CA2536425A1 - Frequency-independent spatial processing for wideband miso and mimo systems - Google Patents

Frequency-independent spatial processing for wideband miso and mimo systems Download PDF

Info

Publication number
CA2536425A1
CA2536425A1 CA002536425A CA2536425A CA2536425A1 CA 2536425 A1 CA2536425 A1 CA 2536425A1 CA 002536425 A CA002536425 A CA 002536425A CA 2536425 A CA2536425 A CA 2536425A CA 2536425 A1 CA2536425 A1 CA 2536425A1
Authority
CA
Canada
Prior art keywords
channel
receive antenna
matrices
correlation matrix
vectors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CA002536425A
Other languages
French (fr)
Other versions
CA2536425C (en
Inventor
J. Rodney Walton
John W. Ketchum
Mark S. Wallace
Steven J. Howard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qualcomm Inc
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CA2536425A1 publication Critical patent/CA2536425A1/en
Application granted granted Critical
Publication of CA2536425C publication Critical patent/CA2536425C/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0417Feedback systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0204Channel estimation of multiple channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/024Channel estimation channel estimation algorithms
    • H04L25/0242Channel estimation channel estimation algorithms using matrix methods
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0212Channel estimation of impulse response
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Abstract

Frequency-independent eigensteering in MISO and MIMO systems are described.
For principal mode and multi-mode eigensteering, a correlation matrix is computed for a MIMO channel based on channel response matrices and decomposed to obtain NS frequency-independent steering vectors for NS spatial channels of the MIMO channel. ND data symbol streams are transmitted on ND best spatial channels using ND steering vectors, where for ND=1 for principal mode eigensteering and ND>1 for multi-mode eigensteering. For main path eigensteering, a data symbol stream is transmitted on the best spatial channel for the main propagation path (e.g., with the highest energy) of the MIMO
channel. For receiver eigensteering, a data symbol stream is steered toward a receive antenna based on a steering vector obtained for that receive antenna.
For all eigensteering schemes, a matched filter is derived for each receive antenna based on the steering vector(s) and channel response vectors for the receive antenna.

Claims (58)

1. A method of performing spatial processing in a wireless multiple-input multiple-output (MIMO) communication system, comprising:
obtaining a plurality of channel response matrices for a channel response of a MIMO channel in the MIMO system;
computing a correlation matrix for the MIMO channel based on the plurality of channel response matrices; and decomposing the correlation matrix to obtain at least one steering vector for at least one spatial channel of the MIMO channel, wherein the at least one steering vector is used by a transmitting entity for frequency-independent spatial processing of a data stream sent on the at least one spatial channel associated with the at least one steering vector.
2. The method of claim 1, wherein the plurality of channel response matrices comprise a plurality of channel impulse response matrices for a plurality of time delays of a channel impulse response of the MIMO channel.
3. The method of claim 1, wherein the plurality of channel response matrices comprise a plurality of channel frequency response matrices for a channel frequency response for a plurality of subbands of the MIMO channel.
4. The method of claim 1, wherein the computing the correlation matrix for the MIMO channel includes:
computing a correlation matrix of each of the plurality of channel response matrices to obtain a plurality of correlation matrices for the plurality of channel response matrices, and summing the plurality of correlation matrices for the plurality of channel response matrices to obtain the correlation matrix for the MIMO channel.
5. The method of claim 2, wherein the computing the correlation matrix fir the MIMO channel includes:

determining energy of each of the plurality of channel impulse response matrices, identifying a channel impulse response matrix with highest energy among the plurality of channel impulse response matrices, and computing a correlation matrix of the channel impulse response matrix with the highest energy to generate the correlation matrix for the MIMO channel.
6. The method of claim 1, wherein eigenvalue decomposition of the correlation matrix is performed to obtain the at least one steering vector for the at least one spatial channel of the MIMO channel.
7. The method of claim 1, further comprising:
sending the at least one steering vector as feedback information to the transmitting entity.
8. The method of claim 1, wherein the at least one steering vector is used by the transmitting entity to generate a plurality of transmit chip streams for at least one data stream sent on the at least one spatial channel of the MIMO channel, and wherein the plurality of transmit chip streams are transmitted from a plurality of transmit antennas at the transmitting entity.
9. The method of claim 1, wherein the frequency-independent spatial processing is performed by the transmitting entity in the time-domain on a stream of time-domain chips generated for the data stream by OFDM modulation.
10. The method of claim 1, wherein the frequency-independent spatial processing is performed by the transmitting entity in the frequency-domain for each of a plurality of subbands on data symbols generated for the data stream.
11. The method of claim 1, further comprising:
obtaining, from the plurality of channel response matrices, a plurality of channel response vectors for each of a plurality of receive antennas at a receiving entity; and deriving a matched filter for each of the plurality of receive antennas based on the at least one steering vector and the plurality of channel response vectors for the respective receive antenna.
12. The method of claim 11, wherein the matched filter for each of the plurality of receive antennas is used to maximize received signal-to-noise ratio (SNR) for the respective receive antenna.
13. The method of claim 11, further comprising:
filtering a plurality of received symbol streams for the plurality of receive antennas with the plurality of matched filters.
14. The method of claim 13, wherein the plurality of channel response matrices comprise a plurality of channel impulse response matrices for a plurality of time delays of a channel impulse response of the MIMO channel, and wherein the filtering is performed in the time domain with a plurality of time-domain matched filters derived for the plurality of receive antennas based on the at least one steering vector and the plurality of channel impulse response matrices.
15. The method of claim 13, wherein the plurality of channel response matrices comprise a plurality of channel frequency response matrices for a channel frequency response for a plurality of subbands of the MIMO channel, and wherein the filtering is performed in the frequency domain with a plurality of frequency-domain matched filters derived for the plurality of receive antennas based on the at least one steering vector and the plurality of channel frequency response matrices.
16. The method of claim 1, wherein one steering vector is obtained and used by the transmitting entity for frequency-independent spatial processing of one data stream.
17. The method of claim 16, further comprising:
deriving a matched filter for each of a plurality of receive antennas at a receiving entity based on the one steering vector and a plurality of channel response vectors for the receive antenna, wherein the plurality of channel response vectors for each receive antenna are obtained from the plurality of channel response matrices, filtering a plurality of received symbol streams for the plurality of receive antennas with the plurality of matched filters to obtain a plurality of filtered symbol streams; and combining the plurality of filtered symbol streams to obtain a detected symbol stream for the one data stream sent by the transmitting entity.
18. The method of claim 17, further comprising:
performing equalization on the detected symbol stream to obtain a recovered symbol stream for the one data stream.
19. The method of claim 1, wherein a plurality of steering vectors are obtained and used by the transmitting entity for frequency-independent spatial processing of a plurality of data streams sent on a plurality of spatial channels associated with the plurality of steering vectors.
20. The method of claim 19, further comprising:
deriving a matched filter for each of a plurality of receive antennas at a receiving entity based on the plurality of steering vectors and a plurality of channel response vectors for the receive antenna, wherein the plurality of channel response vectors for each receive antenna are obtained from the plurality of channel response matrices, filtering a plurality of received symbol streams for the plurality of receive antennas with the plurality of matched filters to obtain a plurality of filtered symbol substreams; and combining the plurality of filtered symbol substreams to obtain a plurality of detected symbol streams for the plurality of data streams sent by the transmitting entity.
21. The method of claim 20, further comprising:
performing space-time equalization for the plurality of detected symbol streams to obtain a plurality of recovered symbol streams for the plurality of data streams.
22. The method of claim 21, wherein the space-time equalization is performed with a minimum mean square error linear equalizer (MMSE-LE), a decision feedback equalizer (DFE), or a maximum likelihood sequence estimator (MLSE).
23. An apparatus in a wireless multiple-input multiple-output (MIMO) communication system, comprising:
a channel estimator to obtain a plurality of channel response matrices for a channel response of a MIMO channel in a MIMO system; and a controller to compute a correlation matrix for the MIMO channel based on the plurality of channel response matrices and to decompose the correlation matrix to obtain at least one steering vector for at least one spatial channel of the MIMO
channel, wherein the at least one steering vector is used by a transmitting entity for frequency-independent spatial processing of a data stream sent on the at least spatial channel associated with the at least one steering vector.
24. The apparatus of claim 23, wherein the controller computes a correlation matrix of each of the plurality of channel response matrices to obtain a plurality of correlation matrices for the plurality of channel response matrices, and to sum the plurality of correlation matrices to obtain the correlation matrix for the MIMO channel.
25. The apparatus of claim 23, wherein the plurality of channel response matrices comprise a plurality of channel impulse response matrices for a plurality of time delays of a channel impulse response of the MIMO channel, and wherein the controller determines energy of each of the plurality of channel impulse response matrices and computes a correlation matrix of a channel impulse response matrix with highest energy among the plurality of channel impulse response matrices to obtain.
26. The apparatus of claim 23, further comprising:
a plurality of matched filters for a plurality of receive antennas, one matched filter for each receive antenna, each matched filter is used to filter a received symbol stream for an associated receive antenna to obtain a filtered symbol stream, wherein the matched filter for each receive antenna is derived based on the at least one steering vector and a plurality of channel response vectors for the receive antenna, and wherein the plurality of channel response vectors for each receive antenna are obtained from the plurality of channel response matrices; and a combiner to combine a plurality of filtered symbol streams from the plurality of matched filters to obtain at least one detected symbol stream for at least one data stream sent by the transmitting entity.
27. An apparatus in a wireless multiple-input multiple-output (MIMO) communication system, comprising:
means for obtaining a plurality of channel response matrices for a channel response of a MIMO channel in the MIMO system;
means for computing a correlation matrix for the MIMO channel based on the plurality of channel response matrices; and means for decomposing the correlation matrix to obtain at least one steering vector for at least one spatial channel of the MIMO channel, wherein the at least one steering vector is used by a transmitting entity for frequency-independent spatial processing of a data stream sent on the at least one spatial channel associated with the at least one steering vector.
28. The apparatus of claim 27, wherein the means for computing the correlation matrix includes:
means for computing a correlation matrix of each of the plurality of channel response matrices to obtain a plurality of correlation matrices for the plurality of channel response matrices, and means for summing the plurality of correlation matrices to obtain the correlation matrix for the MIMO channel.
29. The apparatus of claim 27, wherein the plurality of channel response matrices comprise a plurality of channel impulse response matrices for a plurality of time delays of a channel impulse response of the MIMO channel.
30. The apparatus of claim 29, wherein the means for computing the correlation matrix includes:

means for determining energy of each of the plurality of channel impulse response matrices, and means for computing a correlation matrix of a channel impulse response matrix with highest energy among the plurality of channel impulse response matrices to obtain the correlation matrix for the MIMO channel.
31. A processor readable media for storing instructions operable to:
receive a plurality of channel response matrices for a channel response of a multiple-input multiple-output (MIMO) channel in a MIMO system;
compute a correlation matrix for the MIMO channel based on the plurality of channel response matrices; and decompose the correlation matrix to obtain at least one steering vector for at least one spatial channel of the MIMO channel, wherein the at least one steering vector is used by a transmitting entity for frequency-independent spatial processing of a data stream sent on the at least one spatial channel associated with the at least one steering vector.
32. The processor readable media of claim 31 and further storing instructions operable to:
compute a correlation matrix of each of the plurality of channel response matrices to obtain a plurality of correlation matrices for the plurality of channel response matrices; and sum the plurality of correlation matrices to obtain the correlation matrix for the MIMO channel.
33. The processor readable media of claim 31, wherein the plurality of channel response matrices comprise a plurality of channel impulse response matrices for a plurality of time delays of a channel impulse response of the MIMO channel.
34. The processor readable media of claim 33, and further storing instructions operable to:

compute energy of each of the plurality of channel impulse response matrices;
and compute a correlation matrix of a channel impulse response matrix with highest energy among the plurality of channel impulse response matrices to obtain the correlation matrix for the MIMO channel.
35. A method of performing spatial processing in a multiple-input multiple-output (MIMO) communication system, comprising:
obtaining a plurality of channel impulse response matrices for a MIMO channel in the MIMO system, wherein the plurality of channel impulse response matrices comprise a plurality of time delays of a channel impulse response of the MIMO
channel;
computing energy of each of the plurality of channel impulse response matrices;
identifying a channel impulse response matrix with highest energy among the plurality of channel impulse response matrices as a channel impulse response matrix for a main path of the MIMO channel;
computing a correlation matrix of the channel impulse response matrix for the main path; and decomposing the correlation matrix to obtain a steering vector for a spatial channel of the main path, wherein the steering vector is used by a transmitting entity for frequency-independent spatial processing of a data stream sent via the MIMO
channel.
36. The method of claim 35, wherein eigenvalue decomposition of the correlation matrix for the main path is performed to obtain the steering vector for the spatial channel of the main path.
37. The method of claim 35, further comprising:
deriving a matched filter for each of a plurality of receive antennas at a receiving entity based on the steering vector and a plurality of channel impulse response vectors for the receive antenna, wherein the plurality of channel impulse response vectors for each receive antenna are obtained from the plurality of channel impulse response matrices; and filtering a plurality of received symbol streams for the plurality of receive antennas with the plurality of matched filters.
38. A method of performing spatial processing in a wireless communication system with a plurality of transmit antennas at a transmitting entity and a plurality of receive antennas at a receiving entity, the method comprising:
obtaining a plurality of sets of channel response vectors for the plurality of receive antennas, one set for each receive antenna, wherein each set of channel response vectors is indicative of a channel response between the plurality of transmit antennas and one of the plurality of receive antennas;
computing a correlation matrix for each of the plurality of receive antennas based on the set of channel response vectors for the receive antenna; and decomposing the correlation matrix for each receive antenna to obtain a steering vector for the receive antenna, wherein a plurality of steering vectors are obtained for the plurality of receive antennas and the plurality of steering vectors are used by the transmitting entity for frequency-independent spatial processing of at least one data stream sent to the receiving entity.
39. The method of claim 38, wherein the computing the correlation matrix for each receive antenna includes:

computing a correlation matrix of each of the plurality of channel response vectors for the receive antenna to obtain a plurality of correlation matrices for the plurality of channel response vectors for the receive antenna, and summing the plurality of correlation matrices for the plurality of channel response vectors for the receive antenna to obtain the correlation matrix for the receive antenna.
40. The method of claim 38, further comprising:
deriving a matched filter for each of the plurality of receive antennas based on the steering vector and the set of channel response vectors for the receive antenna;
filtering a received symbol stream for each of the plurality of receive antennas with the matched filter for the receive antenna to obtain a filtered symbol stream for the receive antenna; and combining a plurality of filtered symbol streams for the plurality of receive antennas to obtain at least one detected symbol stream for the at least one data stream sent by the transmitting entity.
41. The method of claim 38, wherein one data stream is sent by the transmitting entity to the plurality of receive antennas using the plurality of steering vectors.
42. The method of claim 38, wherein a plurality of data streams are sent by the transmitting entity to the plurality of receive antennas using the plurality of steering vectors.
43. The method of claim 42, further comprising:
deriving a matched filter for each of the plurality of receive antennas based on the steering vector and the plurality of channel response vectors for the receive antenna, wherein a plurality of matched filters are derived for the plurality of receive antennas;
filtering a plurality of received symbol streams for the plurality of receive antennas with the plurality of matched filters to obtain a plurality of filtered symbol streams; and combining the plurality of filtered symbol streams to obtain a plurality of detected symbol streams for the plurality of data streams sent by the transmitting entity.
44. The method of claim 43, further comprising:
performing space-time equalization on the plurality of detected symbol streams to obtain a plurality of recovered symbol streams for the plurality of data streams.
45. An apparatus in a wireless communication system with a plurality of transmit antennas at a transmitting entity and a plurality of receive antennas at a receiving entity, the apparatus comprising:
a channel estimator to obtain a plurality of sets of channel response vectors for the plurality of receive antennas, one set for each receive antenna, wherein each set of channel response vectors is indicative of a channel response between the plurality of transmit antennas and one of the plurality of receive antennas; and a controller to compute a correlation matrix for each of the plurality of receive antennas based on the set of channel response vectors for the receive antenna and to decompose the single correlation matrix for each receive antenna to obtain a steering vector for the receive antenna, wherein a plurality of steering vectors are obtained for the plurality of receive antennas and the plurality of steering vectors are used by the transmitting entity for frequency-independent spatial processing of at least one data stream sent to the receiving entity.
46. The apparatus of claim 45, wherein the controller computes a correlation matrix of each of the plurality of channel response vectors for each receive antenna to obtain a plurality of correlation matrices for the plurality of channel response vectors for the receive antenna and to sum the plurality of correlation matrices for the plurality of channel response vectors for the receive antenna to obtain the correlation matrix for the respective receive antenna.
47. The apparatus of claim 45, wherein the controller derives a matched filter for each of the plurality of receive antennas based on the steering vector and the set of channel response vectors for the respective receive antenna.
48. The apparatus of claim 47, further comprising:
a plurality of matched filters for the plurality of receive antennas, one matched filter for each receive antenna, each matched filter is used to filter a received symbol stream for the associated receive antenna to obtain a filtered symbol stream;
and a combiner to combine a plurality of filtered symbol streams from the plurality of matched filters to obtain at least one detected symbol stream for the at least one data stream sent by the transmitting entity.
49. An apparatus in a wireless communication system, comprising:
means for obtaining a plurality of sets of channel response vectors for a plurality of receive antennas, one set for each receive antenna, wherein each set of channel response vectors is indicative of a channel response between a plurality of transmit antennas and one of the plurality of receive antennas;

means for computing a correlation matrix for each of the plurality of receive antennas based on the set of channel response vectors for the respective receive antenna;
and means for decomposing the single correlation matrix for each receive antenna to obtain a steering vector for the respective receive antenna, wherein a plurality of steering vectors are obtained for the plurality of receive antennas and are used by a transmitting entity for frequency-independent spatial processing of at least one data stream sent to a receiving entity.
50. The apparatus of claim 49, further comprising:
means for computing a correlation matrix of each of the plurality of channel response vectors for each receive antenna to obtain a plurality of correlation matrices for the plurality of channel response vectors for the receive antenna, and means for summing the plurality of correlation matrices for the plurality of channel response vectors for each receive antenna to obtain the correlation matrix for the respective receive antenna.
51. The apparatus of claim 49, further comprising:
means for deriving a matched filter for each of the plurality of receive antennas based on the steering vector and the set of channel response vectors for the respective receive antenna;
means for filtering a received symbol stream for each of the plurality of receive antennas with the matched filter for the receive antenna to obtain a filtered symbol stream for the respective receive antenna; and means for combining a plurality of filtered symbol streams for the plurality of receive antennas to obtain at least one detected symbol stream for the at least one data stream sent by the transmitting entity.
52. A computer-readable media for storing instructions operable to:
receive a plurality of sets of channel response vectors for a plurality of receive antennas, one set for each receive antenna, wherein each set of channel response vectors is indicative of a channel response between a plurality of transmit antennas and one of the plurality of receive antennas;

