CA2533353A1 - Percutaneous heart valve - Google Patents

Percutaneous heart valve Download PDF

Info

Publication number
CA2533353A1
CA2533353A1 CA002533353A CA2533353A CA2533353A1 CA 2533353 A1 CA2533353 A1 CA 2533353A1 CA 002533353 A CA002533353 A CA 002533353A CA 2533353 A CA2533353 A CA 2533353A CA 2533353 A1 CA2533353 A1 CA 2533353A1
Authority
CA
Canada
Prior art keywords
heart valve
heart
claws
valve
annular ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002533353A
Other languages
French (fr)
Inventor
Howard C. Herrmann
Nilesh Mankame
Suresh G. K. Ananthasuresh
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Pennsylvania Penn
Original Assignee
The Trustees Of The University Of Pennsylvania
Howard C. Herrmann
Nilesh Mankame
Suresh G. K. Ananthasuresh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The Trustees Of The University Of Pennsylvania, Howard C. Herrmann, Nilesh Mankame, Suresh G. K. Ananthasuresh filed Critical The Trustees Of The University Of Pennsylvania
Publication of CA2533353A1 publication Critical patent/CA2533353A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2412Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body with soft flexible valve members, e.g. tissue valves shaped like natural valves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2427Devices for manipulating or deploying heart valves during implantation
    • A61F2/243Deployment by mechanical expansion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S623/00Prosthesis, i.e. artificial body members, parts thereof, or aids and accessories therefor
    • Y10S623/902Method of implanting
    • Y10S623/904Heart

Abstract

A percutaneously inserted bistable heart valve prosthesis (10) is folded inside a catheter for transseptal delivery to the patient's heart for implantation. The heart valve (10) has an annular ring (12), a body member (14) having a plurality of legs (16), each leg (16) connecting at one end to the annular ring (12), claws (18) that are adjustable from a first position to a second position by application of external force so as to allow ingress of surrounding heart tissue into the claws (18) in the second position, and leaflet membranes connected to the annular ring (12), the body member (14) and/or the legs (16), the leaflet membranes having a first position for blocking blood flow therethrough and a second position for allowing blood flow therethrough. The heart valve (10) is designed such that upon removal of the external force the claws (18) elastically revert to the first position so as to grip the heart tissue positioned within the claws (18), thereby holding the heart valve (10) in place.. The heart valve (10) may be used as a prosthesis for the mitral valve, aortic valve, pulmonary valve, or tricuspid valve by adapting the annular ring to fit in a respective mitral, aortic, pulmonary, or tricuspid valve opening of the heart.

Description

PERCUTANEOUS HEART VALVE
CROSS-REFERENCE TO RELATED APPLICATIONS
[0001] The present patent application claims priority to U.S. Provisional Patent Application Serial No. 60/488,838, filed July 21, 2003, the contents of which are hereby incorporated by reference in their entirety.
FIELD OF THE INVENTION
[0002] The present invention is directed to a design for a percutaneously inserted bistable heart valve prosthesis that may be folded inside a catheter for delivery to the mural valve and other valves of the heart for implantation.
BACKGROUND OF THE INVENTION
[0003] Heart valve regurgitation occurs when the heart valve does not close completely as a result of disease or injury. Pulmonary valve regurgitation has been shown to increase a patient's susceptibility to arrhythmias, sudden death and right ventricular dysfunction. Similarly, mitral regurgitation due to ischemic and degenerative (prolapse) disease has been shown to contribute to left ventricular dysfunction due to remodeling, and to left ventricular dilation, resulting in worsening of the mural regurgitation. Currently, malfunctioning heart valves are usually replaced with biologic or mechanical prostheses through open-heart surgery with the attendant significant risk of death, stroke, infection, bleeding, and complications due to the use of general anesthesia and cardiopulmonary bypass. Such procedures also have significant potential for a long recovery period. However, for certain disease states, percutaneous alternatives have been used m place of open-nears surgery aue to the lower mormany ana mortamy.
ror instance, rheumatic mitral stenosis, a condition in which the mitral valve does not open properly, has been treated by inserting a balloon from the femoral vein to enlarge the mitral valve opening.
[0004] Based on the success of percutaneous balloon valvuplasty for mural stenosis, investigators have explored other alternative methods to treat valvular heart disease without surgery. For example, Cribier et al. describe in a report entitled "Percutaneous Transcatheter Implantation of an Aortic Valve Prosthesis for Calcific Aortic Stenosis,"
Circulation, December 10, 2002, pages 3006-3008, a balloon-expandable stmt to which a biologic valve prosthesis is sewn. This device is utilized to treat calcific aortic stenosis. In an article entitled "Percutaneous Insertion of the Pulmonary Valve," Journal of the American College of Cardiology, Vol. 39, No.
10, May 15, 2002, pages 1664-1669, Bonhoeffer et al. describe a similar stmt approach with a bovine venous (jugular) valve inserted to treat pulmonic valve disease. Others are developing repair techniques for mitral valve disease that involve placing a clip on the mural leaflets (US
6,629,534), cinching the mitral annulus from the coronary sinus (US
6,537,314), or deploying an inflatable heart valve that is mechanically held in place (LIS 5,554,185).
[0005] Norred (US 6,482,228) discloses a percutaneous aortic valve replacement in which a heart valve prosthesis having ribs and a circular elastomeric canopy is folded for insertion into a catheter for delivery to the implantation region without surgery. Once in the ascending aorta, the body and leaflets of the heart valve prosthesis are opened like an umbrella by pulling on a central column of suture-like members. Hinge joints are used to create a miniature umbrella. However, the aortic valve prosthesis is anchored using a stmt system that is extended in the ascending aorta to anchor the valve in the aortic channel above the biologic aortic valve. The suture-like members used to open the umbrella structure are deployed as part of the stmt system. Such a design is not amenable to placement of the heart valve prosthesis at the location of the biologic valve.
[0006] Other stented heart valve prostheses are described in the art in which the anchoring system is a passive one that requires either balloon expandable stems or a self expanding stmt design. For example, such stented designs are described in US
6,454,799, US
2002/0138138, US 6,582,462, US 6,458,153, US 6,425,916, and US 5,855,601. It will be appreciated that once these stented heart valve prostheses are deployed, they cannot be repositioned, refolded, or easily removed. Furthermore, the rigidity of the stmt as it is deployed in calcified positions may allow for regurgitation around the outside of the stmt, as has been seen in the early aortic valve deployments which utilize this design. It is also difficult to position these designs as one has to ornate a balloon m a moving commn or mooa wnue the nears is beating and one only gets one chance to accurately deploy it.
[0007] An additional difficulty occurs when deploying a stented heart valve in an annulus that is not thickened by calcium. The stmt design lends itself slightly better to the aortic position where the height of the annulus has been increased and the width thickened by the presence of calcium in calcific aortic stenosis. However, when calcium is not present, as in other causes of aortic valve disease and in the mural position, the stmt may be difficult to anchor on the relatively thin annulus. Furthermore, the nature by which the stmt folds on a balloon and then expands with plastic deformability limits the ratio of its initial to final size such that it will, by necessity, have a fairly large profile making percutaneous insertion via catheter more difficult in a valve annulus with a large diameter that has not been reduced by calcium deposition.
[0008] An improved heart valve prosthesis design is desired that utilizes a folding structure that allows a low profile for insertion via a catheter and a large profile once deployed but without use of a balloon or stmt, thereby allowing a smaller to larger profile range. A heart valve prosthesis design is also desired that can be deployed, folded, removed, and then redeployed so as to increase the safety as well as the preciseness of the deployment. The present invention addresses these and other needs in the heart valve prosthesis art.
SUMMARY OF THE INVENTION
[0009] The present invention addresses these and other needs in the heart prosthesis art by providing a percutaneously inserted bistable heart valve prosthesis that may be folded inside a catheter for delivery to the patient's heart for implantation. The heart valve has an elastic annular ring, a body member having a plurality of legs, each leg connecting at one end to the annular ring, claws that are adjustable from a first position to a second position by application of external force so as to allow ingress of surrounding heart tissue into the claws in the second position, and leaflet membranes connected to the annular ring, the body member and/or the legs, the leaflet membranes having a first position for blocking blood flow therethrough and a second position for allowing blood flow therethrough. The heart valve is designed such that upon removal of the external force the claws elastically revert to the first position so as to grip the heart tissue positioned within the claws, thereby holding the heart valve in place. The body member and claws may be integrated into a one-piece design. The heart valve so designed may be used as a prosthesis for the mitral valve, aortic valve, pulmonary valve, or tricuspid valve by adapting the annular ring to fit in a respective mural, aortic, pulmonary, or tricuspid valve opening of the heart.

[UUlU~ In an exemplary emboatment of the neart vane, the annwar ring, the noay member, the legs, the claws and the leaflet membranes fold into a collapsed position for insertion into a catheter for percutaneous delivery to the heart for implantation. The heart valve has a first stable position after passage through the catheter and a second stable position to which the heart valve is forced for implantation. In the second stable position, the body member pushes outward on the annular ring to assist anchoring the heart valve in the heart tissue.
The elastic annular ring also may be expandable so as to expand to anchor the heart valve at the implantation position in the valve cavity.
[0011] Each claw is connected to the annular ring and/or a leg to permit movement of each claw from a first claw position to a second claw position. Movement of the claws is controlled remotely during the implantation procedure by filaments extending proximally from the heart valve and connecting the body member to the claws.
[0012] The scope of the present invention also includes a method of implanting a bistable percutaneous heart valve at an implantation position (heart valve cavity) of a patient. An exemplary embodiment of such a method includes the steps o~
folding the bistable percutaneous heart valve into a collapsed position;
inserting a catheter into a patient and guiding a distal end of the catheter to a position adjacent the implantation position in the patient's heart;
inserting the folded heart valve into the catheter and advancing the folded heart valve to the distal end of the catheter;
guiding the folded heart valve beyond the distal end of the catheter so as to cause the heart valve to elastically unfold to a stable unfolded position;
forcing the unfolded heart valve into a second stable position guiding the heart valve to the implantation position;
adjusting claws of the heart valve by the application of an external force so as to allow ingress of surrounding heart tissue into the claws, whereupon removal of the external force the claws elastically revert to a more closed position so as to grip the heart tissue positioned within the claws, thereby holding the heart valve in place; and removing the guiding device and the catheter.
[0013] The external force applied to adjust the claws is provided by manipulating at a proximal end of the catheter filaments that passes through the catheter and connect at a distal end to the claws. The filaments may also be used to switch the heart valve between its two stable configurations and to open the claws. The filaments are removed once implantation is completed or may be left in the heart valve prosthesis, drawn close to the body member of the heart valve prosthesis so as not to impede moon tow. separate nxea iengtn maments attach one smte of a claw to a leg of the body member so that when the longer filaments are pulled beyond a certain point the claws are opened further.
[0014] A significant benefit of such a method is that the steps of guiding the unfolded heart valve to the implantation position and adjusting the claws to hold the heart valve in place may be repeated until the position, stability and functioning of the heart valve are satisfactory.
Also, by forming the heart valve from elastic materials, the heart valve may push outward on the heart tissue in the stable unfolded position so as to assist anchoring the heart valve in the heart tissue.
BRIEF DESCRIPTION OF THE DRAWINGS
[0015] The present invention will be apparent from the following detailed description of the invention in conjunction with the accompanying drawings, of which:
(0016] Figure lA illustrates a side view of a bistable heart valve prosthesis in accordance with an embodiment of the invention.
[0017] Figure 1B illustrates the bistable heart valve prosthesis of Figure lA
with a leaflet cut away so that the body member, legs, annular ring, claws, and filaments may be seen more clearly.
[0018] Figure 2A illustrates the bistable heart valve prosthesis of Figure 1 in a folded position and inserted into a catheter for delivery to the implantation position in the heart valve cavity.
[0019] Figure 2B illustrates the bistable heart valve prosthesis of Figure 2A
with a leaflet cut away so that the folded body member, legs, annular ring, claws, and filaments may be seen more clearly.
[0020] Figure 3A illustrates a side view of the bistable heart valve prosthesis of Figure 2 after it has emerged from the end of the catheter and elastically expanded to a first stable position.
[0021] Figure 3B illustrates the bistable heart valve prosthesis of Figure 3A
with a leaflet cut away so that the body member, legs, annular ring, claws, and filaments may be seen more clearly.
[0022] Figure 4 illustrates the bistable heart valve prosthesis of Figure 3 after the filaments have been pulled to cause legs of the heart valve prosthesis to elastically invert like an umbrella from the stable position of Figure 3A to a second stable (inverted) position.

