CA2618470A1 - System and method for authenticating internetwork resource requests - Google Patents

System and method for authenticating internetwork resource requests Download PDF

Info

Publication number
CA2618470A1
CA2618470A1 CA002618470A CA2618470A CA2618470A1 CA 2618470 A1 CA2618470 A1 CA 2618470A1 CA 002618470 A CA002618470 A CA 002618470A CA 2618470 A CA2618470 A CA 2618470A CA 2618470 A1 CA2618470 A1 CA 2618470A1
Authority
CA
Canada
Prior art keywords
network
request
resource
voip
authentication
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002618470A
Other languages
French (fr)
Inventor
Ashish Patel
Anthony Smith Carleton
Gregory Wilfred Bruening
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Intrado Inc
Original Assignee
Intrado Inc.
Ashish Patel
Anthony Smith Carleton
Gregory Wilfred Bruening
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Intrado Inc., Ashish Patel, Anthony Smith Carleton, Gregory Wilfred Bruening filed Critical Intrado Inc.
Publication of CA2618470A1 publication Critical patent/CA2618470A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/08Network architectures or network communication protocols for network security for authentication of entities
    • H04L63/0807Network architectures or network communication protocols for network security for authentication of entities using tickets, e.g. Kerberos
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/40Support for services or applications
    • H04L65/401Support for services or applications wherein the services involve a main real-time session and one or more additional parallel real-time or time sensitive sessions, e.g. white board sharing or spawning of a subconference

Abstract

A method for use in diverse networks that authenticates inter-network resource requests. A router in a first network receives a request for a resource from a second network. The router sends a query to an element in the second network to determine whether the request actually originated there. If the request did originate from the second network, the request is processed according to the procedure for the requested resource. If the request did not originate from the second network, then the first network terminates the request. Thus, no network resources are consumed unnecessarily by accidental or malicious requests.

Description

- In.r =...n. .in. .n.r .. ' :i .ino ~1inLY ~IL'_t=.lFSYSTEM AND METHOD
FOR~AUTHENTICATING INTERNETWORK RESOURCE
REQUESTS
BACKGROUND OF THE INVENTION
This invention relates to the field of sharing resources between diverse communication networks, and, more specifically, to protecting such shared resources from accidental or deliberate depletion.
In the not-too-distant past, there was only one communication network available to the public: the telephone network (herein called the "public switched telephone networlc" or "PSTN"). Now data communication networks, formerly available solely to government or big business, are also generally available to the public. Because the telephone and data networks were developed for different purposes and at different times, the PSTN is a "circuit switched"
network and data networks are generally "packet switched" networks. Given these differences in purpose and protocol, there was initially little to no interaction between them. Thus, there was no motivation to design or develop resources that could be shared between or among the diverse networks. Over the past decade or so, however, the line of demarcation between these networks is becoming blurred to the point of disappearing.
For example, data networks now carry voice calls. A popular class of service that carries voice calls in a data network is voice over Internet protocol (VoIP). Gateways that translate format and protocol are used to connect calls that span the PSTN and VoIP data network.
Because of this relatively recent interaction between voice and data networks, there is a need for resources and services in the data networks that were formerly only available in the PSTN.
One essential telecommunications resource that is primarily implemented in the PSTN is emergency services, the services that are popularly known in the U.S. as "9-1-1." However, one system and method for providing 9-1-1 service in VoIP telephony has recently been implemented by Intrado, the assignee of this invention (herein referred to as the "Intrado solution"). This system and method is described in U.S. Patent No. 6,771,742, to McCalmont et al., U.S. Patent Application No. 10/288,737 and U.S. Patent Application No.
10/402,741 by Knox, all of which are assigned to the assignee of this invention and all of which are hereby incorporated by reference in their entirety.
In the above-referenced system, the user of a VoIP telephone dials 9-1-1, which is received by the VoIP controller for routing. The VoIP controller assigns an emergency services routing number (ESRN) and sends the call into the PSTN. The ESRN is a preassigned telephone number that causes the PSTN to route the 9-1-1 call to a public safety answering point (PSAP) that is proximal to the calling telephone.

,AlEpro$teirA"Yri"Chd c&r'9rii"'W"ii9-that the ESRN comprises a 10-digit telephone number that may be dialed at any telephone in the PSTN or the data network. For example, the ESRN can be dialed by any auto-dialer (used by solicitors, for example) that incrementally or randomly dials telephone numbers. Further, a user on the data network may accidentally or maliciously cause the same number to be dialed repeatedly, causing resource flooding and ultimately resulting in denial of service to those who really need emergency services.

SUMMARY OF THE INVENTION
This problem is solved and a technical advance is achieved in the art by a system and method that authenticates an inter-network resource request to verify that the request for a resource on a first network is properly originating on a second network. In one embodiment, a router in the first network receives a resource request from an inter-network gateway. The router then sends a query to the network gateway to determine whether the request actually originated there. If the request did originate from the network gateway, processing continues according to the procedure for the requested resource. If the request did not originate from the network gateway, then the system terminates the request, sends it to announcements, etc., thus using fewer system resources.

