CA2592667A1 - Stamping a coating of cured field aligned special effect flakes and image formed thereby - Google Patents

Stamping a coating of cured field aligned special effect flakes and image formed thereby Download PDF

Info

Publication number
CA2592667A1
CA2592667A1 CA002592667A CA2592667A CA2592667A1 CA 2592667 A1 CA2592667 A1 CA 2592667A1 CA 002592667 A CA002592667 A CA 002592667A CA 2592667 A CA2592667 A CA 2592667A CA 2592667 A1 CA2592667 A1 CA 2592667A1
Authority
CA
Canada
Prior art keywords
flakes
substrate
stamped
image
aligned
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CA002592667A
Other languages
French (fr)
Other versions
CA2592667C (en
Inventor
Alberto Argoitia
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Viavi Solutions Inc
Original Assignee
JDS Uniphase Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JDS Uniphase Corp filed Critical JDS Uniphase Corp
Publication of CA2592667A1 publication Critical patent/CA2592667A1/en
Application granted granted Critical
Publication of CA2592667C publication Critical patent/CA2592667C/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/12Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by mechanical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/36Identification or security features, e.g. for preventing forgery comprising special materials
    • B42D25/369Magnetised or magnetisable materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/20Duplicating or marking methods; Sheet materials for use therein using electric current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/14Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by electrical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/20Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by magnetic fields
    • B05D3/207Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by magnetic fields post-treatment by magnetic fields
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/06Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain multicolour or other optical effects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/20Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof characterised by a particular use or purpose
    • B42D25/29Securities; Bank notes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/328Diffraction gratings; Holograms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B44DECORATIVE ARTS
    • B44CPRODUCING DECORATIVE EFFECTS; MOSAICS; TARSIA WORK; PAPERHANGING
    • B44C1/00Processes, not specifically provided for elsewhere, for producing decorative surface effects
    • B44C1/16Processes, not specifically provided for elsewhere, for producing decorative surface effects for applying transfer pictures or the like
    • B44C1/165Processes, not specifically provided for elsewhere, for producing decorative surface effects for applying transfer pictures or the like for decalcomanias; sheet material therefor
    • B44C1/17Dry transfer
    • B44C1/1712Decalcomanias applied under heat and pressure, e.g. provided with a heat activable adhesive
    • B44C1/1729Hot stamping techniques
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G21/00Arrangements not provided for by groups G03G13/00 - G03G19/00, e.g. cleaning, elimination of residual charge
    • G03G21/04Preventing copies being made of an original
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G21/00Arrangements not provided for by groups G03G13/00 - G03G19/00, e.g. cleaning, elimination of residual charge
    • G03G21/04Preventing copies being made of an original
    • G03G21/043Preventing copies being made of an original by using an original which is not reproducible or only reproducible with a different appearence, e.g. originals with a photochromic layer or a colour background
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/16Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates the magnetic material being applied in the form of particles, e.g. by serigraphy, to form thick magnetic films or precursors therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M3/00Printing processes to produce particular kinds of printed work, e.g. patterns
    • B41M3/14Security printing
    • B42D2033/16
    • B42D2035/24
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G2215/00Apparatus for electrophotographic processes
    • G03G2215/00025Machine control, e.g. regulating different parts of the machine
    • G03G2215/0013Machine control, e.g. regulating different parts of the machine for producing copies with MICR
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G2215/00Apparatus for electrophotographic processes
    • G03G2215/00362Apparatus for electrophotographic processes relating to the copy medium handling
    • G03G2215/00789Adding properties or qualities to the copy medium
    • G03G2215/00793Stamping device
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G2215/00Apparatus for electrophotographic processes
    • G03G2215/00362Apparatus for electrophotographic processes relating to the copy medium handling
    • G03G2215/00789Adding properties or qualities to the copy medium
    • G03G2215/00881Magnetic information
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G2215/00Apparatus for electrophotographic processes
    • G03G2215/00362Apparatus for electrophotographic processes relating to the copy medium handling
    • G03G2215/00919Special copy medium handling apparatus
    • G03G2215/00932Security copies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24802Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]
    • Y10T428/24851Intermediate layer is discontinuous or differential

Abstract

A device and method of forming a device in the form of an image particularly useful as a security device is disclosed wherein a magnetically aligned pigment coating upon a release layer on a first substrate on which it is coated is stamped, or example hot stamped onto another substrate or object. Multiple stamped aligned regions can be oriented differently on the other substrate or object in the form of a patch work or mosaic. For example a region of stamped aligned flakes having the flakes oriented in a North-South orientation can be stamped onto one region of an object or substrate and another region of stamped same flakes removed from a same substrate can be stamped onto a same object oriented in an E-W orientation. By first aligning and curing flakes onto a releasable substrate, these flakes can be stamped in various shapes and sizes of patches to be adhesively fixed to another substrate or object.

Description

Doc No: 18-251 CA Patent STAMPING A COATING OF CURED FIELD ALIGNED SPECIAL EFFECT FLAKES
AND IMAGE FORMED THEREBY

Field of the Invention [01] This invention relates generally to optically variable pigments, films, devices, and images, and more particularly to aligning or orienting field alignable pigment flakes, such as during a painting or printing process, and subsequently transferring a region of the field aligned pigment flakes to an object or substrate to obtain a desired optical effect useful for example in security applications.

Background of the Invention [02] The present invention also relates to field alignable pigments such as those that can be aligned or oriented in a magnetic or electric field, for example, flakes having an optically diffractive structure forming diffractive optically variable image devices ("DOVID"), such as orientable diffractive pigment flakes and stereograms, linegrams, graphic element-oriented devices, dot-oriented devices, and pixel-oriented devices, and oriented optically variable pigment flakes.
[03] Optically variable pigments ("OVP's"TM ) are used in a wide variety of applications. They can be used in paint or ink, or mixed with plastic. Such paint or ink is used for decorative purposes or as an anti-counterfeiting measure on currency. One type of OVP
uses a number of thin-film layers on a substrate that form an optical interference structure.
Generally, a dielectric spacer layer is often formed on a reflector, and then a layer of optically absorbing material is formed on the spacer layer. Additional layers may be added for additional effects, such as adding additional spacer-absorber layer pairs. Alternatively optical stacks composed of (high-low-high)" or (low-high-low) dielectric materials, or combinations of both, may be prepared.
[04] United States patents 6,902,807 and U.S. Patent application publication numbers 2007/0058227, 2006/0263539, 2006/0097515, 2006/008 1 1 5 1, 2005/0106367, and 2004/0009309, disclose various embodiments related to the production and alignment of pigment flakes so as to provide images that can be utilized in security applications.

Doc No: 18-251 CA Patent 1051 All of the aforementioned patents and applications are incorporated herein by reference, for all intents and purposes.

1061 Although some pigment flakes suspended in a carrier vehicle can be aligned in electric fields, magnetically orientable flakes aligned in a magnetic field are generally more practicable.
The term magnetic flakes used hereafter means flakes that can be aligned in a magnetic field.
These flakes may or may not be magnetic themselves.