[uuz3] rigure ~ mustrates the mstame nears vane prostnesis of rigure 4 wnere more force is applied to the filaments to invert the legs past the second stable position, thereby causing the claws to open further for placement in the heart valve cavity.
[0024] Figure 6 illustrates the bistable heart valve prosthesis of Figure S
where the tension on the filaments has been removed and the claws have clamped down on adjacent heart tissue.
[0025] Figure 7 illustrates the placement of a catheter with a folded mural valve prosthesis therein above the mitral valve prior to implantation.
[0026] Figure 8 illustrates the unfolded mitral valve prosthesis in a first stable position within the left atrium.
[0027] Figure 9 illustrates the mitral valve prosthesis in a second stable position within the left atrium after the legs have been inverted by pulling the filaments attached to the body member.
[0028] Figure 10 illustrates the mural valve prosthesis in the second stable position as it is guided to the implantation position (e.g., valve seat).
[0029] Figure 11 illustrates the mural valve prosthesis at its implantation position in the mural valve cavity once tension from the filaments has been removed to cause the claws to clamp down on any of the surrounding heart tissue now within the open claws.
[0030] . Figure 12 illustrates the heart valve prosthesis in its implanted position with the catheter removed.
DETAILED DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS
[0031] The invention will be described with reference to Figures 1-12. Those skilled in the art will appreciate that the description given herein with respect to these figures is for exemplary purposes only and is not intended in any way to limit the scope of the invention. All questions regarding the scope of the invention may be resolved by referring to the appended claims.
[0032] The heart valve described herein has a triangular-based bistable compliant structure that forms the housing for valve leaflets made of standard biologic or artificial prosthetic material, such as cryo or chemically preserved bovine pericardium.
The structure is folded inside a catheter for transseptal delivery to the mitral valve cavity or by direct venous or arterial delivery to the aortic valve, pulmonary valve, or tricuspid valve cavities. The folded structure is advanced through the catheter by, for example, a smaller diameter guide catheter, to the implantation position (e.g., left atrium for mitral valve) where the structure is deployed inside the diseased valve. The structure opens to a first stable position when it emerges from the distal ...... .m ~.av vuwva.va auau ru mawru iiiw a JvrvV1111 JlClUIG jJVJtl.tVtt Uy ~JUttttt~ d(:lltailng IllamenTS. life structure is then anchored on the annulus at multiple (e.g., 3) points. It will be appreciated that this design and implantation methodology does not require surgery and that the bistable anchoring structure allows for strong, stable implantation, central blood flow, and a stable platform for the valve leaflets. Moreover, positioning can be more precise than with a balloon expandable device, such as a stmt, and, unlike a stmt, the positioning may be repeated until the desired implantation is accomplished. The heart valve structure described herein also allows anchoring to the valve annulus in states where a stmt would not have sufficient tissue to adhere, as in the case of mural valve disease.
[0033] In an exemplary embodiment, the heart valve prosthesis is designed to be placed at the site of a diseased heart valve, as distinct from existing heart valve prostheses designs that use stems that are placed in the connecting blood vessels. As a result, the ability of the operator to be able to reposition and re-anchor the heart valve in order to more accurately position the heart valve in the heart valve opening is of increased significance.
[0034] Figures lA and 1B together illustrate a side view of a bistable heart valve prosthesis 10 in accordance with an embodiment of the invention. As illustrated, the heart valve prosthesis 10 includes an annular ring 12 that is connected to a body member 14 via legs 16 (Figure 1B). In the illustrated embodiment, the legs 16 connect to the annular ring 12 via claws 18 that open and close in response to tensioning or pulling of filaments 20.
As shown, the filaments connect to respective sides of claws 18 so that pulling of the filaments 20 from a remote location causes the claws 18 to be pulled from an initial relaxed (strain-free) position (Figure 1) to the second stable (but not strain-free) position (Figure 4).
Pulling the filaments further causes the heart valve prosthesis 10 to deform more and to move to a position in which a second set of short, fixed length filaments 24 become taut. Pulling the filaments 20 even more causes the lower claw 18 to move down, while the upper claw 18 is held fixed by the taut filaments 24. This relative motion causes the claws 18 to open (Figure S) to allow ingress of tissue for grasping. Each claw 18 is connected to the annular ring and/or a leg 16 so as to permit movement of each claw 18 from the first (relaxed) position to the second (open) position. For example, as shown in Figures lA and 1B, the claws 18 may be connected to the legs and to the annular ring 12 through a hole in the legs that permits the annulus 12 to slide in the hole. Each claw 18 is controlled by a filament 20 whereby the claws 18 may be opened in unison or independently, depending upon the filament 20 connections.
[0035] The filaments 20 are weaved through holes 22 in the legs 16 and through the center of the body member 14, thereby providing stability and, as will be illustrated in connection mtn rigure 4, a mecnamsm ror mverimg me noay mem~er m mom ns siame posmon of Figure 1 to another stable position (Figure 4) for implantation. As best shown in Figure 1B, small filaments 24 are used to hold one side of the claw 18 so that when the other side of the claw 18 is pulled using filament 20 the claws 18 open. Finally, at least two leaflets 26 are connected to the annular ring 12 in a conventional manner. It will be appreciated that, when the bistable heart valve prosthesis 10 is implanted, the existing chordae within the heart that connect the old native heart valve to the papillary muscles may function to help retain the leaflets 26 in the proper positions and to improve left ventricular function.
[0036] Figures 2A and 2B together illustrate the bistable heart valve prosthesis 10 of Figure 1 in a folded position and inserted into a catheter 28 for transseptal delivery to the implantation position in the heart valve cavity. As illustrated, a guiding mechanism 30, such as a smaller diameter guiding catheter attached to the heart valve prosthesis 10, is used to guide it through the catheter 28 and to guide the filaments 20 to a proximal end of catheter 28 for remote operation by the surgeon or other operator. Conversely, the filaments 20 may be attached to a single fastener (not shown) which, in turn, is attached to the distal end of the smaller diameter guiding catheter 30. The fastener may then be detachable (for example, by a microscrew) from the smaller diameter guiding catheter 30 for final release of the heart valve prosthesis 10 upon implantation.
(0037] Figures 3A and 3B together illustrate a side view of the bistable heart valve prosthesis 10 of Figure 2 after it has emerged from the end of the catheter 28 and elastically expanded to a first stable position. The body member 14 and annular ring 12 of the heart valve prosthesis 10 are preferably made of a sturdy but compliant, elastic material such as nitinol or a deformable plastic so that when the heart valve prosthesis 10 emerges from the distal end of the catheter 28, the body member 14 and annular ring 12 snap back to a first stable position (like a regular opened umbrella). It will be appreciated that the legs 16 may be curved to increase stiffness and arranged to bend in radially when in the collapsed position (Figures 2A and 2B).
The legs 16 also may be tapered along their width to allow for minimal blockage of the blood flow once the heart valve prosthesis 10 is implanted. Although the illustrated embodiment has three legs 16 that are approximately symmetrically spaced (e.g., 120°
apart), it will be appreciated that more or fewer legs and different spacings may also be used.
[0038] Figure 4 illustrates the bistable heart valve prosthesis 10 of Figure 3 after the filaments 20 have been pulled to cause the heart valve prosthesis 10 to elastically invert like an umbrella from the stable position of Figure 3A to a second stable (inverted) position of Figure 4.
In other words, the body member 14 and legs 16 are sufficiently compliant such that when the _g_ nlameniS GV are punea w1n smnciem force, me vvuy memoer m amu legs m snap ~o ine secunu stable position shown in Figure 4. As will be explained in more detail below, this feature of the invention facilitates mounting of the heart valve prosthesis 10 in the heart valve cavity.
[0039] Figure 5 illustrates the bistable heart valve prosthesis 10 of Figure 4 where more force is applied to the filaments 20 to cause the claws 18 to open further for placement in the heart valve cavity. As also shown, the body member 14 is moved from the second stable position of Figure 4 to a more proximal, unstable position.
[0040] Figure 6 illustrates the bistable heart valve prosthesis 10 of Figure 5 where the tension on the filaments 20 has been removed once the heart valve prosthesis 10 is at the implantation position in the heart valve cavity and the claws 18 have clamped down on adjacent heart tissue 32.
[0041] The size (radius) of the heart valve prosthesis 10 is varied in accordance with whether the heart valve prosthesis 10 is to be used to repair or replace the mitral valve, the aortic valve, the pulmonary valve, or the tricuspid valve. These dimensions (typically 20-30 mm) may be readily determined by techniques known by those skilled in the art. All elements are then scaled accordingly. Also, those skilled in the art will appreciate that the heart valve prosthesis 10 may be mounted in a reverse fashion on the smaller diameter guiding catheter 30 for retrograde implantation at such other heart valve positions.
[0042] The surgical procedure for implanting the bistable percutaneous heart valve prosthesis 10 will now be described with respect to Figures 7-12 for the example of implantation of a mural valve prosthesis. It will be understood from the following description that the catheter 28 would be placed at different positions with respect to the valve cavities in the event that the heart valve prosthesis to be implanted is a prosthetic pulmonary valve, tricuspid valve, or aortic valve. Also, noted above, the heart valve prosthesis 10 would have different dimensions for the different implantation positions.
[0043] To implant the heart valve prosthesis 10, during surgery the heart valve prosthesis described above with respect to Figures 1-6 is folded into its collapsed position (Figures 2A
and 2B) and a catheter 28 with a suitably sized lumen for accepting the folded heart valve prosthesis 10 is inserted into the patient and guided in a conventional fashion to a position adjacent an implantation position in a patient's heart (for example, adjacent the mitral valve, the pulmonary valve, the tricuspid valve, or the aortic valve). Once the catheter 28 is in place, the folded heart valve prosthesis 10 is inserted into the catheter 28 and guided to the distal end of the catheter 28 using a smaller diameter guiding catheter 30. In turn, the smaller diameter guiding catheter 30 may accept a guide wire (not shown) for guiding the smaller diameter guiding catrieter ~u trirougn the catneter G~ ana the neart cnamners. Hs mown m rigure i, the catneter 28 enters the heart 34 via the inferior vena cava or superior vena cava, passes through the right atrium 36, across the interatrial septum 37, and into the left atrium 38 above the mural valve 40.
[0044] Once the catheter 28 is in place and the heart valve prosthesis 10 has been guided to the distal end of the catheter 28, the heart valve prosthesis 10 is unfolded to a first stable position by pushing it out of the distal end of the catheter 28 (Figure 8).
Generally, the natural elasticity of the annular ring 12 and body member 14 causes the heart valve prosthesis 10 to snap to this first stable position once it is beyond the end of the catheter 28.
The heart valve prosthesis 10 is then "snapped-through" from this first stable position to a second stable position by pulling on the filaments 20 as described above. The "snapped-through" heart valve prosthesis is illustrated in Figure 9.
[0045] The heart valve prosthesis 10 in the second stable position is then guided to the implantation position (e.g., valve seat) as shown in Figure 10 using the smaller diameter guiding catheter 30. Imaging devices (not shown) may be used to permit the surgeon (operator) to watch the movement of the heart valve prosthesis 10 to the implantation position.
Tension on the filaments 20 and 24 is released once the heart valve prosthesis 10 is in position (Figure 10), thereby releasing the tension holding open the claws 18 and deforming the body member 14. As shown in Figure 11, removing the tension from the filaments 20 causes the claws 18 to clamp closed in their snapped equilibrium position, thereby clamping down on any of the surrounding heart tissue 32 now disposed within the claws 18. The filaments 20 are again locked to the catheter 28. The steps of releasing the tension on filament 20 and pushing the heart valve prosthesis 20 to cause deformation may be conducted simultaneously. The surgeon (operator) may continue to push down on the heart valve prosthesis 10 and checking the stability of the implantation of the heart valve prosthesis 10 until it is determined that the heart valve prosthesis 10 is stably implanted and that the claws 18 "bite" sufficiently into the heart tissue 32. These steps of pushing down on the heart valve prosthesis 10 and checking the "bite"
of the claws 18 may be reversed and repeated for one or all of the claws 18 until the location and orientation of the heart valve prosthesis 10 and stability of implantation are acceptable.
When properly placed, the claws 18 maintain a tight grip on the heart tissue 32 so as to hold the heart valve prosthesis 10 in place. It also will be appreciated that once the filaments 20 and 24 are released and allowed to become slack that the legs 16 will have opened out radially into their final positions.
The filaments 20 are then released from the smaller diameter guiding catheter 30 by, for example, unscrewing a microscrew, and the smaller diameter guiding catheter 30 is slowly disengaged from the body member 14. It is noted that the heart valve prosthesis 10 may move a mt aunng tins aisengagement to aa~ust to the new nounaary commons. i ms snoma not ne a problem so long as the claws 18 have a suitable grip on the heart tissue 32.
However, it will be appreciated that if the operator observes too much movement of the implanted heart valve prosthesis 10 that the catheter 28 may be used to push down on the heart valve prosthesis 10 to recheck the implantation stability. Thus, unlike balloon expandable devices with stems, the heart valve prosthesis 10 described herein is redeployable and may be positively, as opposed to passively, anchored. The catheter 28 and the smaller diameter guiding catheter 30 are then extracted. Figure 12 illustrates the heart valve prosthesis 10 in its implanted position with the catheter 28 removed.
[0046] It will be appreciated that as the heart valve prosthesis 10 is being pushed down to be seated in the valve cavity that the elasticity of the annular ring 12 permits it to be distorted to the shape of the non-circular ring profile of the implantation position in the valve cavity.
Typically, most of the shape distortion is in the plane of the annular ring 12. The elasticity of the annular ring 12 causes it to push radially against the heart tissue 32 at the implantation position as the annular ring 12 attempts to spring back to its original annular shape.
The resulting elastic force functions to hold the heart valve prosthesis 10 in position. It will be further appreciated that, once implanted, the body member 14 in its inverted stable position also has great stability and strength (like an inverted umbrella) and pushes outward on the annular ring 12 so as to further assist anchoring the heart valve prosthesis 10 in the heart tissue 32.
[0047] Although implementations of the invention have been described in detail above, those skilled in the art will readily appreciate that many additional modifications are possible without materially departing from the novel teachings and advantages of the invention. For example, those skilled in the art will appreciate that the body member, legs, and claws may be integrated into a one-piece design for reliability, safety, and ease of manufacture. As another example, the filaments 24 may be replaced by a motion restraint such as a protrusion that contacts either the legs 16 or either side of the claws 18 to limit movement.
Any such modifications are intended to be included within the scope of the invention as defined in the following claims.

Claims (24)

1. A bistable percutaneous heart valve, comprising:
an elastic annular ring;
a body member having a plurality of legs, each leg connecting at one end to said annular ring;
at least two claws that are adjustable from a first position to a second position by application of external force so as to allow ingress of surrounding heart tissue into said claws in said second position, wherein upon removal of the external force the claws elastically revert to the first position so as to grip the heart tissue positioned within the claws, thereby holding said heart valve in place; and at least one leaflet membrane connected to at least one of said annular ring, said body member and said legs, said at least one leaflet membrane having a first position for blocking blood flow therethrough and a second position for allowing blood flow therethrough.
2. A heart valve as in claim 1, wherein said annular ring is adapted to fit in a mural valve opening of a heart.
3. A heart valve as in claim 1, wherein said annular ring is adapted to fit in an aortic valve opening of a heart.
4. A heart valve as in claim 1, wherein said annular ring is adapted to fit in a pulmonary valve opening of a heart.
5. A heart valve as in claim 1, wherein said annular ring is adapted to fit in a tricuspid valve opening of a heart.
6. A heart valve as in claim 1, wherein said annular ring, said body member, said legs, said claws and said at least one leaflet membrane fold into a collapsed position for insertion into a catheter for percutaneous delivery to the heart for implantation.
7. A heart valve as in claim 6, wherein said heart valve has a first stable position after passage through the catheter and a second stable position to which the heart valve is forced for implantation.
8. A heart valve as in claim 7, wherein said body member and legs push outward on said annular ring in said second stable position so as to assist anchoring said heart valve in said heart tissue.
9. A heart valve as in claim 1, wherein said annular ring is expandable radially to anchor the heart valve at an implantation position.
10. A heart valve as in claim 7, wherein each claw is connected to at least one of said annular ring and a leg so as to permit movement of each claw from said first position to said second position.
11. A heart valve as in claim 1, wherein further comprising at least one filament connecting said body member to said claws, said filament extending proximally from said heart valve so as to permit control of said claws between said first and second positions from a location remote from an implantation position of said heart valve.
12. A heart valve as in claim 11, further comprising a motion restraint that restrains one side of said claws while said at least one filament is connected to another side of said claws, whereby pulling said at least one filament causes the claws to open.
13. A heart valve as in claim 1, wherein said body member and claws are integrated into a one-piece design.
14. A bistable percutaneous heart valve, comprising:
an expandable elastic annular ring;
a body member having a plurality of legs, each leg connecting at one end to said annular ring;
at least two claws that are adjustable to guide said heart valve to an implantation position; and at least one leaflet membrane connected to at least one of said annular ring, said body member and said legs, said at least one leaflet membrane having a first position for blocking blood flow therethrough and a second position for allowing blood flow therethrough, wherein said expandable annular ring expands to anchor said heart valve at said implantation position.
15. A heart valve as in claim 14, wherein said annular ring, said body member, said legs, said claws and said at least one leaflet membrane fold into a collapsed position for insertion into a catheter for percutaneous delivery to the implantation position.
16. A method of implanting a bistable percutaneous heart valve, comprising the steps of:
folding said bistable percutaneous heart valve into a collapsed position;
inserting a catheter into a patient and guiding a distal end of said catheter to a position adjacent an implantation position in a patient's heart;
inserting said folded heart valve into said catheter and steering said folded heart valve to said distal end of said catheter using a guiding device;
guiding said folded heart valve beyond said distal end of said catheter so as to cause said heart valve to elastically unfold to a stable unfolded position;
forcing the unfolded heart valve into a second stable position;
guiding the heart valve to the implantation position;
adjusting at least two claws of said heart valve by the application of an external force so as to allow ingress of surrounding heart tissue into said claws, whereupon removal of the external force the claws elastically revert to an initial position so as to grip the heart tissue positioned within the claws, thereby holding said heart valve in place; and removing the guiding device and the catheter.
17. A method as in claim 16, comprising the further step of repeating the steps of guiding the unfolded heart valve to the implantation position and adjusting the claws to hold the heart valve in place until the position, stability and functioning of the heart valve are satisfactory.
18. A method as in claim 16, wherein said implantation position is a mitral valve opening of the heart.
19. A method as in claim 16, wherein said implantation position is an aortic valve opening of the heart.
20. A method as in claim 16, wherein said implantation position is a pulmonary valve opening of the heart.
21. A method as in claim 16, wherein said implantation position is a tricuspid valve opening of the heart.
22. A method as in claim 16, wherein an elastic annular ring of the heart valve pushes outward on heart tissue in the stable unfolded position so as to assist anchoring said heart valve in said heart tissue.
23. A method as in claim 16, wherein said external force is applied in said claws adjusting step by manipulating at a proximal end of said catheter at least one filament that passes through said catheter and connects at a distal end to said claws so as to cause said claws to move to a position permitting said ingress of surrounding heart tissue into said claws.
24. A method as in claim 23, wherein said at least one filament is further used to switch the heart valve from the stable unfolded position to the second stable position prior to implantation.
CA002533353A 2003-07-21 2004-07-20 Percutaneous heart valve Abandoned CA2533353A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US48883803P 2003-07-21 2003-07-21
US60/488,838 2003-07-21
PCT/US2004/023211 WO2005009285A2 (en) 2003-07-21 2004-07-20 Percutaneous heart valve

