CA2618073A1 - Coupling assemblies for spinal implants - Google Patents

Coupling assemblies for spinal implants Download PDF

Info

Publication number
CA2618073A1
CA2618073A1 CA002618073A CA2618073A CA2618073A1 CA 2618073 A1 CA2618073 A1 CA 2618073A1 CA 002618073 A CA002618073 A CA 002618073A CA 2618073 A CA2618073 A CA 2618073A CA 2618073 A1 CA2618073 A1 CA 2618073A1
Authority
CA
Canada
Prior art keywords
implant
receiver
engaging
support surface
securing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002618073A
Other languages
French (fr)
Inventor
Fred J. Molz, Iv
Jeff R. Justis
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Warsaw Orthopedic Inc
Original Assignee
Warsaw Orthopedic, Inc.
Fred J. Molz, Iv
Jeff R. Justis
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Warsaw Orthopedic, Inc., Fred J. Molz, Iv, Jeff R. Justis filed Critical Warsaw Orthopedic, Inc.
Publication of CA2618073A1 publication Critical patent/CA2618073A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
    • A61B17/7001Screws or hooks combined with longitudinal elements which do not contact vertebrae
    • A61B17/7035Screws or hooks, wherein a rod-clamping part and a bone-anchoring part can pivot relative to each other
    • A61B17/7037Screws or hooks, wherein a rod-clamping part and a bone-anchoring part can pivot relative to each other wherein pivoting is blocked when the rod is clamped
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/74Devices for the head or neck or trochanter of the femur
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/44Joints for the spine, e.g. vertebrae, spinal discs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
    • A61B17/7001Screws or hooks combined with longitudinal elements which do not contact vertebrae
    • A61B17/7002Longitudinal elements, e.g. rods
    • A61B17/7004Longitudinal elements, e.g. rods with a cross-section which varies along its length
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
    • A61B17/7001Screws or hooks combined with longitudinal elements which do not contact vertebrae
    • A61B17/7002Longitudinal elements, e.g. rods
    • A61B17/7011Longitudinal element being non-straight, e.g. curved, angled or branched
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
    • A61B17/7001Screws or hooks combined with longitudinal elements which do not contact vertebrae
    • A61B17/7032Screws or hooks with U-shaped head or back through which longitudinal rods pass

Abstract

The forces exerted on a spinal implant (60) by one or more coupling assemblies (10, 110) are controlled to facilitate the use of the implant in spinal stabilization and other procedures. The coupling assemblies are structured to distribute the forces exerted on the implant while engaging the implant to the coupling assembly and providing at least one of a rigid, semi-rigid or variable engagement of the coupling assembly with one or more anatomical structures of the spinal column. The coupling assembly comprises an anchor member (12, 112) , a receiver member (20) receiving the implant, a seat member (30, 130) positioned between the implant and the anchor member and having an implant support surface (34) , and a securing member (40) with an implant engaging surface (54). The implant engaging surface is maintained in aligned relationship with the implant support surface.

Description

COUPLINCx ASSEMBLIES FOR SPINAL IMPLANTS

BACKGROUND
Spinal implants can be engaged to or along one or more vertebrae of the spinal column for the treatment of various spinal conditions. Fasteners can be provided to secure the implant to a particular location along the spinal column. The implants can be provide to stabilize the spinal column for treatinent, either by fixing the spinal column or by permitting at least some motion of the stabilized motion segments.
Coupling assemblies such as multi-axial and uni-axial screws have been employed for securing elongated implants, such as rods or plates, along one or more motion segments of the spinal column. Such screws can comprise many components or parts to secure the implant to the screw that make placement and manipulation during surgery cumbersome. Furthermore, coupling assemblies can be configured so that limited surface area contact is provided between implant and the coupling assembly, resulting in a less than optimal securement arrangement therebetween.

SUMMAR~.' According to one aspect, a system for stabilizing a bony segment comprises an implant and a coupling assembly engageable to the implant. The coupling assembly comprises an anchor member engageable to the bony segment and a receiver member extending from the anchor member that defines a passage for receiving the implant. The passage has a length between opposite end openings of the receiver member and the implant extends along the length through the end openings. The coupling assembly further includes a seat member positioned between the implant and the anchor member that includes a concave implant support surface. The coupling assembly also includes a securing member with a concave implant engaging surface. The securing member is threadingly engageable to a securing position in the receiver member while the implant engaging surface is maintained in aligned relation with the implant support surface. In the securing position, the implant is engaged along the length by the implant support surface and the implant engaging surface.
According to another aspect, a system for stabilizing a bony segment comprises an implant and a coupling assembly engageable to the implant. The coupling assembly comprises an anchor member engageable to the bony segment, a receiver member coupled to the anchor member that defines a passage for receiving the implant; a seat member positioned between the implant and the anchor member, and a securing member.
The seat member includes an implant support surface oriented toward the implant and the securing member includes an implant engaging surface. The securing member and implant engaging surface are axially moveable in the receiver member to position the implant in contact with the implant engaging surface and the implant support surface. The securing member engages the seat member to rotationally constrain the implant engaging surface relative to the implant support surface as the securing member is axially moved in the receiver member to engage the implant between the implant support surface and the implant engaging surface.
According to another aspect. a system for stabilizing a bony segment comprises an implant and a coupling assembly engageable to the implant. The coupling assembly includes an anchor member engageable to the bony segment; a receiver member coupled to the anchor member that defines a passage for receiving the implant; a seat member positioned between the implant and the anchor member, and a securing member.
The seat member includes an implant support surface oriented toward the implant and the securing member includes an implant engaging surface. One of the securing member and the seat member includes at least one axially extending side channel and the other of the securing member and the seat member includes at least one axially extending finger received in the at least one side channel as the securing member and the implant engaging surface are axially moved in the receiver member to engage the implant between the implant engaging surface and the implant support surface.
According to another aspect, a method for securing an implant to the spinal column comprises: engaging an anchor member to a vertebra; positioning an implant in a receiver member extending from the anchor member; engaging a securing member to the receiver member; threadingly advancing the securing member into the receiver member to contact the implant with an implant engaging surface of the securing member;
rotationally constraining the implant engaging surface as the securing member is threadingly advanced in the receiver member; and engaging the implant between the implant engaging surface and an implant support surface in the receiver member.
According to another aspect, a method for securing a spinal rod to an anchor member includes providing a coupling assembly sized for engagement with a vertebra.
The coupling assembly includes an anchor member engageable to the vertebra, a receiver member extending from said anchor member and defining a passage for receiving said rod, the receiver member further including an implant support surface along the passage, and a securing member including an implant engaging surface. The method further includes configuring the coupling assembly for engaging the spinal rod in the passage between the implant support surface and the implant engaging surface and limiting engagement stresses exerted on the rod by providing each of the implant engaging surface and the implant support surface in a configuration that conformingly contacts the rod to distribute engagement forces.
These and other aspects will be discussed further below.
BRIEF DESCRIPTION OF THE DRAWINGS
Fig. 1 is a perspective view of one embodiment coupling assembly.
Fig. 2 is the coupling assembly of Fig. 1 with an implant positioned for engagement with the coupling assembly.
Figs. 3A and 3B are partial sectional views of the coupling assembly of Fig. 1 with an implant extending therethrough.
Fig. 4 is an exploded view of another embodiment coupling assembly.
Fig. 5 is another section view of the coupling assembly of Fig. 4 with an implant extending therethrough.

