CA2520091A1 - Detection system, method for detecting objects and computer program therefor - Google Patents

Detection system, method for detecting objects and computer program therefor Download PDF

Info

Publication number
CA2520091A1
CA2520091A1 CA002520091A CA2520091A CA2520091A1 CA 2520091 A1 CA2520091 A1 CA 2520091A1 CA 002520091 A CA002520091 A CA 002520091A CA 2520091 A CA2520091 A CA 2520091A CA 2520091 A1 CA2520091 A1 CA 2520091A1
Authority
CA
Canada
Prior art keywords
signal
optical sensor
radar device
distance
radar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CA002520091A
Other languages
French (fr)
Other versions
CA2520091C (en
Inventor
Albert Gezinus Huizing
Leonardus Johannes Hubertus Maria Kester
Arne Theil
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nederlandse Organisatie voor Toegepast Natuurwetenschappelijk Onderzoek TNO
Original Assignee
Albert Gezinus Huizing
Leonardus Johannes Hubertus Maria Kester
Arne Theil
Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Albert Gezinus Huizing, Leonardus Johannes Hubertus Maria Kester, Arne Theil, Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno filed Critical Albert Gezinus Huizing
Publication of CA2520091A1 publication Critical patent/CA2520091A1/en
Application granted granted Critical
Publication of CA2520091C publication Critical patent/CA2520091C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/86Combinations of radar systems with non-radar systems, e.g. sonar, direction finder
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/86Combinations of radar systems with non-radar systems, e.g. sonar, direction finder
    • G01S13/867Combination of radar systems with cameras
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/66Radar-tracking systems; Analogous systems
    • G01S13/72Radar-tracking systems; Analogous systems for two-dimensional tracking, e.g. combination of angle and range tracking, track-while-scan radar
    • G01S13/723Radar-tracking systems; Analogous systems for two-dimensional tracking, e.g. combination of angle and range tracking, track-while-scan radar by using numerical data

Abstract

A detection system (1) having an optical sensor (3), a radar device (2) and a signal processor (4) communicatively connected with the optical sensor and the radar device. The signal processor comprises: a first detector (41, 410-413) for detecting a first object on the basis of a first signal coming from the optical sensor and determining at least one first property of the first object; a second detector (42, 420-421) for detecting a second object on the basis of a second signal coming from the radar device and determining at least one second property of that second object, and a signaling unit (43) for producing a signal if the at least one first property and the at least one second property satisfy a predetermined condition. Further, a method for detecting objects, comprising: generating (100) a sensor signal with an optical sensor; detecting (101) a first object on the basis of the sensor signal; generating (200) a radar signal; detecting (201) a second object on the basis of the radar signal; producing (300) a detection signal if both on the basis of the sensor signal and on the basis of the radar signal the same object is detected. Also, a computer program with program code for performing one or more steps of such a method.

