CA2522755A1 - Acoustic blood analyzer for assessing blood properties - Google Patents

Acoustic blood analyzer for assessing blood properties Download PDF

Info

Publication number
CA2522755A1
CA2522755A1 CA002522755A CA2522755A CA2522755A1 CA 2522755 A1 CA2522755 A1 CA 2522755A1 CA 002522755 A CA002522755 A CA 002522755A CA 2522755 A CA2522755 A CA 2522755A CA 2522755 A1 CA2522755 A1 CA 2522755A1
Authority
CA
Canada
Prior art keywords
blood
acoustic
sensor
analyzer
sensors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002522755A
Other languages
French (fr)
Inventor
Ryszard M. Lec
Yasha J. Kresh
David M. Wootton
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Drexel University
Original Assignee
Drexel University
Ryszard M. Lec
Yasha J. Kresh
David M. Wootton
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Drexel University, Ryszard M. Lec, Yasha J. Kresh, David M. Wootton filed Critical Drexel University
Publication of CA2522755A1 publication Critical patent/CA2522755A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/49Blood
    • G01N33/4905Determining clotting time of blood
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/12Diagnosis using ultrasonic, sonic or infrasonic waves in body cavities or body tracts, e.g. by using catheters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/02Analysing fluids
    • G01N29/022Fluid sensors based on microsensors, e.g. quartz crystal-microbalance [QCM], surface acoustic wave [SAW] devices, tuning forks, cantilevers, flexural plate wave [FPW] devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/02028Determining haemodynamic parameters not otherwise provided for, e.g. cardiac contractility or left ventricular ejection fraction
    • A61B5/02035Determining blood viscosity
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/485Diagnostic techniques involving measuring strain or elastic properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/024Mixtures
    • G01N2291/02466Biological material, e.g. blood

Abstract

An acoustic blood analyzer with a transducer section of acoustic biosensors for measurement of blood properties including, but not limited to blood coagulation, platelet function and various blood disorders in a blood sample is provided. Methods for use of the blood analyzer in measurement of blood properties are also provided.

Description

ACOUSTIC BLOOD ANALYZER FOR ASSESSING BLOOD PROPERTIES
Field of the Invention An acousto-mechanical blood analyzer, also referred to herein as an acoustic blood analyzer, is provided with. a point-of-care and self-test clotting sensor that measures multiple blood properties including, but not limited to, blood coagulation and platelet function. The acousto-mechanical blood analyzer comprises a transducer section of one or more acoustic sensors. Preferably the acoustic sensor or sensor further comprises a bioactive surface or coating which promotes specific blood-sensor interactions.
The analyzer also preferably further comprises a blood sampling means, a fluidic section to deliver and distribute a blood sample to the acoustic sensor or sensors, an electronic section means, which excites the acoustic sensor or sensors and detects changes in the operational parameters of the transducer section, and a packaging section or housing which provides mechanical and functional integrity to the transducer, fluidic, and electronic section means of the analyzer. This packaging section also provides an interface for the analyzer with analytical laboratory systems and computer based data processing, storage and display systems. Methods for using the acoustic blood analyzer to measure blood properties including, but not limited to, blood coagulation and platelet function are also provided. The analyzer and methods of the present invention are particularly useful in identifying, diagnosing, and monitoring subjects at high risk for blood clots and excessive bleeding.
Background of the Invention Thrombotic disease is considered to be a major health problem affecting millions of patients in the United States alone and its manifestations cause significant morbidity and mortality. Estimates of incidence vary because many of the events go unnoticed, including the fatal ones. In particular, as many as 2,000,000 Americans each year suffer from deep vein thrombosis (clots) in one form or another.
Approximately half of these incidences occur in surgical patients or individuals with cancer, other illnesses or trauma while the other half occurs for no known reasons.
Surgical procedures in general predispose patients to risk of developing blood clots that may result in life-threatening clinical conditions, including deep vein thrombosis (DVT), pulmonary embolism (PE) or stroke.
Procedures in which such risks are especially high include cardio-pulmonary bypass surgery (CPB), coronary artery bypass grafting (CABG), gynecological procedures, neurosurgery, orthopedic surgery, percutaneous transluminal coronary angioplasty (PTCA), and posttrauma reconstructive surgery (Geerts, W.H. Semin Thromb. Hemost. 1996 22(2):19-24; Poller, L. and Hirsh, J. "Optimal Therapeutic Ranges for Oral Anticoagulation," in Thrombosis in Cardiovascular Disorders, Fuster V, Verstraete M (eds), Philadelphia, Saunders, pp 161-173, 1992; Ogilby et al. Cath Cardio Diag, 1989 18:206-209 Narins et al. Circulation, 1996 93:667-671). The risk of clotting is relatively high for these operations because they are inherently more invasive and expose the patient's blood to foreign surfaces that can initiate coagulation. To minimize the risks associated with such surgical procedures, patients are placed on anticoagulants (blood thinners). Without appropriate prophylaxis, it is estimated that thrombotic complications would occur in as many as 50o of patients undergoing orthopedic surgery and as many as 250 of patients undergoing other surgeries.
Individuals at particularly high risk for developing blood clots are those who have had them in the past. Clots form most commonly in the legs, but many (>500) travel to the lungs, resulting in pulmonary embolism (which can be fatal) .
New antithrombins and antiplatelet agents are now available to better manage these complex conditions and more efficiently control the thrombotic process. A new generation of oral anticoagulants is also being used extensively in outpatient settings. In the United States, more than 1.5 million people with atrial fibrillation or mechanical heart valves are currently taking some kind of oral anticoagulant to help prevent stroke. A resulting complication of these treatments, however, is often bleeding, which can be severe.
As a result, patient r~zonitoring is critical to ensure appropriate treatment regimens. To ensure that surgical patients receive the correct dose of anticoagulant and antithrombotic agents, each patient's hemostatic status/
ranking before,. during, and after the surgical procedure must be assessed. Importantly, for patients who are placed on long-term oral anticoagulant therapy, additional postdischarge monitoring is of particular value (Hirsh J, Salzman EW, Marder VJ, "Treatment of Thromboembolism," in Hemostasis and Thrombosis: Basic Principles and Clinical Practices (3rd ed), Colman RC, Hirsh J, Marder VJ, et al.
(eds), Philadelphia, Zippincott, pp 1346-1366, 1994).
The traditional coagulation tests have been available for decades. The majority of such tests are functional end-point assays, in which a patient sample (plasma or whole blood) is incubated with exogenous reagents that activate the coagulation cascade, and the time to clot formation is measured. The clotting time of the patient sample is then compared to the clotting time of pooled normal plasma or whole blood to provide a standard measurement of the patient's hemostatic status. These clotting assays are commonly used as screening tests that evaluate the functioning of both the patient's intrinsic and extrinsic coagulation systems (Carville, D.G.M. and Guyer, K.F. IVD
Tech 1998 4 (4) :59-66) .
The Activated Partial Thromboplastin Time Test (APTT) is used to evaluate the intrinsic coagulation pathway, which includes factors I, II, V, VIII, IX, X, XI, and XII. The test is performed using a plasma sample, in which the intrinsic pathway is activated by the addition of phospholipid, an activator (ellagic acid, kaolin, or micronized silica), and Ca2+. Formation of the Xase and prothrombinase complexes on the surface of the phospholipid enables prothrombin to be converted into thrombin, with subsequent clot formation. The result of the APTT test is the time (in seconds) required for this reaction. APTT is used to assess the overall competence of a patient's coagulation system, as a preoperative screening test for bleeding tendencies, and as a routine test for monitoring heparin therapy.
The Activated Clotting Time Test (ACT) is a screening test that resembles the activated partial thromboplastin time (APTT) test, but is performed using fresh whole blood samples. ACT is used primarily to monitor a patient's coagulation status in connection with "invasive" procedures that involve the administration of high doses of heparin (e. g., CPB and PTCA). It is important to monitor a patient's response to heparin during such procedures because under dosing can result in pathological thrombus formation, whereas overdosing can lead to serious hemorrhagic complications.
The Prothrombin Time Test (PT) was first described in the mid 1930x. The PT test measures the tissue factor-induced coagulation time of blood or plasma. It is used as a screening test to evaluate the integrity of the extrinsic coagulation pathway, and is sensitive to coagulation factors I, II, V, VII, and X. The test is performed by adding thromboplastin and Ca~+ to a patient sample and measuring the 5 time for clot formation. A prolonged clotting time suggests the presence of an inhibitor to, or a deficiency in, one or more of the coagulation factors of the extrinsic pathway.
But PT clotting time can also be prolonged for patients on warfarin therapy, or for those with vitamin K deficiency or liver dysfunction. The PT test can provide an assessment of the extrinsic coagulation pathway, and is widely used to monitor oral anticoagulation therapy.
The Thrombin Clotting Time Test (TCT) measures the rate of a patient's clot formation compared to that of a normal plasma control. The test is performed by adding a standard amount of thrombin to a patient's plasma that has been depleted of platelets, and measuring the time required for a clot to form. This test has been used as an aid in the diagnosis of disseminated intravascular coagulation (DIC) and liver disease.
These traditional coagulation tests are all generally performed in a central laboratory, and not in near-patient settings or by self-testing.
Beyond the commonly used test for screening, there are a number of more complex tests that may be used in the diagnosis of a patient's coagulative status. The assays enable clinicians to reduce the number of possible explanations for a prolonged clotting time found in screening assays such as APTT, PT, and TCT.
One such test is a clotting assay for factor VIIa, which has found utility in monitoring patients with severe factor IX deficiency. The level of factor VIIa in these patients has been reported to be less than 100 of the level found in healthy control subjects.
An assay for factor VIII is useful as a diagnostic test for classical hemophilia.
An assay is also available for measuring the level of the activation peptide factor IXa or the factor IXa-antithrombin III complex. These measurements are used to determine the levels of factor IXa or factor VII-tissue mediated complex. Patients with congenital deficiencies of factor VII may be monitored with this test.
Assays for activated protein C resistance, antithrombin, protein C deficiency, and protein S deficiency are also available. Asymptomatic individuals who have heterogeneous deficiencies of proteins C and S, and resistance to activated protein C, have significantly elevated levels of the prothrombin fragment F1.2 compared to controls.
More recently, immunochemical assays have been developed that characterize a patient's hemostatic status by determining the concentration of peptides, proteins, and factors of the coagulation cascade found in the patient's sample.
In addition to the factors of the coagulation cascade, platelets play an extremely important role in hemostasis.
There is a growing number of antiplatelet agents that are indicated for use in conjunction with anticoagulants. Some of the more common antiplatelet agents include aspirin (a weak antiplatelet agent that affects cyclooxygenase activity during the life of the platelet), clopidogrel and ticlopidine (inhibitors of ADP-mediated activation), and various glycoprotein IIb/IIIa (GPIIb/IIIa) antagonists.
These agents are now recognized as having an extremely important role in the prevention of thromboembolic processes, and the most effective medicines, the GPIIb/IIIa inhibitors, require careful dosing and monitoring to avoid the adverse side effect of hemorrhagic (bleeding) complications. Thus, monitoring of antiplatelet therapy is also of major interest in most clinical settings where invasive procedures are performed.
In addition to clotting time assays which measure the dynamics of various parts of the coagulation cascade, several assays of the physical properties of the clot, which indicate the combined-effects of platelets, fibrin, in concert the coagulation cascade, are available and often used to manage patients in cardiovascular surgery and other critical arenas. The TEG~ Coagulation Analyzer monitors the thrombodynamic properties of blood as it is induced to clot under a low shear environment resembling sluggish venous flow. The patterns of changes in shear elasticity enable the determination of the kinetics of clot formation and growth as well as the strength and stability of the formed clot.
The strength and stability of the clot provide information about the ability of the clot to perform the work of hemostasis, while the kinetics determine the adequacy of qualitative factors available to clot formation. Other physical clotting assays such as the clot rheometer and the sonoclot analyzer have been developed. At this time, physical clotting assays indicate some platelet-related hemostatic deficiencies, but cannot directly assay platelet aggregation or adhesion.
For the majority of patients, laboratory monitoring may not be feasible for a variety of practical reasons.
Consequently, near-patient ("self-test") hemostasis testing technologies have to provide rapid results in both the clinical and in the outpatient settings. These technologies when fully developed will make significant impact on the choice of therapeutic interventions, patient follow-up and management strategy.
Advances made in microfabrication technologies, inexpensive signal processing systems, and the progress in design of biological sensing interfaces have made possible g the development of a variety of new biosensors. One of the emerging applications in the delivery of health care is what is becoming known as near-patient or personalized medicine.
For example, there is an increasing use of personal monitoring devices such as glucose sensors for diabetics and for HIV detection.
Near-patient (self administered) tests using novel analyzers that boast microvolume test capabilities for blood coagulation have been described. Such tests have been promoted for use in both acute areas of the hospital and by outpatients (e. g., on warfarin therapy) who do not have easy access to a central coagulation laboratory. Patients must be specifically trained, however, to perform the currently available prothrombin time (PT) self-testing at home.
Accordingly, the suitability and accuracy of such advanced technologies for assessing the adequacy of a patient's hemostatic system remains a concerns because of the potential for active surface-to-volume effects when small samples are employed, the complexity of the medium being tested (i.e., blood), and the effects that sample processing can have on both the coagulation and thrombotic pathways.
A number of patents describe coagulation measurement using a variety of methods and devices.
For example, U.S. Patent 5,110,727 and 4,849,340, disclose a commercial point-of-care system referred to as TAS (Thrombolytic Assessment System). The TAS system uses paramagnetic iron oxide particles (PIOP)/dry chemistry technology. It is based on near-infrared sensing of the motion of PIOP contained in a dry reagent situated as a film on the surface of a flat-capillary reaction chamber mounted on a plastic test card. The PIOP are subjected to an oscillating magnetic field generated by the instrument in which the test card is placed. When blood or plasma is added to a sample well of the test card, the sample enters the reaction chamber, reconstituting the reagent and freeing the PIOP so that they can move in response to changes in the magnetic field with time. The PIOP motion changes when an in vitro thrombus forms. This change results from PIOP
entrapment during fibrin polymerization or release during fibrinolysis, providing a kinetic response curve from which the analyzer determines clotting time and a parameter characterizing fibrinolysis process. The TAS system is used commercially in several products.
U.S. Patent 3,695,842 describes a precision magnet in a reagent-containing test tube for measurement of clot formation. When the test tube is filled with sample and inserted in a test well containing a magnetic detector, the tube slowly rotates. When the clot begins to form, a change in the position of the magnet is detected.
U.S. Patent 5,372,946 discloses a disposable cuvette within which is formed a capillary conduit having at least one restricted region for measurement of clot formation. In this device, blood is forced to flow through the restricted region back and forth within a test channel. Two photo-optical detectors are used to measure the speed of sample movement. This patent sets forth the basis for the ProTime microcoagulation system.
U.S. Patent 4,756,884 discloses a technology developed by Biotrack based on optical measurement of a speckle pattern from cells or particles from a sample illuminated by coherent light and flowing in a long capillary track of a plastic reagent-containing cartridge. When clotting occurs, the speckle pattern measurement indicates cessation of flow in the capillary track.
U.S. Patent 4,599,219 discloses a cylindrical plastic cartridge with a plunger assembly terminating in a "flag" at one end and a "daisy" at the other end. The plunger, situated in a reaction chamber above a reagent chamber, is moved by an external mechanical actuator. Flag movement through the clot reaction chamber is timed by a photo-optical detector, the end point being established when fibrin forms on the daisy and slows the plunger movement.
5 This patent sets forth the basis for the Medtronic ACT-II
and HepconHMS coagulation assays.
U.S. Patent 5,167,145 describes a technology for measuring clot formation, which uses infrared electromagnetic energy. Infrared electromagnetic 10 transmission changes through a sample from a source of infrared energy to suitable detection electronics producing a peak signal representing the clotting time.
U.S. Patent 5,601,995 discloses a method where a blood sample is applied to a porous sheet and at least one of a spreading extent and a spreading rate are measured by either an optical property, or an electrical potential across the porous sheet to determine the propensity of the sample to coagulate.
U.S. Patent 5,418,143 discloses a method for detecting clot formation in a whole blood sample using a test strip comprising a porous membrane having a coagulation initiator and a substrate impregnated therein. The substrate is activated by thrombin, and produces a detectable fluorescent signal as the output.
U.S. Patent 6,200,532 discloses several technologies applied to point-of-care blood clot measurement, based on motion of a magnetically excited "bender" which deforms the blood sample. The bender motion is detected by .
piezoelectric or optical means. This patent also describes sample handling, reagent mixing, packaging, and the use of microporous membranes to separate plasma from blood cells for conducting plasma assays. Use of a piezoelectric transducer to measure changes to an electromagnetic wave in the coagulating blood sample is also described.