compute a correlation matrix for each of the plurality of receive antennas based on the set of channel response vectors for the respective receive antenna; and decompose the correlation matrix for each receive antenna to obtain a steering vector for the respective receive antenna, wherein a plurality of steering vectors are obtained for the plurality of receive antenna and are used by a transmitting entity for frequency-independent spatial processing of at least one data stream sent to a receiving entity.
53. The processor readable media of claim 52 and further storing instructions operable to:
compute a correlation matrix of each of the plurality of channel response vectors for each receive antenna to obtain a plurality of correlation matrices for the plurality of channel response vectors for the respective receive antenna; and sum the plurality of correlation matrices for the plurality of channel response vectors for each receive antenna to obtain the correlation matrix for the respective receive antenna.
54. The processor readable media of claim 52 and further storing instructions operable to:
derive a matched filter for each of the plurality of receive antennas based on the steering vector and the set of channel response vectors for the respective receive antenna;
filter a received symbol stream for each of the plurality of receive antennas with the matched filter for the receive antenna to obtain a filtered symbol stream for the respective receive antenna; and combine a plurality of filtered symbol streams for the a plurality of receive antennas to obtain at least one detected symbol stream for the at least one data stream sent by the transmitting entity.
55. A method of performing spatial processing in a multiple-input single-output (MISO) system utilizing orthogonal frequency division multiplexing (OFDM), the method comprising:

obtaining a set of channel response vectors indicative of a channel response between a plurality of transmit antennas at a transmitting entity and a receive antenna at a receiving entity in the MISO system;
computing a correlation matrix based on the set of channel response vectors;
and decomposing the correlation matrix to obtain a steering vector used by the transmitting entity for frequency-independent spatial processing of a data stream sent to the receiving entity.
56. The method of claim 55, wherein the frequency-independent spatial processing is performed by the transmitting entity in the time-domain on a stream of time-domain chips generated for the data stream by OFDM modulation.
57. The method of claim 55, wherein the frequency-independent spatial processing is performed by the transmitting entity in the frequency-domain for each of a plurality of subbands on data symbols generated for the data stream.
58. The method of claim 55, further comprising:
deriving a matched filter based on the steering vector and the set of channel response vectors; and filtering a received symbol stream with the matched filter to obtain a detected symbol stream.
CA2536425A 2003-08-27 2004-08-17 Frequency-independent spatial processing for wideband miso and mimo systems Active CA2536425C (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10/650,295 2003-08-27
US10/650,295 US7065144B2 (en) 2003-08-27 2003-08-27 Frequency-independent spatial processing for wideband MISO and MIMO systems
PCT/US2004/027038 WO2005022817A1 (en) 2003-08-27 2004-08-17 Frequency-independent spatial processing for wideband miso and mimo systems

Publications (2)

Publication Number Publication Date
CA2536425A1 true CA2536425A1 (en) 2005-03-10
CA2536425C CA2536425C (en) 2012-10-30

Family

ID=34217123

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2536425A Active CA2536425C (en) 2003-08-27 2004-08-17 Frequency-independent spatial processing for wideband miso and mimo systems

Country Status (9)

Country Link
US (2) US7065144B2 (en)
EP (2) EP2299617B1 (en)
JP (3) JP5006039B2 (en)
KR (4) KR101092794B1 (en)
CN (1) CN1875562B (en)
CA (1) CA2536425C (en)
ES (1) ES2525141T3 (en)
TW (1) TWI366995B (en)
WO (1) WO2005022817A1 (en)