1071 Optically variable devices are used in a wide variety of applications, both decorative and utilitarian, for example, such devices are used as security devices on commercial products.
Optically variable devices can be made in numerous ways to achieve a variety of effects.
Examples of optically variable devices include the holograms imprinted on credit cards and authentic software documentation, color-shifting images printed on banknotes, and enhancing the surface appearance of items such as motorcycle helmets and wheel covers.

1081 Optically variable devices can be made as film or foil that is attached to an object, and can also be made using optically variable pigments. One type of optically variable pigment is -commonly called a colour-shifting pigment because the apparent color of images appropriately printed with such pigments changes as the angle of view and/or illumination is tilted. A
common example is the "20" printed with colour-shifting pigment in the lower right-hand corner of a U.S. twenty-dollar bill, which serves as an anti-counterfeiting device.

1091 Some anti-counterfeiting devices are covert, while others are intended to be noticed.
Unfortunately, some optically variable devices that are intended to be noticed are not widely known because the optically variable aspect of the device is not sufficiently dramatic. For example, the color shift of an image printed with color-shifting pigment might not be noticed under uniform fluorescent ceiling lights, but more noticeable in direct sunlight or under single-point illumination. This can make it easier for a counterfeiter to pass counterfeit notes without the optically variable feature because the recipient might not be aware of the optically variable feature, or because the counterfeit note might look substantially similar to the authentic note Doc No: 18-25I CA Patent under certain conditions.

1101 As need continues to design devices that are difficult to counterfeit and easy to authenticate, more interesting and useful devices become available.

1111 For example, United States Patent application publication number 20060194040 in the name of Raksha et al. discloses a method and image formed by applying a first coating of magnetically alignable flakes; magnetically aligning the first coating of alignable flakes; curing the aligned flakes, and repeating the steps by applying a second coating of magnetically alignable flakes over the first cured aligned coating of flakes, aligning the second coating of flakes in a magnetic field and subsequently curing the second coating. This two-step coating, aligning and curing sequence allows first applied flakes to be magnetically aligned in a different orientation to the second applied flakes.

1121 Although patent application 20060194040 provides a useful result, it would be desirous to achieve similar yet different images wherein fields within an image could be oriented differently, and wherein this two-step coating sequence was not required.

-{131 Furthermore, it would be useful to provide a method and resulting image wherein regions of an image formed by field aligning flakes could be utilized to form a mosaic wherein stamped-out aligned portions of an aligned image could be reoriented and applied to an object or substrate so as to form a desired pattern or image that differs from the originally aligned image.
1141 It is an object of the present invention, to provide optically variable images wherein one or more regions of an image of field aligned flakes are stamped out, and are affixed to substrate in a preferred orientation.

Summary of the Invention (15) In accordance with the invention there is provided a method of forming an image comprising the steps of:
1. coating a substrate with a pigment having field alignable flakes therein;

Doc No: 18-251 CA Patent 2. and applying a field to the field alignable flakes so as to align the flakes along applied field lines;
3. after performing step (b) curing the pigment; and 4. stamping a region of the cured coated substrate with a stamp having a predetermined shape to yield a stamped transferable image formed of aligned flakes.

1161 In accordance with an aspect of the invention a method of forming an image is provided comprising the steps of:
1. releasably coating a substrate with a pigment having field alignable flakes therein;
2. and applying a field to the field alignable flakes so as to align the flakes along applied field lines;
3. after performing step (b) curing the pigment;
4. stamping a region of the cured coating with a stamp having a predetermined shape to yield a stamped image formed of aligned flakes; and, 5. applying the stamped image to a substrate or article.

[17] In accordance with an aspect of this invention, an image is provided comprising a first -region of flakes applied to a substrate after being aligned in a magnetic or electric field; and a second region of flakes applied to the same substrate after being aligned in a magnetic or electric field, wherein the first region of flakes on the substrate is oriented differently than the second region of flakes on the same substrate.

1181 In accordance with another aspect of the invention an image is provided comprising a substrate having a first patch applied thereto, wherein the first patch includes aligned pigment flakes cured in a vehicle, wherein said aligned flakes form a discernible pattern, and a second region of aligned flakes cured in a vehicle applied thereto wherein the flakes within the first patch applied to the substrate are oriented differently than the second region of flakes on the same substrate, and wherein the first patch and the second distinct region of flakes are visible at the same time.

Doc No: 18-251 CA Patent 1191 In accordance with another aspect of this invention an image is provided comprising a first region of flakes aligned ir) a magnetic or electric field wherein the first region of flakes were aligned and cured upon a first substrate; removed from the first substrate in the form of a patch of aligned flakes and transferred to a second object or substrate.

1201 In accordance with another aspect of this invention a method of forming an image is provided comprising the steps of:
1. coating a release coating supported by a substrate with field alignable flakes;
2. exposing the field alignable flakes to a magnetic or electric field to form field aligned flakes;
3. allowing the field aligned flakes to cure;
4. removing the field aligned flakes from the substrate while preserving their alignment; and, 5. transferring the field aligned flakes to an object or another substrate in a predetermined orientation.

[211 In accordance with another aspect of the invention the second stamped image is applied over at least a portion of the first stamped image.

Brief Description of the Drawings [22) Exemplary embodiments of the invention will now be described in conjunction with the drawings in which:

1231 Fig. 1 is a plan view of a first ribbon-like substrate having varying shaped diffractive pigment flakes thereon magnetically aligned such that grooves within the diffractive flakes are parallel to one another orthogonal to the longitudinal axis of the ribbon.

1241 Fig. 2a is a plan view of a stamping die in the form of an arrow;
1251 Fig. 2b is a plan view of a stamped-out foil patch of aligned flakes in the shape of the Doc No: 18-251 CA Patent arrow stamped from the first ribbon-like substrate shown in Fig. 1 with the die shown in Fig.
2a.

[26] Fig. 3 is a plan view of the first ribbon-like substrate oriented 90 degrees to the orientation of the substrate shown in Fig. 1 relative to the second stamping die conveniently having its stamped out region with the flakes oriented 90 degrees to the stamped out region of Fig. 2b.

1271 Fig. 4a is a plan view of a circular stamping dye having an arrow-shaped opening in a center thereof.

[28] Fig. 4b is a circular stamped region stamped from the first ribbon-like substrate with the circular stamping die shown in Fig. 4a.

1291 Fig. 4c is a plan view of the final image having the stamped arrow foil placed on the stamped circular region, wherein the orientation of the diffractive grating in the diffractive pigment flakes forming the arrow foil are orthogonal to the diffractive structures in the circular stamped foil region.

[30) Fig. 5 is a photograph of a region of magnetically aligned flakes aligned to yield a 3D
image wherein some of the flakes are out of plane from the substrate.

1311 Fig. 6 is an illustration of a painting or printing station wherein a moving ribbon with a releasable hard coat is coated with ink or paint having magnetic flakes therein and wherein the ribbon passes over a cylinder having magnets therein which align magnetic flakes in a desired orientation.

