Ser Val Gly Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gin Gly Ile Arg Asn Asp Leu Gly Trp Tyr Gin Gin Lys Pro Gly Lys Ala Pro Lys Arg Leu Ile Tyr Ala Ala Ser Ser Leu Gin Ser Gly Val Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Glu Phe Thr Leu Thr Val Ser Ser Leu Gin Pro Glu Asp Phe Ala Thr Tyr Tyr Cys Leu Gin His Asn Ser Leu Pro Leu Thr Phe Gly Gly Gly Thr Lys Val Glu Ile Lys <210> 127 <211> 378 <212> DNA
<213> Homo sapiens <400> 127 caggtgcagc tggtggagtc tgggggaggc gtggtccagc ctgggaggtc cctgagactc 60 tcctgtgcag cgtctggatt caccttcagt aactatggca tgcactgggt ccgccaggct 120 ccaggcaagg ggctggagtg ggtggcagtt atatggtatg atggaagtaa taaatactat 180 gcagactccg tgaagggccg attcaccatc tccagagaca attccaagaa cacgctgtat 240 ctgcaaatga acagcctgag agccgaggac acggctgtgt attactgtgc gagagagggg 300 , atagcagtgg ctggtcctcc ttactactac tacggtatgg acgtctgggg ccaagggacc 360 acggtcaccg tctcctca 378 <210> 128 <211> 126 <212> PRT
<213> Homo sapiens <400> 128 Gin Val Gin Leu Val Glu Ser Gly Gly Gly Val Val Gin Pro Gly Arg Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Asn Tyr Gly Met His Trp Val Arg Gin Ala Pro Gly Lys Gly Leu Glu Trp Val Ala Val Ile Trp Tyr Asp Gly Ser Asn Lys Tyr Tyr Ala Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr Leu Gin Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala Arg Glu Gly Ile Ala Val Ala Gly Pro Pro Tyr Tyr Tyr Tyr Gly Met Asp Val Trp Gly Gin Gly Thr Thr Val Thr Val Ser Ser <210> 129 <211> 318 <212> DNA
<213> Homo sapiens <400> 129 gacatccaga tgacccagtc tccatcctcc ctgtctgcat ctgtaggaga cagagtcacc 60 atcacttgcc aggcgagtca ggacattagc aactatttaa attggtatca gcagaaacca 120 gggaaagccc ctaagctcct gatctacgat gcatccaatt tggaaacagg ggtcccatca 180 aggttcagtg gaagtggatc tgggacagat tttactttca ccatcagcag cctgcagcct 240 gaagatattg caacatatta ctgtcaccag tgtgataatc tccctcactt cggccaaggg 300 acacgactgg agattaaa 318 <210> 130 <211> 106 <212> PRT
<213> Homo sapiens <400> 130 Asp Ile Gin Met Thr Gin Ser Pro Ser Ser Leu Ser Ala Ser Val Gly Asp Arg Val Thr Ile Thr Cys Gin Ala Ser Gin Asp Ile Ser Asn Tyr Leu Asn Trp Tyr Gin Gin Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile Tyr Asp Ala Ser Asn Leu Glu Thr Gly Val Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Phe Thr Ile Ser Ser Leu Gin Pro Glu Asp Ile Ala Thr Tyr Tyr Cys His Gin Cys Asp Asn Leu Pro His Phe Gly Gin Gly Thr Arg Leu Glu Ile Lys <210> 131 , , <211> 369 <212> DNA
<213> Homo sapiens <400> 131 caggtgcagc tggtggagtc tgggggaggc gtggtccagc ctgggaggtc cctgagactc 60 tcctgtgcag cgtctggatt aatcttcagt agctatggca tgcactgggt ccgccaggct 120 ccaggcaagg ggctggagtg ggtggcagtt atatggtatg atggaagtaa taaatactat 180 gcagactccg tgaagggccg attcaccatc tccagagaca attccaagaa cacgctgtat 240 ctgcaaatga acagcctgag agccgaggac acggctgtgt attactgtgc gagagagcgg 300 gatagcagtg gctggtacta ctacggtatg gacgtctggg gccaagggac cacggtcacc 360 gtctcctca 369 <210> 132 <211> 123 <212> PRT
<213> Homo sapiens <400> 132 Gin Val Gin Leu Val Glu Ser Gly Gly Gly Val Val Gin Pro Gly Arg Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Leu Ile Phe Ser Ser Tyr Gly Met His Trp Val Arg Gin Ala Pro Gly Lys Gly Leu Glu Trp Val Ala Val Ile Trp Tyr Asp Gly Ser Asn Lys Tyr Tyr Ala Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr Leu Gin Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala Arg Glu Arg Asp Ser Ser Gly Trp Tyr Tyr Tyr Gly Met Asp Val Trp Gly Gin Gly Thr Thr Val Thr Val Ser Ser <210> 133 <211> 321 <212> DNA
<213> Homo sapiens <400> 133 gacatccaga tgacccagtc tccatcctcc ctgtctgcat ctgtaggaga cagagtcacc 60 atcacttgcc gggcaagtca ggccattaga aatgatttag gctggtatca gcagaaacca 120 gggaaagccc ctaagcgcct gatctatgct gcctccagtt tgcaaagtgg ggtcccatca 180 aggttcagcg gcagtcgatc tgggacagaa ttcaccctca caatcagcag cctgcagcct 240 gaagattttg caagttatta ctgtctacag cataggagtt acccgctcac tttcggcgga 300 gggaccaagg tggagatcaa a 321 <210> 134 <211> 107 <212> PRT
<213> Homo sapiens <400> 134 Asp Ile Gin Met Thr Gin Ser Pro Ser Ser Leu Ser Ala Ser Val Gly Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gin Ala Ile Arg Asn Asp Leu Gly Trp Tyr Gin Gin Lys Pro Gly Lys Ala Pro Lys Arg Leu Ile Tyr Ala Ala Ser Ser Leu Gin Ser Gly Val Pro Ser Arg Phe Ser Gly Ser Arg Ser Gly Thr Glu Phe Thr Leu Thr Ile Ser Ser Leu Gin Pro Glu Asp Phe Ala Ser Tyr Tyr Cys Leu Gin His Arg Ser Tyr Pro Leu Thr Phe Gly Gly Gly Thr Lys Val Glu Ile Lys <210> 135 <211> 345 <212> DNA
<213> Homo sapiens <400> 135 gaggtgcagc tggtggagtc tggaggaggc ttgatccagc ctggggggtc cctgagactc 60 tcctgtgcag cctctgggtt caccgtcagt agcaactaca tgagctgggt ccgccaggct 120 ccagggaagg ggctggagtg ggtctcagtt atttatagcg gtggtagcac atactacgca 180 gactccgtga agggccgatt caccatctcc agagacaatt ccaagaacac gctgtatctt 240 caaatgaaca gcctgagagc cgaggacacg gccgtgtatt actgtgcgag aggcgaagga 300 ggtatggacg tctggggcca agggaccacg gtcaccgtct cctca 345 <210> 136 <211> 115 <212> PRT
<213> Homo sapiens <400> 136 Glu Val Gin Leu Val Glu Ser Gly Gly Gly Leu Ile Gin Pro Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Val Ser Ser Asn Tyr Met Ser Trp Val Arg Gin Ala Pro Gly Lys Gly Leu Glu Trp Val Ser Val Ile Tyr Ser Gly Gly Ser Thr Tyr Tyr Ala Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr Leu Gin Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala Arg Gly Glu Gly Gly Met Asp Val Trp Gly Gin Gly Thr Thr Val Thr Val Ser Ser <210> 137 <211> 321 <212> DNA
<213> Homo sapiens <400> 137 gaaatagtga tgacgcagtc tccatccacc ctgtctgtgt ctccagggga aagagccacc 60 ctctcctgca gggccagtca gagtgttagc agcaacttag cctggtacca gcagaaacct 120 ggccaggctc ccaggctcct catctatggt gcatccatca gggccactgg tatcccagcc 180 aggttcagtg gcagtgggtc tgggacagag tacactctca ccatcagcag cctgcagtct 240 gaagattttg cagtttatta ctgtcaacag tataataact ggccattcac tttcggccct 300 gggaccaaag tggatatcaa a 321 <210> 138 <211> 107 , <212> PRT
<213> Homo sapiens <400> 138 Glu Ile Val Met Thr Gin Ser Pro Ser Thr Leu Ser Val Ser Pro Gly Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Gin Ser Val Ser Ser Asn Leu Ala Trp Tyr Gin Gin Lys Pro Gly Gin Ala Pro Arg Leu Leu Ile Tyr Gly Ala Ser Ile Arg Ala Thr Gly Ile Pro Ala Arg Phe Ser Gly Ser Gly Ser Gly Thr Glu Tyr Thr Leu Thr Ile Ser Ser Leu Gin Ser Glu Asp Phe Ala Val Tyr Tyr Cys Gin Gin Tyr Asn Asn Trp Pro Phe Thr Phe Gly Pro Gly Thr Lys Val Asp Ile Lys <210> 139 <211> 348 <212> DNA
<213> Homo sapiens <400> 139 caggtgcagc tggtggagtc tgggggaggc ttggtcaagc ctggagggtc cctgagactc 60 tcctgtgcag cctctggatt caccttcagt gactactaca tgagctggat ccgccaggct 120 ccagggaagg ggctggagtg ggtttcatac attagtagaa gtggtagtac catatactac 180 gcagactctg tgaagggccg attcaccatc tccagggaca acgccaagaa ctcactgtat 240 ctgcaaatga acagcctgag agccgaggac acggccgtgt attactgtgc gagatcttta 300 ggcggtatgg acgtctgggg ccaagggacc acggtcaccg tctcctca 348 <210> 140 <211> 116 <212> PRT
<213> Homo sapiens <400> 140 Gin Val Gin Leu Val Glu Ser Gly Gly Gly Leu Val Lys Pro Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Asp Tyr Tyr Met Ser Trp Ile Arg Gin Ala Pro Gly Lys Gly Leu Glu Trp Val Ser Tyr Ile Ser Arg Ser Gly Ser Thr Ile Tyr Tyr Ala Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Ser Leu Tyr Leu Gin Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala Arg Ser Leu Gly Gly Met Asp Val Trp Gly Gin Gly Thr Thr Val Thr Val Ser Ser <210> 141 <211> 321 <212> DNA
<213> Homo sapiens ' <400> 141 gacatccaga tgacccagtc tccatcctcc ctgtctgcat ctgtaggaga cagagtcgcc 60 atcacttgcc ggacaagtca gagcattagc agttatttaa attggtatca gcagaaacca 120 gggaaagccc ctgagctcct gatctatgct gcatccaatt tgcaaagtgg ggtcccatca 180 aggttcagtg gcagtggatc tgggacagat ttcactctca ccatcagcag tctgcaacct 240 gaagattttg caacttacta ctgtcaacag agttccagta ccctcatcac cttcggccaa 300 gggacacgac tggagattaa a 321 <210> 142 <211> 107 <212> PRT
<213> Homo sapiens <400> 142 Asp Ile Gin Met Thr Gin Ser Pro Ser Ser Leu Ser Ala Ser Val Gly Asp Arg Val Ala Ile Thr Cys Arg Thr Ser Gin Ser Ile Ser Ser Tyr Leu Asn Trp Tyr Gin Gin Lys Pro Gly Lys Ala Pro Glu Leu Leu Ile Tyr Ala Ala Ser Asn Leu Gin Ser Gly Val Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gin Pro Glu Asp Phe Ala Thr Tyr Tyr Cys Gin Gin Ser Ser Ser Thr Leu Ile Thr Phe Gly Gin Gly Thr Arg Leu Glu Ile Lys <210> 143 <211> 345 <212> DNA
<213> Homo sapiens <400> 143 gaggtgcagc tggtggagtc tggaggaggc ttgatccagc ctggggggtc cctgagactc 60 tcctgtgcag cctctgggtt caccgtcagt agcaactacg tgaactgggt ccgccaggct 120 ccagggaagg ggctggagtg ggtctcagtt atttataacg ctggtagcgc gtactacgca 180 gactccgtga agggccgatt caccatctcc agagacaatt ccaagaacac gctgtttctt 240 caaatgaaca gcctgagagc cgaggacacg gccgtgtatt actgtgcgag aggaactggg 300 gcctttgact actggggcca gggaaccctg gtcaccgtct cctca 345 <210> 144 <211> 115 <212> PRT
<213> Homo sapiens <400> 144 Glu Val Gin Leu Val Glu Ser Gly Gly Gly Leu Ile Gin Pro Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Val Ser Ser Asn Tyr Val Asn Trp Val Arg Gin Ala Pro Gly Lys Gly Leu Glu Trp Val Ser Val Ile Tyr Asn Ala Gly Ser Ala Tyr Tyr Ala Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Phe Leu Gin Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala Arg Gly Thr Gly Ala Phe Asp Tyr Trp Gly Gin Gly Thr Leu Val Thr , Val Ser Ser <210> 145 <211> 321 <212> DNA
<213> Homo sapiens <400> 145 gaaatagtga tgacgcagtc tccagccacc ctgtctgtgt ctccagggga aagagccacc 60 ctctcctgca gggccagtca gagtgttagc agcaacttag cctggtacca gcagaaacct 120 ggccaggctc ccagactcct catctatggt gcatccacca gggccactgg tatcccagcc 180 aggttcagtg gcagtaggac tgggacagag ttcactctca ccatcagcag cctgcagtct 240 gaagattttg cagtttatta ctgtcagcag tataataact ggcctctcac tttcggcgga 300 gggaccaagg tggagatcaa a 321 <210> 146 <211> 107 <212> PRT
<213> Homo sapiens <400> 146 Glu Ile Val Met Thr Gin Ser Pro Ala Thr Leu Ser Val Ser Pro Gly Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Gin Ser Val Ser Ser Asn Leu Ala Trp Tyr Gin Gin Lys Pro Gly Gin Ala Pro Arg Leu Leu Ile Tyr Gly Ala Ser Thr Arg Ala Thr Gly Ile Pro Ala Arg Phe Ser Gly Ser Arg Thr Gly Thr Glu Phe Thr Leu Thr Ile Ser Ser Leu Gin Ser Glu Asp Phe Ala Val Tyr Tyr Cys Gin Gin Tyr Asn Asn Trp Pro Leu Thr Phe Gly Gly Gly Thr Lys Val Glu Ile Lys <210> 147 <211> 348 <212> DNA
<213> Homo sapiens <400> 147 caggtgcagc tggtggagtc tgggggaggc ttggtcaagc ctggagggtc cctgagactc 60 tcctgtgcag cctctggatt caccttcagt gactactaca tgagctggat ccgccaggct 120 ccagggaagg ggctggagtg ggtttcatac attagtagaa gtggtagtac catatactac 180 gcagactctg tgaagggccg attcaccatc tccagggaca acgccaagaa ctcactgtat 240 ctgcaaatga acagcctgag agccgaggac acggccgtgt attactgtgc gagatcttta 300 ggcggtatgg acgtctgggg ccaagggacc acggtcaccg tctcctca 348 <210> 148 <211> 116 <212> PRT
<213> Homo sapiens <400> 148 Gin Val Gin Leu Val Glu Ser Gly Gly Gly Leu Val Lys Pro Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Asp Tyr , , Tyr Met Ser Trp Ile Arg Gin Ala Pro Gly Lys Gly Leu Glu Trp Val Ser Tyr Ile Ser Arg Ser Gly Ser Thr Ile Tyr Tyr Ala Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Ser Leu Tyr Leu Gin Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala Arg Ser Leu Gly Gly Met Asp Val Trp Gly Gin Gly Thr Thr Val Thr Val Ser Ser <210> 149 <211> 321 <212> DNA
<213> Homo sapiens <400> 149 gacatccaga tgacccagtc tccatcctcc ctgtctgcat ctgtaggaga cagagtcacc 60 atcacttgcc ggacaagtca gagcattagc agctatttaa actggtatca ccagaaacca 120 gggaaagccc ctgagctcct gatctatgct gcattcaatt tacaaagtgg ggtcccatca 180 aggttcagtg gcagtggatc tgggacagat ttcactctca ccatcagcag tctgcaacct 240 gaagattttg caacttacta ctgtcaacag agttccagta ccctcatcac cttcggccaa 300 gggacacgac tggagattaa a 321 <210> 150 <211> 107 <212> PRT
<213> Homo sapiens <400> 150 Asp Ile Gin Met Thr Gin Ser Pro Ser Ser Leu Ser Ala Ser Val Gly Asp Arg Val Thr Ile Thr Cys Arg Thr Ser Gin Ser Ile Ser Ser Tyr Leu Asn Trp Tyr His Gin Lys Pro Gly Lys Ala Pro Glu Leu Leu Ile Tyr Ala Ala Phe Asn Leu Gin Ser Gly Val Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gin Pro Glu Asp Phe Ala Thr Tyr Tyr Cys Gin Gin Ser Ser Ser Thr Leu Ile Thr Phe Gly Gin Gly Thr Arg Leu Glu Ile Lys <210> 151 <211> 345 <212> DNA
<213> Homo sapiens <400> 151 gaggtgcagc tggtggagtc tggaggaggc ttgatccagc ctggggggtc cctgagactc 60 tcctgtgcag cctctgggtt caccgtcagt agcaactaca tgagctgggt ccgccaggct 120 ccagggaagg ggctggagtg ggtctcagtt atttatagcg gtggtagcac atactacgca 180 gactccgtga agggccgatt caccatctcc agagacaatt ccaagaacac gctgtatctt 240 caaatgaaca gcctgagagc cgaggacacg gccgtgtatt actgtgcgag aggcgaagga 300 ggtatggacg tctggggcca agggaccacg gtcaccgtct cctca 345 , t <210> 152 <211> 115 <212> PRT
<213> Homo sapiens <400> 152 Glu Val Gin Leu Val Glu Ser Gly Gly Gly Leu Ile Gin Pro Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Val Ser Ser Asn Tyr Met Ser Trp Val Arg Gin Ala Pro Gly Lys Gly Leu Glu Trp Val Ser Val Ile Tyr Ser Gly Gly Ser Thr Tyr Tyr Ala Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr Leu Gin Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala Arg Gly Glu Gly Gly Met Asp Val Trp Gly Gin Gly Thr Thr Val Thr Val Ser Ser <210> 153 <211> 324 <212> DNA
<213> Homo sapiens <400> 153 tcctatgagc tgacacagcc accctcggtg tcagtgtccc caggacaaac ggccaggatc 60 acctgctctg gagatgcatt gccaaaaaaa tatgtttatt ggtaccagca gaagtcaggc 120 caggcccctg tgctggtcat ctatgaggac agcaaacgac cctccgggat ccctgagaga 180 ttctctggct ccagctcagg gacaatggcc accttgacta tcaatggggc ccaggtggag 240 gatgaagctg actactactg ttactcaacg gacagcagtg gtaatcatgt ggtattcggc 300 ggagggacca agctgaccgt ccta 324 <210> 154 <211> 108 <212> PRT
<213> Homo sapiens <400> 154 Ser Tyr Glu Leu Thr Gin Pro Pro Ser Val Ser Val Ser Pro Gly Gin Thr Ala Arg Ile Thr Cys Ser Gly Asp Ala Leu Pro Lys Lys Tyr Val Tyr Trp Tyr Gin Gin Lys Ser Gly Gin Ala Pro Val Leu Val Ile Tyr Glu Asp Ser Lys Arg Pro Ser Gly Ile Pro Glu Arg Phe Ser Gly Ser Ser Ser Gly Thr Met Ala Thr Leu Thr Ile Asn Gly Ala Gin Val Glu Asp Glu Ala Asp Tyr Tyr Cys Tyr Ser Thr Asp Ser Ser Gly Asn His Val Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu <210> 155 <211> 321 <212> DNA
, <213> Homo sapiens <400> 155 gacatccaga tgacccagtc tccatcctcc ctgtctgcat ctgtaggaga cagagtcacc 60 atcacttgcc ggacaagtca gagcattagc agctatttaa attggtatca gcagaaacca 120 gggaaagccc ctgaggtcct gatctatgct gcatccaatt tgcaacgtgg ggtcccatca 180 aggttcagtg gcagtggatc tgggacagat ttcactctca ccatcagcag tctgcaacct 240 gaagattttg caacttacta ctgtcaacag agttccagta ccctcatcac cttcggccaa 300 gggacacgac tggagattaa a 321 <210> 156 <211> 107 <212> PRT
<213> Homo sapiens <400> 156 Asp Ile Gin Met Thr Gin Ser Pro Ser Ser Leu Ser Ala Ser Val Gly Asp Arg Val Thr Ile Thr Cys Arg Thr Ser Gin Ser Ile Ser Ser Tyr Leu Asn Trp Tyr Gin Gin Lys Pro Gly Lys Ala Pro Glu Val Leu Ile Tyr Ala Ala Ser Asn Leu Gin Arg Gly Val Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gin Pro Glu Asp Phe Ala Thr Tyr Tyr Cys Gin Gin Ser Ser Ser Thr Leu Ile Thr Phe Gly Gin Gly Thr Arg Leu Glu Ile Lys <210> 157 <211> 369 <212> DNA
<213> Homo sapiens <400> 157 gaggtgcagc tggtggagtc tgggggaggc ctggtcaagc ctggggggtc cctgagactc 60 tcctgtgcag cctctggatt caccttcagt agctatagca tgaactgggt ccgccaggct 120 ccagggaagg ggctggagtg ggtctcatct attagtagta gtagtagtta catatactac 180 gcagactcag tgaagggccg attcaccatc tccagagaca acgccaagaa ctcactgtat 240 ctgcaaatga acagcctgag agccgaggac acggctgtgt attactgtgc gagggggggt 300 ataactggaa ctacgaacta ctacggtatg gacgtctggg gccaagggac cacggtcacc 360 gtctcctca 369 <210> 158 <211> 123 <212> PRT
<213> Homo sapiens <400> 158 Glu Val Gin Leu Val Glu Ser Gly Gly Gly Leu Val Lys Pro Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr Ser Met Asn Trp Val Arg Gin Ala Pro Gly Lys Gly Leu Glu Trp Val Ser Ser Ile Ser Ser Ser Ser Ser Tyr Ile Tyr Tyr Ala Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Ser Leu Tyr Leu Gin Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala Arg Gly Gly Ile Thr Gly Thr Thr Asn Tyr Tyr Gly Met Asp Val Trp Gly Gin Gly Thr Thr Val Thr Val Ser Ser <210> 159 <211> 321 <212> DNA
<213> Homo sapiens <400> 159 gacatccaga tgacccagtc tccatcctcc ctgtctgcat ctgtaggaga cagagtcacc 60 atcacttgcc ggacaagtca gagcattagc agctatttaa attggtatca gcagaaacca 120 gggaaagccc ctgaactcct gatctatgct gcatttaatt tgcaaagtgg ggtcccatca 180 aggatcagtg gcagtggatc tgggacagat ttcactctca ccatcagcag tctgcaccct 240 gaagattttg caacttacta ctgtcaacag agttccagta ccctcatcac cttcggccaa 300 gggacacgac tggagattaa a 321 <210> 160 <211> 107 <212> PRT
<213> Homo sapiens <400> 160 Asp Ile Gin Met Thr Gin Ser Pro Ser Ser Leu Ser Ala Ser Val Gly Asp Arg Val Thr Ile Thr Cys Arg Thr Ser Gin Ser Ile Ser Ser Tyr Leu Asn Trp Tyr Gin Gin Lys Pro Gly Lys Ala Pro Glu Leu Leu Ile Tyr Ala Ala Phe Asn Leu Gin Ser Gly Val Pro Ser Arg Ile Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu His Pro Glu Asp Phe Ala Thr Tyr Tyr Cys Gin Gin Ser Ser Ser Thr Leu Ile Thr Phe Gly Gin Gly Thr Arg Leu Glu Ile Lys <210> 161 <211> 375 <212> DNA
<213> Homo sapiens <400> 161 caggtgcagc tggtgcagtc tggggctgag gtgaagaagc ctggggcctc agtgaaggtc 60 tcctgcaagg cttctggata caccttcacc ggctactata tgcactgggt gcgacaggcc 120 cctggacaag ggcttgagtg gatgggatgg atcaacccta acagtggtgg cacaaactat 180 gcacagaagt ttcagggcag ggtcaccatg accagggaca cgtccatcag cacagcctac 240 atggagctga gcaggctgag atctgacgac acggccgtgt attactgtgc gagagcccct 300 ctctggacgg tacgtagctg gtactactac ggtatggacg tctggggcca agggaccacg 360 gtcaccgtct cctca 375 <210> 162 <211> 125 <212> PRT
<213> Homo sapiens , <400> 162 Gin Val Gin Leu Val Gin Ser Gly Ala Glu Val Lys Lys Pro Gly Ala Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Gly Tyr Tyr Met His Trp Val Arg Gin Ala Pro Gly Gin Gly Leu Glu Trp Met Gly Trp Ile Asn Pro Asn Ser Gly Gly Thr Asn Tyr Ala Gin Lys Phe Gin Gly Arg Val Thr Met Thr Arg Asp Thr Ser Ile Ser Thr Ala Tyr Met Glu Leu Ser Arg Leu Arg Ser Asp Asp Thr Ala Val Tyr Tyr Cys Ala Arg Ala Pro Leu Trp Thr Val Arg Ser Trp Tyr Tyr Tyr Gly Met Asp Val Trp Gly Gin Gly Thr Thr Val Thr Val Ser Ser <210> 163 <211> 330 <212> DNA
<213> Homo sapiens <400> 163 cagtctgtat tgacgcagcc gccctcaatg tctgcggccc caggacagaa ggtcaccatc 60 tcctgctctg gaagcagctc caacattggg aataattatg tatcctggta ccagcagctc 120 ccaggaatag cccccaaact cctcatttat gacaataata agcgaccctc agggattcct 180 gaccgattct ctggctccaa gtctggcacg tcagccaccc tgggcatcac cggactccag 240 actggggacg aggccgatta ttactgcgga acatgggata gcagcctgag tgctggggtg 300 ttcggcggag ggaccaagct gaccgtccta 330 <210> 164 <211> 110 <212> PRT
<213> Homo sapiens <400> 164 Gin Ser Val Leu Thr Gin Pro Pro Ser Met Ser Ala Ala Pro Gly Gin Lys Val Thr Ile Ser Cys Ser Gly Ser Ser Ser Asn Ile Gly Asn Asn Tyr Val Ser Trp Tyr Gin Gin Leu Pro Gly Ile Ala Pro Lys Leu Leu Ile Tyr Asp Asn Asn Lys Arg Pro Ser Gly Ile Pro Asp Arg Phe Ser Gly Ser Lys Ser Gly Thr Ser Ala Thr Leu Gly Ile Thr Gly Leu Gin Thr Gly Asp Glu Ala Asp Tyr Tyr Cys Gly Thr Trp Asp Ser Ser Leu Ser Ala Gly Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu <210> 165 <211> 348 <212> DNA
<213> Homo sapiens <400> 165 gaggtgcagc tggtgcagtc tggagcagag gtgaaaaagc ccggggagtc tctgaagatc 60 tcctgtaaga cttctgaata cagctttacc agctactgga tcggctgggt gcgccagatg 120 , , cccgggaaag gcctggagtg gatggggatc atctatcttg gtgactcaga taccagatac 180 agcccgtcct tccaaggcca ggtcaccatc tcagccgaca agtccatcag taccgcctac 240 ctgcagtgga gcagcctgaa ggcctcggac accgccatgt attactgtgc gagaagtaac 300 tggggtcttg actactgggg ccagggaacc ctggtcaccg tctcctca 348 <210> 166 <211> 116 <212> PRT
<213> Homo sapiens <400> 166 Glu Val Gin Leu Val Gin Ser Gly Ala Glu Val Lys Lys Pro Gly Glu Ser Leu Lys Ile Ser Cys Lys Thr Ser Glu Tyr Ser Phe Thr Ser Tyr Trp Ile Gly Trp Val Arg Gin Met Pro Gly Lys Gly Leu Glu Trp Met Gly Ile Ile Tyr Leu Gly Asp Ser Asp Thr Arg Tyr Ser Pro Ser Phe Gin Gly Gin Val Thr Ile Ser Ala Asp Lys Ser Ile Ser Thr Ala Tyr Leu Gin Trp Ser Ser Leu Lys Ala Ser Asp Thr Ala Met Tyr Tyr Cys Ala Arg Ser Asn Trp Gly Leu Asp Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser <210> 167 <211> 333 <212> DNA
<213> Homo sapiens <400> 167 cagtctgtgc tgacgcagcc gccctcagtg tctggggccc cagggcagag ggtcaccatc 60 tcctgcactg ggagcagttc caacatcggg gcaggttatg atgtacactg gtaccagcag 120 tttccaggaa cagcccccaa actcctcatc caaggtaaca gcaatcggcc ctcaggggtc 180 cctgaccgat tctctggctc caagtctggc acctcagcct ccctggccat cactgggctc 240 caggctgagg atgaggctga ttattactgc cagtcctatg acagcagcct gagtggttcg 300 gtgttcggcg gagggaccaa gctgaccgtc ctt 333 <210> 168 <211> 111 <212> PRT
<213> Homo sapiens <400> 168 Gin Ser Val Leu Thr Gin Pro Pro Ser Val Ser Gly Ala Pro Gly Gin Arg Val Thr Ile Ser Cys Thr Gly Ser Ser Ser Asn Ile Gly Ala Gly Tyr Asp Val His Trp Tyr Gin Gin Phe Pro Gly Thr Ala Pro Lys Leu Leu Ile Gin Gly Asn Ser Asn Arg Pro Ser Gly Val Pro Asp Arg Phe Ser Gly Ser Lys Ser Gly Thr Ser Ala Ser Leu Ala Ile Thr Gly Leu Gin Ala Glu Asp Glu Ala Asp Tyr Tyr Cys Gin Ser Tyr Asp Ser Ser Leu Ser Gly Ser Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu , , <210> 169 <211> 351 <212> DNA
<213> Homo sapiens <400> 169 caggttcagc tggtgcagtc tggagctgag gtgaagaagc ctggggcctc agtgaaggtc 60 tcctgcaagg cttctggtta cacctttacg ttctatagta tcacctgggt gcgacaggcc 120 cctggacaag ggcttgagtg gatgggatgg atcagcgctt acaatgataa cacaaactat 180 gcacagaagc tccagggcag agtcaccatg accacagaca catccacgag cacagcctac 240 atggaactga ggagcctgag atctgacgac acggccgtgt attactgtgc gagaacgttt 300 accagtggct ttgactactg gggccaggga accctggtca ccgtctcctc a 351 <210> 170 <211> 117 <212> PRT
<213> Homo sapiens <400> 170 Gin Val Gin Leu Val Gin Ser Gly Ala Glu Val Lys Lys Pro Gly Ala Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Phe Tyr Ser Ile Thr Trp Val Arg Gin Ala Pro Gly Gin Gly Leu Glu Trp Met Gly Trp Ile Ser Ala Tyr Asn Asp Asn Thr Asn Tyr Ala Gin Lys Leu Gin Gly Arg Val Thr Met Thr Thr Asp Thr Ser Thr Ser Thr Ala Tyr Met Glu Leu Arg Ser Leu Arg Ser Asp Asp Thr Ala Val Tyr Tyr Cys Ala Arg Thr Phe Thr Ser Gly Phe Asp Tyr Trp Gly Gin Gly Thr Leu Val Thr Val Ser Ser <210> 171 <211> 324 <212> DNA
<213> Homo sapiens <400> 171 tcttctgagc tgactcagga ccctgctgtg tctgtggcct tgggacagac agtcaggatc 60 acatgccaag gagacagcct cagaaggtat tatgcaagct ggtaccagca gaagccagga 120 caggccccta tacttgtcat ctatggtaaa aacaaccggc cctcagggat cccagaccga 180 ttctctggct ccagctcagg aaacacagct tccttgacca tcactggggc tcaggcggaa 240 gatgaggctg actattactg taactcccgg gacagcagtg gtaaccatct ggtgttcggc 300 ggagggacca agctgaccgt ccta 324 <210> 172 <211> 108 <212> PRT
<213> Homo sapiens <400> 172 Ser Ser Glu Leu Thr Gin Asp Pro Ala Val Ser Val Ala Leu Gly Gin Thr Val Arg Ile Thr Cys Gin Gly Asp Ser Leu Arg Arg Tyr Tyr Ala Ser Trp Tyr Gin Gln Lys Pro Gly Gin Ala Pro Ile Leu Val Ile Tyr , Gly Lys Asn Asn Arg Pro Ser Gly Ile Pro Asp Arg Phe Ser Gly Ser Ser Ser Gly Asn Thr Ala Ser Leu Thr Ile Thr Gly Ala Gin Ala Glu Asp Glu Ala Asp Tyr Tyr Cys Asn Ser Arg Asp Ser Ser Gly Asn His Leu Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu <210> 173 <211> 375 <212> DNA
<213> Homo sapiens <400> 173 caggtgcagc tggtggagtc tgggggaggc gtggtccagc ctgggaggtc cctgagactc 60 tcctgtgcag cgtctggatt taccttcagt agttatgaca tgcactgggt ccgccaggct 120 ccaggcaagg ggctggagtg ggtggcagtt atatggtatg atggaagtaa taaataccat 180 gcagactccg tgaagggccg attcaccatc tccagagaca attccaagaa cacgctgtat 240 ctgcaaatga acagcctgag agccgaggac acggctgtgt attactgtgc gagagagaat 300 actatggttc ggggggggga ctactactac ggtatggacg tctggggcca agggaccacg 360 gtcaccgtct cctca 375 <210> 174 <211> 125 <212> PRT
<213> Homo sapiens <400> 174 Gin Val Gin Leu Val Glu Ser Gly Gly Gly Val Val Gin Pro Gly Arg Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr Asp Met His Trp Val Arg Gin Ala Pro Gly Lys Gly Leu Glu Trp Val Ala Val Ile Trp Tyr Asp Gly Ser Asn Lys Tyr His Ala Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr Leu Gin Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala Arg Glu Asn Thr Met Val Arg Gly Gly Asp Tyr Tyr Tyr Gly Met Asp Val Trp Gly Gin Gly Thr Thr Val Thr Val Ser Ser <210> 175 <211> 321 <212> DNA
<213> Homo sapiens <400> 175 gacatccaga tgacccagtc tccatcctcc ctgtctgcat ctgtaggaga cagagtcacc 60 atcacttgcc gggcaagtca gggcattaga aatgatttag gctggtatca gcagaaacca 120 aggaaagccc ctaagcgcct gatctttgct gcgtccagtt tgcaaagtgg ggtcccatca 180 aggttcagcg gcagtggatc tgggccagaa ttcactctca caatcagcag cctgcagcct 240 gaagattttg caacttatta ctgtctacag cataatagtt acccgctcac tttcggcgga 300 gggaccaagg tggagatcaa a 321 <210> 176 , <211> 107 <212> PRT
<213> Homo sapiens <400> 176 Asp Ile Gin Met Thr Gin Ser Pro Ser Ser Leu Ser Ala Ser Val Gly Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gin Gly Ile Arg Asn Asp Leu Gly Trp Tyr Gin Gin Lys Pro Arg Lys Ala Pro Lys Arg Leu Ile Phe Ala Ala Ser Ser Leu Gin Ser Gly Val Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Pro Glu Phe Thr Leu Thr Ile Ser Ser Leu Gin Pro Glu Asp Phe Ala Thr Tyr Tyr Cys Leu Gin His Asn Ser Tyr Pro Leu Thr Phe Gly Gly Gly Thr Lys Val Glu Ile Lys <210> 177 <211> 354 <212> DNA
<213> Homo sapiens <400> 177 caggtgcagc tgcaggagtc gggcccagga ctggtgaagc cttcggagac cctgtccctc 60 acctgcactg tctctggtgg ctccatcagt agttactact ggagctggat ccggcagccc 120 ccagggaagg gactggagtg gattgggtat ttctattaca gtgggagcac caactacaac 180 ccctccctca agagtcgagt caccatatca gtagacacgt ccaagaacca gttctccctg 240 aagctgaggt ctgtgaccgc tgcggacacg gccgtgtatt actgtgcgag agataggttt 300 accagtggct ggtttgacta ctggggccag ggaaccctgg tcaccgtctc ctca 354 <210> 178 <211> 118 <212> PRT
<213> Homo sapiens <400> 178 Gin Val Gin Leu Gin Glu Ser Gly Pro Gly Leu Val Lys Pro Ser Glu Thr Leu Ser Leu Thr Cys Thr Val Ser Gly Gly Ser Ile Ser Ser Tyr Tyr Trp Ser Trp Ile Arg Gin Pro Pro Gly Lys Gly Leu Glu Trp Ile Gly Tyr Phe Tyr Tyr Ser Gly Ser Thr Asn Tyr Asn Pro Ser Leu Lys Ser Arg Val Thr Ile Ser Val Asp Thr Ser Lys Asn Gin Phe Ser Leu Lys Leu Arg Ser Val Thr Ala Ala Asp Thr Ala Val Tyr Tyr Cys Ala Arg Asp Arg Phe Thr Ser Gly Trp Phe Asp Tyr Trp Gly Gin Gly Thr Leu Val Thr Val Ser Ser <210> 179 <211> 321 <212> DNA
<213> Homo sapiens , , <400> 179 gacatccaga tgacccagtc tccatcctcc ctgtctgcat ctgtaggaga cagagtcacc 60 atcacttgcc gggcaagtca gggcattaga aatgatttag gctggtatca gcagaaacca 120 aggaaagccc ctaagcgcct gatctttgct gcgtccagtt tgcaaagtgg ggtcccatca 180 aggttcagcg gcagtggatc tgggccagaa ttcactctca caatcagcag cctgcagcct 240 gaagattttg caacttatta ctgtctacag cataatagtt acccgctcac tttcggcgga 300 gggaccaagg tggagatcaa a 321 <210> 180 <211> 107 <212> PRT
<213> Homo sapiens <400> 180 Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Gly Ile Arg Asn Asp Leu Gly Trp Tyr Gln Gln Lys Pro Arg Lys Ala Pro Lys Arg Leu Ile Phe Ala Ala Ser Ser Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Pro Glu Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro Glu Asp Phe Ala Thr Tyr Tyr Cys Leu Gln His Asn Ser Tyr Pro Leu Thr Phe Gly Gly Gly Thr Lys Val Glu Ile Lys <210> 181 <211> 345 <212> DNA
<213> Homo sapiens <400> 181 gaggtgcagc tggtggagtc tggaggaggc ttgatccagc ctggggggtc cctgagactc 60 tcctgtgcag cctctgggtt caccgtcagt aacaactaca tgcactgggt ccgccaggct 120 ccagggaagg ggctggagtg ggtctcagtt atttatagcg gtggtaacac atactacgca 180 gactccgtga agggccgatt caccatctcc agagacaatt ccaagaacac gctatttctt 240 caaatgaaca gcctgaaaac cgaggacacg gccgtgtatt actgtgcgag aggtcccggg 300 gcttttgata tctggggcca agggacaatg gtcaccgtct cttca 345 <210> 182 <211> 115 <212> PRT
<213> Homo sapiens <400> 182 Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Ile Gln Pro Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Val Ser Asn Asn Tyr Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val Ser Val Ile Tyr Ser Gly Gly Asn Thr Tyr Tyr Ala Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Phe Leu Gln Met Asn Ser Leu Lys Thr Glu Asp Thr Ala Val Tyr Tyr Cys Ala , , Arg Gly Pro Gly Ala Phe Asp Ile Trp Gly Gin Gly Thr Met Val Thr Val Ser Ser <210> 183 <211> 321 <212> DNA
<213> Homo sapiens <400> 183 gaaatagtga tgacgcagtc tccagccacc ctgtctgtgt ctccagggga aagagtcacc 60 ctctcctgca gggccagtca gagtgctacc agcaacttag cctggtacca gcagaaacct 120 ggccaggctc ccaggctcct catctatggt gcatccacca gggccactgg tatcccagcc 180 agattcagtg gcagtgggtc tgggacagag ttcactctca ccatcagcag cctgcagtct 240 gaagattttg cagtttatta ctgtcagcag tataataact ggcctttcac cttcggccaa 300 gggacacgac tggagattaa a 321 <210> 184 <211> 107 <212> PRT
<213> Homo sapiens <400> 184 Glu Ile Val Met Thr Gin Ser Pro Ala Thr Leu Ser Val Ser Pro Gly Glu Arg Val Thr Leu Ser Cys Arg Ala Ser Gin Ser Ala Thr Ser Asn Leu Ala Trp Tyr Gln Gin Lys Pro Gly Gin Ala Pro Arg Leu Leu Ile Tyr Gly Ala Ser Thr Arg Ala Thr Gly Ile Pro Ala Arg Phe Ser Gly Ser Gly Ser Gly Thr Glu Phe Thr Leu Thr Ile Ser Ser Leu Gin Ser Glu Asp Phe Ala Val Tyr Tyr Cys Gin Gin Tyr Asn Asn Trp Pro Phe Thr Phe Gly Gin Gly Thr Arg Leu Glu Ile Lys <210> 185 <211> 345 <212> DNA