Families Citing this family (174)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7952511B1 (en) 1999-04-07 2011-05-31 Geer James L Method and apparatus for the detection of objects using electromagnetic wave attenuation patterns
US8194770B2 (en) * 2002-08-27 2012-06-05 Qualcomm Incorporated Coded MIMO systems with selective channel inversion applied per eigenmode
US7324429B2 (en) 2002-10-25 2008-01-29 Qualcomm, Incorporated Multi-mode terminal in a wireless MIMO system
US7002900B2 (en) * 2002-10-25 2006-02-21 Qualcomm Incorporated Transmit diversity processing for a multi-antenna communication system
US7986742B2 (en) 2002-10-25 2011-07-26 Qualcomm Incorporated Pilots for MIMO communication system
US8208364B2 (en) 2002-10-25 2012-06-26 Qualcomm Incorporated MIMO system with multiple spatial multiplexing modes
US8570988B2 (en) * 2002-10-25 2013-10-29 Qualcomm Incorporated Channel calibration for a time division duplexed communication system
US8218609B2 (en) * 2002-10-25 2012-07-10 Qualcomm Incorporated Closed-loop rate control for a multi-channel communication system
US8170513B2 (en) * 2002-10-25 2012-05-01 Qualcomm Incorporated Data detection and demodulation for wireless communication systems
US8169944B2 (en) 2002-10-25 2012-05-01 Qualcomm Incorporated Random access for wireless multiple-access communication systems
US20040081131A1 (en) 2002-10-25 2004-04-29 Walton Jay Rod OFDM communication system with multiple OFDM symbol sizes
US8134976B2 (en) * 2002-10-25 2012-03-13 Qualcomm Incorporated Channel calibration for a time division duplexed communication system
US8320301B2 (en) * 2002-10-25 2012-11-27 Qualcomm Incorporated MIMO WLAN system
US7864678B1 (en) 2003-08-12 2011-01-04 Marvell International Ltd. Rate adaptation in wireless systems
US7065144B2 (en) * 2003-08-27 2006-06-20 Qualcomm Incorporated Frequency-independent spatial processing for wideband MISO and MIMO systems
US7349436B2 (en) * 2003-09-30 2008-03-25 Intel Corporation Systems and methods for high-throughput wideband wireless local area network communications
US7515652B2 (en) * 2003-09-30 2009-04-07 Broadcom Corporation Digital modulator for a GSM/GPRS/EDGE wireless polar RF transmitter
US8462817B2 (en) 2003-10-15 2013-06-11 Qualcomm Incorporated Method, apparatus, and system for multiplexing protocol data units
US8472473B2 (en) * 2003-10-15 2013-06-25 Qualcomm Incorporated Wireless LAN protocol stack
US8483105B2 (en) 2003-10-15 2013-07-09 Qualcomm Incorporated High speed media access control
US8233462B2 (en) * 2003-10-15 2012-07-31 Qualcomm Incorporated High speed media access control and direct link protocol
US9226308B2 (en) 2003-10-15 2015-12-29 Qualcomm Incorporated Method, apparatus, and system for medium access control
US8842657B2 (en) 2003-10-15 2014-09-23 Qualcomm Incorporated High speed media access control with legacy system interoperability
US8284752B2 (en) 2003-10-15 2012-10-09 Qualcomm Incorporated Method, apparatus, and system for medium access control
US7164890B2 (en) * 2003-11-21 2007-01-16 Telefonaktiebologet Lm Ericsson (Publ) Link adaptation for point-to-multipoint channel
US9473269B2 (en) 2003-12-01 2016-10-18 Qualcomm Incorporated Method and apparatus for providing an efficient control channel structure in a wireless communication system
US7286606B2 (en) * 2003-12-04 2007-10-23 Intel Corporation System and method for channelization recognition in a wideband communication system
US7145940B2 (en) * 2003-12-05 2006-12-05 Qualcomm Incorporated Pilot transmission schemes for a multi-antenna system
US8204149B2 (en) 2003-12-17 2012-06-19 Qualcomm Incorporated Spatial spreading in a multi-antenna communication system
US7308047B2 (en) * 2003-12-31 2007-12-11 Intel Corporation Symbol de-mapping methods in multiple-input multiple-output systems
US7336746B2 (en) * 2004-12-09 2008-02-26 Qualcomm Incorporated Data transmission with spatial spreading in a MIMO communication system
US7818018B2 (en) * 2004-01-29 2010-10-19 Qualcomm Incorporated Distributed hierarchical scheduling in an AD hoc network
US8903440B2 (en) 2004-01-29 2014-12-02 Qualcomm Incorporated Distributed hierarchical scheduling in an ad hoc network
CA2553678C (en) * 2004-01-30 2014-07-08 Universite Laval Multi-user adaptive array receiver and method
KR100605861B1 (en) * 2004-02-02 2006-08-01 삼성전자주식회사 Apparatus and for transmitting/receiving signal in a communication system using multiple input multiple output scheme
US8169889B2 (en) 2004-02-18 2012-05-01 Qualcomm Incorporated Transmit diversity and spatial spreading for an OFDM-based multi-antenna communication system
US20050180312A1 (en) * 2004-02-18 2005-08-18 Walton J. R. Transmit diversity and spatial spreading for an OFDM-based multi-antenna communication system
US7346129B2 (en) * 2004-02-25 2008-03-18 Broadcom Corporation Payload based channel estimation of a wireless channel
US8077691B2 (en) * 2004-03-05 2011-12-13 Qualcomm Incorporated Pilot transmission and channel estimation for MISO and MIMO receivers in a multi-antenna system
US7697449B1 (en) * 2004-07-20 2010-04-13 Marvell International Ltd. Adaptively determining a data rate of packetized information transmission over a wireless channel
US7742533B2 (en) 2004-03-12 2010-06-22 Kabushiki Kaisha Toshiba OFDM signal transmission method and apparatus
US8315271B2 (en) * 2004-03-26 2012-11-20 Qualcomm Incorporated Method and apparatus for an ad-hoc wireless communications system
US8654815B1 (en) 2004-04-02 2014-02-18 Rearden, Llc System and method for distributed antenna wireless communications
US10425134B2 (en) 2004-04-02 2019-09-24 Rearden, Llc System and methods for planned evolution and obsolescence of multiuser spectrum
US7885354B2 (en) * 2004-04-02 2011-02-08 Rearden, Llc System and method for enhancing near vertical incidence skywave (“NVIS”) communication using space-time coding
US8571086B2 (en) * 2004-04-02 2013-10-29 Rearden, Llc System and method for DIDO precoding interpolation in multicarrier systems
US11451275B2 (en) 2004-04-02 2022-09-20 Rearden, Llc System and method for distributed antenna wireless communications
US9819403B2 (en) * 2004-04-02 2017-11-14 Rearden, Llc System and method for managing handoff of a client between different distributed-input-distributed-output (DIDO) networks based on detected velocity of the client
US8542763B2 (en) 2004-04-02 2013-09-24 Rearden, Llc Systems and methods to coordinate transmissions in distributed wireless systems via user clustering
US9312929B2 (en) 2004-04-02 2016-04-12 Rearden, Llc System and methods to compensate for Doppler effects in multi-user (MU) multiple antenna systems (MAS)
US7711030B2 (en) 2004-07-30 2010-05-04 Rearden, Llc System and method for spatial-multiplexed tropospheric scatter communications
US8170081B2 (en) * 2004-04-02 2012-05-01 Rearden, LLC. System and method for adjusting DIDO interference cancellation based on signal strength measurements
US10985811B2 (en) 2004-04-02 2021-04-20 Rearden, Llc System and method for distributed antenna wireless communications
US11394436B2 (en) 2004-04-02 2022-07-19 Rearden, Llc System and method for distributed antenna wireless communications
US7633994B2 (en) * 2004-07-30 2009-12-15 Rearden, LLC. System and method for distributed input-distributed output wireless communications
US9826537B2 (en) * 2004-04-02 2017-11-21 Rearden, Llc System and method for managing inter-cluster handoff of clients which traverse multiple DIDO clusters
US7636381B2 (en) * 2004-07-30 2009-12-22 Rearden, Llc System and method for distributed input-distributed output wireless communications
US10200094B2 (en) * 2004-04-02 2019-02-05 Rearden, Llc Interference management, handoff, power control and link adaptation in distributed-input distributed-output (DIDO) communication systems
US11309943B2 (en) 2004-04-02 2022-04-19 Rearden, Llc System and methods for planned evolution and obsolescence of multiuser spectrum
US8160121B2 (en) * 2007-08-20 2012-04-17 Rearden, Llc System and method for distributed input-distributed output wireless communications
US10277290B2 (en) 2004-04-02 2019-04-30 Rearden, Llc Systems and methods to exploit areas of coherence in wireless systems
US10187133B2 (en) * 2004-04-02 2019-01-22 Rearden, Llc System and method for power control and antenna grouping in a distributed-input-distributed-output (DIDO) network
US10749582B2 (en) 2004-04-02 2020-08-18 Rearden, Llc Systems and methods to coordinate transmissions in distributed wireless systems via user clustering
US7599420B2 (en) * 2004-07-30 2009-10-06 Rearden, Llc System and method for distributed input distributed output wireless communications
US10886979B2 (en) * 2004-04-02 2021-01-05 Rearden, Llc System and method for link adaptation in DIDO multicarrier systems
US20050238111A1 (en) * 2004-04-09 2005-10-27 Wallace Mark S Spatial processing with steering matrices for pseudo-random transmit steering in a multi-antenna communication system
WO2005107117A1 (en) * 2004-04-14 2005-11-10 Conexant Systems, Inc. Dual mode communication systems and methods
EP1784930B1 (en) 2004-05-04 2016-03-23 Sony Corporation Training sequence allocations for MIMO transmissions
US8285226B2 (en) 2004-05-07 2012-10-09 Qualcomm Incorporated Steering diversity for an OFDM-based multi-antenna communication system
US7564814B2 (en) * 2004-05-07 2009-07-21 Qualcomm, Incorporated Transmission mode and rate selection for a wireless communication system
US8923785B2 (en) * 2004-05-07 2014-12-30 Qualcomm Incorporated Continuous beamforming for a MIMO-OFDM system
US8401018B2 (en) 2004-06-02 2013-03-19 Qualcomm Incorporated Method and apparatus for scheduling in a wireless network
WO2006008565A1 (en) * 2004-06-18 2006-01-26 Nokia Corporation Frequency domain equalization of frequency-selective mimo channels
US7110463B2 (en) * 2004-06-30 2006-09-19 Qualcomm, Incorporated Efficient computation of spatial filter matrices for steering transmit diversity in a MIMO communication system
US7978649B2 (en) 2004-07-15 2011-07-12 Qualcomm, Incorporated Unified MIMO transmission and reception
US9685997B2 (en) 2007-08-20 2017-06-20 Rearden, Llc Systems and methods to enhance spatial diversity in distributed-input distributed-output wireless systems
US8116410B1 (en) 2004-08-09 2012-02-14 Rockstar Bidco, LP Communication signal decoding and soft demapping methods and systems
US7327914B1 (en) * 2004-08-10 2008-02-05 The Board Of Trustees Of The Leland Stanford Junior University Adaptive optical signal processing with multimode waveguides
US7978778B2 (en) 2004-09-03 2011-07-12 Qualcomm, Incorporated Receiver structures for spatial spreading with space-time or space-frequency transmit diversity
JPWO2006027937A1 (en) * 2004-09-08 2008-05-08 松下電器産業株式会社 Wireless transmission apparatus and pre-equalization method thereof
EP2518920A1 (en) * 2004-09-13 2012-10-31 Panasonic Corporation Automatic retransmission request control system and retransmission method in MIMO-OFDM system
US7577209B2 (en) * 2004-09-30 2009-08-18 Intel Corporation Deterministic spatial power allocation and bit loading for closed loop MIMO
US7882412B2 (en) 2004-10-05 2011-02-01 Sanjiv Nanda Enhanced block acknowledgement
US7590078B2 (en) * 2004-10-05 2009-09-15 Qualcomm Incorporated Detecting legacy spoofing in reduced functionality user terminals
US7856052B2 (en) * 2004-10-06 2010-12-21 Broadcom Corp. Method and system for low complexity conjugate gradient based equalization in a wireless system
US7983298B2 (en) * 2004-10-20 2011-07-19 Qualcomm Incorporated Multiple frequency band operation in wireless networks
DE05815502T1 (en) * 2004-10-20 2008-05-21 Qualcomm, Inc., San Diego MULTI FREQUENCY BAND OPERATION IN WIRELESS NETWORKS
US7239659B2 (en) * 2004-11-04 2007-07-03 Motorola, Inc. Method and apparatus for channel feedback
US7711762B2 (en) * 2004-11-15 2010-05-04 Qualcomm Incorporated Efficient computation for eigenvalue decomposition and singular value decomposition of matrices