Detailed Description 1321 In one particular embodiment described in more detail hereafter, the present invention utilizes magnetically aligned diffractive pigment flakes disposed in a magnetic field and subsequently cured to print images. Diffractive pigment flakes are generally small particles used Doc No: 18-251 CA Patent in paints, inks, films, and plastics that provide variable perceived color, lightness, hue, and/or chroma, depending on the angle of view and angle of incident light. Some diffractive pigments, such as ones including Fabry-Perot-type interference structures, shift the observed color, as well as providing diffractive effects. Thin-film interference structures using dielectric layers can also be combined with a microstructure diffraction pattern. Some embodiments of this invention include a diffractive reflector layer in combination with a spacer layer and an absorber layer to form a flake having both diffraction and thin-film interference.

[33] Depending on frequency, pigments with diffraction gratings separate light into spectral components, similar to a prism, so that the perceived color changes with viewing angle. It has been found that pigment flakes can be oriented with magnetic fields if the pigment flake includes a magnetic material. For the purposes of this application, "magnetic"
materials can be fel-ro- or ferri-magnetic. Nickel, cobalt, iron, gadolinium, terbium, dysprosium, erbium, and their alloys and oxides, Fe/Si, Fe/Ni, Fe/Co, Fe/Ni/Mo, SmCo5, NdCo5, Sm2Co17, Nd2Fe14B, TbFe2, Fe304, NiFe2O4, and CoFe2O4, are a few examples of magnetic materials.
It is not necessary that the magnetic layer, or the magnetic material of the magnetic layer, be capable of being permanently magnetized, although it could be. In some embodiments, magnetic material capable of being permanently magnetized is included in a flake, but remains unmagnetized until after it is applied to form an image. In a further embodiment, flakes with permanent magnet material are applied to a substrate to form a visual image, and subsequently magnetized to form a magnetic image, in addition to the visual image. Some magnetic flakes tend to clump together if the remnant magnetization is too high prior to forming the image or mixing with a paint or ink vehicle.

[34) Exemplary Flake Structures are described in United States patent publication number 20060263539 in the name of Argoitia, filed August 2"d 2006 incorporated herein by reference and various substrate materials are described as suitable for supporting diffractive pigment flakes in an ink vehicle.

[351 Referring now to Fig.l a thin PET substrate 10 is shown having coated thereon a coating of groove oriented diffractive flakes 20 fixed in a carrier together forming a ribbon 14 that can Doc No: 18-251 CA Patent be used in security applications. Each flake has a diffractive pattern of grooves shown in Fig. 1 to be aligned such that the grooves on respective flakes are parallel to one another. This groove alignment of the flakes 20 was achieved by coating the substrate with an ink having a clear carrier containing the diffractive flakes, and subsequently applying a magnetic field to the coating wherein the magnetic field lines are substantially parallel and orthogonal to the longitudinal axis of the substrate 10. When the field is applied, the flakes align themselves such that their grooves or lines follow the magnetic field lines. The coating is subsequently cured so that the flakes 20 are fixed in this preferred alignment. Depending upon the applied field, the flakes 20 may be flat lying coplanar with the substrate 10 or the flakes may be partially or full upstanding upon the substrate 10.

1361 One limitation of forming a ribbon in this manner is that image formed on the substrate by the pattern of the flakes is dependent upon the shape of the applied field.
Conveniently, this invention provides a method and image wherein regions of aligned fixed flakes can be combined in a mosaic like pattern of patches of aligned flakes to yield more complex and interesting images and security devices.

1371 Prior to coating the substrate 10 with ink in Fig. 1, the substrate is coated with a release layer that allows the layer of ink to be removed as removable sheet or coated region consisting of cured ink having aligned flakes therein. This coating is suitable for hot-stamping or other similar methods of transfer.

1381 Hot stamp transfer foils have been provided in conjunction with hot stamp machines to affix images onto various substrates such as paper, plastic film and even rigid substrates. Hot stamping is a dry process. One commercially available machine for hot stamping images onto substrates is the Malahide E4-PK produced by Malahide Design and Manufacturing Inc.
Machines of this type are shown and described on the Internet at www.hotstamping.com.
Simplistically, in a hot-stamping process, a die is attached to the heated plate which is pressed against a load roll of hot stamping foil to affix the foil to an article or substrate. A roll on transfer process could also be used in this invention. In this case, the article substrate and the adhesive (UV or heat activated) is brought together at a nip to effect the transfer of the hot Doc No: 18-251 CA Patent stamp layer to the article substrate.

[39] An image is typically formed by utilizing a metal or silicone rubber die into which the desired image has been cut. This die is placed in the hot stamping machine and is used to press the image into hot stamp foil utilizing a combination of heat and pressure.
The back side of the foil is generally coated with a dry heat activated, thermo set adhesive, for example an acrylate based adhesive. Upon the application of heat, the adhesive becomes tacky in regions of the heated image and adheres to the paper or plastic substrate. Hot stamping is described or mentioned in the US Patent numbers 5,002,312, 5,059,245, 5,135,812, 5,171,363, 5,186,787, 5,279,657 and 7,005,178, in the name of Roger Phillips of Flex Products Inc.
of Santa Rosa Ca.
[40] Fig. 2a is a plan view of a first stamping die 30 in accordance with this invention, in the form of an arrow that is used to produce the stamped coating shown in Fig. 2b.
As the ribbon 14 is moved through a stamping station, the stamping die 30 stamps the coating in the shape of the arrow shown for transfer to a substrate.. The arrow can be oriented as shown, wherein the grooves of the flakes are aligned in the direction of the arrow, or alternatively, other orientations could have been used.

-[41] Therefore stamping die 30 after stamping the ribbon 14 produces a patch of aligned flakes in the form of an arrow with diffractive grooves oriented up-down as the ribbon 14 moves through the stamping apparatus. In a preferred embodiment of the invention, this invention, this is a first step in a hot-stamping process. In the presence of heat and pressure, this arrow shaped patch is hot-stamped to a substrate.

[42] Referring now to Fig. 3, at a second stamping station the same ribbon 14 is shown moving under the stamping die 40 such that the aligned flakes are oriented orthogonally with respect to the cut-out arrow in the die 40. This allows the single ribbon 14 with flakes oriented in a particular orientation to provide stamped areas with flakes having their grooves oriented at different angles simply by changing the angle in which the ribbon is fed into the stamping equipment. This different orientation of two regions of otherwise essentially same flakes provides different visual -effects from the two regions in lighting conditions other than Doc No: 18-251 CA Patent normal incidence and is also useful as a means of authentication of an article or product the composite images are applied to.

1431 As is illustrated in Fig. 4b, the stamping die 40 after stamping the ribbon 14 produces a patch of aligned flakes in the form of a circular area surrounding an arrow with the grooves oriented left to right. The ribbon 14 stamped by the die 40 may be the same or a different ribbon as 14 with the grooves of the diffractive flakes oriented in the same way as in ribbon 14.
Therefore the same ribbon can be used for both stamping stations, or a different ribbon having flakes oriented in a same manner can be used.