DETAILED DESCRIPTION OF THE ILLUSTRATED EMBODIMENTS
For the purposes of promoting an understanding of the principles of the invention, reference will now be made to the embodiments illustrated in the drawings and specific language will be used to describe the same. It will nevertheless be understood that no limitation of the scope of the invention is thereby intended. Any such alterations and further modifications in the illustrated devices, and such further applications of the principles of the invention as illustrated herein are contemplated as would normally occur to one skilled in the art to which the invention relates.
Coupling assemblies are provided to secure one or more implants along the spinal column while providing a distributed exertion of forces by the coupling assembly on the implant. The coupling assemblies each include an anchor member for engaging the coupling assembly to an underlying bony structure, a receiver member for receiving the implant, and a securing member for securing the implant to the receiver member. The coupling assemblies also include a seat member in the receiver member, and the implant is secured between the seat member and the securing member. The seat member and securing member are structured to distribute the securing forces along and about the implant and align the engaging surfaces with one another to reduce or minimize concentration of stresses on the implant, which could result in an undesirable alteration of the implant or provide less than optimal securing arrangements with the coupling assembly.
Referring to Figs. 1-3B, there is shown a coupling assembly 10 including an anchor member 12, a receiver member 20 coupled to anchor member 12, and a securing member 40. Anchor member 12 and receiver member 20 include a non-pivoted orientation shown in Figs. 3A and 3B where each extends along a longitudinal axis 11.
Anchor member 12 can be pivotal relative to receiver member 20 to any one of an infinite number of positions defining a cone about axis 11. Non-pivotal and fixed arrangements between anchor member 12 and receiver member 20 are also contemplated.
An implant 60 is positionable on, in or about receiver member 20, and securing member 40 is movable relative to implant 60 and receiver member 20 to secure implant 60 to coupling assembly 10. Coupling assembly 10 includes a seat member 30 between anchor member 12 and implant 60 that includes an implant support surface for contacting and supporting implant 60. The implant can be engaged along one or more vertebrae of the spinal column with one or more coupling assemblies 10 or any other type of fastener in combination with one or more coupling assemblies 10 to provide, for example, a spinal stabilization system.
Receiver member 20 includes a lower portion 22 in the form of a bowl that is configured to form a receptacle to receive a head 18 of anchor member 12 therein. Head 18 of anchor member 12 is pivotally captured and retained in receiver member 20 with a retaining clip 19. Other means for securing anchor member 12 in receiver member 20 are also contemplated, including forining the lower opening of receiver member 20 to retain head 18, providing retaining structures such as collars, washers, bushings, or other devices.
A pair of arms 24 extend axially from opposite sides of lower portion 22 to form a saddle arrangement to receive implant 60 and engage securing member 50.
Receiver member 20 further includes seat member 30 positioned between arms 24 adjacent head 18 of anchor member 12. In one embodiment, seat member 30 includes a distally oriented socket 32 that pivotally receives head 18. Opposing arms 24 define an implant receiving portion 21 therebetween that is sized to receive implant 60 proximally of seat member 30.
Arms 24 can each include an internal thread profile to threadingly engage securing 5 member 40, although other engagement structures to engage securing member 40 and receiver member 20 to one another are contemplated. Arms 24 also each include a hole 28 to receive and facilitate engagement by and manipulation with insertion and/or reduction instrumentation (not shown.) Securing member 40 is movably engageable with receiver member 20 to secure implant 60 in engagement with seat member 30. Securing member 40 can include a proximal break-off portion 42 and a receiver engaging portion 44, although embodiments without break-off portion 42 are contemplated. Receiver engaging portion 44 is illustrated as an externally threaded set screw that engages the internal thread profile along arms 24, although other configurations are contemplated.
A proximally opening first tool recess 46 is formed in break-off portion 42, and a proximally opening second tool recess 48 is formed in receiver engaging portion 44 adjacent to and in communication with first tool recess 46. A driving tool in first tool recess 46 can be manipulated to move securing member 40 relative to receiver member 20 and into engagement with implant 60 until sufficient resistance to movement of securing member 40 is encountered to create torque to remove break-off portion 42.
Second tool recess 48 is accessible to allow a tool to be positioned therein to apply force to tighten or loosen securing member 40 even when break-off portion 42 is removed.
Securing member 40 further comprises a distal implant engaging portion 50 that is mounted to and rotatable relative to engaging portion 44. In the illustrated embodiment, implant engaging portion 50 includes a coupling arm 55 extending proximally therefrom.
Coupling arm 55 is received and axially constrained in central opening 45 of receiver engaging portion 44. In the illustrated embodiment, as shown in further detail in Figs. 3B
and 5, coupling arm 55 includes a number of axially extending tabs with enlarged ends forming radially outwardly extending lips that contact a surface extending about central opening 45 to axially restrain and rotatably capture implant engaging portion 50 on receiver engaging portion 44. Accordingly, as receiver engaging portion 44 is threadingly engaged along arms 24, distal implant engaging portion 50 can advance linearly toward implant 60.
Implant engaging portion 50 includes opposite distal extensions 51 each defining a distally oriented end surface 52. Extensions 51 extend along opposite sides of implant 60 when implant engaging surface 54 is positioned against implant 60. Extensions rotationally constrain implant engaging portion 50 by contacting implant 60 as receiver engaging portion 44 is engaged to and moved axially along receiver member 20.
An implant engaging surface 54 extends between distal extensions 51, forming a distally oriented U-shaped surface that is positioned substantially entirely in contact with the proximally directed portion of the outer surface of implant 60. In the illustrated embodiment, implant engaging surface 54 is concavely curved, although non-curved shapes are also contemplated.
Seat member 30 includes a central opening 37 that is in communication with head 18 of anchor member 12 to receive a driving tool (not shown) to apply a driving force to anchor member 12. Seat member 30 includes a proximally oriented implant support surface 34 defining a lower or distal portion of implant receiving portion 21.
Implant support surface 34 extends between proximal extensions 36, forming a proximally oriented U-shaped surface that is positioned substantially entirely in contact with the distally oriented portion of the outer surface of implant 60. In the illustrated embodiment, implant support surface 34 is concavely curved, although non-curved shapes are also contemplated. Implant support surface 34 is defined at least in part by proximal extensions 36 of seat member 30.
Proximal extensions 36 each include a proximally oriented end surface 38.
Surfaces 38, 52 are aligned with one another when coupling assembly 10 is assembled and implant 60 is positioned between surfaces 34, 54. When implant engaging surface 54 and implant support surface 34 are positioned in contact with implant 60, proximal end surfaces 38 are spaced from the respective adjacent distal end surfaces 52 of securing member 40. This permits the full securing force applied to securing member 40 to be distributed to implant 60 between support surface 34 and engaging surface 54.
Implant support surface 34 and implant engaging surface 54 are moveable toward one another to an implant securing position where surfaces 34, 54 are positioned firmly in contact with implant 60. Extensions 36, 51 extend along the sides of implant 60, which in turn allows seat member 30 and implant engaging portion to self-align with implant 60 positioned therebetween. Surfaces 34, 54 are sized and shaped to extend about the respective proximally and distally directed outer surface portions of implant 60 so that the contact surface area is maximized. In one embodiment, implant 60 defines a length L
along implant receiving portion 21 and between the locations where implant 60 enters and exits the space between arms 24. Surfaces 34, 54 extend along substantially the entirety of this length L of implant 60 to maxirnize surface area contact with implant 60.
In use, anchor member 12 is engaged to an underlying bony structure with receiver member 20 positioned to receive implant 60. Implant 60 is positioned in implant receiving portion 21 of receiver member 20 along or adjacent implant support surface 34 of seat member 30. In the illustrated embodiment, implant receiving portion 21 forms a passage extending along length L between the opposite end openings of arms 24 of receive member 20. Securing member 40 is engaged to receiver member 20, and advanced therealong until implant engaging surface 54 contacts implant 60. In this configuration, distal end surfaces 52 of implant engaging portion 50 are spaced from the respective aligned proximal end surfaces 38 of seat member 30. As securing member 40 is further advanced distally in receiver member 20, implant engaging portion 50 is maintained in contact with implant 60 while receiver engaging portion 44 is threadingly engaged with receiver member 20 until sufficient resistance is encountered to sever break-off portion 42.
As securing member 40 is further advanced distally in receiver member 20, it simultaneously moves seat member 30 distally. In one embodiment, this positions seat member 30 into contact with head 18 of anchor member 12 to rigidly fix anchor member 12 in receiver member 20. Other embodiments contemplate that anchor member 12 maintains a variable angle or semi-rigid arrangement relative to receiver member 20 even when securing member 40 and seat member 30 are firmly engaged to implant 60.
The surface areas of support surface 34 and engaging surface 54 in contact with implant 60 provide a desired frictional or clamping engagement with implant 60 to maintain implant 60 in position relative to coupling asseinbly 10, but distribute the forces applied to preserve, maintain or prevent substantial alteration of one or more desired characteristics of implant 60. For example, implant 60 can be made from a polymer material, and the force distribution prevents securing member 40 and or seat member 30 from piercing, punching, cutting, compressing, or otherwise deforming implant 60 in an undesired fashion. The characteristics of implant 60 for which alteration can be prevented or limited can include any one or combination of surface profile, cross-sectional size, cross-sectional shape, cross-sectional area, compression stress, and shear stress, for example.
Anchor member 12 in the illustrated embodiment is a bone screw and includes a shaft 14 having a thread profile 16 therealong and enlarged head 18 at a proximal end of anchor member 12. Head 18 includes a tool recess (not shown) to receive a driving tool to facilitate engagement of anchor member 12 to the underlying bone and ridges along an upper surface thereof that are engaged by seat member 30 to lock the anchor members 12 in position relative to receiver member 20. Various forms for anchor member 12 are contemplated, including threaded and non-threaded anchors, uni-axial and multi-axial arrangements, hooks, clamps, spikes, cables, interbody implants, fusion devices, non-cannulated screws, fenestrated screws, and bolts, for example.
Another embodiment coupling assembly 110 is shown in Figs. 4 and 5. Coupling assembly 110 is similar to coupling assembly 10, and identical components are indicated with the same reference numerals provided above for coupling assembly 10. In one form, coupling assembly 110 includes a seat member and an implant engaging portion that are rotationally constrained relative to one another and axially moveable relative toward one another until the implant is engaged therebetween.
Coupling assembly 110 includes an anchor member 112 in the form of a screw having a shaft 114 extending along a longitudinal axis I 11. Shaft 114 includes thread profile 116 and an enlarged head 118 at the proximal end of shaft 114. Shaft 114 includes a cannulation 117 extending along axis 111. Cannulation 117 opens into proximal tool recess 119 and also at the distal end of shaft 114. Cannulation 114 can facilitate placement of anchor member 112 over a guide wire or other guiding device, and to provide an avenue for delivery of bone cement or other therapeutic substances into the bone. Other embodiments contemplate that anchor member 112 does not include a cannulation 117. Still other embodiments contemplate any suitable form for the anchor member as discussed above with respect to anchor member 12.
Coupling assembly 110 includes a seat member 130 similar to seat member 30, but includes outwardly opening side channels 132 extending axially therealong on opposites sides thereof. Side channels 132 include proximally oriented surfaces 138 at the lower ends thereof. Securing member 40 includes another embodiment implant engaging portion 150 that is similar to implant engaging portion 50, but includes distally extending fingers 156 that are sized and spaced to be received in respective ones of the side channels 132 of seat member 130 with implant 60 between seat member 130 and implant engaging portion 150.
Distal end surfaces 152 of fingers 156 are spaced from the proximally oriented surfaces 138 of channels 132 to allow axial movement of seat member 130 and implant engaging portion 150 relative to one another. Receipt of fingers 156 in channels 132 rotationally constrains implant engaging portion 150 and seat member 130 relative to one another. The implant supporting surface 134 and implant engaging surface 154 are thus maintained in alignment with one another, facilitating placement of each of these surfaces in contact with the outer surfaces of implant 60 in an aligned manner.
In another embodiment, implant engaging portion 150 includes side channels, and seat member 130 includes proximally extending fingers positionable in the side channels.
In another embodiment, only one finger/channel interface is provided. In yet anotlier embodiment, more than two finger/channel interfaces are provided.
Implant 60 can be structured either alone or in combination with one or more other implants and/or coupling assemblies to provide a desired stabilization effect.
Implant 60 includes a characteristic for which it is desirable to control or limit the coupling forces exerted by coupling assembly 10, 110 on implant 60. For example, implant 60 can be made from a material that can be damaged, deformed, or otherwise undesirably altered when securing member 40 is engaged with receiver member 20 in a manner that sufficiently secures implant 60 in receiver member 20.
In the illustrated embodiment, implant 60 is an elongated spinal rod structured to extend between at least two coupling assemblies 10, 110 to stabilize a motion segment between the at least two coupling assemblies. Various forms for implant 60 are contemplated, including rods, tethers, cables, wires, plates, and staples, for example. In one specific embodiment, implant 60 is a spinal rod comprised of any one or combination of plastic, polymer, tissue, fabric, or mesh material. Other embodiments contemplate that implant 60 can be made from any suitable biocompatible material. Implant 60 can have a length adapted to extend along multiple vertebral levels.
In spinal surgical procedures, implant 60 and the coupling assemblies 10, 110 discussed herein may be employed unilaterally. Alternatively, a second implant 60 and coupling assemblies 10, 110 can be secured to the other side of the vertebral level or levels to be stabilized. Multiple implants 60 and corresponding coupling assemblies 10, 110 can be secured along the same side of the spinal column in either uni-lateral or bi-lateral stabilization procedures.