An example of the first network is the public switched telephone network (PSTN) and an example of the second network is a data network that supports voice over Internet protocol (VoIP) telephony. An exemplary resource that is available only on the first network is emergency services (9-1-1). When a VoIP telephone dials 9-1-1, a gateway between the two networks out-pulses an emergency services routing number (ESRN) and an emergency services query key (ESQK) or an automatic number identification (ANI) into the PSTN. In accordance with this invention, a router in the PSTN receives the ESRN and requests authentication from the gateway that apparently initiated the call. Advantageously, the gateway may be determined from the ESRN and the ESQK or ANI of the calling telephone. The gateway passes a token indicating whether it did in fact initiate the call. If the call is thus authenticated, the call is completed to emergency services. If the call cannot be authenticated, then the call is terminated or given some type of call treatment, such as sent to signals (e.g., fast busy, reorder) or announcements.
In accordance with another embodiment of this invention, an authentication request is sent from the router to a network component, such as a service control point, which traces the origin of the call to ensure that it is legitimate. According to another embodiment of this invention, a token is passed from a network gateway to the selective router (on, for example, a signaling network) when the network gateway outpulses an ESRN. When the selective router receives the ESRN, it checks for the token on the signaling network to authenticate the call. In ef r~~Yido'~Tik1diaau.
, ~ r~a~icious flooding are avoided at the network resource, helping to ensure its availability for real requests for services from both networks.

BRIEF DESCRIPTION OF THE DRAWINGS
A more complete understanding of this invention may be obtained from a consideration of this specification taken in conjunction with the drawings, in which:
FIG. 1 is a block diagram of exemplary networks in which embodiments of this invention operate;
FIG. 2 is a call flow diagram of authenticating an inter-network request for use of a resource in accordance with an exemplary embodiment of this invention in the context of the networks of FIG. 1;
FIG. 3 is a call flow diagram of authenticating an inter-network request for use of a resource in accordance with another exemplary embodiment of this invention in the context of the networks of FIG. 1; and FIG. 4 is a block diagram illustrating an alternate embodiment of the present invention.
DETAILED DESCRIPTION
FIG. 1 is a block diagram of exemplary diverse networks in which embodiments of the current invention may be implemented, shown generally at 100. This exemplary embodiment includes a data network 102, which provides packet switched communications for digital devices. Such digital devices are represented by and include (but not limited to) personal computer 104 and voice over internet protocol (VoIP) telephone 106. Data network 102 may be any public or private network including, but not limited to, the Internet.
Data network 102 -is connected via gateway 108 to the public switched telephone network (PSTN) 110. PSTN 110 provides circuit switched communications for telephones and other devices, represented by telephone 112. PSTN 110 includes selective router 114 and service control point 116. Service control point 116 may comprise an automatic location identification (ANI) node, as is known in the art, or other database system. PSTN 110 also includes public safety answering point (PSAP) 118 to provide emergency or 9-1-1 service for a predefined geographic area.
An interface line 120 defines the limits of each network for purposes of clarity. One skilled in the art will realize that the various components illustrated herein are not segregated into discrete networks with one definable interface. While gateway 108 is herein illustrated at interface 120 between data network 102 and PSTN 110, it is known in the art that gateway 108 may be a part of data network 102, PSTN 110 or both.

""Provi~dirg e"'mergericy'servicefor VoIP is used herein to illustrate the features and advantages of this invention. VoIP operates in one network (data network 102) but uses a resource (PSAP 118) from a diverse network (PSTN 110) in order to provide such 9-1-1 service.
One skilled in the art will appreciate how to apply the principals of this invention to other diverse network applications after studying this specification. Further, one skilled in the art will appreciate that the principals of this invention apply to sharing resources between diverse data networks.
An exemplary embodiment of this invention is now described with reference to FIG. 1, which illustrates a block diagram of one network using a resource on a diverse network, and FIG. 2, which illustrates a call flow in the context of FIG. 1. The call flow steps are indicated in the following text by parentheses. The herein described system and method employs the principals of the Intrado solution for 9-1-1 VoIP. For a more detailed explanation of the Intrado solution, see the above-incorporated patents and applications.
When the user of VoIP telephone 106 dials 9-1-1, the call is first handled by the user's service provider's VoIP controller 130 (202). The initial call may include the telephone number of telephone 106, the data address of telephone 106 or both. VoIP controller 130 recognizes the special number (9-1-1) and requests instructions from a VoIP positioning center 132, passing the telephone number, the data address, or both, of the calling telephone 106 (204).
In accordance with this exemplary embodiment of this invention, VoIP
positioning center 132 maintains a database of the locations of VoIP telephones and the PSAP that serves each location. VoIP positioning center 132 uses the telephone number, the data address, or both, to perform a look up in its database. If the telephone number is found in its database, VoIP
positioning center 132 passes an emergency services routing number (ESRN) and an emergency services query key (ESQK) to VoIP controller 130 (206). The ESRN comprises a 10 digit number in the same format as all telephone numbers (i.e., NPA-NXX-XXXX). The ESRN
causes PSTN 110 to route the call to a predetermined selective router (114 in this exemplary embodiment) that serves the general geographic area in which the calling telephone is located.
The ESQK is the equivalent of the automatic number identification (ANI), which is used by selective router 114 to further define which PSAP 118 serves the specific area in which the calling telephone is located.
Alternatively, a VoIP telephone, such as 104, may have information regarding its position stored in its memory system. When queried, VoIP positioning center 132 sends a message to VoIP telephone 104 requesting its position. VoIP telephone 104 sends its position to VoIP
positioning center 132, which then uses the received position to determine the ESRN and ESQK.