1441 In the embodiments described heretofore, diffractive flakes having grooves or lines therein have been used in such a manner as to be aligned in a particular direction with respect to the substrate. Then regions of the cured coating were stamped out and applied via a hot stamp or other process to a different substrate. Of course other suitable forms of adhesion between the stamped diffractive substrate and the object or substrate to which the stamped region is to be joined with can be utilized. The direction of the dispersion of light in a diffractive pigment is a function of the frequency of the gratings. For low frequencies the observer will get only a dark-bright contrast instead of a change of hue. Frequency can be changed depending of the dynamic effect desired.
?0 [45] In an alternative embodiment non diffractive planar flakes can be used wherein the flakes are field aligned upon a release layer of a substrate and cured. These aligned non-diffractive flakes can then be removed from the substrate as a cured region of aligned flakes and reapplied to a different substrate or object, in a same manner as has been described.
This is particularly interesting when out of plane alignment is utilized by applying magnetic fields that result in upstanding flakes. It is also possible to provide out of plane diffractive flakes and to subsequently stamp out a cured region of these flakes for reapplication to a different substrate.
[46] Turning now to Fig. 5 an image 50 having out-of-plane upstanding flakes is shown where some of the flakes 53 lie in a plane parallel to the substrate and wherein other of the flakes 55 are upstanding on the substrate nearly orthogonal to it.

Doc 'No: 18-251 CA Patent 1471 Fig. 6 shows a configuration wherein a ribbon 60 comprising a releasable hard coat is painted with a magnetic pigment 63 as it is carried over a rotating cylinder 64 having circular nlagnets 66 therein. The flakes within the magnetic pigment 63 are aligned by the field generated from the magnets within the cylinder and the resulting 3D images 68 formed in the pigment are cured. The cured 3D images 68 are then applied to other objects or substrates after being stamped and released from the ribbon substrate.

1481 In summary, this invention provides a novel and inventive way in which to apply magnetically aligned flakes from a substrate onto a substrate or article wherein the orientation of the aligned flakes can be changed upon transfer. Of course numerous other embodiments may be envisaged without departing from the spirit and scope of the invention.

Claims (23)

1. A method of forming an image comprising the steps of:

a) coating a first substrate with a pigment coating having field alignable flakes therein;

b) applying a magnetic or electric field to the pigment coating so as to align the flakes therewithin along field lines of the magnetic or electric field;
c) after performing step (b) curing the pigment coating; and d) stamping a region of the cured coated first substrate with a stamp having a first shape to yield a first stamped transferable image formed of aligned flakes.
2. A method as defined in claim 1 wherein the first stamped transferable image is removed from the first substrate.
3. A method as defined in claim 2 wherein the first stamped transferable image is transferred to an object a second substrate.
4. A method as defined in claim 1 wherein the first stamped transferable image is transferred to an object a second substrate while it is being stamped.
5. A method as defined in claim 4 further comprising the step of stamping a different region of the cured coated first substrate with a stamp having a second shape to transfer a second stamped transferable image in the form of said stamp to the object or second substrate.
6. A method as defined in claim 5 comprising the steps of relatively orienting the first stamped image and the second stamped image so that the aligned flakes of the first stamped image is not parallel to the alignment of flakes in the second stamped image.
7. A method as defined in claim 3 wherein the first stamped transferable image is transferred to the object or second substrate by hot stamping.
8. A method as defined in claim 3 wherein the first stamped image is adhesively transferred to the object or second substrate.
9 A method as defined in claim 1 wherein the field alignable flakes are diffractive flakes having a diffractive pattern therein, and wherein step (b) results in the diffractive flakes being aligned with the diffractive pattern parallel to the field lines.
10. A method as defined in claim 2 wherein the substrate has a release coating thereon so that the stamped image can be released from the release coating.
11. A method as defined in claim 2 wherein the aligned flakes are diffractive aligned flakes having diffractive patterns therein and wherein step (d) is performed a plurality of times to yield a plurality of stamped images, and wherein the plurality of stamped images are applied to a different substrate and wherein at least some of the applied stamped images are disposed next to each other on the different substrate such that their diffractive patterns are not parallel.
12. A method as defined in claim 2, wherein step (d) is preformed a plurality of times, and wherein the stamped images are subsequently transferred to one or more different substrates or to a same substrate and wherein one stamped image is applied at least partially over another.
13. A method as defined in claim 2 wherein the field alignable flakes are color-shifting flakes, diffractive flakes or color-shifting diffractive flakes.
14. A method as defined in claim 13 wherein step (b) results in the flakes being aligned at an angle to the substrate so that at least some of the flakes are substantially upstanding with their faces orthogonal to the substrate.
15. A method as defined in claim 2 wherein step (d) is performed a plurality of times and wherein the stamped images are transferred to a substrate or object.
16. A method as defined in claim 12 wherein the stamped images have a different shapes or sizes.
17. A method of forming an image comprising the steps of:
a) providing a substrate having a coating of magnetically aligned flakes thereon cured in a binder, wherein the coating is releasable from the substrate; and, b) stamping a region of the substrate with a die so as to transfer the coating in the stamped region to another object or substrate.
18. An image comprising: a substrate having an adhesively secured first patch applied thereto, wherein the first patch is formed of aligned pigment flakes cured in a vehicle prior to being applied to the substrate, wherein said aligned flakes form a discernible pattern, and a second patch of aligned flakes adhesively secured to the substrate wherein the flakes within the first patch applied to the substrate are oriented differently than the second region of flakes on the same substrate, and wherein at least a portion of the first patch and the second patch of flakes are visible at the same time and distinguishable from one another.
19. An image as defined in claim 18 wherein the aligned pigment flakes in the first patch include diffractive flakes having a diffractive pattern therein or thereon.
20. An image as defined in claim 19 wherein the flakes applied to the second patch are diffractive flakes having a different pattern therein or thereon.
21. An image as defined in claim 18 wherein the first patch and the second patch include flakes have a same composition of flakes.
22. An image as defined in claim 18 wherein the flakes in the first patch and the flakes in the second region are oriented differently upon the substrate.
23. An image as defined in claim 18 wherein the flakes are diffractive and, or color shifting magnetically alignable flakes.
CA2592667A 2006-07-12 2007-06-22 Stamping a coating of cured field aligned special effect flakes and image formed thereby Active CA2592667C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US80710306P 2006-07-12 2006-07-12
US60/807,103 2006-07-12

Publications (2)

Publication Number Publication Date
CA2592667A1 true CA2592667A1 (en) 2008-01-12
CA2592667C CA2592667C (en) 2014-05-13

Family

ID=38646872

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2592667A Active CA2592667C (en) 2006-07-12 2007-06-22 Stamping a coating of cured field aligned special effect flakes and image formed thereby

Country Status (8)