<213> Homo sapiens <400> 185 gaggtgcagc tggtggagtc tggaggaggc ttgatccagc ctggggggtc cctgagactc 60 tcctgtgcag cctctgggtt caccgtcagt agcaactaca tgagttgggt ccgccaggct 120 ccagggaagg ggctggagtg ggtctcagtt atttatagcg gtggtagcac atactacgca 180 gactccgtga agggccgatt caccatctcc agagacaatt ccaagaacac gctgtatctt 240 caaatgaaca gcctgagagc cgaggacacg gccgtgtatt actgtgcgag aggtcccggg 300 gcttttgata tctggggcca agggacaatg gtcaccgtct cttca 345 <210> 186 <211> 115 <212> PRT
<213> Homo sapiens <400> 186 Glu Val Gin Leu Val Glu Ser Gly Gly Gly Leu Ile Gin Pro Gly Gly , , Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Val Ser Ser Asn Tyr Met Ser Trp Val Arg Gin Ala Pro Gly Lys Gly Leu Glu Trp Val Ser Val Ile Tyr Ser Gly Gly Ser Thr Tyr Tyr Ala Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr Leu Gin Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala Arg Gly Pro Gly Ala Phe Asp Ile Trp Gly Gin Gly Thr Met Val Thr Val Ser Ser <210> 187 <211> 327 <212> DNA
<213> Homo sapiens <400> 187 gacatccaga tgacccagtc tccatcctcc ctgtctgcat ctgtaggaga cagagtcacc 60 atcacttgcc gggcaagtca gggcattaga aatgatttag gctggtttca gcagaaacca 120 gggaaagccc ctaagcgcct gatctatgct gcatccaatt ttctaagtgg ggtcccatca 180 aggttcagcg gcagtggctc tgggacagaa ttcactctca caatcagcag cctgcagcct 240 gaagatttta caacttatta ctgtctacag cataatcctt accctccgag gctcactttc 300 ggcggaggga ccaaggtaga gatcaaa 327 <210> 188 <211> 109 <212> PRT
<213> Homo sapiens <400> 188 Asp Ile Gin Met Thr Gin Ser Pro Ser Ser Leu Ser Ala Ser Val Gly Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Gly Ile Arg Asn Asp Leu Gly Trp Phe Gin Gin Lys Pro Gly Lys Ala Pro Lys Arg Leu Ile Tyr Ala Ala Ser Asn Phe Leu Ser Gly Val Pro Ser Arg Phe Ser Gly 50 = 55 60 Ser Gly Ser Gly Thr Glu Phe Thr Leu Thr Ile Ser Ser Leu Gin Pro Glu Asp Phe Thr Thr Tyr Tyr Cys Leu Gin His Asn Pro Tyr Pro Pro Arg Leu Thr Phe Gly Gly Gly Thr Lys Val Glu Ile Lys <210> 189 <211> 363 <212> DNA
<213> Homo sapiens <400> 189 caggtgcagc tggtggagtc tgggggaggc gtggtccagc ctgggaggtc cctgagactc 60 tcctgtgcag cgtctggatt caccttcagt agctatggca tgcactgggt ccgccaggct 120 ccaggcaagg ggctggagtg ggtggcagtt atatggtatg atggaagtaa taaatactat 180 gcagactccg tgaagggccg attcaccatc tccagagaca attccaagaa cacgctgtat 240 ctgcaaatga acagcctgag agccgaggac acggctgtgt attactgtgc gagagagggg 300 , , gactacggtg gtaaccctta ctttgactac tggggccagg gaaccctggt caccgtctcc 360 tca 363 <210> 190 <211> 121 <212> PRT
<213> Homo sapiens <400> 190 Gin Val Gin Leu Val Glu Ser Gly Gly Gly Val Val Gin Pro Gly Arg Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr Gly Met His Trp Val Arg Gin Ala Pro Gly Lys Gly Leu Glu Trp Val Ala Val Ile Trp Tyr Asp Gly Ser Asn Lys Tyr Tyr Ala Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr Leu Gin Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala Arg Glu Gly Asp Tyr Gly Gly Asn Pro Tyr Phe Asp Tyr Trp Gly Gin Gly Thr Leu Val Thr Val Ser Ser <210> 191 <211> 324 <212> DNA
<213> Homo sapiens <400> 191 tcttctgagc tgactcagga ccctgctgtg tctgtggcct tgggacagac agtcaggatc 60 acatgccaag gagacagcct cagaagctat tatgcaagct ggtaccagca gaagccagga 120 caggcccctg tacttgtcat ctatggtaaa aacaaccggc cctcagggat cccagaccga 180 ttctctggct ccagctcaga aaacacagct tccttgacca tcactggggc tcaggcggaa 240 gatgaggctg actattactg taagtcccgg gacagcagtt ttaaccatct ggtattcggc 300 ggagggacca agttgaccgt ccta 324 <210> 192 <211> 108 <212> PRT
<213> Homo sapiens <400> 192 Ser Ser Glu Leu Thr Gin Asp Pro Ala Val Ser Val Ala Leu Gly Gin Thr Val Arg Ile Thr Cys Gin Gly Asp Ser Leu Arg Ser Tyr Tyr Ala Ser Trp Tyr Gin Gin Lys Pro Gly Gin Ala Pro Val Leu Val Ile Tyr Gly Lys Asn Asn Arg Pro Ser Gly Ile Pro Asp Arg Phe Ser Gly Ser Ser Ser Glu Asn Thr Ala Ser Leu Thr Ile Thr Gly Ala Gin Ala Glu Asp Glu Ala Asp Tyr Tyr Cys Lys Ser Arg Asp Ser Ser Phe Asn His Leu Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu , <210> 193 <211> 363 <212> DNA
<213> Homo sapiens <400> 193 caggtgcacc tggtggagtc tgggggaggc gtggtccagc ctgggaggtc cctgagactc 60 tcctgtgcag cgtctggatt caccttcagt agctatggca tgcactgggt ccgccaggct 120 ccaggcaagg ggctggagtg ggtggcagtt atatggcatg atggaagtaa taaatactat 180 gcagactccg tgaagggccg attcaccatc tccagagaca attccaagaa cacgctgtat 240 ctgcaaatga acagcctgag agccgaggac acggctgtgt attactgtac aagagagggg 300 gactacggtg gttaccctta ctttgactac tggggccagg gaaccctggt caccgtctcc 360 tca 363 <210> 194 <211> 121 <212> PRT
<213> Homo sapiens <400> 194 Gin Val His Leu Val Glu Ser Gly Gly Gly Val Val Gin Pro Gly Arg Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr Gly Met His Trp Val Arg Gin Ala Pro Gly Lys Gly Leu Glu Trp Val Ala Val Ile Trp His Asp Gly Ser Asn Lys Tyr Tyr Ala Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr Leu Gin Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Thr Arg Glu Gly Asp Tyr Gly Gly Tyr Pro Tyr Phe Asp Tyr Trp Gly Gin Gly Thr Leu Val Thr Val Ser Ser <210> 195 <211> 324 <212> DNA
<213> Homo sapiens <400> 195 tcttctgagc tgactcagga ccctgctgtg tctgtggcct tgggacagac agtcaggatc 60 acatgccaag gagacatcct cagaagctat tatgcaagct ggtaccagca gaagccagga 120 caggcccctg tacttgtcat ctatggtaaa aacaaccggc cctcagggat cccagaccga 180 ttctctggct ccagctcagg aaacacagct tccttgacca tcactggggc tcaggcggaa 240 gatgaggctg actattactg taagtcccgg gacagcagtt ataaccatct ggtattcggc 300 ggagggacca aactgaccgt ccta 324 <210> 196 <211> 108 <212> PRT
<213> Homo sapiens <400> 196 Ser Ser Glu Leu Thr Gln Asp Pro Ala Val Ser Val Ala Leu Gly Gin Thr Val Arg Ile Thr Cys Gin Gly Asp Ile Leu Arg Ser Tyr Tyr Ala Ser Trp Tyr Gin Gin Lys Pro Gly Gin Ala Pro Val Leu Val Ile Tyr Gly Lys Asn Asn Arg Pro Ser Gly Ile Pro Asp Arg Phe Ser Gly Ser Ser Ser Gly Asn Thr Ala Ser Leu Thr Ile Thr Gly Ala Gin Ala Glu Asp Glu Ala Asp Tyr Tyr Cys Lys Ser Arg Asp Ser Ser Tyr Asn His Leu Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu <210> 197 <211> 366 <212> DNA
<213> Homo sapiens <400> 197 caggtgcagc tggtggagtc tgggggaggc gtggtccagc ctgggaggtc cctgagactc 60 tcctgtgcag cgtctggatt caccttcagt agctatggca tgcactgggt ccgccaggct 120 ccaggcaagg ggctggagtg ggtggcaatt atatggtatg atggaagtaa tgaatactat 180 ggagactccg tgaagggccg attcaccatc tccagagaca attccaagaa cacgctgttt 240 ctgcaaatga acagcctgag agccgaggac acggctgtgt attactgtgc gagagatccc 300 ctccgtatag tagtggctgg ggactttgac tactggggcc agggaaccct ggtcaccgtc 360 tcctca 366 <210> 198 <211> 122 <212> PRT
<213> Homo sapiens <400> 198 Gin Val Gin Leu Val Glu Ser Gly Gly Gly Val Val Gin Pro Gly Arg Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr Gly Met His Trp Val Arg Gin Ala Pro Gly Lys Gly Leu Glu Trp Val Ala Ile Ile Trp Tyr Asp Gly Ser Asn Glu Tyr Tyr Gly Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Phe Leu Gin Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala Arg Asp Pro Leu Arg Ile Val Val Ala Gly Asp Phe Asp Tyr Trp Gly Gin Gly Thr Leu Val Thr Val Ser Ser <210> 199 <211> 333 <212> DNA
<213> Homo sapiens <400> 199 cagtctgtgc tgacgcagcc gccctcagtg tctggggccc cagggctgag ggtcaccatc 60 tcctgcactg gaaacagctc caacatcggg gcaggttatg atgtacactg gtaccagcag 120 cttccaggaa cagcccccaa actcctcatc tatggtaaca gcaatcggcc ctcaggggtc 180 cctgaccgat tctctggctc caagtctggc acctcagcct ccctggccat cactgggctc 240 caggctgagg atgagactga ttattactgc cagtcctatg acagcagcct gagtggttcg 300 gtattcggcg gagggaccaa gctgaccgtc cta 333 <210> 200 , <211> 111 <212> PRT
<213> Homo sapiens <400> 200 Gln Ser Val Leu Thr Gln Pro Pro Ser Val Ser Gly Ala Pro Gly Leu Arg Val Thr Ile Ser Cys Thr Gly Asn Ser Ser Asn Ile Gly Ala Gly Tyr Asp Val His Trp Tyr Gln Gln Leu Pro Gly Thr Ala Pro Lys Leu Leu Ile Tyr Gly Asn Ser Asn Arg Pro Ser Gly Val Pro Asp Arg Phe Ser Gly Ser Lys Ser Gly Thr Ser Ala Ser Leu Ala Ile Thr Gly Leu Gln Ala Glu Asp Glu Thr Asp Tyr Tyr Cys Gln Ser Tyr Asp Ser Ser Leu Ser Gly Ser Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu <210> 201 <211> 363 <212> DNA
<213> Homo sapiens <400> 201 caggtgcacc tggtggagtc tgggggaggc gtggtccagc ctgggaggtc cctgagactc 60 tcctgtgcag cgtctggatt caccttcagt agctatggca tgcactgggt ccgccaggct 120 ccaggcaagg ggctggagtg ggtggcagtt atatggcatg atggaagtaa taaatactat 180 gcagactccg tgaagggccg attcaccatc tccagagaca attccaagaa cacgctgtat 240 ctgcaaatga acagcctgag agccgaggac acggctgtgt attactgtac aagagagggg 300 gactacggtg gttaccctta ctttgactac tggggccagg gaaccctggt caccgtctcc 360 tca 363 <210> 202 <211> 121 <212> PRT
<213> Homo sapiens <400> 202 Gln Val His Leu Val Glu Ser Gly Gly Gly Val Val Gln Pro Gly Arg Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr Gly Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val Ala Val Ile Trp His Asp Gly Ser Asn Lys Tyr Tyr Ala Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Thr Arg Glu Gly Asp Tyr Gly Gly Tyr Pro Tyr Phe Asp Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser <210> 203 <211> 324 <212> DNA
<213> Homo sapiens <400> 203 tcttctgagc tgactcagga ccctgctgtg tctgtggcct tgggacagac agtcaggatc 60 acatgccaag gagacatcct cagaagctat tatgcaagct ggtaccagca gaagccagga 120 caggccccta tacttgtcat ctatggtaaa aacaaccggc cctcagggat cccagaccga 180 ttctctggct ccagctcagg aaacacagct tccttgacca tcactggggc tcaggcggaa 240 gatgaggctg actattactg taagtcccgg gacagcagtt ataaccatct ggtattcggc 300 ggagggacca aactgaccgt ccta 324 <210> 204 <211> 108 <212> PRT
<213> Homo sapiens <400> 204 Ser Ser Glu Leu Thr Gin Asp Pro Ala Val Ser Val Ala Leu Gly Gin Thr Val Arg Ile Thr Cys Gin Gly Asp Ile Leu Arg Ser Tyr Tyr Ala Ser Trp Tyr Gin Gin Lys Pro Gly Gin Ala Pro Ile Leu Val Ile Tyr Gly Lys Asn Asn Arg Pro Ser Gly Ile Pro Asp Arg Phe Ser Gly Ser Ser Ser Gly Asn Thr Ala Ser Leu Thr Ile Thr Gly Ala Gin Ala Glu Asp Glu Ala Asp Tyr Tyr Cys Lys Ser Arg Asp Ser Ser Tyr Asn His Leu Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu <210> 205 <211> 375 <212> DNA
<213> Homo sapiens <400> 205 caggtgcagc tggtggagtc tgggggaggc gtggtccagc ctgggaggtc cctgagactc 60 tcctgtgcag cgtctggatt caccttcagt agctatggca tgcactgggt ccgccaggct 120 ccaggcaagg ggctggagtg ggtggcagtt atatggtatg atggaagtaa taaatactat 180 gcagactccg tgaagggccg attcaccatc tccagagaca attccaagaa cacgctgtat 240 ctgcaaatga acagcctgag agccgaggac acggctgtgt attactgtgc gagagagact 300 acggtgacta aggagggcta ctactactac ggtatggacg tctggggcca agggaccacg 360 gtcaccgtct cctca 375 <210> 206 <211> 125 <212> PRT
<213> Homo sapiens <400> 206 Gln Val Gin Leu Val Glu Ser Gly Gly Gly Val Val Gin Pro Gly Arg Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr Gly Met His Trp Val Arg Gin Ala Pro Gly Lys Gly Leu Glu Trp Val Ala Val Ile Trp Tyr Asp Gly Ser Asn Lys Tyr Tyr Ala Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr , Leu Gin Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala Arg Glu Thr Thr Val Thr Lys Glu Gly Tyr Tyr Tyr Tyr Gly Met Asp Val Trp Gly Gin Gly Thr Thr Val Thr Val Ser Ser <210> 207 <211> 321 <212> DNA
<213> Homo sapiens <400> 207 gacatccaga tgacccagtc tccatcttcc ctgtctgcat ctgtaggaga cagagtcacc 60 atcacttgcc gggcaagtca gggcattaga aatgatttag gctggtatca gcagaaacca 120 gggaaagccc ctaagcgcct gatctatgct gcatccagtt tgcaaagtgg ggtcccatca 180 aggttcagcg gcagtggatc tgggacagaa ttcactctca caatcagcag cctgcagcct 240 gaagattttg caacttatta ctgtctacag cataatagtt acccgctcac tttcggcgga 300 gggaccaagg tggagatcaa a 321 <210> 208 <211> 107 <212> PRT
<213> Homo sapiens <400> 208 Asp Ile Gin Met Thr Gin Ser Pro Ser Ser Leu Ser Ala Ser Val Gly Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gin Gly Ile Arg Asn Asp Leu Gly Trp Tyr Gin Gin Lys Pro Gly Lys Ala Pro Lys Arg Leu Ile Tyr Ala Ala Ser Ser Leu Gin Ser Gly Val Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Glu Phe Thr Leu Thr Ile Ser Ser Leu Gin Pro Glu Asp Phe Ala Thr Tyr Tyr Cys Leu Gin His Asn Ser Tyr Pro Leu Thr Phe Gly Gly Gly Thr Lys Val Glu Ile Lys <210> 209 <211> 360 <212> DNA
<213> Homo sapiens <400> 209 caggtgcagc tggtggagtc tgggggaggc gtggtccagc ctgggaggtc cctgagactc 60 tcctgtgcag cgtctggatt caccttcagt acctatggca tgcactgggt ccgccaggct 120 ccaggcaagg ggctggagtg ggtggcagtt atatggtatg atggaagtaa taaatactat 180 gcagactccg tgaagggccg attcaccatc tccagagaca attccaagaa cacgctatat 240 ctgcaaatga acagcctgag agccgaggac acggctgtgt attactgtgc gagatcccgc 300 tacggtgact gggggtggtt cgacccctgg ggccagggaa ccctggtcac cgtctcctca 360 <210> 210 <211> 120 <212> PRT
<213> Homo sapiens t <400> 210 Gin Val Gin Leu Val Glu Ser Gly Gly Gly Val Val Gin Pro Gly Arg Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Thr Tyr Gly Met His Trp Val Arg Gin Ala Pro Gly Lys Gly Leu Glu Trp Val Ala Val Ile Trp Tyr Asp Gly Ser Asn Lys Tyr Tyr Ala Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr Leu Gin Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala Arg Ser Arg Tyr Gly Asp Trp Gly Trp Phe Asp Pro Trp Gly Gin Gly Thr Leu Val Thr Val Ser Ser <210> 211 <211> 330 <212> DNA
<213> Homo sapiens <400> 211 cagtctgtgc tgactcagcc accctcagcg tctgggaccc ccgggcagag ggtcaccatc 60 tcttgttctg gaagcagctc caacatcgga agtaatactg taaactggta ccagcagctc 120 ccaggaacgg cccccaaact cctcatctat agtaataatc agcggccctc aggggtccct 180 gaccgattct ctggctccaa gtctggcacc tcagcctccc tggccatcag tgggctccag 240 tctgaggatg aggctgatta ttactgtgca gcatgggatg acagcctgaa tggtccggtg 300 ttcggcggag ggaccaagct gaccgtccta 330 <210> 212 <211> 110 <212> PRT
<213> Homo sapiens <400> 212 Gin Ser Val Leu Thr Gin Pro Pro Ser Ala Ser Gly Thr Pro Gly Gin Arg Val Thr Ile Ser Cys Ser Gly Ser Ser Ser Asn Ile Gly Ser Asn Thr Val Asn Trp Tyr Gin Gin Leu Pro Gly Thr Ala Pro Lys Leu Leu Ile Tyr Ser Asn Asn Gin Arg Pro Ser Gly Val Pro Asp Arg Phe Ser Gly Ser Lys Ser Gly Thr Ser Ala Ser Leu Ala Ile Ser Gly Leu Gin Ser Glu Asp Glu Ala Asp Tyr Tyr Cys Ala Ala Trp Asp Asp Ser Leu Asn Gly Pro Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu <210> 213 <211> 366 <212> DNA
<213> Homo sapiens <400> 213 caggtgcagc tggtggagtc tgggggaggc gtggtccagc ctgggaggtc cctgagactc 60 tcctgtgcag cgtctggatt caccttcagt agctatggca tgcactgggt ccgccaggct 120 ccaggcaagg ggctggagtg ggtggcaatt atatggtatg atggaagtaa tgaatactat 180 ggagactccg tgaagggccg attcaccatc tccagagaca attccaagaa cacgctgttt 240 ctgcaaatga acagcctgag agccgaggac acggctgtgt attactgtgc gagagatccc 300 ctccgtatag tagtggctgg ggactttgac tactggggcc agggaaccct ggtcaccgtc 360 tcctca 366 <210> 214 <211> 122 <212> PRT
<213> Homo sapiens <400> 214 Gin Val Gin Leu Val Glu Ser Gly Gly Gly Val Val Gin Pro Gly Arg Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr Gly Met His Trp Val Arg Gin Ala Pro Gly Lys Gly Leu Glu Trp Val Ala Ile Ile Trp Tyr Asp Gly Ser Asn Glu Tyr Tyr Gly Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Phe Leu Gin Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala Arg Asp Pro Leu Arg Ile Val Val Ala Gly Asp Phe Asp Tyr Trp Gly Gin Gly Thr Leu Val Thr Val Ser Ser <210> 215 <211> 321 <212> DNA
<213> Homo sapiens <400> 215 gaaatagtga tgacgcagtc tccagccacc ctgtctgtgt ctccagggga aagagccacc 60 ctctcctgca gggccagtca gagtgttatc agcaacttag cctggtacca gcagcaacct 120 ggccaggctc ccaggctcct catctatggt gcatccacca gggccactgg tttcccagcc 180 aggttcagtg gcagtgggtc tgggacagag ttcactctca ccatcagcag cctgcagtct 240 gaagattttg cagtttatta ctgtcagcag tataataact ggccgctcac tttcggcgga 300 gggaccaagg tggagatcaa a 321 <210> 216 <211> 107 <212> PRT
<213> Homo sapiens <400> 216 Glu Ile Val Met Thr Gin Ser Pro Ala Thr Leu Ser Val Ser Pro Gly Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Gin Ser Val Ile Ser Asn Leu Ala Trp Tyr Gin Gin Gin Pro Gly Gin Ala Pro Arg Leu Leu Ile Tyr Gly Ala Ser Thr Arg Ala Thr Gly Phe Pro Ala Arg Phe Ser Gly Ser Gly Ser Gly Thr Glu Phe Thr Leu Thr Ile Ser Ser Leu Gln Ser Glu Asp Phe Ala Val Tyr Tyr Cys Gin Gin Tyr Asn Asn Trp Pro Leu Thr Phe Gly Gly Gly Thr Lys Val Glu Ile Lys , <210> 217 <211> 375 <212> DNA
<213> Homo sapiens <400> 217 caggtgcagc tggtggagtc tgggggaggc gtggtccagc ctgggaggtc cctgagactc 60 tcctgtgcag cgtctggatt caccttcagt agctatggca tgcactgggt ccgccaggct 120 ccaggcaagg ggctggagtg ggtggcagtt atatggtatg atggaagtaa taaatactat 180 gcagactccg tgaagggccg attcaccatc tccagagaca attccaagaa cacgctgtat 240 ctgcaaatga acagcctgag agccgaggac acggctgtgt attactgtgc gagagagact 300 acggtgacta aggagggcta ctactactac ggtatggacg tctggggcca agggaccacg 360 gtcaccgtct cctca 375 <210> 218 <211> 125 <212> PRT
<213> Homo sapiens <400> 218 Gin Val Gin Leu Val Glu Ser Gly Gly Gly Val Val Gin Pro Gly Arg Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr Gly Met His Trp Val Arg Gin Ala Pro Gly Lys Gly Leu Glu Trp Val Ala Val Ile Trp Tyr Asp Gly Ser Asn Lys Tyr Tyr Ala Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr Leu Gin Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala Arg Glu Thr Thr Val Thr Lys Glu Gly Tyr Tyr Tyr Tyr Gly Met Asp Val Trp Gly Gin Gly Thr Thr Val Thr Val Ser Ser <210> 219 <211> 321 <212> DNA
<213> Homo sapiens <400> 219 gacatccaga tgacccagtc tccatcttcc ctgtctgcat ctgtaggaga cagagtcacc 60 atcacttgcc gggcaagtca gggcattaga aatgatttag gctggtatca gcagaaacca 120 gggaaagccc ctaagcgcct gatctatgct gcatccagtt tgcaaagtgg ggtcccatca 180 aggttcagcg gcagtggatc tgggacagaa ttcactctca caatcagcag cctgcagcct 240 gaagattttg caacttatta ctgtctacag cataatagtt acccgctcac tttcggcgga 300 gggaccaagg tggagatcaa a 321 <210> 220 <211> 107 <212> PRT
<213> Homo sapiens <400> 220 Asp Ile Gin Met Thr Gin Ser Pro Ser Ser Leu Ser Ala Ser Val Gly Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gin Gly Ile Arg Asn Asp Leu Gly Trp Tyr Gin Gin Lys Pro Gly Lys Ala Pro Lys Arg Leu Ile , Tyr Ala Ala Ser Ser Leu Gin Ser Gly Val Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Glu Phe Thr Leu Thr Ile Ser Ser Leu Gin Pro Glu Asp Phe Ala Thr Tyr Tyr Cys Leu Gin His Asn Ser Tyr Pro Leu Thr Phe Gly Gly Gly Thr Lys Val Glu Ile Lys <210> 221 <211> 375 <212> DNA
<213> Homo sapiens <400> 221 caggtgcagc tggtggagtc tgggggaggc gtggtccagc ctgggaggtc cctgagactc 60 tcctgtgcag cctctggatt caccttcagt agctatgaca tgcactgggt ccgccaggct 120 ccaggcaagg ggctggagtg ggtggcaatt atatcatatg atggaagtat taaatactat 180 gcagactccg tgaagggccg attcaccatc tccagagaca attccaagaa cacgctgtat 240 ctgcaaatga acagcctgag agctgaggac acggctgtgt attactgtgc gagagagaat 300 gcggtgactt acgggggcta ctaccactac ggtatggacg tctggggcca agggaccacg 360 gtcaccgtct cctca 375 <210> 222 .
<211> 125 <212> PRT
<213> Homo sapiens <400> 222 Gin Val Gin Leu Val Glu Ser Gly Gly Gly Val Val Gin Pro Gly Arg Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr Asp Met His Trp Val Arg Gin Ala Pro Gly Lys Gly Leu Glu Trp Val Ala Ile Ile Ser Tyr Asp Gly Ser Ile Lys Tyr Tyr Ala Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr Leu Gin Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala Arg Glu Asn Ala Val Thr Tyr Gly Gly Tyr Tyr His Tyr Gly Met Asp Val Trp Gly Gin Gly Thr Thr Val Thr Val Ser Ser <210> 223 <211> 321 <212> DNA
<213> Homo sapiens <400> 223 gacatccaga tgacccagtc tccatcctcc ctgtctacat ctgtaggaga cagagtcacc 60 atcacttgcc gggcaagtca gggcattaga aatgatttag gctggtatca gcagaaacca 120 gggaaagccc ctaagcgcct gatctatgct gcatccagtt tgcaaagtgg ggtcccatca 180 aggttcagcg gcagtggatc tgggacagaa ttcactctca caatcagcag cctgcagcct 240 gaagattttg caacttatta ctgtctacag cataatagtt acccgctcac tttcggcgga 300 gggaccaagg tggagatcaa a 321 <210> 224 , <211> 107 <212> PRT
<213> Homo sapiens <400> 224 Asp Ile Gin Met Thr Gin Ser Pro Ser Ser Leu Ser Thr Ser Val Gly Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gin Gly Ile Arg Asn Asp Leu Gly Trp Tyr Gin Gin Lys Pro Gly Lys Ala Pro Lys Arg Leu Ile Tyr Ala Ala Ser Ser Leu Gin Ser Gly Val Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Glu Phe Thr Leu Thr Ile Ser Ser Leu Gin Pro Glu Asp Phe Ala Thr Tyr Tyr Cys Leu Gin His Asn Ser Tyr Pro Leu Thr Phe Gly Gly Gly Thr Lys Val Glu Ile Lys <210> 225 <211> 375 <212> DNA
<213> Homo sapiens <400> 225 caggtgcagc tggtggagtc tgggggaggc gtggtccagc ctgggaggtc cctgagactc 60 tcctgtacaa catctggatt caccttcagt aactatggca tgcactgggt ccgccaggct 120 ccaggcaagg ggctggagtg ggtggcagtt atctggtatg atggaagtat taaatactat 180 gtagactccg tgaagggccg attcaccatc tccagagaca attccaagaa cacgctgtat 240 ctgcaaatga acagcctgag agccgaggac acggctgtgt attactgtgc gagagagaag 300 gattgtggtg gtgactgtta cagccactac ggtatggacg tctggggcca agggaccacg 360 gtcaccgtct cctca 375 <210> 226 <211> 125 <212> PRT
<213> Homo sapiens <400> 226 Gin Val Gin Leu Val Glu Ser Gly Gly Gly Val Val Gin Pro Gly Arg Ser Leu Arg Leu Ser Cys Thr Thr Ser Gly Phe Thr Phe Ser Asn Tyr Gly Met His Trp Val Arg Gin Ala Pro Gly Lys Gly Leu Glu Trp Val Ala Val Ile Trp Tyr Asp Gly Ser Ile Lys Tyr Tyr Val Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr Leu Gin Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala Arg Glu Lys Asp Cys Gly Gly Asp Cys Tyr Ser His Tyr Gly Met Asp Val Trp Gly Gin Gly Thr Thr Val Thr Val Ser Ser <210> 227 <211> 321 <212> DNA
, <213> Homo sapiens <400> 227 gacatccaga tgacccagtc tccatcctcc ctgtctgcat ctgtaggaga cagagtcacc 60 atcacttgcc gggcaagtca gggcattaga aatgatttag gctggtatca gcagaaacca 120 gggaaagccc ctaagcgcct gatctatgct gcatccagtt tgcaaagtgg ggtcccatca 180 aggttcagcg gcagtggatc tgggacagaa ttcactctca caatcagcag cctgcagcct 240 gaagattttg caacgtatta ctgtctacag catatgagtc tcccgctcac tttcggcgga 300 gggaccaagg tggagatcaa a 321 <210> 228 <211> 107 <212> PRT
<213> Homo sapiens <400> 228 Asp Ile Gin Met Thr Gin Ser Pro Ser Ser Leu Ser Ala Ser Val Gly Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gin Gly Ile Arg Asn Asp Leu Gly Trp Tyr Gin Gin Lys Pro Gly Lys Ala Pro Lys Arg Leu Ile Tyr Ala Ala Ser Ser Leu Gin Ser Gly Val Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Glu Phe Thr Leu Thr Ile Ser Ser Leu Gin Pro Glu Asp Phe Ala Thr Tyr Tyr Cys Leu Gin His Met Ser Leu Pro Leu Thr Phe Gly Gly Gly Thr Lys Val Glu Ile Lys <210> 229 <211> 375 <212> DNA
<213> Homo sapiens <400> 229 caggtgcagc tggtggagtc tgggggaggc gtggtccagc ctgggaggtc cctgagactc 60 tcctgtacaa catctggatt caccttcagt aactatggca tgcactgggt ccgccaggct 120 ccaggcaagg ggctggagtg ggtggcagtt atctggtatg atggaagtat taaatactat 180 gtagactccg tgaagggccg attcaccatc tccagagaca attccaagaa cacgctgtat 240 ctgcaaatga acagcctgag agccgaggac acggctgtgt attactgtgc gagagagaag 300 gattgtggtg gtgactgtta cagccactac ggtatggacg tctggggcca agggaccacg 360 gtcaccgtct cctca 375 <210> 230 <211> 125 <212> PRT
<213> Homo sapiens <400> 230 Gin Val Gin Leu Val Glu Ser Gly Gly Gly Val Val Gin Pro Gly Arg Ser Leu Arg Leu Ser Cys Thr Thr Ser Gly Phe Thr Phe Ser Asn Tyr Gly Met His Trp Val Arg Gin Ala Pro Gly Lys Gly Leu Glu Trp Val Ala Val Ile Trp Tyr Asp Gly Ser Ile Lys Tyr Tyr Val Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr , Leu Gin Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala Arg Glu Lys Asp Cys Gly Gly Asp Cys Tyr Ser His Tyr Gly Met Asp Val Trp Gly Gin Gly Thr Thr Val Thr Val Ser Ser <210> 231 <211> 321 <212> DNA
<213> Homo sapiens <400> 231 gacatccaga tgacccagtc tccatcctcc ctgtctgcat ctgtaggaga cagagtcacc 60 atcacttgcc gggcaagtca gggcattaga aatgatttag gctggtatca gcagaaacca 120 gggaaagccc ctaagcgcct gatctatgct gcatccagtt tgcaaagtgg ggtcccatca 180 aggttcagcg gcagtggatc tgggacagaa ttcactctca caatcagcag cctgcagcct 240 gaagattttg caacgtatta ctgtctacag catatgagtc tcccgctcac tttcggcgga 300 gggaccaagg tggagatcaa a 321 <210> 232 <211> 107 <212> PRT
<213> Homo sapiens <400> 232 Asp Ile Gin Met Thr Gin Ser Pro Ser Ser Leu Ser Ala Ser Val Gly Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gin Gly Ile Arg Asn Asp Leu Gly Trp Tyr Gin Gin Lys Pro Gly Lys Ala Pro Lys Arg Leu Ile Tyr Ala Ala Ser Ser Leu Gin Ser Gly Val Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Glu Phe Thr Leu Thr Ile Ser Ser Leu Gin Pro Glu Asp Phe Ala Thr Tyr Tyr Cys Leu Gin His Met Ser Leu Pro Leu Thr Phe Gly Gly Gly Thr Lys Val Glu Ile Lys <210> 233 <211> 375 <212> DNA
<213> Homo sapiens <400> 233 caggtgcagc tggtggagtc tgggggaggc gtggtccagc ctgggaggtc cctgagactc 60 tcctgtacaa catctggatt caccttcagt aactatggca tgcactgggt ccgccaggct 120 ccaggcaagg ggctggagtg ggtggcagtt atctggtatg atggaagtat taaatactat 180 gtagactccg tgaagggccg attcaccatc tccagagaca attccaagaa cacgctgtat 240 ctgcaaatga acagcctgag agccgaggac acggctgtgt attactgtgc gagagagaag 300 gattgtggtg gtgactgtta cagccactac ggtatggacg tctggggcca agggaccacg 360 gtcaccgtct cctca 375 <210> 234 <211> 125 <212> PRT
<213> Homo sapiens <400> 234 Gin Val Gin Leu Val Glu Ser Gly Gly Gly Val Val Gin Pro Gly Arg Ser Leu Arg Leu Ser Cys Thr Thr Ser Gly Phe Thr Phe Ser Asn Tyr Gly Met His Trp Val Arg Gin Ala Pro Gly Lys Gly Leu Glu Trp Val Ala Val Ile Trp Tyr Asp Gly Ser Ile Lys Tyr Tyr Val Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr Leu Gin Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala Arg Glu Lys Asp Cys Gly Gly Asp Cys Tyr Ser His Tyr Gly Met Asp Val Trp Gly Gin Gly Thr Thr Val Thr Val Ser Ser <210> 235 <211> 321 <212> DNA
<213> Homo sapiens <400> 235 gacatccaga tgacccagtc tccatcctcc ctgtctgcat ctgtaggaga cagagtcacc 60 atcacttgcc gggcaagtca gggcattaga aatgatttag gctggtatca gcagaaacca 120 gggaaagccc ctaagcgcct gatctatgct gcatccagtt tgcaaagtgg ggtcccatca 180 aggttcagcg gcagtggatc tgggacagaa ttcactctca caatcagcag cctgcagcct 240 gaagattttg caacgtatta ctgtctacag catatgagtc tcccgctcac tttcggcgga 300 gggaccaagg tggagatcaa a 321 <210> 236 <211> 107 <212> PRT
<213> Homo sapiens <400> 236 Asp Ile Gin Met Thr Gin Ser Pro Ser Ser Leu Ser Ala Ser Val Gly Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gin Gly Ile Arg Asn Asp Leu Gly Trp Tyr Gin Gin Lys Pro Gly Lys Ala Pro Lys Arg Leu Ile Tyr Ala Ala Ser Ser Leu Gin Ser Gly Val Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Glu Phe Thr Leu Thr Ile Ser Ser Leu Gin Pro Glu Asp Phe Ala Thr Tyr Tyr Cys Leu Gin His Met Ser Leu Pro Leu Thr Phe Gly Gly Gly Thr Lys Val Glu Ile Lys <210> 237 <211> 375 <212> DNA
<213> Homo sapiens <400> 237 caggtgcagc tggtggagtc tgggggaggc gtggtccagc ctgggaggtc cctgagactc 60 tcctgtacaa catctggatt caccttcagt aactatggca tgcactgggt ccgccaggct 120 , ccaggcaagg ggctggagtg ggtggcagtt atctggtatg atggaagtat taaatactat 180 gtagactccg tgaagggccg attcaccatc tccagagaca attccaagaa cacgctgtat 240 ctgcaaatga acagcctgag agccgaggac acggctgtgt attactgtgc gagagagaag 300 gattgtggtg gtgactgtta cagccactac ggtatggacg tctggggcca agggaccacg 360 gtcaccgtct cctca 375 <210> 238 <211> 125 <212> PRT
<213> Homo sapiens <400> 238 Gin Val Gin Leu Val Glu Ser Gly Gly Gly Val Val Gin Pro Gly Arg Ser Leu Arg Leu Ser Cys Thr Thr Ser Gly Phe Thr Phe Ser Asn Tyr Gly Met His Trp Val Arg Gin Ala Pro Gly Lys Gly Leu Glu Trp Val Ala Val Ile Trp Tyr Asp Gly Ser Ile Lys Tyr Tyr Val Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr Leu Gin Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala Arg Glu Lys Asp Cys Gly Gly Asp Cys Tyr Ser His Tyr Gly Met Asp Val Trp Gly Gin Gly Thr Thr Val Thr Val Ser Ser <210> 239 <211> 321 <212> DNA
<213> Homo sapiens <400> 239 gacatccaga tgacccagtc tccatcctcc ctgtctgcat ctgtaggaga cagagtcacc 60 atcacttgcc gggcaagtca gggcattaga aatgatttag gctggtatca gcagaaacca 120 gggaaagccc ctaagcgcct gatctatgct gcatccagtt tgcaaagtgg ggtcccatca 180 aggttcagcg gcagtggatc tgggacagaa ttcactctca caatcagcag cctgcagcct 240 gaagattttg caacgtatta ctgtctacag catatgagtc tcccgctcac tttcggcgga 300 gggaccaagg tggagatcaa a 321 <210> 240 <211> 107 <212> PRT
<213> Homo sapiens <400> 240 Asp Ile Gin Met Thr Gin Ser Pro Ser Ser Leu Ser Ala Ser Val Gly Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gin Gly Ile Arg Asn Asp Leu Gly Trp Tyr Gin Gin Lys Pro Gly Lys Ala Pro Lys Arg Leu Ile Tyr Ala Ala Ser Ser Leu Gin Ser Gly Val Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Glu Phe Thr Leu Thr Ile Ser Ser Leu Gin Pro Glu Asp Phe Ala Thr Tyr Tyr Cys Leu Gin His Met Ser Leu Pro Leu Thr Phe Gly Gly Gly Thr Lys Val Glu Ile Lys , , <210> 241 <211> 366 <212> DNA
<213> Homo sapiens <400> 241 caggtgcagc tggtggagtc tgggggaggc gtggtccagc ctgggaggtc cctgagactc 60 tcctgtgcag cgtctggatt caccttcagc agctatggca tgcactgggt ccgccaggct 120 ccaggcaagg ggctggagtg ggtggcagtt atatggtatg atggaagaaa taaatacaat 180 gcagactccg tgaagggccg attcaccatc tccagagaca attccaagaa cacgctgaat 240 ctgcaaatga acagcctgag agccgaggac acggctgtgt attactgtgc gagagattta 300 acgtattacg atattttggg cggtatggac gtctggggcc aagggaccac ggtcaccgtc 360 tcctca 366 <210> 242 <211> 122 <212> PRT
<213> Homo sapiens <400> 242 Gln Val Gln Leu Val Glu Ser Gly Gly Gly Val Val Gln Pro Gly Arg Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr Gly Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val Ala Val Ile Trp Tyr Asp Gly Arg Asn Lys Tyr Asn Ala Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Asn Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala Arg Asp Leu Thr Tyr Tyr Asp Ile Leu Gly Gly Met Asp Val Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser <210> 243 <211> 321 <212> DNA