Publications (1)

Publication Number Publication Date
CA2533353A1 true CA2533353A1 (en) 2005-02-03

Family

ID=34102789

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002533353A Abandoned CA2533353A1 (en) 2003-07-21 2004-07-20 Percutaneous heart valve

Country Status (9)

Country Link
US (2) US7621948B2 (en)
EP (1) EP1653888B1 (en)
JP (1) JP4447011B2 (en)
AT (1) ATE442107T1 (en)
AU (1) AU2004258942B2 (en)
CA (1) CA2533353A1 (en)
DE (1) DE602004023095D1 (en)
IL (1) IL173286A0 (en)
WO (1) WO2005009285A2 (en)

Families Citing this family (539)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6006134A (en) * 1998-04-30 1999-12-21 Medtronic, Inc. Method and device for electronically controlling the beating of a heart using venous electrical stimulation of nerve fibers
EP0850607A1 (en) 1996-12-31 1998-07-01 Cordis Corporation Valve prosthesis for implantation in body channels
US7018406B2 (en) * 1999-11-17 2006-03-28 Corevalve Sa Prosthetic valve for transluminal delivery
US8579966B2 (en) 1999-11-17 2013-11-12 Medtronic Corevalve Llc Prosthetic valve for transluminal delivery
US20070043435A1 (en) * 1999-11-17 2007-02-22 Jacques Seguin Non-cylindrical prosthetic valve system for transluminal delivery
US8016877B2 (en) * 1999-11-17 2011-09-13 Medtronic Corevalve Llc Prosthetic valve for transluminal delivery
US8241274B2 (en) 2000-01-19 2012-08-14 Medtronic, Inc. Method for guiding a medical device
US7749245B2 (en) 2000-01-27 2010-07-06 Medtronic, Inc. Cardiac valve procedure methods and devices
US6454799B1 (en) 2000-04-06 2002-09-24 Edwards Lifesciences Corporation Minimally-invasive heart valves and methods of use
US8366769B2 (en) 2000-06-01 2013-02-05 Edwards Lifesciences Corporation Low-profile, pivotable heart valve sewing ring
EP1401358B1 (en) * 2000-06-30 2016-08-17 Medtronic, Inc. Apparatus for performing a procedure on a cardiac valve
WO2002005888A1 (en) * 2000-06-30 2002-01-24 Viacor Incorporated Intravascular filter with debris entrapment mechanism
US6409758B2 (en) * 2000-07-27 2002-06-25 Edwards Lifesciences Corporation Heart valve holder for constricting the valve commissures and methods of use
AU2001285078A1 (en) 2000-08-18 2002-03-04 Atritech, Inc. Expandable implant devices for filtering blood flow from atrial appendages
WO2004030568A2 (en) * 2002-10-01 2004-04-15 Ample Medical, Inc. Device and method for repairing a native heart valve leaflet
US7556646B2 (en) 2001-09-13 2009-07-07 Edwards Lifesciences Corporation Methods and apparatuses for deploying minimally-invasive heart valves
US6733525B2 (en) 2001-03-23 2004-05-11 Edwards Lifesciences Corporation Rolled minimally-invasive heart valves and methods of use
US8623077B2 (en) 2001-06-29 2014-01-07 Medtronic, Inc. Apparatus for replacing a cardiac valve
US8771302B2 (en) * 2001-06-29 2014-07-08 Medtronic, Inc. Method and apparatus for resecting and replacing an aortic valve
US7544206B2 (en) 2001-06-29 2009-06-09 Medtronic, Inc. Method and apparatus for resecting and replacing an aortic valve
FR2826863B1 (en) * 2001-07-04 2003-09-26 Jacques Seguin ASSEMBLY FOR PLACING A PROSTHETIC VALVE IN A BODY CONDUIT
FR2828091B1 (en) 2001-07-31 2003-11-21 Seguin Jacques ASSEMBLY ALLOWING THE PLACEMENT OF A PROTHETIC VALVE IN A BODY DUCT
US7097659B2 (en) * 2001-09-07 2006-08-29 Medtronic, Inc. Fixation band for affixing a prosthetic heart valve to tissue
US6893460B2 (en) 2001-10-11 2005-05-17 Percutaneous Valve Technologies Inc. Implantable prosthetic valve
US7201771B2 (en) 2001-12-27 2007-04-10 Arbor Surgical Technologies, Inc. Bioprosthetic heart valve
US8721713B2 (en) * 2002-04-23 2014-05-13 Medtronic, Inc. System for implanting a replacement valve
US7959674B2 (en) 2002-07-16 2011-06-14 Medtronic, Inc. Suture locking assembly and method of use
US8758372B2 (en) 2002-08-29 2014-06-24 St. Jude Medical, Cardiology Division, Inc. Implantable devices for controlling the size and shape of an anatomical structure or lumen
US7175660B2 (en) 2002-08-29 2007-02-13 Mitralsolutions, Inc. Apparatus for implanting surgical devices for controlling the internal circumference of an anatomic orifice or lumen
CO5500017A1 (en) * 2002-09-23 2005-03-31 3F Therapeutics Inc MITRAL PROTESTIC VALVE
US8551162B2 (en) 2002-12-20 2013-10-08 Medtronic, Inc. Biologically implantable prosthesis
US7393339B2 (en) * 2003-02-21 2008-07-01 C. R. Bard, Inc. Multi-lumen catheter with separate distal tips
DE602004023095D1 (en) 2003-07-21 2009-10-22 Univ Pennsylvania PERCUTANEOUS HEADLAP
US8021421B2 (en) * 2003-08-22 2011-09-20 Medtronic, Inc. Prosthesis heart valve fixturing device
US9579194B2 (en) * 2003-10-06 2017-02-28 Medtronic ATS Medical, Inc. Anchoring structure with concave landing zone
US7556647B2 (en) * 2003-10-08 2009-07-07 Arbor Surgical Technologies, Inc. Attachment device and methods of using the same
US7854761B2 (en) 2003-12-19 2010-12-21 Boston Scientific Scimed, Inc. Methods for venous valve replacement with a catheter
US8128681B2 (en) 2003-12-19 2012-03-06 Boston Scientific Scimed, Inc. Venous valve apparatus, system, and method
US8287584B2 (en) 2005-11-14 2012-10-16 Sadra Medical, Inc. Medical implant deployment tool
US7824442B2 (en) * 2003-12-23 2010-11-02 Sadra Medical, Inc. Methods and apparatus for endovascularly replacing a heart valve
US7445631B2 (en) 2003-12-23 2008-11-04 Sadra Medical, Inc. Methods and apparatus for endovascularly replacing a patient's heart valve
EP2529698B1 (en) * 2003-12-23 2014-01-29 Sadra Medical, Inc. Repositionable heart valve
US7329279B2 (en) * 2003-12-23 2008-02-12 Sadra Medical, Inc. Methods and apparatus for endovascularly replacing a patient's heart valve
US7959666B2 (en) 2003-12-23 2011-06-14 Sadra Medical, Inc. Methods and apparatus for endovascularly replacing a heart valve
US7824443B2 (en) * 2003-12-23 2010-11-02 Sadra Medical, Inc. Medical implant delivery and deployment tool
US8343213B2 (en) 2003-12-23 2013-01-01 Sadra Medical, Inc. Leaflet engagement elements and methods for use thereof
US11278398B2 (en) 2003-12-23 2022-03-22 Boston Scientific Scimed, Inc. Methods and apparatus for endovascular heart valve replacement comprising tissue grasping elements
US8840663B2 (en) 2003-12-23 2014-09-23 Sadra Medical, Inc. Repositionable heart valve method
US8579962B2 (en) * 2003-12-23 2013-11-12 Sadra Medical, Inc. Methods and apparatus for performing valvuloplasty
US7381219B2 (en) 2003-12-23 2008-06-03 Sadra Medical, Inc. Low profile heart valve and delivery system
US20050137687A1 (en) 2003-12-23 2005-06-23 Sadra Medical Heart valve anchor and method
US20120041550A1 (en) 2003-12-23 2012-02-16 Sadra Medical, Inc. Methods and Apparatus for Endovascular Heart Valve Replacement Comprising Tissue Grasping Elements
US9005273B2 (en) 2003-12-23 2015-04-14 Sadra Medical, Inc. Assessing the location and performance of replacement heart valves
US8828078B2 (en) 2003-12-23 2014-09-09 Sadra Medical, Inc. Methods and apparatus for endovascular heart valve replacement comprising tissue grasping elements
US7780725B2 (en) 2004-06-16 2010-08-24 Sadra Medical, Inc. Everting heart valve
US8603160B2 (en) 2003-12-23 2013-12-10 Sadra Medical, Inc. Method of using a retrievable heart valve anchor with a sheath
US9526609B2 (en) 2003-12-23 2016-12-27 Boston Scientific Scimed, Inc. Methods and apparatus for endovascularly replacing a patient's heart valve
US20050137694A1 (en) 2003-12-23 2005-06-23 Haug Ulrich R. Methods and apparatus for endovascularly replacing a patient's heart valve
US8246675B2 (en) * 2003-12-23 2012-08-21 Laboratoires Perouse Kit for implanting in a duct
US8182528B2 (en) 2003-12-23 2012-05-22 Sadra Medical, Inc. Locking heart valve anchor
US7871435B2 (en) 2004-01-23 2011-01-18 Edwards Lifesciences Corporation Anatomically approximate prosthetic mitral heart valve
US20090132035A1 (en) * 2004-02-27 2009-05-21 Roth Alex T Prosthetic Heart Valves, Support Structures and Systems and Methods for Implanting the Same
EP1722711A4 (en) * 2004-02-27 2009-12-02 Aortx Inc Prosthetic heart valve delivery systems and methods
ITTO20040135A1 (en) 2004-03-03 2004-06-03 Sorin Biomedica Cardio Spa CARDIAC VALVE PROSTHESIS
WO2005087140A1 (en) * 2004-03-11 2005-09-22 Percutaneous Cardiovascular Solutions Pty Limited Percutaneous heart valve prosthesis
US20050228494A1 (en) * 2004-03-29 2005-10-13 Salvador Marquez Controlled separation heart valve frame
BRPI0510107A (en) 2004-04-23 2007-09-25 3F Therapeutics Inc implantable protein valve
US8012201B2 (en) 2004-05-05 2011-09-06 Direct Flow Medical, Inc. Translumenally implantable heart valve with multiple chamber formed in place support
US7566343B2 (en) 2004-09-02 2009-07-28 Boston Scientific Scimed, Inc. Cardiac valve, system, and method
US20060052867A1 (en) * 2004-09-07 2006-03-09 Medtronic, Inc Replacement prosthetic heart valve, system and method of implant
US8562672B2 (en) 2004-11-19 2013-10-22 Medtronic, Inc. Apparatus for treatment of cardiac valves and method of its manufacture
WO2006054107A2 (en) * 2004-11-19 2006-05-26 Medtronic Inc. Method and apparatus for treatment of cardiac valves
WO2006063199A2 (en) 2004-12-09 2006-06-15 The Foundry, Inc. Aortic valve repair
DE102005003632A1 (en) 2005-01-20 2006-08-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Catheter for the transvascular implantation of heart valve prostheses
US20060173490A1 (en) 2005-02-01 2006-08-03 Boston Scientific Scimed, Inc. Filter system and method
US8574257B2 (en) * 2005-02-10 2013-11-05 Edwards Lifesciences Corporation System, device, and method for providing access in a cardiovascular environment
ITTO20050074A1 (en) 2005-02-10 2006-08-11 Sorin Biomedica Cardio Srl CARDIAC VALVE PROSTHESIS
US7867274B2 (en) 2005-02-23 2011-01-11 Boston Scientific Scimed, Inc. Valve apparatus, system and method
EP2626039B1 (en) 2005-03-25 2015-10-14 St. Jude Medical, Cardiology Division, Inc. Apparatus for controlling the internal circumference of an anatomic orifice or lumen
US8864823B2 (en) 2005-03-25 2014-10-21 StJude Medical, Cardiology Division, Inc. Methods and apparatus for controlling the internal circumference of an anatomic orifice or lumen
US7513909B2 (en) 2005-04-08 2009-04-07 Arbor Surgical Technologies, Inc. Two-piece prosthetic valves with snap-in connection and methods for use
US7722666B2 (en) 2005-04-15 2010-05-25 Boston Scientific Scimed, Inc. Valve apparatus, system and method
US7962208B2 (en) 2005-04-25 2011-06-14 Cardiac Pacemakers, Inc. Method and apparatus for pacing during revascularization
US7914569B2 (en) 2005-05-13 2011-03-29 Medtronics Corevalve Llc Heart valve prosthesis and methods of manufacture and use
WO2006127509A2 (en) * 2005-05-20 2006-11-30 Mayo Foundation For Medical Education And Research Devices and methods for reducing cardiac valve regurgitation
EP3292838A1 (en) 2005-05-24 2018-03-14 Edwards Lifesciences Corporation Rapid deployment prosthetic heart valve
EP1895942B1 (en) 2005-05-27 2020-05-13 Medtronic, Inc. Gasket with collar for prosthetic heart valves
US8012198B2 (en) 2005-06-10 2011-09-06 Boston Scientific Scimed, Inc. Venous valve, system, and method
US7780723B2 (en) * 2005-06-13 2010-08-24 Edwards Lifesciences Corporation Heart valve delivery system
US7682391B2 (en) * 2005-07-13 2010-03-23 Edwards Lifesciences Corporation Methods of implanting a prosthetic mitral heart valve having a contoured sewing ring
US7712606B2 (en) * 2005-09-13 2010-05-11 Sadra Medical, Inc. Two-part package for medical implant
US7569071B2 (en) 2005-09-21 2009-08-04 Boston Scientific Scimed, Inc. Venous valve, system, and method with sinus pocket
EP1945142B1 (en) 2005-09-26 2013-12-25 Medtronic, Inc. Prosthetic cardiac and venous valves
US8167932B2 (en) 2005-10-18 2012-05-01 Edwards Lifesciences Corporation Heart valve delivery system with valve catheter
US8852270B2 (en) 2007-11-15 2014-10-07 Cardiosolutions, Inc. Implant delivery system and method
US9259317B2 (en) 2008-06-13 2016-02-16 Cardiosolutions, Inc. System and method for implanting a heart implant
US8092525B2 (en) * 2005-10-26 2012-01-10 Cardiosolutions, Inc. Heart valve implant
US8092520B2 (en) 2005-11-10 2012-01-10 CardiAQ Technologies, Inc. Vascular prosthesis connecting stent
US20070213813A1 (en) 2005-12-22 2007-09-13 Symetis Sa Stent-valves for valve replacement and associated methods and systems for surgery
US9078781B2 (en) 2006-01-11 2015-07-14 Medtronic, Inc. Sterile cover for compressible stents used in percutaneous device delivery systems
US7967857B2 (en) 2006-01-27 2011-06-28 Medtronic, Inc. Gasket with spring collar for prosthetic heart valves and methods for making and using them
CN101415379B (en) 2006-02-14 2012-06-20 萨德拉医学公司 Systems for delivering a medical implant
US8403981B2 (en) * 2006-02-27 2013-03-26 CardiacMC, Inc. Methods and devices for delivery of prosthetic heart valves and other prosthetics
US8147541B2 (en) * 2006-02-27 2012-04-03 Aortx, Inc. Methods and devices for delivery of prosthetic heart valves and other prosthetics
EP1998719A1 (en) * 2006-03-10 2008-12-10 Arbor Surgical Technologies, Inc. Valve introducers and methods for making and using them
US8075615B2 (en) * 2006-03-28 2011-12-13 Medtronic, Inc. Prosthetic cardiac valve formed from pericardium material and methods of making same
EP2023860A2 (en) * 2006-04-29 2009-02-18 Arbor Surgical Technologies, Inc. Multiple component prosthetic heart valve assemblies and apparatus and methods for delivering them
US8021161B2 (en) * 2006-05-01 2011-09-20 Edwards Lifesciences Corporation Simulated heart valve root for training and testing
US8585594B2 (en) * 2006-05-24 2013-11-19 Phoenix Biomedical, Inc. Methods of assessing inner surfaces of body lumens or organs
CN101505668A (en) * 2006-06-20 2009-08-12 奥尔特克斯公司 Prosthetic valve implant site preparation techniques
JP2009540952A (en) 2006-06-20 2009-11-26 エーオーテックス, インコーポレイテッド Torque shaft and torque drive
WO2007149910A2 (en) 2006-06-20 2007-12-27 Aortx, Inc. Prosthetic heart valves, support structures and systems and methods for implanting the same
JP2009540956A (en) 2006-06-21 2009-11-26 エーオーテックス, インコーポレイテッド Prosthetic valve implantation system
US20090306768A1 (en) * 2006-07-28 2009-12-10 Cardiaq Valve Technologies, Inc. Percutaneous valve prosthesis and system and method for implanting same
WO2008030946A1 (en) * 2006-09-06 2008-03-13 Aortx, Inc. Prosthetic heart valves, systems and methods of implanting
US8834564B2 (en) 2006-09-19 2014-09-16 Medtronic, Inc. Sinus-engaging valve fixation member
US11304800B2 (en) 2006-09-19 2022-04-19 Medtronic Ventor Technologies Ltd. Sinus-engaging valve fixation member
US8414643B2 (en) 2006-09-19 2013-04-09 Medtronic Ventor Technologies Ltd. Sinus-engaging valve fixation member
EP2083901B1 (en) 2006-10-16 2017-12-27 Medtronic Ventor Technologies Ltd. Transapical delivery system with ventriculo-arterial overflow bypass
CA2671754C (en) 2006-12-06 2015-08-18 Medtronic Corevalve Llc System and method for transapical delivery of an annulus anchored self-expanding valve
US8236045B2 (en) 2006-12-22 2012-08-07 Edwards Lifesciences Corporation Implantable prosthetic valve assembly and method of making the same
CA2674485A1 (en) 2007-01-03 2008-07-17 Mitralsolutions, Inc. Implantable devices for controlling the size and shape of an anatomical structure or lumen
WO2008091493A1 (en) 2007-01-08 2008-07-31 California Institute Of Technology In-situ formation of a valve
US9427215B2 (en) 2007-02-05 2016-08-30 St. Jude Medical, Cardiology Division, Inc. Minimally invasive system for delivering and securing an annular implant
JP5313928B2 (en) 2007-02-05 2013-10-09 ボストン サイエンティフィック リミテッド Percutaneous valves and systems
CA2677633C (en) * 2007-02-15 2015-09-08 Medtronic, Inc. Multi-layered stents and methods of implanting
WO2008100600A1 (en) * 2007-02-16 2008-08-21 Medtronic, Inc. Replacement prosthetic heart valves and methods of implantation
US20080208328A1 (en) * 2007-02-23 2008-08-28 Endovalve, Inc. Systems and Methods For Placement of Valve Prosthesis System
US8070802B2 (en) * 2007-02-23 2011-12-06 The Trustees Of The University Of Pennsylvania Mitral valve system
US7896915B2 (en) 2007-04-13 2011-03-01 Jenavalve Technology, Inc. Medical device for treating a heart valve insufficiency
FR2915087B1 (en) 2007-04-20 2021-11-26 Corevalve Inc IMPLANT FOR TREATMENT OF A HEART VALVE, IN PARTICULAR OF A MITRAL VALVE, EQUIPMENT INCLUDING THIS IMPLANT AND MATERIAL FOR PLACING THIS IMPLANT.