R4"'' ~~ ' V~oTP wl~11~j'r 1h9-ca11 into PSTN 110 via gateway 108 using the ESRN as the dialed number and the ESQK as the dialing number (i.e., ANI or caller ID) (208). The ESRN
directs call processing to route the call through PSTN 110 to selective router 140 that is proximal to the calling telephone 106. Selective router 140 queries a database, herein illustrated as service control point 142, to determine which PSAP handles calls from the area of the calling telephone (210). "Service control point" is used herein to mean a network component that performs a function. In the exemplary embodiments of this invention, service control point may also be called an "ALI database" and have the same functionality as an ALI database as known in the art. Further, service control point 142 is illustrated herein as comprising the routing database for purposes of clarity, one skilled in the art will appreciate that the routing database for selective router 114 may be, for example, a dedicated system or may be an entity on a separate signaling network (e.g., an SS7 network), data network or the switch itself.
Continuing with this exemplary embodiment of this invention, service control point 142 requests authentication from VoIP position server 132 (212). Service control point 142 forwards the ESQK and the ESRN it received to determine if VoIP position server 132 assigned these numbers to an emergency call.
In the above-described scenario, VoIP position server 132 did assign the ESRN
and ESQK numbers for a 9-1-1 call from VoIP telephone 106. Therefore, VoIP
position server 132 sends a validation or positive response to service control point 142 (214).
Such positive response may include a token. Advantageously, VoIP position server 132 may additionally deliver the telephone number of VoIP telephone 106 (for call back or other purposes). Service control point 142 also sends an identification of the PSAP (in this example, PSAP 118) that serves the location of calling telephone 106. The call is connected to PSAP
118 (220).
If, on the other hand, the ESRN, ESQK or both were not issued by VoIP position server 132, service control point 142 may cause the call to terminate, send the call to announcement or signals and take other action as appropriate. Alternatively, service control point 142 may send a denial of service signal back to selective router 114 or some other point in PSTN 110 to take appropriate action.
The above-described 9-1-1 call scenario illustrates an authenticated resource request between diverse networks. Because the ESRN is a dialable 10 digit number, any telephone in either PSTN (such as telephone 112) or in data network 102 (such as VoIP
devices 104 and 106) can dial it at any time, either accidentally (a misdial or an automatic dialer) or maliciously.
Furthermore, a computer device such as PC 104 can dial an ESRN repeatedly in just a few seconds, which quickly ties up all connections to PSAP 118 and causes a denial of service to real ~~n calls ~roiii'~iot mer net orKg." Furthermore, a PC in PSTN 104 with a network card (e.g., t.,. a T1 card) may flood the PSAP 118 by repeatedly dialing an ESRN.

Thus, calls from PSTN 110 (e.g., from telephone 112) to the ESRN can be rejected and delivered to terminal call treatment (e.g., fast busy signal, reorder signal, announcement, etc.).
Further, gateway 108 can verify that the call is from a legitimate source on the network and not one source attempting to flood the resource without legitimate reasons.
Alternatively, VoIP controller 130 may block calls to predetermined numbers.
Thus, no calls to one or more ESRN's may be blocked at VoIP controller 130, thus stopping the call before it reaches PSTN 110. Further, SCP 116, selective router 114 or both may be programmed to recognize when a string of calls arrives from the same ANI and stop processing the call at that point.
Turning now to FIG. 1 and FIG. 3, a further exemplary embodiment and method of this invention is described. As in the above-described embodiment, the user of VoIP
telephone 106 dials 9-1-1, which call is routed to VoIP controller 130, along with the telephone number, the data address, or both, of the VoIP telephone 106 (302). VoIP controller 130 queries VoIP
position system 132 with the telephone number, data address, or both (304) as described above.
VoIP position system 132 responds with an ESRN and an ESQK (306).
Additionally, and in accordance with this exemplary embodiment, VoIP position system 132 produces a token and delivers it to the VoIP controller 130 (308). Alternatively, VoIP controller 130 may generate a token when it receives an ESRN and ESQK.
VoIP controller 130 uses the ESRN to route the call through gateway 108 to selective router 114, passing the ESRN and the ESQK (310). At this point, VoIP
controller 130 may pass the token to selective router 114, either over the same connection as the ESRN
and the ESQK
(known in the art as "in band") or over a separate signaling network ("out of band") (312).
Alternatively, selective router 114 may request a token from either the VoIP
controller 130 or VoIP position system (314) to which either may respond with the token (316).
Once the token is received, selective router 114 requests routing information from service control point 116 (318). The identification of the destination PSAP (i.e., ESN
or PSAP ID) is returned (320) and the call is connected (324). If selective router 114 does not receive the token then it can assume that the call is not authentic and can take appropriate action (disconnect, announcement, signals, etc.).
Turning now to FIG. 4, an alternative embodiment of this invention illustrating two diverse data networks is shown, generally at 400. In FIG. 4, data networks 400 comprise a first Internet protocol network 402 and a second Internet protocol network 404.
First and second data networks are separated by boundary 406, which is, of course, for convenience of illustration.

