CA2550311C - Device and methodology for improved mixing of liquids and solids - Google Patents

Device and methodology for improved mixing of liquids and solids Download PDF

Info

Publication number
CA2550311C
CA2550311C CA2550311A CA2550311A CA2550311C CA 2550311 C CA2550311 C CA 2550311C CA 2550311 A CA2550311 A CA 2550311A CA 2550311 A CA2550311 A CA 2550311A CA 2550311 C CA2550311 C CA 2550311C
Authority
CA
Canada
Prior art keywords
diffuser
nozzle
mixing
solids
outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA2550311A
Other languages
French (fr)
Other versions
CA2550311A1 (en
Inventor
Mukesh Kapila
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MI LLC
Original Assignee
MI LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MI LLC filed Critical MI LLC
Publication of CA2550311A1 publication Critical patent/CA2550311A1/en
Application granted granted Critical
Publication of CA2550311C publication Critical patent/CA2550311C/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/50Mixing liquids with solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/312Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof
    • B01F25/3121Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof with additional mixing means other than injector mixers, e.g. screens, baffles or rotating elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/312Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof
    • B01F25/3123Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof with two or more Venturi elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/312Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof
    • B01F25/3123Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof with two or more Venturi elements
    • B01F25/31233Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof with two or more Venturi elements used successively
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/312Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof
    • B01F25/3124Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof characterised by the place of introduction of the main flow
    • B01F25/31243Eductor or eductor-type venturi, i.e. the main flow being injected through the venturi with high speed in the form of a jet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/315Injector mixers in conduits or tubes through which the main component flows wherein a difference of pressure at different points of the conduit causes introduction of the additional component into the main component
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/316Injector mixers in conduits or tubes through which the main component flows with containers for additional components fixed to the conduit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/433Mixing tubes wherein the shape of the tube influences the mixing, e.g. mixing tubes with varying cross-section or provided with inwardly extending profiles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/433Mixing tubes wherein the shape of the tube influences the mixing, e.g. mixing tubes with varying cross-section or provided with inwardly extending profiles
    • B01F25/4338Mixers with a succession of converging-diverging cross-sections, i.e. undulating cross-section
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/71Feed mechanisms
    • B01F35/717Feed mechanisms characterised by the means for feeding the components to the mixer
    • B01F35/7173Feed mechanisms characterised by the means for feeding the components to the mixer using gravity, e.g. from a hopper
    • B01F35/71731Feed mechanisms characterised by the means for feeding the components to the mixer using gravity, e.g. from a hopper using a hopper
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C5/00Making of fire-extinguishing materials immediately before use
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F2215/00Auxiliary or complementary information in relation with mixing
    • B01F2215/04Technical information in relation with mixing
    • B01F2215/0413Numerical information
    • B01F2215/0436Operational information
    • B01F2215/044Numerical composition values of components or mixtures, e.g. percentage of components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F2215/00Auxiliary or complementary information in relation with mixing
    • B01F2215/04Technical information in relation with mixing
    • B01F2215/0413Numerical information
    • B01F2215/0436Operational information
    • B01F2215/045Numerical flow-rate values
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/50Mixing liquids with solids
    • B01F23/56Mixing liquids with solids by introducing solids in liquids, e.g. dispersing or dissolving

Abstract

An eductor for mixing liquids and solid particles includes a nozzle, an initial mixing chamber, a first diffuser, an intermediate mixing chamber and a second diffuser. The nozzle includes a semicircular nozzle outlet that is offset from a centrally-located frst axis. Motive flow is accelerated through the nozzle through a first and second acceleration segment. Solid particles are added to the motive flow in the initial mixing chamber and directed to the first diffuser. Each diffuser includes an acceleration and a deceleration segment separated by an elliptically-shaped throat. The intermediate mixing chamber is located between the first and second diffusers. A method for mixing liquids and solids includes introducing a motive flow finto an initial mixing chamber, creating a vacuum in the initial mixing chamber to induce solids irto the motive fluid, providing a region of turbulence to enhance mixing of the motive flow and solid particles, and diffusing the motive flow to further increase boundary flow separation conducive to mixing.