However, these above-described methods and devices have disadvantages in their complexity resulting from the use of two or more distinct mechanisms to probe or perturb the clotting blood, and to measure the response of the clot.
Further, they lack specificity, in that they can only measure coagulation or platelet aggregation in bulk and/or in response to bulk stimulants. In addition, many of these devices do not differentiate between clots of differing mechanical properties, and those methods that do (e. g. TEG) are expensive, cumbersome and require specialized training and large blood sample volumes.
Thus, there is a need for better near-patient /self-test assays capable of accurate and timely platelet-function testing as well as analysis of the coagulation status of blood. The optimal near-patient/self test coagulation analyzer will be of small size and light weight for portability, capable of achieving physiological temperatures (37°C), and easy to use and requiring no specialized training. This analyzer is preferably capable of producing rapid quantitative results to local as well as remote sites using reagents that have been standardized to provide international normalized ratios. The analyzer must require only small sample sizes of whole blood. Preferably, components of the analyzer contacting the patient sample are disposable and the entire equipment and operating costs for the analyzer are relatively low.
Summary of the Invention An object of the present invention is to provide an acoustic blood analyzer with a point-of-care and self-test clotting sensor that measures blood properties including, but in no way limited to, coagulation and platelet function.
In simplest form, the acoustic blood analyzer comprises a transducer section of one or more acoustic sensors, preferably piezoelectric, electrostrictive, magnetostrictive, acoustooptic or thermo(piro) acoustic biosensors or a combination thereof, more preferably piezoelectric biosensors. In a preferred embodiment acoustic sensors of the transducer section further comprise a bioactive surface or coating which promotes specific blood-sensor interactions. Also preferred is that the acoustic blood analyzer further comprise a blood sampling means to obtain a blood sample, a fluidic section to deliver and distribute a blood sample to the acoustic sensor or sensors; an electronic section means which excites the sensor or sensors and detects changes in the operational parameters of the transducer section; and a packaging section or housing which provides mechanical and functional integrity to the transducer, fluidic and electronic section means of the analyzer as well as an interface for the analyzer with analytical laboratory systems and computer based data processing, storage and display systems.
Another object of the present invention is to provide a method for measuring blood properties including, but in no way limited to, coagulation and platelet function in a blood sample of a subject which comprises analyzing the blood sample in this acoustic blood analyzer. Qualitative as well as quantitative blood properties can be measured with the acoustic blood analyzer of the present invention. Further, use of the acoustic blood analyzer allows for relationships between the acoustic sensor electrical parameters and blood properties and their time characteristics to be identified.
Another object of the present invention is to provide a method for identifying, diagnosing and monitoring subjects at high risk for blood clots and excessive bleeding which comprises obtaining a blood sample from a subject and analyzing the blood sample in this acoustic blood analyzer.
For purposes of monitoring subjects, sampling and analysis may be performed on a~periodic basis depending upon the condition and the severity of the condition in the subject.
Yet another object of the present invention is to provide a method of using different vibrational modes of acoustic sensors including, but not limited to shear, torsional, and compressional modes and combinations thereof to characterize blood properties.
Brief De~cripti~n of the Figaxre~
Figures 1A through 1D provide data from the 3rd harmonic of a 5 MHz sensor, penetration depth approximately 150 nm.
Figure 1A shows a shear wave sensor schematic.
Figure 1B shows the change in attenuation (Doc) during platelet adhesion (1 - 5 minutes) and clotting (5 - 25 minutes for "Clot" trace).
Figure 1C shows the dynamics of attenuation change are delayed when clotting is prolonged.
Figure 1D is a linegraph wherein showing the ~a vs.
time slope 'to be zero when time is equal to clotting time (time/clotting time = 1).
Figure 2 is a general diagram of a preferred embodiment of an acousto-mechanical blood biosensor system of the present invention.
Figure 3A and 3B show governing equations and a deformation wave diagram of a TSM transducer exposed on one side to water loading. Figure 3A shows a sensor operating at the fundamental frequency. Figure 3B shows a sensor operating at the fundamental frequency and higher harmonics.
Figure 4 provides a schematic representation of the acoustic blood analyzer sensing process.
Figure 5A and 5B provide a schematic model of a piezoelectric sensor with two acoustic ports and one electric port (Figure 5A), and its electric equivalent circuit representation (Figure 5B).