Country Link
US (1) US8118963B2 (en)
EP (1) EP1878585B1 (en)
JP (1) JP5209908B2 (en)
KR (1) KR101455778B1 (en)
CN (1) CN101104346B (en)
CA (1) CA2592667C (en)
ES (1) ES2454642T3 (en)
TW (1) TWI437059B (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100208351A1 (en) * 2002-07-15 2010-08-19 Nofi Michael R Selective and oriented assembly of platelet materials and functional additives
US9458324B2 (en) * 2002-09-13 2016-10-04 Viava Solutions Inc. Flakes with undulate borders and method of forming thereof
DE602006005947D1 (en) * 2005-10-04 2009-05-07 Koninkl Philips Electronics Nv MAGNETICALLY ACTUATED WEAR INDICATOR FOR BODY CARE INSTRUMENTS
AU2008219354B2 (en) * 2007-09-19 2014-02-13 Viavi Solutions Inc. Anisotropic magnetic flakes
CN101628984B (en) * 2008-07-16 2012-11-14 三芳化学工业股份有限公司 Resin surface layer and manufacturing method thereof, composite material with resin surface layer and manufacturing method thereof
US20130183067A1 (en) * 2010-09-24 2013-07-18 Sicpa Holding Sa Device, system and method for producing a magnetically induced visual effect
KR101119701B1 (en) * 2010-12-31 2012-03-20 한국조폐공사 Continued color changeable security thread comprising micro optical structure and a method of preparing the same
CN109291608A (en) * 2014-05-12 2019-02-01 唯亚威通讯技术有限公司 Optically variable device comprising magnetic flakes
CN106364147A (en) * 2016-08-24 2017-02-01 王鑫杰 Environment-friendly anti-fake printing machine and anti-fake printing method
CN106346965A (en) * 2016-08-24 2017-01-25 王楚涵 Anti-fake stamp
CN117252870B (en) * 2023-11-15 2024-02-02 青岛天仁微纳科技有限责任公司 Image processing method of nano-imprint mold