~'~ 1~.,, " !E it !E {; If Int~"r ~e't pr6to6oYnetwork 02 ernet protocol network 404 are connected at boundary 406 by a gateway 408,. Gateway 408 performs any protocol or other conversion as is known in the art. Gateway 408 is optional (in the case where no conversion is needed between the two networks), is known in the art and is therefore not further discussed.
In the illustration of FIG. 4, Internet protocol network 402 supports a plurality of VoIP
telephones, represented by telephone set 410 and PC 412. Further, Internet protocol network 402 supports a public safety answering point (PSAP) 414. PSAP 414 is connected to Internet protocol network 402 via a PSAP controller 416. PSAP 414 may communicate using VoIP
protocol, in which case PSAP controller 416 comprises a router. PSAP 414 may also be a conventional circuit-switched system, in which case PSAP controller 416 provides conversion from VoIP to circuit switch communication, signaling conversion, etc. PSAP
controller 416 is also illustrated as connected to service control point 420 (which may be an ALI database). As described above in connection with FIG. 1, service control point 420 may be a separate system, part of PSAP controller 416 or some other node in data network I. Internet protocol network 402 also includes a VoIP controller 422, which is connected to VoIP positioning center 424.
Internet protocol network 404 in data network II supports a plurality of VoIP
telephone sets, represented by telephone set 426 and PC 428. VoIP is supported in Internet protocol network 404 by VoIP controller 430. VoIP controller 430 is connected to VoIP
positioning center 424.
In the exemplary embodiment of FIG. 4, a 9-1-1 call is made at telephone 426, for example. The call initiation is routed through Internet protocol network 404 to VoIP controller 430. VoIP controller 430 recognizes the special nature of the call, queries VoIP positioning center 424 for the location of VoIP telephone 426 and assigns an ESRN and ESQK
accordingly.
The call initiation is then routed back through Internet protocol network 404, through gateway 408 (if required) and into Internet protocol network 402. VoIP controller 422 receives the call initiation and routes the call initiation according to the ESRN and ESQK, which causes the call to be routed to PSAP controller 416.
PSAP controller 416 causes a call to be set up between one of the positions at and queries service control point (ALI) 420 for information regarding the call. Service control point 420 uses the ESRN and ESQK to query VoIP positioning center 424 to obtain information related to telephone 426. Service control point 420 delivers the received information to PSAP
414 via PSAP controller 416.
It is to be understood that the above-described embodiment is merely illustrative of the present invention and that many variations of the above-described embodiment can be devised by one skilled in the art without departing from the scope of the invention.
For example, a third ;(c ii",1i I,f~
net~vork may ~e used or communicaltion among the components of PSTN 110, such as an SS7 network. Any of the network control points or service control points in either or both networks can communicate over the communications network to request verification from gateway 108, VoIP controller 130, VoIP position system 132 or any combination thereof. It is therefore intended that such variations be included within the scope of the following claims and their equivalents.

Claims (16)

1. A method comprising:
receiving a request for use of a resource in a first network from a requester in a second network;
authenticating the request in the second network that the request originated legitimately from the requester; and connecting the resource in the first network to the requester in the second network responsive to receipt of authentication.
2. A method in accordance with claim 1 wherein authenticating the request comprises requesting an authentication token by the resource's allocator and receipt of the authentication token from the second network by the allocator.
3. A method in accordance with claim 1 wherein authenticating the request comprises receiving an authentication token by the resource's allocator as part of the request.
4. A method in accordance with claim 1 wherein the first network includes a service control point and wherein the method further comprises:
querying the service control point by the resource's allocator to authenticate that the resource request originated properly on the second network; and wherein authenticating the request comprises the service control point communicating with the requester in the second network; and wherein connecting the resource comprises receiving the authentication at the service control point and the service control point delivering processing instructions to the resource's allocator.
5. A method for use in sharing a telephone network resource between the telephone network and a data network comprising:
routing a request for the telephone network resource from the data network to the telephone network;
authenticating the request for the telephone network resource by authenticating an origination of the request in the data network; and connecting the telephone network resource to the data network responsive to authenticating the request for the telephone network resource.
6. A method in accordance with claim 5 wherein a controller routes the request from the data network to the telephone network; and wherein the controller authenticates the request for the telephone network resource.
7. A method in accordance with claim 5 wherein the telephone network includes a service control point, and wherein the service control point authenticates the request for the telephone network resource.
8. A method in accordance with claim 5 wherein a controller routes the request from the data network to the telephone network and the telephone network includes a service control point, and wherein the controller and the service control point cooperatively authenticate the request.
9. A method in accordance with claim 5 wherein a controller routes the request from the data network to the telephone network and the telephone network includes a router that allocates the telephone network resource; and wherein the controller and the router cooperatively authenticate the request.
10. A method for authenticating a telephone network resource request from a data network comprising:
processing a request for the resource by a controller in the data network;
sending the request for the resource from the controller to a router in the telephone network;
generating an authentication of the resource request in the data network; and allocating the resource responsive to the router receiving the authentication.
11. A method in accordance with claim 10 wherein processing a request for the resource comprises generating routing information in the data network and wherein generating an authentication of the resource request comprises generating an authentication token and sending the authentication token to the router.
12. A method for authenticating a 9-1-1 call from a VoIP network comprising:
routing the 9-1-1 call to a selective router in a telephone network by a VoIP
controller in the VoIP network;