Detailed Description of the Invention Clinical hemostasis tests are crucial to millions of patients, who are medicated with anticoagulants and antiplatelet agents. Approximately 12 million patients who undergo surgical procedures require intraoperative or postoperative anticoagulation to reduce risks of thrombosis or stroke. Another 1.5 million patients with atrial fibrillation or prosthetic heart valves take oral anticoagulants to prevent thrombosis and stroke. While these drugs are beneficial, antithrombotic agents can also cause excessive bleeding (Levine, M. N. and J. Hirsch (1992). Hemorrhagic Complications of Long-Term Antithrombotic Treatment. Thrombosis in Cardiovascular Disorders. V. Fuster and M. Verstraete. Philadelphia, Saunders: 515-522), and tests of clotting time are required to determine proper dosing. Most of these tests are performed in a clinical lab, rather than at the point of care or at a patient's home (~~self-test"). Patients undergoing cardiopulmonary bypass or receiving artificial blood pump implants are especially difficult to manage with traditional clotting tests (Gravlee et al. Ann Thorac Surg 1994 58(1): 216-21). The ideal hemostasis assay for such patients, the Thromboelastograph (TEG) (Shore-Lesserson et al. Anesth Analg 1999 88(2): 312-9) measures time and clot mechanical stiffness. However, TEG is difficult to use and not suitable for self-testing. Platelet function assays, that serve to differentiate platelet related bleeding problems from coagulation defects, are also costly and require specialized technician training.
The present invention provides an acousto-mechanical blood analyzer, also referred to herein as an acoustic blood analyzer or ABA, for near patient/self testing which provides accurate and timely platelet-function testing as well as analysis of the coagulation status of blood and other blood properties.
By the term "blood property" or "blood properties" as used herein it is meant to include physical, biological 5 and/or biochemical characteristics of a blood sample.
Examples include, but are in no way limited to, density, elasticity, viscosity, clot stiffness, platelet concentration, platelet activation, platelet receptor activities, GPIIb/IIIa function, GPIb function, GPIa/IIa 10 function, blood hemostatic factor concentration, bleeding time, activated clotting time, activated partial thromboplastin time, prothrombin time, thrombin time, Fibrinogen, factor VIII deficiency, von Willebrand factor, tissue factor, specific drug concentration, or therapeutic 15 effects of anticoagulation and antiplatelet or thrombin inhibitor drug activities. Further, by blood properties it is meant to be inclusive of characteristics which can be determined by measuring interactions of native or intrinsic components of a blood sample such as, but not limited to cells, proteins, DNAs, or enzymes in the blood or derived from the blood, as well as interactions of extrinsic or foreign components such as, but not limited to, drugs, viruses or bacteria in the blood or derived from the blood.
In simplest form, the acoustic blood analyzer comprises a transducer section of one or more acoustic sensors, preferably piezoelectric, electrostrictive, magnetostrictive, acoustooptic or thermo(piro) acoustic biosensors or a combination thereof.
Of these acoustic sensors useful in the present invention, electrostrictive, acoustooptic, and piezoelectric wave transducer modalities have emerged as some of the more promising biosensor technologies. Biosensor development is in large part dependent upon technologies primarily developed for other (e. g. industrial, aerospace, military) purposes. Silicon-based microfabrication (IC) and micromechanical (MEMS) techniques have been successfully applied in fabrication of wide range of miniature electrochemical biosensors. Similarly, progress in optically-based biosensors has its roots in fiber optics and devices designed for fiberoptic communication. In particular, piezoelectric biosensors are the benefactors of decades-long growth in RF telecommunication technologies.
~ther types of biosensors based on calorimetric or thermo(piro) acoustic, and magnetic magnetostrictive, techniques, among others, have benefited immensely from modern IC and MEMS research and development. Among all these innovative technologies, piezoelectric techniques offer the broadest range of sensing mechanisms, with low cost and high reliability and thus are preferred at this time for use in the present invention.
In general, however, these acousto-mechanical sensors function by utilizing different types of acoustic waves to "interrogate" the entity being measured, i.e., the measurand. By the term "interrogate" or "interrogates" it is meant that the acoustic sensor generates waves that penetrate the blood sample over some controlled penetration distance or depth into the sample, as measured from the sensor-sample interface (as illustrated in figures 1A and 3). The physical properties of the interrogated sample residing within the wave penetration distance will isolate specific blood sample features and give rise to characteristic signatures as detected by the ABA sensor. By exciting the sensor over a broad range of frequencies, ranging from a single KHz to several GHz, the sensor interrogates the sample over a range of distances from nanometers to centimeters from a surface of the acoustic sensor thus providing multiple measurements for a single blood sample. The acoustic waves can be generated and received by a variety of means, including piezoelectric, magnetostrictive, magnetostrictive, acoustooptic and thermo(piro) acoustic (Lec R.M., and Lewin P.A., Proceedings of 20th Annual IEEE Engineering in Medicine and Biology Society, 1998.20(6): p2785-2790) techniques as well as electrostrictive techniques. Currently, from an engineering point of view, piezoelectric transducer technology offers the most efficient, inexpensive and integrated-circuit (IC) compatible way of generating of acoustic waves. Further, there are many available materials for manufacturing piezoelectric transducers including crystals, composites and hybrid structures, which provide a wide range of possible sensing material design options.
Piezoelectric transducers deliver mechanical forces to a biological medium usually in the form of progressive or standing acoustic waves. Several different types of acoustic waves can be used for the purposes of sensing biological phenomena. Knowledge of their properties is important for the selection of the optimal acoustic wave for a given biomeasurand. Acoustic waves can be considered a source of distributed force acting on a medium. The resultant deformation force acting on the medium can give rise to compression, torsional, or shear imposed forces, or a combination thereof. The type of the imposed deformation accompanying the wave is important because it determines the resultant acoustic sensing processes. For example, compressional deformation is associated with structural relaxational processes of the medium, while shear is associated with the medium viscoelastic properties, making it sensitive to different molecular processes (Matheson, A.J. °°Molecular Acoustic", Wiley-Interscience, New York, 1971; Bathia, A.B °°Ultrasonics Absorption", Clarendon, London (1967)). Compressional deformations are easily transmitted through any gaseous, liquid or solid media.