Description

DEVICE AND METHODOLOGY FOR IMPROVED MIXING OF LIQUIDS AND SOLIDS
BACKGROUND OF ]INVENTION
Efficient mixing of fluids and solids is essential for many industry sectors.
The means by which this mixing is undertaken are many, the choice of which is dependent upon the nature of the materials being mixed and the degree and rate of mixing required.
Numerous concepts and frequent efforts have been made to improve the efficiency and effectiveness of liquid and solid mixing systems. Several notable methods that have met with relative success, depending upon the nature of the materials being mixed, have included: nozzle geometry distortion, motive flow pulsation, and the introduction of a diffuser as part of the system.
Nozzle distortion attempts to create turbulent flow by altering the geometry of the interaction of the motive flow with the nozzle surface, as shown in FIGS. la and 1b. The result of such an alteration is to change the velocity of the motive fluid as it exits the outlet of the nozzle creating vortices in which liquid-liquid or liquid-solid mixing can occur. Referring to FIG. 2a, typical geometries generate a narrow circular or near circular jet 300 that minimizes solids entrainment, hence minimizing the mixing effectiveness of liquid-liquid or liquid-solid vortices. As shown in FIGS. 2a - d, nozzle distortions 300 will quickly decay and eventually return to a circular or near circular shape. In addition, when solids 310 are introduced from the top by gravity into a larger cavity containing the liquid jet stream 300, only a small portion of the solids make contact with the liquid.
Referring to FIG. 3, a fluid velocity profile is shown for a prior art nozzle.
The liquid jet stream 300 emanating from the initial mixing chamber reaches an upper range of 53.6 to 67.0 ft/sec, depicted as reference 320. As can be seen, this high velocity pierces through the solids that are introduced from above. Slower fluid velocities in the range of 40.2 to 53.6 ft/sec are depicted as reference 322 and are present ahead of the higher velocity stream 320 and in a boundary layer around stream 320. The fluid velocity slows even more downstream to a range of 26.8 to 40.2 ft/sec as depicted by reference 324.
Upon entrance to the constricted area 312, and the diverging area 314, the velocity is slower, in the range of 13.4 to 26.8 ft/sec, shown by reference 326. It is in this entrance to the constricted area 312 that the velocity profile shows a single mixing zone 330.
The slowest velocity, 0.00 to 13.4 ft/see, shown by reference 328, is present along the edges of diverging area 314 as well as in initial mixing chamber where solids 310 are added at an angle normal to, or nearly normal to, the direction of fluid through the nozzle.
In motive flow pulsation, pulsating the velocity of the motive flow, either with or without a nozzle, does change the velocity that creates turbulent flow, but will not permit the maintenance of a vacuum conducive to consistent and rapid induction of the secondary solid. Furthermore, such efforts require additional control systems and external energy reducing the efficiency of the process.
A third methodology which has seen more positive results is that of the motive flow utilizing the combination of nozzle and diffuser. This combination is referred to as an eductor. The relative velocity of the motive flow passing through the void on the outlet of the nozzle effectively maintains the vacuum required to permit induction of the secondary solids, but does not create recirculation zones sufficient in size and intensity to permit optimal mixing.
The action of the motive flow through the nozzle into the void space at the outlet of the nozzle carries the secondary solid into the eductor but does not succeed in mixing the two to any great extent. All nozzle geometries create vortices at the micro level downstream of the nozzle. It has been suggested that some nozzle geometries, such as lobed nozzles, can create these vortices faster (i.e. at a lower pipe diameter lengths) for liquid in liquid applications. However, the intensity of the vortices does not change and applications to induced solids in liquid are unknown.- Furthermore the speed at which the micro vortices are created in eductor based liquid-solid mixing applications is not critical as several pipe diameters are available prior to discharge.
The creation of a vacuum to induce solids into the motive fluid and large eddy current vortices is necessary to entrain and mix the solids with the motive fluid. Therefore, without the addition of a downstream diffuser which is used to create vacuum and create short and intense large eddies, mixing is limited and solids are simply carried along the plane of the motive flow only to be inefficiently mixed several pipe diameters downstream at a very slow rate.
One effective method of controlling the location of large eddies and recirculation mixing zones created between the nozzle outlet and the diffuser inlet is through nozzle and diffuser geometry and position. Through the combination of these geometries and positions, several large eddies are generated that maximize solids induction and solid-liquid interface while limiting pressure drop. Typically, nozzles with or without distorted geometries are placed in the center of the motive flow and produce only limited contact with the solids and motive fluid. Therefore the turbulence and consequent mixing along the linear axis of the motive flow are limited. Further, protruding nozzles can be an impediment to the induction of the solids. Such an impediment will reduce the induction rate and negatively impact mixing performance.
This problem has been addressed with the introduction of a multi-lobed circular nozzle in conjunction with a lightly tapered single throat diffuser. While effective, this concept can be improved upon in such a manner so as to increase the rate at which secondary solids can be induced into the motive flow, improving the solids-liquid surface contact through a flat profile jet stream, improve the generation of three large eddy currents through the use of diffuser geometry, maintain turbulent flow throughout the mixing body through nozzle and diffuser geometry, increase and maintain the vacuum which~facilitates the rapid induction of solids, reduce the pressure loss through the eductor system through nozzle geometry and improve overall mixing performance as measured by rate of hydration of secondary solids.
SUMMARY
In one aspect, the claimed subject matter is generally directed to an improved in-line liquid/solid nozzle. The present invention provides an improved fluid mixing nozzle that achieves one or more of the following: accelerates the motive fluid; provides improved mixing of fluids and secondary solids; utilizes a unique semicircular nozzle geometry; improves the vacuum in the void between the nozzle outlet and diffuser inlet; improves the rate of induction of secondary solid; allows the use of a shorter diffuser section ; utilizes a diffuser section with non-uniform diffuser inlet angles; utilizes a diffuser with a primary mixing zone plus two additional mixing zones in the diffuser; improves pre-wetting of solids in the primary mixing zone; creates a turbulent flow zone; induces macro and micro vortices in the motive flow;