<213> Homo sapiens <400> 243 gaaatagtga tgacgcagtc tccagccacc ctgtctgtgt ctccggggga aagagccacc 60 ctctcctgca gggccagtca gagtgttacc agcaacttag cctggtacca gcagaaacct 120 ggccaggctc ccaggctcct catctatggt gcatccacca gggccactgg tatcccagcc 180 aggttcagtg gcagtgggtc tgggacagaa ttcactctca ccatcagcag cctgccgtct 240 gaagattttg cagtttatta ctgtcagcag tatcatacct ggccattcac tttcggccct 300 gggaccaaag tggatatcaa a 321 <210> 244 <211> 107 <212> PRT
<213> Homo sapiens <400> 244 Glu Ile Val Met Thr Gln Ser Pro Ala Thr Leu Ser Val Ser Pro Gly Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Gln Ser Val Thr Ser Asn Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Arg Leu Leu Ile , , Tyr Gly Ala Ser Thr Arg Ala Thr Gly Ile Pro Ala Arg Phe Ser Gly Ser Gly Ser Gly Thr Glu Phe Thr Leu Thr Ile Ser Ser Leu Pro Ser Glu Asp Phe Ala Val Tyr Tyr Cys Gin Gln Tyr His Thr Trp Pro Phe Thr Phe Gly Pro Gly Thr Lys Val Asp Ile Lys <210> 245 <211> 366 <212> DNA
<213> Homo sapiens <400> 245 caggtgcagc tggtggagtc tgggggaggc gtggtccagc ctgggaggtc cctgagactc 60 tcctgtgcag cgtctggatt caccttcagc agctatggca tgcactgggt ccgccaggct 120 ccaggcaagg ggctggagtg ggtggcagtt atatggtatg atggaagaaa taaatacaat 180 gcagactccg tgaagggccg attcaccatc tccagagaca attccaagaa cacgctgaat 240 ctgcaaatga acagcctgag agccgaggac acggctgtgt attactgtgc gagagattta 300 acgtattacg atattttggg cggtatggac gtctggggcc aagggaccac ggtcaccgtc 360 tcctca 366 <210> 246 <211> 122 <212> PRT
<213> Homo sapiens <400> 246 Gin Val Gin Leu Val Glu Ser Gly Gly Gly Val Val Gin Pro Gly Arg Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr Gly Met His Trp Val Arg Gin Ala Pro Gly Lys Gly Leu Glu Trp Val Ala Val Ile Trp Tyr Asp Gly Arg Asn Lys Tyr Asn Ala Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Asn Leu Gin Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala Arg Asp Leu Thr Tyr Tyr Asp Ile Leu Gly Gly Met Asp Val Trp Gly Gin Gly Thr Thr Val Thr Val Ser Ser <210> 247 <211> 321 <212> DNA
<213> Homo sapiens <400> 247 gaaatagtga tgacgcagtc tccatccacc ctgtctgtgt ctccggggga aagagccacc 60 ctctcctgca gggccagtca gagtgttacc agcaacttag cctggtacca gcagaaacct 120 ggccaggctc ccaggctcct catctatggt gcatccacca gggccactgg tatcccagcc 180 aggttcagtg gcagtgggtc tgggacagaa ttcactctca ccatcagcag cctgccgtct 240 gaagattttg cagtttatta ctgtcagcag tatcatacct ggccattcac tttcggccct 300 gggaccaaag tggatatcaa a 321 <210> 248 , <211> 107 <212> PRT
<213> Homo sapiens <400> 248 Glu Ile Val Met Thr Gin Ser Pro Ser Thr Leu Ser Val Ser Pro Gly Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Gin Ser Val Thr Ser Asn Leu Ala Trp Tyr Gin Gin Lys Pro Gly Gin Ala Pro Arg Leu Leu Ile Tyr Gly Ala Ser Thr Arg Ala Thr Gly Ile Pro Ala Arg Phe Ser Gly Ser Gly Ser Gly Thr Glu Phe Thr Leu Thr Ile Ser Ser Leu Pro Ser Glu Asp Phe Ala Val Tyr Tyr Cys Gin Gin Tyr His Thr Trp Pro Phe Thr Phe Gly Pro Gly Thr Lys Val Asp Ile Lys <210> 249 <211> 366 <212> DNA
<213> Homo sapiens <400> 249 caggtgcagc tggtggagtc tgggggaggc gtggtccagc ctgggaggtc cctgagactc 60 tcctgtgcag cgtctggatt caccttcagc agctatggca tgcactgggt ccgccaggct 120 ccaggcaagg ggctggagtg ggtggcagtt atatggtatg atggaagaaa taaatacaat 180 gcagactccg tgaagggccg attcaccatc tccagagaca attccaagaa cacgctgaat 240 ctgcaaatga acagcctgag agccgaggac acggctgtgt attactgtgc gagagattta 300 acgtattacg atattttggg cggtatggac gtctggggcc aagggaccac ggtcaccgtc 360 tcctca 366 <210> 250 <211> 122 <212> PRT
<213> Homo sapiens <400> 250 Gin Val Gin Leu Val Glu Ser Gly Gly Gly Val Val Gin Pro Gly Arg Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr Gly Met His Trp Val Arg Gin Ala Pro Gly Lys Gly Leu Glu Trp Val Ala Val Ile Trp Tyr Asp Gly Arg Asn Lys Tyr Asn Ala Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Asn Leu Gin Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala Arg Asp Leu Thr Tyr Tyr Asp Ile Leu Gly Gly Met Asp Val Trp Gly Gin Gly Thr Thr Val Thr Val Ser Ser <210> 251 <211> 321 <212> DNA
t <213> Homo sapiens <400> 251 gacatccaga tgacccagtc tccatcctcc ctgtctgcat ctgtaggaga cagagtcacc 60 atcacttgcc gggcaagtca gggcattaga catgatttag gctggtatca gcagaaacca 120 gggaaagccc ctgagcgcct gatctatggt gcatccagtt tgcaaagtgg ggtcccatca 180 aggttcagcg gcagtggatc tgggacagaa ttcactctca caatcagcag cctgcagcct 240 gaagattttg caacttatta ctgtctacag cataatagtt acccgctcac tttcggcgga 300 gggaccaagg tggagatcaa a 321 <210> 252 <211> 107 <212> PRT
<213> Homo sapiens <400> 252 Asp Ile Gin Met Thr Gin Ser Pro Ser Ser Leu Ser Ala Ser Val Gly Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gin Gly Ile Arg His Asp Leu Gly Trp Tyr Gin Gin Lys Pro Gly Lys Ala Pro Glu Arg Leu Ile Tyr Gly Ala Ser Ser Leu Gin Ser Gly Val Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Glu Phe Thr Leu Thr Ile Ser Ser Leu Gin Pro Glu Asp Phe Ala Thr Tyr Tyr Cys Leu Gin His Asn Ser Tyr Pro Leu Thr Phe Gly Gly Gly Thr Lys Val Glu Ile Lys <210> 253 <211> 402 <212> DNA
<213> Homo sapiens <400> 253 caggtgcagc tggtggagtc tgggggaggc gtggtccagc ctgggaggtc cctgagactc 60 tcctgtgcag cgtctggatt caccttcagt agctatggca tgcactgggt ccgccaggct 120 ccaggcaagg ggctggagtg ggtggcagtg atatggtatg atggaagtaa taaatactat 180 gcagactccg tgaagggccg attcaccatc tccagagaca attccaagaa cacgctgtat 240 ctgcaaatga acagcctgag agccgaggac acggctgtgt attactgtgc gagaggtaat 300 cgcgtagtag tggctggtac gagggtaact cccgctaact ggggatacta ctattacgga 360 atggacgtct ggggccaagg gaccacggtc accgtctcct ca 402 <210> 254 <211> 134 <212> PRT
<213> Homo sapiens <400> 254 Gin Val Gin Leu Val Glu Ser Gly Gly Gly Val Val Gin Pro Gly Arg Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr Gly Met His Trp Val Arg Gin Ala Pro Gly Lys Gly Leu Glu Trp Val Ala Val Ile Trp Tyr Asp Gly Ser Asn Lys Tyr Tyr Ala Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr , Leu Gin Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala Arg Gly Asn Arg Val Val Val Ala Gly Thr Arg Val Thr Pro Ala Asn Trp Gly Tyr Tyr Tyr Tyr Gly Met Asp Val Trp Gly Gin Gly Thr Thr Val Thr Val Ser Ser <210> 255 <211> 321 <212> DNA
<213> Homo sapiens <400> 255 gacatccaga tgacccagtc tccatcctcc ctgtctgcat ctgtaggaga cagagtcacc 60 atcacttgcc gggcaagtca gggcattaga aatgatttag gctggtatca gcagaaacca 120 gggaaagccc ctaagtgcct gatctatgtt gcatccagtt tgcaaagtgg ggtcccatca 180 aggttcagcg gcagtggatc tgggacagaa ttcactctca caatcagcag cctgcagcct 240 gaagattttg caacttatta ctgtctacag cataatagtt acccgctcac tttcggcgga 300 gggaccaagg tggagatcaa a 321 <210> 256 <211> 107 <212> PRT
<213> Homo sapiens <400> 256 Asp Ile Gin Met Thr Gin Ser Pro Ser Ser Leu Ser Ala Ser Val Gly Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gin Gly Ile Arg Asn Asp Leu Gly Trp Tyr Gin Gin Lys Pro Gly Lys Ala Pro Lys Cys Leu Ile Tyr Val Ala Ser Ser Leu Gin Ser Gly Val Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Glu Phe Thr Leu Thr Ile Ser Ser Leu Gin Pro Glu Asp Phe Ala Thr Tyr Tyr Cys Leu Gin His Asn Ser Tyr Pro Leu Thr Phe Gly Gly Gly Thr Lys Val Glu Ile Lys <210> 257 <211> 348 <212> DNA
<213> Homo sapiens <400> 257 gaggtgcaac tggtggagtc tgggggaggc ttggtacagc ctggggggtc cctgagactc 60 tcctgtgcag cctctggatt caccttcagt aattatggca tgaactgggt ccgccaggct 120 ccagggaagg ggctggagtg ggtttcatac ataagtaata gtattacttc caaatactac 180 gctgactctg tgaagggccg attcaccatc tccagagaca atgccaagaa ttcactgtat 240 ctgcaaatga acagcctgag agacgtggac acggctgtgt atcactgtgc gagaggaccg 300 ggcgggtttg actactgggg ccagggaacc ctggtcaccg tctcctca 348 <210> 258 <211> 116 <212> PRT
<213> Homo sapiens i <400> 258 Glu Val Gin Leu Val Glu Ser Gly Gly Gly Leu Val Gin Pro Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Asn Tyr Gly Met Asn Trp Val Arg Gin Ala Pro Gly Lys Gly Leu Glu Trp Val Ser Tyr Ile Ser Asn Ser Ile Thr Ser Lys Tyr Tyr Ala Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Ser Leu Tyr Leu Gin Met Asn Ser Leu Arg Asp Val Asp Thr Ala Val Tyr His Cys Ala Arg Gly Pro Gly Gly Phe Asp Tyr Trp Gly Gin Gly Thr Leu Val Thr Val Ser Ser <210> 259 <211> 321 <212> DNA
<213> Homo sapiens <400> 259 gacatccaga tgacccagtc tccatcctcc ctgtctgcat ctgtaggaga cagagtcacc 60 atcacttgcc gggcaagtca gggcattaga aatgatttag gctggtatca gcagaaacca 120 gggaaagccc cgaagtgcct gatctatgtt gcatccagtt tgcaaagtgg ggtcccatca 180 aggttcagcg gcagtggatc tgggacagaa ttcactctca caatcagcag cctgcagcct 240 gaagattttg caacttatta ctgtctacag cataatagtt acccgtggac gttcggccaa 300 gggaccaagg tggaaatcaa a 321 <210> 260 <211> 107 <212> PRT
<213> Homo sapiens <400> 260 Asp Ile Gin Met Thr Gin Ser Pro Ser Ser Leu Ser Ala Ser Val Gly Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gin Gly Ile Arg Asn Asp Leu Gly Trp Tyr Gin Gin Lys Pro Gly Lys Ala Pro Lys Cys Leu Ile Tyr Val Ala Ser Ser Leu Gin Ser Gly Val Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Glu Phe Thr Leu Thr Ile Ser Ser Leu Gin Pro Glu Asp Phe Ala Thr Tyr Tyr Cys Leu Gin His Asn Ser Tyr Pro Trp Thr Phe Gly Gin Gly Thr Lys Val Glu Ile Lys <210> 261 <211> 366 <212> DNA
<213> Homo sapiens <400> 261 gaggtgcagc tgttggagtc tgggggaggc ttggtacagc cgggggggtc cctgagactc 60 tcctgtgcag cctctggatt cacctttagc agctatgcca tgagctgggt ccgccaggct 120 , , ccagggaagg ggctggagtg ggtctcagct attagtggta gtggtggtag cacatactac 180 gcagactccg tgaagggccg gttcaccatc tccagagaca attccaagaa cacgctgtat 240 ctgcaaatga acagcctgag agccgaggac acggccgtat attactgtgc gaaagattac 300 tatgatagta gtggttatca tccttttgac tactggggcc agggaaccct ggtcaccgtc 360 tcctca <210> 262 <211> 122 <212> PRT
<213> Homo sapiens <400> 262 Glu Val Gin Leu Leu Glu Ser Gly Gly Gly Leu Val Gin Pro Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr , Ala Met Ser Trp Val Arg Gin Ala Pro Gly Lys Gly Leu Glu Trp Val Ser Ala Ile Ser Gly Ser Gly Gly Ser Thr Tyr Tyr Ala Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr Leu Gin Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala Lys Asp Tyr Tyr Asp Ser Ser Gly Tyr His Pro Phe Asp Tyr Trp Gly Gin Gly Thr Leu Val Thr Val Ser Ser <210> 263 <211> 321 <212> DNA
<213> Homo sapiens <400> 263 gacatccaga tgacccagtc tccatcctcc ctgtctgcat ctgtaggaga cagagtcacc 60 atcacttgcc gggcgagtca gggcattagc aattatttag cctggtatca acagaaacca 120 gggaaagttc ctaagttcct gatctatgct gcatccactt tgcaatcagg ggtcccatct 180 cggttcagtg gcagtggatc tgggacagat ttcactctca ccgtcagcag cctgcagcct 240 gaagatgttg caacttatta ctgtcaaatg tataacagtg tcccattcac tttcggccct 300 gggaccaaag tggatatcaa a <210> 264 <211> 107 <212> PRT
<213> Homo sapiens .
<400> 264 Asp Ile Gin Met Thr Gin Ser Pro Ser Ser Leu Ser Ala Ser Val Gly Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gin Gly Ile Ser Asn Tyr Leu Ala Trp Tyr Gin Gin Lys Pro Gly Lys Val Pro Lys Phe Leu Ile Tyr Ala Ala Ser Thr Leu Gin Ser Gly Val Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Val Ser Ser Leu Gin Pro Glu Asp Val Ala Thr Tyr Tyr Cys Gin Met Tyr Asn Ser Val Pro Phe Thr Phe Gly Pro Gly Thr Lys Val Asp Ile Lys , , <210> 265 <211> 157 <212> PRT
<213> homo sapiens <400> 265 Val Arg Ser Ser Ser Arg Thr Pro Ser Asp Lys Pro Val Ala His Val Val Ala Asn Pro Gln Ala Glu Gly Gln Leu Gln Trp Leu Asn Arg Arg Ala Asn Ala Leu Leu Ala Asn Gly Val Glu Leu Arg Asp Asn Gln Leu Val Val Pro Ser Glu Gly Leu Tyr Leu Ile Tyr Ser Gln Val Leu Phe Lys Gly Gln Gly Cys Pro Ser Thr His Val Leu Leu Thr His Thr Ile Ser Arg Ile Ala Val Ser Tyr Gln Thr Lys Val Asn Leu Leu Ser Ala Ile Lys Ser Pro Cys Gln Arg Glu Thr Pro Glu Gly Ala Glu Ala Lys Pro Trp Tyr Glu Pro Ile Tyr Leu Gly Gly Val Phe Gln Leu Glu Lys Gly Asp Arg Leu Ser Ala Glu Ile Asn Arg Pro Asp Tyr Leu Asp Phe Ala Glu Ser Gly Gln Val Tyr Phe Gly Ile Ile Ala Leu <210> 266 <211> 156 <212> PRT
<213> Mus musculus <400> 266 Leu Arg Ser Ser Ser Gln Asn Ser Ser Asp Lys Pro Val Ala His Val Val Ala Asn His Gln Val Glu Glu Gln Leu Glu Trp Leu Ser Gln Arg Ala Asn Ala Leu Leu Ala Asn Gly Met Asp Leu Lys Asp Asn Gln Leu Val Val Pro Ala Asp Gly Leu Tyr Leu Val Tyr Ser Gln Val Leu Phe Lys Gly Gln Gly Cys Pro Asp Tyr Val Leu Leu Thr His Thr Val Ser Arg Phe Ala Ile Ser Tyr Gln Glu Lys Val Asn Leu Leu Ser Ala Val Lys Ser Pro Cys Pro Lys Asp Thr Pro Glu Gly Ala Glu Leu Lys Pro Trp Tyr Glu Pro Ile Tyr Leu Gly Gly Val Phe Gln Leu Glu Lys Gly Asp Gln Leu Ser Ala Glu Val Asn Leu Pro Lys Tyr Leu Asp Phe Ala Glu Ser Gly Gln Val Tyr Phe Gly Val Ile Ala Leu <210> 267 <211> 109 <212> PRT
<213> Homo sapiens <400> 267 , Gin Val Gin Leu Val Glu Ser Gly Gly Gly Val Val Gin Pro Gly Arg Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr Gly Met His Trp Val Arg Gin Ala Pro Gly Lys Gly Leu Glu Trp Val Ala Val Ile Trp Tyr Asp Gly Ser Asn Lys Tyr Tyr Ala Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr Leu Gin Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala Arg Trp Gly Gin Gly Thr Thr Val Thr Val Ser Ser <210> 268 <211> 108 <212> PRT
<213> Homo sapiens <400> 268 Glu Val Gin Leu Val Glu Ser Gly Gly Gly Leu Ile Gin Pro Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Val Ser Ser Asn Tyr Met Ser Trp Val Arg Gin Ala Pro Gly Lys Gly Leu Glu Trp Val Ser Val Ile Tyr Ser Gly Gly Ser Thr Tyr Tyr Ala Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr Leu Gin Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala Arg Trp Gly Gin Gly Thr Leu Val Thr Val Ser Ser <210> 269 <211> 109 <212> PRT
<213> Homo sapiens <400> 269 Gin Val Gin Leu Val Glu Ser Gly Gly Gly Val Val Gin Pro Gly Arg Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr Gly Met His Trp Val Arg Gin Ala Pro Gly Lys Gly Leu Glu Trp Val Ala Val Ile Trp Tyr Asp Gly Ser Asn Lys Tyr Tyr Ala Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr Leu Gin Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala Arg Trp Gly Gin Gly Thr Thr Val Thr Val Ser Ser <210> 270 <211> 109 <212> PRT
<213> Homo sapiens <400> 270 Gin Val Gin Leu Val Glu Ser Gly Gly Gly Val Val Gin Pro Gly Arg Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr Gly Met His Trp Val Arg Gin Ala Pro Gly Lys Gly Leu Glu Trp Val Ala Val Ile Ser Tyr Asp Gly Ser Asn Lys Tyr Tyr Ala Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr Leu Gin Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala Arg Trp Gly Gin Gly Thr Thr Val Thr Val Ser Ser <210> 271 <211> 108 <212> PRT
<213> Homo sapiens <400> 271 Gin Val Gin Leu Gin Glu Ser Gly Pro Gly Leu Val Lys Pro Ser Glu Thr Leu Ser Leu Thr Cys Thr Val Ser Gly Gly Ser Ile Ser Ser Tyr Tyr Trp Ser Trp Ile Arg Gin Pro Ala Gly Lys Gly Leu Glu Trp Ile Gly Arg Ile Tyr Thr Ser Gly Ser Thr Asn Tyr Asn Pro Ser Leu Lys, Ser Arg Val Thr Met Ser Val Asp Thr Ser Lys Asn Gin Phe Ser Leu Lys Leu Ser Ser Val Thr Ala Ala Asp Thr Ala Val Tyr Tyr Cys Ala Arg Trp Gly Arg Gly Thr Leu Val Thr Val Ser Ser <210> 272 <211> 110 <212> PRT
<213> Homo sapiens <400> 272 Gin Val Gin Leu Gin Glu Ser Gly Pro Gly Leu Val Lys Pro Ser Gin Thr Leu Ser Leu Thr Cys Thr Val Ser Gly Gly Ser Ile Ser Ser Gly Gly Tyr Tyr Trp Ser Trp Ile Arg Gin His Pro Gly Lys Gly Leu Glu Trp Ile Gly Tyr Ile Tyr Tyr Ser Gly Ser Thr Tyr Tyr Asn Pro Ser Leu Lys Ser Arg Val Thr Ile Ser Val Asp Thr Ser Lys Asn Gin Phe Ser Leu Lys Leu Ser Ser Val Thr Ala Ala Asp Thr Ala Val Tyr Tyr Cys Ala Arg Trp Gly Gin Gly Thr Thr Val Thr Val Ser Ser <210> 273 <211> 107 <212> PRT
<213> Homo sapiens <400> 273 Asp Ile Gin Met Thr Gin Ser Pro Ser Ser Leu Ser Ala Ser Val Gly Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gin Gly Ile Arg Asn Asp Leu Gly Trp Tyr Gin Gin Lys Pro Gly Lys Ala Pro Lys Arg Leu Ile Tyr Ala Ala Ser Ser Leu Gin Ser Gly Val Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Glu Phe Thr Leu Thr Ile Ser Ser Leu Gin Pro Glu Asp Phe Ala Thr Tyr Tyr Cys Leu Gin His Asn Ser Tyr Pro Leu Thr Phe Gly Gly Gly Thr Lys Val Glu Ile Lys <210> 274 <211> 107 <212> PRT
<213> Homo sapiens <400> 274 Asp Ile Gin Met Thr Gin Ser Pro Ser Ser Leu Ser Ala Ser Val Gly Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gin Gly Ile Arg Asn Asp Leu Gly Trp Tyr Gin Gin Lys Pro Gly Lys Ala Pro Lys Arg Leu Ile Tyr Ala Ala Ser Ser Leu Gin Ser Gly Val Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Glu Phe Thr Leu Thr Ile Ser Ser Leu Gin Pro Glu Asp Phe Ala Thr Tyr Tyr Cys Leu Gin His Asn Ser Tyr Pro Trp Thr Phe Gly Gin Gly Thr Lys Val Glu Ile Lys <210> 275 <211> 114 <212> PRT
<213> Homo sapiens <220>
<221> VARIANT
<222> 101, 102 <223> Xaa = Any Amino Acid <400> 275 Asp Val Val Met Thr Gin Ser Pro Leu Ser Leu Pro Val Thr Leu Gly Gin Pro Ala Ser Ile Ser Cys Arg Ser Ser Gin Ser Leu Val Tyr Ser Asp Gly Asn Thr Tyr Leu Asn Trp Phe Gin Gin Arg Pro Gly Gin Ser Pro Arg Arg Leu Ile Tyr Lys Val Trp Asn Trp Asp Ser Gly Val Pro , Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys Ile Ser Arg Val Glu Ala Glu Asp Val Gly Val Tyr Tyr Cys Met Gin Gly Thr His Trp Pro Xaa Xaa Leu Thr Phe Gly Gly Gly Thr Lys Val Glu Ile Lys <210> 276 <211> 111 <212> PRT
<213> Homo sapiens <400> 276 Asp Ile Val Met Thr Gin Ser Pro Leu Ser Leu Pro Val Thr Pro Gly Glu Pro Ala Ser Ile Ser Cys Arg Ser Ser Gin Ser Leu Leu His Ser Asn Gly Tyr Asn Tyr Leu Asp Trp Tyr Leu Gin Lys Pro Gly Gin Ser Pro Gin Leu Leu Ile Tyr Leu Gly Ser Asn Arg Ala Ser Gly Val Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys Ile Ser Arg Val Glu Ala Glu Asp Val Gly Val Tyr Tyr Cys Met Gin Ala Leu Gin Thr Trp Thr Phe Gly Gin Gly Thr Lys Val Glu Ile Lys <210> 277 <211> 106 <212> PRT
<213> Homo sapiens <400> 277 Glu Ile Val Met Thr Gin Ser Pro Ala Thr Leu Ser Val Ser Pro Gly Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Gin Ser Val Ser Ser Asn Leu Ala Trp Tyr Gin Gin Lys Pro Gly Gin Ala Pro Arg Leu Leu Ile Tyr Gly Ala Ser Thr Arg Ala Thr Gly Ile Pro Ala Arg Phe Ser Gly Ser Gly Ser Gly Thr Glu Phe Thr Leu Thr Ile Ser Ser Leu Gin Ser Glu Asp Phe Ala Val Tyr Tyr Cys Gin Gin Tyr Asn Asn Trp Trp Thr Phe Gly Gin Gly Thr Lys Val Glu Ile Lys <210> 278 <211> 109 <212> PRT
<213> Homo sapiens <400> 278 Gin Val Gin Leu Val Glu Ser Gly Gly Gly Val Val Gin Pro Gly Arg , Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr Gly Met His Trp Val Arg Gin Ala Pro Gly Lys Gly Leu Glu Trp Val Ala Val Ile Trp Tyr Asp Gly Ser Asn Lys Tyr Tyr Ala Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr Leu Gin Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala Arg Trp Gly Gin Gly Thr Thr Val Thr Val Ser Ser <210> 279 <211> 109 <212> PRT
<213> Homo sapiens <400> 279 Glu Val Gin Leu Leu Glu Ser Gly Gly Gly Leu Val Gin Pro Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr Ala Met Ser Trp Val Arg Gin Ala Pro Gly Lys Gly Leu Glu Trp Val Ser Ala Ile Ser Gly Ser Gly Gly Ser Thr Tyr Tyr Ala Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr Leu Gin Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala Lys Trp Gly Gin Gly Thr Leu Val Thr Val Ser Ser <210> 280 <211> 109 <212> PRT
<213> Homo sapiens <220>
<221> VARIANT
<222> 98 <223> Xaa = Any Amino Acid <400> 280 Glu Val Gin Leu Val Glu Ser Gly Gly Gly Leu Val Lys Pro Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr Ser Met Asn Trp Val Arg Gin Ala Pro Gly Lys Gly Leu Glu Trp Val Ser Ser Ile Ser Ser Ser Ser Ser Tyr Ile Tyr Tyr Ala Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Ser Leu Tyr Leu Gin Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala Xaa Trp Gly Gin Gly Thr Thr Val Thr Val Ser Ser , <210> 281 <211> 109 <212> PRT
<213> Homo sapiens <400> 281 Gin Val Gin Leu Val Glu Ser Gly Gly Gly Val Val Gin Pro Gly Arg Ser Leu Arg Leu Ser Cys Ala Ala Her Gly Phe Thr Phe Ser Ser Tyr Gly Met His Trp Val Arg Gin Ala Pro Gly Lys Gly Leu Glu Trp Val Ala Val Ile Trp Tyr Asp Gly Ser Asn Lys Tyr Tyr Ala Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr Leu Gin Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala Arg Trp Gly Gin Gly Thr Leu Val Thr Val Ser Ser <210> 282 <211> 108 <212> PRT
<213> Homo sapiens <400> 282 Glu Val Gin Leu Val Glu Ser Gly Gly Gly Leu Ile Gin Pro Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Val Ser Ser Asn Tyr Met Ser Trp Val Arg Gin Ala Pro Gly Lys Gly Leu Glu Trp Val Ser Val Ile Tyr Ser Gly Gly Ser Thr Tyr Tyr Ala Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr Leu Gin Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala Arg Trp Gly Gin Gly Thr Met Val Thr Val Ser Ser <210> 283 <211> 109 <212> PRT
<213> Homo sapiens <400> 283 Glu Val Gin Leu Val Gin Ser Gly Ala Glu Val Lys Lys Pro Gly Glu Ser Leu Lys Ile Ser Cys Lys Gly Ser Gly Tyr Ser Phe Thr Ser Tyr Trp Ile Gly Trp Val Arg Gin Met Pro Gly Lys Gly Leu Glu Trp Met Gly Ile Ile Tyr Pro Gly Asp Ser Asp Thr Arg Tyr Ser Pro Ser Phe Gln Gly Gin Val Thr Ile Ser Ala Asp Lys Ser Ile Ser Thr Ala Tyr Leu Gin Trp Ser Ser Leu Lys Ala Ser Asp Thr Ala Met Tyr Tyr Cys , Ala Arg Trp Gly Gin Gly Thr Thr Val Thr Val Ser Ser <210> 284 <211> 109 <212> PRT
<213> Homo sapiens <400> 284 Gin Val Gin Leu Val Gin Ser Gly Ala Glu Val Lys Lys Pro Gly Ala Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Ser Tyr Gly Ile Ser Trp Val Arg Gin Ala Pro Gly Gin Gly Leu Glu Trp Met Gly Trp Ile Ser Ala Tyr Asn Gly Asn Thr Asn Tyr Ala Gin Lys Leu Gin Gly Arg Val Thr Met Thr Thr Asp Thr Ser Thr Ser Thr Ala Tyr Met Glu Leu Arg Ser Leu Arg Ser Asp Asp Thr Ala Val Tyr Tyr Cys Ala Arg Trp Gly Gin Gly Thr Leu Val Thr Val Ser Ser <210> 285 <211> 109 <212> PRT
<213> Homo sapiens <400> 285 Gin Val Gin Leu Val Glu Ser Gly Gly Gly Val Val Gin Pro Gly Arg Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr Gly Met His Trp Val Arg Gin Ala Pro Gly Lys Gly Leu Glu Trp Val Ala Val Ile Trp Tyr Asp Gly Ser Asn Lys Tyr Tyr Ala Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr Leu Gin Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala Arg Trp Gly Gin Gly Thr Leu Val Thr Val Ser Ser <210> 286 <211> 108 <212> PRT
<213> Homo sapiens <400> 286 Glu Val Gin Leu Val Glu Ser Gly Gly Gly Leu Ile Gin Pro Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Val Ser Ser Asn Tyr Met Ser Trp Val Arg Gin Ala Pro Gly Lys Gly Leu Glu Trp Val Ser Val Ile Tyr Ser Gly Gly Ser Thr Tyr Tyr Ala Asp Ser Val Lys , Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr Leu Gin Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala Arg Trp Gly Gin Gly Thr Leu Val Thr Val Ser Ser <210> 287 <211> 109 <212> PRT
<213> Homo sapiens <400> 287 Gin Val Gin Leu Val Glu Ser Gly Gly Gly Val Val Gin Pro Gly Arg Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr Gly Met His Trp Val Arg Gin Ala Pro Gly Lys Gly Leu Glu Trp Val Ala Val Ile Ser Tyr Asp Gly Ser Asn Lys Tyr Tyr Ala Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr Leu Gin Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala Arg Trp Gly Gin Gly Thr Thr Val Thr Val Ser Ser <210> 288 <211> 109 <212> PRT
<213> Homo sapiens <400> 288 Gin Val Gin Leu Val Glu Ser Gly Gly Gly Leu Val Lys Pro Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Asp Tyr Tyr Met Ser Trp Ile Arg Gin Ala Pro Gly Lys Gly Leu Glu Trp Val Ser Tyr Ile Ser Ser Ser Gly Ser Thr Ile Tyr Tyr Ala Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Ser Leu Tyr Leu Gin Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala Arg Trp Gly Gin Gly Thr Thr Val Thr Val Ser Ser <210> 289 <211> 109 <212> PRT
<213> Homo sapiens <400> 289 Gin Val Gln Leu Val Glu Ser Gly Gly Gly Val Val Gin Pro Gly Arg Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr , Gly Met His Trp Val Arg Gin Ala Pro Gly Lys Gly Leu Glu Trp Val Ala Val Ile Trp Tyr Asp Gly Ser Asn Lys Tyr Tyr Ala Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr Leu Gin Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala Arg Trp Gly Gin Gly Thr Thr Val Thr Val Ser Ser <210> 290 <211> 109 <212> PRT
<213> Homo sapiens <400> 290 Gin Val Gin Leu Val Gin Ser Gly Ala Glu Val Lys Lys Pro Gly Ala Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Ser Tyr Gly Ile Ser Trp Val Arg Gin Ala Pro Gly Gin Gly Leu Glu Trp Met Gly Trp Ile Ser Ala Tyr Asn Gly Asn Thr Asn Tyr Ala Gin Lys Leu Gin Gly Arg Val Thr Met Thr Thr Asp Thr Ser Thr Ser Thr Ala Tyr Met Glu Leu Arg Ser Leu Arg Ser Asp Asp Thr Ala Val Tyr Tyr Cys Ala Arg Trp Gly Gin Gly Thr Leu Val Thr Val Ser Ser <210> 291 <211> 109 <212> PRT
<213> Homo sapiens <400> 291 Glu Val Gin Leu Val Gin Ser Gly Ala Glu Val Lys Lys Pro Gly Glu Ser Leu Lys Ile Ser Cys Lys Gly Ser Gly Tyr Ser Phe Thr Ser Tyr Trp Ile Gly Trp Val Arg Gin Met Pro Gly Lys Gly Leu Glu Trp Met Gly Ile Ile Tyr Pro Gly Asp Ser Asp Thr Arg Tyr Ser Pro Ser Phe Gin Gly Gin Val Thr Ile Ser Ala Asp Lys Ser Ile Ser Thr Ala Tyr Leu Gin Trp Ser Ser Leu Lys Ala Ser Asp Thr Ala Met Tyr Tyr Cys Ala Arg Trp Gly Gin Gly Thr Leu Val Thr Val Ser Ser <210> 292 <211> 109 <212> PRT
<213> Homo sapiens <400> 292 , Gln Val Gln Leu Val Glu Ser Gly Gly Gly Val Val Gln Pro Gly Arg Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr Gly Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val Ala Val Ile Trp Tyr Asp Gly Ser Asn Lys Tyr Tyr Ala Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala Arg Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser <210> 293 <211> 109 <212> PRT
<213> Homo sapiens <400> 293 Gln Val Gln Leu Val Glu Ser Gly Gly Gly Val Val Gln Pro Gly Arg Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr Gly Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val Ala Val Ile Trp Tyr Asp Gly Ser Asn Lys Tyr Tyr Ala Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala Arg Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser <210> 294 <211> 109 <212> PRT
<213> Homo sapiens <400> 294 Gln Val Gln Leu Val Glu Ser Gly Gly Gly Val Val Gln Pro Gly Arg Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr Gly Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val Ala Val Ile Trp Tyr Asp Gly Ser Asn Lys Tyr Tyr Ala Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala Arg Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser <210> 295 <211> 108 , <212> PRT
<213> Homo sapiens <400> 295 Gin Val Gin Leu Gin Glu Ser Gly Pro Gly Leu Val Lys Pro Ser Glu Thr Leu Ser Leu Thr Cys Thr Val Ser Gly Gly Ser Ile Ser Ser Tyr Tyr Trp Ser Trp Ile Arg Gin Pro Pro Gly Lys Gly Leu Glu Trp Ile Gly Tyr Ile Tyr Tyr Ser Gly Ser Thr Asn Tyr Asn Pro Ser Leu Lys Ser Arg Val Thr Ile Ser Val Asp Thr Ser Lys Asn Gin Phe Ser Leu Lys Leu Ser Ser Val Thr Ala Ala Asp Thr Ala Val Tyr Tyr Cys Ala Arg Trp Gly Gin Gly Thr Leu Val Thr Val Ser Ser <210> 296 <211> 109 <212> PRT
<213> Homo sapiens <400> 296 Glu Val Gin Leu Val Glu Ser Gly Gly Gly Leu Val Gin Pro Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr Ser Met Asn Trp Val Arg Gin Ala Pro Gly Lys Gly Leu Glu Trp Val Ser Tyr Ile Ser Ser Ser Ser Ser Thr Ile Tyr Tyr Ala Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Ser Leu Tyr Leu Gin Met Asn Ser Leu Arg Asp Glu Asp Thr Ala Val Tyr Tyr Cys Ala Arg Trp Gly Gin Gly Thr Leu Val Thr Val Ser Ser <210> 297 <211> 108 <212> PRT
<213> Homo sapiens <400> 297 Glu Val Gin Leu Val Glu Ser Gly Gly Gly Leu Ile Gin Pro Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Val Ser Ser Asn Tyr Met Ser Trp Val Arg Gin Ala Pro Gly Lys Gly Leu Glu Trp Val Ser Val Ile Tyr Ser Gly Gly Ser Thr Tyr Tyr Ala Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr Leu Gin Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala Arg Trp Gly Gin Gly Thr Leu Val Thr Val Ser Ser , <210> 298 <211> 109 <212> PRT
<213> Homo sapiens <400> 298 Gin Val Gin Leu Val Gin Ser Gly Ala Glu Val Lys Lys Pro Gly Ala Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Gly Tyr Tyr Met His Trp Val Arg Gin Ala Pro Gly Gin Gly Leu Glu Trp Met Gly Trp Ile Asn Pro Asn Ser Gly Gly Thr Asn Tyr Ala Gin Lys Phe Gin Gly Arg Val Thr Met Thr Arg Asp Thr Ser Ile Ser Thr Ala Tyr Met Glu Leu Ser Arg Leu Arg Ser Asp Asp Thr Ala Val Tyr Tyr Cys Ala Arg Trp Gly Gin Gly Thr Thr Val Thr Val Ser Ser <210> 299 <211> 109 <212> PRT
<213> Homo sapiens <400> 299 Gin Val Gin Leu Val Glu Ser Gly Gly Gly Val Val Gin Pro Gly Arg Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr Gly Met His Trp Val Arg Gin Ala Pro Gly Lys Gly Leu Glu Trp Val Ala Val Ile Trp Tyr Asp Gly Ser Asn Lys Tyr Tyr Ala Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr Leu Gin Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala Arg Trp Gly Gin Gly Thr Thr Val Thr Val Ser Ser <210> 300 <211> 108 <212> PRT
<213> Homo sapiens <400> 300 Glu Val Gin Leu Val Glu Ser Gly Gly Gly Leu Ile Gin Pro Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Val Ser Ser Asn Tyr Met Ser Trp Val Arg Gin Ala Pro Gly Lys Gly Leu Glu Trp Val Ser Val Ile Tyr Ser Gly Gly Ser Thr Tyr Tyr Ala Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr Leu Gin Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala !

, Arg Trp Gly Gin Gly Thr Thr Val Thr Val Ser Ser <210> 301 <211> 109 <212> PRT
<213> Homo sapiens <400> 301 Gin Val Gin Leu Val Glu Ser Gly Gly Gly Val Val Gin Pro Gly Arg Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr Gly Met His Trp Val Arg Gin Ala Pro Gly Lys Gly Leu Glu Trp Val Ala Val Ile Trp Tyr Asp Gly Ser Asn Lys Tyr Tyr Ala Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr Leu Gin Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala Arg Trp Gly Gin Gly Thr Thr Val Thr Val Ser Ser <210> 302 <211> 109 <212> PRT
<213> Homo sapiens <400> 302 Gin Val Gin Leu Val Glu Ser Gly Gly Gly Val Val Gin Pro Gly Arg Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr Gly Met His Trp Val Arg Gin Ala Pro Gly Lys Gly Leu Glu Trp Val Ala Val Ile Trp Tyr Asp Gly Ser Asn Lys Tyr Tyr Ala Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr Leu Gin Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala Arg Trp Gly Gin Gly Thr Leu Val Thr Val Ser Ser <210> 303 <211> 109 <212> PRT
<213> Homo sapiens <400> 303 Gin Val Gin Leu Val Glu Ser Gly Gly Gly Val Val Gin Pro Gly Arg Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr Gly Met His Trp Val Arg Gin Ala Pro Gly Lys Gly Leu Glu Trp Val Ala Val Ile Trp Tyr Asp Gly Ser Asn Lys Tyr Tyr Ala Asp Ser Val , Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr 65 = 70 75 80 Leu Gin Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala Arg Trp Gly Gin Gly Thr Thr Val Thr Val Ser Ser <210> 304 <211> 111 <212> PRT
<213> Homo sapiens <400> 304 Gin Ser Val Leu Thr Gin Pro Pro Ser Val Ser Gly Ala Pro Gly Gin Arg Val Thr Ile Ser Cys Thr Gly Ser Ser Ser Asn Ile Gly Ala Gly Tyr Asp Val His Trp Tyr Gin Gin Leu Pro Gly Thr Ala Pro Lys Leu Leu Ile Tyr Gly Asn Ser Asn Arg Pro Ser Gly Val Pro Asp Arg Phe Ser Gly Ser Lys Ser Gly Thr Ser Ala Ser Leu Ala Ile Thr Gly Leu Gin Ala Glu Asp Glu Ala Asp Tyr Tyr Cys Gin Ser Tyr Asp Ser Ser Leu Ser Gly Ser Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu <210> 305 <211> 107 <212> PRT
<213> Homo sapiens <400> 305 Asp Ile Gin Met Thr Gin Ser Pro Ser Ser Leu Ser Ala Ser Val Gly Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gin Gly Ile Arg Asn Asp Leu Gly Trp Tyr Gin Gin Lys Pro Gly Lys Ala Pro Lys Arg Leu Ile Tyr Ala Ala Ser Ser Leu Gin Ser Gly Val Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Glu Phe Thr Leu Thr Ile Ser Ser Leu Gin Pro Glu Asp Phe Ala Thr Tyr Tyr Cys Leu Gin His Asn Ser Tyr Pro Leu Thr Phe Gly Gly Gly Thr Lys Val Glu Ile Lys <210> 306 <211> 107 <212> PRT
<213> Homo sapiens <400> 306 Asp Ile Gin Met Thr Gin Ser Pro Ser Ser Leu Ser Ala Ser Val Gly Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gin Gly Ile Ser Asn Tyr , Leu Ala Trp Tyr Gin Gin Lys Pro Gly Lys Val Pro Lys Leu Leu Ile Tyr Ala Ala Ser Thr Leu Gin Ser Gly Val Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gin Pro Glu Asp Val Ala Thr Tyr Tyr Cys Gin Lys Tyr Asn Ser Ala Pro Phe Thr Phe Gly Pro Gly Thr Lys Val Asp Ile Lys <210> 307 <211> 107 <212> PRT
<213> Homo sapiens <400> 307 Asp Ile Gin Met Thr Gin Ser Pro Ser Ser Leu Ser Ala Ser Val Gly Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gin Gly Ile Arg Asn Asp Leu Gly Trp Tyr Gin Gin Lys Pro Gly Lys Ala Pro Lys Arg Leu Ile Tyr Ala Ala Ser Ser Leu Gin Ser Gly Val Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Glu Phe Thr Leu Thr Ile Ser Ser Leu Gin Pro Glu Asp Phe Ala Thr Tyr Tyr Cys Leu Gin His Asn Ser Tyr Pro Trp Thr Phe Gly Gin Gly Thr Lys Val Glu Ile Lys <210> 308 <211> 107 <212> PRT
<213> Homo sapiens <400> 308 Asp Ile Gin Met Thr Gin Ser Pro Ser Ser Leu Ser Ala Ser Val Gly Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gin Ser Ile Ser Ser Tyr Leu Asn Trp Tyr Gin Gin Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile Tyr Ala Ala Ser Ser Leu Gin Ser Gly Val Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gin Pro Glu Asp Phe Ala Thr Tyr Tyr Cys Gin Gin Ser Tyr Ser Thr Pro Ile Thr Phe Gly Gin Gly Thr Arg Leu Glu Ile Lys <210> 309 <211> 110 <212> PRT
<213> Homo sapiens <400> 309 , Gin Ser Val Leu Thr Gin Pro Pro Ser Val Ser Ala Ala Pro Gly Gin Lys Val Thr Ile Ser Cys Ser Gly Ser Ser Ser Asn Ile Gly Asn Asn Tyr Val Ser Trp Tyr Gin Gin Leu Pro Gly Thr Ala Pro Lys Leu Leu Ile Tyr Asp Asn Asn Lys Arg Pro Ser Gly Ile Pro Asp Arg Phe Ser Gly Ser Lys Ser Gly Thr Ser Ala Thr Leu Gly Ile Thr Gly Leu Gin Thr Gly Asp Glu Ala Asp Tyr Tyr Cys Gly Thr Trp Asp Ser Ser Leu Ser Ala Gly Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu <210> 310 <211> 107 <212> PRT
<213> Homo sapiens <400> 310 Glu Ile Val Met Thr Gin Ser Pro Ala Thr Leu Ser Val Ser Pro Gly Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Gin Ser Val Ser Ser Asn Leu Ala Trp Tyr Gin Gin Lys Pro Gly Gin Ala Pro Arg Leu Leu Ile Tyr Gly Ala Ser Thr Arg Ala Thr Gly Ile Pro Ala Arg Phe Ser Gly Ser Gly Ser Gly Thr Glu Phe Thr Leu Thr Ile Ser Ser Leu Gin Ser Glu Asp Phe Ala Val Tyr Tyr Cys Gin Gin Tyr Asn Asn Trp Pro Ile Thr Phe Gly Gin Gly Thr Arg Leu Glu Ile Lys <210> 311 <211> 110 <212> PRT
<213> Homo sapiens <400> 311 Gin Ser Val Leu Thr Gin Pro Pro Ser Val Ser Ala Ala Pro Gly Gin Lys Val Thr Ile Ser Cys Ser Gly Ser Ser Ser Asn Ile Gly Asn Asn Tyr Val Ser Trp Tyr Gin Gin Leu Pro Gly Thr Ala Pro Lys Leu Leu Ile Tyr Asp Asn Asn Lys Arg Pro Ser Gly Ile Pro Asp Arg Phe Ser Gly Ser Lys Ser Gly Thr Ser Ala Thr Leu Gly Ile Thr Gly Leu Gin Thr Gly Asp Glu Ala Asp Tyr Tyr Cys Gly Thr Trp Asp Ser Ser Leu Ser Ala Gly Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu <210> 312 <211> 107 , <212> PRT
<213> Homo sapiens <400> 312 Asp Ile Gin Met Thr Gin Ser Pro Ser Ser Val Ser Ala Ser Val Gly Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gin Gly Ile Ser Ser Trp Leu Ala Trp Tyr Gin Gin Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile Tyr Ala Ala Ser Ser Leu Gin Ser Gly Val Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gin Pro Glu Asp Phe Ala Thr Tyr Tyr Cys Gin Gin Ala Asn Ser Phe Pro Trp Thr Phe Gly Gin Gly Thr Lys Val Glu Ile Lys <210> 313 <211> 107 <212> PRT
<213> Homo sapiens <400> 313 Glu Ile Val Met Thr Gin Ser Pro Ala Thr Leu Ser Val Ser Pro Gly Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Gin Ser Val Ser Ser Asn Leu Ala Trp Tyr Gin Gin Lys Pro Gly Gin Ala Pro Arg Leu Leu Ile Tyr Gly Ala Ser Thr Arg Ala Thr Gly Ile Pro Ala Arg Phe Ser Gly Ser Gly Ser Gly Thr Glu Phe Thr Leu Thr Ile Ser Ser Leu Gin Ser Glu Asp Phe Ala Val Tyr Tyr Cys Gin Gin Tyr Asn Asn Trp Pro Leu Thr Phe Gly Gly Gly Thr Lys Val Glu Ile Lys <210> 314 <211> 107 <212> PRT
<213> Homo sapiens <400> 314 Glu Ile Val Met Thr Gin Ser Pro Ala Thr Leu Ser Val Ser Pro Gly Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Gin Ser Val Ser Ser Asn Leu Ala Trp Tyr Gin Gin Lys Pro Gly Gin Ala Pro Arg Leu Leu Ile Tyr Gly Ala Ser Thr Arg Ala Thr Gly Ile Pro Ala Arg Phe Ser Gly Ser Gly Ser Gly Thr Glu Phe Thr Leu Thr Ile Ser Ser Leu Gin Ser Glu Asp Phe Ala Val Tyr Tyr Cys Gin Gin Tyr Asn Asn Trp Pro Phe Thr Phe Gly Pro Gly Thr Lys Val Asp Ile Lys , <210> 315 <211> 110 <212> PRT
<213> Homo sapiens <400> 315 Gin Ser Val Leu Thr Gin Pro Pro Ser Ala Ser Gly Thr Pro Gly Gin Arg Val Thr Ile Ser Cys Ser Gly Ser Ser Ser Asn Ile Gly Ser Asn Thr Val Asn Trp Tyr Gin Gin Leu Pro Gly Thr Ala Pro Lys Leu Leu Ile Tyr Ser Asn Asn Gin Arg Pro Ser Gly Val Pro Asp Arg Phe Ser Gly Ser Lys Ser Gly Thr Ser Ala Ser Leu Ala Ile Ser Gly Leu Gin Ser Glu Asp Glu Ala Asp Tyr Tyr Cys Ala Ala Trp Asp Asp Ser Leu Asn Gly Pro Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu <210> 316 <211> 108 <212> PRT
<213> Homo sapiens <400> 316 Ser Ser Glu Leu Thr Gin Asp Pro Ala Val Ser Val Ala Leu Gly Gin Thr Val Arg Ile Thr Cys Gin Gly Asp Ser Leu Arg Ser Tyr Tyr Ala Ser Trp Tyr Gin Gin Lys Pro Gly Gin Ala Pro Val Leu Val Ile Tyr Gly Lys Asn Asn Arg Pro Ser Gly Ile Pro Asp Arg Phe Ser Gly Ser Ser Ser Gly Asn Thr Ala Ser Leu Thr Ile Thr Gly Ala Gin Ala Glu Asp Glu Ala Asp Tyr Tyr Cys Asn Ser Arg Asp Ser Ser Gly Asn His Leu Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu <210> 317 <211> 108 <212> PRT
<213> Homo sapiens <400> 317 Ser Tyr Glu Leu Thr Gin Pro Pro Ser Val Ser Val Ser Pro Gly Gin Thr Ala Arg Ile Thr Cys Ser Gly Asp Ala Leu Pro Lys Lys Tyr Ala Tyr Trp Tyr Gin Gin Lys Ser Gly Gin Ala Pro Val Leu Val Ile Tyr Glu Asp Ser Lys Arg Pro Ser Gly Ile Pro Glu Arg Phe Ser Gly Ser Ser Ser Gly Thr Met Ala Thr Leu Thr Ile Ser Gly Ala Gin Val Glu Asp Glu Ala Asp Tyr Tyr Cys Tyr Ser Thr Asp Ser Ser Gly Asn His , , Val Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu <210> 318 <211> 107 <212> PRT
<213> Homo sapiens <400> 318 Asp Ile Gin Met Thr Gin Ser Pro Ser Ser Leu Ser Ala Ser Val Gly Asp Arg Val Thr Ile Thr Cys Gin Ala Ser Gin Asp Ile Ser Asn Tyr Leu Asn Trp Tyr Gin Gin Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile Tyr Asp Ala Ser Asn Leu Glu Thr Gly Val Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Phe Thr Ile Ser Ser Leu Gin Pro Glu Asp Ile Ala Thr Tyr Tyr Cys Gin Gin Tyr Asp Asn Leu Pro Ile Thr Phe Gly Gin Gly Thr Arg Leu Glu Ile Lys <210> 319 <211> 108 <212> PRT
<213> Homo sapiens <400> 319 Ser Ser Glu Leu Thr Gin Asp Pro Ala Val Ser Val Ala Leu Gly Gin Thr Val Arg Ile Thr Cys Gin Gly Asp Ser Leu Arg Ser Tyr Tyr Ala Ser Trp Tyr Gin Gin Lys Pro Gly Gin Ala Pro Val Leu Val Ile Tyr Gly Lys Asn Asn Arg Pro Ser Gly Ile Pro Asp Arg Phe Ser Gly Ser Ser Ser Gly Asn Thr Ala Ser Leu Thr Ile Thr Gly Ala Gin Ala Glu Asp Glu Ala Asp Tyr Tyr Cys Asn Ser Arg Asp Ser Ser Gly Asn His Val Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu <210> 320 <211> 111 <212> PRT
<213> Homo sapiens <400> 320 Gin Ser Val Leu Thr Gin Pro Pro Ser Val Ser Gly Ala Pro Gly Gin Arg Val Thr Ile Ser Cys Thr Gly Ser Ser Ser Asn Ile Gly Ala Gly Tyr Asp Val His Trp Tyr Gin Gin Leu Pro Gly Thr Ala Pro Lys Leu Leu Ile Tyr Gly Asn Ser Asn Arg Pro Ser Gly Val Pro Asp Arg Phe t Ser Gly Ser Lys Ser Gly Thr Ser Ala Ser Leu Ala Ile Thr Gly Leu Gln Ala Glu Asp Glu Ala Asp Tyr Tyr Cys Gin Ser Tyr Asp Ser Ser Leu Ser Gly Ser Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu ,