Family Cites Families (188)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2570856A (en) 1947-03-25 1951-10-09 Du Pont Process for obtaining pigmented films
DE1696245U (en) 1955-02-14 1955-04-07 Willy Bucke LETTER CLIP.
US3011383A (en) 1957-04-30 1961-12-05 Carpenter L E Co Decorative optical material
US3123490A (en) 1961-05-04 1964-03-03 Nacreous pigment and method for preparing same
US3293331A (en) 1962-11-13 1966-12-20 Little Inc A Method of forming replicas of contoured substrates
US3338730A (en) 1964-02-18 1967-08-29 Little Inc A Method of treating reflective surfaces to make them multihued and resulting product
DE1253730B (en) 1964-06-05 1967-11-09 Agfa Ag Process for the complete or partial printing of a printing form and rotary duplicator to carry out the process
FR1440147A (en) 1965-04-15 1966-05-27 Tefal Sa A method of decorating, in the mass, a translucent plastic material
US3627580A (en) 1969-02-24 1971-12-14 Eastman Kodak Co Manufacture of magnetically sensitized webs
US3640009A (en) 1969-06-07 1972-02-08 Eizo Komiyama Identification cards
US3633720A (en) 1969-09-25 1972-01-11 Honeywell Inc Alphanumeric printing device employing magnetically positionable particles
US3845499A (en) 1969-09-25 1974-10-29 Honeywell Inc Apparatus for orienting magnetic particles having a fixed and varying magnetic field component
US3610721A (en) 1969-10-29 1971-10-05 Du Pont Magnetic holograms
US3853676A (en) 1970-07-30 1974-12-10 Du Pont Reference points on films containing curved configurations of magnetically oriented pigment
US3676273A (en) 1970-07-30 1972-07-11 Du Pont Films containing superimposed curved configurations of magnetically orientated pigment
IT938725B (en) 1970-11-07 1973-02-10 Magnetfab Bonn Gmbh PROCEDURE AND DEVICE FOR EIGHT BLACK DRAWINGS IN SURFACE LAYERS BY MEANS OF MAGNETIC FIELDS
US3790407A (en) 1970-12-28 1974-02-05 Ibm Recording media and method of making
US3873975A (en) 1973-05-02 1975-03-25 Minnesota Mining & Mfg System and method for authenticating and interrogating a magnetic record medium
AU488652B2 (en) 1973-09-26 1976-04-01 Commonwealth Scientific And Industrial Research Organisation Improvements in or relating to security tokens
DE2520581C3 (en) 1975-05-09 1980-09-04 Kienzle Apparate Gmbh, 7730 Villingen-Schwenningen Arrangement for erasable recording of measured quantities
US4011009A (en) 1975-05-27 1977-03-08 Xerox Corporation Reflection diffraction grating having a controllable blaze angle
CA1090631A (en) 1975-12-22 1980-12-02 Roland Moraw Holographic identification elements and method and apparatus for manufacture thereof
US4155627A (en) 1976-02-02 1979-05-22 Rca Corporation Color diffractive subtractive filter master recording comprising a plurality of superposed two-level relief patterns on the surface of a substrate
US4099838A (en) 1976-06-07 1978-07-11 Minnesota Mining And Manufacturing Company Reflective sheet material
US4066280A (en) 1976-06-08 1978-01-03 American Bank Note Company Documents of value printed to prevent counterfeiting
GB1546806A (en) * 1976-10-18 1979-05-31 Emi Ltd Forming layers of material
DE2752895A1 (en) 1976-12-06 1978-06-08 Emi Ltd METHOD FOR PRODUCING A MATERIAL LAYER, THE SURFACE OF WHICH HAS A SCANABLE PATTERN, AS WELL AS A SECURITY DOCUMENT SYSTEM
US4310180A (en) 1977-05-18 1982-01-12 Burroughs Corporation Protected document and method of making same
US4242400A (en) * 1977-10-15 1980-12-30 E M I Limited Magnetically structured materials
FR2408890A1 (en) 1977-11-10 1979-06-08 Transac Dev Transact Automat METHOD AND DEVICE FOR ORIENTATION AND FIXATION IN A DETERMINED DIRECTION OF MAGNETIC PARTICLES CONTAINED IN A POLYMERISABLE INK
US4168983A (en) 1978-04-13 1979-09-25 Vittands Walter A Phosphate coating composition
US4271782A (en) 1978-06-05 1981-06-09 International Business Machines Corporation Apparatus for disorienting magnetic particles
US4310584A (en) 1979-12-26 1982-01-12 The Mearl Corporation Multilayer light-reflecting film
US5084351A (en) 1979-12-28 1992-01-28 Flex Products, Inc. Optically variable multilayer thin film interference stack on flexible insoluble web
US5059245A (en) * 1979-12-28 1991-10-22 Flex Products, Inc. Ink incorporating optically variable thin film flakes
US4434010A (en) 1979-12-28 1984-02-28 Optical Coating Laboratory, Inc. Article and method for forming thin film flakes and coatings
US5171363A (en) 1979-12-28 1992-12-15 Flex Products, Inc. Optically variable printing ink
US5766738A (en) 1979-12-28 1998-06-16 Flex Products, Inc. Paired optically variable article with paired optically variable structures and ink, paint and foil incorporating the same and method
US5135812A (en) 1979-12-28 1992-08-04 Flex Products, Inc. Optically variable thin film flake and collection of the same
US5569535A (en) 1979-12-28 1996-10-29 Flex Products, Inc. High chroma multilayer interference platelets
US4398798A (en) 1980-12-18 1983-08-16 Sperry Corporation Image rotating diffraction grating
AU550965B2 (en) 1983-10-14 1986-04-10 Dow Chemical Company, The Coextruded multi-layered articles
CA1232068A (en) 1984-06-08 1988-01-26 National Research Council Of Canada Form depicting, optical interference authenticating device
US4543551A (en) 1984-07-02 1985-09-24 Polaroid Corporation Apparatus for orienting magnetic particles in recording media
US4705356A (en) 1984-07-13 1987-11-10 Optical Coating Laboratory, Inc. Thin film optical variable article having substantial color shift with angle and method
US4705300A (en) 1984-07-13 1987-11-10 Optical Coating Laboratory, Inc. Thin film optically variable article and method having gold to green color shift for currency authentication
US4657349A (en) 1984-08-14 1987-04-14 Temple University Electro- and magneto-optic devices
US4668597A (en) 1984-11-15 1987-05-26 Merchant Timothy P Dormant tone imaging
DE3446861A1 (en) 1984-12-21 1986-07-10 GAO Gesellschaft für Automation und Organisation mbH, 8000 München SECURITY DOCUMENT WITH THE SECURITY THREAD STORED IN IT AND METHOD FOR THE PRODUCTION AND AUTHENTICITY TESTING OF THE SECURITY DOCUMENT
DE3500079A1 (en) 1985-01-03 1986-07-10 Henkel KGaA, 4000 Düsseldorf AGENT AND METHOD FOR PRODUCING COLORLESS COMPRESSION LAYERS ON ANODIZED ALUMINUM SURFACES
US4788116A (en) 1986-03-31 1988-11-29 Xerox Corporation Full color images using multiple diffraction gratings and masking techniques
DE3617430A1 (en) 1986-05-23 1987-11-26 Merck Patent Gmbh PEARL PIGMENT
US4721217A (en) 1986-08-07 1988-01-26 Optical Coating Laboratory, Inc. Tamper evident optically variable device and article utilizing the same
US4930866A (en) 1986-11-21 1990-06-05 Flex Products, Inc. Thin film optical variable article and method having gold to green color shift for currency authentication
US4779898A (en) 1986-11-21 1988-10-25 Optical Coating Laboratory, Inc. Thin film optically variable article and method having gold to green color shift for currency authentication
DE3709217A1 (en) * 1987-03-20 1988-09-29 Basf Ag LABEL-SHAPED PIGMENTS BASED ON IRON OXIDE
JP2514828B2 (en) 1988-01-18 1996-07-10 富士写真フイルム株式会社 Method of manufacturing magnetic recording medium
US5128779A (en) 1988-02-12 1992-07-07 American Banknote Holographics, Inc. Non-continuous holograms, methods of making them and articles incorporating them
US5145212A (en) 1988-02-12 1992-09-08 American Banknote Holographics, Inc. Non-continuous holograms, methods of making them and articles incorporating them
US4838648A (en) 1988-05-03 1989-06-13 Optical Coating Laboratory, Inc. Thin film structure having magnetic and color shifting properties
US5186787A (en) 1988-05-03 1993-02-16 Phillips Roger W Pre-imaged high resolution hot stamp transfer foil, article and method
US5002312A (en) 1988-05-03 1991-03-26 Flex Products, Inc. Pre-imaged high resolution hot stamp transfer foil, article and method
US5199744A (en) * 1988-09-09 1993-04-06 De La Rue Plc Security device
JPH0298811A (en) 1988-10-05 1990-04-11 Fuji Photo Film Co Ltd Magnetic recording medium
US5192611A (en) 1989-03-03 1993-03-09 Kansai Paint Co., Ltd. Patterned film forming laminated sheet
US5079058A (en) 1989-03-03 1992-01-07 Kansai Paint Co., Ltd. Patterned film forming laminated sheet
US5278590A (en) 1989-04-26 1994-01-11 Flex Products, Inc. Transparent optically variable device
US4925215A (en) 1989-06-12 1990-05-15 Action Drive-Thru Inc. Concealed magnetic indicia
DE69015900T2 (en) 1989-06-27 1995-06-22 Nippon Paint Co Ltd Process for making a patterned coating.
DE3932505C2 (en) 1989-09-28 2001-03-15 Gao Ges Automation Org Data carrier with an optically variable element
DE3938055A1 (en) 1989-11-16 1991-05-23 Merck Patent Gmbh MATERIALS COATED WITH PLAIN-SHAPED PIGMENTS
ATE105784T1 (en) 1989-12-01 1994-06-15 Landis & Gyr Business Support ARRANGEMENT TO IMPROVE THE SECURITY OF A VALUABLE DOCUMENT FROM COUNTERFEITING.
US5142383A (en) 1990-01-25 1992-08-25 American Banknote Holographics, Inc. Holograms with discontinuous metallization including alpha-numeric shapes
EP0453131A3 (en) 1990-04-12 1992-04-29 James River Corporation Security paper and method of manufacturing same
US5037101A (en) 1990-06-19 1991-08-06 Mcnulty James P Hologram game card
US5214530A (en) 1990-08-16 1993-05-25 Flex Products, Inc. Optically variable interference device with peak suppression and method
US5177344A (en) 1990-10-05 1993-01-05 Rand Mcnally & Company Method and appparatus for enhancing a randomly varying security characteristic
US5254390B1 (en) 1990-11-15 1999-05-18 Minnesota Mining & Mfg Plano-convex base sheet for retroreflective articles
GB9025390D0 (en) 1990-11-22 1991-01-09 De La Rue Thomas & Co Ltd Security device
US5215576A (en) 1991-07-24 1993-06-01 Gtech Corporation Water based scratch-off ink for gaming forms
EP0556449B1 (en) 1992-02-21 1997-03-26 Hashimoto Forming Industry Co., Ltd. Painting with magnetically formed pattern and painted product with magnetically formed pattern
DE4212290C2 (en) 1992-02-29 1996-08-01 Kurz Leonhard Fa value document
DE69303651T2 (en) 1992-03-13 1997-01-02 Fuji Photo Film Co Ltd Magnetic recording medium and method for its production
US5549774A (en) 1992-05-11 1996-08-27 Avery Dennison Corporation Method of enhancing the visibility of diffraction pattern surface embossment
US5672410A (en) 1992-05-11 1997-09-30 Avery Dennison Corporation Embossed metallic leafing pigments
DE4217511A1 (en) 1992-05-27 1993-12-02 Basf Ag Gloss pigments based on multi-coated platelet-shaped metallic substrates
US5339737B1 (en) 1992-07-20 1997-06-10 Presstek Inc Lithographic printing plates for use with laser-discharge imaging apparatus
USRE35512F1 (en) 1992-07-20 1998-08-04 Presstek Inc Lithographic printing members for use with laser-discharge imaging
US5856048A (en) 1992-07-27 1999-01-05 Dai Nippon Printing Co., Ltd. Information-recorded media and methods for reading the information
US5991078A (en) 1992-08-19 1999-11-23 Dai Nippon Printing Co., Ltd. Display medium employing diffraction grating and method of producing diffraction grating assembly
JP2655551B2 (en) 1992-09-09 1997-09-24 工業技術院長 Fine surface shape creation method
EP0693204B1 (en) 1993-04-06 2003-03-12 Commonwealth Scientific And Industrial Research Organisation Optical data element
US5549953A (en) 1993-04-29 1996-08-27 National Research Council Of Canada Optical recording media having optically-variable security properties