improves rate of hydration of solids;
increases motive flow rates through the nozzle; permits consistent performance with low or inconsistent line pressure; reduces pressure drop through the eductor, in addition to other benefits that one of skill in the art should appreciate. The eductor includes a nozzle, an initial mixing area, and a segmented diffuser. The nozzle is a semi-circular orifice that is off-center from a central axis. The nozzle outlet feeds motive flow into the initial mixing area. The solid material is also directed into the initial mixing area. The initial mixing area is of a size sufficient to create a temporary vacuum within the area, enhancing mixing in this first mixing zone. From the initial mixing area, the combined motive flow and entrained solid are fed into the segmented diffuser. The diffuser has two segments, the first of which contains a sloped inlet converging to a throat and a sloped outlet diverging to an intermediate cavity. The diffuser throat is elliptical, consistent with the shape of the jet stream.
The second segment inlet is also sloped, converging to a throat while the outlet is sloped, diverging to the eductor outlet. The intermediate cavity serves as a second mixing zone, while the exit of the second diffuser serves as a third mixing area.
Another illustrated aspect of the claimed subject matter is a method for liquid/solid mixing. A liquid fluid acting as a motive flow passes through a nozzle into a void. The motive flow through the nozzle into the void creates a temporary vacuum, which permits the enhanced induction of a separate solid entrained into the motive flow external to the nozzle. The flat profile of the jet stream allows for improved entrainment of solids.
A large turbulent region having turbulent intensity at minimal pressure loss is produced by the nozzle. This region of turbulence is conducive to mixing the motive flow and the induced solid. The motive flow carries the induced solid into the diffuser section. In each of the diffuser cavities, large eddy currents and recirculation mixing zones are created as velocity increases and boundary flow separation occurs. In these recirculation mixing zones and diffuser convergent sections, there exists areas of turbulent flow conducive to mixing. The mixed fluid is discharged from the diffuser unit.
Other aspects and advantages of the claimed subject matter will be apparent from the following description and the appended claims.
BRIEF DESCRIPTION OF THE DRAWINGS
FIGS. la and lb are views of a prior art nozzle.
FIGS. 2a through 2d are contours of volume fractions of solids through a prior art nozzle.
FIG. 3 is a computer-generated velocity profile of fluid through a prior art nozzle and downstream addition of a solid.
FIG. 4 is a back view of the inventive nozzle.
FIG. 5 is a cutaway side view of the inventive nozzle.
FIG. 6 is a front view of the inventive nozzle.
FIG. 7 is a cutaway side view of a mixing apparatus including the nozzle.
FIGS. 8a through 8d are contours of volume fractions of solid particles through the eductor.
FIG. 9 is a side view of the contour of volume fraction of solid particles through the eductor.
FIG. 10 is a computer-generated velocity profile of fluid through the inventive eductor with solid particles added downstream from the nozzle.
FIG. 11 is a side view of a prior art nozzle.
FIG. 12 is a front view of a prior art nozzle.
DETAILED DESCRIPTION
The claimed subject matter relates to a eductor 100 and a method for mixing liquids with solids.
Referring to FIG. 7, the eductor 100 includes a nozzle 110, an initial mixing chamber 150, a hopper 154, a first diffuser 160, an intermediate mixing chamber 168, and a second diffuser 170.
Turning to FIGS. 4 - 6, three views of an embodiment of nozzle 110 are depicted. A motive flow is introduced into initial mixing chamber 150 through nozzle 110. A nozzle inlet 112 is circular about a first axis 102 and has a nozzle inlet diameter 114. In an entrance segment 116 of nozzle 110, the inner surface 118 has an inner diameter 120, which is equal to nozzle inlet diameter 114. Nozzle 110 has a nozzle outlet 134, wherein an upper outlet edge 136 is flat and a lower outlet edge 138 is semicircular. The upper and lower outlet edges 136 and 138 share common side points 142 and 144 and lower outlet edge 138 extends nozzle outlet height 146 from upper outlet edge 136 at the lowest point. The upper outlet edge 136 is offset from first axis 102 by an offset distance 140. Between nozzle inlet 112 and nozzle outlet 134, a first acceleration segment 122 is defined by a gradually reducing cross sectional area, wherein an upper portion 124 of inner surface 118 gradually flattens and slopes toward a plane that is offset distance 140 below first axis 102, aligned with upper outlet edge 136. In a second acceleration segment 128 of nozzle 110, the radial length 130 between a lower portion 132 of the inner surface 118 and the first axis 102 also decreases to match the shape of the lower outlet edge 138.
A standard round nozzle 200 may be incorporated into eductor 100 instead of nozzle 134. As shown in FIGS. 11 and 12, round nozzle 200 has an outlet 210 that is circular about a nozzle axis 212. When inert solids, such as bentonite, are mixed with a fluid, the semicircular nozzle 134 may be used. As will be discussed, when more active and partially hydrophilic solids, such as polymers, are added to a fluid, round nozzle 200 is preferred.
Returning to FIG. 7, initial mixing chamber 150 receives both motive flow and solid particles. The motive flow is received from nozzle outlet 134 or 210 through a chamber first inlet 152 while the solid particles are received from hopper 154 through a chamber second inlet 156. A first mixing zone 220, shown in FIGS. 9 and 10, is created within initial mixing chamber 150. When semicircular nozzle 134 is used to direct fluid into initial mixing chamber 150, first mixing zone 220 is more turbulent than when round nozzle 210 is used to direct fluid into the initial mixing chamber 150. First mixing zone 220 often extends into chamber second inlet 156 when semicircular nozzle 134 is used, due to the fluid velocity created by nozzle 134. For this reason, when active and partially hydrophilic solids are added to the motive flow, the round nozzle 210 is preferred to minimize the fluid entry to and the build up of solid particles within chamber second inlet 156. When more inert solid particles are added to the motive flow, semicircular nozzle 134 may be used.
A chamber outlet 158 directs the initial mixture of motive flow and solid particles into the diffuser segments of the eductor 100. Chamber outlet 158 is aligned with nozzle outlet 134, thereby minimizing energy lost by the motive flow as the solid particles are received into initial mixing chamber 150 at an angle substantially normal to stream of the motive flow.