Shear deformation, on the other hand, propagates only through solids, and penetrates only to a limited depth into liquid and gases. This latter feature is particularly advantageous, because it makes shear waves sensitive to numerous interfacial phenomena. The shear mode is therefore utilized by many acoustic wave biosensors. The wave penetration depth, which depends on the frequency of tYie wave and the density and viscoelastic properties of the medium, ranges from microns to nanometers. Consequently, the required sample volumes for sensing are small, and the sensitivity of the sensor is relatively high. In addition to mechanical phenomena, acoustic wave sensors can sense electrical properties of a medium. Electric field probing of a medium is either generated by acoustic wave displacement (via piezoelectric effect) or is transduced by the sensor electrode structure.~Electrical parameters measurable with the acoustic sensors include, but are not limited to, transfer function, frequency, amplitude, phase and quality factor. Thus, acoustic wave sensing mechanisms are robust, capable of measuring the changes in, for example, mass/density, elastic modulus, viscosity, electrical conductivity and dielectric constant.
Acoustic waves usually are generated by an electric section means such as an AC voltage applied to the acoustic sensor or sensors attached to the surface of, for example a piezoelectric substrate, of the transducer section. These propagated waves can be classified as bulk or surface generated waves. For piezoelectric sensors, the bulk generated waves are usually excited by metalized bulk piezoelectric elements such as disks or rods, whereas the surface generated acoustic waves are excited by an interdigital system of metallic electrodes (IDT) placed on the surface of piezoelectric materials. The electrodes are used to connect the transducer with electronic circuitry for the excitation and/or reception of acoustic waves. Two of the most common configurations of piezoelectric transducers are the thin metalized disk and the interdigital transducer (IDT). The thin metalized disk generates bulk waves, which excite Thickness Shear Modes (TSM). The interdigital transducer (IDT) excites Surface Rayleigh Wave (SRW), Surface Transverse Wave (STW), Shear-Horizontal Acoustic Plate Mode (SH-APM), and Flexural Plate Wave (FPW). The STWs form a large family of waves including Shear Horizontal SAW (SH-SAW), Surface Skimming Bulk Wave (SSBW), and Love wave modes (Josse et al., On The Mass Sensitivity of Acoustic-Plate-Mode sensors, Sensors and Actuators A, vo1.53, 1996, pp.243-248).
In the acoustic blood analyzer of the present invention, the transducer section may comprise a single acoustic sensor, two acoustic sensors, particularly for embodiments wherein measurements are compared to reference sample, or an array of acoustic sensors comprising either a single sensor type selected from piezoelectric, electrostrictive, magnetostrictive, acoustooptic or thermo(piro) acoustic sensors or a combination thereof.
Arrays may also be divided into a sample area and a reference area for embodiments wherein measurements are compared to a reference. Use of an array of sensors in the transducer section improves ABA performance and allows for simultaneous detection of several blood properties.
Preferably, the acoustic sensor or sensors of the transducer section is designed to generate a plurality of propagated waves consisting of either pure shear wave, combinations of shear waves, or a combination of compressional (longitudinal) and shear waves. Torsional waves can also be measured. Various geometrical configurations of the transducer section can be used including, but not limited to, plates, disks, cylinders, tubes, rods, and bars that can be made to operate individually or in combinations such as in multi-fork structures and multiplate-arrangements.
Piezoelectric nanobiosensors have broad potential to improve hemostasis testing. As shown in Figure 1A, a shear 5 mode sensor applies shear deformation to a blood sample, to a nano- or micro-scale depth controlled by sensor frequency.
As the blood coagulates on the sensor, its mechanical properties (elasticity and viscosity) change, resulting in measurable changes in the sensor natural frequency and power 10 attenuation. Because the sensor measures changes in clot mechanics, it has the diagnostic advantages of the TEG.
When operated at high frequency, the sensor is sensitive to nanoscale cellular and subcellular processes, such as platelet adhesion (Lec, R. M. (2001). Piezoelectric 15 Biosensors: Recent Advances and Medical Applications. IEEE
International Frequency Control Symposium, Seattle, WA, IEEE). These biosensors for the acoustic blood analyzer operate in shear wave mode (1 MHz - 50MHz) and combined shear/compression mode (100-500 kHz).
20 Piezoelectric materials such as quartz crystals, SiO~, lithium niobiate (LiNb03), lithium tantalate (LiTa03), langasites and piezoelectric ceramics and electrically active polymers can be used to make acousto-mechanical transducers. These materials exhibit a rich spectrum of electro-acoustic properties such as temperature and stress compensation and strong piezoelectric properties. These materials also have outstanding mechanical properties, are chemically stable, and operate at elevated temperatures.
In a preferred embodiment, an array of high frequency sensors, preferably fabricated of AT-cut quartz crystal, and low frequency sensors, preferably made with PZT-5A
piezoelectric ceramic are used. Also preferred is an embodiment, wherein the excitation section means is capable of exciting the acoustic sensors over a broad range of frequencies ranging from a single KHz to several GHz at discrete frequencies or simultaneously at all frequencies.
In embodiments where the electronic means has the capability of excitation of the acoustic sensor at discrete frequencies, these discrete frequencies may comprise resonant, antiresonant, harmonic and/or enharmonic frequencies. With this frequency range the sensors are able to interrogate clot properties at depths ranging from hundreds of manometers to tens of microns. The sensor can monitor clotting in static or flowing blood.
In static clotting assays, a blood sample is placed on the surface of the sensor. The sensor resonant frequency, attenuation, and phase is monitored using a Network Analyzer for a selected group of harmonics as a function of time. As a result the kinetics and the signatures of targeted processes can be determined. It is expected that the signatures will be unique for a given targeted blood process and will provide important biochemical information.
In a preferred embodiment, the acoustic sensor further comprises a bioactive surface or coating which promotes specific cell-sensor and blood sensor interactions. Such bioactive surfaces or coatings are selected in accordance with the blood property to be measured to promote specific interactions with native or intrinsic blood components including, but not limited to, cells, proteins, DNA, or enzymes or foreign or extrinsic blood components including but not limited to, drugs, viruses, or bacteria specific to the blood property being measured. Dedicated (bio)functionalized surfaces of acoustic sensors of the transducer section improves ABA performance and allows for detection of several blood properties A preferred design for an acousto-mechanical blood analyzer of the present invention is depicted in Figure 2 and further comprises a fluidic section, an electronic section means and a packaging section or housing for integrating the transducer section with fluidic section and the electrical section means. Also preferred are analyzers of the present invention comprising an integrated blood sampling means.
The fluidic section of the acoustic blood analyzer is an interconnected two-dimensional or three-dimensional structure formed by the transducers that employs a microfluidic system to deliver and distribute blood samples to the sensor testing areas of the transducer section. The sensor testing areas of the transducer section are the regions close to the surface of the sensors. These areas are designed in various geometries such as cylinders or cones which are appropriate for confining blood samples at the transducer surface and maintaining its measurement integrity. The microfluidic system of the analyzer of the present invention utilizes microchannels, pumping, capillarity and/or mixing for handling blood and for creating programmable blood flow conditions. Preferably the microfluidic system or circuit utilizes programmable acoustic waves to propel the blood sample along the surface of the biosensors. Thus, the fluidic section means of the acoustic blood analyzer of the present invention has the capability of delivering blood to the acoustic transducers utilizing forces inclusive or, but not limited to, electrical, mechanical and thermal forces as well as gravitational, electrophoresis, capillary and/or magnetic forces. In addition to moving the blood sample, the fluidics section of the present invention may also mix and/or heat the blood sample to a selected temperature.
The electronic section means, also referred to as a signal processing means, of the analyzer excites the sensors of the transducer section into appropriate vibrational modes and detects changes in the operational parameters of the transducers. Vibrational modes useful for characterizing physical, biochemical and/or biological blood properties include, but are not limited to, shear, torsional, and compressional vibrational modes, as well as combinations thereof. The detected changes include variations in the transfer function, the resonant frequency, the resonant amplitude, the phase and the quality factor. Measured changes are processed, related to the targeted blood property, and displayed. Accordingly, the electronic section means comprises a system of accompanying electrical oscillatory circuits in which resonant transducer structures control their frequency, phase and the amplitude. The electronic section means used in the acoustic analyzer must be capable of excitation of the one or more acoustic sensors of the transducer section over a frequency range of a single KHz to several GHz. Excitation may be performed at discrete frequencies or simultaneously at all frequencies. When excitation is performed at discrete frequencies, these frequencies may comprise resonant, antiresonant, harmonic and/or anharmonic frequencies of the first and/or higher orders. Exemplary electronic measurement systems useful in the present invention include, but are not limited to, oscillators, phase-lock loops, vector voltmeters, sing-around circuits, network analyzers and spectrum analyzers.
The packaging section of the analyzer comprises a housing that provides mechanical and functional integrity to the transducer section, the fluidic section and the signal processing means. The packing section also provides an interface for the analyzer with analytical laboratory systems as well as computer based data processing, storage and display systems.
Some embodiments of the analyzer of the present invention may further comprise a blood sampling means integrated into the analyzer for obtaining a drop of blood from a subject. Any well-known blood collection unit can be integrated into the analyzer. Examples include, but are in no way limited to a needle, a MEMS based micro-pricking system, or a finger stick/prick collection means.
The fundamental principles of operation of the acoustic sensor or sensors used in the acoustic blood analyzer of the present invention can be inferred by following its active sensing pathway. Blood is introduced to the acoustic sensor or sensors using a blood sample collection device either separate from, or more preferably integrated in stand-alone systems of the present invention or by bringing the acoustic blood analyzer to the patient, as with other "near-patient"
or indwelling biosensor probes. Accordingly, the present invention also relates to devices for measuring blood properties in the body of a subject comprising the acoustic blood analyzer of the present invention integrated into a catheter to be inserted in the body of the subject. Various configurations for stand-alone and integrated ABA systems can be used including, but not limited to, a flow-through system, a dipstick, a smart syringe or integrated in an extracorporeal blood conduit. The blood is preferably passed through a preprocessing section of the microfluidic mechanism such as a selective membrane interface, which performs an initial filtering of blood constituents.
Thereafter, the blood sample is exposed to a sensing element, preferably a biologically active substance such as collagen or thromboplastin, which is selectively responsive to a measurand of interest such as platelets, blood cells, or a selected protein. When the biomeasurand interacts with the sensing element, microscopic physical, chemical, and/or biochemical changes are produced. These microscopic changes cause the macroscopic physical changes in the biosensing element, which are converted by the acousto-mechanical transducer into a measurable electric signal output. The electric signal is conditioned, processed and displayed. In particular, the processing module can be made to recognize such important sensor features as self-calibration, self-diagnostic and advanced pattern recognition analyses. All of 5 these functional design elements can be encapsulated in the packaging unit that provides measurement integrity to the device.
The blood acousto-mechanical analyzer of the present invention can be used to measure and characterize multiple 10 blood mechanical and acoustic properties excited at fundamental and harmonic frequencies. This allows monitoring the blood properties at different probing depths of the given blood sample ranging from distances of nanometers to centimeters from the surface of the acoustic sensors of the 15 analyzer.
In studies with the analyzer of the present, the whole blood samples exhibited responses which were singular to the frequencies used, thus providing specific signatures corresponding to different blood interfacial processes. This 20 feature of the acoustic blood analyzer sensing technique is unique and very important because it provides telling and interpretation-rich one-dimensional mapping of the interfacial processes and mechanical properties of the media adjacent to the sensor surface. Schematically, the cross-25 sectional sensing interface is depicted in Figure 3, where a graphical representation of a distribution of shear mechanical displacement generated by a acousto-mechanical shear transducer immersed in water is given when the transducer operates at fundamental (Figure 3a) and harmonic (Figure 3b) frequencies. As a general rule, acoustic transducers can effectively "slice" a biological interface at different depths (Figure 3b), hence providing important spatial information.

Using the analyzer of the present invention properties including but not limited to the density, viscosity, elasticity, electric conductivity and dielectric constant of blood can be assessed by the blood-sensing element interface undergoing changes (during the measurement process), which in turn modify the acoustic field quantities of the acoustic wave transducer. Macroscale changes in elastic and visco-elastic properties of blood have been used successfully to monitor and characterize blood clotting in the thromboelastograph (TEG) and the clot rheometer. The acousto-mechanical wave transducer, which consists of an acoustic sensor, preferably a piezoelectric element with an array of metal electrodes, cots as an energy converter which transducts biomeasurands into output electric signal. For example, in the blood piezoelectric sensors a collagen thin film can be deposited as the bioactive agent on the surface of the transducer. When the target measurand, such as platelets, interact with the sensing collagen coated surface, the resultant elasticity, density and viscosity of the film can vary, modifying the acoustic parameters of the sensor and thereby leading to the changes in the output sensor signal. Schematically, the sensing sequence process is depicted in Figure 4.
Since the boundary conditions or the topography of a sensor surface are particularly important and influence sensor response, it is preferred that the acoustic blood analyzer surface be functionalized with programmable properties in order to achieve the requested specificity and sensitivity of the sensors.
Various biofunctionalization strategies for increasing sensor specificity and sensitivity through a bioactive agent on the surface of biosensor can be used.
For example, in one embodiment the sensor is coated with an antibody specific to an unactivated or activated coagulation factor such as factors II, V, VII, VIII, IX, X, IX, or an activated coagulation enzyme complex such as tenase or prothrombinase, or to von Willebrand factor. Such coating will increase the sensor sensitivity to the target factor when the sample is interrogated at the appropriate molecular length scale.
In another embodiment, the sensor surface may coated with a specific activator of a coagulation factor, such as tissue factor, the natural extrinsic activator or coagulation factor VII (see example 5).
In another embod~.ment, the sensor may be coated with fibrillar collagen to increase sensor sensitivity to platelet adhesion and von Willebrand factor adsorption. In the platelet adhesion assay configuration, the blood flow shear rate at the sensor surface may be controlled by the microfluidic circuit design to preferentially measure either function of platelet GPIa/IIa at lower shear rates, or function of GPIb at high shear rates.
In another embodiment, the sensor surface may be coated with fibrinogen to increase sensitivity to platelet activation and GPIIb/IIIa function. Further, platelet activation may be stimulated by addition of agonists including but not limited to ADP, epinephrine, a stable thromboxane analog, or platelet activating factor.
In another embodiment, the sensor surface may be coated with a specific antithrombin or thrombin inhibitor such as PPACK or hirudin to increase sensitivity to thrombin generation at the sensor surface.
In another embodiment, the sensor surface may be coated with a substrate for thrombin or another coagulation cascade activated factor, which may be digested by the factor leading to a sensor attenuation decrease at the time of factor activation.