Description

Title: Detection system, method for detecting objects and computer program therefor.
BACKGROUND OF THE INVENTION
This invention relates to a detection system and to a method and a computer program for detecting objects.
American patent publication U.S. 6,061,014 discloses a surveillance method for wide areas. According to this method, a thermal camera and a radar device are utilized, which scan an area. Movements in the area are detected by the radar device, while objects differing from the environment in temperature, such as people, are detected with the camera. In one embodiment, after detection of an object with the radar device, the object is identified with the thermal camera and subsequently an alarm can be generated, for instance if the object is a moose or a wolf.
A drawback of this known method is that the detection of Objects does not work satisfactorily, because it involves a high chance of false alarm. For instance, an object that is not of interest (for instance birds) may be signaled, or owing to noise non-existing objects may be detected.
SUMMARY OF THE INVENTION
It is an object of the invention to provide a detection system that leads little, at least less so than the known devices do, to false signaling of objects.
To that end, the invention provides a detection system according to claim 1.
With a system according to the invention, few or no instances of incorrect signaling of objects are generated, for the objects detected on the basis of the first signal and the objects detected on the basis of the second signal are compared and tested against a predetermined condition, so that a physical object is only signaled if the detected objects from the two signals agree with each other to a sufficient extent.
Moreover, with a detection system according to the invention, objects can be described on the basis of features that are furnished both by the camera and by the radar. As a consequence, more information about the object is obtained, because with the optical sensor, types of features of the object can be determined which partly differ from the types of features that can be determined with the radar device.
The invention further provides a method according to claim 14. With such a method, objects can be detected in a reliable manner. The invention further provides a computer program according to claim 27. With such a program, a programmable device, such as for instance a computer or the like, can be arranged to detect objects in a reliable manner.
It is to be noted that the American patent publication U.S. 5,479,173 discloses an apparatus for in a vehicle, for detecting obstacles. The apparatus comprises a radar device and a camera. The radar device is arranged for detecting objects, while the camera is arranged to determine the route of the vehicle. The apparatus can predict the route of a detected object on the basis of data from the radar device and compare these with the route of the vehicle, so that possible collisions between the vehicle and the object can be determined.
Further, the French patent publication FR 2 791 473 discloses a device for recognizing a flying object. On the basis of objects detected with a radar, a camera is aimed at the object, so that a user of the device can identify the detected object.
Also, the European patent publication EP 0 528 077 discloses an air radar system with a camera for monitoring flying objects. The system comprises a radar 'device with which the objects can be detected. The system further has means to make images, so that the objects detected by the radar can be identified.
The devices known from these three patent publications, however, have a similar drawback to that of the method known from the American patent publication US 6,061,014. The fact is that the detection of objects is not accurate, for instance because an object may be signaled which is not of interest (for instance birds), or non-existing objects may be detected owing to noise.
Specific embodiments of the invention are laid down in the dependent claims. Further details, aspects and embodiments of the invention will be discussed hereinafter on the basis of the examples represented in the drawing.
BRIEF DESCRIPTION OF THE DRAWINGS
Fig. 1 schematically shows an example of an embodiment of a detection system according to the invention.
Fig. 2 schematically illustrates in a flow diagram an example of a method according to the invention.
Fig. 3 shows a block diagram of an example of a signal processor for use in a detection system 'according to the invention.
DETAILED DESCRIPTION
Fig. 1 schematically shows an example of an embodiment of a detection system according to the invention. The detection system 1 comprises a radar device 2 and an optical sensor, in the example shown a camera 3. The radar device 2 and camera 3 are communicatively connected with a signal processor 4, as is indicated in the Figure by the broken lines 51 and 52. Via the communicative connection 52, the camera 3 can send to the signal processor 4 a first signal which represents a camera measurement performed by the camera. Via the communicative connection 51, the radar device 2 can send to the signal processor 4 a second signal which represents a radar measurement performed by the radar.