US7895254B2 (en) 2004-11-15 2011-02-22 Qualcomm Incorporated Eigenvalue decomposition and singular value decomposition of matrices using Jacobi rotation
KR100594051B1 (en) * 2004-11-26 2006-06-30 삼성전자주식회사 Apparatus and method for efficient interference cancellation in cooperate relay networks in the mimo cellular system
US7590204B2 (en) * 2005-02-14 2009-09-15 Peter Monsen Technique for adaptive equalization in band-limited high data rate communication over fading dispersive channels
US20060264184A1 (en) * 2005-02-17 2006-11-23 Interdigital Technology Corporation Method and apparatus for selecting a beam combination of multiple-input multiple-output antennas
JP4824016B2 (en) * 2005-03-15 2011-11-24 富士通株式会社 Communication apparatus and communication method
US20060245509A1 (en) * 2005-04-27 2006-11-02 Samsung Electronics Co., Ltd Method and system for processing MIMO pilot signals in an orthogonal frequency division multiplexing network
US7466749B2 (en) 2005-05-12 2008-12-16 Qualcomm Incorporated Rate selection with margin sharing
US7706478B2 (en) * 2005-05-19 2010-04-27 Signalspace, Inc. Method and apparatus of source separation
CN101199223B (en) * 2005-05-25 2011-08-17 捷讯研究有限公司 Joint space-time optimum filters (JSTOF) with at least one antenna, at least one channel, and joint filter weight and CIR estimation
WO2006125315A1 (en) * 2005-05-25 2006-11-30 Research In Motion Limited Joint space-time optimum filters (jstof) with at least one antenna, at least one channel, and joint filter weight and cir estimation
US7733996B2 (en) * 2005-05-25 2010-06-08 Research In Motion Limited Joint space-time optimum filters (JSTOF) for interference cancellation
US7844232B2 (en) * 2005-05-25 2010-11-30 Research In Motion Limited Joint space-time optimum filters (JSTOF) with at least one antenna, at least one channel, and joint filter weight and CIR estimation
CA2516000A1 (en) 2005-08-15 2007-02-15 Research In Motion Limited Joint space-time optimum filters (jstof) with at least one virtual antenna, at least one channel, and joint filter weight and cir estimation
KR101124932B1 (en) 2005-05-30 2012-03-28 삼성전자주식회사 Apparatus and method for transmitting/receiving a data in mobile communication system with array antennas
US8358714B2 (en) 2005-06-16 2013-01-22 Qualcomm Incorporated Coding and modulation for multiple data streams in a communication system
US7813374B2 (en) * 2005-06-29 2010-10-12 Broadcom Corporation Multiple protocol wireless communication baseband transceiver
KR101173527B1 (en) * 2005-06-30 2012-08-14 노키아 코포레이션 Apparatus, method and computer -readable storage medium providing closed loop transmit antenna operation for systems using multiple antennas
CA2516199A1 (en) * 2005-08-15 2007-02-15 Research In Motion Limited Joint space-time optimum filters (jstof) with at least one virtual antenna, at least one channel, and joint filter weight and cir estimation
US20070036210A1 (en) * 2005-08-15 2007-02-15 Research In Motion Limited Joint Space-Time Optimum Filters (JSTOF) with at Least One Antenna, at Least One Channel, and Joint Filter Weight and CIR Estimation
CA2515995A1 (en) * 2005-08-15 2007-02-15 Research In Motion Limited Joint space-time optimum filters (jstof) for interference cancellation
US20070036122A1 (en) * 2005-08-15 2007-02-15 Research In Motion Limited Joint Space-Time Optimum Filters (JSTOF) for Interference Cancellation
US8600336B2 (en) 2005-09-12 2013-12-03 Qualcomm Incorporated Scheduling with reverse direction grant in wireless communication systems
US7751372B2 (en) * 2005-09-23 2010-07-06 Peter Monsen Technique for adaptive data rate communication over fading dispersive channels
TWI279112B (en) * 2005-10-27 2007-04-11 Silicon Integrated Sys Corp A diversity receiver
WO2007058193A1 (en) * 2005-11-16 2007-05-24 Sharp Kabushiki Kaisha Multicarrier receiver, multicarrier communication system and demodulating method
US8107549B2 (en) * 2005-11-30 2012-01-31 Qualcomm, Incorporated Multi-stage receiver for wireless communication
US7570210B1 (en) * 2005-12-12 2009-08-04 Marvell International Ltd. Steering matrix feedback for beamforming
US8144818B2 (en) * 2005-12-15 2012-03-27 Qualcomm Incorporated Apparatus and methods for determining timing in a communication system
US20070153731A1 (en) * 2006-01-05 2007-07-05 Nadav Fine Varying size coefficients in a wireless local area network return channel
EP1808989A1 (en) * 2006-01-12 2007-07-18 Siemens Aktiengesellschaft Method of digital wireless communication on a wideband mobile radio channel
KR100762283B1 (en) * 2006-02-07 2007-10-08 포스데이타 주식회사 Decoder and Decoding Method
US8331425B2 (en) * 2006-02-28 2012-12-11 Kyocera Corporation Apparatus, system and method for providing a multiple input/multiple output (MIMO) channel interface
US8543070B2 (en) 2006-04-24 2013-09-24 Qualcomm Incorporated Reduced complexity beam-steered MIMO OFDM system
JP2007300383A (en) * 2006-04-28 2007-11-15 Fujitsu Ltd Mimo-ofdm transmitter
US8494084B1 (en) 2006-05-02 2013-07-23 Marvell International Ltd. Reuse of a matrix equalizer for the purpose of transmit beamforming in a wireless MIMO communication system
US8290089B2 (en) * 2006-05-22 2012-10-16 Qualcomm Incorporated Derivation and feedback of transmit steering matrix
US7974360B2 (en) * 2006-05-24 2011-07-05 Qualcomm Incorporated Multi input multi output (MIMO) orthogonal frequency division multiple access (OFDMA) communication system
JP4836186B2 (en) * 2006-05-31 2011-12-14 三洋電機株式会社 Transmitter
JP2009540767A (en) * 2006-06-13 2009-11-19 クゥアルコム・インコーポレイテッド Reverse link pilot transmission for wireless communication systems
JP2007336435A (en) * 2006-06-19 2007-12-27 Matsushita Electric Ind Co Ltd Digital broadcast transmitter and receiver
KR101249359B1 (en) * 2006-08-18 2013-04-01 삼성전자주식회사 Method and apparatus for transmitting/receiving channel quality information in an orthogonal frequency division multiplexing system supporting a multi-input multi-output
US7751495B1 (en) * 2006-09-06 2010-07-06 Marvell International Ltd. Equal power output spatial spreading matrix for use in a wireless MIMO communication system
KR100946928B1 (en) * 2006-12-12 2010-03-09 삼성전자주식회사 Apparatus and method for transmitting/receiving preamble signal and estimating a channel in an orthogonal frequency division multiplexing communication system using a multiple input multiple output scheme
US8374273B1 (en) * 2007-03-30 2013-02-12 Marvell International Ltd. Method and apparatus for transmit beamforming
US8223872B1 (en) 2007-04-04 2012-07-17 Marvell International Ltd. Reuse of a matrix equalizer for the purpose of transmit beamforming in a wireless MIMO communication system
US8199841B1 (en) 2007-04-26 2012-06-12 Marvell International Ltd. Channel tracking in a wireless multiple-input multiple-output (MIMO) communication system
US7876864B2 (en) * 2007-05-03 2011-01-25 Motorola, Inc. Method and device for enhancing signal detection in a frequency selective fading channel
US8989155B2 (en) 2007-08-20 2015-03-24 Rearden, Llc Systems and methods for wireless backhaul in distributed-input distributed-output wireless systems
KR100930716B1 (en) * 2007-10-17 2009-12-09 한국전자통신연구원 Signal transmission method and signal reception method
US8250441B2 (en) 2007-12-11 2012-08-21 Wi-Lan Inc. Outer coding framework for application packet error rate minimization
US8638875B1 (en) 2008-04-15 2014-01-28 Marvell International Ltd. Transmit beamforming systems and methods
US9300371B1 (en) 2008-03-07 2016-03-29 Marvell International Ltd. Beamforming systems and methods
FR2936121B1 (en) * 2008-09-15 2010-11-05 Commissariat Energie Atomique METHOD OF BLINDLY ESTIMATING OFDM MODULATION PARAMETERS ACCORDING TO MAXIMUM CRITERION OF TRUE.
FR2936122B1 (en) * 2008-09-15 2010-10-15 Commissariat Energie Atomique METHOD FOR BLINDLY ESTIMATING OFDM SIGNAL PARAMETERS BY ADAPTIVE FILTERING.
US8923844B2 (en) * 2009-08-14 2014-12-30 Futurewei Technologies, Inc. Coordinated beam forming and multi-user MIMO
KR20110094857A (en) * 2010-02-18 2011-08-24 삼성전자주식회사 Method and device for estimating angle of arrival
US9275979B2 (en) * 2010-03-03 2016-03-01 Cree, Inc. Enhanced color rendering index emitter through phosphor separation
CN102655516B (en) * 2011-03-03 2015-03-11 中国移动通信集团江苏有限公司 Generic access network-based tele-medicine method and system
CN102790661A (en) * 2011-05-16 2012-11-21 中兴通讯股份有限公司 Method and system for obtaining communication channel correlation coefficient in uplink MIMO (Multiple Input Multiple Output)
CN102857284B (en) * 2011-06-28 2015-12-09 上海华为技术有限公司 Data emitting method, method of reseptance, Apparatus and system
CN102647250A (en) * 2012-03-06 2012-08-22 上海大学 Cooperative communication method based on clustering sphere decoding in virtual MIMO (Multiple-Input Multiple-Output)
US9726748B2 (en) 2012-09-21 2017-08-08 Qualcomm Incorporated Cyclic shift delay detection using signaling
US9497641B2 (en) * 2012-09-21 2016-11-15 Qualcomm Incorporated Cyclic shift delay detection using a classifier
US11050468B2 (en) 2014-04-16 2021-06-29 Rearden, Llc Systems and methods for mitigating interference within actively used spectrum
US11190947B2 (en) 2014-04-16 2021-11-30 Rearden, Llc Systems and methods for concurrent spectrum usage within actively used spectrum
US11189917B2 (en) 2014-04-16 2021-11-30 Rearden, Llc Systems and methods for distributing radioheads
US10194346B2 (en) 2012-11-26 2019-01-29 Rearden, Llc Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology
US10164698B2 (en) 2013-03-12 2018-12-25 Rearden, Llc Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology
US9973246B2 (en) 2013-03-12 2018-05-15 Rearden, Llc Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology
US9923657B2 (en) 2013-03-12 2018-03-20 Rearden, Llc Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology
US10488535B2 (en) 2013-03-12 2019-11-26 Rearden, Llc Apparatus and method for capturing still images and video using diffraction coded imaging techniques
RU2767777C2 (en) 2013-03-15 2022-03-21 Риарден, Ллк Systems and methods of radio frequency calibration using the principle of reciprocity of channels in wireless communication with distributed input - distributed output
WO2015016673A1 (en) * 2013-08-01 2015-02-05 Lg Electronics Inc. Apparatus for transmitting broadcast signals, apparatus for receiving broadcast signals, method for transmitting broadcast signals and method for receiving broadcast signals
US11290162B2 (en) 2014-04-16 2022-03-29 Rearden, Llc Systems and methods for mitigating interference within actively used spectrum
CN105471772B (en) * 2014-09-28 2018-11-09 华为技术有限公司 A kind of reception device, the method and system for obtaining channel-estimation information
JP2017208586A (en) * 2014-10-03 2017-11-24 シャープ株式会社 Base station device and terminal device
US10411779B2 (en) * 2015-01-29 2019-09-10 Telefonaktiebolaget Lm Ericsson (Publ) Channel state feedback for a wireless link having phase relaxed channels
CN108713297B (en) * 2016-03-23 2020-12-15 华为技术有限公司 Method and apparatus for downlink reception filter based on location information
US10050813B2 (en) * 2016-10-25 2018-08-14 Samsung Electronics Co., Ltd Low complexity sequence estimator for general packet radio service (GPRS) system
WO2019240790A1 (en) * 2018-06-13 2019-12-19 Facebook, Inc. Mimo (multiple-input, multiple-output) inter-stream interference cancellation
KR102196612B1 (en) 2019-10-29 2020-12-30 한국수력원자력 주식회사 Cable laying apparatus and system for nucleal power plant equipment
US11411779B2 (en) 2020-03-31 2022-08-09 XCOM Labs, Inc. Reference signal channel estimation
KR102639501B1 (en) * 2020-04-16 2024-02-23 삼성전자주식회사 Electronic device performing extension of bandwidth for sensing by integrating channel impulse responses and method for controlling thereof
CN112834991B (en) * 2020-12-31 2024-02-06 中国人民解放军空军工程大学 MIMO radar slow target detection method based on time domain frequency diversity
CN112884147B (en) * 2021-02-26 2023-11-28 上海商汤智能科技有限公司 Neural network training method, image processing method, device and electronic equipment