In one technique, the underlying bone forms a portion of a vertebral body of the spinal column. The underlying bone can be a part of the anterior, oblique, antero-lateral, lateral or posterior vertebral elements, including the pedicle, spinous process, transverse processes, lamina or facet, for example. Applications in techniques along any portion or 5 portions of the spinal column are contemplated, including the cervical, thoracic, lumbar and sacral regions. The coupling assemblies and implants can be positioned along the spinal column in invasive procedures where skin and tissue are dissected and retracted to expose the implant locations, or in minimally invasive procedures where one or more the anchor assemblies and implants are guided through at least the tissue or access portals 10 adjacent the column to the desired implantation location.
While the invention has been illustrated and described in detail in the drawings and foregoing description, the same is to be considered as illustrative and not restrictive in character, it being understood that only the preferred embodiment has been shown and described and that all changes and modifications that come within the spirit of the invention are desired to be protected.

Claims (38)

1. A system for stabilizing a bony segment, comprising:
an implant;
a coupling assembly engageable to said implant, wherein said coupling assembly comprises:
an anchor member engageable to the bony segment;
a receiver member extending from said anchor member and defining a passage for receiving said implant, said passage having a length between opposite end openings of said receiver member, said implant extending along said length and through said end openings;
a seat member positioned between said implant and said anchor member, said seat member including an implant support surface extending at least partially about said implant; and a securing member including an implant engaging surface extending at least partially about said implant, said securing member being engageable to a securing position in said receiver member while said implant engaging surface is maintained in aligned relation with said implant support surface, wherein in said securing position said implant is engaged along said length by said implant support surface and said implant engaging surface.
2. The system of claim 1, wherein:
said anchor member includes a screw having a head pivotally captured in said receiver member; and said seat member is positioned adjacent said head between said implant and said anchor member, said seat member including said implant support surface.
3. The system of claim 1, wherein the implant is an elongate spinal rod and said receiver member includes a lower portion for pivotally receiving said anchor member and pair of arms extending from said lower portion, said arms defining said passage for receiving the implant therethrough.
4. The system of claim 4, wherein said securing member includes a receiver engaging portion threadingly engageable with said receiver member and a distal implant engaging portion coupled to said receiver engaging portion and rotatable relative thereto, said implant engaging surface being formed on a distally oriented face of said implant engaging portion.
5. The system of claim 4, wherein:
said arms are internally threaded; and said receiver engaging portion includes an externally threaded body engageable to said arms.
6. The system of claim 5, wherein said securing member further includes an upper break-off portion extending proximally from said body, said break-off portion being severable from said body upon application of a threshold torque to said break-off portion.
7. The system of claim 4, wherein said receiver engaging portion includes a central opening extending therethrough and said implant engaging portion includes a coupling arm extending into said central opening and engaging said implant engaging portion in axial securement with said receiver engaging portion while permitting said implant engaging portion to rotate relative to said receiver engaging portion.
8. The system of claim 1, wherein said seat member includes:
a body defining a distally opening socket configured to pivotally receive said anchor member;
said implant support surface extending along said body on a proximal side of said body; and opposite extensions extending along opposite sides of said implant when said implant is positioned in contact with said implant support surface.
9. The system of claim 8, wherein said seat member includes a passage extending between said implant support surface and said socket.
10. The system of claim 9, wherein:
said anchor member includes a screw with an enlarged head received in a distal portion of said receiver member and a shaft extending distally from said head through a distally oriented opening of said receiver member; and said coupling assembly includes a clip engaged to said receiver member and positioned about said shaft adjacent a distal side of said head, said clip pivotally capturing said screw in said receiver member.
11. The system of claim 1, wherein:
said implant engaging surface is defined along a distal face of an implant engaging portion of said securing member; and with said implant positioned between said seat member and said implant engaging surface and with said securing member engaging to said receiver member, said implant engaging portion is rotationally constrained relative to said seat member and axially moveable towards and away from said implant.
12. The system of claim 11, wherein said seat member includes axially extending side channels on opposite sides thereof, and said implant engaging portion includes distally extending fingers on opposite sides thereof positionable in respective ones of said side channels.
13. The system of claim 12, wherein said side channels each include a proximally oriented end surface and said fingers each include a distally oriented end surface, said distally oriented end surfaces being spaced axially from a respective one of said proximally oriented end surfaces when said implant support surface and said implant engaging surface are in contact with said implant.
14. The system of claim 1, wherein said securing member is threadingly engages to said receiver member.
15. The system of claim 1, wherein said implant support surface and said implant engaging surface are each concave.
16. A system for stabilizing a bony segment, comprising:
an implant;
a coupling assembly engageable to said implant, wherein said coupling assembly comprises:
an anchor member engageable to the bony segment;
a receiver member coupled to said anchor member and defining a passage for receiving said implant;
a seat member positioned between said implant and said anchor member, said seat member including an implant support surface oriented toward said implant; and a securing member including an implant engaging surface, said securing member and said implant engaging surface being axially moveable in said receiver member to position said implant in contact with said implant engaging surface and said implant support surface, wherein said securing member engages said seat member to rotationally constrain said implant engaging surface relative to said implant support surface as said securing member is axially moved in said receiver member to engage said implant between said implant support surface and said implant engaging surface.
17. The system of claim 16, wherein:
said passage includes a length between opposite end openings of said receiver member, said implant extending along said length and through said end openings when positioned in said receiver member; and said implant support surface and said implant engaging surface are concave and extend along said length with said implant positioned in said receiver member.
18. The system of claim 16, wherein said implant engaging surface and said implant support surface each include a concave curvature positionable about a respective portion of said implant when in contact therewith.
19. The system of claim 16, wherein said seat member includes axially extending side channels on opposite sides thereof, and said securing member includes a distal implant engaging portion defining said implant engaging surface, said implant engaging portion including distally extending fingers on opposite sides thereof positionable in respective ones of said side channels.
20. The system of claim 19, wherein said side channels each include a proximally oriented end surface and said fingers each include a distally oriented end surface, said distally oriented end surfaces being spaced axially from a respective one of said proximally oriented end surfaces when said implant is engaged between said implant engaging portion and said seat member.
21. The system of claim 16, wherein the implant is an elongate spinal rod and said receiver member includes a lower portion for receiving said anchor member and pair of arms extending from said lower portion, said arms defining said passage for receiving the implant therethrough.
22. The system of claim 21, wherein said securing member includes a receiver engaging portion threadingly engageable with said receiver member and a distal implant engaging portion coupled to said receiver engaging portion and rotatable relative thereto, said implant engaging surface being formed on a distally oriented face of said implant engaging portion.
23. The system of claim 22, wherein:
said arms are internally threaded; and said receiver engaging portion includes an externally threaded body engageable to said arms.
24. The system of claim 16, wherein said seat member includes:
a body defining a distally opening socket configured to pivotally receive said anchor member;
said implant support surface extending along said body on a proximal side of said body; and opposite extensions extending along opposite sides of said implant when said implant is positioned in contact with said implant support surface.
25. A system for stabilizing a bony segment, comprising:
an implant;
a coupling assembly engageable to said implant, wherein said coupling assembly comprises:
an anchor member engageable to the bony segment;
a receiver member coupled to said anchor member and defining a passage for receiving said implant;
a seat member positioned between said implant and said anchor member, said seat member including an implant support surface oriented toward said implant; and a securing member including an implant engaging portion defining a distally facing implant engaging surface, wherein one of said implant engaging portion and said seat member includes at least one axially extending side channel and the other of said implant engaging portion and said seat member includes at least one axially extending finger received in said at least one side channel as said securing member and said implant engaging portion are axially moved in said receiver member to engage said implant between said implant engaging surface and said implant support surface.
26. The system of claim 25, wherein said at least one finger and said at least one channel engage one another to rotationally constrain said implant engaging surface relative to said implant support surface as said securing member is threadingly engaging in said receiver member.
27. The system of claim 26, wherein said at least one side channel includes a proximally oriented end surface and said at least one finger includes a distally oriented end surface, said distally oriented end surface being spaced axially from said proximally oriented end surface when said implant is engaged between said implant engaging portion and said seat member.
28. The system of claim 27, wherein said at least one side channel includes a pair of side channels and said at least one finger includes a pair of fingers, each of said fingers being received in a respective one of said side channels.
29. A method for securing an implant to the spinal column, comprising:
engaging an anchor member to a vertebra;
positioning an implant in a receiver member extending from the anchor member;
engaging a securing member to the receiver member;
threadingly advancing the securing member into the receiver member to contact the implant with an implant engaging surface of the securing member;
rotationally constraining the implant engaging surface as the securing member is threadingly advanced in the receiver member; and engaging the implant between the implant engaging surface and an implant support surface in the receiver member.
30. The method of claim 29, wherein engaging the implant fixes the anchor member in a position relative to the receiver member.
31. The method of claim 29, wherein the implant support surface is formed by a seat member in the receiver member, and rotationally constraining the implant engaging surface includes positioning at least one finger extending distally from the securing member into a side channel extending along the seat member.
32. The method of claim 31, wherein the securing member includes a receiver engaging portion threadingly engageable with the receiver member and an implant engaging portion engaged distally to and rotatable relative to the receiver engaging portion, said at least one finger extending from the implant engaging portion.
33. The method of claim 29, wherein positioning the implant includes positioning a spinal rod along the spinal column.
34. A method for securing a spinal rod to an anchor member, comprising:
providing a coupling assembly sized for engagement with a vertebra of an animal subject, wherein the coupling assembly includes:
an anchor member engageable to the vertebra, a receiver member extending from the anchor member defining a passage for receiving the rod, the receiver member further including an implant support surface along the passage, and a securing member including an implant engaging surface;
configuring the coupling assembly for engaging the rod in the passage between the implant support surface and the implant engaging surface; and limiting engagement stresses exerted on the rod by providing each of the implant engaging surface and the implant support surface in a configuration that conformingly contacts the rod to distribute engagement forces.
35. The method of claim 34, wherein the securing member is engageable to a securing position in the receiver member while the implant engaging surface is maintained in aligned relation with the implant support surface.
36. The method of claim 35, wherein said passage defines a length along which the rod extends when positioned therein, wherein in the securing position the rod is engaged along the length by each of the implant support surface and the implant engaging surface.
37. The method of claim 34, wherein the securing member is configured to engage the coupling assembly so that the implant engaging surface is rotationally constrained as the securing member is threadingly advanced in the receiver member.
38. The method of claim 37, wherein the implant support surface is formed by a seat member in the receiver member, and rotationally constraining the implant engaging surface includes positioning at least one finger extending distally from the securing member into a side channel extending along the seat member.
CA002618073A 2005-08-05 2006-07-26 Coupling assemblies for spinal implants Abandoned CA2618073A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11/197,799 US7625394B2 (en) 2005-08-05 2005-08-05 Coupling assemblies for spinal implants
US11/197,799 2005-08-05
PCT/US2006/028991 WO2007019060A1 (en) 2005-08-05 2006-07-26 Coupling assemblies for spinal implants

Publications (1)

Publication Number Publication Date
CA2618073A1 true CA2618073A1 (en) 2007-02-15

Family

ID=37454080

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002618073A Abandoned CA2618073A1 (en) 2005-08-05 2006-07-26 Coupling assemblies for spinal implants

Country Status (7)

Country Link
US (1) US7625394B2 (en)
EP (1) EP1922002B1 (en)
JP (1) JP2009502425A (en)
KR (1) KR101326119B1 (en)
AU (1) AU2006278736A1 (en)
CA (1) CA2618073A1 (en)
WO (1) WO2007019060A1 (en)