The example of a detection system 1 in Fig. 1 is suitable for carrying out a method for detecting objects according to the invention. An example of a method according to the invention is shown in Fig. 2. In step 100, a first signal is generated, which represents an optical measurement, such as, for instance, a recording of a video camera or an infrared camera. In step 200, a second signal is generated, which represents a radar measurement, such as, for instance, a radar recording from the radar device 2 in the example of Fig. 1. In step 101, from the first signal, that is, from the camera measurement, one or more objects are detected, and properties of the detected objects are determined, such as, for instance, assuming that the object is surface-bound, the distance between the object and camera, the size of the object, the color of the object or the like.
In step 201, the signal processor 4 likewise detects from the second signal, that is, from the radar measurement, one or more objects and also determines the properties thereof, such as, for instance, the reflective power, the radial velocity, the width of the Doppler spectrum, and the like.
Next, in step 300, the signal processor 4 compares one or more features of the objects detected from the two signals. The signal processor can examine, for instance, whether the distance of the objects to the camera 3 and radar device 2, respectively, is such that the objects have the same position.
If the detected objects have the same position (or in any case are located sufficiently close to each other), there is a very high probability that the same physical object is involved. If the compared features satisfy a predetermined condition, for instance if the difference in position is below a particular value, the signal processor in step 301 produces a signal indicating that a physical object has been detected by the lsystem.
Fig. 3 shows the signal processor 4 in more detail. The signal processor 4 has a first detector 41 and a second detector 42 to detect from the first signal and the second signal, respectively, objects and features of the objects.
The detectors 41 and 42 are communicatively connected with a signaling unit 43. The signaling unit 43 produces a signal if one or more features of the objects from the first signal and one or more features of the objects from the second signal satisfy a predetermined condition. The first detector 41 comprises an object detector 410 which can detect the presence of an object from the first signal. In the example shown, the first detector 41 further has an azimuth angle determining unit 411 and an elevation angle determining 5 unit 412 for determining the azimuth angle and the elevation angle, respectively, of a detected object. The angle determining units are communicatively connected with the object detector 410 and a calculating unit 413. The calculating unit can determine the distance between the detected object and the camera 3 from the elevation and azimuth angles. The determination of this distance can be derived, for instance using goniometric algorithms, from the height of the camera relative to the ground and the angles mentioned. Such a distance determination is known per se and is not further elucidated here for the sake of brevity.
In the example shown, the radar device 2 and the camera 3 are movable, and the device shown can operate in a scanning fashion, whereby the radar device 2 and the camera 3 are moved and in each ease observe a different part of an area. Such a movement can be, for instance, a translating, rotary or other movement. The movement may be a reciprocating movement, whereby the radar device 2 and the camera 3 move back and forth between a first and a second position. The movement can also be a circulatory movement. The calculating unit 413 is communicatively connected with position determining means in a base 23 of the radar device, which can pass on the position and viewing direction of the camera to the calculating unit 413 for determining the distance between the camera and the detected object.
However, the radar device 2 and the camera 3 can also be used in a fixed position, that is, in a non-scanning fashion. The position determining means, or orientation determining means, can then be omitted.
The second detector 42, connected with the radar device, likewise comprises an object detector 420 which can detect ari object from the radar measurement, that is, from the second signal. The object detector 420 is communicatively connected with a distance determining unit 421 which can determine the distance from the object detected from the second signal to the radar device. The determination of the distance of an object from a radar signal is known per se and is not further elucidated here for the sake of brevity.
It is noted that the first detector 41 and/or the second detector 42 may further comprise, in addition to the devices shown in Fig. 3, other devices for determining other features of a detected object, such as, for instance, the shape, or for instance the temperature if the optical sensor comprises a thermal camera.