Claims (29)

WHAT IS CLAIMED IS:
1. A human monoclonal antibody that specifically binds to Tumor Necrosis Factor-.alpha. (TNF-.alpha.) comprising a heavy chain variable region including a complementarity determining region 1 (CDR1) having an amino acid sequence of "Ser Tyr Asp Met His", a complementarity determining region 2 (CDR2) having an amino acid sequence of "Val Ile Trp Ser Asp Gly Ser Ile Lys Tyr Tyr Ala Asp Ser Val Lys Gly", and a complementarity determining region 3 (CDR3) having an amino acid sequence of "Glu Val Glu Ser Ala Met Gly Gly Phe Tyr Tyr Asn Gly Met Asp Val", and comprising a light chain variable region including a CDR1 having an amino acid sequence of "Arg Ala Ser Gln Gly Ile Arg Ile Asp Leu Gly", a CDR2 having an amino acid sequence of ''Ala Ala Ser Thr Leu Gln Ser", and a CDR3 having an amino acid sequence of ''Leu Gln His Lys Ser Tyr Pro Leu Thr".
2. The antibody of Claim 1, wherein the heavy chain variable region comprises the amino acid sequence of SEQ ID NO: 70.
3. The antibody of Claim 1, wherein the heavy chain variable region comprises the amino acid sequence of SEQ ID NO: 74.
4. The antibody of Claim 1, 2 or 3, wherein the light chain variable region comprises the amino acid sequence of SEQ ID NO: 72.
5. The antibody of Claim 1, wherein the heavy chain variable region is encoded by a gene comprising a VH3-33 heavy chain gene or conservative variant thereof.
6. The antibody of Claim 1 comprising a light chain variable region, which is encoded by a gene comprising an A30VK1 light chain gene or a conservative variant thereof.
7. The antibody of Claim 1, wherein the heavy chain variable region is encoded by a gene comprising a VH3-33 heavy chain gene and the light chain variable region is encoded by a gene comprising an A30VK1 light chain gene.
8. The antibody of any one of Claims 1 to 7, wherein the antibody binds to TNF-.alpha.
with a Kd of 10-14M to 10-7M.
9. The antibody of any one of Claims 1 to 7, wherein the antibody binds to TNF-.alpha.
with a Kd of 10-13 M to 10-9 M.
10. The antibody of Claim 8 or 9, wherein the Kd is less than 10-10M.
11. The antibody of Claim 8 or 9, wherein the Kd is less than 10-11 M.
12. The antibody of any one of Claims 1 to 11, wherein the antibody is a full-length antibody.
13. The antibody of any one of Claims 1 to 12, which is an IgG1, IgG2a, IgG2b, IgG3, or IgM antibody.
14. The antibody of Claim 13, which is an IgG1 antibody.
15. The antibody of Claim 13, which is an IgG2a or IgG2b antibody.
16. The antibody of any one of Claims 1 to 11, wherein the antibody is an antibody fragment.
17. The antibody of Claim 16, wherein the antibody is a Fab, Fab', or F(ab')2 fragment.
18. A composition comprising the antibody of any one of Claims 1 to 17 and a pharmaceutically acceptable carrier.
19. An isolated nucleic acid that encodes an antibody, wherein the heavy chain variable region of the antibody comprises SEQ ID NO:70 or SEQ ID NO:74 and the light chain variable region of the antibody comprises SEQ ID NO:72 .
20. A mammalian host cell containing the nucleic acid of Claim 19.
21. The host cell of Claim 20, wherein the host cell is a CHO cell.
22. A method of making an antibody comprising culturing the host cell of Claim 20 or 21 under conditions wherein the nucleic acid encoding the antibody is expressed to produce the antibody, and recovering the antibody.
23. A method for assaying the level of TNF-.alpha. in a patient sample, comprising contacting the antibody of any one of Claims 1 to 17 with a biological sample from a patient, and detecting the level of binding between said antibody and the TNF-.alpha. in said sample.
24. The method of Claim 23, wherein the biological sample is blood.
25. Use of the antibody of any one of Claims 1 to 17 in preparation of medicament for treatment of a disease that is: rheumatoid arthritis, glomerulonephritis, atherosclerosis, psoriasis, restenosis, Crohn's disease, graft-host reactions, septic shock, cachexia, anorexia, uveitis, psoriatic arthritis, ankylosing spondylitis, vasculitis, or multiple sclerosis.
26. Use of the antibody of any one of Claims 1 to 17 for treatment of a disease that is: rheumatoid arthritis, glomerulonephritis, atherosclerosis, psoriasis, restenosis, Crohn's disease, graft-host reactions, septic shock, cachexia, anorexia, uveitis, psoriatic arthritis, ankylosing spondylitis, vasculitis, or multiple sclerosis.
27. The use of Claim 25 or 26, wherein the disease is rheumatoid arthritis, psoriasis, Crohn's disease, psoriatic arthritis, or ankylosing spondylitis.
28. The composition of Claim 18, for use in treatment of a disease that is:

rheumatoid arthritis, glomerulonephritis, atherosclerosis, psoriasis, restenosis, Crohn's disease, graft-host reactions, septic shock, cachexia, anorexia, uveitis, psoriatic arthritis, ankylosing spondylitis, vasculitis, or multiple sclerosis.
29. The composition of Claim 28, wherein the disease is: rheumatoid arthritis, psoriasis, Crohn's disease, psoriatic arthritis, or ankylosing spondylitis.
CA2508375A 2002-12-02 2003-12-02 Antibodies directed to tumor necrosis factor and uses thereof Expired - Lifetime CA2508375C (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US43072902P 2002-12-02 2002-12-02
US60/430,729 2002-12-02
PCT/US2003/038281 WO2004050683A2 (en) 2002-12-02 2003-12-02 Antibodies directed to tumor necrosis factor and uses thereof

Publications (2)

Publication Number Publication Date
CA2508375A1 CA2508375A1 (en) 2004-06-17
CA2508375C true CA2508375C (en) 2014-05-27

Family

ID=32469516

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2508375A Expired - Lifetime CA2508375C (en) 2002-12-02 2003-12-02 Antibodies directed to tumor necrosis factor and uses thereof

Country Status (13)

Country Link
US (2) US7285269B2 (en)
EP (1) EP1578799B8 (en)
JP (1) JP4754219B2 (en)
CN (1) CN100434440C (en)
AT (1) ATE472556T1 (en)
AU (1) AU2003298816C1 (en)
CA (1) CA2508375C (en)
DE (1) DE60333228D1 (en)
ES (1) ES2347239T3 (en)
HK (1) HK1083023A1 (en)
MX (1) MXPA05005921A (en)
RU (1) RU2377253C2 (en)
WO (1) WO2004050683A2 (en)