US8828079B2 (en) * 2007-07-26 2014-09-09 Boston Scientific Scimed, Inc. Circulatory valve, system and method
US8747458B2 (en) 2007-08-20 2014-06-10 Medtronic Ventor Technologies Ltd. Stent loading tool and method for use thereof
DE102007043830A1 (en) 2007-09-13 2009-04-02 Lozonschi, Lucian, Madison Heart valve stent
US10856970B2 (en) 2007-10-10 2020-12-08 Medtronic Ventor Technologies Ltd. Prosthetic heart valve for transfemoral delivery
US20090138079A1 (en) * 2007-10-10 2009-05-28 Vector Technologies Ltd. Prosthetic heart valve for transfemoral delivery
US9848981B2 (en) 2007-10-12 2017-12-26 Mayo Foundation For Medical Education And Research Expandable valve prosthesis with sealing mechanism
US7892276B2 (en) 2007-12-21 2011-02-22 Boston Scientific Scimed, Inc. Valve with delayed leaflet deployment
US20090171456A1 (en) * 2007-12-28 2009-07-02 Kveen Graig L Percutaneous heart valve, system, and method
US9089422B2 (en) 2008-01-24 2015-07-28 Medtronic, Inc. Markers for prosthetic heart valves
US9393115B2 (en) * 2008-01-24 2016-07-19 Medtronic, Inc. Delivery systems and methods of implantation for prosthetic heart valves
US9149358B2 (en) * 2008-01-24 2015-10-06 Medtronic, Inc. Delivery systems for prosthetic heart valves
US20090287290A1 (en) * 2008-01-24 2009-11-19 Medtronic, Inc. Delivery Systems and Methods of Implantation for Prosthetic Heart Valves
MX2010008171A (en) 2008-01-24 2010-12-07 Medtronic Inc Stents for prosthetic heart valves.
US8157853B2 (en) * 2008-01-24 2012-04-17 Medtronic, Inc. Delivery systems and methods of implantation for prosthetic heart valves
US8628566B2 (en) * 2008-01-24 2014-01-14 Medtronic, Inc. Stents for prosthetic heart valves
ES2903231T3 (en) 2008-02-26 2022-03-31 Jenavalve Tech Inc Stent for positioning and anchoring a valve prosthesis at an implantation site in a patient's heart
US9044318B2 (en) 2008-02-26 2015-06-02 Jenavalve Technology Gmbh Stent for the positioning and anchoring of a valvular prosthesis
EP3005984A1 (en) 2008-02-28 2016-04-13 Medtronic Inc. Prosthetic heart valve systems
CN101959478B (en) 2008-02-29 2013-12-18 爱德华兹生命科学公司 Expandable member for deploying prosthetic device
US8313525B2 (en) 2008-03-18 2012-11-20 Medtronic Ventor Technologies, Ltd. Valve suturing and implantation procedures
US8430927B2 (en) 2008-04-08 2013-04-30 Medtronic, Inc. Multiple orifice implantable heart valve and methods of implantation
US8312825B2 (en) 2008-04-23 2012-11-20 Medtronic, Inc. Methods and apparatuses for assembly of a pericardial prosthetic heart valve
US8696743B2 (en) * 2008-04-23 2014-04-15 Medtronic, Inc. Tissue attachment devices and methods for prosthetic heart valves
US20090276040A1 (en) 2008-05-01 2009-11-05 Edwards Lifesciences Corporation Device and method for replacing mitral valve
US8840661B2 (en) 2008-05-16 2014-09-23 Sorin Group Italia S.R.L. Atraumatic prosthetic heart valve prosthesis
US8323335B2 (en) 2008-06-20 2012-12-04 Edwards Lifesciences Corporation Retaining mechanisms for prosthetic valves and methods for using
US8652202B2 (en) 2008-08-22 2014-02-18 Edwards Lifesciences Corporation Prosthetic heart valve and delivery apparatus
EP2358307B1 (en) 2008-09-15 2021-12-15 Medtronic Ventor Technologies Ltd. Prosthetic heart valve having identifiers for aiding in radiographic positioning
US8721714B2 (en) 2008-09-17 2014-05-13 Medtronic Corevalve Llc Delivery system for deployment of medical devices
EP2901966B1 (en) 2008-09-29 2016-06-29 Edwards Lifesciences CardiAQ LLC Heart valve
EP2341871B1 (en) 2008-10-01 2017-03-22 Edwards Lifesciences CardiAQ LLC Delivery system for vascular implant
CA2739961A1 (en) 2008-10-10 2010-04-15 Sadra Medical, Inc. Medical devices and delivery systems for delivering medical devices
US8690936B2 (en) 2008-10-10 2014-04-08 Edwards Lifesciences Corporation Expandable sheath for introducing an endovascular delivery device into a body
US8137398B2 (en) 2008-10-13 2012-03-20 Medtronic Ventor Technologies Ltd Prosthetic valve having tapered tip when compressed for delivery
US8986361B2 (en) 2008-10-17 2015-03-24 Medtronic Corevalve, Inc. Delivery system for deployment of medical devices
US8449625B2 (en) 2009-10-27 2013-05-28 Edwards Lifesciences Corporation Methods of measuring heart valve annuluses for valve replacement
EP3613383B1 (en) 2008-11-21 2023-08-30 Percutaneous Cardiovascular Solutions Pty Limited Heart valve prosthesis
WO2010065265A2 (en) 2008-11-25 2010-06-10 Edwards Lifesciences Corporation Apparatus and method for in situ expansion of prosthetic device
US8308798B2 (en) 2008-12-19 2012-11-13 Edwards Lifesciences Corporation Quick-connect prosthetic heart valve and methods
US8545553B2 (en) 2009-05-04 2013-10-01 Valtech Cardio, Ltd. Over-wire rotation tool
US10517719B2 (en) * 2008-12-22 2019-12-31 Valtech Cardio, Ltd. Implantation of repair devices in the heart
EP2201911B1 (en) 2008-12-23 2015-09-30 Sorin Group Italia S.r.l. Expandable prosthetic valve having anchoring appendages
US20100174363A1 (en) * 2009-01-07 2010-07-08 Endovalve, Inc. One Piece Prosthetic Valve Support Structure and Related Assemblies
US8808371B2 (en) 2009-01-22 2014-08-19 St. Jude Medical, Cardiology Division, Inc. Post-operative adjustment tool, minimally invasive attachment apparatus, and adjustable tricuspid ring
US20100217382A1 (en) 2009-02-25 2010-08-26 Edwards Lifesciences Mitral valve replacement with atrial anchoring
JP5699126B2 (en) * 2009-03-30 2015-04-08 カウスパー・メディカル・インク Non-sutured valve prosthetic valve and delivery device and method
US9980818B2 (en) * 2009-03-31 2018-05-29 Edwards Lifesciences Corporation Prosthetic heart valve system with positioning markers
CA2961053C (en) 2009-04-15 2019-04-30 Edwards Lifesciences Cardiaq Llc Vascular implant and delivery system
EP2628465A1 (en) 2009-04-27 2013-08-21 Sorin Group Italia S.r.l. Prosthetic vascular conduit
US8348998B2 (en) 2009-06-26 2013-01-08 Edwards Lifesciences Corporation Unitary quick connect prosthetic heart valve and deployment system and methods
AU2010266210B2 (en) * 2009-07-02 2015-01-22 The Cleveland Clinic Foundation Apparatus and method for replacing a diseased cardiac valve
US20110313515A1 (en) 2010-06-21 2011-12-22 Arshad Quadri Replacement heart valve
US9730790B2 (en) 2009-09-29 2017-08-15 Edwards Lifesciences Cardiaq Llc Replacement valve and method
US8808369B2 (en) * 2009-10-05 2014-08-19 Mayo Foundation For Medical Education And Research Minimally invasive aortic valve replacement
CA3050297A1 (en) 2009-11-05 2011-05-12 The Trustees Of The University Of Pennsylvania Valve prosthesis
US8449599B2 (en) 2009-12-04 2013-05-28 Edwards Lifesciences Corporation Prosthetic valve for replacing mitral valve
US8870950B2 (en) 2009-12-08 2014-10-28 Mitral Tech Ltd. Rotation-based anchoring of an implant
ES2870080T3 (en) 2009-12-08 2021-10-26 Avalon Medical Ltd Transcatheter Mitral Valve Replacement Device and System
US9504562B2 (en) * 2010-01-12 2016-11-29 Valve Medical Ltd. Self-assembling modular percutaneous valve and methods of folding, assembly and delivery
US10743854B2 (en) 2010-01-20 2020-08-18 Micro Interventional Devices, Inc. Tissue closure device and method
US9980708B2 (en) 2010-01-20 2018-05-29 Micro Interventional Devices, Inc. Tissue closure device and method
US20150359627A1 (en) * 2010-01-20 2015-12-17 Micro Interventional Devices, Inc. System and Method for Heart Valve Anchoring
WO2011091189A1 (en) 2010-01-20 2011-07-28 New Hope Ventures, Lp Tissue repair implant and delivery device and method
US10058314B2 (en) 2010-01-20 2018-08-28 Micro Interventional Devices, Inc. Tissue closure device and method
US10959840B2 (en) 2010-01-20 2021-03-30 Micro Interventional Devices, Inc. Systems and methods for affixing a prosthesis to tissue
US9226826B2 (en) * 2010-02-24 2016-01-05 Medtronic, Inc. Transcatheter valve structure and methods for valve delivery
US9522062B2 (en) 2010-02-24 2016-12-20 Medtronic Ventor Technologies, Ltd. Mitral prosthesis and methods for implantation
EP4129238A1 (en) 2010-03-05 2023-02-08 Edwards Lifesciences Corporation Retaining mechanisms for prosthetic valves
WO2011111047A2 (en) * 2010-03-10 2011-09-15 Mitraltech Ltd. Prosthetic mitral valve with tissue anchors
EP3636293A1 (en) 2010-03-23 2020-04-15 Edwards Lifesciences Corporation Methods of conditioning sheet bioprosthetic tissue
US8652204B2 (en) 2010-04-01 2014-02-18 Medtronic, Inc. Transcatheter valve with torsion spring fixation and related systems and methods
US8579964B2 (en) 2010-05-05 2013-11-12 Neovasc Inc. Transcatheter mitral valve prosthesis
CA2793916C (en) 2010-05-10 2016-10-25 Edwards Lifesciences Corporation Prosthetic heart valve
US9554901B2 (en) 2010-05-12 2017-01-31 Edwards Lifesciences Corporation Low gradient prosthetic heart valve
IT1400327B1 (en) 2010-05-21 2013-05-24 Sorin Biomedica Cardio Srl SUPPORT DEVICE FOR VALVULAR PROSTHESIS AND CORRESPONDING CORRESPONDENT.
AU2011257298B2 (en) 2010-05-25 2014-07-31 Jenavalve Technology Inc. Prosthetic heart valve and transcatheter delivered endoprosthesis comprising a prosthetic heart valve and a stent
EP4032503A1 (en) 2010-07-09 2022-07-27 Highlife SAS Transcatheter atrio-ventricular valve prosthesis
US9132009B2 (en) 2010-07-21 2015-09-15 Mitraltech Ltd. Guide wires with commissural anchors to advance a prosthetic valve
US9763657B2 (en) 2010-07-21 2017-09-19 Mitraltech Ltd. Techniques for percutaneous mitral valve replacement and sealing
US11653910B2 (en) 2010-07-21 2023-05-23 Cardiovalve Ltd. Helical anchor implantation
US8992604B2 (en) 2010-07-21 2015-03-31 Mitraltech Ltd. Techniques for percutaneous mitral valve replacement and sealing
EP2595569A4 (en) 2010-07-23 2016-02-24 Edwards Lifesciences Corp Retaining mechanisms for prosthetic valves
AU2011296361B2 (en) 2010-09-01 2015-05-28 Medtronic Vascular Galway Prosthetic valve support structure
US9125741B2 (en) 2010-09-10 2015-09-08 Edwards Lifesciences Corporation Systems and methods for ensuring safe and rapid deployment of prosthetic heart valves
US9370418B2 (en) 2010-09-10 2016-06-21 Edwards Lifesciences Corporation Rapidly deployable surgical heart valves
CN103108611B (en) 2010-09-10 2016-08-31 西美蒂斯股份公司 Valve replacement device
US8641757B2 (en) 2010-09-10 2014-02-04 Edwards Lifesciences Corporation Systems for rapidly deploying surgical heart valves
EP3459500B1 (en) 2010-09-23 2020-09-16 Edwards Lifesciences CardiAQ LLC Replacement heart valves and delivery devices
US8845720B2 (en) 2010-09-27 2014-09-30 Edwards Lifesciences Corporation Prosthetic heart valve frame with flexible commissures
CA2822381C (en) 2010-12-23 2019-04-02 Foundry Newco Xii, Inc. System for mitral valve repair and replacement
US8888843B2 (en) 2011-01-28 2014-11-18 Middle Peak Medical, Inc. Device, system, and method for transcatheter treatment of valve regurgitation
US8845717B2 (en) 2011-01-28 2014-09-30 Middle Park Medical, Inc. Coaptation enhancement implant, system, and method
EP2486894B1 (en) 2011-02-14 2021-06-09 Sorin Group Italia S.r.l. Sutureless anchoring device for cardiac valve prostheses
EP2486893B1 (en) 2011-02-14 2017-07-05 Sorin Group Italia S.r.l. Sutureless anchoring device for cardiac valve prostheses
US9155619B2 (en) 2011-02-25 2015-10-13 Edwards Lifesciences Corporation Prosthetic heart valve delivery apparatus
WO2012127309A1 (en) 2011-03-21 2012-09-27 Ontorfano Matteo Disk-based valve apparatus and method for the treatment of valve dysfunction
US9308087B2 (en) 2011-04-28 2016-04-12 Neovasc Tiara Inc. Sequentially deployed transcatheter mitral valve prosthesis
US9554897B2 (en) 2011-04-28 2017-01-31 Neovasc Tiara Inc. Methods and apparatus for engaging a valve prosthesis with tissue
EP2520251A1 (en) 2011-05-05 2012-11-07 Symetis SA Method and Apparatus for Compressing Stent-Valves
AU2012255753B2 (en) * 2011-05-16 2016-06-30 Hlt, Inc. Inversion delivery device and method for a prosthesis
US9522064B2 (en) 2011-05-16 2016-12-20 Hlt, Inc. Inversion delivery device and method for a prosthesis
US10500038B1 (en) 2011-05-20 2019-12-10 Tel Hashomer Medical Research Infrastructure And Services Ltd. Prosthetic mitral valve, and methods and devices for deploying the prosthetic mitral valve
US8945209B2 (en) 2011-05-20 2015-02-03 Edwards Lifesciences Corporation Encapsulated heart valve
US9289282B2 (en) 2011-05-31 2016-03-22 Edwards Lifesciences Corporation System and method for treating valve insufficiency or vessel dilatation
CN103997990A (en) 2011-06-21 2014-08-20 托尔福公司 Prosthetic heart valve devices and associated systems and methods
EP2731550B1 (en) 2011-07-12 2016-02-24 Boston Scientific Scimed, Inc. Coupling system for a replacement valve
US9339384B2 (en) 2011-07-27 2016-05-17 Edwards Lifesciences Corporation Delivery systems for prosthetic heart valve
US20140324164A1 (en) 2011-08-05 2014-10-30 Mitraltech Ltd. Techniques for percutaneous mitral valve replacement and sealing
EP2739214B1 (en) 2011-08-05 2018-10-10 Cardiovalve Ltd Percutaneous mitral valve replacement and sealing
US8852272B2 (en) 2011-08-05 2014-10-07 Mitraltech Ltd. Techniques for percutaneous mitral valve replacement and sealing
US9668859B2 (en) 2011-08-05 2017-06-06 California Institute Of Technology Percutaneous heart valve delivery systems
WO2013021374A2 (en) 2011-08-05 2013-02-14 Mitraltech Ltd. Techniques for percutaneous mitral valve replacement and sealing
CA3091387C (en) 2011-08-11 2023-01-03 Tendyne Holdings, Inc. Improvements for prosthetic valves and related inventions
US9381112B1 (en) 2011-10-06 2016-07-05 William Eric Sponsell Bleb drainage device, ophthalmological product and methods
US9763780B2 (en) 2011-10-19 2017-09-19 Twelve, Inc. Devices, systems and methods for heart valve replacement
US11202704B2 (en) 2011-10-19 2021-12-21 Twelve, Inc. Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods
AU2012325813A1 (en) 2011-10-19 2014-04-03 Twelve, Inc. Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods
EP3943047B1 (en) 2011-10-19 2023-08-30 Twelve, Inc. Device for heart valve replacement
US9655722B2 (en) 2011-10-19 2017-05-23 Twelve, Inc. Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods
US9039757B2 (en) 2011-10-19 2015-05-26 Twelve, Inc. Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods
US9724192B2 (en) 2011-11-08 2017-08-08 Valtech Cardio, Ltd. Controlled steering functionality for implant-delivery tool
US9131926B2 (en) 2011-11-10 2015-09-15 Boston Scientific Scimed, Inc. Direct connect flush system
US8940014B2 (en) 2011-11-15 2015-01-27 Boston Scientific Scimed, Inc. Bond between components of a medical device
US8951243B2 (en) 2011-12-03 2015-02-10 Boston Scientific Scimed, Inc. Medical device handle
US10143553B2 (en) 2011-12-12 2018-12-04 Cardiac Implants, Llc Heart valve repair device
US10398555B2 (en) 2011-12-12 2019-09-03 Cardiac Implants Llc Magnetically coupled cinching of a loop installed in a valve annulus
US9827092B2 (en) 2011-12-16 2017-11-28 Tendyne Holdings, Inc. Tethers for prosthetic mitral valve
US9510945B2 (en) 2011-12-20 2016-12-06 Boston Scientific Scimed Inc. Medical device handle
US9277993B2 (en) 2011-12-20 2016-03-08 Boston Scientific Scimed, Inc. Medical device delivery systems
US9078747B2 (en) 2011-12-21 2015-07-14 Edwards Lifesciences Corporation Anchoring device for replacing or repairing a heart valve
ES2523223T3 (en) 2011-12-29 2014-11-24 Sorin Group Italia S.R.L. A kit for the implantation of prosthetic vascular ducts
US10172708B2 (en) 2012-01-25 2019-01-08 Boston Scientific Scimed, Inc. Valve assembly with a bioabsorbable gasket and a replaceable valve implant
US9579198B2 (en) 2012-03-01 2017-02-28 Twelve, Inc. Hydraulic delivery systems for prosthetic heart valve devices and associated methods
US9011515B2 (en) 2012-04-19 2015-04-21 Caisson Interventional, LLC Heart valve assembly systems and methods
US9427315B2 (en) 2012-04-19 2016-08-30 Caisson Interventional, LLC Valve replacement systems and methods
JP6118894B2 (en) * 2012-05-16 2017-04-19 エッチエルティ インコーポレイテッドHlt, Inc. Inverted transfer device and method for prosthesis
LT2852354T (en) 2012-05-20 2020-09-25 Tel Hashomer Medical Research Infrastructure And Services Ltd. Prosthetic mitral valve
US9345573B2 (en) * 2012-05-30 2016-05-24 Neovasc Tiara Inc. Methods and apparatus for loading a prosthesis onto a delivery system
US9883941B2 (en) 2012-06-19 2018-02-06 Boston Scientific Scimed, Inc. Replacement heart valve