The distance determining unit 421 and the calculating unit 413 are connected with the signaling unit 43 which compares the features of one or more objects from the camera measurement and/or one or more objects from the radar measurement with each other. In case the camera 3 observes one or more objects, while the radar device 2 at the same time likewise observes one or more objects, the detectors 41 and 42 thus yield two sets of measurements, a camera set and a radar set. The signaling unit 43 compares the two sets of measurements with each other..For instance, the signaling unit can compare the distances from the camera set with the distances from the radar set. If a distance from the camera set does not match any one of the distances from the radar set, the camera measurement associated with the distance is rejected. A set of distances from a camera set and the radar set can for instance be considered as matching by the signaling unit 43 if the difference in distance between the distances from the two sets is less than a specific threshold value, which, for instance, maybe entered by an operator of the detection system. Accordingly, when the radar set is empty, that is, if no objects have been detected with the radar, all camera measurements are rejected.
If both radar and camera observe a flying object (hence, not surface-bound), the distances derived from the camera set and the radar set will not match, because the distance calculated from the camera measurement is based on the height of the camera position relative to the ground and not a difference in height between the camera and the object. Measurements on flying objects are therefore rejected.
If the distances do match, the radar features and the camera features can be combined, thereby yielding a more complete description of the object.
In that case, the distance obtained with the camera can be replaced by the distance obtained with the radar, since the latter is generally more accurate.
In the literature, different techniques are described to combine the radar and camera data. A customary approach if the sensors are not mutually synchronized is a so-called tracking process. Radar and camera measurements are then linked (associated) with one or more 'tracks', a track representing estimates.of particular object features. A description of an example of such a method which can be advantageously used in a system or . method according to the invention is known, for instance, from L.J.H.M_ Kester, A. Theil, "Fusion of Radar and EO-sensors for Surveillance",.SPIE
Conference 4380, April 2001.
If in the first signal an object is detected and for that object one or more of the features from the first signal agree with one or more features of an object that has been found in the second signal, the signaling unit 43 in signal processor 4 produces a signal. For instance, the signaling unit produces an alarm signal in a human-perceptible form, warning against unwanted intruders. It is also possible that the signaling unit 43 sends a signal to another device, for instance the control for a door, so that the door is locked by the signal. The signal can also contain a combination of the features of the object from the first signal and the features of the object from the second signal, so that a description of the detected physical object is obtained that includes information from both the camera measurement and the radar measurement. Through this combination, a detailed description of the physical object is obtained, which can be represented, for instance, on a display.
If for an object which has been detected from the first signal no object from the second signal is found having sufficient corresponding features, the object from the first signal is regarded by the signal processor as not detected.
If desired, the signal processor may be of such design that a signal is produced in that case too, so that a user can further investigate the incorrect detection from the first signal.
It is also possible that the signaling unit 43 can control an optical sensor and, for instance, can collect supplemental information about the detected object. For instance, as known from the American patent~publication 6,061,014, the object can be classified with a thermal camera and subsequently an alarm can be produced if the object falls into a particular class.
The signal processor 4 shown in Fig. 3 has a synchronization, as a ' result of which detection is~;done on the basis of measurements performed at the same time. The synchronization can have been obtained, for instance, by providing the signals of the r adar device 2 and the camera 3 with information about the time.of measurement. The detectors 41 and 42 can then verify mutually whether_detection is performed on the basis of signals or measurements of the same time. It is also possible, however, to obtain the synchronization in a different manner, for instance by designing the detection system 1 in such a way that between the camera and the signal processor the same time delay is present as between the radar device and the signal processor, and the camera and radar device perform measurements simultaneously. Accordingly, the same period of time elapses between the detection of objects from the camera and the radar device, respectively, and the generation of the camera signal and radar signal, respectively, so that the signals and objects can be simply combined.