Families Citing this family (196)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7833250B2 (en) 2004-11-10 2010-11-16 Jackson Roger P Polyaxial bone screw with helically wound capture connection
US10258382B2 (en) * 2007-01-18 2019-04-16 Roger P. Jackson Rod-cord dynamic connection assemblies with slidable bone anchor attachment members along the cord
US10729469B2 (en) * 2006-01-09 2020-08-04 Roger P. Jackson Flexible spinal stabilization assembly with spacer having off-axis core member
US7862587B2 (en) 2004-02-27 2011-01-04 Jackson Roger P Dynamic stabilization assemblies, tool set and method
US8292926B2 (en) 2005-09-30 2012-10-23 Jackson Roger P Dynamic stabilization connecting member with elastic core and outer sleeve
US8353932B2 (en) 2005-09-30 2013-01-15 Jackson Roger P Polyaxial bone anchor assembly with one-piece closure, pressure insert and plastic elongate member
US20160242816A9 (en) * 2001-05-09 2016-08-25 Roger P. Jackson Dynamic spinal stabilization assembly with elastic bumpers and locking limited travel closure mechanisms
US8876868B2 (en) 2002-09-06 2014-11-04 Roger P. Jackson Helical guide and advancement flange with radially loaded lip
WO2006052796A2 (en) 2004-11-10 2006-05-18 Jackson Roger P Helical guide and advancement flange with break-off extensions
US6716214B1 (en) * 2003-06-18 2004-04-06 Roger P. Jackson Polyaxial bone screw with spline capture connection
US7621918B2 (en) 2004-11-23 2009-11-24 Jackson Roger P Spinal fixation tool set and method
US7377923B2 (en) 2003-05-22 2008-05-27 Alphatec Spine, Inc. Variable angle spinal screw assembly
US8377102B2 (en) 2003-06-18 2013-02-19 Roger P. Jackson Polyaxial bone anchor with spline capture connection and lower pressure insert
US8398682B2 (en) 2003-06-18 2013-03-19 Roger P. Jackson Polyaxial bone screw assembly
US7967850B2 (en) * 2003-06-18 2011-06-28 Jackson Roger P Polyaxial bone anchor with helical capture connection, insert and dual locking assembly
US8137386B2 (en) 2003-08-28 2012-03-20 Jackson Roger P Polyaxial bone screw apparatus
US8257398B2 (en) 2003-06-18 2012-09-04 Jackson Roger P Polyaxial bone screw with cam capture
US20110040338A1 (en) * 2003-08-28 2011-02-17 Jackson Roger P Polyaxial bone anchor having an open retainer with conical, cylindrical or curvate capture
US7776067B2 (en) 2005-05-27 2010-08-17 Jackson Roger P Polyaxial bone screw with shank articulation pressure insert and method
US7766915B2 (en) 2004-02-27 2010-08-03 Jackson Roger P Dynamic fixation assemblies with inner core and outer coil-like member
US8936623B2 (en) 2003-06-18 2015-01-20 Roger P. Jackson Polyaxial bone screw assembly
US7527638B2 (en) 2003-12-16 2009-05-05 Depuy Spine, Inc. Methods and devices for minimally invasive spinal fixation element placement
US7179261B2 (en) 2003-12-16 2007-02-20 Depuy Spine, Inc. Percutaneous access devices and bone anchor assemblies
US11419642B2 (en) 2003-12-16 2022-08-23 Medos International Sarl Percutaneous access devices and bone anchor assemblies
WO2005092218A1 (en) 2004-02-27 2005-10-06 Jackson Roger P Orthopedic implant rod reduction tool set and method
US11241261B2 (en) 2005-09-30 2022-02-08 Roger P Jackson Apparatus and method for soft spinal stabilization using a tensionable cord and releasable end structure
US7160300B2 (en) 2004-02-27 2007-01-09 Jackson Roger P Orthopedic implant rod reduction tool set and method
US8152810B2 (en) 2004-11-23 2012-04-10 Jackson Roger P Spinal fixation tool set and method
US7651502B2 (en) 2004-09-24 2010-01-26 Jackson Roger P Spinal fixation tool set and method for rod reduction and fastener insertion
US8025680B2 (en) 2004-10-20 2011-09-27 Exactech, Inc. Systems and methods for posterior dynamic stabilization of the spine
US7935134B2 (en) * 2004-10-20 2011-05-03 Exactech, Inc. Systems and methods for stabilization of bone structures
US20070239159A1 (en) * 2005-07-22 2007-10-11 Vertiflex, Inc. Systems and methods for stabilization of bone structures
US8267969B2 (en) * 2004-10-20 2012-09-18 Exactech, Inc. Screw systems and methods for use in stabilization of bone structures
US8226690B2 (en) 2005-07-22 2012-07-24 The Board Of Trustees Of The Leland Stanford Junior University Systems and methods for stabilization of bone structures
US8162985B2 (en) * 2004-10-20 2012-04-24 The Board Of Trustees Of The Leland Stanford Junior University Systems and methods for posterior dynamic stabilization of the spine
JP2008517733A (en) * 2004-10-25 2008-05-29 アルファスパイン インコーポレイテッド Pedicle screw system and assembly / installation method of the system
US8926672B2 (en) 2004-11-10 2015-01-06 Roger P. Jackson Splay control closure for open bone anchor
US8308782B2 (en) 2004-11-23 2012-11-13 Jackson Roger P Bone anchors with longitudinal connecting member engaging inserts and closures for fixation and optional angulation
US9980753B2 (en) 2009-06-15 2018-05-29 Roger P Jackson pivotal anchor with snap-in-place insert having rotation blocking extensions
US9168069B2 (en) 2009-06-15 2015-10-27 Roger P. Jackson Polyaxial bone anchor with pop-on shank and winged insert with lower skirt for engaging a friction fit retainer
US9216041B2 (en) 2009-06-15 2015-12-22 Roger P. Jackson Spinal connecting members with tensioned cords and rigid sleeves for engaging compression inserts
US7875065B2 (en) * 2004-11-23 2011-01-25 Jackson Roger P Polyaxial bone screw with multi-part shank retainer and pressure insert
US8444681B2 (en) 2009-06-15 2013-05-21 Roger P. Jackson Polyaxial bone anchor with pop-on shank, friction fit retainer and winged insert
WO2006057837A1 (en) 2004-11-23 2006-06-01 Jackson Roger P Spinal fixation tool attachment structure
US9393047B2 (en) 2009-06-15 2016-07-19 Roger P. Jackson Polyaxial bone anchor with pop-on shank and friction fit retainer with low profile edge lock
US10076361B2 (en) 2005-02-22 2018-09-18 Roger P. Jackson Polyaxial bone screw with spherical capture, compression and alignment and retention structures
US7901437B2 (en) 2007-01-26 2011-03-08 Jackson Roger P Dynamic stabilization member with molded connection
US8273086B2 (en) * 2005-03-24 2012-09-25 Depuy Spine, Inc. Low profile spinal tethering devices
WO2006116606A2 (en) * 2005-04-27 2006-11-02 James Marino Mono-planar pedilcle screw method, system, and kit
US8523865B2 (en) 2005-07-22 2013-09-03 Exactech, Inc. Tissue splitter
US7717943B2 (en) 2005-07-29 2010-05-18 X-Spine Systems, Inc. Capless multiaxial screw and spinal fixation assembly and method
US20080140076A1 (en) * 2005-09-30 2008-06-12 Jackson Roger P Dynamic stabilization connecting member with slitted segment and surrounding external elastomer
US8105368B2 (en) 2005-09-30 2012-01-31 Jackson Roger P Dynamic stabilization connecting member with slitted core and outer sleeve
US8057519B2 (en) * 2006-01-27 2011-11-15 Warsaw Orthopedic, Inc. Multi-axial screw assembly
US7833252B2 (en) 2006-01-27 2010-11-16 Warsaw Orthopedic, Inc. Pivoting joints for spinal implants including designed resistance to motion and methods of use
US7722652B2 (en) 2006-01-27 2010-05-25 Warsaw Orthopedic, Inc. Pivoting joints for spinal implants including designed resistance to motion and methods of use
US8361129B2 (en) 2006-04-28 2013-01-29 Depuy Spine, Inc. Large diameter bone anchor assembly
US7914559B2 (en) * 2006-05-30 2011-03-29 Warsaw Orthopedic, Inc. Locking device and method employing a posted member to control positioning of a stabilization member of a bone stabilization system
US20070288003A1 (en) * 2006-05-30 2007-12-13 Dewey Jonathan M Locking device and method, for use in a bone stabilization system, employing a break-away interface member rigidly coupled to a seating member
US8043337B2 (en) 2006-06-14 2011-10-25 Spartek Medical, Inc. Implant system and method to treat degenerative disorders of the spine
EP1891904B1 (en) * 2006-08-24 2013-12-25 Biedermann Technologies GmbH & Co. KG Bone anchoring device
US7766942B2 (en) * 2006-08-31 2010-08-03 Warsaw Orthopedic, Inc. Polymer rods for spinal applications
