CA2628652C - Coaxial cable connector with inner sleeve ring - Google Patents

Coaxial cable connector with inner sleeve ring Download PDF

Info

Publication number
CA2628652C
CA2628652C CA2628652A CA2628652A CA2628652C CA 2628652 C CA2628652 C CA 2628652C CA 2628652 A CA2628652 A CA 2628652A CA 2628652 A CA2628652 A CA 2628652A CA 2628652 C CA2628652 C CA 2628652C
Authority
CA
Canada
Prior art keywords
cable
sleeve
connector
ring
locking sleeve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA2628652A
Other languages
French (fr)
Other versions
CA2628652A1 (en
Inventor
Julio Filipe Rodrigues
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB Installation Products International LLC
Original Assignee
Thomas and Betts International LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomas and Betts International LLC filed Critical Thomas and Betts International LLC
Priority to CA2764745A priority Critical patent/CA2764745C/en
Publication of CA2628652A1 publication Critical patent/CA2628652A1/en
Application granted granted Critical
Publication of CA2628652C publication Critical patent/CA2628652C/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R9/00Structural associations of a plurality of mutually-insulated electrical connecting elements, e.g. terminal strips or terminal blocks; Terminals or binding posts mounted upon a base or in a case; Bases therefor
    • H01R9/03Connectors arranged to contact a plurality of the conductors of a multiconductor cable, e.g. tapping connections
    • H01R9/05Connectors arranged to contact a plurality of the conductors of a multiconductor cable, e.g. tapping connections for coaxial cables

Abstract

A coaxial cable connector includes a connector body having a rearward cable receiving end, a locking sleeve movably coupled to the rearward cable receiving end of the connector body and a sleeve ring movably disposed within a rearward sleeve ring receiving end of the locking sleeve. The sleeve ring has a forward end for retaining a cable within the connector upon forward insertion of the sleeve ring within the locking sleeve. The connector further preferably includes an annular post disposed within the connector body, wherein the forward end of the sleeve ring urges the cable against the post upon forward insertion of the sleeve ring within the locking sleeve.

Description

COAXIAL CABLE CONNECTOR WITH INNER SLEEVE RING

BACKGROUND OF THE INVENTION

The present invention relates generally to connectors for terminating coaxial cable. More particularly, the present invention relates to a coaxial cable connector having structural features to increase the range of cable sizes that can be accepted by the connector.

It has long been known to use connectors to terminate coaxial cable so as to connect a cable to various electronic devices such as televisions, radios and the like.
Prior art coaxial connectors generally include a connector body having an annular collar for accommodating a coaxial cable, an annular nut rotatably coupled to the collar for providing mechanical attachment of the connector to an external device and an annular post interposed between the collar and the nut. A resilient sealing O-ring may also be positioned between the collar and the nut at the rotatable juncture thereof to provide a water resistant seal thereat. The collar includes a cable receiving end for insertably receiving an inserted coaxial cable and, at the opposite end of the connector body, the nut includes an internally threaded end extent permitting screw threaded attachment of the body to an external device.

This type of coaxial connector further typically includes a locking sleeve to secure the cable within the body of the coaxial connector. The locking sleeve, which is typically formed of a resilient plastic, is securable to the connector body to secure the coaxial connector thereto. In this regard, the connector body typically includes some form of structure to cooperatively engage the locking sleeve. Such structure may include one or more recesses or detents formed on an inner annular surface of the connector body, which engages cooperating structure formed on an outer surface of the sleeve. A coaxial cable connector of this type is shown and described in commonly owned U.S. Patent No. 6,530,807.

Conventional coaxial cables typically include a center conductor surrounded by an insulator. A conductive foil is disposed over the insulator and a braided conductive shield surrounds the foil covered insulator. An outer insulative jacket surrounds the shield. In order to prepare the coaxial cable for termination, the outer jacket is stripped back exposing an extent of the braided conductive shield which is folded back over the jacket. A portion of the insulator covered by the conductive foil extends outwardly from the jacket and an extent of the center conductor extends outwardly from within the insulator.

Upon assembly, a coaxial cable is inserted into the cable receiving end of the connector body, wherein the annular post is forced between the foil covered insulator and the conductive shield of the cable. In this regard, the post is typically provided with a radially enlarged barb to facilitate expansion of the cable jacket. The locking sleeve is then moved axially into the connector body to clamp the cable jacket against the post barb providing both cable retention and a water-tight seal around the cable jacket.