In the example of a system according to the invention in Fig. 1, the radar device 2 comprises a dish antenna 22 provided with a feedhorn 21. The feedhorn 21 is situated near or in the focal point of the dish 22. Such radar devices and their operation are generally known.
In the example shown, the camera 3 is situated near the radar device 2 and the camera 3 is mounted on the feedhorn 21 of the radar device 2. As a result, the field of regard of the camera and the field of regard of the radar overlap at least partly. Preferably, the fields of regard coincide wholly or largely. Fields of regard that coincide (largely) enhance reliability of detection, because this prevents a camera measurement being wrongly not censored if the radar device observes an object at the same distance from the object observed by the camera, but outside the camera's field of regard. When the camera and the radar device both detect an object at the same distance, but the camera detects this object outside the field of regard of the radar device, the detection can still be rejected through the camera azimuth.
Also,.the viewing direction of the camera is parallel to the viewing direction of the radar device, and the fields of regard of the camera and the radar device coincide, so that by definition an object that is found at a particular distance according to the camera information will also have to be found at that distance by the radar information. If these distances exhibit too large a deviation, the object is regarded by the signal processor 4 as not detected. Moreover, there is no need for conversion between a coordinate system' for the camera 3 and a system for the .radar device 2, which makes a considerable difference as regards the calculating capacity needed for.the signal processor.
As is indicated with the arrows A and B, the radar device 2 and the .
camera 3 are pivotable relative to the earth. As a result, the radar device 2 and camera 3 can be deployed in a scanning mode, for instance through rotation or a reciprocating movement, in order to cover a wider area. In the example shown, a base 23 of the radar device 2 includes a driving device (not shown), which is controlled by the signal processor 4 via a communicative connection 53. Also via the connection 53, information about the orientational position of the radar device 2 and the camera can be sent to the signal processor 4, so that the signal processor can make an accurate determination 5 of the position of detected objects. As described hereinbefore, however, a detection system according to the invention can also be designed with a stationary radar device and a stationary optical sensor, both fixed in a particular (orientational) position.
The optical sensor can be of any suitable type and can be, for instance, 10 a digital photo camera or a video camera. The optical sensor camera can work in any suitable frequency range, as for instance in the visible, infrared or ultraviolet range.
An apparatus or method according to the invention can be used, for instance, for automated terrain surveillance. In designs nowadays found in practice for electronic surveillance of premises or buildings, in most cases one or more cameras are used to establish the presence of an intruder. An attendant drawback is that often so-called false alarms are generated, that is, alarm signaling events caused by objects that are not of interest (for instance birds), or by noise. Accordingly, often a human operator is needed who interprets the sensor information and who decides whether an intruder is entering the terrain under surveillance. With an apparatus or method according to the invention, the number of false alarms is reduced because information coming from both a radar system and a camera is combined.
Thus, surveillance can be dealt with in a completely automated fashion.
Further, it is possible with a computer program according to the invention to render a programmable device, such as, for instance, a computer or the like, suitable for carrying out a method according to the invention or to arrange it as a signal processor according to the invention. A computer program according to the invention comprises a program code for performing one or more steps of a method according to the invention, when the program 11.
has been loaded into the programmable device. Self-evidently, the programmable device should be communicatively connectible to a radar device and an optical sensor device in order to receive the first and the second signal. The computer program may be loaded on a data carrier provided with data representing the computer program.
It is noted that the invention is not limited to the above-described examples. After reading the foregoing, different variants will be obvious to those skilled in the art. In particular, it is obvious to design a detection system according to the invention with several optical sensors and/or several radar devices. Also, it is obvious to combine a detection system according to the invention with other sensors, such as, for instance, vibration or motion sensors or acoustic sensors, such as a directional microphone. Further, it is obvious to design the signal processor to be physically present at different places while functionally forming one whole. For instance, the detection of objects from the signals can be (partly) performed near the optical sensor or the camera, while comparison of features of the detected objects can be performed remotely, for instance by a central computer. Furthermore, it is obvious to use in the radar device a so-called lidar (light detection and ranging) device. Also, the radar device may be designed differently, for instance comprising, instead of a dish antenna, a flat antenna, also called patch antenna. Furthermore, it is noted that the term 'comprising' does not preclude the presence of other elements besides the elements mentioned.