WO2014022124A1 (en) 2012-07-28 2014-02-06 Tendyne Holdings, Inc. Improved multi-component designs for heart valve retrieval device, sealing structures and stent assembly
US9675454B2 (en) 2012-07-30 2017-06-13 Tendyne Holdings, Inc. Delivery systems and methods for transcatheter prosthetic valves
US20140067048A1 (en) 2012-09-06 2014-03-06 Edwards Lifesciences Corporation Heart Valve Sealing Devices
EP3517052A1 (en) 2012-10-23 2019-07-31 Valtech Cardio, Ltd. Controlled steering functionality for implant-delivery tool
US8628571B1 (en) 2012-11-13 2014-01-14 Mitraltech Ltd. Percutaneously-deliverable mechanical valve
WO2014081796A1 (en) 2012-11-21 2014-05-30 Edwards Lifesciences Corporation Retaining mechanisms for prosthetic heart valves
US20150351906A1 (en) 2013-01-24 2015-12-10 Mitraltech Ltd. Ventricularly-anchored prosthetic valves
US9439763B2 (en) 2013-02-04 2016-09-13 Edwards Lifesciences Corporation Prosthetic valve for replacing mitral valve
US9168129B2 (en) 2013-02-12 2015-10-27 Edwards Lifesciences Corporation Artificial heart valve with scalloped frame design
WO2014128705A1 (en) * 2013-02-20 2014-08-28 Mvalve Technologies Ltd. Delivery systems for cardiac valve support devices
US10583002B2 (en) 2013-03-11 2020-03-10 Neovasc Tiara Inc. Prosthetic valve with anti-pivoting mechanism
US20140277427A1 (en) 2013-03-14 2014-09-18 Cardiaq Valve Technologies, Inc. Prosthesis for atraumatically grasping intralumenal tissue and methods of delivery
US9730791B2 (en) 2013-03-14 2017-08-15 Edwards Lifesciences Cardiaq Llc Prosthesis for atraumatically grasping intralumenal tissue and methods of delivery
US10507104B2 (en) 2013-03-14 2019-12-17 Suzhou Jiecheng Medical Technology Co., Ltd. Sutureless valve prosthesis delivery device and methods of use thereof
US9681951B2 (en) 2013-03-14 2017-06-20 Edwards Lifesciences Cardiaq Llc Prosthesis with outer skirt and anchors
WO2014144247A1 (en) 2013-03-15 2014-09-18 Arash Kheradvar Handle mechanism and functionality for repositioning and retrieval of transcatheter heart valves
US11007058B2 (en) 2013-03-15 2021-05-18 Edwards Lifesciences Corporation Valved aortic conduits
US9289297B2 (en) 2013-03-15 2016-03-22 Cardiosolutions, Inc. Mitral valve spacer and system and method for implanting the same
US9232998B2 (en) 2013-03-15 2016-01-12 Cardiosolutions Inc. Trans-apical implant systems, implants and methods
EP2967863B1 (en) 2013-03-15 2018-01-31 Edwards Lifesciences Corporation Valved aortic conduits
US11224510B2 (en) 2013-04-02 2022-01-18 Tendyne Holdings, Inc. Prosthetic heart valve and systems and methods for delivering the same
US10463489B2 (en) 2013-04-02 2019-11-05 Tendyne Holdings, Inc. Prosthetic heart valve and systems and methods for delivering the same
US9486306B2 (en) 2013-04-02 2016-11-08 Tendyne Holdings, Inc. Inflatable annular sealing device for prosthetic mitral valve
US10478293B2 (en) 2013-04-04 2019-11-19 Tendyne Holdings, Inc. Retrieval and repositioning system for prosthetic heart valve
US9572665B2 (en) 2013-04-04 2017-02-21 Neovasc Tiara Inc. Methods and apparatus for delivering a prosthetic valve to a beating heart
JP6561044B2 (en) 2013-05-03 2019-08-14 メドトロニック,インコーポレイテッド Valve transfer tool
SG11201508180PA (en) 2013-05-20 2015-12-30 Edwards Lifesciences Corp Prosthetic heart valve delivery apparatus
EP2999435B1 (en) 2013-05-20 2022-12-21 Twelve, Inc. Implantable heart valve devices, mitral valve repair devices and associated systems
US9610159B2 (en) 2013-05-30 2017-04-04 Tendyne Holdings, Inc. Structural members for prosthetic mitral valves
JP6440694B2 (en) 2013-06-06 2018-12-19 デイヴィッド・アロン Heart valve repair and replacement
US9468527B2 (en) 2013-06-12 2016-10-18 Edwards Lifesciences Corporation Cardiac implant with integrated suture fasteners
US9980812B2 (en) 2013-06-14 2018-05-29 Cardiosolutions, Inc. Mitral valve spacer and system and method for implanting the same
CA2914856C (en) 2013-06-25 2021-03-09 Chad Perrin Thrombus management and structural compliance features for prosthetic heart valves
US9561103B2 (en) 2013-07-17 2017-02-07 Cephea Valve Technologies, Inc. System and method for cardiac valve repair and replacement
WO2015013666A1 (en) 2013-07-26 2015-01-29 Cardiaq Valve Technologies, Inc. Systems and methods for sealing openings in an anatomical wall
JP6465883B2 (en) 2013-08-01 2019-02-06 テンダイン ホールディングス,インコーポレイテッド Epicardial anchor device and method
US9919137B2 (en) 2013-08-28 2018-03-20 Edwards Lifesciences Corporation Integrated balloon catheter inflation system
US9867694B2 (en) 2013-08-30 2018-01-16 Jenavalve Technology Inc. Radially collapsible frame for a prosthetic valve and method for manufacturing such a frame
US10195028B2 (en) 2013-09-10 2019-02-05 Edwards Lifesciences Corporation Magnetic retaining mechanisms for prosthetic valves
US10441415B2 (en) 2013-09-20 2019-10-15 Edwards Lifesciences Corporation Heart valves with increased effective orifice area
WO2015058039A1 (en) 2013-10-17 2015-04-23 Robert Vidlund Apparatus and methods for alignment and deployment of intracardiac devices
US9050188B2 (en) 2013-10-23 2015-06-09 Caisson Interventional, LLC Methods and systems for heart valve therapy
US10166098B2 (en) 2013-10-25 2019-01-01 Middle Peak Medical, Inc. Systems and methods for transcatheter treatment of valve regurgitation
CN108403261B (en) 2013-10-28 2021-02-12 坦迪尼控股股份有限公司 Prosthetic heart valves and systems and methods for delivering prosthetic heart valves
US9526611B2 (en) 2013-10-29 2016-12-27 Tendyne Holdings, Inc. Apparatus and methods for delivery of transcatheter prosthetic valves
US20150122687A1 (en) 2013-11-06 2015-05-07 Edwards Lifesciences Corporation Bioprosthetic heart valves having adaptive seals to minimize paravalvular leakage
US9622863B2 (en) 2013-11-22 2017-04-18 Edwards Lifesciences Corporation Aortic insufficiency repair device and method
US10098734B2 (en) 2013-12-05 2018-10-16 Edwards Lifesciences Corporation Prosthetic heart valve and delivery apparatus
US9901444B2 (en) * 2013-12-17 2018-02-27 Edwards Lifesciences Corporation Inverted valve structure
WO2016126942A2 (en) 2015-02-05 2016-08-11 Vidlund Robert M Expandable epicardial pads and devices and methods for delivery of same
WO2015120122A2 (en) 2014-02-05 2015-08-13 Robert Vidlund Apparatus and methods for transfemoral delivery of prosthetic mitral valve
US9986993B2 (en) 2014-02-11 2018-06-05 Tendyne Holdings, Inc. Adjustable tether and epicardial pad system for prosthetic heart valve
JP6112036B2 (en) * 2014-02-18 2017-04-12 ソニー株式会社 Information processing apparatus and method, information processing system, and program
CA2938614C (en) 2014-02-21 2024-01-23 Edwards Lifesciences Cardiaq Llc Delivery device for controlled deployement of a replacement valve
USD755384S1 (en) 2014-03-05 2016-05-03 Edwards Lifesciences Cardiaq Llc Stent
CN110338911B (en) 2014-03-10 2022-12-23 坦迪尼控股股份有限公司 Apparatus and method for positioning and monitoring tether load of prosthetic mitral valve
EP2918249B1 (en) 2014-03-14 2020-04-29 Venus MedTech (HangZhou), Inc. Supraclavicular catheter system for transseptal access to the left atrium and left ventricle
US9549816B2 (en) 2014-04-03 2017-01-24 Edwards Lifesciences Corporation Method for manufacturing high durability heart valve
US9585752B2 (en) 2014-04-30 2017-03-07 Edwards Lifesciences Corporation Holder and deployment system for surgical heart valves
CN106456328A (en) 2014-05-19 2017-02-22 爱德华兹生命科学卡迪尔克有限责任公司 Replacement mitral valve with annular flap
US9532870B2 (en) 2014-06-06 2017-01-03 Edwards Lifesciences Corporation Prosthetic valve for replacing a mitral valve
CA2951906A1 (en) * 2014-06-11 2015-12-17 Micro Interventional Devices, Inc. System and method for heart valve anchoring
US9974647B2 (en) 2014-06-12 2018-05-22 Caisson Interventional, LLC Two stage anchor and mitral valve assembly
CA2958061A1 (en) 2014-06-18 2015-12-23 Middle Peak Medical, Inc. Mitral valve implants for the treatment of valvular regurgitation
CA2914094C (en) 2014-06-20 2021-01-05 Edwards Lifesciences Corporation Surgical heart valves identifiable post-implant
USD867594S1 (en) 2015-06-19 2019-11-19 Edwards Lifesciences Corporation Prosthetic heart valve
WO2015200497A1 (en) 2014-06-24 2015-12-30 Middle Peak Medical, Inc. Systems and methods for anchoring an implant
US10195026B2 (en) 2014-07-22 2019-02-05 Edwards Lifesciences Corporation Mitral valve anchoring
EP3174502B1 (en) 2014-07-30 2022-04-06 Cardiovalve Ltd Apparatus for implantation of an articulatable prosthetic valve
US10058424B2 (en) 2014-08-21 2018-08-28 Edwards Lifesciences Corporation Dual-flange prosthetic valve frame
US20160067040A1 (en) * 2014-09-09 2016-03-10 Boston Scientific Scimed, Inc. Valve locking mechanism
CA2963135A1 (en) 2014-10-13 2016-04-21 Hlt, Inc. Inversion delivery device and method for a prosthesis
US9750605B2 (en) 2014-10-23 2017-09-05 Caisson Interventional, LLC Systems and methods for heart valve therapy
US9750607B2 (en) 2014-10-23 2017-09-05 Caisson Interventional, LLC Systems and methods for heart valve therapy
US9901445B2 (en) 2014-11-21 2018-02-27 Boston Scientific Scimed, Inc. Valve locking mechanism
CN111437068B (en) 2014-12-04 2023-01-17 爱德华兹生命科学公司 Percutaneous clamp for repairing heart valve
US10869755B2 (en) 2014-12-09 2020-12-22 Cephea Valve Technologies, Inc. Replacement cardiac valves and methods of use and manufacture
US10779944B2 (en) 2015-01-05 2020-09-22 Strait Access Technologies Holdings (Pty) Ltd Heart valve leaflet capture device
AU2016205371B2 (en) 2015-01-07 2019-10-10 Tendyne Holdings, Inc. Prosthetic mitral valves and apparatus and methods for delivery of same
WO2016115375A1 (en) 2015-01-16 2016-07-21 Boston Scientific Scimed, Inc. Displacement based lock and release mechanism
US9861477B2 (en) 2015-01-26 2018-01-09 Boston Scientific Scimed Inc. Prosthetic heart valve square leaflet-leaflet stitch
WO2016126524A1 (en) 2015-02-03 2016-08-11 Boston Scientific Scimed, Inc. Prosthetic heart valve having tubular seal
US9788942B2 (en) 2015-02-03 2017-10-17 Boston Scientific Scimed Inc. Prosthetic heart valve having tubular seal
CN110141399B (en) 2015-02-05 2021-07-27 卡迪尔维尔福股份有限公司 Prosthetic valve with axially sliding frame
US9974651B2 (en) 2015-02-05 2018-05-22 Mitral Tech Ltd. Prosthetic valve with axially-sliding frames
US10285809B2 (en) 2015-03-06 2019-05-14 Boston Scientific Scimed Inc. TAVI anchoring assist device
US10426617B2 (en) 2015-03-06 2019-10-01 Boston Scientific Scimed, Inc. Low profile valve locking mechanism and commissure assembly
US10080652B2 (en) 2015-03-13 2018-09-25 Boston Scientific Scimed, Inc. Prosthetic heart valve having an improved tubular seal
US10064718B2 (en) 2015-04-16 2018-09-04 Edwards Lifesciences Corporation Low-profile prosthetic heart valve for replacing a mitral valve
EP3283010B1 (en) 2015-04-16 2020-06-17 Tendyne Holdings, Inc. Apparatus for delivery and repositioning of transcatheter prosthetic valves
US10010417B2 (en) 2015-04-16 2018-07-03 Edwards Lifesciences Corporation Low-profile prosthetic heart valve for replacing a mitral valve
US10441416B2 (en) 2015-04-21 2019-10-15 Edwards Lifesciences Corporation Percutaneous mitral valve replacement device
US10376363B2 (en) 2015-04-30 2019-08-13 Edwards Lifesciences Cardiaq Llc Replacement mitral valve, delivery system for replacement mitral valve and methods of use
EP3288495B1 (en) 2015-05-01 2019-09-25 JenaValve Technology, Inc. Device with reduced pacemaker rate in heart valve replacement
CN110433010A (en) 2015-05-14 2019-11-12 爱德华兹生命科学公司 Heart valve sealing device and its delivery apparatus
WO2018136959A1 (en) 2017-01-23 2018-07-26 Cephea Valve Technologies, Inc. Replacement mitral valves
US10849746B2 (en) 2015-05-14 2020-12-01 Cephea Valve Technologies, Inc. Cardiac valve delivery devices and systems
EP3294221B1 (en) 2015-05-14 2024-03-06 Cephea Valve Technologies, Inc. Replacement mitral valves
GB2539444A (en) 2015-06-16 2016-12-21 Ucl Business Plc Prosthetic heart valve
WO2016209970A1 (en) 2015-06-22 2016-12-29 Edwards Lifescience Cardiaq Llc Actively controllable heart valve implant and methods of controlling same
US10092400B2 (en) 2015-06-23 2018-10-09 Edwards Lifesciences Cardiaq Llc Systems and methods for anchoring and sealing a prosthetic heart valve
US10195392B2 (en) 2015-07-02 2019-02-05 Boston Scientific Scimed, Inc. Clip-on catheter
EP3316823B1 (en) 2015-07-02 2020-04-08 Edwards Lifesciences Corporation Integrated hybrid heart valves
EP3316822B1 (en) 2015-07-02 2020-12-09 Edwards Lifesciences Corporation Hybrid heart valves adapted for post-implant expansion
WO2017004377A1 (en) 2015-07-02 2017-01-05 Boston Scientific Scimed, Inc. Adjustable nosecone
US10179041B2 (en) 2015-08-12 2019-01-15 Boston Scientific Scimed Icn. Pinless release mechanism
US10136991B2 (en) 2015-08-12 2018-11-27 Boston Scientific Scimed Inc. Replacement heart valve implant
JP7111610B2 (en) 2015-08-21 2022-08-02 トゥエルヴ, インコーポレイテッド Implantable Heart Valve Devices, Mitral Valve Repair Devices, and Related Systems and Methods
US10117744B2 (en) 2015-08-26 2018-11-06 Edwards Lifesciences Cardiaq Llc Replacement heart valves and methods of delivery
US10575951B2 (en) 2015-08-26 2020-03-03 Edwards Lifesciences Cardiaq Llc Delivery device and methods of use for transapical delivery of replacement mitral valve
US10350066B2 (en) 2015-08-28 2019-07-16 Edwards Lifesciences Cardiaq Llc Steerable delivery system for replacement mitral valve and methods of use
CA2995855C (en) 2015-09-02 2024-01-30 Edwards Lifesciences Corporation Spacer for securing a transcatheter valve to a bioprosthetic cardiac structure
US10779940B2 (en) 2015-09-03 2020-09-22 Boston Scientific Scimed, Inc. Medical device handle
US10080653B2 (en) 2015-09-10 2018-09-25 Edwards Lifesciences Corporation Limited expansion heart valve
US10327894B2 (en) 2015-09-18 2019-06-25 Tendyne Holdings, Inc. Methods for delivery of prosthetic mitral valves
US11259920B2 (en) 2015-11-03 2022-03-01 Edwards Lifesciences Corporation Adapter for prosthesis delivery device and methods of use
US9592121B1 (en) 2015-11-06 2017-03-14 Middle Peak Medical, Inc. Device, system, and method for transcatheter treatment of valvular regurgitation
WO2017081561A1 (en) * 2015-11-09 2017-05-18 Revamp Medical Ltd. Blood flow reducer for cardiovascular treatment
US10470876B2 (en) 2015-11-10 2019-11-12 Edwards Lifesciences Corporation Transcatheter heart valve for replacing natural mitral valve
US10376364B2 (en) 2015-11-10 2019-08-13 Edwards Lifesciences Corporation Implant delivery capsule
AU2016362474B2 (en) 2015-12-03 2021-04-22 Tendyne Holdings, Inc. Frame features for prosthetic mitral valves
AU2016380259B2 (en) 2015-12-28 2020-10-22 Tendyne Holdings, Inc. Atrial pocket closures for prosthetic heart valves
WO2017117388A1 (en) 2015-12-30 2017-07-06 Caisson Interventional, LLC Systems and methods for heart valve therapy
US11833034B2 (en) 2016-01-13 2023-12-05 Shifamed Holdings, Llc Prosthetic cardiac valve devices, systems, and methods
JP7006940B2 (en) 2016-01-29 2022-01-24 ニオバスク ティアラ インコーポレイテッド Artificial valve to avoid blockage of outflow
US10342660B2 (en) 2016-02-02 2019-07-09 Boston Scientific Inc. Tensioned sheathing aids
US10531866B2 (en) 2016-02-16 2020-01-14 Cardiovalve Ltd. Techniques for providing a replacement valve and transseptal communication
US10667904B2 (en) 2016-03-08 2020-06-02 Edwards Lifesciences Corporation Valve implant with integrated sensor and transmitter
US10278852B2 (en) 2016-03-10 2019-05-07 Medtronic Vascular, Inc. Steerable catheter with multiple bending radii via a steering mechanism with telescoping tubular components
US10398549B2 (en) 2016-03-15 2019-09-03 Abbott Cardiovascular Systems Inc. System and method for transcatheter heart valve platform
US11219746B2 (en) 2016-03-21 2022-01-11 Edwards Lifesciences Corporation Multi-direction steerable handles for steering catheters
US10799675B2 (en) 2016-03-21 2020-10-13 Edwards Lifesciences Corporation Cam controlled multi-direction steerable handles
US10835714B2 (en) 2016-03-21 2020-11-17 Edwards Lifesciences Corporation Multi-direction steerable handles for steering catheters
USD815744S1 (en) 2016-04-28 2018-04-17 Edwards Lifesciences Cardiaq Llc Valve frame for a delivery system
EP3448316B1 (en) 2016-04-29 2023-03-29 Medtronic Vascular Inc. Prosthetic heart valve devices with tethered anchors