Generally, such prior art connectors are designed to work for coaxial cables of a specified diameter. In other words, typical prior art coaxial cable connectors are not suitably designed to accommodate a range of cable diameters. For example, a connector adapted to connect with a relatively small diameter cable is typically designed with reduced internal dimensions making connection with a larger diameter cable impossible. Conversely, connectors adapted for larger diameter cables have larger internal dimensions, which do not adequately retain and seal smaller diameter cables.

A further problem with current coaxial connectors is that in order to properly attach the connector to the coaxial cable, a good deal of manual force must be applied to push the coaxial shielded cable over the barbs of the post. During conventional installation, the cable can buckle when the post with the barb is pushed between the foil and the braid and create an unsatisfactory electrical and mechanical connection.
Thus, a mistake made in the preparation process may result in a faulty connector installation.

It is, therefore, desirable to provide a coaxial connector with structural features to enhance gripping and sealing of coaxial cables having a wide range of diameters. It would be further desirable to provide a coaxial cable connector that eliminates the need to use excessive force to push the post into the coaxial shielded cable and prevents buckling of the coaxial shielded cable.

OBJECTS AND SUMMARY OF THE INVENTION

It is an object of the present invention to provide a coaxial cable connector for terminating a coaxial cable.

It is a further object of the present invention to provide a coaxial cable connector having structure to enhance gripping and sealing of varying sizes of coaxial cables.

In the efficient attainment of these and other objects, the present invention provides a coaxial cable connector. The connector of the present invention generally includes a connector body having a rearward cable receiving end, a locking sleeve movably coupled to the rearward cable receiving end of the connector body and a sleeve ring movably disposed within a rearward sleeve ring receiving end of the locking sleeve. The sleeve ring has a forward end for retaining a cable within the connector upon forward insertion of the sleeve ring within the locking sleeve.
The connector further preferably includes an annular post disposed within the connector body, wherein the forward end of the sleeve ring urges the cable against the post upon forward insertion of the sleeve ring within the locking sleeve.

In a preferred embodiment, the locking sleeve includes a sleeve flange formed on an inner surface thereof and the sleeve flange includes a flexible skirt.
The forward end of the sleeve ring engages the flexible skirt upon forward insertion of the sleeve ring within the locking ring to deflect the flexible skirt radially inward whereby the skirt engages the cable to retain the cable within the connector.

In an alternative embodiment, the connector further includes a cable gripping O-ring disposed within the locking sleeve. The forward end of the sleeve ring compresses the O-ring upon forward insertion of the sleeve ring within the locking sleeve to expand the O-ring radially inward. In this manner, the O-ring engages the cable to retain the cable within the connector and to provide a seal around the cable.

In another alternative embodiment, the locking sleeve includes a sleeve flange formed on an inner surface thereof and the sleeve flange includes a ramped portion.
In this embodiment, the forward end of the sleeve ring includes a deformable edge portion, which engages the flange ramped portion upon forward insertion of the sleeve ring within the locking sleeve, whereby the deformable edge portion is deflected radially inward to engage the cable and retain the cable within the connector.

The present invention further involves a coaxial cable connector including a connector body, a locking sleeve movably coupled to a rearward cable receiving end of the connector body and a cable gripping ferrule disposed in the connector body forward of the locking sleeve. The connector body further includes a first engagement portion having a first internal diameter and a second engagement portion having a second internal diameter, wherein the second internal diameter is smaller than the first internal diameter. When the locking sleeve is moved forward, it forces the cable gripping ferrule from the first engagement portion of the connector body into the second engagement portion, wherein the gripping ferrule compresses in a radially inward direction for engaging a cable inserted in the connector.

The cable gripping ferrule can be in the form of a split ring formed separate from the locking sleeve, wherein the ring has an outer diameter substantially equal to the first internal diameter of the connector body first engagement portion.
Alternatively, the cable gripping ferrule can be an integral forward portion of the locking sleeve, wherein the portion has at least one slot formed therein to facilitate its radially inward compression.

In either case, the gripping ferrule preferably has a length, a first substantially constant outer diameter along its entire length when the gripping ferrule is disposed in the connector body first engagement portion and a second substantially constant outer diameter along its entire length when the gripping ferrule is disposed in the connector body second engagement portion. The second substantially constant outer diameter is smaller than the first substantially constant outer diameter.