generating an authentication in the VoIP network that the 9-1-1 call originated from the VoIP network; and routing the 9-1-1 call to a PSAP responsive to the selective router receiving the authentication.
13. A method in accordance with claim 12 wherein the step of routing the 9-1-1 call to a selective router by a VoIP controller comprises:
generating an ESRN and an ESQK responsive to a location of an origination of the 9-1-1 call;
sending the ESRN and ESQK into the telephone network as a routing telephone number and an automatic number identification, respectively.
14. A method in accordance with claim 13 wherein generating an authentication in the VoIP network comprises generating an authentication that the ESRN and ESQK
were generated by the VoIP network.
15. A method in accordance with claim 14further comprising requesting the authentication from the selective router before routing the 9-1-1 call to the PSAP.
16. A method in accordance with claim 14 wherein the authentication is sent to the selective router along with the ESRN and the ESQK.
CA002618470A 2005-08-09 2006-05-18 System and method for authenticating internetwork resource requests Abandoned CA2618470A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11/199,549 US20070036139A1 (en) 2005-08-09 2005-08-09 System and method for authenticating internetwork resource requests
US11/199,549 2005-08-09
PCT/US2006/019041 WO2007021345A2 (en) 2005-08-09 2006-05-18 System and method for authenticating internetwork resource requests

Publications (1)

Publication Number Publication Date
CA2618470A1 true CA2618470A1 (en) 2007-02-22

Family

ID=37742445

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002618470A Abandoned CA2618470A1 (en) 2005-08-09 2006-05-18 System and method for authenticating internetwork resource requests

Country Status (5)

Country Link
US (1) US20070036139A1 (en)
EP (1) EP1915842A2 (en)
CN (1) CN101502051A (en)
CA (1) CA2618470A1 (en)
WO (1) WO2007021345A2 (en)