Chamber outlet 158 feeds the initial mixture into a first diffuser 160. First diffuser 160 includes a first converging section 162 and a first diverging section 166, between which is a first throat 164. First throat 164 has an elliptical cross-sectional shape (not shown), consistent with the shape of the jet stream. The converging and diverging sections 162, 166 of first diffuser 160 serve to induce turbulence into the flow, enhancing the mixing of the motive flow and solid particles.
The first diverging section 166 feeds the initial mixture into intermediate mixing chamber 168, which is in alignment with the first diffuser 160. Within intermediate mixing chamber 168, a second mixing zone 222, shown in FIGS. 9 and 10, is created by eddies forming therein prior to the motive fluid and solid particles being directed further downstream.
From the intermediate mixing chamber 168, the intermediate mixture is fed into a second diffuser 170.
The second diffuser 170 is similar to the first diffuser 160, having a second converging section 172, a second throat 174, and a second diverging section 176. Additional mixing is enhanced by the turbulence created by the second diffuser 170. Downstream from second diffuser 170, a third mixing zone 224 forms, as shown in FIGS.
9 and 10, causing additional mixing of the fluid and the solids.
Referring to the cross-sectional views of the flow through the eductor 100 shown in FIGS. 8a - 8d, the extent of mixing at points throughout the eductor 100 may be seen. FIG. 8a shows the contour of motive flow fluid 180 coming through the nozzle outlet 134 (shown in FIG. 5). Such fluid is virtually solids-free and is denoted as reference 180 throughout this description. The addition of solids from hopper 154 to the motive flow is shown in FIG. 8b, with reference number 188 denoting a cross-sectional area that is primarily solids. It is understood by one skilled in the art that there may be a traces of solids in the fluid 180 throughout the eductor 100 while there may be traces of fluids in the areas that are primarily solids 188.
For this description, additional increments of the mixture between the solids-free fluid 180 and the solids 188 are included. Reference 184 refers to a mixture, wherein the solids are effectively entrained in the fluid. Boundary layers of ineffectively mixed fluid 182 and ineffectively mixed solids 186 are also depicted.
In FIG. 8b, it can be seen that an area of effective mixing 184 has begun to form centrally between the solids-free fluid 180 and the solid particles 188. A boundary layer of ineffectively mixed solids 186 is located around the area of effective mixing 184 while a boundary layer of ineffectively mixed fluid is located below the solids-free fluid 180.
Referring to FIG. 8c, the areas of effective mixing 184 include the area toward the center of the cross sectional area and above the fluid stream 180 emanating from the nozzle 110.
Primarily solid particle streams 188 are present along the sides of the cross sectional area. Other boundary layers of effectively mixed fluid 184 are present at the top and bottom of the cross sectional area and around the solids-free fluid stream 180.
Boundary layers of ineffectively mixed solids 186 are present around the solid particle streams 188.
Referring to FIG. 8d, the solids free fluid stream 180 has been elongated around much of the cross-sectional area. The solid particle stream 188 has merged into a single stream that is slightly off-center. A
boundary layer of ineffectively mixed solids 186 surround the solid particle stream 188. A ring of effectively mixed fluid 184 surrounds the ineffectively mixed solids 186. A boundary layer of ineffectively mixed fluid 182 is between the boundary layer of effectively mixed fluid 184 and the solids-free fluid 180.
Referring to FIG. 9, it can be seen more clearly that the solid particle stream 188 and the solids-free fluid stream 180 are mixed in the initial mixing chamber 150. Downstream, the solids-free layer 180 gradually decreases in height and flows near the bottom of the eductor 100. Further mixing eddies can be seen in intermediate mixing chamber 168.
The computer-generated water velocity profile, shown in FIG. 10, has several ranges of fluid velocity depicted. Reference 190 depicts fluid velocity in the range of about 33.1 to 41.4 ft/sec. The range depicted by 190 includes the fluid flow out of nozzle 110 and through initial mixing chamber 150. From the profile, it appears that the fluid velocity remains in this higher range until into first throat 164. The velocity range depicted by reference 192 is about 24.9 to 33.1 ft/sec. The range shown by reference 192 is in a boundary layer around range 190 as well as in second throat 174. Reference 194 shows fluid velocity in the range of 16.6 to 24.9 ft/sec. Range 194 is present in a boundary layer around range 192 and through first diffuser 160, intermediate mixing chamber 168 and second diffuser 170. The fluid velocity range depicted by 196 is in the range of 8.29 to 16.6 ft/sec, which is primarily in mixing eddies of the initial mixing chamber 150 and the intermediate mixing chamber 168, as well as downstream of second diffuser 170.
Fluid velocity in the range of 0.0164 to 8.29 ft/sec. is shown as reference 198 and is in the area where solid particles are added at an angle at or nearly normal to direction of fluid flow from nozzle 110. The slower fluid velocities 194, 196, 198 through first diffuser 160, intermediate mixing chamber 168 and second diffuser 170 help enhance mixing of the liquid and solids by creating turbulence.
Test A test was conducted using a variety of powdered materials representative of solids that would be mixed with base liquid to form a drilling mud. The same hopper was utilized with the exception that the mixing nozzles indicated were used. Bentonite, polyanionic cellulose, and XC polymer were each introduced to the base liquid through the various nozzles. Such particles are representative of other particles having the same or similar densities.
Rheological properties of the resulting drilling muds were measured and recorded. Such properties included fisheyes, yield point, and funnel viscosity. Fisheyes are known by those of skill in the art to be a globule of partly hydrated polymer caused by poor dispersion during the mixing process. The yield point is the yield stress extrapolated to a shear rate of zero. The yield point is used to evaluate the ability of a mud to lift cuttings out of the annulus of the well hole. A high yield point implies a non-Newtonian fluid, one that carries cuttings better than a fluid of similar density but lower yield point. The funnel viscosity is the time, in seconds for one quart of mud to flow through a Marsh funnel. This is not a true viscosity, but serves as a qualitative measure of how thick the mud sample is. The funnel viscosity is useful only for relative comparisons. The comparison of each of these rheological properties may be seen in Table 1 below:

Rheological Properties Fisheyes Yield Point SRV Funnel Viscosity 3entonite PAC XCD 3entonite PAC XCD XCD entonite PAC XCD
lb/100 lb/100 lb/100 Nozzle bbl bbl bbl YP YP YP cp sec sec sec Invention 14 66 1.9 6 28 11 6,599 31 112 35 Prior Art 22 56 0.1 4 26 13 3,399 34 86 35 #1 Prior Art #2 109 2 0.6 4 45 7 1,700 18 N/A 33 Lab 6 57 67 As can be seen, the fisheyes in the mud made from bentonite mixed with the inventive nozzle weighed less per volume than that mixed with the prior art nozzles. Further, the mud yield point was higher than the mud mixed with the prior art nozzles.
Mechanical properties of the resulting drilling muds were also measured and recorded. These properties included mixing energy, pressure drop, motive flow, vacuum, and solids induction.

Mechanical Fluid Properties Pressure Motive Solids Mixing Energy Drop Flow Vacuum Induction Nozzle kW/m3/hr psi gpm in of Hg lb/hr Invention 95 49.2 578 26.6 25,992 Prior Art #1 106 55.7 515 21.5 26,173 Prior Art #2 110 57.3 488 16.5 13,846 From the table, it is seen that the eductor 100 can entrain nearly the same volume of solids per hour into the motive stream at a lower mixing energy than the prior art mixer.
A method of mixing solid particles with a motive flow includes introducing a motive fluid to an initial mixing chamber 150. This may be done through the nozzle 110, previously described. Inside initial mixing chamber 150, a vacuum is created by the motive flow. Solids are introduced into initial mixing chamber 150 and are induced into the motive fluid by the vacuum that has been created. A
region of turbulence is provided to initially mix the motive flow and the induced solids. The motive flow, now carrying the induced solids is diffused to further entrain the solid particles. The initial mixture is further mixed in an intermediate mixing chamber. The intermediate mixture is then diffused again to provide additional turbulence to enhance mixing.
Prior to each diffusion, the mixture may be subjected to an increased flow rate by reducing the cross sectional area through which the mixture flows.
While the claimed subject matter has been described with respect to a limited number of embodiments, those skilled in the art, having benefit of this disclosure, will appreciate that other embodiments can be devised which do not depart from the scope of the claimed subject matter as disclosed herein. Accordingly, the scope of the claimed subject matter should be limited only by the attached claims.

Claims (12)

WHAT IS CLAIMED IS:
1. An apparatus for mixing solids and liquids comprising:
a nozzle having a nozzle inlet and a nozzle outlet;
wherein the nozzle outlet is semicircular, the round inlet is centered about a first axis and the nozzle outlet is offset from the first axis;
wherein the nozzle outlet further comprises: a flat upper outlet edge located an offset distance below the first axis; and a semicircular lower edge sharing common side points with the upper outlet edge and defining an opening therebetween having a nozzle outlet height;
an initial mixing chamber having a chamber first inlet, a chamber second inlet, and a chamber outlet, wherein the chamber first inlet is in fluid communication with the nozzle outlet;
a hopper operable to provide solid particles to the initial mixing chamber through the chamber second inlet;
a first diffuser having a first diffuser inlet in fluid communication with the chamber outlet, a first diffuser throat, and a first diffuser outlet;
a second diffuser having a second diffuser inlet, a second diffuser throat and a second diffuser outlet;
an intermediate mixing chamber providing fluid communication between the first and second diffusers.
2. The apparatus as in claim 1, wherein the nozzle further comprises:
an inner surface extending from the nozzle inlet to the nozzle outlet;
a first acceleration segment, wherein an upper portion of the inner surface slopes downward and flattens toward a plane coextensive with the upper outlet edge; and a second acceleration segment, wherein a lower portion of the inner surface slopes upward and inward to match the lower edge of nozzle outlet.
3. The apparatus of claim 1, wherein the first diffuser throat and the second diffuser throat have an elliptical cross sectional shape.
4. The apparatus of claim 1, wherein the first diffuser further comprises:
a first converging section between the first diffuser inlet and the first diffuser throat; and a first diverging section between the first diffuser throat and the first diffuser outlet.
5. The apparatus of claim 4, wherein the second diffuser further comprises:
a second converging section between the second diffuser inlet and the second diffuser throat;
and a second diffusing section between the second diffuser throat and the second diffuser outlet.
6. An eductor for mixing solid particles into a motive fluid comprising:
a nozzle having a nozzle inlet and a nozzle outlet;
an initial mixing chamber, receiving motive flow from the nozzle and receiving solid particles, wherein a first mixing zone is formed within the initial mixing chamber to combine the motive fluid and the solid particles into an initial mixture;
a first diffuser including a first converging segment, a first throat, and a first diverging segment serially aligned;
a second diffuser segment including a second converging segment, a second diverging segment, and a second throat serially aligned;
an intermediate mixing chamber receiving the initial mixture from the first diffuser, wherein a second mixing zone is formed within the intermediate mixing chamber to further mix the initial mixture to provide an intermediate mixture of the motive fluid and the solid particles.
7. The eductor of claim 6, wherein the nozzle inlet is circumferential about a first axis and the nozzle outlet is semicircular, defined by a flat portion an offset distance from the first axis and a round portion distal the first axis.
8. The eductor of claim 6, wherein the nozzle further comprises:
an upper outlet edge located an offset distance below the first axis and extending in a straight line between opposing side points;
a lower outlet edge curving between the opposing side points of the upper outlet edge to define an opening having a nozzle outlet height.
9. An eductor as in claim 8, wherein the nozzle further comprises:
an entrance segment having an inner surface with an inner diameter;
a first acceleration segment in fluid communication with the entrance segment and having a top portion of the inner surface slope downward and flatten and a lower portion of the inner surface remain a constant radial distance from the first axis;
a second acceleration segment in fluid communication with the first acceleration segment and the nozzle outlet, wherein the top portion of the inner surface continues to slope downward and flatten to match the upper outlet edge below the first axis and the lower portion of the inner surface slopes upward to match the curve of the lower outlet edge.
10. The eductor of claim 6, wherein the first throat and the second throat each have an elliptically shaped cross section.
11. A method of mixing a solid and a liquid comprising:
introducing a motive fluid to an initial mixing chamber;
creating a vacuum to induce solids into the motive fluid;
providing a first mixing zone for mixing the motive fluid and the induced solids;
diffusing the motive fluid carrying the induced solids to increase boundary flow separation;
creating a second mixing zone to further mix the motive fluid with the solids;
diffusing the motive fluid a second time; and creating a third mixing zone to further mix the motive fluid with the solids.
12. A method of mixing a solid and a liquid comprising:
introducing a motive fluid to an initial mixing chamber;
creating a vacuum to induce solids into the motive fluid;
providing a first mixing zone for mixing the motive fluid and the induced solids;
diffusing the motive fluid carrying the induced solids to increase boundary flow separation;
creating a second mixing zone to further mix the motive fluid with the solids;
and repeatedly diffusing the motive flow to create a plurality of mixing zones to further mix the motive fluid with the solids.
CA2550311A 2003-12-23 2004-12-23 Device and methodology for improved mixing of liquids and solids Expired - Fee Related CA2550311C (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US53215903P 2003-12-23 2003-12-23
US60/532,159 2003-12-23
US11/020,891 US7311270B2 (en) 2003-12-23 2004-12-22 Device and methodology for improved mixing of liquids and solids
US11/020,891 2004-12-22
PCT/US2004/043141 WO2005062892A2 (en) 2003-12-23 2004-12-23 Device and methodology for improved mixing of liquids and solids