The present invention further involves a method for terminating a coaxial cable in a connector. The method generally includes the steps of inserting an end of a cable into a rearward cable receiving end of a connector body, axially moving a locking sleeve coupled to the connector body in a forward direction and axially moving a sleeve ring within the locking sleeve in a forward direction, wherein the sleeve ring has a forward end for retaining a cable within the connector upon forward insertion of the sleeve ring within the locking sleeve.

A preferred form of the coaxial connector, as well as other embodiments, objects, features and advantages of this invention, will be apparent from the following detailed description of illustrative embodiments thereof, which is to be read in conjunction with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is a cross-sectional view of a preferred embodiment of the coaxial cable connector of the present invention in its open position.

Figure 2 is a cross-sectional view of the connector shown in Figure 1 in its closed position.

Figure 2a is an enlarged detail view of the interaction between the inner sleeve ring and the locking sleeve flange shown in Figure 2.
Figure 3 is a cross-sectional view of an alternative embodiment of the coaxial cable connector of the present invention in its open position.

Figure 4 is a cross-sectional view of the connector shown in Figure 3 in its closed position.

Figure 4a is an enlarged detail view of the interaction between the inner sleeve ring and the O-ring shown in Figure 4.

Figure 5 is a perspective view of the cable gripping ferrule shown in Figures and 4.

Figure 6 is a cross-sectional view of another alternative embodiment of the coaxial cable connector of the present invention in its open position.

Figure 7 is a cross-sectional view of the connector shown in Figure 6 in its closed position.

Figure 8 is a perspective view of a preferred embodiment of a cable gripping ferrule integral with the locking sleeve.

Figure 9 is a cross-sectional view of another alternative embodiment of the coaxial cable connector of the present invention in its open position.

Figure 10 is a cross-sectional view of the connector shown in Figure 5 in its closed position.

Figure 10a is an enlarged detail view of the interaction between the inner sleeve ring and the locking sleeve ramp portion shown in Figure 7.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
Referring first to Figures 1 and 2, a preferred embodiment of the coaxial cable connector 10 of the present invention is shown. The connector 10 generally includes a connector body 12, a locking sleeve 14, an inner sleeve ring 16, an annular post 18 and a rotatable nut 20. It is however conceivable that the connector body 12 and the post 18 can be integrated into one component and/or another fastening device other than the rotatable nut 20 can be utilized.

The connector body 12, also called a collar, is an elongate generally cylindrical member, which can be made from plastic or from metal or the like.
The body 12 has a forward end 22 coupled to the post 18 and the nut 20 and an opposite cable receiving end 24 for insertably receiving the locking sleeve 14, as well as a prepared end of a coaxial cable in the forward direction as shown by arrow A.
The cable receiving end 24 of the connector body 12 defines an inner sleeve engagement surface 26 for coupling with the locking sleeve 14. The inner engagement surface 26 is preferably formed with an arrangement of grooves or recesses 27 and protrusions 28, which cooperate with mating detent structure 29 provided on the outer surface of the locking sleeve 14.

The locking sleeve 14 is a generally tubular member having a rearward cable receiving end 30 and an opposite forward connector insertion end 32, which is movably coupled to the inner surface 26 of the connector body 12. As mentioned above, the outer cylindrical surface of the sleeve 14 at its forward end 32 includes a plurality of ridges or projections 29, which cooperate with a plurality of recesses 27 and protrusions 28 formed in the inner sleeve engagement surface 26 of the connector body 12 to allow for the movable connection of the sleeve 14 to the connector body 12 such that the sleeve is lockingly axially moveable along arrow A toward the forward end 22 of the connector body from a first position, as shown in Figure 1, which loosely retains the cable within the connector 10, to a more forward second position, as shown in Figure 2, which secures the cable within the connector.

Preferably, there are two ridges 29 to provide locking of the sleeve 14 in both its first and second positions. Each ridge 29 is further preferably defined by a rearwardly facing perpendicular wall and a forwardly facing chamfered wall.
This structure facilitates forward insertion of the sleeve 14 into the body 12 in the direction of arrow A and resists rearward removal of the sleeve from the body.
Moreover, the ridges or projections 29 of the present invention may take other forms. For example, while each ridge 29 is shown in the drawings to be continuous about the circumference of the locking sleeve 14, it is conceivable to provide gaps or spaces in one or more ridges to increase the ridge's flexibility. Also, the ridges 29 can be provided on the inner sleeve engagement surface 26 of the connector body 12, while the grooves are formed on the outer cylindrical surface of the sleeve 14.