Families Citing this family (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7426380B2 (en) 2002-03-28 2008-09-16 Telecommunication Systems, Inc. Location derived presence information
US7321773B2 (en) * 2002-03-28 2008-01-22 Telecommunication Systems, Inc. Area watcher for wireless network
US8290505B2 (en) * 2006-08-29 2012-10-16 Telecommunications Systems, Inc. Consequential location derived information
US9154906B2 (en) 2002-03-28 2015-10-06 Telecommunication Systems, Inc. Area watcher for wireless network
US8918073B2 (en) 2002-03-28 2014-12-23 Telecommunication Systems, Inc. Wireless telecommunications location based services scheme selection
US20070238455A1 (en) * 2006-04-07 2007-10-11 Yinjun Zhu Mobile based area event handling when currently visited network doe not cover area
US7260186B2 (en) 2004-03-23 2007-08-21 Telecommunication Systems, Inc. Solutions for voice over internet protocol (VoIP) 911 location services
US20080090546A1 (en) 2006-10-17 2008-04-17 Richard Dickinson Enhanced E911 network access for a call center using session initiation protocol (SIP) messaging
US7903791B2 (en) * 2005-06-13 2011-03-08 Telecommunication Systems, Inc. Enhanced E911 location information using voice over internet protocol (VoIP)
US20070298765A1 (en) * 2006-06-27 2007-12-27 Richard Dickinson Public services access point (PSAP) designation of preferred emergency call routing method via internet or public switched telephone network (PSTN)
US20080126535A1 (en) 2006-11-28 2008-05-29 Yinjun Zhu User plane location services over session initiation protocol (SIP)
US7353034B2 (en) 2005-04-04 2008-04-01 X One, Inc. Location sharing and tracking using mobile phones or other wireless devices
US8103242B2 (en) 2005-05-26 2012-01-24 Telecommunication Systems, Inc. E911 call blocking for non-initialized wireless telephones
US8175570B2 (en) * 2005-05-26 2012-05-08 Telecommunication Systems, Inc. E911 call blocking for non-initialized wireless telephones
US8660573B2 (en) * 2005-07-19 2014-02-25 Telecommunications Systems, Inc. Location service requests throttling
US20070049288A1 (en) * 2005-08-24 2007-03-01 Lamprecht Leslie J Creating optimum temporal location trigger for multiple requests
US7933385B2 (en) * 2005-08-26 2011-04-26 Telecommunication Systems, Inc. Emergency alert for voice over internet protocol (VoIP)
US20070123271A1 (en) * 2005-08-26 2007-05-31 Richard Dickinson Cellular phone tracking scope
US9282451B2 (en) * 2005-09-26 2016-03-08 Telecommunication Systems, Inc. Automatic location identification (ALI) service requests steering, connection sharing and protocol translation
US7626951B2 (en) * 2005-10-06 2009-12-01 Telecommunication Systems, Inc. Voice Over Internet Protocol (VoIP) location based conferencing
US8467320B2 (en) * 2005-10-06 2013-06-18 Telecommunication Systems, Inc. Voice over internet protocol (VoIP) multi-user conferencing
US7907551B2 (en) * 2005-10-06 2011-03-15 Telecommunication Systems, Inc. Voice over internet protocol (VoIP) location based 911 conferencing
US20070121798A1 (en) * 2005-10-20 2007-05-31 Jon Croy Public service answering point (PSAP) proxy
WO2007061790A2 (en) * 2005-11-18 2007-05-31 Telecommunication Systems, Inc. Voice over internet protocol (voip) mobility detection
US8150363B2 (en) * 2006-02-16 2012-04-03 Telecommunication Systems, Inc. Enhanced E911 network access for call centers
US8059789B2 (en) * 2006-02-24 2011-11-15 Telecommunication Systems, Inc. Automatic location identification (ALI) emergency services pseudo key (ESPK)
US8037516B2 (en) * 2006-02-27 2011-10-11 At&T Intellectual Property I, L.P. Authentication tokens for use in voice over internet protocol
US8532266B2 (en) * 2006-05-04 2013-09-10 Telecommunication Systems, Inc. Efficient usage of emergency services keys
US8208605B2 (en) 2006-05-04 2012-06-26 Telecommunication Systems, Inc. Extended efficient usage of emergency services keys
EP2074840A4 (en) * 2006-09-26 2015-08-05 Telecomm Systems Inc Location object proxy
CA3045683C (en) 2006-11-02 2021-10-26 Voip-Pal.Com, Inc. Producing routing messages for voice over ip communications
US7966013B2 (en) * 2006-11-03 2011-06-21 Telecommunication Systems, Inc. Roaming gateway enabling location based services (LBS) roaming for user plane in CDMA networks without requiring use of a mobile positioning center (MPC)
WO2008064481A1 (en) 2006-11-29 2008-06-05 Digifonica (International) Limited Intercepting voice over ip communications and other data communications
WO2008097500A1 (en) * 2007-02-06 2008-08-14 Telecommunication Systems, Inc. Voice over internet protocol (voip) location based commercial prospect conferencing
US8050386B2 (en) 2007-02-12 2011-11-01 Telecommunication Systems, Inc. Mobile automatic location identification (ALI) for first responders
WO2008116296A1 (en) 2007-03-26 2008-10-02 Digifonica (International) Limited Emergency assistance calling for voice over ip communications systems
US8520805B2 (en) * 2007-05-02 2013-08-27 Telecommunication Systems, Inc. Video E911
US20090077077A1 (en) * 2007-09-18 2009-03-19 Gerhard Geldenbott Optimal selection of MSAG address for valid civic/postal address
US8576991B2 (en) * 2008-03-19 2013-11-05 Telecommunication Systems, Inc. End-to-end logic tracing of complex call flows in a distributed call system
US7903587B2 (en) * 2008-05-30 2011-03-08 Telecommunication Systems, Inc. Wireless emergency services protocols translator between ansi-41 and VoIP emergency services protocols
US8630234B2 (en) 2008-07-28 2014-01-14 Digifonica (International) Limited Mobile gateway
US8068587B2 (en) * 2008-08-22 2011-11-29 Telecommunication Systems, Inc. Nationwide table routing of voice over internet protocol (VOIP) emergency calls
US9301191B2 (en) 2013-09-20 2016-03-29 Telecommunication Systems, Inc. Quality of service to over the top applications used with VPN
CA2812174C (en) 2009-09-17 2018-05-15 Digifonica (International) Limited Uninterrupted transmission of internet protocol transmissions during endpoint changes
DE112010003863T5 (en) 2009-09-30 2013-01-03 Cummins Inc. Procedures for increasing the ability to regenerate a post-treatment
US20110149953A1 (en) * 2009-12-23 2011-06-23 William Helgeson Tracking results of a v2 query in voice over internet (VoIP) emergency call systems
US8942743B2 (en) 2010-12-17 2015-01-27 Telecommunication Systems, Inc. iALERT enhanced alert manager
US8688087B2 (en) 2010-12-17 2014-04-01 Telecommunication Systems, Inc. N-dimensional affinity confluencer
WO2012087353A1 (en) 2010-12-22 2012-06-28 Telecommunication Systems, Inc. Area event handling when current network does not cover target area
WO2012141762A1 (en) 2011-02-25 2012-10-18 Telecommunication Systems, Inc. Mobile internet protocol (ip) location
US9479344B2 (en) 2011-09-16 2016-10-25 Telecommunication Systems, Inc. Anonymous voice conversation
WO2013048551A1 (en) 2011-09-30 2013-04-04 Telecommunication Systems, Inc. Unique global identifier for minimizing prank 911 calls
US9264537B2 (en) 2011-12-05 2016-02-16 Telecommunication Systems, Inc. Special emergency call treatment based on the caller
US9313637B2 (en) 2011-12-05 2016-04-12 Telecommunication Systems, Inc. Wireless emergency caller profile data delivery over a legacy interface
US8984591B2 (en) 2011-12-16 2015-03-17 Telecommunications Systems, Inc. Authentication via motion of wireless device movement
US9384339B2 (en) 2012-01-13 2016-07-05 Telecommunication Systems, Inc. Authenticating cloud computing enabling secure services
US9307372B2 (en) 2012-03-26 2016-04-05 Telecommunication Systems, Inc. No responders online
US9544260B2 (en) 2012-03-26 2017-01-10 Telecommunication Systems, Inc. Rapid assignment dynamic ownership queue
US9338153B2 (en) 2012-04-11 2016-05-10 Telecommunication Systems, Inc. Secure distribution of non-privileged authentication credentials
US9313638B2 (en) 2012-08-15 2016-04-12 Telecommunication Systems, Inc. Device independent caller data access for emergency calls
US9208346B2 (en) 2012-09-05 2015-12-08 Telecommunication Systems, Inc. Persona-notitia intellection codifier
US9456301B2 (en) 2012-12-11 2016-09-27 Telecommunication Systems, Inc. Efficient prisoner tracking
US8983047B2 (en) 2013-03-20 2015-03-17 Telecommunication Systems, Inc. Index of suspicion determination for communications request
US9408034B2 (en) 2013-09-09 2016-08-02 Telecommunication Systems, Inc. Extended area event for network based proximity discovery
US9516104B2 (en) 2013-09-11 2016-12-06 Telecommunication Systems, Inc. Intelligent load balancer enhanced routing
US9479897B2 (en) 2013-10-03 2016-10-25 Telecommunication Systems, Inc. SUPL-WiFi access point controller location based services for WiFi enabled mobile devices
US10064167B1 (en) * 2015-03-26 2018-08-28 Amdocs Development Limited System, method, and computer program for coordinating a plurality of networks based on network function virtualization (NFV)