Families Citing this family (159)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7192584B2 (en) 1991-03-18 2007-03-20 Centocor, Inc. Methods of treating psoriasis with anti-TNF antibodies
US20050249735A1 (en) * 2000-08-07 2005-11-10 Centocor, Inc. Methods of treating ankylosing spondylitis using anti-TNF antibodies and peptides of human tumor necrosis factor
US7658924B2 (en) * 2001-10-11 2010-02-09 Amgen Inc. Angiopoietin-2 specific binding agents
ES2561828T3 (en) 2002-01-25 2016-03-01 Novo Nordisk A/S Monoclonal antibodies against C5aR extracellular loops
MY150740A (en) * 2002-10-24 2014-02-28 Abbvie Biotechnology Ltd Low dose methods for treating disorders in which tnf? activity is detrimental
JP4754219B2 (en) * 2002-12-02 2011-08-24 アムジエン・フレモント・インコーポレイテツド Antibodies directed against tumor necrosis factor and their use
AU2004260936B2 (en) * 2003-06-27 2010-06-10 Amgen Fremont Inc. Antibodies directed to the deletion mutants of epidermal growth factor receptor and uses thereof
CA2532781A1 (en) * 2003-07-18 2005-01-27 Mochida Pharmaceutical Co., Ltd The anti-platelet membrane glycoprotein vi monoclonal antibody
FR2859725B1 (en) * 2003-09-16 2006-03-10 Neovacs HIGH EFFICIENCY PROCESS FOR OBTAINING HUMAN ANTIBODIES THAT NEUTRALIZE THE BIOLOGICAL ACTIVITY OF A HUMAN CYTOKINE
WO2005047328A2 (en) * 2003-11-07 2005-05-26 Curagen Corporation Antibodies against secretoryleukocyte protease inhibitor
JP2007521020A (en) * 2003-11-12 2007-08-02 オンコマブ・ゲーエムベーハー Methods for identifying neoplastic specific antibodies and uses thereof
US7625559B2 (en) * 2004-02-06 2009-12-01 University Of Massachusetts Antibodies against Clostridium difficile toxins and uses thereof
AR049390A1 (en) 2004-06-09 2006-07-26 Wyeth Corp ANTIBODIES AGAINST HUMAN INTERLEUQUINE-13 AND USES OF THE SAME
US7501121B2 (en) 2004-06-17 2009-03-10 Wyeth IL-13 binding agents
US7501119B2 (en) 2004-06-30 2009-03-10 Mayo Foundation For Medical Education And Research Methods and molecules for modulating an immune response
EP1768999B1 (en) * 2004-06-30 2013-06-19 Mayo Foundation For Medical Education And Research sHIgM12 antibody useful to treat multiple sclerosis
US20060099203A1 (en) 2004-11-05 2006-05-11 Pease Larry R B7-DC binding antibody
GB0425972D0 (en) * 2004-11-25 2004-12-29 Celltech R&D Ltd Biological products
CA2587143C (en) * 2004-12-08 2017-12-05 Immunomedics, Inc. Methods and compositions for immunotherapy and detection of inflammatory and immune-dysregulatory disease, infectious disease, pathologic angiogenesis and cancer
PT1846451E (en) 2005-01-24 2013-08-28 Elan Pharma Int Ltd Human antibodies against human ngf
AR053067A1 (en) * 2005-04-25 2007-04-18 Pfizer ANTIBODIES AGAINST MYOSTATIN
PL2960253T3 (en) * 2005-09-07 2018-11-30 Amgen Fremont Inc. Human monoclonal antibodies to activin receptor-like kinase-1
CN1954882A (en) * 2005-10-14 2007-05-02 李海 Use of long active human recombination solubility tumor necrosin alpha receptor in preparation of medicine for treating hepatic failure
SI3045182T1 (en) 2005-11-14 2018-08-31 Teva Pharmaceuticals International Gmbh Antagonist antibodies directed against calcitonin gene-related peptide for treating cluster headache
HUE049832T2 (en) 2005-12-29 2020-10-28 Janssen Biotech Inc Human anti-il-23 antibodies, compositions, method and uses
AR056857A1 (en) 2005-12-30 2007-10-24 U3 Pharma Ag DIRECTED ANTIBODIES TO HER-3 (RECEIVER OF THE HUMAN EPIDERMAL GROWTH FACTOR-3) AND ITS USES
WO2007079218A2 (en) * 2005-12-30 2007-07-12 Dyax Corp. Metalloproteinase binding proteins
WO2007100937A2 (en) * 2006-01-19 2007-09-07 The Regents Of The University Of Michigan System and method for spectroscopic photoacoustic tomography
CL2007002668A1 (en) 2006-09-20 2008-05-09 Amgen Inc ANTIGEN UNION PROTEIN THAT JOINS THE HUMAN GLUCAGON RECEIVER; NUCLEIC ACID THAT CODIFIES IT; METHOD OF PRODUCTION; PHARMACEUTICAL COMPOSITION THAT UNDERSTANDS IT; AND ITS USE TO TREAT OR PREVENT TYPE 2 DIABETES.
US20080123083A1 (en) * 2006-11-29 2008-05-29 The Regents Of The University Of Michigan System and Method for Photoacoustic Guided Diffuse Optical Imaging
EP2450371B1 (en) * 2007-01-30 2015-04-29 Epivax, Inc. Regulatory t cell epitopes, compositions and uses thereof
US7807168B2 (en) 2007-04-10 2010-10-05 Vaccinex, Inc. Selection of human TNFα specific antibodies
US8252286B2 (en) 2007-05-21 2012-08-28 Alderbio Holdings Llc Antagonists of IL-6 to prevent or treat thrombosis
US8062864B2 (en) 2007-05-21 2011-11-22 Alderbio Holdings Llc Nucleic acids encoding antibodies to IL-6, and recombinant production of anti-IL-6 antibodies
US8404235B2 (en) 2007-05-21 2013-03-26 Alderbio Holdings Llc Antagonists of IL-6 to raise albumin and/or lower CRP
US8178101B2 (en) 2007-05-21 2012-05-15 Alderbio Holdings Inc. Use of anti-IL-6 antibodies having specific binding properties to treat cachexia
US9701747B2 (en) 2007-05-21 2017-07-11 Alderbio Holdings Llc Method of improving patient survivability and quality of life by anti-IL-6 antibody administration
KR101615715B1 (en) * 2007-05-21 2016-04-27 앨더바이오 홀딩스 엘엘씨 Antibodies to il-6 and use thereof
US7906117B2 (en) * 2007-05-21 2011-03-15 Alderbio Holdings Llc Antagonists of IL-6 to prevent or treat cachexia, weakness, fatigue, and/or fever
US9056905B2 (en) * 2007-05-21 2015-06-16 Alderbio Holdings Llc Antibodies to TNF-α and use thereof
WO2008141511A1 (en) * 2007-05-22 2008-11-27 Human Antibodomics (Shanghai) Inc. A HUMAN ANTI-TNFα MONOCLONAL ANTIBODY AND THE USE THEREOF
WO2009018429A2 (en) * 2007-07-31 2009-02-05 The Government Of The United States Of America, Asrepresented By The Secretary, Department Of Healt Of Human Services, National Institutes Of Healt TREATMENT OF CANCER VIA TARGETING OF IL-13 RECEPTOR-α2
US8147836B2 (en) 2007-12-17 2012-04-03 Dyax Corp. Compositions and methods for treating osteolytic disorders comprising MMP-14 binding proteins
RU2010138612A (en) 2008-02-20 2012-03-27 Джи2 ИНФЛЕММЕЙШН ПТИ ЛТД (AU) HUMANIZED ANTIBODIES AGAINST C5aR
JO2913B1 (en) * 2008-02-20 2015-09-15 امجين إنك, Antibodies directed to angiopoietin-1 and angiopoietin-2 and uses thereof
CA2716424C (en) 2008-03-04 2015-04-28 Pfizer Limited Methods of treating chronic pain
NZ588554A (en) 2008-04-29 2013-03-28 Abbott Lab Dual variable domain immunoglobulins and uses thereof
CN102112494A (en) 2008-06-03 2011-06-29 雅培制药有限公司 Dual variable domain immunoglobulins and uses thereof
AR072001A1 (en) 2008-06-03 2010-07-28 Abbott Lab IMMUNOGLOBULIN WITH DUAL VARIABLE DOMAIN AND USES OF THE SAME
WO2010006060A2 (en) 2008-07-08 2010-01-14 Abbott Laboratories Prostaglandin e2 dual variable domain immunoglobulins and uses thereof
US8420089B2 (en) 2008-11-25 2013-04-16 Alderbio Holdings Llc Antagonists of IL-6 to raise albumin and/or lower CRP
US8992920B2 (en) 2008-11-25 2015-03-31 Alderbio Holdings Llc Anti-IL-6 antibodies for the treatment of arthritis
US9452227B2 (en) * 2008-11-25 2016-09-27 Alderbio Holdings Llc Methods of treating or diagnosing conditions associated with elevated IL-6 using anti-IL-6 antibodies or fragments
US8323649B2 (en) 2008-11-25 2012-12-04 Alderbio Holdings Llc Antibodies to IL-6 and use thereof
US9212223B2 (en) 2008-11-25 2015-12-15 Alderbio Holdings Llc Antagonists of IL-6 to prevent or treat thrombosis
US8337847B2 (en) 2008-11-25 2012-12-25 Alderbio Holdings Llc Methods of treating anemia using anti-IL-6 antibodies
CN101896502B (en) 2009-03-20 2012-10-17 刘庆法 A human anti-tumor necrosis factor alpha monoclonal antibody and use thereof
IN2012DN00863A (en) * 2009-07-31 2015-07-10 Medarex Inc
WO2011015919A1 (en) * 2009-08-03 2011-02-10 Avesthagen Limited A highly efficient process of purification and production of recombinant infliximab
ES2912569T3 (en) 2009-08-28 2022-05-26 Teva Pharmaceuticals Int Gmbh Methods of treating visceral pain by administering antagonistic antibodies directed against calcitonin gene-related peptide
UY32979A (en) * 2009-10-28 2011-02-28 Abbott Lab IMMUNOGLOBULINS WITH DUAL VARIABLE DOMAIN AND USES OF THE SAME
LT3351558T (en) 2009-11-13 2020-06-10 Daiichi Sankyo Europe Gmbh Material and methods for treating or preventing her-3 associated diseases
EP2504030A4 (en) 2009-11-24 2013-06-26 Alderbio Holdings Llc Antagonists of il-6 to raise albumin and/or lower crp
US9775921B2 (en) 2009-11-24 2017-10-03 Alderbio Holdings Llc Subcutaneously administrable composition containing anti-IL-6 antibody
CN102167741B (en) * 2010-02-25 2014-05-14 上海百迈博制药有限公司 Fully human anti-TNF-alpha (Tumor Necrosis Factor-alpha) monoclonal antibody and preparation method as well as application thereof
NZ603045A (en) 2010-04-07 2014-11-28 Abbvie Inc Tnf-alpha binding proteins
EP3252072A3 (en) 2010-08-03 2018-03-14 AbbVie Inc. Dual variable domain immunoglobulins and uses thereof
KR20130139884A (en) 2010-08-26 2013-12-23 애브비 인코포레이티드 Dual variable domain immunoglobulins and uses thereof
EP2613797B1 (en) 2010-09-09 2015-11-04 University Of Southern California Compositions and methods for the removal of biofilms
RU2556815C2 (en) * 2010-09-30 2015-07-20 Чэнду Канхун Байотекнолоджис Ко., Лтд. HUMANISED ANTIBODY TO TNF-α, ITS ANTIGEN-BINDING FRAGMENT (Fab) AND THEIR APPLICATION
EP2643016A2 (en) 2010-11-23 2013-10-02 Alder Biopharmaceuticals, Inc. Anti-il-6 antibodies for the treatment of anemia
AR084210A1 (en) * 2010-12-08 2013-05-02 Abbott Lab PROTEINS OF UNION TO TNF-a
US10654916B2 (en) 2011-04-21 2020-05-19 The Regents Of The University Of California, A California Corporation Compositions and methods for the treatment of neuromyelitis optica
WO2015067913A1 (en) 2013-11-07 2015-05-14 Diagnodus Limited Biomarkers
CA2836800A1 (en) 2011-05-20 2012-11-29 Alderbio Holdings Llc Use of anti-cgrp antibodies and antibody fragments to prevent or inhibit photophobia or light aversion in subjects in need thereof, especially migraine sufferers
CN107602700B (en) 2011-05-20 2021-12-17 H.伦德贝克公司 anti-CGRP compositions and uses thereof
US9855332B2 (en) 2011-05-20 2018-01-02 Alderbio Holdings Llc Use of anti-CGRP antibodies and antibody fragments to treat diarrhea in subjects with diseases or treatments that result in elevated CGRP levels
EP3798230B1 (en) 2011-06-06 2022-08-03 Novo Nordisk A/S Therapeutic antibodies
US20140314784A1 (en) * 2011-07-20 2014-10-23 Medlmmune Limited Anti-cxcr4 antibodies and methods of use
US10314909B2 (en) 2011-10-21 2019-06-11 Dyax Corp. Combination therapy comprising an MMP-14 binding protein
CA2853357A1 (en) 2011-10-24 2013-05-02 Abbvie Inc. Immunobinders directed against tnf
UY34411A (en) 2011-10-24 2013-05-31 Abbvie Inc IMMUNO LINKERS AGAINST SCLEROSTINE
AR088514A1 (en) 2011-10-24 2014-06-18 Abbvie Inc BISPECIFIC IMMUNOLIGANTS DIRECTED AGAINST TNF
ES2728278T3 (en) 2011-12-21 2019-10-23 Novartis Ag Compositions comprising antibodies directed to factor P and C5
CN104159920A (en) 2011-12-30 2014-11-19 艾伯维公司 Dual specific binding proteins directed against il-13 and/or il-17
EP2915818A3 (en) * 2011-12-30 2015-11-11 AbbVie Inc. Dual variable domain immunoglobulins and uses thereof
WO2013165972A2 (en) * 2012-04-30 2013-11-07 Cell Signaling Technology, Inc. Anti-hepatitis b virus antibodies and use thereof
CN104520328B (en) 2012-08-13 2019-06-07 霍夫曼-拉罗奇有限公司 Antialiasing protein antibodies and application method
KR20180008921A (en) 2012-11-01 2018-01-24 애브비 인코포레이티드 Anti-vegf/dll4 dual variable domain immunoglobulins and uses thereof
UY35148A (en) 2012-11-21 2014-05-30 Amgen Inc HETERODIMERIC IMMUNOGLOBULINS
CN105324396A (en) 2013-03-15 2016-02-10 艾伯维公司 Dual specific binding proteins directed against il-1 beta and il-17
US9708375B2 (en) 2013-03-15 2017-07-18 Amgen Inc. Inhibitory polypeptides specific to WNT inhibitors
US11274144B2 (en) 2013-06-13 2022-03-15 Research Institute At Nationwide Children's Hospital Compositions and methods for the removal of biofilms
TWI695067B (en) 2013-08-05 2020-06-01 美商扭轉生物科技有限公司 De novo synthesized gene libraries
US11427627B2 (en) 2013-09-05 2022-08-30 Amgen Inc. Fc-containing molecules exhibiting predictable, consistent, and reproducible glycoform profiles
US11248040B2 (en) 2013-09-26 2022-02-15 Trellis Bioscience, Llc Binding moieties for biofilm remediation
US10233234B2 (en) 2014-01-13 2019-03-19 Trellis Bioscience, Llc Binding moieties for biofilm remediation
US20150086561A1 (en) * 2013-09-26 2015-03-26 Trellis Bioscience, Llc Binding moieties for biofilm remediation
US10100115B2 (en) 2014-02-14 2018-10-16 Macrogenics, Inc. Methods for the treatment of vascularizing cancers
CN104892760B (en) * 2014-03-04 2018-04-17 北京安保康生物医药科技有限公司 The full human monoclonal antibody of anti-TNF alpha and its application
US10556945B2 (en) 2014-03-21 2020-02-11 Teva Pharmaceuticals International Gmbh Antagonist antibodies directed against calcitonin gene-related peptide and methods using same
AU2015230933B2 (en) 2014-03-21 2020-08-13 Teva Pharmaceuticals International Gmbh Antagonist antibodies directed against calcitonin gene-related peptide and methods using same
EP3143404B1 (en) 2014-05-16 2018-08-29 Amgen Inc. Assay for detecting th1 and th2 cell populations
EP3212231B1 (en) 2014-10-27 2021-04-28 Agency For Science, Technology And Research Anti-tim-3 antibodies
GB201419094D0 (en) 2014-10-27 2014-12-10 Agency Science Tech & Res Anti-TIM-3-antibodies
EP3215175A4 (en) * 2014-11-06 2018-06-27 Scholar Rock, Inc. Anti-pro/latent-myostatin antibodies and uses thereof
US10093733B2 (en) 2014-12-11 2018-10-09 Abbvie Inc. LRP-8 binding dual variable domain immunoglobulin proteins
US10669304B2 (en) 2015-02-04 2020-06-02 Twist Bioscience Corporation Methods and devices for de novo oligonucleic acid assembly
AR103675A1 (en) * 2015-02-13 2017-05-24 Sorrento Therapeutics Inc ANTI-CTLA4 THERAPEUTIC ANTIBODIES
US10100118B2 (en) * 2015-04-08 2018-10-16 Sorrento Therapeutics, Inc. Antibody therapeutics that bind CD123
US9981239B2 (en) 2015-04-21 2018-05-29 Twist Bioscience Corporation Devices and methods for oligonucleic acid library synthesis
CA2985816A1 (en) * 2015-05-15 2016-11-24 The General Hospital Corporation Antagonistic anti-tumor necrosis factor receptor superfamily antibodies
TW201710286A (en) 2015-06-15 2017-03-16 艾伯維有限公司 Binding proteins against VEGF, PDGF, and/or their receptors
CA2993009A1 (en) 2015-07-31 2017-02-09 Research Institute At Nationwide Children's Hospital Peptides and antibodies for the removal of biofilms
RS62330B1 (en) 2015-09-15 2021-10-29 Scholar Rock Inc Anti-pro/latent-myostatin antibodies and uses thereof
WO2017049231A1 (en) 2015-09-18 2017-03-23 Twist Bioscience Corporation Oligonucleic acid variant libraries and synthesis thereof
US11512347B2 (en) 2015-09-22 2022-11-29 Twist Bioscience Corporation Flexible substrates for nucleic acid synthesis
CR20180365A (en) 2015-12-16 2018-09-28 Amgen Inc PROTEINS OF UNION TO THE ANTI-TL1A / ANTI-TNF-a BISPECTIVE ANTIGEN AND ITS USES
AU2017206069A1 (en) 2016-01-08 2018-07-19 Scholar Rock, Inc. Anti-pro/latent myostatin antibodies and methods of use thereof
EP3400013A4 (en) * 2016-01-09 2019-09-11 Arbele Limited Cadherin-17 specific antibodies and cytotoxic cells for cancer treatment
US10774140B2 (en) 2016-03-17 2020-09-15 Numab Therapeutics AG Anti-TNFα-antibodies and functional fragments thereof
DK3368069T3 (en) 2016-06-13 2020-11-02 Scholar Rock Inc USE OF MYOSTATINI INHIBITORS AND COMBINATION THERAPIES
WO2018031490A2 (en) * 2016-08-08 2018-02-15 Sorrento Therapeutics, Inc. Anti-ox40 binding proteins
JP6871364B2 (en) 2016-09-21 2021-05-12 ツイスト バイオサイエンス コーポレーション Nucleic acid-based data storage
BR112019005823A2 (en) 2016-09-23 2019-06-25 Teva Pharmaceuticals Int Gmbh treatment for refractory migraine
WO2018119246A1 (en) 2016-12-21 2018-06-28 Cephalon, Inc. Antibodies that specifically bind to human il-15 and uses thereof
WO2018129078A1 (en) 2017-01-04 2018-07-12 Research Institute At Nationwide Children's Hospital Dnabii vaccines and antibodies with enhanced activity
HRP20230308T1 (en) 2017-01-06 2023-05-12 Scholar Rock, Inc. Treating metabolic diseases by inhibiting myostatin activation
WO2018156792A1 (en) 2017-02-22 2018-08-30 Twist Bioscience Corporation Nucleic acid based data storage
CA3056011A1 (en) 2017-03-14 2018-09-20 Amgen Inc. Control of total afucosylated glycoforms of antibodies produced in cell culture
WO2018231864A1 (en) 2017-06-12 2018-12-20 Twist Bioscience Corporation Methods for seamless nucleic acid assembly
CN111566209A (en) 2017-06-12 2020-08-21 特韦斯特生物科学公司 Seamless nucleic acid assembly method
JP7356970B2 (en) * 2017-06-25 2023-10-05 システィミューン, インク. Multispecific antibodies and their production and use methods
SG11202002194UA (en) 2017-09-11 2020-04-29 Twist Bioscience Corp Gpcr binding proteins and synthesis thereof
CA3079613A1 (en) 2017-10-20 2019-04-25 Twist Bioscience Corporation Heated nanowells for polynucleotide synthesis
US11142579B2 (en) 2017-12-06 2021-10-12 Sorrento Therapeutics, Inc. Variant antibodies that bind OX40
JP2021519068A (en) 2018-03-26 2021-08-10 アムジェン インコーポレイテッド Total non-fucosylated glycoform of antibodies produced in cell culture
CN112639130A (en) 2018-05-18 2021-04-09 特韦斯特生物科学公司 Polynucleotides, reagents and methods for nucleic acid hybridization
CN113395979A (en) 2018-11-20 2021-09-14 詹森生物科技公司 Safe and effective methods for treating psoriasis with anti-IL-23 specific antibodies
MX2021008267A (en) 2019-01-08 2021-08-05 H Lundbeck As Acute treatment and rapid treatment of headache using anti-cgrp antibodies.
SG11202109283UA (en) 2019-02-26 2021-09-29 Twist Bioscience Corp Variant nucleic acid libraries for antibody optimization
AU2020251028A1 (en) * 2019-04-04 2021-10-28 Janssen Biotech, Inc. Anti-HLA-C antibodies and uses thereof
US11780911B2 (en) 2019-05-23 2023-10-10 Janssen Biotech, Inc. Method of treating inflammatory bowel disease with a combination therapy of antibodies to IL-23 and TNF alpha
WO2020257612A1 (en) 2019-06-21 2020-12-24 Twist Bioscience Corporation Barcode-based nucleic acid sequence assembly
US20220259290A1 (en) * 2019-07-24 2022-08-18 Japan Science And Technology Agency Innovative production technique for antibody-enzyme
CN115003697A (en) * 2019-09-23 2022-09-02 特韦斯特生物科学公司 Variant nucleic acid library of CRTH2
BR112022005583A2 (en) 2019-09-26 2022-09-20 Amgen Inc METHODS FOR PRODUCTION OF ANTIBODY COMPOSITIONS
CN111153994B (en) * 2019-12-31 2021-10-15 武汉班科生物技术股份有限公司 Human monoclonal antibodies to human tumor necrosis factor
WO2021154530A1 (en) * 2020-01-27 2021-08-05 Vanderbilt University Human anti-dengue antibodies and methods of use therefor
US20230212266A1 (en) * 2020-04-27 2023-07-06 Fred Hutchinson Cancer Center Neutralizing monoclonal antibodies against covid19
EP4162257A1 (en) 2020-06-04 2023-04-12 Amgen Inc. Assessment of cleaning procedures of a biotherapeutic manufacturing process
WO2022019671A1 (en) * 2020-07-23 2022-01-27 (주)셀트리온 Sars-coronavirus-2-neutralizing binding molecule that binds to epitope of sars-coronavirus-2 spike protein
EP4204460A2 (en) * 2020-08-26 2023-07-05 Twist Bioscience Corporation Methods and compositions relating to glp1r variants
US20240043501A1 (en) 2020-10-15 2024-02-08 Amgen Inc. Relative unpaired glycans in antibody production methods
CN117440967A (en) 2020-12-09 2024-01-23 怡诺安有限公司 anti-OX 40L antibodies, anti-OX 40L/anti-TNFa bispecific antibodies and uses thereof
AR126089A1 (en) 2021-06-07 2023-09-13 Amgen Inc USE OF FUCOSIDASE TO CONTROL THE LEVEL OF AFFUCOSYLATION OF GLUCOSYLATED PROTEINS
WO2023059607A1 (en) 2021-10-05 2023-04-13 Amgen Inc. Fc-gamma receptor ii binding and glycan content
WO2023215725A1 (en) 2022-05-02 2023-11-09 Fred Hutchinson Cancer Center Compositions and methods for cellular immunotherapy
CN114702578B (en) * 2022-06-06 2022-09-27 百斯医学诊断科技(北京)有限公司 Novel coronavirus Omicron mutant strain specific antibody and application thereof