Family Cites Families (168)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4750171A (en) * 1986-07-11 1988-06-07 Tadiran Electronics Industries Ltd. Data switching system and method
US4747100A (en) * 1986-08-11 1988-05-24 Allen-Bradley Company, Inc. Token passing network utilizing active node table
EP0364638B1 (en) * 1988-10-20 1994-04-20 International Business Machines Corporation Communication network
US5133081A (en) * 1989-11-03 1992-07-21 Mayo Scott T Remotely controllable message broadcast system including central programming station, remote message transmitters and repeaters
GB9019488D0 (en) 1990-09-06 1990-10-24 Ncr Co Local area network having a wireless transmission link
US5297144A (en) * 1991-01-22 1994-03-22 Spectrix Corporation Reservation-based polling protocol for a wireless data communications network
US5276703A (en) * 1992-01-13 1994-01-04 Windata, Inc. Wireless local area network communications system
US5444702A (en) * 1992-09-14 1995-08-22 Network Equipment Technologies, Inc. Virtual network using asynchronous transfer mode
US5384777A (en) 1993-04-19 1995-01-24 International Business Machines Corporation Adaptive medium access control scheme for wireless LAN
GB9401092D0 (en) 1994-01-21 1994-03-16 Newbridge Networks Corp A network management system
US5677909A (en) 1994-05-11 1997-10-14 Spectrix Corporation Apparatus for exchanging data between a central station and a plurality of wireless remote stations on a time divided commnication channel
FI98586C (en) 1995-01-10 1997-07-10 Nokia Telecommunications Oy Packet radio system and methods for protocol-independent routing of a data packet in packet radio networks
US5638371A (en) * 1995-06-27 1997-06-10 Nec Usa, Inc. Multiservices medium access control protocol for wireless ATM system
US5729542A (en) * 1995-06-28 1998-03-17 Motorola, Inc. Method and apparatus for communication system access
US5719868A (en) * 1995-10-05 1998-02-17 Rockwell International Dynamic distributed, multi-channel time division multiple access slot assignment method for a network of nodes
US5684791A (en) 1995-11-07 1997-11-04 Nec Usa, Inc. Data link control protocols for wireless ATM access channels
TW313734B (en) * 1996-01-05 1997-08-21 Motorola Inc System controlled asymmetrical automatic repeat request protocol method
US6014087A (en) * 1996-03-08 2000-01-11 Lucent Techologies Inc. Variable contention transmission media access based on idle waiting time
US5818826A (en) * 1996-06-17 1998-10-06 International Business Machines Corporation Media access control protocols in a wireless communication network supporting multiple transmission rates
GB2315194B (en) * 1996-07-11 2000-11-15 Nokia Mobile Phones Ltd Method and apparatus for resynchronizing two system clocks
JP3302578B2 (en) 1996-10-21 2002-07-15 富士通株式会社 OAM processing equipment
US6002691A (en) 1996-10-22 1999-12-14 Zenith Electronics Corporation Dynamic search tree for resolution of contention between transmitting stations
GB9720152D0 (en) * 1996-12-18 1997-11-26 Mayup Limited Communications system and method
US5923650A (en) * 1997-04-08 1999-07-13 Qualcomm Incorporated Method and apparatus for reverse link rate scheduling
JP3774042B2 (en) 1997-09-11 2006-05-10 富士通株式会社 Short cell multiplexer
US7301944B1 (en) 1997-10-24 2007-11-27 Tranz-Send Broadcasting Network, Inc. Media file distribution with adaptive transmission protocols
FI980616A (en) * 1997-11-05 1999-05-06 Nokia Telecommunications Oy The method improves the quality of the radio connection in the cellular radio network
US6681315B1 (en) 1997-11-26 2004-01-20 International Business Machines Corporation Method and apparatus for bit vector array
US6188736B1 (en) 1997-12-23 2001-02-13 At&T Wireless Svcs. Inc. Near-optimal low-complexity decoding of space-time codes for fixed wireless applications
US6512773B1 (en) * 1997-12-30 2003-01-28 Paradyne Corporation System and method for transporting information over a communication channel
US6256317B1 (en) * 1998-02-19 2001-07-03 Broadcom Homenetworking, Inc. Packet-switched multiple-access network system with distributed fair priority queuing
KR100338662B1 (en) 1998-03-31 2002-07-18 윤종용 Apparatus and method for communication channel in a cdma communication system
CA2341250C (en) * 1998-07-21 2008-04-15 Tachyon, Inc. Method and apparatus for multiple access in a communication system
US6438104B1 (en) * 1998-08-07 2002-08-20 Telefonaktiebolaget L M Ericsson (Publ) Link-level flow control method for an ATM server
US6404751B1 (en) * 1998-09-15 2002-06-11 Crisco Technology, Inc. Common control channel dynamic frequency assignment method and protocol
JP3473434B2 (en) 1998-09-16 2003-12-02 三菱電機株式会社 Wireless communication system and wireless communication method
US6731627B1 (en) * 1998-11-17 2004-05-04 Cisco Technology, Inc. Virtual loop carrier system
US6587441B1 (en) * 1999-01-22 2003-07-01 Technology Alternatives, Inc. Method and apparatus for transportation of data over a managed wireless network using unique communication protocol
US6611529B1 (en) * 1999-03-03 2003-08-26 Lucent Technologies Inc. Priority access for real-time traffic in contention-based networks
JP3445520B2 (en) 1999-03-04 2003-09-08 沖電気工業株式会社 Monitoring device and method for managing cell assembly
US6452917B1 (en) 1999-04-08 2002-09-17 Qualcomm Incorporated Channel estimation in a CDMA wireless communication system
IT1308484B1 (en) 1999-05-13 2001-12-17 Cselt Centro Studi Lab Telecom EQUIPMENT FOR THE RE-MULTIPLATION OF AUDIO-VISUAL NUMBERED FLOWS
JP3733784B2 (en) * 1999-05-21 2006-01-11 株式会社日立製作所 Packet relay device
US6532225B1 (en) * 1999-07-27 2003-03-11 At&T Corp Medium access control layer for packetized wireless systems
US6580704B1 (en) * 1999-08-26 2003-06-17 Nokia Corporation Direct mode communication method between two mobile terminals in access point controlled wireless LAN systems
JP4374725B2 (en) 1999-09-22 2009-12-02 パナソニック株式会社 Communication method and communication station
US6633564B1 (en) 1999-09-22 2003-10-14 Nortel Networks Limited Method and apparatus for inserting packets into a data stream
US6885868B1 (en) 1999-09-30 2005-04-26 Nortel Networks Limited Fair packet scheduler and scheduling method for packet data radio
US6611525B1 (en) * 1999-10-07 2003-08-26 3Com Corporation Apparatus for and method of learning MAC addresses in a LAN emulation network
US6788702B1 (en) 1999-10-15 2004-09-07 Nokia Wireless Routers, Inc. Protocol for neighborhood-established transmission scheduling
US6621805B1 (en) 1999-10-25 2003-09-16 Hrl Laboratories, Llc Method and apparatus for multicasting real-time variable bit-rate traffic in wireless Ad-Hoc networks
US6907020B2 (en) * 2000-01-20 2005-06-14 Nortel Networks Limited Frame structures supporting voice or streaming communications with high speed data communications in wireless access networks
US6456599B1 (en) 2000-02-07 2002-09-24 Verizon Corporate Services Group Inc. Distribution of potential neighbor information through an ad hoc network
US6813260B1 (en) 2000-03-16 2004-11-02 Ericsson Inc. Systems and methods for prioritized access in a contention based network
US20020154705A1 (en) 2000-03-22 2002-10-24 Walton Jay R. High efficiency high performance communications system employing multi-carrier modulation
US6473467B1 (en) 2000-03-22 2002-10-29 Qualcomm Incorporated Method and apparatus for measuring reporting channel state information in a high efficiency, high performance communications system
US6795418B2 (en) * 2000-03-31 2004-09-21 Koninklijke Philips Electronics N.V. Wireless MAC protocol based on a hybrid combination of slot allocation, token passing, and polling for isochronous traffic
AU2001259767A1 (en) * 2000-05-15 2001-11-26 Virginia Tech Intellectual Properties, Inc. Method and system for overloaded array processing
US6504506B1 (en) * 2000-06-30 2003-01-07 Motorola, Inc. Method and device for fixed in time adaptive antenna combining weights
US7068633B1 (en) * 2000-07-14 2006-06-27 At&T Corp. Enhanced channel access mechanisms for QoS-driven wireless lans
US7031287B1 (en) 2000-07-14 2006-04-18 At&T Corp. Centralized contention and reservation request for QoS-driven wireless LANs
AUPQ915600A0 (en) * 2000-08-03 2000-08-24 Ltdnetwork Pty Ltd Online network and associated methods
US6721565B1 (en) 2000-08-07 2004-04-13 Lucent Technologies Inc. Handover of wireless calls between systems supporting circuit and packet call models
US6621827B1 (en) 2000-09-06 2003-09-16 Xanboo, Inc. Adaptive method for polling
US6898441B1 (en) * 2000-09-12 2005-05-24 Lucent Technologies Inc. Communication system having a flexible transmit configuration
US7330877B2 (en) * 2000-09-18 2008-02-12 Sharp Laboratories Of America Devices, softwares and methods for rescheduling multi-party sessions upon premature termination of session
WO2002028020A2 (en) * 2000-09-29 2002-04-04 The Regents Of The University Of California Ad hoc network accessing using distributed election of a shared transmission schedule
US6795409B1 (en) 2000-09-29 2004-09-21 Arraycomm, Inc. Cooperative polling in a wireless data communication system having smart antenna processing
DE10051144C2 (en) 2000-10-16 2002-11-14 Siemens Ag Method for improving channel estimation in a radio communication system
WO2002033582A2 (en) 2000-10-16 2002-04-25 Text Analysis International, Inc. Method for analyzing text and method for builing text analyzers
BR0114981A (en) * 2000-10-26 2005-10-25 Wave7 Optics Inc Method and system for processing downstream packets from an optical network
US7058074B2 (en) * 2000-11-01 2006-06-06 Texas Instruments Incorporated Unified channel access for supporting quality of service (QoS) in a local area network
US20020093929A1 (en) * 2001-01-18 2002-07-18 Koninklijke Philips Electronics N.V. System and method for sharing bandwidth between co-located 802.11a/e and HIPERLAN/2 systems
US7120134B2 (en) 2001-02-15 2006-10-10 Qualcomm, Incorporated Reverse link channel architecture for a wireless communication system
JP4724928B2 (en) * 2001-02-27 2011-07-13 ソニー株式会社 Wireless transmission apparatus and wireless transmission method
US7142527B2 (en) 2001-02-28 2006-11-28 Nokia Inc. System and method for transmission scheduling using network membership information and neighborhood information
US6771706B2 (en) * 2001-03-23 2004-08-03 Qualcomm Incorporated Method and apparatus for utilizing channel state information in a wireless communication system
DE10115409A1 (en) 2001-03-29 2002-10-10 Bosch Gmbh Robert Bus master for a bus for connecting sensors and / or ignition devices
CA2376962A1 (en) 2001-04-02 2002-10-02 Lucent Technologies Inc. Method and system for umts packet transmission scheduling on uplink channels
US20020172186A1 (en) 2001-04-09 2002-11-21 Peter Larsson Instantaneous joint transmit power control and link adaptation for RTS/CTS based channel access
WO2002093843A1 (en) 2001-05-14 2002-11-21 Opera Systems Limited Router
US6751187B2 (en) 2001-05-17 2004-06-15 Qualcomm Incorporated Method and apparatus for processing data for transmission in a multi-channel communication system using selective channel transmission
US6944688B1 (en) 2001-05-18 2005-09-13 Cisco Technology, Inc. Queuing system using dual receive FIFO
US7158504B2 (en) * 2001-05-21 2007-01-02 Lucent Technologies, Inc. Multiple mode data communication system and method and forward and/or reverse link control channel structure