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4893325A (en) * 1988-09-23 1990-01-09 Rockwell International Corporation Integrated public safety answering point system
US4919545A (en) * 1988-12-22 1990-04-24 Gte Laboratories Incorporated Distributed security procedure for intelligent networks
US5033076A (en) * 1990-01-31 1991-07-16 At&T Bell Laboratories Enhanced privacy feature for telephone systems
FR2662878B1 (en) * 1990-05-30 1994-03-25 Alcatel Cit METHOD FOR ACCESSING A WIRELESS TELEPHONY SERVICE.
US5161180A (en) * 1990-10-19 1992-11-03 Chavous Robert O Call interceptor for emergency systems
US5195126A (en) * 1991-05-09 1993-03-16 Bell Atlantic Network Services, Inc. Emergency alert and security apparatus and method
KR100254074B1 (en) * 1996-02-09 2000-04-15 가나이 쓰도무 Communication system
US5901284A (en) * 1996-06-19 1999-05-04 Bellsouth Corporation Method and system for communication access restriction
US5867495A (en) * 1996-11-18 1999-02-02 Mci Communications Corporations System, method and article of manufacture for communications utilizing calling, plans in a hybrid network
US5982867A (en) * 1996-11-27 1999-11-09 Ameritech Corporation Method and system for providing the name of the state of a calling party
US6233445B1 (en) * 1997-01-14 2001-05-15 Ericsson, Inc. Establishing emergency calls within a mobile telecommunications network
US6075853A (en) * 1997-03-31 2000-06-13 Sbc Technology Resources, Inc. Apparatus and method for intelligent call routing and call return
US5995610A (en) * 1997-05-06 1999-11-30 Telefonaktiebolaget Lm Ericsson Cooperative call processing across public and private intelligent networks
DE19741576A1 (en) * 1997-09-20 1999-03-25 Cit Alcatel Procedure for routing emergency calls
US6332022B1 (en) * 1997-12-22 2001-12-18 Nortel Networks Limited Method and apparatus for routing emergency services calls in an intelligent network
US20020106059A1 (en) * 1998-06-16 2002-08-08 Kroll Mark W. Public service answering point with automatic triage capability
DE19831865A1 (en) * 1998-07-16 2000-01-20 Basf Ag Use of organic sulfur compounds as a means for bathochromic shifting of the UV / Vis absorption band of carotenoids
US6201856B1 (en) * 1998-12-15 2001-03-13 Ameritech Corporation Emergency telephone call notification service system and method
US6292542B1 (en) * 1999-08-11 2001-09-18 At&T Corp. Method and apparatus for handling an in-call request for emergency services
KR100384943B1 (en) * 1999-12-30 2003-06-18 엘지전자 주식회사 Method For Intelligent Network Processing Of Authentication Failure or Authorization Denied Subscriber
US6671262B1 (en) * 1999-12-30 2003-12-30 At&T Corp. Conference server for automatic x-way call port expansion feature
US6724884B2 (en) * 2000-01-27 2004-04-20 Avaya Technology Corp. Call management system using fast response dynamic threshold adjustment
US6950499B2 (en) * 2002-10-23 2005-09-27 Sbc Properties, L.P. Method of providing 911 service to a private branch exchange
US6415019B1 (en) * 2000-08-21 2002-07-02 Ameritech Corporation Method of providing 911 service to a private branch exchange
US6650733B2 (en) * 2002-03-08 2003-11-18 Ameritech Corporation Method of providing 911 service to a private branch exchange
US6760306B1 (en) * 2000-09-27 2004-07-06 Nortel Networks Limited Method for reserving network resources using a hierarchical/segment tree for starting and ending times of request
US6775356B2 (en) * 2000-11-13 2004-08-10 Angelo Salvucci Real-time incident and response information messaging INA system for the automatic notification that an emergency call has occurred from a telecommunication device
US6757359B2 (en) * 2001-03-23 2004-06-29 Siemens Information And Communication Networks, Inc. Methods and apparatus for transmitting accurate emergency location identification numbers (ELINs) from behind a multi-line telephone system (MLTS) utilizing port equipment numbers
US6678356B2 (en) * 2001-03-23 2004-01-13 Siemens Information And Communication Networks, Inc. Systems for dialing an emergency telephone number from a teleworking client remotely coupled to a PBX
US8416943B2 (en) * 2001-07-31 2013-04-09 Aspect Software, Inc. System and method for distributing customer contacts
US6678357B2 (en) * 2001-09-26 2004-01-13 Siemens Information And Communication Networks, Inc. Internet protocol (IP) emergency connections (ITEC) telephony
US20030109245A1 (en) * 2001-11-05 2003-06-12 Mccalmont Patti L Routing of emergency calls based on geographic location of originating telephone end office
US6680998B1 (en) * 2001-11-19 2004-01-20 Cisco Technology, Inc. Providing private network information during emergency calls
US6721396B2 (en) * 2002-06-26 2004-04-13 Lucent Technologies Inc. Method and system of enhancing emergency call services