US20080077143A1 (en) * 2006-09-25 2008-03-27 Zimmer Spine, Inc. Apparatus for connecting a longitudinal member to a bone portion
US8096996B2 (en) 2007-03-20 2012-01-17 Exactech, Inc. Rod reducer
US8105382B2 (en) 2006-12-07 2012-01-31 Interventional Spine, Inc. Intervertebral implant
EP2088945A4 (en) 2006-12-08 2010-02-17 Roger P Jackson Tool system for dynamic spinal implants
US20080161853A1 (en) * 2006-12-28 2008-07-03 Depuy Spine, Inc. Spine stabilization system with dynamic screw
US8366745B2 (en) * 2007-05-01 2013-02-05 Jackson Roger P Dynamic stabilization assembly having pre-compressed spacers with differential displacements
US8475498B2 (en) * 2007-01-18 2013-07-02 Roger P. Jackson Dynamic stabilization connecting member with cord connection
US8435268B2 (en) * 2007-01-19 2013-05-07 Reduction Technologies, Inc. Systems, devices and methods for the correction of spinal deformities
US10792074B2 (en) 2007-01-22 2020-10-06 Roger P. Jackson Pivotal bone anchor assemly with twist-in-place friction fit insert
US20080195153A1 (en) * 2007-02-08 2008-08-14 Matthew Thompson Dynamic spinal deformity correction
WO2008119006A1 (en) * 2007-03-27 2008-10-02 Alpinespine Llc Pedicle screw system configured to receive a straight or a curved rod
US10383660B2 (en) 2007-05-01 2019-08-20 Roger P. Jackson Soft stabilization assemblies with pretensioned cords
US8197517B1 (en) 2007-05-08 2012-06-12 Theken Spine, Llc Frictional polyaxial screw assembly
US8048115B2 (en) 2007-06-05 2011-11-01 Spartek Medical, Inc. Surgical tool and method for implantation of a dynamic bone anchor
US8070776B2 (en) 2007-06-05 2011-12-06 Spartek Medical, Inc. Deflection rod system for use with a vertebral fusion implant for dynamic stabilization and motion preservation spinal implantation system and method
US8092501B2 (en) 2007-06-05 2012-01-10 Spartek Medical, Inc. Dynamic spinal rod and method for dynamic stabilization of the spine
US8083772B2 (en) 2007-06-05 2011-12-27 Spartek Medical, Inc. Dynamic spinal rod assembly and method for dynamic stabilization of the spine
US8021396B2 (en) 2007-06-05 2011-09-20 Spartek Medical, Inc. Configurable dynamic spinal rod and method for dynamic stabilization of the spine
US8147520B2 (en) * 2007-06-05 2012-04-03 Spartek Medical, Inc. Horizontally loaded dynamic stabilization and motion preservation spinal implantation system and method
US8105359B2 (en) * 2007-06-05 2012-01-31 Spartek Medical, Inc. Deflection rod system for a dynamic stabilization and motion preservation spinal implantation system and method
US8048121B2 (en) 2007-06-05 2011-11-01 Spartek Medical, Inc. Spine implant with a defelction rod system anchored to a bone anchor and method
US8114134B2 (en) 2007-06-05 2012-02-14 Spartek Medical, Inc. Spinal prosthesis having a three bar linkage for motion preservation and dynamic stabilization of the spine
US8900307B2 (en) 2007-06-26 2014-12-02 DePuy Synthes Products, LLC Highly lordosed fusion cage
EP2471493A1 (en) 2008-01-17 2012-07-04 Synthes GmbH An expandable intervertebral implant and associated method of manufacturing the same
US8007522B2 (en) 2008-02-04 2011-08-30 Depuy Spine, Inc. Methods for correction of spinal deformities
US8057515B2 (en) 2008-02-26 2011-11-15 Spartek Medical, Inc. Load-sharing anchor having a deflectable post and centering spring and method for dynamic stabilization of the spine
US20100030224A1 (en) 2008-02-26 2010-02-04 Spartek Medical, Inc. Surgical tool and method for connecting a dynamic bone anchor and dynamic vertical rod
US8211155B2 (en) 2008-02-26 2012-07-03 Spartek Medical, Inc. Load-sharing bone anchor having a durable compliant member and method for dynamic stabilization of the spine
US8016861B2 (en) 2008-02-26 2011-09-13 Spartek Medical, Inc. Versatile polyaxial connector assembly and method for dynamic stabilization of the spine
US8337536B2 (en) 2008-02-26 2012-12-25 Spartek Medical, Inc. Load-sharing bone anchor having a deflectable post with a compliant ring and method for stabilization of the spine
US8333792B2 (en) 2008-02-26 2012-12-18 Spartek Medical, Inc. Load-sharing bone anchor having a deflectable post and method for dynamic stabilization of the spine
US8083775B2 (en) 2008-02-26 2011-12-27 Spartek Medical, Inc. Load-sharing bone anchor having a natural center of rotation and method for dynamic stabilization of the spine
US8097024B2 (en) 2008-02-26 2012-01-17 Spartek Medical, Inc. Load-sharing bone anchor having a deflectable post and method for stabilization of the spine
US8267979B2 (en) 2008-02-26 2012-09-18 Spartek Medical, Inc. Load-sharing bone anchor having a deflectable post and axial spring and method for dynamic stabilization of the spine
BRPI0910325A8 (en) 2008-04-05 2019-01-29 Synthes Gmbh expandable intervertebral implant
CA2739997C (en) 2008-08-01 2013-08-13 Roger P. Jackson Longitudinal connecting member with sleeved tensioned cords
US8870924B2 (en) * 2008-09-04 2014-10-28 Zimmer Spine, Inc. Dynamic vertebral fastener
WO2010028287A2 (en) 2008-09-05 2010-03-11 Synthes Usa, Llc Bone fixation assembly
US20100087873A1 (en) * 2008-10-06 2010-04-08 Warsaw Orthopedics, Inc. Surgical Connectors for Attaching an Elongated Member to a Bone
US8382809B2 (en) * 2008-10-17 2013-02-26 Omni Surgical Poly-axial pedicle screw implements and lock screw therefor
EP2191780B1 (en) 2008-11-28 2013-01-16 Biedermann Technologies GmbH & Co. KG Receiving part for receiving a rod for coupling the rod to a bone anchoring element and a bone anchoring device with such a receiving part
US9526620B2 (en) 2009-03-30 2016-12-27 DePuy Synthes Products, Inc. Zero profile spinal fusion cage
JP2012524623A (en) 2009-04-23 2012-10-18 スパイナル・エレメンツ・インコーポレーテッド Lateral connector
WO2010144458A1 (en) * 2009-06-08 2010-12-16 Reduction Technologies Inc. Systems, methods and devices for correcting spinal deformities
US9668771B2 (en) 2009-06-15 2017-06-06 Roger P Jackson Soft stabilization assemblies with off-set connector
US11229457B2 (en) 2009-06-15 2022-01-25 Roger P. Jackson Pivotal bone anchor assembly with insert tool deployment
US8998959B2 (en) 2009-06-15 2015-04-07 Roger P Jackson Polyaxial bone anchors with pop-on shank, fully constrained friction fit retainer and lock and release insert
CN103826560A (en) 2009-06-15 2014-05-28 罗杰.P.杰克逊 Polyaxial bone anchor with pop-on shank and winged insert with friction fit compressive collet
US8236035B1 (en) * 2009-06-16 2012-08-07 Bedor Bernard M Spinal fixation system and method
US20110082338A1 (en) * 2009-10-01 2011-04-07 Tyco Healthcare Group Lp Port fixation with varying thread pitch
WO2011043805A1 (en) 2009-10-05 2011-04-14 Roger Jackson P Polyaxial bone anchor with non-pivotable retainer and pop-on shank, some with friction fit
US8361123B2 (en) * 2009-10-16 2013-01-29 Depuy Spine, Inc. Bone anchor assemblies and methods of manufacturing and use thereof
US9028553B2 (en) 2009-11-05 2015-05-12 DePuy Synthes Products, Inc. Self-pivoting spinal implant and associated instrumentation
CN102695465A (en) 2009-12-02 2012-09-26 斯帕泰克医疗股份有限公司 Low profile spinal prosthesis incorporating a bone anchor having a deflectable post and a compound spinal rod
US9393129B2 (en) 2009-12-10 2016-07-19 DePuy Synthes Products, Inc. Bellows-like expandable interbody fusion cage
US20110307015A1 (en) 2010-06-10 2011-12-15 Spartek Medical, Inc. Adaptive spinal rod and methods for stabilization of the spine
US8992544B2 (en) * 2010-06-14 2015-03-31 Orthopaedic International, Inc. Tool and set screw for use in spinal implant systems
US8979860B2 (en) 2010-06-24 2015-03-17 DePuy Synthes Products. LLC Enhanced cage insertion device
US9282979B2 (en) 2010-06-24 2016-03-15 DePuy Synthes Products, Inc. Instruments and methods for non-parallel disc space preparation
EP2588034B1 (en) 2010-06-29 2018-01-03 Synthes GmbH Distractible intervertebral implant
US9084634B1 (en) 2010-07-09 2015-07-21 Theken Spine, Llc Uniplanar screw
US10603083B1 (en) 2010-07-09 2020-03-31 Theken Spine, Llc Apparatus and method for limiting a range of angular positions of a screw