Publications (2)

Publication Number Publication Date
CA2550311A1 CA2550311A1 (en) 2005-07-14
CA2550311C true CA2550311C (en) 2012-08-14

Family

ID=34889636

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2550311A Expired - Fee Related CA2550311C (en) 2003-12-23 2004-12-23 Device and methodology for improved mixing of liquids and solids

Country Status (9)

Country Link
US (2) US7311270B2 (en)
EP (2) EP2674212B1 (en)
AU (1) AU2004308411B8 (en)
BR (1) BRPI0418118B1 (en)
CA (1) CA2550311C (en)
EA (1) EA009426B1 (en)
NO (1) NO20063005L (en)
NZ (1) NZ548072A (en)
WO (1) WO2005062892A2 (en)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060275554A1 (en) * 2004-08-23 2006-12-07 Zhibo Zhao High performance kinetic spray nozzle
US20100006032A1 (en) * 2008-07-11 2010-01-14 Applied Materials, Inc. Chamber components for cvd applications
US9242260B2 (en) 2010-04-01 2016-01-26 Proven Technologies, Llc Directed multiport eductor and method of use
US8834074B2 (en) * 2010-10-29 2014-09-16 General Electric Company Back mixing device for pneumatic conveying systems
DE102011082862A1 (en) * 2011-09-16 2013-03-21 Siemens Aktiengesellschaft Mixing device for mixing agglomerating powder in a suspension
US20130256425A1 (en) * 2012-03-27 2013-10-03 Alfonso M. Misuraca, SR. Self cleaning eductor
CN105498648B (en) * 2014-09-24 2017-11-28 中国石油大学(北京) A kind of hydration reactor and the method for mixing methane in empty coal bed gas using reactor separation
FR3031099B1 (en) * 2014-12-24 2019-08-30 Veolia Water Solutions & Technologies Support OPTIMIZED NOZZLE FOR INJECTING PRESSURIZED WATER CONTAINING DISSOLVED GAS.
KR101693236B1 (en) * 2015-06-19 2017-01-05 삼성중공업 주식회사 Mud mixing nozzle
WO2017050639A1 (en) * 2015-09-24 2017-03-30 Tetra Laval Holdings & Finance S.A. Baffle pipe segment, injector device and dissolving installation
US10441761B2 (en) 2016-07-01 2019-10-15 Boston Scientific Scimed, Inc. Delivery devices and methods
RU2625980C1 (en) * 2016-09-19 2017-07-20 Федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский государственный технологический институт (технический университет)" Method of producing suspension of high-dispersed particles of inorganic and organic materials and apparatus for its implementation
JP6657239B2 (en) * 2016-09-22 2020-03-04 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Nozzle for dispensing assembly of material deposition source configuration, material deposition source configuration, vacuum deposition system, and method for depositing material
CN110382027B (en) 2017-01-10 2022-10-14 波士顿科学国际有限公司 Device and method for delivering a powdered medicament
CN110785222B (en) 2017-06-29 2022-08-02 利乐拉瓦尔集团及财务有限公司 Venturi mixer with adjustable flow restrictor and method of operating the same
US10786596B2 (en) 2018-01-12 2020-09-29 Boston Scientific Scimed, Inc. Powder for achieving hemostasis
US11766546B2 (en) 2018-01-31 2023-09-26 Boston Scientific Scimed, Inc. Apparatuses and methods for delivering powdered agents
CN108993185B (en) * 2018-09-20 2023-12-15 江苏新宏大集团有限公司 Feed nozzle mixing tube
JP7442512B2 (en) 2018-10-02 2024-03-04 ボストン サイエンティフィック サイムド,インコーポレイテッド Equipment for fluidization and delivery of powders
AU2019352968A1 (en) 2018-10-02 2021-04-01 Boston Scientific Scimed, Inc. Devices for fluidization and delivering a powdered agent
US20220193623A1 (en) * 2018-12-06 2022-06-23 Tosslec Co., Ltd. Bubble generation nozzle
WO2020256737A1 (en) 2019-06-21 2020-12-24 Halliburton Energy Services, Inc. Continuous solids discharge
WO2021113234A1 (en) 2019-12-03 2021-06-10 Boston Scientific Scimed, Inc. Agent administering medical device
CA3159960A1 (en) 2019-12-03 2021-06-10 Boston Scientific Scimed, Inc. Medical devices for agent delivery and related methods of use
CN112563539B (en) * 2021-02-26 2021-05-14 北京亿华通科技股份有限公司 Fuel cell ejector integrating flow measurement function and flow measurement method
NL2027917B1 (en) * 2021-04-06 2022-10-19 Magnets For Emulsions N V A mixing device and a method for mixing a first substance and a second substance to form a mixed substance