2~
In another embodiment, the sensor may be coated with phospholipids such as, but not limited to, phosphoryl choline and phosphoryl serine to provide a substrate for coagulation complex (tenase and prothrombinase) assembly and to enhance sensor sensitivity to tenase and prothrombinase.
In yet another embodiment, the sensor is coated with an antibody capable of detecting a selected intrinsic or extrinsic component in the blood. For example, the sensor can be coated with an antibody to a cell specific antigen such as an antigen on the surface of leukemia cells.
An important feature of a piezoelectric sensor is that it can directly measure mechanical/acoustic properties of liquid medium by electrical means. In piezoelectric materials, the electro-acoustic transduction takes place within the material and is almost instantaneous. Therefore, any changes in the liquid are quickly (msec) detected by the sensor. A knowledge of the nature of this sensing process is critical for proper interpretation of the sensor response. When one applies a voltage to the sensor, the sensor creates a shear deformation/displacement at the interface. This deformation is transmitted, via the boundary conditions, to the liquid media such that a stress field is generated at the interface. The parameter that characterizes (captures) that process is the mechanical impedance of the solid-liquid interface. Effectively, the piezoelectric sensor can be modeled as a microdevice that transforms mechanical impedance into electrical impedance as schematically shown in Figure 5A. The electro-mechanical impedance has a resonant property that can be represented in the form of an electric circuit given in Figure 5B. The components of that circuit are functions of the piezoelectric material (Co, Z1, C1 and R1) and the measured media, (Z2 and R2 are related to liquid medium, and Z3 describes mass deposition at the surface). The mathematical expressions are a dependent function of assumed (or measured) properties of the liquid medium. Thus, blood properties are measured by correlating an electrical property of the acoustic sensor utilizing a mathematical solution to the coupled Newton, Maxwell and blood constitutive equations, and the boundary conditions representing an actual sensing process, and whose solutions have a form of mathematical analytical and/or numerical expressions representing the acoustic sensor electrical parameters such as the transfer function, impedance, admittance, quality factor, resonant frequency and its difference, and phase. For example, Newtonian liquids media, e°SL2= RZ=A' (pry) °'s. For viscoelastic media these expressions are more complex. In addition, mass (solid phase) accumulation at the interface can be represented as an another inertial (inductive) component, L3= B ' (pin) .
where A and B are the sensor constants, and cos, is the resonant frequency of the sensor.
In general, different media and processes will be represented by different structures of the electric equivalent circuit representation and by different functional relationships between mechanical parameters and the corresponding electric components. It is important to note that such a circuit representation provides a powerful tool for quantitative interpretation of interfacial phenomena. For example, considering a sensor whose resonant frequency is cosl= (L1C1~-°'s and whose losses are determined by Rl, when immersed in liquid, it can be represented by adding new circuit elements (L2 and R~) to the electrical side of the sensor. The resulting resonant frequency and the associated viscous losses are made manifest by the decrease in resonant frequency c°S2 [ (Li+L2)C1]-o.s and the increase in equivalent resistance Rtot= Rl +R2. Now, if mass (e.g. a few platelets) accumulates at the interface, the frequency will change again because the total inductance increases Ltot= L1 +
Z2 + Z3; however, the "resistive" losses will remain nearly constant. Moreover, if the mass increases and the solid layer thickens (e. g. more platelets), then some viscous 5 losses will start to emerge, and we will observe additional R3 losses. If sample conditions are such that the platelets start to acquire structural stiffness, then the viscous losses will be lower, the frequency will increase, and overall losses will decrease. Importantly, observing the 10 evolution of the sensor response characteristics as a function of time will enable the means to monitor subtle interfacial processes, providing novel insight and interpretation of coagulation biology.
Acoustic blood sensors of the present invention can be 15 fabricated using standard photolithographic and MEMS
technology. Photolithography allows fabrication of complex sensor electrode patterns, and production of multiple sensors from a single substrate. Micromachining technology (MEMS) is used for manufacturing ABA sensors operating at 20 high fundamental frequencies above 100 MHz. The micromachining technology, which combines the photolithographic process and plasma or chemical etching techniques, enables development of complicated mechanical and electrical sensor microstructures from a single 25 substrate. The biological sensing interface is preferably fabricated using adsorption, evaporation, spinning, soft lithography patterning and self-assembly techniques such as described by Andersson, L.I. (Journal of Chromatography B, 2000, 745:3-13) and Kane et al. (Biomaterials, 1999.20:2363-30 2376). In embodiments of mass scale biosensor manufacturing process steps for a biological film attachment are integrated with the piezoelectric and electronic fabrication steps.

Use of the acoustic blood analyzer enables a broad range of medical services at a patient's home using a variety of systems that employ a personal computer and web-based guided access to the Internet. One can envision a dedicated home-based analytical diagnostic system interfaced with a computer that would monitor and store medical data, spanning the lifetime of the patient. In cases of this kind, specialized application software would be able to recognize impending health-related problems and alert the user of her or his health conditions. Small and sensitive biosensors would also assist the general population and health-oars providers in monitoring a variety of "environmental conditions" critical to the health and well being of a given patient population.
The acoustic blood analyzer of the present invention is particularly useful in measuring blood coagulation, specific coagulation cascades steps, including activation of plasma factors VII, IX, XI, VIII, V, X, and II (thrombin), as well platelet functions. The acoustic blood analyzer is therefore useful in identifying, diagnosing and monitoring subjects at high risk for blood clots and excessive bleeding. For purposes of monitoring subjects, sampling and analysis may be performed on a periodic basis depending upon the condition and the severity of the condition in the subject. For example, for subject receiving anti-coagulant therapy following surgery, monitoring may be performed daily or every other day.
In general, to use the analyzer a blood sample is first prepared, for example, by taking the blood sample directly from a patient and/or mixing it with a specific reagent such as a drug or a functional chemical, or group of reagents.
The prepared blood sample is then delivered to the surface of the acoustic sensor or sensors of the acoustic blood analyzer. In some embodiments, a reference fluid such as air, buffer, or a control blood sample is also placed on the surface of a second acoustic sensor of the analyzer and used as a reference and/or as a standard measurement signal.
Electrical changes in the characteristic fundamental and harmonic resonant frequencies, phase, amplitude, impedance, admittance or trans-impedance/admittance of the acoustic sensor or sensors in the presence of the blood sample, and when used the reference fluid, are then monitored. The resulting signal is processed to correlate the electrical parameters of the acoustic sensor, or both the acoustic and the reference sensors, with the appropriate parameters characterizing blood properties including, but not limited to coagulation, platelet functions, and other processes.
Quality assurance is implemented by minimizing the influence of the ambient conditions such as temperature fluctuation, blood flow, blood background signals, etc. on the final blood testing results. Following analysis, the blood sample is disposed of in an appropriate waste container. Results of the analysis are presented in a readable form using display screen, printer, computer, etc.
The acoustic blood analyzer of the present invention is also useful in testing the blood-compatibility of natural and synthetic materials as well as the impact of drugs on blood properties. Thus, the acoustic blood analyzer of the present invention can be used in the drug discovery process of blood related medicines.
The following nonlimiting examples are provided to further illustrate the present invention.
EXAMPhES
E~pl~ 1: El~~d S~nnples In experiments where active platelets are required, porcine blood is obtained from a local slaughterhouse (Hatfield Pork), drawn from a carotid/jugular incision into 3.2% trisodium citrate (1 part to 9 parts blood), and used within 8 hours. Clotting is initiated by recalcification with CaCl2 solution. In some assays, ADP is added to activate platelets, or kaolin is added to directly activate intrinsic coagulation. In other assays, coagulation is delayed by addition of heparin, or clot is weakened by inhibition of platelet contraction using platelet glycoprotein inhibitors or cytochlasin D. For standardized assays, blood analogs (lyophilized blood coagulation test standards) are obtained (Heamocron) and activated with celite. In some assays, fibrinolysis is stimulated using tissue-type plasminogen activator, to evaluate potential for the sensor to detect fibrinolytic tendency.
Example 2: Analysis of Blood Samples via the Acoustic Blood Analyzer The blood acoustic analyzer was used to monitor clotting blood under a variety of conditions. Fresh porcine blood from a carotid/jugular incision was collected into 3.2o citrate (1 part to 9 parts blood) and stored at room temperature in high-density polyethylene containers. Blood was used within 8 hours in all experiments to preserve platelet function and coagulation protein concentrations.
In most experiments, clotting was initiated by addition of CaCl2 solution to recalcify the blood, with rapid mixing and immediate application of 200 ~L to the sensor surface using a micropipette. Ten mL of the recalcified blood was kept in a 50 mL polypropylene tube, and gently inverted periodically to monitor clotting. The clotting time was defined as the time at which the blood sample resisted inversion. In this system, clotting time was on average 10 minutes for fully recalcified blood samples. In one experiment, clotting time was delayed by reducing the CaCl2 concentration of recalcified blood. In a second experiment, clotting time was delayed by addition of heparin (0.25 U/mL final concentration) to the blood sample. In some cases, 5 ~M ADP
was added following recalcification, to activate platelets and provide procoagulant surface which accelerates coagulation.
All experiments were conducted using a 5 MHz piezoelectric shear mode sensor. The sensor was used in two configurations. In some cases, blood was monitored directly on the gold sensor surface. In other cases, the sensor was coated by bovine achil.les tendon collagen type I fibers (Sigma) suspended in acetic acid, incubated on the sensor for 60 minutes, then rinsed with isotonic saline and allowed to air dry.
For the experiments to compare sensor response to different blood constituents, platelet-rich plasma was prepared by centrifugation of 50 mL of whole blood at 300g for 10 minutes, and gently pipetting 14 mL of supernatant.
Platelet-poor plasma was prepared by centrifuging 14 mL of platelet-rich plasma at 3000g for 30 minutes, and pipetting 9.4 mL of supernatant.
Example 3: Uncoated Sensor Clotting blood causes an increase in sensor attenuation and a decrease in resonant frequencies which was clearly distinguishable from citrate-anticoagulated blood, which caused a negligible change in resonant frequency, and only a small rapid increase in attenuation, as shown in Figure 1B.
The dynamics of these changes correlated with mechanical clotting time as shown in Figures 1C and 1D, demonstrating that the sensor is suitable for detecting clotting time.
The uncoated sensor also reacted rapidly and strongly with heparin in heparinized blood samples.

Example 4: Collagen-coated Sensor The sensor described in example 2 was coated with bovine achilles tendon collagen type I fibers (Sigma) by adsorption from acetic acid suspension, incubated on the 5 sensor for 60 minutes, then rinsed with isotonic saline and allowed to air dry. The collagen coating increased sensor sensitivity to early hemostatic events associated with platelet function. These early clotting events may be mediated by platelet activation, as demonstrated by the 10 increased rate of attenuation change when ADP is added to activate platelets. The sensor response amplitude differs between whole blood, platelet-rich plasma, and platelet-poor plasma clots. This response may be indicative of specific.
interactions with red blood cells, or a sensitivity to clot 15 stiffness and viscosity.
Example 5: Tissue Factor-Coated Sensor A 10 MHz piezoelectric shear mode biosensor was coated by tissue thromboplastin (Fisher Diagnostics) by adsorption 20 to the sensor surface from diluted solution in sodium carbonate buffer for 60 minutes, followed by rinsing with phosphate-buffered saline. 200 ~,1 samples of platelet-poor plasma were placed on the sensor surface with buffer (control sample) or CaCl2 (recalcified sample) added and 25 mixed. The sensor operated at the 5th harmonic (50 MHz) was able to detect a rapid interaction between the recalcified sample and tissue-factor coated sensor, followed by a slower attenuation increase that corresponded to the bulk sample clotting time. These interactions were not observed in the 30 control sample. The bulk clotting attenuation increase in the recalcified sample was also observed at the fundamental and 3rd harmonic, but the early attenuation increase was greatly reduced at these frequencies.

The early interaction is attributed to activation of factor VII by the tissue factor coating on the surface, based on the calcium dependence of this activation event, the specific interaction between factor VII and tissue factor, and the increased sensitivity at higher frequencies corresponding to molecular length scales.