US10470877B2 (en) 2016-05-03 2019-11-12 Tendyne Holdings, Inc. Apparatus and methods for anterior valve leaflet management
US10245136B2 (en) 2016-05-13 2019-04-02 Boston Scientific Scimed Inc. Containment vessel with implant sheathing guide
EP4183371A1 (en) 2016-05-13 2023-05-24 JenaValve Technology, Inc. Heart valve prosthesis delivery system and method for delivery of heart valve prosthesis with introducer sheath and loading system
WO2017196977A1 (en) * 2016-05-13 2017-11-16 Cardiosolutions, Inc. Heart valve implant and methods for delivering and implanting same
US10583005B2 (en) 2016-05-13 2020-03-10 Boston Scientific Scimed, Inc. Medical device handle
US10201416B2 (en) 2016-05-16 2019-02-12 Boston Scientific Scimed, Inc. Replacement heart valve implant with invertible leaflets
US10456245B2 (en) 2016-05-16 2019-10-29 Edwards Lifesciences Corporation System and method for applying material to a stent
US11039921B2 (en) 2016-06-13 2021-06-22 Tendyne Holdings, Inc. Sequential delivery of two-part prosthetic mitral valve
WO2017218877A1 (en) 2016-06-17 2017-12-21 Cephea Valve Technologies, Inc. Cardiac valve delivery devices and systems
WO2018005779A1 (en) 2016-06-30 2018-01-04 Tegels Zachary J Prosthetic heart valves and apparatus and methods for delivery of same
US10973638B2 (en) 2016-07-07 2021-04-13 Edwards Lifesciences Corporation Device and method for treating vascular insufficiency
EP3484411A1 (en) 2016-07-12 2019-05-22 Tendyne Holdings, Inc. Apparatus and methods for trans-septal retrieval of prosthetic heart valves
US10350062B2 (en) 2016-07-21 2019-07-16 Edwards Lifesciences Corporation Replacement heart valve prosthesis
US10856975B2 (en) 2016-08-10 2020-12-08 Cardiovalve Ltd. Prosthetic valve with concentric frames
USD800908S1 (en) 2016-08-10 2017-10-24 Mitraltech Ltd. Prosthetic valve element
US10646340B2 (en) 2016-08-19 2020-05-12 Edwards Lifesciences Corporation Steerable delivery system for replacement mitral valve
EP3964173A1 (en) 2016-08-26 2022-03-09 Edwards Lifesciences Corporation Multi-portion replacement heart valve prosthesis
US10758348B2 (en) 2016-11-02 2020-09-01 Edwards Lifesciences Corporation Supra and sub-annular mitral valve delivery system
US10653862B2 (en) 2016-11-07 2020-05-19 Edwards Lifesciences Corporation Apparatus for the introduction and manipulation of multiple telescoping catheters
US10493248B2 (en) 2016-11-09 2019-12-03 Medtronic Vascular, Inc. Chordae tendineae management devices for use with a valve prosthesis delivery system and methods of use thereof
US10368988B2 (en) 2016-11-09 2019-08-06 Medtronic Vascular, Inc. Valve delivery system having an integral displacement component for managing chordae tendineae in situ and methods of use thereof
CN113893064A (en) 2016-11-21 2022-01-07 内奥瓦斯克迪亚拉公司 Methods and systems for rapid retrieval of transcatheter heart valve delivery systems
FR3060292B1 (en) * 2016-12-15 2019-01-25 Cmi'nov DEVICE FOR REALIZING OR PREPARING MITRAL ANNULOPLASTY BY TRANSFEMORAL PATHWAY
USD846122S1 (en) 2016-12-16 2019-04-16 Edwards Lifesciences Corporation Heart valve sizer
US10905554B2 (en) 2017-01-05 2021-02-02 Edwards Lifesciences Corporation Heart valve coaptation device
AU2018203053B2 (en) 2017-01-23 2020-03-05 Cephea Valve Technologies, Inc. Replacement mitral valves
WO2018138658A1 (en) 2017-01-27 2018-08-02 Jenavalve Technology, Inc. Heart valve mimicry
US10653524B2 (en) 2017-03-13 2020-05-19 Polares Medical Inc. Device, system, and method for transcatheter treatment of valvular regurgitation
WO2018169878A1 (en) 2017-03-13 2018-09-20 Middle Peak Medical, Inc. Device, system, and method for transcatheter treatment of valvular regurgitation
US10478303B2 (en) 2017-03-13 2019-11-19 Polares Medical Inc. Device, system, and method for transcatheter treatment of valvular regurgitation
US10716668B2 (en) 2017-04-05 2020-07-21 Medtronic, Inc. Delivery system with anchoring nosecone and method of delivery
US10463485B2 (en) 2017-04-06 2019-11-05 Edwards Lifesciences Corporation Prosthetic valve holders with automatic deploying mechanisms
KR20230121166A (en) 2017-04-18 2023-08-17 에드워즈 라이프사이언시스 코포레이션 Heart valve sealing devices and delivery devices therefor
US10702378B2 (en) 2017-04-18 2020-07-07 Twelve, Inc. Prosthetic heart valve device and associated systems and methods
US10433961B2 (en) 2017-04-18 2019-10-08 Twelve, Inc. Delivery systems with tethers for prosthetic heart valve devices and associated methods
US11224511B2 (en) 2017-04-18 2022-01-18 Edwards Lifesciences Corporation Heart valve sealing devices and delivery devices therefor
US10575950B2 (en) 2017-04-18 2020-03-03 Twelve, Inc. Hydraulic systems for delivering prosthetic heart valve devices and associated methods
EP3612103B1 (en) 2017-04-20 2022-02-09 Medtronic, Inc. Stabilization of a transseptal delivery device
EP3614969B1 (en) 2017-04-28 2023-05-03 Edwards Lifesciences Corporation Prosthetic heart valve with collapsible holder
US10799312B2 (en) 2017-04-28 2020-10-13 Edwards Lifesciences Corporation Medical device stabilizing apparatus and method of use
US10959846B2 (en) 2017-05-10 2021-03-30 Edwards Lifesciences Corporation Mitral valve spacer device
US10792151B2 (en) 2017-05-11 2020-10-06 Twelve, Inc. Delivery systems for delivering prosthetic heart valve devices and associated methods
US10646338B2 (en) 2017-06-02 2020-05-12 Twelve, Inc. Delivery systems with telescoping capsules for deploying prosthetic heart valve devices and associated methods
US10869759B2 (en) * 2017-06-05 2020-12-22 Edwards Lifesciences Corporation Mechanically expandable heart valve
US10709591B2 (en) 2017-06-06 2020-07-14 Twelve, Inc. Crimping device and method for loading stents and prosthetic heart valves
US10828154B2 (en) 2017-06-08 2020-11-10 Boston Scientific Scimed, Inc. Heart valve implant commissure support structure
EP3641700A4 (en) 2017-06-21 2020-08-05 Edwards Lifesciences Corporation Dual-wireform limited expansion heart valves
US10729541B2 (en) 2017-07-06 2020-08-04 Twelve, Inc. Prosthetic heart valve devices and associated systems and methods
US10786352B2 (en) 2017-07-06 2020-09-29 Twelve, Inc. Prosthetic heart valve devices and associated systems and methods
US10813757B2 (en) 2017-07-06 2020-10-27 Edwards Lifesciences Corporation Steerable rail delivery system
CN111050668A (en) * 2017-07-06 2020-04-21 拉古维尔·巴苏德 Tissue grasping device and related methods
WO2019014473A1 (en) 2017-07-13 2019-01-17 Tendyne Holdings, Inc. Prosthetic heart valves and apparatus and methods for delivery of same
WO2019028161A1 (en) 2017-08-01 2019-02-07 Boston Scientific Scimed, Inc. Medical implant locking mechanism
US10888421B2 (en) 2017-09-19 2021-01-12 Cardiovalve Ltd. Prosthetic heart valve with pouch
US11666444B2 (en) 2017-08-03 2023-06-06 The Regents Of The University Of California Atrial cage for placement, securing and anchoring of atrioventricular valves
US10575948B2 (en) 2017-08-03 2020-03-03 Cardiovalve Ltd. Prosthetic heart valve
US11246704B2 (en) 2017-08-03 2022-02-15 Cardiovalve Ltd. Prosthetic heart valve
US11793633B2 (en) 2017-08-03 2023-10-24 Cardiovalve Ltd. Prosthetic heart valve
US10537426B2 (en) 2017-08-03 2020-01-21 Cardiovalve Ltd. Prosthetic heart valve
US10939996B2 (en) 2017-08-16 2021-03-09 Boston Scientific Scimed, Inc. Replacement heart valve commissure assembly
CN111031966A (en) 2017-08-24 2020-04-17 美敦力瓦斯科尔勒公司 Transseptal delivery system with deflection section and method of use
EP3672530A4 (en) 2017-08-25 2021-04-14 Neovasc Tiara Inc. Sequentially deployed transcatheter mitral valve prosthesis
US11191639B2 (en) 2017-08-28 2021-12-07 Tendyne Holdings, Inc. Prosthetic heart valves with tether coupling features
US11051940B2 (en) 2017-09-07 2021-07-06 Edwards Lifesciences Corporation Prosthetic spacer device for heart valve
US11065117B2 (en) 2017-09-08 2021-07-20 Edwards Lifesciences Corporation Axisymmetric adjustable device for treating mitral regurgitation
US11071846B2 (en) 2017-09-14 2021-07-27 Medtronic Vascular, Inc. Deflection catheter for aiding in bending of a catheter
US11304806B2 (en) 2017-09-19 2022-04-19 Cardiovalve Ltd. Prosthetic valve with atrial tissue anchors having variable flexibility and ventricular tissue anchors having constant flexibility
US11110251B2 (en) 2017-09-19 2021-09-07 Edwards Lifesciences Corporation Multi-direction steerable handles for steering catheters
US9895226B1 (en) 2017-10-19 2018-02-20 Mitral Tech Ltd. Techniques for use with prosthetic valve leaflets
US10806574B2 (en) 2017-11-20 2020-10-20 Medtronic Vascular, Inc. Delivery systems having a temporary valve and methods of use
GB201720803D0 (en) 2017-12-13 2018-01-24 Mitraltech Ltd Prosthetic Valve and delivery tool therefor
US11253363B2 (en) 2018-01-07 2022-02-22 Jc Medical Inc. Heart valve prosthesis
US10136993B1 (en) 2018-01-09 2018-11-27 Edwards Lifesciences Corporation Native valve repair devices and procedures
US10238493B1 (en) 2018-01-09 2019-03-26 Edwards Lifesciences Corporation Native valve repair devices and procedures
US10105222B1 (en) 2018-01-09 2018-10-23 Edwards Lifesciences Corporation Native valve repair devices and procedures
US10159570B1 (en) 2018-01-09 2018-12-25 Edwards Lifesciences Corporation Native valve repair devices and procedures
US10076415B1 (en) 2018-01-09 2018-09-18 Edwards Lifesciences Corporation Native valve repair devices and procedures
US10123873B1 (en) 2018-01-09 2018-11-13 Edwards Lifesciences Corporation Native valve repair devices and procedures
EP3964175A1 (en) 2018-01-09 2022-03-09 Edwards Lifesciences Corporation Native valve repair devices and procedures
US10245144B1 (en) 2018-01-09 2019-04-02 Edwards Lifesciences Corporation Native valve repair devices and procedures
US10973639B2 (en) 2018-01-09 2021-04-13 Edwards Lifesciences Corporation Native valve repair devices and procedures
US10111751B1 (en) 2018-01-09 2018-10-30 Edwards Lifesciences Corporation Native valve repair devices and procedures
US10231837B1 (en) 2018-01-09 2019-03-19 Edwards Lifesciences Corporation Native valve repair devices and procedures
GB201800399D0 (en) 2018-01-10 2018-02-21 Mitraltech Ltd Temperature-control during crimping of an implant
JP7055882B2 (en) 2018-01-19 2022-04-18 ボストン サイエンティフィック サイムド,インコーポレイテッド Guidance mode indwelling sensor for transcatheter valve system
JP7047106B2 (en) 2018-01-19 2022-04-04 ボストン サイエンティフィック サイムド,インコーポレイテッド Medical device delivery system with feedback loop
US11337805B2 (en) 2018-01-23 2022-05-24 Edwards Lifesciences Corporation Prosthetic valve holders, systems, and methods
CN111818877B (en) 2018-01-25 2023-12-22 爱德华兹生命科学公司 Delivery system for assisting in recapture and repositioning of replacement valves after deployment
WO2019157156A1 (en) 2018-02-07 2019-08-15 Boston Scientific Scimed, Inc. Medical device delivery system with alignment feature
US10925728B2 (en) 2018-02-22 2021-02-23 Medtronic Vascular, Inc. Prosthetic heart valve delivery systems and methods
WO2019165394A1 (en) 2018-02-26 2019-08-29 Boston Scientific Scimed, Inc. Embedded radiopaque marker in adaptive seal
US11051934B2 (en) 2018-02-28 2021-07-06 Edwards Lifesciences Corporation Prosthetic mitral valve with improved anchors and seal
EP3762051A1 (en) 2018-03-05 2021-01-13 Edwards Lifesciences Corporation Optical tissue measurement
WO2019195860A2 (en) 2018-04-04 2019-10-10 Vdyne, Llc Devices and methods for anchoring transcatheter heart valve
US11389297B2 (en) 2018-04-12 2022-07-19 Edwards Lifesciences Corporation Mitral valve spacer device
US11207181B2 (en) 2018-04-18 2021-12-28 Edwards Lifesciences Corporation Heart valve sealing devices and delivery devices therefor
US11229517B2 (en) 2018-05-15 2022-01-25 Boston Scientific Scimed, Inc. Replacement heart valve commissure assembly
CN112437649A (en) 2018-05-23 2021-03-02 索林集团意大利有限责任公司 Heart valve prosthesis
WO2019241477A1 (en) 2018-06-13 2019-12-19 Boston Scientific Scimed, Inc. Replacement heart valve delivery device
USD908874S1 (en) 2018-07-11 2021-01-26 Edwards Lifesciences Corporation Collapsible heart valve sizer
WO2020041495A1 (en) 2018-08-21 2020-02-27 Shifamed, Llc Prosthetic cardiac valve devices, systems, and methods
US10779946B2 (en) 2018-09-17 2020-09-22 Cardiovalve Ltd. Leaflet-testing apparatus
US11344413B2 (en) 2018-09-20 2022-05-31 Vdyne, Inc. Transcatheter deliverable prosthetic heart valves and methods of delivery
US10321995B1 (en) 2018-09-20 2019-06-18 Vdyne, Llc Orthogonally delivered transcatheter heart valve replacement
US11278437B2 (en) 2018-12-08 2022-03-22 Vdyne, Inc. Compression capable annular frames for side delivery of transcatheter heart valve replacement
US10912644B2 (en) 2018-10-05 2021-02-09 Shifamed Holdings, Llc Prosthetic cardiac valve devices, systems, and methods
US10945844B2 (en) 2018-10-10 2021-03-16 Edwards Lifesciences Corporation Heart valve sealing devices and delivery devices therefor
US11109969B2 (en) 2018-10-22 2021-09-07 Vdyne, Inc. Guidewire delivery of transcatheter heart valve
WO2020093172A1 (en) 2018-11-08 2020-05-14 Neovasc Tiara Inc. Ventricular deployment of a transcatheter mitral valve prosthesis
US11241312B2 (en) 2018-12-10 2022-02-08 Boston Scientific Scimed, Inc. Medical device delivery system including a resistance member
US11253359B2 (en) 2018-12-20 2022-02-22 Vdyne, Inc. Proximal tab for side-delivered transcatheter heart valves and methods of delivery
US11185409B2 (en) 2019-01-26 2021-11-30 Vdyne, Inc. Collapsible inner flow control component for side-delivered transcatheter heart valve prosthesis
US11273032B2 (en) 2019-01-26 2022-03-15 Vdyne, Inc. Collapsible inner flow control component for side-deliverable transcatheter heart valve prosthesis
CA3129905A1 (en) 2019-02-14 2020-08-20 Edwards Lifesciences Corporation Heart valve sealing devices and delivery devices therefor
JP2022522411A (en) 2019-03-05 2022-04-19 ブイダイン,インコーポレイテッド Tricuspid valve closure regurgitation controller for heart valve prosthesis with orthogonal transcatheter
US11612482B2 (en) 2019-03-06 2023-03-28 Medtronic, Inc. Trans-septal delivery system and methods of use
US11173027B2 (en) * 2019-03-14 2021-11-16 Vdyne, Inc. Side-deliverable transcatheter prosthetic valves and methods for delivering and anchoring the same
WO2020191216A1 (en) 2019-03-19 2020-09-24 Shifamed Holdings, Llc Prosthetic cardiac valve devices, systems, and methods
CN113811265A (en) 2019-04-01 2021-12-17 内奥瓦斯克迪亚拉公司 Prosthetic valve deployable in a controlled manner
CN113924065A (en) 2019-04-10 2022-01-11 内奥瓦斯克迪亚拉公司 Prosthetic valve with natural blood flow
WO2020227249A1 (en) 2019-05-04 2020-11-12 Vdyne, Inc. Cinch device and method for deployment of a side-delivered prosthetic heart valve in a native annulus
US11439504B2 (en) 2019-05-10 2022-09-13 Boston Scientific Scimed, Inc. Replacement heart valve with improved cusp washout and reduced loading
CN114025813A (en) 2019-05-20 2022-02-08 内奥瓦斯克迪亚拉公司 Introducer with hemostatic mechanism
EP3986332A4 (en) 2019-06-20 2023-07-19 Neovasc Tiara Inc. Low profile prosthetic mitral valve
AU2020334080A1 (en) 2019-08-20 2022-03-24 Vdyne, Inc. Delivery and retrieval devices and methods for side-deliverable transcatheter prosthetic valves
CN114630665A (en) 2019-08-26 2022-06-14 维迪内股份有限公司 Laterally deliverable transcatheter prosthetic valve and methods of delivery and anchoring thereof
EP3831343B1 (en) 2019-12-05 2024-01-31 Tendyne Holdings, Inc. Braided anchor for mitral valve
EP4076284A1 (en) 2019-12-16 2022-10-26 Edwards Lifesciences Corporation Valve holder assembly with suture looping protection
US11648114B2 (en) 2019-12-20 2023-05-16 Tendyne Holdings, Inc. Distally loaded sheath and loading funnel
US11234813B2 (en) 2020-01-17 2022-02-01 Vdyne, Inc. Ventricular stability elements for side-deliverable prosthetic heart valves and methods of delivery
US11678980B2 (en) 2020-08-19 2023-06-20 Tendyne Holdings, Inc. Fully-transseptal apical pad with pulley for tensioning
US11464634B2 (en) 2020-12-16 2022-10-11 Polares Medical Inc. Device, system, and method for transcatheter treatment of valvular regurgitation with secondary anchors
US11759321B2 (en) 2021-06-25 2023-09-19 Polares Medical Inc. Device, system, and method for transcatheter treatment of valvular regurgitation
CN115486974B (en) * 2022-11-18 2023-03-14 上海御瓣医疗科技有限公司 Detachable tip for assisting valve implantation