Family Cites Families (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR956846A (en) * 1950-02-08
US2017867A (en) * 1930-02-05 1935-10-22 Merle E Nantz Mixing device
US1972955A (en) * 1932-05-24 1934-09-11 Hartvig P Saugman Ejector
US2543294A (en) * 1948-06-23 1951-02-27 James E Murley Nozzle for mixing liquids
US2630183A (en) * 1950-01-26 1953-03-03 Foutz Clinton Root Apparatus for forming and projecting a foam mixture
GB802711A (en) * 1955-08-25 1958-10-08 Paul Menzen Improved device for introducing finely divided solids into liquid metal
US3191869A (en) * 1961-11-07 1965-06-29 Gilmour Mfg Co Spraying device having restricted orifice and expansion chamber construction
US3231200A (en) * 1963-08-05 1966-01-25 Sam Heald Co Shower head and liquid soap dispensing and metering means
US3892359A (en) * 1973-10-24 1975-07-01 Black & Decker Mfg Co Spray apparatus operable by pressurized air
US3936382A (en) * 1973-11-21 1976-02-03 Aerojet-General Corporation Fluid eductor
JPS5238371A (en) * 1975-09-13 1977-03-24 Sumitomo Chem Co Ltd Apparatus for regulating bordeaux mixture
US4308241A (en) * 1980-07-11 1981-12-29 Quad Environmental Technologies Corp. Formation of reactive droplet dispersion
SU1119722A1 (en) * 1983-03-17 1984-10-23 Проектно-Конструкторский Технологический Институт Министерства Пищевой Промышленности Мсср Apparatus for dispension mixing and activation of liquid media
US4519423A (en) 1983-07-08 1985-05-28 University Of Southern California Mixing apparatus using a noncircular jet of small aspect ratio
US4533123A (en) * 1984-05-07 1985-08-06 Betz Laboratories, Inc. Liquid mixing device
US4590057A (en) * 1984-09-17 1986-05-20 Rio Linda Chemical Co., Inc. Process for the generation of chlorine dioxide
US4688945A (en) * 1985-10-02 1987-08-25 Stranco, Inc. Mixing apparatus
US4802630A (en) * 1985-11-19 1989-02-07 Ecolab Inc. Aspirating foamer
US4705405A (en) * 1986-04-09 1987-11-10 Cca, Inc. Mixing apparatus
US4838701A (en) * 1986-06-02 1989-06-13 Dowell Schlumberger Incorporated Mixer
US4861165A (en) * 1986-08-20 1989-08-29 Beloit Corporation Method of and means for hydrodynamic mixing
US4964733A (en) * 1986-08-20 1990-10-23 Beloit Corporation Method of and means for hydrodynamic mixing
US4860959A (en) * 1988-06-23 1989-08-29 Semi-Bulk Systems, Inc. Apparatus for subjecting particles dispersed in a fluid to a shearing action
SU1755907A1 (en) * 1990-04-20 1992-08-23 Всесоюзный научно-исследовательский институт по креплению скважин и буровым растворам Научно-производственного объединения "Бурение" Mixer
US5171090A (en) * 1990-04-30 1992-12-15 Wiemers Reginald A Device and method for dispensing a substance in a liquid
US5407299A (en) * 1993-01-19 1995-04-18 Sutton; John S. Cement slurry mixing apparatus and method of using cement slurry
RU2085761C1 (en) * 1993-02-11 1997-07-27 Александр Владимирович Городивский Ejector
RU2064319C1 (en) * 1994-03-14 1996-07-27 Руфат Шовкет оглы Абиев Device for treatment of capillary-porous particles with liquids
US5544951A (en) * 1994-09-30 1996-08-13 Semi-Bulk Systems, Inc. Mixing module for mixing a fluent particulate material with a working fluid
JP3122320B2 (en) * 1994-10-31 2001-01-09 和泉電気株式会社 Gas-liquid dissolution mixing equipment
US5664773A (en) * 1995-06-07 1997-09-09 Hunter Douglas Inc. Strip conveyor and stacker
US5664733A (en) 1995-09-01 1997-09-09 Lott; W. Gerald Fluid mixing nozzle and method
US5839474A (en) * 1996-01-19 1998-11-24 Sc Johnson Commercial Markets, Inc. Mix head eductor
US5799831A (en) * 1996-03-20 1998-09-01 Ecolab Inc. Dual aspirator
WO1997036675A1 (en) * 1996-04-03 1997-10-09 Flo Trend Systems, Inc. Continuous static mixing apparatus and process
US5927338A (en) * 1996-04-18 1999-07-27 S.C. Johnson Commercial Markets, Inc. Mixing eductor
US6702949B2 (en) * 1997-10-24 2004-03-09 Microdiffusion, Inc. Diffuser/emulsifier for aquaculture applications
US6254267B1 (en) * 1997-11-06 2001-07-03 Hydrotreat, Inc. Method and apparatus for mixing dry powder into liquids
US6715701B1 (en) * 1998-01-15 2004-04-06 Nitinol Technologies, Inc. Liquid jet nozzle
WO1999042545A1 (en) * 1998-02-19 1999-08-26 Crystallisation & Degumming Sprl Method for producing microcrystals of vegetable and animal fats
US6257233B1 (en) * 1998-06-04 2001-07-10 Inhale Therapeutic Systems Dry powder dispersing apparatus and methods for their use
US6402068B1 (en) * 1998-08-06 2002-06-11 Avrom R. Handleman Eductor mixer system
US6079625A (en) * 1998-09-04 2000-06-27 Honeywell International, Inc. Thermostatic mixing valve
US6238081B1 (en) * 1999-03-23 2001-05-29 Hydro Systems Company Ultra-lean dilution apparatus
US6131601A (en) * 1999-06-04 2000-10-17 S. C. Johson Commercial Markets, Inc. Fluid mixing apparatus
US6425529B1 (en) * 1999-08-25 2002-07-30 Frank G. Reinsch Controlled injection of dry material into a liquid system
US6328226B1 (en) * 1999-12-22 2001-12-11 Visteon Global Technologies, Inc. Nozzle assembly
AT408957B (en) * 2000-02-03 2002-04-25 Andritz Ag Maschf METHOD AND DEVICE FOR VENTILATING DISPERSIONS
US6796704B1 (en) * 2000-06-06 2004-09-28 W. Gerald Lott Apparatus and method for mixing components with a venturi arrangement
SG148839A1 (en) * 2000-07-31 2009-01-29 Celerity Inc Method and apparatus for blending process materials
RU2186614C2 (en) * 2000-09-07 2002-08-10 Руфат Шовкет оглы Абиев Apparatus and method of interaction of phases in gas- to-liquid and liquid-to-liquid systems
DE60111953T2 (en) * 2000-10-30 2006-04-20 Whiteley, Bruce Alan FLUID MIXER WITH ROTATABLE OUTLET TUBE AND DOSING OPENINGS
US6450374B1 (en) * 2000-11-20 2002-09-17 Johnsondiversey, Inc. High flow/low flow mixing and dispensing apparatus
DE10065174C1 (en) * 2000-12-23 2002-06-13 G & P Ingenieurgesellschaft Fu Modified bitumen production, for use as binder in asphalt mixtures, comprises continuous supply of additives, e.g. waste plastics, to hot liquid bitumen in jet apparatus
WO2002092208A1 (en) * 2001-05-14 2002-11-21 Johnsondiversey, Inc. Eductor
US6634376B2 (en) * 2001-08-16 2003-10-21 Hydro Systems Company Back flow preventing eductor
US6655401B2 (en) * 2001-09-25 2003-12-02 Hydro Systems Company Multiple chemical product eductive dispenser
US6749330B2 (en) * 2001-11-01 2004-06-15 Thomas E. Allen Cement mixing system for oil well cementing
US6588466B1 (en) * 2002-01-23 2003-07-08 Johnsondiversey, Inc. Liquid mixing and dispensing apparatus
US6464210B1 (en) * 2002-03-22 2002-10-15 Agrimond, Llc Fluid dissolution apparatus
US20040004903A1 (en) * 2002-07-03 2004-01-08 Johnsondiversey, Inc. Apparatus and method of mixing and dispensing a powder
US6951312B2 (en) * 2002-07-23 2005-10-04 Xerox Corporation Particle entraining eductor-spike nozzle device for a fluidized bed jet mill