Also Published As

Publication number Publication date
WO2007021345A3 (en) 2009-04-23
CN101502051A (en) 2009-08-05
EP1915842A2 (en) 2008-04-30
US20070036139A1 (en) 2007-02-15
WO2007021345A2 (en) 2007-02-22

Similar Documents

Publication Publication Date Title
US20070036139A1 (en) System and method for authenticating internetwork resource requests
US8223951B1 (en) System and method for alternate path routing and redundancy based on cost sensitive network selection
US8249554B2 (en) Methods for provisioning mobile stations and wireless communications with mobile stations located within femtocells
US6775534B2 (en) Telecommunications system
US7787600B1 (en) Handling emergency calls using EAP
US8149785B2 (en) Methods, systems, and computer program products for jumping calls between different modes of the same device
CN111095954A (en) Guard timer for optimized E911 call processing
US20100226362A1 (en) Intelligent Call Mapping and Routing for Low Cost Global Calling on Mobile Devices Including SmartPhones
US20090253420A1 (en) Methods and systems for providing enhanced global local calling
JP2010515353A (en) Authenticate caller ID information to protect against caller ID spoofing
EP3162104B1 (en) A method to authenticate calls in a telecommunication system
US8761735B2 (en) Authenticating identity of caller
US8385232B1 (en) Flexible alerting for integrated cellular and VoIP
EP1748634A2 (en) Method and apparatus for protecting calling party identification
US20080253376A1 (en) Method and Arrangement for Verifying an Originating Address Transmitted in a Call Request for the Purpose of Establishing a Communications Link in an Ip Communications Network
US20040137923A1 (en) Short text messaging-based incoming call termination control
US9615230B2 (en) Method to manage multiple caller identities in a telecommunication system
JP2010141850A (en) Communication apparatus and mobile terminal
US8369316B2 (en) Wireless emergency services protocols translator between ANSI-41 and VoIP emergency services protocols
EP3535961A1 (en) Automatic number identification validation in a collaboration conference system
KR101960561B1 (en) Communication system and method using presence and cost for routing the call
KR101088321B1 (en) Methods for provisioning mobile stations and wireless communications with mobile stations located within femtocells
US8301178B1 (en) Extended handset service in locations served by femtocell devices
US7912039B1 (en) Method and apparatus for blocking a pay-per use feature in a communications network
EP2845380B1 (en) Method and system for call setup

Legal Events

Date Code Title Description
FZDE Discontinued