Family Cites Families (79)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4097659A (en) * 1971-03-11 1978-06-27 Stamicarbon, N.V. Process of polymerizing α-olefins in the liquid phase
US4056854A (en) * 1976-09-28 1977-11-08 The United States Of America As Represented By The Department Of Health, Education And Welfare Aortic heart valve catheter
CA1232407A (en) * 1983-06-23 1988-02-09 David K. Walker Bubble heart valve
US4733665C2 (en) * 1985-11-07 2002-01-29 Expandable Grafts Partnership Expandable intraluminal graft and method and apparatus for implanting an expandable intraluminal graft
US4777951A (en) * 1986-09-19 1988-10-18 Mansfield Scientific, Inc. Procedure and catheter instrument for treating patients for aortic stenosis
DK124690D0 (en) * 1990-05-18 1990-05-18 Henning Rud Andersen FAT PROTECTION FOR IMPLEMENTATION IN THE BODY FOR REPLACEMENT OF NATURAL FLEET AND CATS FOR USE IN IMPLEMENTING A SUCH FAT PROTECTION
US5332402A (en) * 1992-05-12 1994-07-26 Teitelbaum George P Percutaneously-inserted cardiac valve
RU2089131C1 (en) * 1993-12-28 1997-09-10 Сергей Апполонович Пульнев Stent-expander
DE69536046D1 (en) * 1994-07-08 2010-04-01 Ev3 Inc System for performing an intravascular procedure
US5554185A (en) * 1994-07-18 1996-09-10 Block; Peter C. Inflatable prosthetic cardiovascular valve for percutaneous transluminal implantation of same
US5575818A (en) * 1995-02-14 1996-11-19 Corvita Corporation Endovascular stent with locking ring
FR2743301B1 (en) * 1996-01-05 1998-04-30 Medicorp Sa LEVER MICROCOMMISSUROTOME
US5855601A (en) * 1996-06-21 1999-01-05 The Trustees Of Columbia University In The City Of New York Artificial heart valve and method and device for implanting the same
US5843161A (en) * 1996-06-26 1998-12-01 Cordis Corporation Endoprosthesis assembly for percutaneous deployment and method of deploying same
FR2768324B1 (en) * 1997-09-12 1999-12-10 Jacques Seguin SURGICAL INSTRUMENT FOR PERCUTANEOUSLY FIXING TWO AREAS OF SOFT TISSUE, NORMALLY MUTUALLY REMOTE, TO ONE ANOTHER
US6530952B2 (en) * 1997-12-29 2003-03-11 The Cleveland Clinic Foundation Bioprosthetic cardiovascular valve system
US7569062B1 (en) * 1998-07-15 2009-08-04 St. Jude Medical, Inc. Mitral and tricuspid valve repair
US6736845B2 (en) * 1999-01-26 2004-05-18 Edwards Lifesciences Corporation Holder for flexible heart valve
US6896690B1 (en) * 2000-01-27 2005-05-24 Viacor, Inc. Cardiac valve procedure methods and devices
US6425916B1 (en) * 1999-02-10 2002-07-30 Michi E. Garrison Methods and devices for implanting cardiac valves
EP1176913B1 (en) * 1999-04-09 2010-10-13 Evalve, Inc. Methods and apparatus for cardiac valve repair
US7811296B2 (en) * 1999-04-09 2010-10-12 Evalve, Inc. Fixation devices for variation in engagement of tissue
US6790229B1 (en) * 1999-05-25 2004-09-14 Eric Berreklouw Fixing device, in particular for fixing to vascular wall tissue
US6231561B1 (en) * 1999-09-20 2001-05-15 Appriva Medical, Inc. Method and apparatus for closing a body lumen
US20020024451A1 (en) * 1999-10-22 2002-02-28 Rosenberg Armand David Method of communicating with a cluster of bluetooth devices
US8016877B2 (en) * 1999-11-17 2011-09-13 Medtronic Corevalve Llc Prosthetic valve for transluminal delivery
US8579966B2 (en) * 1999-11-17 2013-11-12 Medtronic Corevalve Llc Prosthetic valve for transluminal delivery
US6458153B1 (en) * 1999-12-31 2002-10-01 Abps Venture One, Ltd. Endoluminal cardiac and venous valve prostheses and methods of manufacture and delivery thereof
US6409759B1 (en) * 1999-12-30 2002-06-25 St. Jude Medical, Inc. Harvested tissue heart valve with sewing rim
US6402781B1 (en) * 2000-01-31 2002-06-11 Mitralife Percutaneous mitral annuloplasty and cardiac reinforcement
US6454799B1 (en) * 2000-04-06 2002-09-24 Edwards Lifesciences Corporation Minimally-invasive heart valves and methods of use
US6650923B1 (en) * 2000-04-13 2003-11-18 Ev3 Sunnyvale, Inc. Method for accessing the left atrium of the heart by locating the fossa ovalis
US6551344B2 (en) * 2000-04-26 2003-04-22 Ev3 Inc. Septal defect occluder
JP3802732B2 (en) * 2000-05-12 2006-07-26 信越化学工業株式会社 Resist material and pattern forming method
AU2001287144A1 (en) * 2000-09-07 2002-03-22 Viacor, Inc. Fixation band for affixing a prosthetic heart valve to tissue
US8956407B2 (en) * 2000-09-20 2015-02-17 Mvrx, Inc. Methods for reshaping a heart valve annulus using a tensioning implant
US6893459B1 (en) * 2000-09-20 2005-05-17 Ample Medical, Inc. Heart valve annulus device and method of using same
US7527646B2 (en) * 2000-09-20 2009-05-05 Ample Medical, Inc. Devices, systems, and methods for retaining a native heart valve leaflet
US8784482B2 (en) * 2000-09-20 2014-07-22 Mvrx, Inc. Method of reshaping a heart valve annulus using an intravascular device
WO2004030568A2 (en) 2002-10-01 2004-04-15 Ample Medical, Inc. Device and method for repairing a native heart valve leaflet
US6482228B1 (en) * 2000-11-14 2002-11-19 Troy R. Norred Percutaneous aortic valve replacement
US6974476B2 (en) * 2003-05-05 2005-12-13 Rex Medical, L.P. Percutaneous aortic valve
DE60112603T2 (en) 2000-11-21 2006-06-14 Rex Medical Lp PERKUTANE AORTENKLAPPE
US6494909B2 (en) * 2000-12-01 2002-12-17 Prodesco, Inc. Endovascular valve
US6517576B2 (en) * 2000-12-11 2003-02-11 Shlomo Gabbay Implantable patch prosthesis having one or more cusps for improved competency
US6733525B2 (en) * 2001-03-23 2004-05-11 Edwards Lifesciences Corporation Rolled minimally-invasive heart valves and methods of use
FR2828091B1 (en) * 2001-07-31 2003-11-21 Seguin Jacques ASSEMBLY ALLOWING THE PLACEMENT OF A PROTHETIC VALVE IN A BODY DUCT
US7097659B2 (en) * 2001-09-07 2006-08-29 Medtronic, Inc. Fixation band for affixing a prosthetic heart valve to tissue
CN101108144A (en) * 2001-10-01 2008-01-23 安普尔医药公司 Devices, systems, and methods for retaining a native heart valve leaflet
US6908478B2 (en) * 2001-12-05 2005-06-21 Cardiac Dimensions, Inc. Anchor and pull mitral valve device and method
US7033390B2 (en) * 2002-01-02 2006-04-25 Medtronic, Inc. Prosthetic heart valve system
US7163556B2 (en) * 2002-03-21 2007-01-16 Providence Health System - Oregon Bioprosthesis and method for suturelessly making same
WO2003088873A1 (en) 2002-04-16 2003-10-30 Viacor, Inc. Fixation band for affixing a prosthetic heart valve to tissue
US7041132B2 (en) * 2002-08-16 2006-05-09 3F Therapeutics, Inc, Percutaneously delivered heart valve and delivery means thereof
CA2503258C (en) 2002-08-28 2011-08-16 Heart Leaflet Technologies, Inc. Method and device for treating diseased valve
US7175660B2 (en) * 2002-08-29 2007-02-13 Mitralsolutions, Inc. Apparatus for implanting surgical devices for controlling the internal circumference of an anatomic orifice or lumen
WO2004028558A1 (en) 2002-09-27 2004-04-08 Takeda Pharmaceutical Company Limited Preventives/remedies for neurodegenerative disease
ATE418938T1 (en) * 2002-10-01 2009-01-15 Ample Medical Inc DEVICES AND SYSTEMS FOR REFORMING A HEART VALVE ANNULUS
EP1583581A4 (en) 2002-11-13 2008-09-10 Medtronic Inc Cardiac valve procedure methods and devices
US20040097979A1 (en) * 2002-11-14 2004-05-20 Oleg Svanidze Aortic valve implantation device
US7399315B2 (en) * 2003-03-18 2008-07-15 Edwards Lifescience Corporation Minimally-invasive heart valve with cusp positioners
US7625399B2 (en) * 2003-04-24 2009-12-01 Cook Incorporated Intralumenally-implantable frames
DE602004023350D1 (en) * 2003-04-30 2009-11-12 Medtronic Vascular Inc Percutaneous inserted provisional valve
US20040260394A1 (en) 2003-06-20 2004-12-23 Medtronic Vascular, Inc. Cardiac valve annulus compressor system
DE602004023095D1 (en) 2003-07-21 2009-10-22 Univ Pennsylvania PERCUTANEOUS HEADLAP
US20050049692A1 (en) 2003-09-02 2005-03-03 Numamoto Michael J. Medical device for reduction of pressure effects of cardiac tricuspid valve regurgitation
CA2545874C (en) 2003-10-06 2012-02-21 3F Therapeutics, Inc. Minimally invasive valve replacement system
US20050075719A1 (en) * 2003-10-06 2005-04-07 Bjarne Bergheim Minimally invasive valve replacement system
US8828078B2 (en) * 2003-12-23 2014-09-09 Sadra Medical, Inc. Methods and apparatus for endovascular heart valve replacement comprising tissue grasping elements
US7311730B2 (en) * 2004-02-13 2007-12-25 Shlomo Gabbay Support apparatus and heart valve prosthesis for sutureless implantation
US7641686B2 (en) * 2004-04-23 2010-01-05 Direct Flow Medical, Inc. Percutaneous heart valve with stentless support
US8012201B2 (en) * 2004-05-05 2011-09-06 Direct Flow Medical, Inc. Translumenally implantable heart valve with multiple chamber formed in place support
US8034102B2 (en) 2004-07-19 2011-10-11 Coroneo, Inc. Aortic annuloplasty ring
US6951571B1 (en) * 2004-09-30 2005-10-04 Rohit Srivastava Valve implanting device
US20060161249A1 (en) * 2004-11-22 2006-07-20 Fidel Realyvasquez Ring-shaped valve prosthesis attachment device
EP1887983A4 (en) * 2005-06-07 2008-12-17 Direct Flow Medical Inc Stentless aortic valve replacement with high radial strength
US8070802B2 (en) * 2007-02-23 2011-12-06 The Trustees Of The University Of Pennsylvania Mitral valve system
US20080208328A1 (en) * 2007-02-23 2008-08-28 Endovalve, Inc. Systems and Methods For Placement of Valve Prosthesis System
US8845722B2 (en) * 2009-08-03 2014-09-30 Shlomo Gabbay Heart valve prosthesis and method of implantation thereof