The locking sleeve 14 further preferably includes a flanged head portion 34 disposed at the rearward cable receiving end 30 thereof. The head portion 34 has an outer diameter larger than the inner diameter of the body 12 and includes a forward facing perpendicular wall 36, which serves as an abutment surface against which the rearward end of the body 12 stops to prevent further insertion of the sleeve 14 into the body 12. A resilient, sealing O-ring 38 is preferably provided at the forward facing perpendicular wall 36 to provide a water-tight seal between the locking sleeve 14 and the connector body 12 upon insertion of the locking sleeve within the body.

The locking sleeve 14 further includes an annular sleeve flange 40 formed on the inner cylindrical surface of the locking sleeve. The sleeve flange 40 extends radially inward from the inner surface of the locking sleeve 14 and includes a rearward extending flexible skirt 42, which engages the inner sleeve ring 16 in a manner which will be described below. The flexible skirt 42 is preferably formed continuous around the inner surface of the locking sleeve 14. Alternatively, the flexible skirt 42 can consist of a series of annularly disposed individual flexible fingers, where sealing is not required. In either event, the rearward extending flexible skirt 42 and the inner surface of the locking sleeve 14 define an annular gap 44, which receives a forward end 46 of the inner sleeve ring 16.

The inner sleeve ring 16 is also a generally tubular member having a forward end 46 and an opposite rearward cable receiving end 48. The inner sleeve ring is axially movable within the rearward cable receiving end 30 of the locking sleeve 14 between a first, open position, as shown in Figure 1, to a second closed position, as shown in Figure 2. In this regard, the outer surface of the ring 16 and the inner surface of the locking sleeve 14 are preferably press-fit together. However, alternative structures, such as a cooperating detent structure (not shown), can be provided for locking the inner sleeve ring to the locking sleeve in one of its two positions.

As mentioned above, the forward end 46 of the inner sleeve ring 16 is received within the annular gap 44 defined between the flexible skirt 42 and the inner surface of the locking sleeve 14. As will be discussed in further detail below, forward movement of the inner sleeve ring 16, in the direction of arrow A, will cause the flexible skirt 42 of the locking sleeve flange 42 to deflect radially inward, as shown in the enlarged view of Figure 2A. Such inward deflection causes the flexible skirt 42 to grip the outer jacket of a cable inserted within the connector 10.

To facilitate the radially inward deflection of the flexible skirt 42, the forward end 46 of the inner sleeve ring 16 is preferably formed with a forward facing ramp portion 52 on its inner surface, which urges the flexible skirt 42 radially inward as the inner sleeve ring moves in the forward direction along arrow A. Also, the flexible skirt 42 preferably terminates at a rearward facing sharp edge 54 to facilitate "biting"
into the cable jacket as the skirt deflects inward.

As mentioned above, the connector 10 of the present invention further preferably includes an annular post 18 coupled to the forward end 22 of the connector body 12. The annular post 18 includes a flanged base portion 56 at its forward end for securing the post to the connector body 12 and an annular tubular extension 58 extending rearwardly within the body 12 and terminating adjacent the forward end 32 of the connector body 12. The rearward end of the tubular extension 58 preferably includes a radially outwardly extending ramped flange portion or "barb" 60 to enhance compression of the outer jacket of the coaxial cable against the flexible skirt 42 of the inner sleeve ring 16 to secure the cable within the connector 10.
The tubular extension 58 can include a series of such barbs 60 for gripping the cable. In any event, the rearward end of the tubular extension 58 preferably terminates in a sharp edge 62, which facilitates separation of the metallic foil from the metallic shield of the cable during installation, as will be discussed in further detail below. The tubular extension 58 of the post 18, the locking sleeve 14 and the body 12 define an annular chamber 64 for accommodating the jacket and shield of the inserted coaxial cable.
The connector 10 of the present invention further preferably includes a nut 20 rotatably coupled to the forward end 22 of the connector body 12. The nut 20 may be in any form, such as a hex nut, knurled nut, wing nut, or any other known attaching means, and is rotatably coupled to the connector body 12 for providing mechanical attachment of the connector 10 to an external device. A resilient sealing O-ring 66 is preferably positioned in the nut 20 to provide a water resistant seal thereat.

The connector 10 of the present invention is constructed so as to be supplied in the assembled condition shown in the drawings, wherein the locking sleeve 14 and the inner sleeve ring 16 are pre-installed inside the rearward cable receiving end 24 of the connector body 12. In such assembled condition, and as will be described in further detail hereinbelow, a coaxial cable may be inserted through the rearward cable receiving end 48 of the inner sleeve ring 16 to engage the post 18 of the connector 10.
However, it is conceivable that the locking sleeve 14 and the inner sleeve ring 16 can be first slipped over the end of a cable and then be inserted into the rearward end 24 of the connector body 12 together with the cable.