Also Published As

Publication number Publication date
US8496189B2 (en) 2013-07-30
EA009426B1 (en) 2007-12-28
NO20063005L (en) 2006-09-20
EA200601225A1 (en) 2007-08-31
EP2674212B1 (en) 2017-02-01
NZ548072A (en) 2010-07-30
US20050189081A1 (en) 2005-09-01
WO2005062892A2 (en) 2005-07-14
EP1697026A2 (en) 2006-09-06
BRPI0418118A (en) 2007-04-17
AU2004308411B8 (en) 2009-10-29
US7311270B2 (en) 2007-12-25
WO2005062892A3 (en) 2007-03-29
CA2550311A1 (en) 2005-07-14
AU2004308411A1 (en) 2005-07-14
US20070237026A1 (en) 2007-10-11
BRPI0418118B1 (en) 2016-12-06
EP1697026A4 (en) 2011-06-29
EP2674212A1 (en) 2013-12-18
EP1697026B1 (en) 2013-11-27
AU2004308411B2 (en) 2009-07-09

Similar Documents

Publication Publication Date Title
CA2550311C (en) Device and methodology for improved mixing of liquids and solids
US20050058020A1 (en) Apparatus and method for mixing components with a venturi arrangement
AU2007216423B2 (en) Method and mixer apparatus for mixing gas into slurry in a closed reactor
US11298673B2 (en) Fluid reactor
JP2509374B2 (en) Granule classifier
US5765946A (en) Continuous static mixing apparatus and process
JP3086252B2 (en) Formation of gas particles
JPH0135688B2 (en)
CN107081422A (en) Double access road ladle bottoms
JP2000000451A (en) Granular body and liquid mixer
RU2313384C1 (en) Method, device and installation for realization of the physical-chemical processes between the moving mediums
MXPA06007338A (en) Device and methodology for improved mixing of liquids and solids
JPH0768155A (en) Excess gas separation-type gas-liquid pressure reactor
RU2151646C1 (en) Pneumatic flotation machine
EP1501626A1 (en) Device and method of creating hydrodynamic cavitation in fluids
RU2038863C1 (en) Device for preparation of pulp to flotation and froth separation
RU2165800C1 (en) Pneumatic flotation machine
JPH06414A (en) Liquid cyclone
JP2003225617A (en) Cyclone classifier
RU2125911C1 (en) Method of foam separation and flotation
SU1079284A2 (en) Wet grinding mill
RU2167723C1 (en) Method of foam separation and flotation
RU2213784C2 (en) Saturator for beet sugar industry
HU208513B (en) Apparatus for introducing gas first of all air into streaming liquide
UA65111A (en) Contact device for mass-transfer apparatus

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed

Effective date: 20201223