Claims (16)

1. An acoustic blood analyzer (ABA) comprising a transducer section of one or more acoustic sensors.
2. The acoustic blood analyzer of claim 1 wherein the one or more acoustic sensors comprise piezoelectric, electrostrictive, magnetostrictive, acoustooptic or thermo(piro)acoustic sensors or a combination thereof.
3. The acoustic blood analyzer of claim 1 wherein the transducer section comprises an array of acoustic sensors.
4. The acoustic blood analyzer of claim 1 wherein the acoustic sensors further comprise a bioactive surface or coating which promotes specific blood-sensor interactions.
5. The acoustic blood analyzer of claim 1 wherein the acoustic sensor further comprises a bioactive surface or coating which promotes specific interactions of intrinsic blood components or extrinsic blood components.
6. The acoustic blood analyzer of claim 5 further comprising:
(a) a fluidic section to deliver and distribute a blood sample to the acoustic sensors of the transducer section;
(b) an electronic section means which excites the acoustic sensors and detects changes in the operational parameters of the transducer section;
(c) a packaging section or housing which provides mechanical, electrical, thermal and functional integrity to the transducer, fluidic and electronic sections; and (d) a blood sampling means.
7, The acoustic blood analyzer of claim 6 wherein the electronic section means can excite the one or more acoustic sensors of the transducer section over a frequency range of a single KHz to several GHz at discrete frequencies or simultaneously at all frequencies.
8. The acoustic blood analyzer of claim 7 wherein electronic section means can excite the one or more acoustic sensors of the transducer section at discrete frequencies comprising resonant, antiresonant, harmonic and anharmonic frequencies of the first and higher orders.
9. The acoustic blood analyzer of claim 7 wherein the one or more acoustic sensors excited over broad frequency range from single KHz to several GHz interrogates a blood sample over a range of distances from nanometers to centimeters from a surface of the acoustic sensor.
10. A device for measuring blood properties in the body of a subject comprising the acoustic blood analyzer of claim 1 integrated into a catheter to be inserted in the body of the subject.
11. A method for measuring blood properties in a blood sample of a subject comprising analyzing the blood sample with the acoustic blood analyzer of claim 1.
12. The method of claim 11 wherein the acoustic blood analyzer comprises a first and second acoustic sensor and the analysis of the blood sample is performed by the first sensor and compared to analysis of a reference fluid by the second acoustic sensor.
13. The method of claim 11 wherein blood properties are measured by correlating an electrical property of the acoustic sensor utilizing a mathematical solution to the coupled Newton, Maxwell and blood constitutive equations.
14. The method of claim 11 wherein the acoustic blood analyzer is used to measure specific coagulation cascades steps, activation of plasma factors VII, IX, XI, VIII, V, X, and II (thrombin) or platelet function.
15. A method for identifying, diagnosing and monitoring subjects at high risk for blood clots and excessive bleeding comprising (i) obtaining a blood sample from a subject; and (ii) analyzing the blood sample in the acoustic blood analyzer of claim 1.
16. A method of using different vibrational modes of an acoustic sensor selected from shear, torsional, and compressional vibrational modes and combinations thereof to characterization blood properties of a blood sample.
CA002522755A 2003-04-16 2004-04-16 Acoustic blood analyzer for assessing blood properties Abandoned CA2522755A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US46355703P 2003-04-16 2003-04-16
US60/463,557 2003-04-16
PCT/US2004/011845 WO2004093641A2 (en) 2003-04-16 2004-04-16 Acoustic blood analyzer for assessing blood properties

Publications (1)

Publication Number Publication Date
CA2522755A1 true CA2522755A1 (en) 2004-11-04

Family

ID=33310794

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002522755A Abandoned CA2522755A1 (en) 2003-04-16 2004-04-16 Acoustic blood analyzer for assessing blood properties

Country Status (5)

Country Link
US (1) US7857761B2 (en)
EP (1) EP1619994A4 (en)
AU (2) AU2004231988B2 (en)
CA (1) CA2522755A1 (en)
WO (1) WO2004093641A2 (en)

Families Citing this family (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7857761B2 (en) 2003-04-16 2010-12-28 Drexel University Acoustic blood analyzer for assessing blood properties
US7892188B2 (en) * 2003-10-22 2011-02-22 Hemosonics, Llc Method and apparatus for characterization of clot formation
US8152305B2 (en) * 2004-07-16 2012-04-10 The University Of North Carolina At Chapel Hill Methods, systems, and computer program products for full spectrum projection
WO2006091650A2 (en) * 2005-02-22 2006-08-31 Jeffrey Valk Balanced physiological monitoring and treatment system
US8956291B2 (en) 2005-02-22 2015-02-17 Admetsys Corporation Balanced physiological monitoring and treatment system
US20080194516A1 (en) * 2005-05-18 2008-08-14 Flanders Samuel J System for managing anti-coagulant infusions in patients
US20060280655A1 (en) * 2005-06-08 2006-12-14 California Institute Of Technology Intravascular diagnostic and therapeutic sampling device
EP2010048A4 (en) * 2006-04-11 2012-03-07 Univ Oregon Health & Science Methods and devices for non-invasive analyte measurement
US8092384B2 (en) * 2006-09-28 2012-01-10 Tyco Healthcare Group Lp System and method for continuous detection of an analyte in bloodstream
US20080114549A1 (en) * 2006-11-09 2008-05-15 Mark Evan Schafer Rapid response blood analyzer
FR2909001B1 (en) * 2006-11-24 2009-12-18 Bernard Perriere MINIATURIZED AND AUTOMATIC INJECTION AND SAMPLING DEVICE FOR MEDICAL USE.
TW200829917A (en) * 2007-01-03 2008-07-16 Nat Univ Chung Cheng Method and device for measuring to-be-measured object
US8490469B2 (en) * 2007-02-22 2013-07-23 The University Of North Carolina Methods and systems for multiforce high throughput screening
US20090025459A1 (en) * 2007-07-23 2009-01-29 Cardiac Pacemakers, Inc. Implantable viscosity monitoring device and method therefor
SE533103C2 (en) 2008-04-01 2010-06-29 Tommy Forsell Blood Viscosity Analysis
US8994270B2 (en) 2008-05-30 2015-03-31 Colorado State University Research Foundation System and methods for plasma application
WO2011123125A1 (en) 2010-03-31 2011-10-06 Colorado State University Research Foundation Liquid-gas interface plasma device
US20090326344A1 (en) * 2008-06-27 2009-12-31 Tyco Healthcare Group Lp System and Method for Optical Continuous Detection of an Analyte In Bloodstream
EP2313767B1 (en) 2008-07-16 2014-02-26 International Technidyne Corporation Cuvette-based apparatus for blood coagulation measurement and testing
US8448499B2 (en) 2008-12-23 2013-05-28 C A Casyso Ag Cartridge device for a measuring system for measuring viscoelastic characteristics of a sample liquid, a corresponding measuring system, and a corresponding method
JP6052267B2 (en) * 2009-01-08 2016-12-27 ソニー株式会社 Blood coagulation system analyzer, blood coagulation system analysis method and program
JP5691168B2 (en) * 2009-01-08 2015-04-01 ソニー株式会社 Blood coagulation system analyzer, blood coagulation system analysis method and program
JP5511949B2 (en) 2009-06-25 2014-06-04 ザ ユニバーシティ オブ ノース カロライナ アット チャペル ヒル Method and system for using actuated and surface-attached posts to assess body fluid rheology
DE102009040881A1 (en) 2009-09-09 2011-05-05 Andreas Hettich Gmbh & Co. Kg Method for determining platelet function with a resonator
WO2011035162A1 (en) * 2009-09-17 2011-03-24 University Of Virginia Patent Foundation Ultrasound-based method and related system to evaluate hemostatic function of whole blood
WO2011038112A1 (en) * 2009-09-23 2011-03-31 The Trustees Of The University Of Pennsylvania Devices and methods for detecting and monitoring hiv and other infections and diseases
US8548759B2 (en) * 2009-11-06 2013-10-01 University Of Virginia Patent Foundation Methods, apparatus, or systems for characterizing physical property in non-biomaterial or bio-material
US10739358B2 (en) 2009-12-18 2020-08-11 Entegrion, Inc. Portable coagulation monitoring devices, systems, and methods
WO2011075614A2 (en) * 2009-12-18 2011-06-23 Entegrion, Inc. Portable coagulation monitoring device and method of assessing coagulation response
KR20110080067A (en) * 2010-01-04 2011-07-12 엘지전자 주식회사 Cartridge for sample assay and cartridge reader for sample assay
CA2794895A1 (en) 2010-03-31 2011-10-06 Colorado State University Research Foundation Liquid-gas interface plasma device
AU2011237383B2 (en) 2010-04-08 2014-03-27 Hemosonics, Llc Hemostatic parameter display
US8834462B2 (en) 2010-06-01 2014-09-16 Covidien Lp System and method for sensing tissue characteristics
NO336532B1 (en) * 2011-01-12 2015-09-21 Mecsense As Sensor for measuring the density of a body fluid and / or the resistance of a membrane
BR112013020675B1 (en) * 2011-02-15 2022-01-25 Hemosonics, Llc Devices and method for hemostasis assessment
AU2012364909B2 (en) * 2011-02-15 2016-11-24 Hemosonics, Llc Characterization of blood hemostasis and oxygen transport parameters
US20120294767A1 (en) * 2011-05-19 2012-11-22 Hemosonics Llc Portable hemostasis analyzer
US9140684B2 (en) 2011-10-27 2015-09-22 University Of Washington Through Its Center For Commercialization Device to expose cells to fluid shear forces and associated systems and methods
US8714017B2 (en) * 2011-11-15 2014-05-06 Hema-Q, Inc. Apparatus for non-invasive determination of sound velocity in a liquid and determining a parameter of the liquid from the sound velocity
WO2013177560A1 (en) * 2012-05-25 2013-11-28 The Regents Of The University Of California Microfluidic systems for particle trapping and separation
GB201211894D0 (en) * 2012-07-04 2012-08-15 Sparq Wireless Solutions Pte Ltd Sensing methods and apparatus
EP2926115B1 (en) 2012-11-30 2021-05-26 The University of North Carolina At Chapel Hill Methods and systems for determining physical properties of a specimen in a portable point of care diagnostic device
WO2014117140A1 (en) * 2013-01-28 2014-07-31 Regenerative Sciences, Llc Device and methods for platelet lysis or activation
US9532826B2 (en) 2013-03-06 2017-01-03 Covidien Lp System and method for sinus surgery
KR102242947B1 (en) 2013-03-11 2021-04-22 유니버시티 오브 유타 리서치 파운데이션 Sensor systems
US9555145B2 (en) 2013-03-13 2017-01-31 Covidien Lp System and method for biofilm remediation
US20140327460A1 (en) * 2013-05-03 2014-11-06 Second Sight Medical Products, Inc. Test Apparatus and Method for Determining Long Term Reliability of an Implantable Device
SG11201608897SA (en) * 2013-06-26 2016-12-29 Univ Washington Ct Commerciali Fluidics device for individualized coagulation measurements
RU2016107170A (en) * 2013-08-02 2017-09-07 Экоусенс NON-INVASIVE SYSTEM FOR CALCULATING A RELIABLE, STANDARDIZED AND FULL ASSESSMENT OF A HUMAN OR ANIMAL
EP3130920B1 (en) * 2014-04-08 2020-02-12 Fujimori Kogyo Co., Ltd. Microchip for assay of blood properties, and device for assay of blood properties
JP6550126B2 (en) 2014-09-09 2019-07-24 ペロスフィア テクノロジーズ インコーポレイテッド Microfluidic chip-based common coagulation assay
US10175225B2 (en) 2014-09-29 2019-01-08 C A Casyso Ag Blood testing system and method
US9726647B2 (en) 2015-03-17 2017-08-08 Hemosonics, Llc Determining mechanical properties via ultrasound-induced resonance
US10488321B2 (en) * 2015-03-19 2019-11-26 The Board Of Trustees Of The Leland Stanford Junior University Devices and methods for high-throughput single cell and biomolecule analysis and retrieval in a microfluidic chip
US9862941B2 (en) 2015-10-14 2018-01-09 Pioneer Hi-Bred International, Inc. Single cell microfluidic device
WO2017169261A1 (en) * 2016-03-29 2017-10-05 ソニー株式会社 System for analyzing blood coagulation system, method for analyzing blood coagulation system, and program for use in analysis of blood coagulation system
JP6973585B2 (en) * 2016-10-05 2021-12-01 ソニーグループ株式会社 Platelet agglutination ability analysis method, platelet agglutination ability analyzer, platelet agglutination ability analysis program and platelet agglutination ability analysis system
JP6750443B2 (en) * 2016-10-05 2020-09-02 ソニー株式会社 Platelet aggregation analysis method, platelet aggregation analysis device, platelet aggregation analysis program, and platelet aggregation analysis system
US11090653B2 (en) 2016-10-11 2021-08-17 The Regents Of The University Of California Systems and methods to encapsulate and preserve organic matter for analysis
NL2017705B1 (en) * 2016-11-02 2018-05-18 Lumicks Tech B V Method and system for studying biological cells
US11366093B2 (en) 2017-04-20 2022-06-21 Hemosonics, Llc Disposable system for analysis of hemostatic function
US11517901B2 (en) 2017-06-09 2022-12-06 The Regents Of The University Of California High-efficiency particle encapsulation in droplets with particle spacing and downstream droplet sorting
US10780438B2 (en) 2017-06-09 2020-09-22 The Regents Of The University Of California High-efficiency encapsulation in droplets based on hydrodynamic vortices control
WO2019075409A1 (en) 2017-10-12 2019-04-18 The Regents Of The University Of California Microfluidic label-free isolation and identification of cells using fluorescence lifetime imaging (flim)
WO2019079787A1 (en) 2017-10-20 2019-04-25 The Regents Of The University Of California Microfluidic systems and methods for lipoplex-mediated cell transfection
US11499127B2 (en) 2017-10-20 2022-11-15 The Regents Of The University Of California Multi-layered microfluidic systems for in vitro large-scale perfused capillary networks
WO2020197993A1 (en) * 2019-03-26 2020-10-01 Siemens Healthcare Diagnostics Inc. Methods and apparatus for performing sample measurements using visible light on samples manipulated with acoustic waves
CN112528439B (en) * 2020-12-22 2024-03-15 中国人民解放军陆军装甲兵学院 Manganese-copper-based damping alloy constitutive relation analysis method and electronic equipment
US20230293879A1 (en) * 2022-03-18 2023-09-21 Abiomed, Inc. Blood pump blood compatibility device