Having described the components of the connector 10 in detail, the use of the connector in terminating a coaxial cable 100 may now be described. Coaxial cable 100 includes an inner conductor 102 formed of copper or similar conductive material.
Extending around the inner conductor 102 is an insulator 104 formed of a dielectric material, such as a suitably insulative plastic. A metallic foil 106 is disposed over the insulator 104 and a metallic shield 108 is positioned in surrounding relationship around the foil covered insulator. Covering the metallic shield 108 is an outer insulative jacket 110.

The end of the cable 100 is inserted into the connector body 12 so that the cable jacket 110 is separated from the insulator 104 by the sharp edge 62 of the annular post 18. Once the cable 100 is fully inserted in the connector body 12, the locking sleeve 14 is moved axially forward in the direction of arrow A from the first position shown in Figure 1 to the second position shown in Figure 2. This may be accomplished with a suitable compression tool. As the sleeve 14 is moved axially forward, the inner sleeve flange 40 provides compressive force on the cable jacket 110 against the barb 60 of the annular post 18.

Next, or at the same time, the inner sleeve ring 16 is driven forward in the direction of arrow A to further lock the cable 100 in the connector 10.
Movement of the inner sleeve ring 16 can be accomplished with the same compression tool used to drive the locking sleeve 14, or a different compression tool. As described above, inward axial movement of the inner sleeve ring 16 causes the flexible skirt 42 of the inner sleeve flange 40 to expand radially inward to grip the outer surface of the cable jacket 110. Thus, as a result of the present invention, the cable 100 is prevented from being easily pulled out of the connector 10.

Figures 3-8 show an alternative embodiment of a connector 70, 70a of the present invention, wherein the internal flexible skirt 42 of the locking sleeve 14 has been replaced by a cable gripping ferrule 72, 72a and a cable sealing O-ring 74. The connector 70, 70a shown in Figures 3-8 is similar in most respects to the connector 10 described above with respect to Figures 1-2A. Specifically, the connector 70, 70a generally includes a connector body 12, a locking sleeve 14, 14a, an inner sleeve ring 16, an annular post 18 and a rotatable nut 20, as described above.

However, in this embodiment, a cable gripping ferrule 72, 72a is disposed in the annular chamber 64 of the connector 70, 70a forward of the locking sleeve 14, 14a. The gripping ferrule 72 can be provided as a separate element, as shown in Figures 3-5, but is preferably formed as an integral forward portion 72a of the locking sleeve 14a, as shown in Figures 6-8. In either case, the gripping ferrule 72, 72a is a generally tubular member having a forward end 76 and an opposite rearward end 78.
The gripping ferrule 72, 72a further includes an outer surface 77, which frictionally engages the inner engagement surface 26 of the connector body 12 to retain the ferrule within the rearward end 24 of the connector body 12. Thus, as assembled, the gripping ferrule 72, 72a is sandwiched between the forward connector insertion end 32 of the locking sleeve 14, 14a and the rearward cable receiving end 24 of the connector body 12.

Also in this embodiment, the inner engagement surface 26 of the connector body 12 is formed with an internal ramp portion 80, which defines a transition region on the inner surface 26 between a first inner diameter 26a and a smaller second inner diameter 26b of the connector body. As will be discussed further below, the internal ramp portion 80 of the connector body 12 facilitates forward movement of the gripping ferrule 72, 72a from engagement with the first internal diameter 26a of the engagement surface 26 to engagement with the smaller second diameter 26b. As the gripping ferrule 72, 72a moves from the first diameter 26a to the second smaller diameter, the ferrule collapses so that the inner dimensions of the ferrule are reduced or radially compressed to grip the outer jacket 110 of the cable 100.

Specifically, the gripping ferrule 72, 72a is designed to compress radially inward when pressed by the locking sleeve 14 in the forward axial direction, along arrow A, into the smaller diameter engagement surface 26b of the connector body 12.
In particular, when provided as a separate component as shown in Figure 5, the gripping ferrule 72 is designed as a split ring having a gap 79 that reduces in size when the ferrule is forced into the smaller diameter engagement surface 26b to allow inward compression of the ferrule.