Claims (28)

1. A detection system (1), comprising:
an optical sensor, (3);
a radar device (2) and a signal processor (4) communicatively connected with the optical sensor and the radar device, the signal processor comprising:
a first detector (41, 410-413) for detecting a first object on the basis of a first signal coming from the optical sensor and determining at least one first property of the first object;
a second detector (42, 420-421) for detecting a second object on the basis of a second signal coming from the radar device and determining at least one second property of that second object, and a signaling unit (43) for producing a signal if the at least one first property and the at least one second property satisfy a predetermined condition.
2. A detection system (1) according to claim 1, wherein signaling means produce a signal if the first object and the second object correspond to each other to a sufficient extent.
3. A detection system (1) according to claim 1 or 2, wherein the signal processor (4) comprises:
first distance determining means for determining from the first signal a first distance between the first object and the optical sensor;
second distance determining means for determining from the second signal a second distance between the second object and the radar device, and the signaling means are arranged to produce a signal if the difference between the first and second distances satisfies a predetermined condition.
4. A detection system (1) according to claim 3, wherein the signal processor (4) comprises:
angle calculating means (411, 412) for determining from the first signal the distance from the first object to the optical sensor (3) with the aid of an elevation angle and an azimuth angle of the detected object relative to the optical sensor (3).
5. A detection system (1) according to claim 3 or 4, wherein the signal processor (4) further comprises:
distance signaling means for producing a distance signal if the first and second distances correspond to each other to at least a predetermine ed extent, which distance signal represents the distance determined from the second signal.
6. A detection system (1) according to any one of the preceding claims, wherein signal processor (4) comprises:
means for producing a signal if the first object and the second object correspond to each other to at least a predetermined extent, and the second object, on the basis of information derived from the second signal, is situated on the surface of the earth.
7. A detection system (1) according to any one of the preceding claims, wherein the optical sensor (3) has an optical field of regard and the radar device (2) has a radar field of regard, which fields of regard overlap each other wholly or partly.
8. A detection system (1) according to claim 7, wherein the viewing direction of the optical sensor (3) and the viewing direction of the radar device (2) are substantially parallel.
9. A detection system (1) according to any one of the preceding claims, wherein the optical sensor (3) and the radar device (2) are arranged in mutual proximity.
10. A detection system (1) according to claim 9, wherein the radar device (2) comprises a dish antenna (22) with a feedhorn (21), and the optical sensor (3) is mounted on or near the feedhorn.
11. A detection system (1) according to any one of the preceding claims, wherein the optical sensor (3) and the radar device (2) are pivotably arranged and wherein driving means are provided for causing the optical sensor and the radar device to pivot or rotate.
12. A detection system (1) according to any one of the preceding claims, wherein in the signal path between the optical sensor (3) and the signal processor (4) and in the signal path between the radar device (2) and the signal processor, substantially the same time delay is present.
13. A detection system (1) according to any one of the preceding claims, wherein the optical sensor comprises a camera (3).
14. A method for detecting objects, comprising:
generating (100) a sensor signal with an optical sensor, detecting (101) a first object on the basis of the sensor signal, generating (200) a radar signal, detecting (201) a second object on the basis of the radar signal, producing (300) a detection signal if both on the basis of the sensor signal and on the basis of the radar signal the same object is detected.
15 15. A method according to claim 14, wherein producing (300) a detection signal comprises:
producing a detection signal if the first object and the second object correspond to each other at least to a predetermined extent.
16. A method according to claim 14 or 15, wherein detecting (101) a first object comprises:
determining from the first signal a distance between the first object and the optical sensor;
and wherein detecting (201) a second object comprises:
determining from the second signal a distance between the second object and the radar device, and wherein producing (300) a detection signal comprises:
producing a distance signal if the difference between the two distances satisfies a predetermined condition.
17. A method according to claim 16, wherein determining from the first signal a distance between the first object and the optical sensor comprises:
determining from the first signal the distance from the first object to the optical sensor (3) with the aid of an elevation angle and an azimuth angle of the detected object relative to the optical sensor (3).
18. A method according to claim 16 or 17, wherein producing (300) a detection signal comprises:
producing a distance signal if the two distances correspond to each other at least to a predetermined extent, which distance signal represents the distance determined from the second signal.
19. A method according to any one of claims 14-18, wherein producing (300) a detection signal comprises:

producing a detection signal if the first object and the second object correspond to each other at least to a predetermined extent and the second object, on the basis of information derived from the second signal, is situated on the surface of the earth.
20. A method according to any one of claims 14-19, wherein the optical sensor (3) has an optical field of regard and the radar device (2) has a radar field of regard, which fields of regard overlap each other wholly or largely.
21. A method according to claim 20, wherein the viewing direction of the optical sensor (3) and the viewing direction of the radar device (2) are held substantially parallel.
22. A method according to any one of claims 14-21, wherein the optical sensor (3) and the radar device (2) are used whilst arranged in mutual proximity.
23. A method according to claim 22, wherein the radar device (2) comprises a dish antenna (22) with a feedhorn (21), and the optical sensor (3) is arranged on or near the feedhorn.
24. A method according to any one of claims 14-23, wherein the optical sensor (3) and the radar device (2) are pivoted.
25. A method according to any one of claims 14-24, wherein between generating (100) a sensor signal and detecting (101) a first object, and between generating (200) a radar signal and detecting (201) a second object, the same period of time elapses.
26. A method according to any one of claims 14-25, wherein an optical sensor is used which comprises a camera (3).
27. A computer program comprising program code for performing one or more steps of a method according to any one of claims 14-26 when the program has been loaded into a programmable device.
28. A data carrier provided with data representing a computer program according to claim 27.
CA2520091A 2003-03-25 2004-03-25 Detection system, method for detecting objects and computer program therefor Expired - Fee Related CA2520091C (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
NL1023016 2003-03-25
NL1023016A NL1023016C2 (en) 2003-03-25 2003-03-25 Detection system, method for detecting objects and computer program therefor.
PCT/NL2004/000203 WO2004086083A1 (en) 2003-03-25 2004-03-25 Detection system, method for detecting objects and computer program therefor

Publications (2)

Publication Number Publication Date
CA2520091A1 true CA2520091A1 (en) 2004-10-07
CA2520091C CA2520091C (en) 2013-06-25

Family

ID=33095821

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2520091A Expired - Fee Related CA2520091C (en) 2003-03-25 2004-03-25 Detection system, method for detecting objects and computer program therefor

Country Status (7)

Country Link
US (1) US7710310B2 (en)
EP (1) EP1606649A1 (en)
JP (1) JP2006521557A (en)
KR (1) KR20060003871A (en)
CA (1) CA2520091C (en)
NL (1) NL1023016C2 (en)
WO (1) WO2004086083A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2881320A1 (en) * 2013-11-19 2015-06-10 Goodrich Corporation Rotating window and radome for surveillance pod

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1023016C2 (en) * 2003-03-25 2004-09-30 Tno Detection system, method for detecting objects and computer program therefor.
US7952513B2 (en) * 2008-06-16 2011-05-31 Lockheed Martin Corporation Counter target acquisition radar and acoustic adjunct for classification
JP4434296B1 (en) * 2008-09-05 2010-03-17 トヨタ自動車株式会社 Object detection device
EP2204670B1 (en) 2008-12-23 2014-06-11 Sony Corporation Adaptive sensing system
DE102011006554A1 (en) * 2011-03-31 2012-10-04 Robert Bosch Gmbh Method and apparatus for providing a signal to a lighting control unit
KR101632471B1 (en) * 2013-04-02 2016-06-21 마크 리소시스, 인코포레이티드 Radar system for continuous tracking of multiple objects
CN109643480A (en) * 2016-07-22 2019-04-16 路晟(上海)科技有限公司 Security system and method
US11531099B2 (en) * 2017-01-23 2022-12-20 Ohio University System and method for detection and reporting of targets with data links
KR102391205B1 (en) * 2018-03-20 2022-04-27 주식회사 에이치엘클레무브 Apparatus for estimating distance based object detection