Family Cites Families (128)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE27703E (en) 1972-09-05 1973-07-24 Configuration control in multiprocessors
US4026671A (en) * 1976-08-02 1977-05-31 Sanford L. Simons Test apparatus circuit
CH611420A5 (en) * 1977-01-10 1979-05-31 Battelle Memorial Institute
US4448231A (en) * 1979-06-11 1984-05-15 Litton Business Systems, Inc. Panel system edge sealing means
FR2476349A1 (en) 1980-02-15 1981-08-21 Philips Ind Commerciale DISTRIBUTED DATA PROCESSING SYSTEM
US4451923A (en) * 1980-12-01 1984-05-29 Hansch Theodor W Method of and apparatus for measuring optical frequency variations
US4531193A (en) 1981-07-30 1985-07-23 Fuji Electric Company, Ltd. Measurement apparatus
US4484273A (en) 1982-09-03 1984-11-20 Sequoia Systems, Inc. Modular computer system
US4599219A (en) 1982-10-15 1986-07-08 Hemotec, Inc. Coagulation detection by plunger sensing technique
JPS5990197A (en) 1982-11-12 1984-05-24 富士電機株式会社 Field instrumentation system
US4591977A (en) 1983-03-23 1986-05-27 The United States Of America As Represented By The Secretary Of The Air Force Plurality of processors where access to the common memory requires only a single clock interval
US4558589A (en) * 1984-10-09 1985-12-17 Miles Laboratories, Inc. Ultrasonic coagulation monitor and method
US4756884A (en) 1985-08-05 1988-07-12 Biotrack, Inc. Capillary flow device
US4819149A (en) 1986-05-02 1989-04-04 Owens-Corning Fiberglas Corporation Distributed control system
US4981779A (en) * 1986-06-26 1991-01-01 Becton, Dickinson And Company Apparatus for monitoring glucose
US4831558A (en) 1986-08-26 1989-05-16 The Slope Indicator Company Digitally based system for monitoring physical phenomena
US5048525A (en) * 1987-01-30 1991-09-17 Minnesota Mining And Manufacturing Company Blood parameter measurement system with compliant element
US5110727A (en) 1987-04-03 1992-05-05 Cardiovascular Diagnostics, Inc. Method for performing coagulation assays accurately, rapidly and simply, using dry chemical reagents and paramagnetic particles
US4849340A (en) 1987-04-03 1989-07-18 Cardiovascular Diagnostics, Inc. Reaction system element and method for performing prothrombin time assay
US5166678A (en) 1987-08-11 1992-11-24 Rosemount Inc. Dual master implied token communication system
US5122794A (en) 1987-08-11 1992-06-16 Rosemount Inc. Dual master implied token communication system
NL8702370A (en) * 1987-10-05 1989-05-01 Groningen Science Park METHOD AND SYSTEM FOR GLUCOSE DETERMINATION AND USEABLE MEASURING CELL ASSEMBLY.
US5564419A (en) * 1987-11-25 1996-10-15 Radiometer A/S Method of photometric in vitro determination of the content of oxygen in a blood sample
US4969083A (en) 1988-04-04 1990-11-06 Petron Controls Corporation Network programmable logic controller system
US4897777A (en) 1988-04-11 1990-01-30 Square D Company Peer-to-peer register exchange controller for PLCS
US5251302A (en) 1988-04-11 1993-10-05 Square D Company Network interface board having memory mapped mailbox registers including alarm registers for storing prioritized alarm messages from programmable logic controllers
US4992926A (en) 1988-04-11 1991-02-12 Square D Company Peer-to-peer register exchange controller for industrial programmable controllers
US4938068A (en) 1988-09-28 1990-07-03 The Slope Indicator Co. Pressure transducer
US5306644A (en) * 1988-09-29 1994-04-26 Hewlett-Packard Company Mass sensor method for measuring analytes in a sample
GB2232514B (en) 1989-04-24 1993-09-01 Yokogawa Electric Corp Programmable controller
US5131092A (en) 1989-09-01 1992-07-14 Square D Company Communication system enabling programmable logic controllers access to host computer tasks and host computer access to programmable logic controllers without polling
EP0495001B1 (en) 1989-10-02 1999-02-17 Rosemount Inc. Field-mounted control unit
US5151978A (en) 1990-03-22 1992-09-29 Square D Company Lan interface which permits a host computer to obtain data without interrupting a ladder program executing in the interface
US5245704A (en) 1990-03-22 1993-09-14 Square D Company System for sharing data between microprocessor based devices
US5159673A (en) 1990-03-22 1992-10-27 Square D Company Apparatus for networking programmable logic controllers to host computers
US5119819A (en) 1990-05-02 1992-06-09 Miles Inc. Method and apparatus for non-invasive monitoring of blood glucose
US5047627A (en) * 1990-05-18 1991-09-10 Abbott Laboratories Configuration fiber-optic blood gas sensor bundle and method of making
US5115675A (en) 1990-06-15 1992-05-26 The Slope Indicator Company Tensioned bellows pressure transducer
DE4027573A1 (en) * 1990-08-31 1992-03-05 Basf Ag NEW 2,3-DIHYDROBENZOFURANE AND METHOD FOR THEIR PRODUCTION
US5167145B1 (en) 1990-09-19 2000-05-23 David M Butler Measurement of blood coagulation time using infrared electromagnetic energy
EP0576549A1 (en) 1991-03-18 1994-01-05 Echelon Corporation Binder interface structure
EP0576546A4 (en) 1991-03-18 1995-01-25 Echelon Corp Networked variables.
JP3021803B2 (en) 1991-05-30 2000-03-15 富士電機株式会社 Signal transmission method
CA2133983C (en) 1992-04-27 2004-04-06 Stephen E. Zweig Test article and method for performing blood coagulation assays
US5335658A (en) * 1992-06-29 1994-08-09 Minnesota Mining And Manufacturing Company Intravascular blood parameter sensing system
WO1994001820A1 (en) 1992-07-01 1994-01-20 Telefonaktiebolaget Lm Ericsson System for implementation-independent interface specification
US5329579A (en) 1992-07-27 1994-07-12 At&T Bell Laboratories Modular adjunct processor made of identical multi-function modules adaptable under direction of one of them to perform any of the adjunct-processor functions
CA2143842A1 (en) 1992-09-04 1994-03-17 Thomas Exner Apparatus and method for detecting coagulation/lysis of liquids
CA2107519C (en) 1992-10-05 2002-04-09 Stephen George Seberger Communication system and method
DE69318259T2 (en) 1992-11-18 1998-09-17 Canon Kk Method and device for implementing a two-way interface between a local network and a peripheral device
US5302348A (en) 1992-12-10 1994-04-12 Itc Corporation Blood coagulation time test apparatus and method
US5537547A (en) 1992-12-14 1996-07-16 At&T Corp. Automatic network element identity information distribution apparatus and method
DE4334834A1 (en) * 1993-10-13 1995-04-20 Andrzej Dr Ing Grzegorzewski Biosensor for measuring changes in viscosity and / or density
US5608720A (en) 1993-03-09 1997-03-04 Hubbell Incorporated Control system and operations system interface for a network element in an access system
US5506956A (en) 1993-04-07 1996-04-09 Sprint Communications Company L.P. Error correction and channel restoration apparatus for T1 digital links
US5452201A (en) 1993-08-24 1995-09-19 Allen-Bradley Company, Inc. Industrial controller with highly distributed processing
JP3123629B2 (en) 1993-09-16 2001-01-15 富士電機株式会社 LSI for signal transmission
US5447440A (en) * 1993-10-28 1995-09-05 I-Stat Corporation Apparatus for assaying viscosity changes in fluid samples and method of conducting same
US5728583A (en) * 1993-11-11 1998-03-17 Jeol, Ltd. Determination of abnormal part of blood functions
US20020169394A1 (en) * 1993-11-15 2002-11-14 Eppstein Jonathan A. Integrated tissue poration, fluid harvesting and analysis device, and method therefor
DE69522552T2 (en) 1994-02-23 2002-05-08 Rosemount Inc PROVISING SENDERS FOR STORING INFORMATION
US5434774A (en) 1994-03-02 1995-07-18 Fisher Controls International, Inc. Interface apparatus for two-wire communication in process control loops
US5485142A (en) 1994-04-08 1996-01-16 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Remote monitor alarm system
US5453924A (en) 1994-05-16 1995-09-26 Ag-Chem Equipment Company, Inc. Mobile control system responsive to land area maps
JP3859015B2 (en) 1994-10-24 2006-12-20 フィッシャー−ローズマウント システムズ, インコーポレイテッド Apparatus for providing access to field devices in a distributed control system
US5793963A (en) 1994-10-24 1998-08-11 Fisher Rosemount Systems, Inc. Apparatus for providing non-redundant secondary access to field devices in a distributed control system
AUPM934994A0 (en) * 1994-11-09 1994-12-01 Commonwealth Scientific And Industrial Research Organisation Particle property measurement
US5706007A (en) 1995-01-03 1998-01-06 Smar Research Corporation Analog current / digital bus protocol converter circuit
US5650777A (en) 1995-06-07 1997-07-22 Rosemount Inc. Conversion circuit for process control system
US5691896A (en) 1995-08-15 1997-11-25 Rosemount, Inc. Field based process control system with auto-tuning
US5841654A (en) 1995-10-16 1998-11-24 Smar Research Corporation Windows based network configuration and control method for a digital control system
US5764955A (en) 1995-10-19 1998-06-09 Oasys Group, Inc. Gateway for using legacy telecommunications network element equipment with a common management information protocol
US6094600A (en) 1996-02-06 2000-07-25 Fisher-Rosemount Systems, Inc. System and method for managing a transaction database of records of changes to field device configurations
US5764891A (en) 1996-02-15 1998-06-09 Rosemount Inc. Process I/O to fieldbus interface circuit
US6017143A (en) 1996-03-28 2000-01-25 Rosemount Inc. Device in a process system for detecting events
US6098116A (en) 1996-04-12 2000-08-01 Fisher-Rosemont Systems, Inc. Process control system including a method and apparatus for automatically sensing the connection of devices to a network
US5838563A (en) 1996-04-12 1998-11-17 Fisher-Rosemont Systems, Inc. System for configuring a process control environment
US5862052A (en) 1996-04-12 1999-01-19 Fisher-Rosemount Systems, Inc. Process control system using a control strategy implemented in a layered hierarchy of control modules
US5828851A (en) 1996-04-12 1998-10-27 Fisher-Rosemount Systems, Inc. Process control system using standard protocol control of standard devices and nonstandard devices
US5909368A (en) 1996-04-12 1999-06-01 Fisher-Rosemount Systems, Inc. Process control system using a process control strategy distributed among multiple control elements
US5768119A (en) 1996-04-12 1998-06-16 Fisher-Rosemount Systems, Inc. Process control system including alarm priority adjustment
US5801942A (en) 1996-04-12 1998-09-01 Fisher-Rosemount Systems, Inc. Process control system user interface including selection of multiple control languages
US5995916A (en) 1996-04-12 1999-11-30 Fisher-Rosemount Systems, Inc. Process control system for monitoring and displaying diagnostic information of multiple distributed devices
US6032208A (en) 1996-04-12 2000-02-29 Fisher-Rosemount Systems, Inc. Process control system for versatile control of multiple process devices of various device types
US5859959A (en) 1996-04-29 1999-01-12 Hewlett-Packard Company Computer network with devices/paths having redundant links
US5982362A (en) 1996-05-30 1999-11-09 Control Technology Corporation Video interface architecture for programmable industrial control systems
US5805442A (en) 1996-05-30 1998-09-08 Control Technology Corporation Distributed interface architecture for programmable industrial control systems
US5881311A (en) 1996-06-05 1999-03-09 Fastor Technologies, Inc. Data storage subsystem with block based data management
US5796721A (en) 1996-06-21 1998-08-18 National Instruments Corporation Method and system for monitoring fieldbus network with dynamically alterable packet filter
US5850523A (en) 1996-06-21 1998-12-15 National Instruments Corporation Method and system for monitoring fieldbus network with multiple packet filters
JPH1028150A (en) 1996-07-10 1998-01-27 Fuji Electric Co Ltd Communication system
SE509269C2 (en) 1996-07-15 1998-12-21 Telia Ab Method, system and protocol architecture for network administration
US6047222A (en) 1996-10-04 2000-04-04 Fisher Controls International, Inc. Process control network with redundant field devices and buses
US5970430A (en) 1996-10-04 1999-10-19 Fisher Controls International, Inc. Local device and process diagnostics in a process control network having distributed control functions
US6044305A (en) 1996-10-04 2000-03-28 Fisher Controls International, Inc. Method and apparatus for debugging and tuning a process control network having distributed control functions
US5854890A (en) 1996-10-15 1998-12-29 National Instruments Corporation Fieldbus function block shell with user selectable data ownership
EP0948759B1 (en) 1996-12-31 2002-08-07 Rosemount Inc. Device in a process system for validating a control signal from a field device
US5978578A (en) 1997-01-30 1999-11-02 Azarya; Arnon Openbus system for control automation networks
US5980078A (en) 1997-02-14 1999-11-09 Fisher-Rosemount Systems, Inc. Process control system including automatic sensing and automatic configuration of devices
US6046051A (en) * 1997-06-27 2000-04-04 Hemosense, Inc. Method and device for measuring blood coagulation or lysis by viscosity changes
US5978850A (en) 1997-07-02 1999-11-02 National Instruments Corporation System and method for accessing parameters in a fieldbus network using a tag parameters interface
US20010044584A1 (en) * 1997-08-28 2001-11-22 Kensey Kenneth R. In vivo delivery methods and compositions
US6151625A (en) 1997-09-10 2000-11-21 Schneider Automation Inc. Internet web interface including programmable logic controller for controlling output devices based on status of input devices
US6484061B2 (en) 1997-09-10 2002-11-19 Schneider Automation Inc. Web interface to a programmable controller
US6282454B1 (en) 1997-09-10 2001-08-28 Schneider Automation Inc. Web interface to a programmable controller
US6014612A (en) 1997-10-02 2000-01-11 Fisher Controls International, Inc. Remote diagnostics in a process control network having distributed control functions
US7390667B2 (en) * 1997-12-22 2008-06-24 Roche Diagnostics Operations, Inc. System and method for analyte measurement using AC phase angle measurements
DE19850803A1 (en) * 1998-11-04 2000-05-11 Bosch Gmbh Robert Sensor arrangement and a method for determining the density and viscosity of a liquid
US6200532B1 (en) 1998-11-20 2001-03-13 Akzo Nobel Nv Devices and method for performing blood coagulation assays by piezoelectric sensing
US6524861B1 (en) * 1999-01-22 2003-02-25 Medical Laboratory Automation, Inc. Blood coagulation analyzer
NL1012223C2 (en) * 1999-06-03 2000-12-06 Martil Instr B V Cardiac pacemaker as well as pacemaker unit and electric wire therefor.
SE9902613D0 (en) * 1999-07-07 1999-07-07 Jan Eric Litton Method and arrangement for measuring viscoelasticity of a Non-Newtonian fluid
US6311549B1 (en) * 1999-09-23 2001-11-06 U T Battelle Llc Micromechanical transient sensor for measuring viscosity and density of a fluid
DE10003093C2 (en) * 2000-01-25 2002-05-16 Goltz Volker Freiherr Von Device for investigating properties of the global hemostasis function in whole blood or platelet-rich plasma
JP3348162B2 (en) * 2000-05-09 2002-11-20 シービーシーマテリアルズ株式会社 Liquid viscosity and viscoelasticity measuring methods and viscoelasticity measuring devices
US7769420B2 (en) * 2000-05-15 2010-08-03 Silver James H Sensors for detecting substances indicative of stroke, ischemia, or myocardial infarction
US6508104B1 (en) * 2000-10-05 2003-01-21 Xerox Corporation Method for additive adhesion force particle analysis and apparatus thereof
GB0030929D0 (en) * 2000-12-19 2001-01-31 Inverness Medical Ltd Analyte measurement
RU2232384C2 (en) * 2001-01-23 2004-07-10 Яхно Татьяна Анатольевна Method of investigation of multicomponent liquid
US7310543B2 (en) * 2001-03-26 2007-12-18 Kumetrix, Inc. Silicon microprobe with integrated biosensor
US7354141B2 (en) * 2001-12-04 2008-04-08 Labcyte Inc. Acoustic assessment of characteristics of a fluid relevant to acoustic ejection
US7343188B2 (en) * 2002-05-09 2008-03-11 Lifescan, Inc. Devices and methods for accessing and analyzing physiological fluid
US7838296B2 (en) * 2002-08-28 2010-11-23 Separation Technology, Inc. Methods and apparatus for ultrasonic determination of red blood cell indices
US7011631B2 (en) * 2003-01-21 2006-03-14 Hemonix, Inc. Noninvasive method of measuring blood density and hematocrit
US7857761B2 (en) 2003-04-16 2010-12-28 Drexel University Acoustic blood analyzer for assessing blood properties
US7261861B2 (en) * 2003-04-24 2007-08-28 Haemoscope Corporation Hemostasis analyzer and method
US7892188B2 (en) * 2003-10-22 2011-02-22 Hemosonics, Llc Method and apparatus for characterization of clot formation
US7399637B2 (en) * 2004-04-19 2008-07-15 Medtronic, Inc. Blood coagulation test cartridge, system, and method