JP2013540468A (en) 2010-09-08 2013-11-07 ロジャー・ピー・ジャクソン Dynamic fixing member having an elastic part and an inelastic part
US8961569B2 (en) 2010-10-04 2015-02-24 Genesys Spine Locking pedicle screw devices, methods, and systems
US9402732B2 (en) 2010-10-11 2016-08-02 DePuy Synthes Products, Inc. Expandable interspinous process spacer implant
GB2502449A (en) 2010-11-02 2013-11-27 Roger P Jackson Polyaxial bone anchor with pop-on shank and pivotable retainer
US20120116458A1 (en) * 2010-11-08 2012-05-10 Warsaw Orthopedic, Inc. Modular pivotable screw assembly and method
US9044274B2 (en) * 2010-12-01 2015-06-02 Amendia, Inc. Bone screw system
US9358122B2 (en) 2011-01-07 2016-06-07 K2M, Inc. Interbody spacer
EP3485851B1 (en) 2011-03-22 2021-08-25 DePuy Synthes Products, LLC Universal trial for lateral cages
JP5865479B2 (en) 2011-03-24 2016-02-17 ロジャー・ピー・ジャクソン Multiaxial bone anchor with compound joint and pop-mounted shank
US9060818B2 (en) 2011-09-01 2015-06-23 DePuy Synthes Products, Inc. Bone implants
EP2586391B1 (en) * 2011-10-28 2014-08-13 Biedermann Technologies GmbH & Co. KG A locking assembly for a polyaxial bone anchoring device
US8911479B2 (en) 2012-01-10 2014-12-16 Roger P. Jackson Multi-start closures for open implants
US8430916B1 (en) 2012-02-07 2013-04-30 Spartek Medical, Inc. Spinal rod connectors, methods of use, and spinal prosthesis incorporating spinal rod connectors
US20130218213A1 (en) * 2012-02-22 2013-08-22 Zimmer Spine, Inc. Bone screw including a dual thread closure member
US9427260B2 (en) * 2012-03-01 2016-08-30 Globus Medical, Inc. Closed-head polyaxial and monaxial screws
US9226764B2 (en) 2012-03-06 2016-01-05 DePuy Synthes Products, Inc. Conformable soft tissue removal instruments
ES2552987T3 (en) 2012-07-03 2015-12-03 Biedermann Technologies Gmbh & Co. Kg Polyaxial bone anchoring device
US9782204B2 (en) 2012-09-28 2017-10-10 Medos International Sarl Bone anchor assemblies
US9101426B2 (en) 2012-10-11 2015-08-11 Stryker Trauma Sa Cable plug
US8911478B2 (en) 2012-11-21 2014-12-16 Roger P. Jackson Splay control closure for open bone anchor
US10022245B2 (en) 2012-12-17 2018-07-17 DePuy Synthes Products, Inc. Polyaxial articulating instrument
US9358046B2 (en) * 2012-12-31 2016-06-07 Globus Medical, Inc. Rod coupling system and devices and methods of making and using the same
US10058354B2 (en) 2013-01-28 2018-08-28 Roger P. Jackson Pivotal bone anchor assembly with frictional shank head seating surfaces
US9579125B2 (en) * 2013-02-09 2017-02-28 Vertiscrew, Llc Bone screw
US8852239B2 (en) 2013-02-15 2014-10-07 Roger P Jackson Sagittal angle screw with integral shank and receiver
US9522070B2 (en) 2013-03-07 2016-12-20 Interventional Spine, Inc. Intervertebral implant
US20140277153A1 (en) 2013-03-14 2014-09-18 DePuy Synthes Products, LLC Bone Anchor Assemblies and Methods With Improved Locking
US9259247B2 (en) 2013-03-14 2016-02-16 Medos International Sarl Locking compression members for use with bone anchor assemblies and methods
US9724145B2 (en) 2013-03-14 2017-08-08 Medos International Sarl Bone anchor assemblies with multiple component bottom loading bone anchors
US9775660B2 (en) 2013-03-14 2017-10-03 DePuy Synthes Products, Inc. Bottom-loading bone anchor assemblies and methods
US10342582B2 (en) 2013-03-14 2019-07-09 DePuy Synthes Products, Inc. Bone anchor assemblies and methods with improved locking
US9566092B2 (en) 2013-10-29 2017-02-14 Roger P. Jackson Cervical bone anchor with collet retainer and outer locking sleeve
US9717533B2 (en) 2013-12-12 2017-08-01 Roger P. Jackson Bone anchor closure pivot-splay control flange form guide and advancement structure
US9451993B2 (en) 2014-01-09 2016-09-27 Roger P. Jackson Bi-radial pop-on cervical bone anchor
US10064658B2 (en) 2014-06-04 2018-09-04 Roger P. Jackson Polyaxial bone anchor with insert guides
US9597119B2 (en) 2014-06-04 2017-03-21 Roger P. Jackson Polyaxial bone anchor with polymer sleeve
US10499968B2 (en) 2014-08-08 2019-12-10 Stryker European Holdings I, Llc Cable plugs for bone plates
US11426290B2 (en) 2015-03-06 2022-08-30 DePuy Synthes Products, Inc. Expandable intervertebral implant, system, kit and method
JP6542552B2 (en) 2015-03-17 2019-07-10 Toyo Tire株式会社 Shaft spring with fire protection cover
JP2016173129A (en) 2015-03-17 2016-09-29 東洋ゴム工業株式会社 Air spring with fireproof cover
US9968378B1 (en) * 2015-07-22 2018-05-15 University Of South Florida Adaptation sphere saddle
US10624679B2 (en) * 2016-03-29 2020-04-21 Globus Medical, Inc. Revision connectors, systems and methods thereof
US11596522B2 (en) 2016-06-28 2023-03-07 Eit Emerging Implant Technologies Gmbh Expandable and angularly adjustable intervertebral cages with articulating joint
US11510788B2 (en) 2016-06-28 2022-11-29 Eit Emerging Implant Technologies Gmbh Expandable, angularly adjustable intervertebral cages
KR102468226B1 (en) * 2017-03-10 2022-11-17 유니버시티 오브 워싱톤 Method and system for measuring and evaluating the stability of medical implants
US10398563B2 (en) 2017-05-08 2019-09-03 Medos International Sarl Expandable cage
US11344424B2 (en) 2017-06-14 2022-05-31 Medos International Sarl Expandable intervertebral implant and related methods
US10966843B2 (en) 2017-07-18 2021-04-06 DePuy Synthes Products, Inc. Implant inserters and related methods
US10610265B1 (en) 2017-07-31 2020-04-07 K2M, Inc. Polyaxial bone screw with increased angulation
US11045331B2 (en) 2017-08-14 2021-06-29 DePuy Synthes Products, Inc. Intervertebral implant inserters and related methods
US10507043B1 (en) 2017-10-11 2019-12-17 Seaspine Orthopedics Corporation Collet for a polyaxial screw assembly
CN108186094A (en) * 2018-02-10 2018-06-22 吉林百恩医疗器械科技有限公司 A kind of novel fast insertion type galianconism multi-axial screws
US11806250B2 (en) 2018-02-22 2023-11-07 Warsaw Orthopedic, Inc. Expandable spinal implant system and method of using same
EP3536271B1 (en) 2018-03-06 2022-05-04 Biedermann Technologies GmbH & Co. KG Polyaxial bone anchoring device and system of an instrument and a polyaxial bone anchoring device
US11446156B2 (en) 2018-10-25 2022-09-20 Medos International Sarl Expandable intervertebral implant, inserter instrument, and related methods
US11298163B2 (en) 2019-04-22 2022-04-12 Warsaw Orthopedic, Inc. Internal breakoff set screw and driver
US11426286B2 (en) 2020-03-06 2022-08-30 Eit Emerging Implant Technologies Gmbh Expandable intervertebral implant
US11311316B2 (en) * 2020-09-04 2022-04-26 Warsaw Orthopedic, Inc. Spinal implant system and methods of use
US11395743B1 (en) 2021-05-04 2022-07-26 Warsaw Orthopedic, Inc. Externally driven expandable interbody and related methods
US11617658B2 (en) 2020-11-05 2023-04-04 Warsaw Orthopedic, Inc. Expandable inter-body device, system and method
US11833059B2 (en) 2020-11-05 2023-12-05 Warsaw Orthopedic, Inc. Expandable inter-body device, expandable plate system, and associated methods
US11517443B2 (en) 2020-11-05 2022-12-06 Warsaw Orthopedic, Inc. Dual wedge expandable implant, system and method of use
US11638653B2 (en) 2020-11-05 2023-05-02 Warsaw Orthopedic, Inc. Surgery instruments with a movable handle
US11291554B1 (en) 2021-05-03 2022-04-05 Medtronic, Inc. Unibody dual expanding interbody implant
US11376134B1 (en) 2020-11-05 2022-07-05 Warsaw Orthopedic, Inc. Dual expanding spinal implant, system, and method of use
US11285014B1 (en) 2020-11-05 2022-03-29 Warsaw Orthopedic, Inc. Expandable inter-body device, system, and method
US11517357B2 (en) 2021-02-03 2022-12-06 Warsaw Orthopedic, Inc. Combination set screw breakoff and tab breaker instrument
US11850160B2 (en) 2021-03-26 2023-12-26 Medos International Sarl Expandable lordotic intervertebral fusion cage
US11752009B2 (en) 2021-04-06 2023-09-12 Medos International Sarl Expandable intervertebral fusion cage
US11612499B2 (en) 2021-06-24 2023-03-28 Warsaw Orthopedic, Inc. Expandable interbody implant
US11730608B2 (en) 2021-07-13 2023-08-22 Warsaw Orthopedic, Inc. Monoblock expandable interbody implant
US11850163B2 (en) 2022-02-01 2023-12-26 Warsaw Orthopedic, Inc. Interbody implant with adjusting shims