GB9309673D0 (en) 1993-05-11 1993-06-23 De La Rue Holographics Ltd Security device
KR100350204B1 (en) 1993-07-16 2002-12-31 룩크오프디스플레이코퍼레이션 Diffraction display device using reflected light or projection light
US6033782A (en) 1993-08-13 2000-03-07 General Atomics Low volume lightweight magnetodielectric materials
EP0644508B1 (en) 1993-08-31 1999-12-22 Control Module, Inc. Secure optical identification method and means
DE4335308C2 (en) 1993-10-16 1995-12-14 Daimler Benz Ag Identification of vehicles to make theft and / or unauthorized sale more difficult
US5437931A (en) 1993-10-20 1995-08-01 Industrial Technology Research Institute Optically variable multilayer film and optically variable pigment obtained therefrom
TW265421B (en) 1993-11-23 1995-12-11 Commw Scient Ind Res Org
US5464710A (en) 1993-12-10 1995-11-07 Deposition Technologies, Inc. Enhancement of optically variable images
DE4343387A1 (en) 1993-12-18 1995-06-29 Kurz Leonhard Fa Visually identifiable, optical security element for documents of value
US5700550A (en) 1993-12-27 1997-12-23 Toppan Printing Co., Ltd. Transparent hologram seal
US5424119A (en) 1994-02-04 1995-06-13 Flex Products, Inc. Polymeric sheet having oriented multilayer interference thin film flakes therein, product using the same and method
US5591527A (en) 1994-11-02 1997-01-07 Minnesota Mining And Manufacturing Company Optical security articles and methods for making same
DE4439455A1 (en) 1994-11-04 1996-05-09 Basf Ag Process for the production of coatings with three-dimensional optical effects
EP0741370B2 (en) 1995-05-05 2001-11-14 OVD Kinegram AG Method for applying a security element on a substrate
US5641719A (en) 1995-05-09 1997-06-24 Flex Products, Inc. Mixed oxide high index optical coating material and method
EP0756945A1 (en) 1995-07-31 1997-02-05 National Bank Of Belgium Colour copy protection of security documents
US5907436A (en) 1995-09-29 1999-05-25 The Regents Of The University Of California Multilayer dielectric diffraction gratings
DE19538295A1 (en) 1995-10-14 1997-04-17 Basf Ag Goniochromatic gloss pigments with silicon-containing coating
GB9524862D0 (en) 1995-12-06 1996-02-07 The Technology Partnership Plc Colour diffractive structure
US5815292A (en) 1996-02-21 1998-09-29 Advanced Deposition Technologies, Inc. Low cost diffraction images for high security application
DE19611383A1 (en) 1996-03-22 1997-09-25 Giesecke & Devrient Gmbh Data carrier with optically variable element
US5742411A (en) 1996-04-23 1998-04-21 Advanced Deposition Technologies, Inc. Security hologram with covert messaging
DE19618564A1 (en) 1996-05-09 1997-11-13 Merck Patent Gmbh Platelet-shaped titanium dioxide pigment
DE19639165C2 (en) 1996-09-24 2003-10-16 Wacker Chemie Gmbh Process for obtaining new color effects using pigments with a color that depends on the viewing angle
US5981040A (en) 1996-10-28 1999-11-09 Dittler Brothers Incorporated Holographic imaging
US5838466A (en) 1996-12-13 1998-11-17 Printpack Illinois, Inc. Hidden Holograms and uses thereof
ATE247509T1 (en) 1997-04-15 2003-09-15 Sicpa Holding Sa A COATING AGENT THAT CAN BE REMOVED BY ABRASION, PROCESS OF PRODUCTION AND USE AND METHOD FOR APPLYING THE SAME
AUPO728397A0 (en) 1997-06-11 1997-07-03 Securency Pty Ltd Security document including a magnetic watermark and method of production thereof
US6112388A (en) 1997-07-07 2000-09-05 Toyota Jidosha Kabushiki Kaisha Embossed metallic flakelets and method for producing the same
DE19731968A1 (en) 1997-07-24 1999-01-28 Giesecke & Devrient Gmbh Security document
US6103361A (en) 1997-09-08 2000-08-15 E. I. Du Pont De Nemours And Company Patterned release finish
DE19744953A1 (en) 1997-10-10 1999-04-15 Giesecke & Devrient Gmbh Security element with an auxiliary inorganic layer
US6168100B1 (en) 1997-10-23 2001-01-02 Toyota Jidosha Kabushiki Kaisha Method for producing embossed metallic flakelets
US6013370A (en) 1998-01-09 2000-01-11 Flex Products, Inc. Bright metal flake
US6045230A (en) 1998-02-05 2000-04-04 3M Innovative Properties Company Modulating retroreflective article
EP0953937A1 (en) 1998-04-30 1999-11-03 Securency Pty. Ltd. Security element to prevent counterfeiting of value documents
US6031457A (en) 1998-06-09 2000-02-29 Flex Products, Inc. Conductive security article and method of manufacture
EP0978373B1 (en) 1998-08-06 2011-10-12 Sicpa Holding Sa Inorganic sheet for making pigments
US6576155B1 (en) 1998-11-10 2003-06-10 Biocrystal, Ltd. Fluorescent ink compositions comprising functionalized fluorescent nanocrystals
US6643001B1 (en) 1998-11-20 2003-11-04 Revco, Inc. Patterned platelets
US6157489A (en) 1998-11-24 2000-12-05 Flex Products, Inc. Color shifting thin film pigments
US6150022A (en) 1998-12-07 2000-11-21 Flex Products, Inc. Bright metal flake based pigments
US6692031B2 (en) 1998-12-31 2004-02-17 Mcgrew Stephen P. Quantum dot security device and method
MXPA00003207A (en) 1999-04-02 2002-03-08 Green Bay Packaging Inc Label adhesive with dispersed refractive particles.
US6761959B1 (en) 1999-07-08 2004-07-13 Flex Products, Inc. Diffractive surfaces with color shifting backgrounds
US6987590B2 (en) 2003-09-18 2006-01-17 Jds Uniphase Corporation Patterned reflective optical structures
US7047883B2 (en) 2002-07-15 2006-05-23 Jds Uniphase Corporation Method and apparatus for orienting magnetic flakes
US7604855B2 (en) 2002-07-15 2009-10-20 Jds Uniphase Corporation Kinematic images formed by orienting alignable flakes
US7517578B2 (en) 2002-07-15 2009-04-14 Jds Uniphase Corporation Method and apparatus for orienting magnetic flakes
US7667895B2 (en) 1999-07-08 2010-02-23 Jds Uniphase Corporation Patterned structures with optically variable effects
GB9917442D0 (en) 1999-07-23 1999-09-29 Rue De Int Ltd Security device
US6241858B1 (en) 1999-09-03 2001-06-05 Flex Products, Inc. Methods and apparatus for producing enhanced interference pigments
CA2386792A1 (en) 1999-10-07 2001-04-12 Gerald J. Gartner Security device with foil camouflaged magnetic regions and methods of making same
US6545809B1 (en) 1999-10-20 2003-04-08 Flex Products, Inc. Color shifting carbon-containing interference pigments
KR100739242B1 (en) 2000-01-21 2007-07-12 플렉스 프로덕츠, 인코포레이티드 Optically variable security devices
US6649256B1 (en) 2000-01-24 2003-11-18 General Electric Company Article including particles oriented generally along an article surface and method for making
FR2808478B1 (en) 2000-05-03 2002-07-19 Hologram Ind MEANS FOR SECURING A SUBSTRATE
DK1162243T3 (en) 2000-06-07 2005-11-21 Sicpa Holding Sa UV curable preparation
GB0015873D0 (en) 2000-06-28 2000-08-23 Rue De Int Ltd Optically variable security device
GB0015871D0 (en) 2000-06-28 2000-08-23 Rue De Int Ltd A security device
EP1174278B1 (en) 2000-07-11 2004-01-28 Oji Paper Co., Ltd. Antifalsification recording paper and paper support therefor
US6586098B1 (en) 2000-07-27 2003-07-01 Flex Products, Inc. Composite reflective flake based pigments comprising reflector layers on bothside of a support layer
US6686027B1 (en) 2000-09-25 2004-02-03 Agra Vadeko Inc. Security substrate for documents of value
US6565770B1 (en) * 2000-11-17 2003-05-20 Flex Products, Inc. Color-shifting pigments and foils with luminescent coatings
EP1239307A1 (en) 2001-03-09 2002-09-11 Sicpa Holding S.A. Magnetic thin film interference device
DE10114445A1 (en) 2001-03-23 2002-09-26 Eckart Standard Bronzepulver Flat metal oxide-covered white iron pigment used for paint and printing comprises substrate of reduced carbonyl iron powder and oxide coating of transparent or selectively absorbent metal oxide
US20020160194A1 (en) 2001-04-27 2002-10-31 Flex Products, Inc. Multi-layered magnetic pigments and foils
US6808806B2 (en) 2001-05-07 2004-10-26 Flex Products, Inc. Methods for producing imaged coated articles by using magnetic pigments
US6841238B2 (en) 2002-04-05 2005-01-11 Flex Products, Inc. Chromatic diffractive pigments and foils
US6749936B2 (en) 2001-12-20 2004-06-15 Flex Products, Inc. Achromatic multilayer diffractive pigments and foils
US6692830B2 (en) 2001-07-31 2004-02-17 Flex Products, Inc. Diffractive pigment flakes and compositions
US7625632B2 (en) 2002-07-15 2009-12-01 Jds Uniphase Corporation Alignable diffractive pigment flakes and method and apparatus for alignment and images formed therefrom
US6902807B1 (en) 2002-09-13 2005-06-07 Flex Products, Inc. Alignable diffractive pigment flakes
US6729656B2 (en) 2002-02-13 2004-05-04 T.S.D. Llc Debit card having applied personal identification number (PIN) and scratch-off coating and method of forming same
TWI228249B (en) 2002-05-28 2005-02-21 Tech Media Corp U Optical record medium having a scratching-off layer
US6815065B2 (en) 2002-05-31 2004-11-09 Flex Products, Inc. All-dielectric optical diffractive pigments
US7258900B2 (en) 2002-07-15 2007-08-21 Jds Uniphase Corporation Magnetic planarization of pigment flakes
US7674501B2 (en) 2002-09-13 2010-03-09 Jds Uniphase Corporation Two-step method of coating an article for security printing by application of electric or magnetic field
US7645510B2 (en) 2002-09-13 2010-01-12 Jds Uniphase Corporation Provision of frames or borders around opaque flakes for covert security applications
US7258915B2 (en) 2003-08-14 2007-08-21 Jds Uniphase Corporation Flake for covert security applications
US7241489B2 (en) 2002-09-13 2007-07-10 Jds Uniphase Corporation Opaque flake for covert security applications
US7169472B2 (en) 2003-02-13 2007-01-30 Jds Uniphase Corporation Robust multilayer magnetic pigments and foils
TWI334382B (en) 2003-07-14 2010-12-11 Flex Products Inc Vacuum roll coated security thin film interference products with overt and/or covert patterned layers
EP1516957A1 (en) 2003-09-17 2005-03-23 Hueck Folien Ges.m.b.H Security element with colored indicia
US7029525B1 (en) 2003-10-21 2006-04-18 The Standard Register Company Optically variable water-based inks
EP1529653A1 (en) 2003-11-07 2005-05-11 Sicpa Holding S.A. Security document, method for producing a security document and the use of a security document
US7252222B2 (en) 2003-12-19 2007-08-07 Scientific Game Royalty Corporation Embedded optical signatures in documents
US7229520B2 (en) 2004-02-26 2007-06-12 Film Technologies International, Inc. Method for manufacturing spandrel glass film with metal flakes
CA2523648C (en) 2004-10-20 2014-05-13 Jds Uniphase Corporation Alignment of paste-like ink having magnetic particles therein, and the printing of optical effects
EP1669213A1 (en) 2004-12-09 2006-06-14 Sicpa Holding S.A. Security element having a viewing-angle dependent aspect
CA2541568C (en) 2005-04-06 2014-05-13 Jds Uniphase Corporation Dynamic appearance-changing optical devices (dacod) printed in a shaped magnetic field including printable fresnel structures
EP1719636A1 (en) 2005-05-04 2006-11-08 Sicpa Holding S.A. Black-to-color shifting security element
DK1745940T3 (en) 2005-07-20 2014-03-03 Jds Uniphase Corp Two-step FOR COATING OF AN OBJECT OF SAFETY PRESSURE
EP1760118A3 (en) 2005-08-31 2008-07-09 JDS Uniphase Corporation Alignable diffractive pigment flakes and method for their alignment
CA2564764C (en) 2005-10-25 2014-05-13 Jds Uniphase Corporation Patterned optical structures with enhanced security feature