Also Published As

Publication number Publication date
US7857761B2 (en) 2010-12-28
WO2004093641A3 (en) 2007-05-10
US20050015001A1 (en) 2005-01-20
EP1619994A4 (en) 2009-03-11
AU2004231988A1 (en) 2004-11-04
AU2010201142A1 (en) 2010-04-15
EP1619994A2 (en) 2006-02-01
WO2004093641A2 (en) 2004-11-04
AU2004231988B2 (en) 2010-04-15

Similar Documents

Publication Publication Date Title
AU2004231988B2 (en) Acoustic blood analyzer for assessing blood properties
EP2513647B1 (en) Portable coagulation monitoring device and method of assessing coagulation response
JP3392871B2 (en) Apparatus for analyzing viscosity change of fluid sample and analysis method thereof
Chen et al. Micro-electromechanical film bulk acoustic sensor for plasma and whole blood coagulation monitoring
Cheng et al. Determination of heparin levels in blood with activated partial thromboplastin time by a piezoelectric quartz crystal sensor
Chen et al. Point-of-care assessment of hemostasis with a love-mode surface acoustic wave sensor
US20200256882A1 (en) Fluid property measurement devices and methods
US20210268497A1 (en) Microfluidic thromboelastometry instrument
AU2013234363B2 (en) Portable coagulation monitoring device
Nabavi Portable devices for In-Vitro characterization based on ultrasound
Sekar Development of Methods and Technology for Human Blood Hemostasis Assessment
Metref et al. Portable Technologies for Self-Monitoring of Coagulation Time: A Review

Legal Events

Date Code Title Description
EEER Examination request
FZDE Discontinued

Effective date: 20150416