Family Cites Families (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4569338A (en) * 1984-02-09 1986-02-11 Edwards Charles C Sacral fixation device
SE458417B (en) * 1985-08-15 1989-04-03 Sven Olerud FIXING INSTRUMENTS PROVIDED FOR USE IN SPINE OPERATIONS
CH683963A5 (en) * 1988-06-10 1994-06-30 Synthes Ag Internal fixation.
CA2035348C (en) * 1990-02-08 2000-05-16 Jean-Louis Vignaud Adjustable fastening device with spinal osteosynthesis rods
SE9002569D0 (en) * 1990-08-03 1990-08-03 Sven Olerud SPINAL KNUT
CH685850A5 (en) * 1990-11-26 1995-10-31 Synthes Ag anchoring device
DE9104025U1 (en) * 1991-04-03 1992-07-30 Waldemar Link Gmbh & Co, 2000 Hamburg, De
US5254118A (en) * 1991-12-04 1993-10-19 Srdjian Mirkovic Three dimensional spine fixation system
US5261909A (en) * 1992-02-18 1993-11-16 Danek Medical, Inc. Variable angle screw for spinal implant system
US5527314A (en) * 1993-01-04 1996-06-18 Danek Medical, Inc. Spinal fixation system
US5282801A (en) * 1993-02-17 1994-02-01 Danek Medical, Inc. Top tightening clamp assembly for a spinal fixation system
US5437670A (en) * 1993-08-19 1995-08-01 Danek Medical, Inc. Attachment plate for top-tightening clamp assembly in a spinal fixation system
JP3683909B2 (en) * 1993-10-08 2005-08-17 ロゴジンスキ,チェーム Device for treating spinal conditions
US5628740A (en) * 1993-12-23 1997-05-13 Mullane; Thomas S. Articulating toggle bolt bone screw
US5545166A (en) * 1994-07-14 1996-08-13 Advanced Spine Fixation Systems, Incorporated Spinal segmental reduction derotational fixation system
FR2731344B1 (en) * 1995-03-06 1997-08-22 Dimso Sa SPINAL INSTRUMENTATION ESPECIALLY FOR A ROD
US5569247A (en) * 1995-03-27 1996-10-29 Smith & Nephew Richards, Inc. Enhanced variable angle bone bolt
US5591166A (en) * 1995-03-27 1997-01-07 Smith & Nephew Richards, Inc. Multi angle bone bolt
US5643263A (en) * 1995-08-14 1997-07-01 Simonson; Peter Melott Spinal implant connection assembly
US5735851A (en) * 1996-10-09 1998-04-07 Third Millennium Engineering, Llc Modular polyaxial locking pedicle screw
US5725528A (en) * 1997-02-12 1998-03-10 Third Millennium Engineering, Llc Modular polyaxial locking pedicle screw
US5800435A (en) * 1996-10-09 1998-09-01 Techsys, Llc Modular spinal plate for use with modular polyaxial locking pedicle screws
US5964760A (en) * 1996-10-18 1999-10-12 Spinal Innovations Spinal implant fixation assembly
US5782833A (en) 1996-12-20 1998-07-21 Haider; Thomas T. Pedicle screw system for osteosynthesis
IES970411A2 (en) * 1997-06-03 1997-12-03 Tecos Holdings Inc Pluridirectional and modulable vertebral osteosynthesis device of small overall size
US5947967A (en) * 1997-10-22 1999-09-07 Sdgt Holdings, Inc. Variable angle connector
US6010503A (en) * 1998-04-03 2000-01-04 Spinal Innovations, Llc Locking mechanism
US6113601A (en) * 1998-06-12 2000-09-05 Bones Consulting, Llc Polyaxial pedicle screw having a loosely coupled locking cap
US6565565B1 (en) * 1998-06-17 2003-05-20 Howmedica Osteonics Corp. Device for securing spinal rods
US5904683A (en) * 1998-07-10 1999-05-18 Sulzer Spine-Tech Inc. Anterior cervical vertebral stabilizing device
ES2260927T3 (en) * 1998-09-11 2006-11-01 Synthes Ag Chur VERTEBRAL ANGLE VARIABLE FIXING SYSTEM.
US6352537B1 (en) * 1998-09-17 2002-03-05 Electro-Biology, Inc. Method and apparatus for spinal fixation
US6355038B1 (en) * 1998-09-25 2002-03-12 Perumala Corporation Multi-axis internal spinal fixation
US5910142A (en) * 1998-10-19 1999-06-08 Bones Consulting, Llc Polyaxial pedicle screw having a rod clamping split ferrule coupling element
US6296642B1 (en) * 1998-11-09 2001-10-02 Sdgi Holdings, Inc. Reverse angle thread for preventing splaying in medical devices
US6050997A (en) * 1999-01-25 2000-04-18 Mullane; Thomas S. Spinal fixation system
US6315779B1 (en) * 1999-04-16 2001-11-13 Sdgi Holdings, Inc. Multi-axial bone anchor system
US6183473B1 (en) * 1999-04-21 2001-02-06 Richard B Ashman Variable angle connection assembly for a spinal implant system
US6210413B1 (en) * 1999-04-23 2001-04-03 Sdgi Holdings, Inc. Connecting apparatus using shape-memory technology
FR2794637B1 (en) * 1999-06-14 2001-12-28 Scient X IMPLANT FOR OSTEOSYNTHESIS DEVICE, ESPECIALLY OF THE RACHIS
DE19936286C2 (en) * 1999-08-02 2002-01-17 Lutz Biedermann bone screw
US6280442B1 (en) 1999-09-01 2001-08-28 Sdgi Holdings, Inc. Multi-axial bone screw assembly
US6562038B1 (en) * 2000-03-15 2003-05-13 Sdgi Holdings, Inc. Spinal implant connection assembly
US6248107B1 (en) * 2000-03-15 2001-06-19 Sdgi Holdings, Inc. System for reducing the displacement of a vertebra
US6524315B1 (en) * 2000-08-08 2003-02-25 Depuy Acromed, Inc. Orthopaedic rod/plate locking mechanism
US6485491B1 (en) * 2000-09-15 2002-11-26 Sdgi Holdings, Inc. Posterior fixation system
US6626906B1 (en) * 2000-10-23 2003-09-30 Sdgi Holdings, Inc. Multi-planar adjustable connector
US6685705B1 (en) * 2000-10-23 2004-02-03 Sdgi Holdings, Inc. Six-axis and seven-axis adjustable connector
US6520962B1 (en) * 2000-10-23 2003-02-18 Sdgi Holdings, Inc. Taper-locked adjustable connector
US8377100B2 (en) * 2000-12-08 2013-02-19 Roger P. Jackson Closure for open-headed medical implant
US6726687B2 (en) * 2000-12-08 2004-04-27 Jackson Roger P Closure plug for open-headed medical implant
DE10115014A1 (en) * 2001-03-27 2002-10-24 Biedermann Motech Gmbh anchoring element
US6770075B2 (en) * 2001-05-17 2004-08-03 Robert S. Howland Spinal fixation apparatus with enhanced axial support and methods for use
US6478798B1 (en) * 2001-05-17 2002-11-12 Robert S. Howland Spinal fixation apparatus and methods for use
FR2829014B1 (en) * 2001-09-03 2005-04-08 Stryker Spine SPINAL OSTEOSYNTHESIS SYSTEM COMPRISING A SUPPORT SKATE
US6783527B2 (en) * 2001-10-30 2004-08-31 Sdgi Holdings, Inc. Flexible spinal stabilization system and method
KR100379194B1 (en) * 2001-10-31 2003-04-08 U & I Co Ltd Apparatus for fixing bone
DE10157814B4 (en) * 2001-11-27 2004-12-02 Biedermann Motech Gmbh Closure device for securing a rod-shaped element in a holding element connected to a shaft
DE10157969C1 (en) * 2001-11-27 2003-02-06 Biedermann Motech Gmbh Element used in spinal and accident surgery comprises a shaft joined to a holding element having a U-shaped recess with two free arms having an internal thread with flanks lying at right angles to the central axis of the holding element
US6641586B2 (en) * 2002-02-01 2003-11-04 Depuy Acromed, Inc. Closure system for spinal fixation instrumentation
US7066937B2 (en) * 2002-02-13 2006-06-27 Endius Incorporated Apparatus for connecting a longitudinal member to a bone portion
US7766915B2 (en) * 2004-02-27 2010-08-03 Jackson Roger P Dynamic fixation assemblies with inner core and outer coil-like member
US20040260283A1 (en) * 2003-06-19 2004-12-23 Shing-Cheng Wu Multi-axis spinal fixation device
US7087057B2 (en) * 2003-06-27 2006-08-08 Depuy Acromed, Inc. Polyaxial bone screw
TW200518711A (en) * 2003-12-11 2005-06-16 A Spine Holding Group Corp Rotation buckling ball-head spine restoring equipment
US8267969B2 (en) * 2004-10-20 2012-09-18 Exactech, Inc. Screw systems and methods for use in stabilization of bone structures
US10076361B2 (en) * 2005-02-22 2018-09-18 Roger P. Jackson Polyaxial bone screw with spherical capture, compression and alignment and retention structures
US7794481B2 (en) * 2005-04-22 2010-09-14 Warsaw Orthopedic, Inc. Force limiting coupling assemblies for spinal implants
DE602005008752D1 (en) * 2005-11-17 2008-09-18 Biedermann Motech Gmbh Polyaxial screw for flexible rod
EP1935358B1 (en) * 2006-12-22 2012-09-26 Biedermann Technologies GmbH & Co. KG Bone anchoring device