Also Published As

Publication number Publication date
KR101455778B1 (en) 2014-10-28
EP1878585B1 (en) 2014-03-19
US20080003413A1 (en) 2008-01-03
AU2007202710A1 (en) 2008-01-31
KR20080006478A (en) 2008-01-16
EP1878585A1 (en) 2008-01-16
CN101104346A (en) 2008-01-16
JP5209908B2 (en) 2013-06-12
US8118963B2 (en) 2012-02-21
ES2454642T3 (en) 2014-04-11
JP2008018427A (en) 2008-01-31
TWI437059B (en) 2014-05-11
TW200806768A (en) 2008-02-01
CA2592667C (en) 2014-05-13
CN101104346B (en) 2011-04-27

Similar Documents

Publication Publication Date Title
CA2592667C (en) Stamping a coating of cured field aligned special effect flakes and image formed thereby
EP1700640B1 (en) Engraved optically variable image device
US10029279B2 (en) Optical device having an illusive optical effect and method of fabrication
US7625632B2 (en) Alignable diffractive pigment flakes and method and apparatus for alignment and images formed therefrom
EP1537182B1 (en) Alignable diffractive pigment flakes
EP2308608B1 (en) Apparatus for orienting magnetic flakes
EP1760118A2 (en) Alignable diffractive pigment flakes and method for their alignment
IL197665A (en) Method and means for producing magnetically induced indicia in a coating containing magnetic particles
JP7271826B2 (en) Assembly and process for producing optical effect layers containing oriented magnetic or magnetisable pigment particles

Legal Events

Date Code Title Description
EEER Examination request