EP1261183A1 (en) 2001-05-23 2002-11-27 Telefonaktiebolaget L M Ericsson (Publ) Method and system for processing a data unit
US6945486B2 (en) * 2001-07-11 2005-09-20 Teng Eric Y Rotary kitchen garlic tool
US7149254B2 (en) 2001-09-06 2006-12-12 Intel Corporation Transmit signal preprocessing based on transmit antennae correlations for multiple antennae systems
US7123627B2 (en) * 2001-09-11 2006-10-17 Sharp Laboratories Of America, Inc. Class of computationally parsimonious schedulers for enforcing quality of service over packet based AV-centric home networks
GB2379722B (en) * 2001-09-12 2003-07-30 Joker Ind Co Ltd Expansion bolt
US6768730B1 (en) * 2001-10-11 2004-07-27 Meshnetworks, Inc. System and method for efficiently performing two-way ranging to determine the location of a wireless node in a communications network
US7599334B2 (en) 2001-10-15 2009-10-06 Qualcomm Incorporated Method and apparatus for processing shared sub-packets in a communication system
US7116652B2 (en) * 2001-10-18 2006-10-03 Lucent Technologies Inc. Rate control technique for layered architectures with multiple transmit and receive antennas
WO2003039074A1 (en) 2001-10-29 2003-05-08 Sharp Kabushiki Kaisha Communication managing method, communication managing program, record medium with recorded communication managing program, communication apparatus, central manager, and network system
US20030125040A1 (en) * 2001-11-06 2003-07-03 Walton Jay R. Multiple-access multiple-input multiple-output (MIMO) communication system
ES2201024T3 (en) 2001-11-30 2004-03-16 Alcatel IP PLATFORM FOR ADVANCED MULTIPOINT ACCESS SYSTEMS.
US6760388B2 (en) * 2001-12-07 2004-07-06 Qualcomm Incorporated Time-domain transmit and receive processing with channel eigen-mode decomposition for MIMO systems
US7187691B2 (en) * 2001-12-18 2007-03-06 Sharp Laboratories Of America, Inc. Securing the channel for a QoS manager in a CSMA/CA ad hoc network
US7313104B1 (en) 2001-12-28 2007-12-25 Advanced Micro Devices, Inc. Wireless computer system with latency masking
US7471667B2 (en) * 2002-01-09 2008-12-30 Nxp B.V. Coexistence of modulation schemes in a WLAN
US6977944B2 (en) 2002-01-12 2005-12-20 Conexant, Inc. Transmission protection for communications networks having stations operating with different modulation formats
JP4112241B2 (en) 2002-02-22 2008-07-02 三菱電機株式会社 Communication system and communication method
US7274707B2 (en) 2002-03-07 2007-09-25 Koninklijke Philips Electronics N. V. Coexistence of stations capable of different modulation schemes in a wireless local area network
US6795419B2 (en) 2002-03-13 2004-09-21 Nokia Corporation Wireless telecommunications system using multislot channel allocation for multimedia broadcast/multicast service
US7130289B2 (en) 2002-03-14 2006-10-31 Airmagnet, Inc. Detecting a hidden node in a wireless local area network
JP2003289309A (en) 2002-03-28 2003-10-10 Matsushita Electric Ind Co Ltd Radio communication terminal
US7095732B1 (en) 2002-04-12 2006-08-22 Bbn Technologies Corp. Quality of service based media access control for mobile ad hoc networks
US7577227B2 (en) 2002-04-18 2009-08-18 Alcatel-Lucent Usa Inc. Link adaption in general packet radio service networks
US7149245B2 (en) 2002-04-29 2006-12-12 Lucent Technologies Inc. Link adaption in enhanced general packet radio service networks
US7236459B1 (en) * 2002-05-06 2007-06-26 Packeteer, Inc. Method and apparatus for controlling data transmission volume using explicit rate control and queuing without data rate supervision
JP3895228B2 (en) 2002-05-07 2007-03-22 松下電器産業株式会社 Wireless communication apparatus and direction of arrival estimation method
US7203192B2 (en) * 2002-06-04 2007-04-10 Fortinet, Inc. Network packet steering
US20030223365A1 (en) 2002-06-04 2003-12-04 Sharp Laboratories Of America, Inc. Class of dynamic programming schedulers
US6791962B2 (en) 2002-06-12 2004-09-14 Globespan Virata, Inc. Direct link protocol in wireless local area networks
KR20070055630A (en) 2002-06-17 2007-05-30 아이피알 라이센싱, 인코포레이티드 Antenna steering scheduler for mobile station in wireless local area network
US7301924B1 (en) 2002-07-15 2007-11-27 Cisco Technology, Inc. Media access control for MIMO wireless network
US7092737B2 (en) * 2002-07-31 2006-08-15 Mitsubishi Electric Research Laboratories, Inc. MIMO systems with rate feedback and space time transmit diversity
US7082117B2 (en) * 2002-08-12 2006-07-25 Harris Corporation Mobile ad-hoc network with intrusion detection features and related methods
US8194770B2 (en) * 2002-08-27 2012-06-05 Qualcomm Incorporated Coded MIMO systems with selective channel inversion applied per eigenmode
US7277419B2 (en) 2002-08-30 2007-10-02 Intel Corporation Supporting disparate packet based wireless communications
US20040047319A1 (en) * 2002-09-06 2004-03-11 Johannes Elg Contention-based medium access control for ad hoc wireless piconets
US20040062206A1 (en) 2002-09-30 2004-04-01 Soong Anthony C.K. System and method for fast reverse link scheduling in a wireless communication network
US7440573B2 (en) 2002-10-08 2008-10-21 Broadcom Corporation Enterprise wireless local area network switching system
EP1554844B1 (en) * 2002-10-17 2008-07-30 Koninklijke Philips Electronics N.V. A scheduler system and method thereof
US8320301B2 (en) * 2002-10-25 2012-11-27 Qualcomm Incorporated MIMO WLAN system
US7324429B2 (en) 2002-10-25 2008-01-29 Qualcomm, Incorporated Multi-mode terminal in a wireless MIMO system
DE10254384B4 (en) * 2002-11-17 2005-11-17 Siemens Ag Bidirectional signal processing method for a MIMO system with a rate-adaptive adaptation of the data transmission rate
US7260073B2 (en) * 2002-12-02 2007-08-21 Nokia Corporation Method for scheduling of plural packet data flows
US20040109433A1 (en) * 2002-12-06 2004-06-10 Khan Farooq Ullah Reverse link packet acknowledgement method
US6980542B2 (en) 2002-12-16 2005-12-27 Avaya Technology Corp. Poll scheduling for periodic uplink and downlink traffic
FR2849303B1 (en) * 2002-12-24 2005-03-11 Cit Alcatel METHOD FOR BROADCASTING INFORMATION TO TERMINALS IN A RADIO COMMUNICATION NETWORK, AND TERMINAL USING THE SAME
TW589841B (en) * 2002-12-26 2004-06-01 Newsoft Technology Corp Method and system for improving transmission efficiency of wireless local area network
US7372855B2 (en) * 2003-01-08 2008-05-13 Sharp Laboratories Of America, Inc. System and method for synchronizing an IEEE 802.11 power-save interval
WO2004064284A2 (en) * 2003-01-10 2004-07-29 Matsushita Electric Industrial Co., Ltd. Method for transmitting data stream via wireless medium and a wireless network
US7782898B2 (en) * 2003-02-04 2010-08-24 Cisco Technology, Inc. Wideband cable system
US8149707B2 (en) * 2003-02-12 2012-04-03 Rockstar Bidco, LP Minimization of radio resource usage in multi-hop networks with multiple routings
US20040156367A1 (en) * 2003-02-11 2004-08-12 Magis Networks, Inc. Hierarchically distributed scheduling apparatus and method
US7269152B2 (en) 2003-02-14 2007-09-11 Motorola, Inc. Method and apparatus for transmitting information within a communication system
US6927728B2 (en) 2003-03-13 2005-08-09 Motorola, Inc. Method and apparatus for multi-antenna transmission
US20040190485A1 (en) 2003-03-24 2004-09-30 Khan Farooq Ullah Method of scheduling grant transmission in a wireless communication system
US6961311B2 (en) 2003-05-13 2005-11-01 Motorola, Inc. Adaptive scheduling window management for a quality of service enabled local area network
US7280513B2 (en) 2003-06-10 2007-10-09 Lucent Technologies Inc. Method of transmission of a data frame from a first station to a second station, and a CDMA telecommunications network
US7512070B2 (en) * 2003-06-23 2009-03-31 Intel Corporation Adaptive use of a transmit opportunity
KR100586845B1 (en) 2003-06-24 2006-06-07 삼성전자주식회사 Method for enhancing transfer rate using DLP and multi-channel in DCF-based wireless LAN network, and wireless network system thereof
US20040266451A1 (en) 2003-06-30 2004-12-30 Aleksandr Stolyar Method and apparatus for improving scheduler performance in wireless packet data systems
JP3880554B2 (en) * 2003-07-18 2007-02-14 松下電器産業株式会社 Space division multiple access wireless medium access controller
US7336642B2 (en) * 2003-08-07 2008-02-26 Skypilot Networks, Inc. Communication protocol for a wireless mesh architecture
US7065144B2 (en) 2003-08-27 2006-06-20 Qualcomm Incorporated Frequency-independent spatial processing for wideband MISO and MIMO systems
KR100657093B1 (en) * 2003-08-29 2006-12-12 삼성전자주식회사 Apparatus and method for controlling operational states of medium access control layer in broadband wireless access communication system
US7079552B2 (en) * 2003-09-09 2006-07-18 Harris Corporation Mobile ad hoc network (MANET) with quality-of-service (QoS) protocol hierarchy and related methods
US8284752B2 (en) 2003-10-15 2012-10-09 Qualcomm Incorporated Method, apparatus, and system for medium access control
US8233462B2 (en) 2003-10-15 2012-07-31 Qualcomm Incorporated High speed media access control and direct link protocol
US8472473B2 (en) 2003-10-15 2013-06-25 Qualcomm Incorporated Wireless LAN protocol stack
US8462817B2 (en) 2003-10-15 2013-06-11 Qualcomm Incorporated Method, apparatus, and system for multiplexing protocol data units
US8483105B2 (en) 2003-10-15 2013-07-09 Qualcomm Incorporated High speed media access control
US8842657B2 (en) 2003-10-15 2014-09-23 Qualcomm Incorporated High speed media access control with legacy system interoperability
US8406235B2 (en) * 2003-11-26 2013-03-26 Qualcomm Incorporated Quality of service scheduler for a wireless network
US7706399B2 (en) * 2003-12-19 2010-04-27 Intel Corporation Polling in wireless networks
US7333556B2 (en) * 2004-01-12 2008-02-19 Intel Corporation System and method for selecting data rates to provide uniform bit loading of subcarriers of a multicarrier communication channel
US7417974B2 (en) 2004-04-14 2008-08-26 Broadcom Corporation Transmitting high rate data within a MIMO WLAN
JP4331088B2 (en) * 2004-11-01 2009-09-16 株式会社東芝 Communication apparatus and communication method
US7895254B2 (en) 2004-11-15 2011-02-22 Qualcomm Incorporated Eigenvalue decomposition and singular value decomposition of matrices using Jacobi rotation
US7599340B2 (en) * 2005-01-25 2009-10-06 Interdigital Technology Corporation Method and apparatus or eliminating interference caused by hidden nodes
US7733835B2 (en) * 2005-07-20 2010-06-08 Interdigital Technology Corporation Method and system for reducing power consumption of a wireless transmit/receive unit
US8600336B2 (en) 2005-09-12 2013-12-03 Qualcomm Incorporated Scheduling with reverse direction grant in wireless communication systems
PT3007508T (en) 2006-02-03 2017-11-14 Guangdong Oppo Mobile Telecommunications Corp Ltd Uplink resource allocation in a mobile communication system
EP3048849B1 (en) 2006-03-07 2017-06-21 Panasonic Corporation Overhead reduction of uplink control signaling in a mobile communication system
US20080130660A1 (en) 2006-10-19 2008-06-05 Jordi Ros-Giralt System and method of real-time control and scheduling for zero-queue distributed systems
US7978646B2 (en) * 2007-10-19 2011-07-12 Telefonaktiebolaget Lm Ericsson (Publ) Hybrid contention-based and schedule-based access to a communication link