Also Published As

Publication number Publication date
AU2004258942A1 (en) 2005-02-03
JP2006528034A (en) 2006-12-14
IL173286A0 (en) 2006-06-11
WO2005009285A2 (en) 2005-02-03
US20100042208A1 (en) 2010-02-18
ATE442107T1 (en) 2009-09-15
US20070016286A1 (en) 2007-01-18
US8118866B2 (en) 2012-02-21
WO2005009285A3 (en) 2005-05-06
US7621948B2 (en) 2009-11-24
JP4447011B2 (en) 2010-04-07
AU2004258942A2 (en) 2005-02-03
EP1653888B1 (en) 2009-09-09
WO2005009285A9 (en) 2009-02-12
AU2004258942B2 (en) 2009-12-03
EP1653888A4 (en) 2007-05-02
DE602004023095D1 (en) 2009-10-22
EP1653888A2 (en) 2006-05-10

Similar Documents

Publication Publication Date Title
EP1653888B1 (en) Percutaneous heart valve
US10952846B2 (en) Method of replacing mitral valve
US8252051B2 (en) Method of implanting a prosthetic valve in a mitral valve with pulmonary vein anchoring
EP2114305B1 (en) Valve prosthesis systems and methods
JP2022538156A (en) Heart valve prosthesis and delivery device therefor
WO2023183270A1 (en) Mechanically expandable prosthetic heart valve

Legal Events

Date Code Title Description
EEER Examination request
FZDE Discontinued