Family Cites Families (239)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3773919A (en) 1969-10-23 1973-11-20 Du Pont Polylactide-drug mixtures
US4263428A (en) 1978-03-24 1981-04-21 The Regents Of The University Of California Bis-anthracycline nucleic acid function inhibitors and improved method for administering the same
US4399216A (en) 1980-02-25 1983-08-16 The Trustees Of Columbia University Processes for inserting DNA into eucaryotic cells and for producing proteinaceous materials
US4309418A (en) * 1980-03-25 1982-01-05 Sloan-Kettering Research Institute For Cancer Anti-tumor agent from human serum and process
DE3169595D1 (en) 1980-11-10 1985-05-02 Gersonde Klaus Method of preparing lipid vesicles by ultrasonic treatment, the use of this method and apparatus for its application
IE52535B1 (en) 1981-02-16 1987-12-09 Ici Plc Continuous release pharmaceutical compositions
US4485045A (en) 1981-07-06 1984-11-27 Research Corporation Synthetic phosphatidyl cholines useful in forming liposomes
SE8204382L (en) * 1981-07-21 1983-01-22 Hayashibara Biochem Lab PUT TO MAKE MALCELLY FACTOR AND USE THEREOF
US6309640B1 (en) 1981-09-08 2001-10-30 The Rockefeller University Lipoprotein lipase suppression by endotoxin-induced mediator (shock assay)
US4822776A (en) * 1981-09-08 1989-04-18 The Rockefeller University Lipoprotein lipase suppression by endotoxin-induced mediator (shock assay)
US6419927B1 (en) 1981-09-08 2002-07-16 Anthony Cerami Method for reducing adverse effects of a human 70kDa mediator which results from endotoxin stimulation of macrophages
US5700466A (en) 1981-09-08 1997-12-23 The Rockefeller University Method of ameliorating or preventing septic shock using a monoclonal antibody specific to cachectin/tumor necrosis factor
US4603106A (en) * 1982-02-22 1986-07-29 The Rockefeller University Lipoprotein lipase suppression by endotoxin-induced mediator (shock assay)
US5833975A (en) * 1989-03-08 1998-11-10 Virogenetics Corporation Canarypox virus expressing cytokine and/or tumor-associated antigen DNA sequence
JPS58118008A (en) 1982-01-06 1983-07-13 Nec Corp Data processor
EP0088046B1 (en) 1982-02-17 1987-12-09 Ciba-Geigy Ag Lipids in the aqueous phase
JPS58166634A (en) 1982-03-29 1983-10-01 Toshiba Corp Positive electrode for organic solvent cell
JPS58166633A (en) 1982-03-29 1983-10-01 Toshiba Corp Positive electrode for organic solvent cell
HU189251B (en) * 1982-04-07 1986-06-30 Asahi Kasei Kogyo Kk,Jp Process for stabilizing tumor necrosis factor
DE3218121A1 (en) 1982-05-14 1983-11-17 Leskovar, Peter, Dr.-Ing., 8000 München Pharmaceutical compositions for tumour treatment
EP0102324A3 (en) 1982-07-29 1984-11-07 Ciba-Geigy Ag Lipids and surfactants in an aqueous medium
US4390468A (en) * 1982-08-04 1983-06-28 Maruzen Oil Co., Ltd. Preparation of antitumor agent from shellfish
US4457916A (en) * 1982-08-31 1984-07-03 Asahi Kasei Kogyo Kabushiki Kaisha Method for stabilizing Tumor Necrosis Factor and a stable aqueous solution or powder containing the same
GB8308235D0 (en) 1983-03-25 1983-05-05 Celltech Ltd Polypeptides
US4544545A (en) 1983-06-20 1985-10-01 Trustees University Of Massachusetts Liposomes containing modified cholesterol for organ targeting
JPS6019719A (en) * 1983-07-15 1985-01-31 Asahi Chem Ind Co Ltd Protein having antitumor activity
HUT35524A (en) 1983-08-02 1985-07-29 Hoechst Ag Process for preparing pharmaceutical compositions containing regulatory /regulative/ peptides providing for the retarded release of the active substance
US4678773A (en) * 1983-08-26 1987-07-07 Chugai Seiyaku Kabushiki Kaisha Antitumor agent
DE3486459D1 (en) 1983-09-26 1997-12-11 Udo Dr Med Ehrenfeld Means and product for the diagnosis and therapy of tumors and for the treatment of weaknesses in cellular and humoral immune defense
EP0143949B1 (en) 1983-11-01 1988-10-12 TERUMO KABUSHIKI KAISHA trading as TERUMO CORPORATION Pharmaceutical composition containing urokinase
JPS60112718A (en) 1983-11-21 1985-06-19 Kyorin Pharmaceut Co Ltd Proteinous substance exhibiting antitumor activity and its production
JPH0695939B2 (en) 1983-12-02 1994-11-30 大日本製薬株式会社 Cloned DNA coding for rabbit cancer necrosis factor
US4681581A (en) 1983-12-05 1987-07-21 Coates Fredrica V Adjustable size diaper and folding method therefor
US4740461A (en) 1983-12-27 1988-04-26 Genetics Institute, Inc. Vectors and methods for transformation of eucaryotic cells
US5288852A (en) * 1984-03-06 1994-02-22 Dainippon Pharmaceutical Co., Ltd. Human tumor necrosis factor polypeptides
US4894334A (en) * 1984-03-28 1990-01-16 Cetus Corporation Method of improving the yield of heterologous protein produced by cultivating recombinant bacteria
US4656132A (en) * 1984-03-28 1987-04-07 Cetus Corporation Method of improving the yield of heterologous protein produced by cultivating recombinant bacteria
US4879226A (en) 1984-04-06 1989-11-07 Asahi Kasei Kogyo Kabushiki Kaisha Novel human physiologically active polypeptide
DE3423234A1 (en) 1984-06-23 1986-02-06 Boehringer Ingelheim International GmbH, 6507 Ingelheim SYNERGISTIC MIXTURES OF INTERFERON AND TUMOR-NECROSE FACTOR
US5672347A (en) 1984-07-05 1997-09-30 Genentech, Inc. Tumor necrosis factor antagonists and their use
US4650674A (en) * 1984-07-05 1987-03-17 Genentech, Inc. Synergistic cytotoxic composition
WO1986002068A1 (en) 1984-09-26 1986-04-10 Takeda Chemical Industries, Ltd. Mutual separation of proteins
US4677064A (en) * 1984-11-09 1987-06-30 Cetus Corporation Human tumor necrosis factor
US4677063A (en) * 1985-05-02 1987-06-30 Cetus Corporation Human tumor necrosis factor
JPS61124392A (en) 1984-11-22 1986-06-12 Asahi Chem Ind Co Ltd Purification of physiologically active substance produced by gene recombinant
IL73883A (en) 1984-12-20 1990-12-23 Yeda Res & Dev Monoclonal antibodies against tnf-alpha,hybridomas producing them and method for the purification of tnf-alpha
EP0216786B1 (en) * 1984-12-21 1992-03-18 Biogen, Inc. Purification, production and use of tumor necrosis factors
EP0216934A4 (en) * 1985-03-04 1987-07-09 Sawai Seiyaku Kk Novel tumor necrosis factor-inducing substance originating in acid-fast bacteria.
US4684623A (en) 1985-05-02 1987-08-04 The Board Of Trustees Of The Cetus Corporation Use of tumor necrosis factor as a weight regulator
US5776093A (en) 1985-07-05 1998-07-07 Immunomedics, Inc. Method for imaging and treating organs and tissues
US5101827A (en) 1985-07-05 1992-04-07 Immunomedics, Inc. Lymphographic and organ imaging method and kit
US4735210A (en) 1985-07-05 1988-04-05 Immunomedics, Inc. Lymphographic and organ imaging method and kit
DE3526096A1 (en) * 1985-07-22 1987-01-22 Basf Ag METHOD FOR PURIFYING HTNF
US4770995A (en) 1985-08-29 1988-09-13 New York Blood Center, Inc Detection of the sensitivity of cells to the effects of tumor necrosis factor and lymphotoxin
US4870163A (en) 1985-08-29 1989-09-26 New York Blood Center, Inc. Preparation of pure human tumor necrosis factor and hybridomas producing monoclonal antibodies to human tumor necrosis factor
US5059530A (en) 1985-09-30 1991-10-22 Suntory Ltd. Expression vector for human TNF
JPH0698004B2 (en) 1985-09-30 1994-12-07 サントリー株式会社 Novel plasmid for TNF expression
US5182196A (en) * 1985-10-09 1993-01-26 Biogen, Inc. Expression systems for overproduction of desired proteins
US4894439A (en) * 1986-05-22 1990-01-16 Cetus Corporation N-terminal derivatives of tumor necrosis factor purified by microporous PTFE membranes
US4677197A (en) * 1985-10-30 1987-06-30 Cetus Corporation Purification method for tumor necrosis factor
JPS62170639A (en) 1986-01-22 1987-07-27 株式会社システムメンテナンス Method for mounting ant-proof panel
ATE116367T1 (en) * 1986-02-04 1995-01-15 Den Ichi Mizuno DNA encoding ANTITUMOR POLYPEPTIDES, THE POLYPEPTIDES AND ANTITUMOR ACTIVES CONTAINING SUCH POLYPEPTIDES.
US4822605A (en) * 1986-02-18 1989-04-18 Exovir, Inc. Compositions and methods employing the same for the treatment of viral and cancerous skin lesions and the like
US5425940A (en) 1986-04-09 1995-06-20 Cetus Oncology Corporation Combination therapy using interleukin-2 and tumor necrosis factor
US4863727A (en) 1986-04-09 1989-09-05 Cetus Corporation Combination therapy using interleukin-2 and tumor necrosis factor
CA1310924C (en) 1986-04-24 1992-12-01 Francis P. Mccormick Infective drug delivery system
ATE107362T1 (en) * 1986-06-20 1994-07-15 Dainippon Pharmaceutical Co HUMAN TNF POLYPEPTIDE MUTANTS AND DNA ENCODING THESE MUTANTS.
US4959455A (en) 1986-07-14 1990-09-25 Genetics Institute, Inc. Primate hematopoietic growth factors IL-3 and pharmaceutical compositions
US5866136A (en) * 1986-08-01 1999-02-02 Commonwealth Scientific And Industrial Organisation Recombinant vaccine
DE3631229A1 (en) 1986-09-13 1988-03-24 Basf Ag MONOCLONAL ANTIBODIES AGAINST HUMAN TUMORNESCROSE FACTOR (TNF) AND THEIR USE
US5002876A (en) * 1986-09-22 1991-03-26 Phillips Petroleum Company Yeast production of human tumor necrosis factor
US4777242A (en) 1986-10-10 1988-10-11 Phillips Petroleum Company Purification of recombinant tumor necrosis factor
US4912040A (en) 1986-11-14 1990-03-27 Genetics Institute, Inc. Eucaryotic expression system
JPH07106158B2 (en) 1986-12-04 1995-11-15 サントリー株式会社 Novel polypeptide having antitumor activity and method for producing the same
US4894225A (en) * 1987-03-02 1990-01-16 Cetus Corporation Combination therapy using antitumor immunotoxins with tumor necrosis factor
US5504005A (en) * 1987-03-02 1996-04-02 Albert Einstein College Of Medicine Of Yeshiva University Recombinant mycobacterial vaccine
CA1340953C (en) 1987-04-08 2000-04-11 David W. Barnes Non-tumorigenic cell lines for expression of genes
DE3888224T2 (en) 1987-04-24 1994-07-21 Teijin Ltd Determination of tumor necrosis factor; monoclonal antibody and composition.
DE3716513A1 (en) * 1987-05-16 1988-11-24 Basf Ag PROTEINS WITH TNF EFFECT
US6410033B1 (en) * 1987-07-27 2002-06-25 Syntro Corporation Recombinant infectious bovine rhinotracheitis virus
IL87737A (en) * 1987-09-11 1993-08-18 Genentech Inc Method for culturing polypeptide factor dependent vertebrate recombinant cells
US5648471A (en) 1987-12-03 1997-07-15 Centocor, Inc. One vial method for labeling antibodies with Technetium-99m
US5158871A (en) 1988-02-12 1992-10-27 University Of Connecticut Method of using magnetic particles for isolating, collecting and assaying diagnostic ligates
US5183657A (en) * 1988-03-11 1993-02-02 Celltech Limited Antibodies for use in antilymphocyte antibody therapy
US5215743A (en) * 1988-04-13 1993-06-01 Maninder Singh Tumor necrosis factor formulations
US5424940A (en) * 1988-04-25 1995-06-13 Ousborne; Jeffrey J. Computer controlled system providing functions within a laundromat facility
JPH0797997B2 (en) 1988-04-28 1995-10-25 帝人株式会社 Novel bioactive polypeptide
DE3823804A1 (en) 1988-07-14 1990-01-18 Basf Ag NEUTRALIZATION OF THE TOXIC PROPERTIES OF TNF- (ALPHA) IN VITRO AND VIVO BY MONOCLONAL ANTIBODIES AND THE FRAGMENTS DERIVED FROM THEM
WO1990000902A1 (en) 1988-07-18 1990-02-08 Chiron Corporation Monoclonal antibodies reactive with cachectin
EP0437610B1 (en) 1988-09-22 1996-06-12 Teijin Limited Novel physiologically active polypeptide, recombinant plasmid, recombinant microbial cells, medicinal composition, and process for recovering purified polypeptide
GB8823869D0 (en) 1988-10-12 1988-11-16 Medical Res Council Production of antibodies
US5360716A (en) 1988-10-24 1994-11-01 Otsuka Pharmaceutical Co., Ltd. Human tumor necrosis factor αspecific monoclonal antibody and method for detecting human tumor necrosis factor α
US5510418A (en) 1988-11-21 1996-04-23 Collagen Corporation Glycosaminoglycan-synthetic polymer conjugates
US5162430A (en) 1988-11-21 1992-11-10 Collagen Corporation Collagen-polymer conjugates
US5223395A (en) * 1988-12-01 1993-06-29 Centocor, Inc. Immunometric assays for tumor necrosis factor-alpha and methods for preventing the loss of biological activity of tumor necrosis factor-alpha in biological samples
US5175384A (en) 1988-12-05 1992-12-29 Genpharm International Transgenic mice depleted in mature t-cells and methods for making transgenic mice
DE59010941D1 (en) 1989-04-21 2005-03-24 Amgen Inc TNF receptor, TNF-binding proteins and DNAs coding therefor
US6232446B1 (en) * 1989-05-18 2001-05-15 Yeda Research And Development Co. Ltd. TNF ligands
US6262239B1 (en) 1989-05-18 2001-07-17 Yeda Research And Development Co., Ltd. TNF receptor-specific antibodies
US5959087A (en) 1989-08-07 1999-09-28 Peptide Technology, Ltd. Tumour necrosis factor binding ligands
US6448380B2 (en) 1989-08-07 2002-09-10 Peptech Limited Tumor necrosis factor antibodies
US5644034A (en) 1989-08-07 1997-07-01 Peptide Technology Ltd. Tumour necrosis factor binding ligands
ATE172879T1 (en) 1989-08-09 1998-11-15 Rhomed Inc DIRECT RADIO LABELING OF ANTIBODIES AND OTHER PROTEINS USING TECHNETIUM OR RHENIUM
US6315999B1 (en) 1989-08-10 2001-11-13 Solvay, S.A. Pharmaceutical product for the treatment of sepsis
JPH05501351A (en) 1989-08-16 1993-03-18 カイロン コーポレイション Cleavage site blocking antibodies against prohormone proteins and uses thereof
US6541610B1 (en) * 1989-09-05 2003-04-01 Immunex Corporation Fusion proteins comprising tumor necrosis factor receptor
US5395760A (en) * 1989-09-05 1995-03-07 Immunex Corporation DNA encoding tumor necrosis factor-α and -β receptors
DE69033710T2 (en) 1989-10-24 2001-06-13 Chiron Corp Secretion of the human protein bound with gamma-interferon signal peptide
US5859205A (en) * 1989-12-21 1999-01-12 Celltech Limited Humanised antibodies
US6150584A (en) 1990-01-12 2000-11-21 Abgenix, Inc. Human antibodies derived from immunized xenomice
EP1690935A3 (en) 1990-01-12 2008-07-30 Abgenix, Inc. Generation of xenogeneic antibodies
US6673986B1 (en) 1990-01-12 2004-01-06 Abgenix, Inc. Generation of xenogeneic antibodies
US6075181A (en) 1990-01-12 2000-06-13 Abgenix, Inc. Human antibodies derived from immunized xenomice
US5672510A (en) 1990-01-19 1997-09-30 Genetic Therapy, Inc. Retroviral vectors
US5151510A (en) 1990-04-20 1992-09-29 Applied Biosystems, Inc. Method of synethesizing sulfurized oligonucleotide analogs
US5110913A (en) * 1990-05-25 1992-05-05 Miles Inc. Antibody purification method
CA2090126C (en) * 1990-08-02 2002-10-22 John W. Schrader Methods for the production of proteins with a desired function
EP0608212A1 (en) 1990-08-27 1994-08-03 Peptide Technology Ltd Method of treating viral infection
US5877397A (en) 1990-08-29 1999-03-02 Genpharm International Inc. Transgenic non-human animals capable of producing heterologous antibodies of various isotypes
AU664976B2 (en) 1990-08-29 1995-12-14 Gene Pharming Europe Bv Homologous recombination in mammalian cells
US5661016A (en) 1990-08-29 1997-08-26 Genpharm International Inc. Transgenic non-human animals capable of producing heterologous antibodies of various isotypes
ES2246502T3 (en) 1990-08-29 2006-02-16 Genpharm International, Inc. TRANSGENIC NON-HUMAN ANIMALS ABLE TO PRODUCE HETEROLOGICAL ANTIBODIES.
US5789650A (en) 1990-08-29 1998-08-04 Genpharm International, Inc. Transgenic non-human animals for producing heterologous antibodies
US5770429A (en) 1990-08-29 1998-06-23 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
US6255458B1 (en) 1990-08-29 2001-07-03 Genpharm International High affinity human antibodies and human antibodies against digoxin
US5545806A (en) 1990-08-29 1996-08-13 Genpharm International, Inc. Ransgenic non-human animals for producing heterologous antibodies
US5874299A (en) 1990-08-29 1999-02-23 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
US5814318A (en) 1990-08-29 1998-09-29 Genpharm International Inc. Transgenic non-human animals for producing heterologous antibodies
US5633425A (en) 1990-08-29 1997-05-27 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
US5625126A (en) 1990-08-29 1997-04-29 Genpharm International, Inc. Transgenic non-human animals for producing heterologous antibodies
US6300129B1 (en) 1990-08-29 2001-10-09 Genpharm International Transgenic non-human animals for producing heterologous antibodies
US5194594A (en) 1990-09-07 1993-03-16 Techniclone, Inc. Modified antibodies
US5519119A (en) * 1990-09-21 1996-05-21 Ishihara Sangyo Kaisha Ltd. Muteins of TNF pharmaceutical compositions and a method of making
JPH05255393A (en) 1990-09-21 1993-10-05 Ishihara Sangyo Kaisha Ltd Polypeptide
US5653974A (en) 1990-10-18 1997-08-05 Board Of Regents,The University Of Texas System Preparation and characterization of liposomal formulations of tumor necrosis factor
GB9022648D0 (en) * 1990-10-18 1990-11-28 Charing Cross Sunley Research Polypeptide and its use
US5650150A (en) 1990-11-09 1997-07-22 Gillies; Stephen D. Recombinant antibody cytokine fusion proteins
CA2055168A1 (en) * 1990-11-21 1992-05-22 Walter Fiers Tnf-muteins
EP0564531B1 (en) * 1990-12-03 1998-03-25 Genentech, Inc. Enrichment method for variant proteins with altered binding properties
US5994510A (en) 1990-12-21 1999-11-30 Celltech Therapeutics Limited Recombinant antibodies specific for TNFα
GB9109645D0 (en) 1991-05-03 1991-06-26 Celltech Ltd Recombinant antibodies
GB9028123D0 (en) 1990-12-28 1991-02-13 Erba Carlo Spa Monoclonal antibodies against human tumor necrosis factor alpha
US5656272A (en) 1991-03-18 1997-08-12 New York University Medical Center Methods of treating TNF-α-mediated Crohn's disease using chimeric anti-TNF antibodies
US5698195A (en) 1991-03-18 1997-12-16 New York University Medical Center Methods of treating rheumatoid arthritis using chimeric anti-TNF antibodies
US6284471B1 (en) 1991-03-18 2001-09-04 New York University Medical Center Anti-TNFa antibodies and assays employing anti-TNFa antibodies
US5919452A (en) 1991-03-18 1999-07-06 New York University Methods of treating TNFα-mediated disease using chimeric anti-TNF antibodies
DE07012625T1 (en) 1991-03-18 2010-01-21 New York University Monoclonal and chimeric antibodies to human tumor necrosis factor
US6277969B1 (en) 1991-03-18 2001-08-21 New York University Anti-TNF antibodies and peptides of human tumor necrosis factor
US5160483A (en) 1991-05-07 1992-11-03 The University Of Tennessee Research Corporation Fragment of TNF-α for promoting wound healing
WO1992022670A1 (en) 1991-06-12 1992-12-23 Genpharm International, Inc. Early detection of transgenic embryos
WO1992022645A1 (en) 1991-06-14 1992-12-23 Genpharm International, Inc. Transgenic immunodeficient non-human animals
FR2677654B1 (en) 1991-06-17 1995-11-17 Pasteur Merieux Serums Vacc COMPOUNDS WITH AN IMMUNOGENIC ANTI-CYTOKIN EFFECT, AN ANTIYTOSTATIC IMMUNOGENIC EFFECT OR AN ANTI-HIV INFECTION VACCINE EFFECT.
US5633146A (en) 1991-07-02 1997-05-27 Rhone-Poulenc Rorer S.A. Method for producing recombinant proteins and host cells used therein
US5223408A (en) * 1991-07-11 1993-06-29 Genentech, Inc. Method for making variant secreted proteins with altered properties
US5965379A (en) 1991-07-19 1999-10-12 Cytimmune Sciences Inc. Method for measuring endogenous cytokines
MX9204374A (en) 1991-07-25 1993-03-01 Idec Pharma Corp RECOMBINANT ANTIBODY AND METHOD FOR ITS PRODUCTION.
FR2679920A1 (en) * 1991-08-02 1993-02-05 Rhone Poulenc Rorer Sa Highly stable recombinant yeasts for the production of recombinant proteins, their preparation and their use
AU2515992A (en) 1991-08-20 1993-03-16 Genpharm International, Inc. Gene targeting in animal cells using isogenic dna constructs
US5334380A (en) 1991-09-27 1994-08-02 Board Of Regents, The University Of Texas System Anti-endotoxin, interleukin-1 receptor antagonist and anti-tumor necrosis factor antibody with arginine-free formulations for the treatment of hypotension
US5641670A (en) * 1991-11-05 1997-06-24 Transkaryotic Therapies, Inc. Protein production and protein delivery
US6261834B1 (en) 1991-11-08 2001-07-17 Research Corporation Technologies, Inc. Vector for gene therapy
US5252479A (en) 1991-11-08 1993-10-12 Research Corporation Technologies, Inc. Safe vector for gene therapy
ATE275198T1 (en) * 1991-12-02 2004-09-15 Medical Res Council PRODUCTION OF ANTIBODIES ON PHAGE SURFACES BASED ON ANTIBODIES SEGMENT LIBRARIES.
JPH07503132A (en) 1991-12-17 1995-04-06 ジェンファーム インターナショナル,インコーポレイティド Transgenic non-human animals capable of producing xenoantibodies
US5447851B1 (en) 1992-04-02 1999-07-06 Univ Texas System Board Of Dna encoding a chimeric polypeptide comprising the extracellular domain of tnf receptor fused to igg vectors and host cells
SK376492A3 (en) * 1992-04-02 1995-06-07 Hoffmann La Roche Tnf - muteins and method of their production
US5278284A (en) * 1992-05-14 1994-01-11 Miller Brewing Company Protein purification method
JPH07508410A (en) 1992-06-18 1995-09-21 ジェンファーム インターナショナル インコーポレイテッド Method for producing transgenic non-human animals having yeast artificial chromosomes
ATE381614T1 (en) 1992-07-24 2008-01-15 Amgen Fremont Inc FORMATION OF XENOGENE ANTIBODIES
ES2121907T3 (en) * 1992-08-28 1998-12-16 Bayer Ag USE OF ANTI-TNF MONOCLONAL ANTIBODIES FOR THE TREATMENT OF BACTERIAL MENINGITIS.
US6270766B1 (en) 1992-10-08 2001-08-07 The Kennedy Institute Of Rheumatology Anti-TNF antibodies and methotrexate in the treatment of arthritis and crohn's disease
US5741488A (en) * 1992-10-08 1998-04-21 The Kennedy Institute For Rheumatology Treatment of rheumatoid arthritis with anti-CD4 antibodies in conjunction with anti-TNF antibodies
WO1994008609A1 (en) * 1992-10-15 1994-04-28 Dana-Farber Cancer Institute, Inc. TREATMENT OF INSULIN RESISTANCE IN OBESITY LINKED TYPE II DIABETES USING ANTAGONISTS TO TNF-α FUNCTION
US5968735A (en) 1992-11-12 1999-10-19 Max Delbruck-Centrum Fur Molekular Medizin Berlin Vector for the expression of therapy-relevant genes
GB9225448D0 (en) * 1992-12-04 1993-01-27 Erba Carlo Spa Improved synthesis of polymer bioactive conjugates
GB9225453D0 (en) 1992-12-04 1993-01-27 Medical Res Council Binding proteins
JP3720353B2 (en) 1992-12-04 2005-11-24 メディカル リサーチ カウンシル Multivalent and multispecific binding proteins, their production and use
US5981175A (en) 1993-01-07 1999-11-09 Genpharm Internation, Inc. Methods for producing recombinant mammalian cells harboring a yeast artificial chromosome
WO1994018325A1 (en) * 1993-02-03 1994-08-18 N.V. Innogenetics S.A. Tnf-alpha muteins and a process for preparing them
KR970005042B1 (en) * 1993-02-09 1997-04-11 한일합성섬유공업 주식회사 Tumor necrosis factor-alpha muteine
US5626843A (en) * 1993-02-26 1997-05-06 Advanced Biotherapy Concepts, Inc. Treatment of autoimmune diseases, including AIDS, by removel of interferons, TNFs and receptors therefor
ES2159529T5 (en) 1993-03-05 2011-03-09 Bayer Corporation ANTI-TNF ALFA HUMAN MONOCLONAL ANTIBODIES.
CA2119089A1 (en) * 1993-03-29 1994-09-30 David Banner Tumor necrosis factor muteins
AU6819494A (en) 1993-04-26 1994-11-21 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
EP0703925B1 (en) * 1993-06-03 1999-08-18 Therapeutic Antibodies Inc. Production of antibody fragments
ATE196849T1 (en) 1993-07-30 2000-10-15 Kennedy Inst Of Rheumatology METHOD FOR TREATING MULTIPLES SCLEROSIS
FR2709309B1 (en) * 1993-08-25 1995-11-10 Centre Nat Rech Scient Cellular compositions, preparation and therapeutic uses.
US6268212B1 (en) 1993-10-18 2001-07-31 Amgen Inc. Tissue specific transgene expression
US5625825A (en) 1993-10-21 1997-04-29 Lsi Logic Corporation Random number generating apparatus for an interface unit of a carrier sense with multiple access and collision detect (CSMA/CD) ethernet data network
US5959085A (en) 1993-11-23 1999-09-28 Schering Corporation Human monoclonal antibodies against human cytokines and methods of making and using such antibodies
GB9324807D0 (en) * 1993-12-03 1994-01-19 Cancer Res Campaign Tech Tumour antibody
NZ278607A (en) * 1994-02-07 1999-05-28 Knoll Ag Use of tnf antagonists for treating disorders involving elevated serum levels of il-6 wherein the serum levels are 500pg/ml or above
WO1995025809A1 (en) * 1994-03-23 1995-09-28 Ohio University Compacted nucleic acids and their delivery to cells
ES2166822T3 (en) 1994-05-17 2002-05-01 Cedars Sinai Medical Center CROHN DISEASE SELECTION PROCEDURES USING TNF MICROSATELITES ALELOS.
US5606023A (en) * 1994-05-24 1997-02-25 Thomas Jefferson University Mutant tumor necrosis factor proteins
US5888814A (en) * 1994-06-06 1999-03-30 Chiron Corporation Recombinant host cells encoding TNF proteins
US5989808A (en) 1994-06-14 1999-11-23 American Cyanamid Company Identification of compounds affecting specific interaction of peptide binding pairs
DE4435612A1 (en) 1994-10-05 1996-04-11 Braun Melsungen Ag Process for the simultaneous removal of tumor necrosis factor alpha and bacterial lipopolysaccharides from an aqueous liquid
US5763733A (en) * 1994-10-13 1998-06-09 Enzon, Inc. Antigen-binding fusion proteins
US5643763A (en) 1994-11-04 1997-07-01 Genpharm International, Inc. Method for making recombinant yeast artificial chromosomes by minimizing diploid doubling during mating
US5753499A (en) * 1994-12-23 1998-05-19 New York University Viral vector complexes having adapters of predefined valence
US6127528A (en) 1995-02-16 2000-10-03 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Process for adsorbing and removing tumor necrosis factor-α
PT814778E (en) * 1995-03-10 2001-11-30 Roche Diagnostics Gmbh METHODS OF PHARMACEUTICAL ADMINISTRATION CONTAINING POLYPREPEPTIDES IN THE FORM OF MICROPARTICLES AND PROCESS FOR THEIR PREPARATION
CA2219486A1 (en) 1995-04-28 1996-10-31 Abgenix, Inc. Human antibodies derived from immunized xenomice
US5705364A (en) * 1995-06-06 1998-01-06 Genentech, Inc. Mammalian cell culture process
EP0843961B1 (en) 1995-08-29 2007-01-24 Kirin Beer Kabushiki Kaisha Chimeric animal and method for constructing the same
US6022737A (en) * 1995-11-02 2000-02-08 Amgen Inc. Formulations for non-viral in vivo transfection in the lungs
FR2741262B1 (en) * 1995-11-20 1999-03-05 Oreal USE OF A TNF-ALPHA ANTAGONIST FOR THE TREATMENT OF CUTANEOUS REDNESS OF NEUROGENIC ORIGIN
US6090382A (en) * 1996-02-09 2000-07-18 Basf Aktiengesellschaft Human antibodies that bind human TNFα
US5789442A (en) * 1996-01-18 1998-08-04 Schering Aktiengesellschaft Treatment of urinary incontinence with nitric oxide synthase substrates and/or nitric oxide donors alone or in combination with estrogen or progesterone and/or other agents
HU221984B1 (en) * 1996-02-09 2003-03-28 Basf Ag Human antibodies binding human tnfalfa, pharmaceutical compositions containing thereof and use thereof
TW423264B (en) * 1996-02-23 2001-02-21 Samsung Electronics Co Ltd A method for controlling a microwave oven to prevent overcooking of small food portions
EP0791360A3 (en) 1996-02-29 1997-09-24 Bayer Corporation Treatment of septic shock with anti-TNF antibodies
US5952221A (en) * 1996-03-06 1999-09-14 Avigen, Inc. Adeno-associated virus vectors comprising a first and second nucleic acid sequence
US6207153B1 (en) * 1996-05-22 2001-03-27 Viventia Biotech, Inc. Antigen binding fragments that specifically detect cancer cells, nucleotides encoding the fragments, and use thereof for the prophylaxis and detection of cancers
US6277368B1 (en) 1996-07-25 2001-08-21 The Regents Of The University Of California Cancer immunotherapy using autologous tumor cells combined with cells expressing a membrane cytokine
US5916771A (en) 1996-10-11 1999-06-29 Abgenix, Inc. Production of a multimeric protein by cell fusion method
CA2722378C (en) 1996-12-03 2015-02-03 Amgen Fremont Inc. Human antibodies that bind tnf.alpha.
KR20000062390A (en) * 1996-12-31 2000-10-25 알. 더블류. 윌리암스 Zeolite SSZ-48
US5917123A (en) * 1997-03-14 1999-06-29 University Of Pittsburgh Transgenic mice containing a nucleic acid encoding tumor necrosis factor-α under the control of a cardiac specific regulatory region
US6099847A (en) 1997-05-15 2000-08-08 The United States Of America As Represented By The Department Of Health And Human Services Chimeric Gag pseudovirions
ATE489633T1 (en) * 1997-06-10 2010-12-15 Lpath Inc METHOD FOR EARLY DETECTION OF HEART DISEASES
GB9713412D0 (en) * 1997-06-26 1997-08-27 Delta Biotechnology Ltd Improved protein expression strains
US6407218B1 (en) * 1997-11-10 2002-06-18 Cytimmune Sciences, Inc. Method and compositions for enhancing immune response and for the production of in vitro mabs
WO1999037755A2 (en) * 1997-12-11 1999-07-29 Pangene Corporation The use of consensus sequences for targeted homologous gene isolation and recombination in gene families
CA2317839A1 (en) 1998-01-22 1999-07-29 Btg International Limited Inhibition of cytokine production
BR9912070A (en) * 1998-07-13 2001-04-10 Expression Genetics Inc Poly-l-lysine polyester analog as a soluble, biodegradable gene delivery vehicle
US6136599A (en) 1998-12-10 2000-10-24 Bayer Corporation Human hybrid host cell for mammalian gene expression
US6376246B1 (en) 1999-02-05 2002-04-23 Maxygen, Inc. Oligonucleotide mediated nucleic acid recombination
US6177077B1 (en) * 1999-02-24 2001-01-23 Edward L. Tobinick TNT inhibitors for the treatment of neurological disorders
US6015557A (en) * 1999-02-24 2000-01-18 Tobinick; Edward L. Tumor necrosis factor antagonists for the treatment of neurological disorders
US6287588B1 (en) 1999-04-29 2001-09-11 Macromed, Inc. Agent delivering system comprised of microparticle and biodegradable gel with an improved releasing profile and methods of use thereof
DK1187611T3 (en) * 1999-06-03 2004-10-11 Maxim Pharm Inc Ophthalmic histamine-containing compositions and their use
US6833268B1 (en) 1999-06-10 2004-12-21 Abgenix, Inc. Transgenic animals for producing specific isotypes of human antibodies via non-cognate switch regions
PT1666028E (en) * 1999-10-29 2010-06-15 Novartis Ag Dry powder compositions having improved dispersivity
US6524572B1 (en) * 2000-06-26 2003-02-25 Rainbow Therapeutic Company Targeting recombinant virus with a bispecific fusion protein ligand in coupling with an antibody to cells for gene therapy
AU2002357779A1 (en) 2001-12-03 2003-06-17 Abgenix, Inc. Identification of high affinity molecules by limited dilution screening
JP4754219B2 (en) * 2002-12-02 2011-08-24 アムジエン・フレモント・インコーポレイテツド Antibodies directed against tumor necrosis factor and their use
US11284893B2 (en) 2019-04-02 2022-03-29 Covidien Lp Stapling device with articulating tool assembly

Also Published As

Publication number Publication date
AU2003298816A1 (en) 2004-06-23
RU2005116225A (en) 2006-02-27
EP1578799A2 (en) 2005-09-28
CN1745101A (en) 2006-03-08
CN100434440C (en) 2008-11-19
DE60333228D1 (en) 2010-08-12
EP1578799A4 (en) 2007-04-04
US20080187531A1 (en) 2008-08-07
ATE472556T1 (en) 2010-07-15
CA2508375A1 (en) 2004-06-17
EP1578799B8 (en) 2011-03-23
JP4754219B2 (en) 2011-08-24
US7285269B2 (en) 2007-10-23
US8101178B2 (en) 2012-01-24
HK1083023A1 (en) 2006-06-23
WO2004050683A3 (en) 2005-04-14
AU2003298816C1 (en) 2010-12-16
JP2006508167A (en) 2006-03-09
MXPA05005921A (en) 2005-10-19
EP1578799B1 (en) 2010-06-30
WO2004050683A2 (en) 2004-06-17
AU2003298816B2 (en) 2010-06-17
WO2004050683A8 (en) 2005-07-28
ES2347239T3 (en) 2010-10-27
US20050049402A1 (en) 2005-03-03
RU2377253C2 (en) 2009-12-27

Similar Documents

Publication Publication Date Title
CA2508375C (en) Antibodies directed to tumor necrosis factor and uses thereof
KR101418606B1 (en) Antibodies directed to her-3 and uses thereof
KR101531422B1 (en) Targeted binding agents directed to pdgfr-alpha and uses thereof
DK2187964T3 (en) HIGH AFFINE HUMAN ANTIBODIES FOR HUMAN NERVOUS FACTOR
KR102315694B1 (en) Anti-activin a antibodies and uses thereof
US7566772B2 (en) Antibodies against interleukin-1β
KR101859911B1 (en) Antibodies to human gdf8
KR101474227B1 (en) High affinity human antibodies to human IL-4 receptor
KR101516569B1 (en) Human antibodies to human delta like ligand 4
CN101128483A (en) Antibodies directed to angiopoietin-2 and uses thereof
KR20180054701A (en) Anti-CD115 antibody
KR20240006575A (en) Human neutralizing monoclonal antibodies against SARS-CoV-2 and uses thereof
KR20230019097A (en) Protein S antibody, manufacturing method and use thereof

Legal Events

Date Code Title Description
EEER Examination request
MKEX Expiry

Effective date: 20231204