Also Published As

Publication number Publication date
WO2007019060A1 (en) 2007-02-15
JP2009502425A (en) 2009-01-29
KR101326119B1 (en) 2013-11-06
EP1922002A1 (en) 2008-05-21
US7625394B2 (en) 2009-12-01
KR20080042863A (en) 2008-05-15
US20070043358A1 (en) 2007-02-22
EP1922002B1 (en) 2014-09-17
AU2006278736A1 (en) 2007-02-15

Similar Documents

Publication Publication Date Title
US7625394B2 (en) Coupling assemblies for spinal implants
US7794481B2 (en) Force limiting coupling assemblies for spinal implants
US7967849B2 (en) Adjustable multi-axial spinal coupling assemblies
US8029546B2 (en) Variable angle offset spinal connector assembly
US7585299B2 (en) Dorsal adjusting spinal connector assembly
US7575587B2 (en) Top-tightening side-locking spinal connector assembly
US8002806B2 (en) Bottom loading multi-axial screw assembly
EP2374424B1 (en) Dynamic stabilization system using polyaxial screws
CA2536243A1 (en) Systems and methods for positioning implants relative to bone anchors in surgical approaches to the spine
AU2013200841A1 (en) Coupling assemblies for spinal implants
AU2013206445A1 (en) Bottom loading multi-axial screw assembly

Legal Events

Date Code Title Description
EEER Examination request
FZDE Discontinued

Effective date: 20130726