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2458820A1 (en) * 1979-06-13 1981-01-02 Thomson Csf REMOTE ACQUISITION DEVICE IN A RADAR SYSTEM
NL8300178A (en) * 1983-01-18 1984-08-16 Hollandse Signaalapparaten Bv PULSE RADAR DEVICE.
JP2563509B2 (en) * 1988-08-29 1996-12-11 沖電気工業株式会社 False image remover for radar
EP0528077A1 (en) 1991-08-20 1993-02-24 Selbourne Limited Airborne radar system with a camera for tracking low flying objects
US5479173A (en) * 1993-03-08 1995-12-26 Mazda Motor Corporation Obstacle sensing apparatus for vehicles
US6225955B1 (en) * 1995-06-30 2001-05-01 The United States Of America As Represented By The Secretary Of The Army Dual-mode, common-aperture antenna system
FI960162A0 (en) * 1996-01-12 1996-01-12 Jouko Rautanen Anlaeggning och foerfarande Foer personbevakning pao vidstaeckta omraoden, i synnerhet utomhus
DE19630717A1 (en) * 1996-07-30 1998-02-05 Daimler Benz Aerospace Ag Method for detecting a target and arrangement for carrying out the method
FR2791437B1 (en) 1999-03-25 2001-06-08 Rafaut & Cie METHOD AND DEVICE FOR ALLOWING A PILOT TO RECOGNIZE A FLYING OBJECT DETECTED BY ITS ON-BOARD RADAR
DE10120537C2 (en) * 2001-04-26 2003-12-18 Eads Deutschland Gmbh Method for recognizing and identifying objects using a plurality of sensors present in an aircraft
JP2004117071A (en) * 2002-09-24 2004-04-15 Fuji Heavy Ind Ltd Vehicle surroundings monitoring apparatus and traveling control system incorporating the same
NL1023016C2 (en) * 2003-03-25 2004-09-30 Tno Detection system, method for detecting objects and computer program therefor.
JP4214841B2 (en) * 2003-06-11 2009-01-28 株式会社デンソー Ambient situation recognition system
JP4123138B2 (en) * 2003-11-21 2008-07-23 株式会社日立製作所 Vehicle detection method and vehicle detection device
JP2005215964A (en) * 2004-01-29 2005-08-11 Alpine Electronics Inc Other vehicle detection device and other vehicle detection method
JP2005216200A (en) * 2004-02-02 2005-08-11 Alpine Electronics Inc Other vehicle detecting apparatus and method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2881320A1 (en) * 2013-11-19 2015-06-10 Goodrich Corporation Rotating window and radome for surveillance pod
US9575169B2 (en) 2013-11-19 2017-02-21 Goodrich Corporation Rotating window and radome for surveillance pod

Also Published As

Publication number Publication date
WO2004086083A1 (en) 2004-10-07
JP2006521557A (en) 2006-09-21
NL1023016C2 (en) 2004-09-30
KR20060003871A (en) 2006-01-11
EP1606649A1 (en) 2005-12-21
CA2520091C (en) 2013-06-25
US7710310B2 (en) 2010-05-04
US20070057837A1 (en) 2007-03-15

Similar Documents

Publication Publication Date Title
US9520040B2 (en) System and method for real-time 3-D object tracking and alerting via networked sensors
KR101686054B1 (en) Position determining method, machine-readable carrier, measuring device and measuring system for determining the spatial position of an auxiliary measuring instrument
CN110097726B (en) Method and system for monitoring target in precautionary area
EP3452848B1 (en) Monitoring method using a camera system with an area movement detection
US20100013917A1 (en) Method and system for performing surveillance
US20060139164A1 (en) Composite intrusion detection sensor
CN104902246A (en) Video monitoring method and device
TW200903379A (en) Automatic camera calibration and geo-registration using objects that provide positional information
US10460585B2 (en) RFID directed video snapshots capturing targets of interest
CA2520091C (en) Detection system, method for detecting objects and computer program therefor
CN107360394A (en) More preset point dynamic and intelligent monitoring methods applied to frontier defense video monitoring system
GB2555836A (en) Systems and methods for detecting flying animals
JP7128577B2 (en) monitoring device
WO2020105527A1 (en) Image analysis device, image analysis system, and control program
WO2021106197A1 (en) Object recognition device and object recognition method
CN112859069A (en) Radar security monitoring method and system
JP7176868B2 (en) monitoring device
US20230323723A1 (en) Automatic door with radar sensing
US11678058B2 (en) Method and system for providing intelligent control by using radar security camera
CN114966714A (en) Window occlusion detection method and device
JP7141842B2 (en) monitoring device
JP2017181101A (en) Target object detection unit
EP3510573B1 (en) Video surveillance apparatus and method
Dulski et al. Data fusion used in multispectral system for critical protection
KR102449965B1 (en) Smart radar system capable of people counting and tracking

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed

Effective date: 20150325