Also Published As

Publication number Publication date
KR20090101978A (en) 2009-09-29
US7065144B2 (en) 2006-06-20
EP2299617B1 (en) 2014-10-15
KR20060121828A (en) 2006-11-29
TWI366995B (en) 2012-06-21
KR101129114B1 (en) 2012-03-23
CN1875562A (en) 2006-12-06
JP2007503767A (en) 2007-02-22
US20050047515A1 (en) 2005-03-03
JP5389978B2 (en) 2014-01-15
CN1875562B (en) 2010-09-01
EP2299617A3 (en) 2012-05-30
JP2012199933A (en) 2012-10-18
JP5027291B2 (en) 2012-09-19
ES2525141T3 (en) 2014-12-18
KR101092794B1 (en) 2011-12-12
KR20110122885A (en) 2011-11-11
TW200518506A (en) 2005-06-01
KR101236330B1 (en) 2013-02-22
EP1671443A1 (en) 2006-06-21
US20060274844A1 (en) 2006-12-07
US7894538B2 (en) 2011-02-22
EP1671443B1 (en) 2013-12-25
JP2011061807A (en) 2011-03-24
KR101137079B1 (en) 2012-04-20
CA2536425C (en) 2012-10-30
KR20110118846A (en) 2011-11-01
EP2299617A2 (en) 2011-03-23
JP5006039B2 (en) 2012-08-22
WO2005022817A1 (en) 2005-03-10

Similar Documents

Publication Publication Date Title
CA2536425A1 (en) Frequency-independent spatial processing for wideband miso and mimo systems
EP1786118B1 (en) Method and apparatus for utilizing channel state information in a wireless communication system
AU2002309674B8 (en) Method and apparatus for processing data in a multiple-input multiple-output (mimo) communication system utilizing channel state information
EP1790090B1 (en) Receiver structures for spatial spreading with space-time or space-frequency transmit diversity
KR100950245B1 (en) Method and apparatus for singular value decomposition of a channel matrix
CN1890909B (en) Receiver spatial processing for eigenmode transmission in a mimo system
EP1619809B1 (en) Feeding back antenna shuffling information in a multiple-input multiple-output system using a multiple space-time block coding technique and a method therefor
JP2004194262A (en) Signal transmission system, signal transmission method and transmitter
KR20100099800A (en) Apparatus and method for interference cancellation of multi user in multi-antenna system
WO2013034088A1 (en) Linear precoding method and device for multi-user multiple-input multiple-output systems
WO2010105400A1 (en) Method, communication system and related equipments for data transmission
EP1772975A2 (en) Method and apparatus for detecting signal in a mimo communication system
JP2009272942A (en) Receiver, radio communication system, quantization method of channel vector, and transmission method of multistream
CN107733514A (en) Combine input signal mimo wireless communication receiving terminal and its signal detecting method
KR101401592B1 (en) Apparatus and method for space multiplexing in multi input multi output system
WO2012035626A1 (en) Wireless communication method, wireless communication system, base station, and mobile station
JP2009171564A (en) Wireless receiver and wireless receiving method
KR101285848B1 (en) A device for mimo system based on codebook and precoding method
Sun et al. Performance evaluation of quantized feedback beamforming in IEEE 802.11 n wireless networks
Scholar Literature Survey for Minimum Euclidean Distance Based Precoder For MIMO Systems
GB2504945A (en) CQI feedback for a MIMO system

Legal Events

Date Code Title Description
EEER Examination request