When formed integral with the locking sleeve 14a, the gripping ferrule 72a is provided with one or more slots 79 that extend from the forward end 76 to the rearward end 78a, as shown in Figure 8. These slots 79 allow the peripheral walls of the gripping ferrule 72a to collapse inwardly, when forced by the reduced diameter engagement surface 26b of the connector body 12, to facilitate the radial inward compression of the ferrule.

In either case, such reduction of the inner diameter of the gripping ferrule 72, 72a will cause the ferrule to engage the outer surface of the cable 100 to secure the cable to the connector 70, 70a. Secondly, the ferrule 72 provides a redundant sealing point to prevent the ingress of water or other contaminants into the connector assembly 70, 70a.

The forward end 76 of the gripping ferrule 72 preferably terminates at a tapered edge 73 to enhance forward movement of the ferrule within the connector body 12. It is also conceivable that the forward end 76 of the gripping ferrule can be formed with a plurality of circumferentially arranged flexible fingers (not shown) extending in the forward longitudinal direction, where sealing is not required. The fingers may be formed simply by providing longitudinal slots or recesses at the forward end 76 of the ferrule 72.

As mentioned above, the connector 70, 70a in this embodiment further includes a cable sealing O-ring 74 to provide a second cable retention and sealing point on the cable. The cable sealing O-ring 74 is made from a resilient sealing material, such as rubber, and is disposed between the locking sleeve 14 and the forward end 46 of the inner sleeve ring 16.

The locking sleeve 14 is preferably provided with structure for retaining the O-ring in its position. In particular, instead of having a rearward extending flexible skirt 42 described above, the sleeve flange 40a in this embodiment is formed with a substantially perpendicular, rearward facing wall 82, which, together with the forward end of the inner sleeve ring define an annular cable gripping O-ring space 84 in which the cable gripping O-ring is received, as shown in the enlarged view of Figure 4A.
In use, a cable 100 is prepared and inserted into the connector 70, 70a, as described above, wherein the cable jacket 110 is parted from the cable insulator 104 by the sharp edge 62 of the post 18. The locking sleeve 14, 14a is driven forward in the direction of arrow A from a first position, as shown in Figures 3 and 6, to a second position, as shown in Figures 4 and 7. Again, a suitable compression tool can be utilized and cooperating detent structure 78 can be provided between the connector body 12 and the locking sleeve 14, 14a, as described above, to positively lock the locking sleeve in its first and second positions. As the locking sleeve 14, 14a is driven forward, the cable gripping ferrule 72, 72a is forced from the first diameter 26a of the inner engagement surface 26, up the internal ramp portion 80 and into the smaller second diameter section 26b of the connector body 12, which causes the ferrule to contract radially inward against the outer surface of the cable jacket 110.
The cable jacket 110 is thus retained between the cable gripping ferrule 72, 72a and the tubular extension 58 of the post 18. Here too, the post 18 is preferably provided with a series of post barbs 60 spaced forward of the rearward end 62 to enhance compression of the cable jacket 110 together with the cable gripping end 76 of the ferrule 72, 72a.

At the same time, or subsequently, the inner sleeve ring 16 is driven forward from a first position, as shown in Figures 3 and 6, to a second position, as shown in Figures 4, 4A and 7. As the inner sleeve ring 16 is driven forward, the forward end 46 of the sleeve compresses the cable sealing O-ring 74 against the rearward facing wall 82 of the inner sleeve flange 40a. Such compression causes the cable gripping O-ring 74 to radially expand whereby the inner diametrical surface of the O-ring engages the outer jacket 110 of the cable 100. Thus, a second cable retention and sealing point is established, which is axially spaced from the cable retention and sealing point formed by the gripping ferrule 72.

Figures 9, 10 and I OA show another alternative embodiment of a connector 90 of the present invention, wherein the inner sleeve ring 16a itself directly provides a cable retention and sealing point on the cable 100. Again, the connector 90 shown in Figures 9, 10 and l0A is similar in most respects to the connector 10 described above with respect to Figures 1, 2 and 2A. Specifically, the connector 90 generally includes a connector body 12, a locking sleeve 14, an inner sleeve ring 16a, an annular post 18 and a rotatable nut 20, as described above.

However, in this embodiment, the forward end 46a of the inner sleeve ring 16a is modified slightly so as to directly engage the outer jacket 110 of the cable upon forward movement of the inner sleeve ring within the locking sleeve.
Specifically, the forward end 46a of the inner sleeve ring 16a includes a deformable edge portion 92 which is adapted to compress or deflect radially inward toward the post barb 60 upon forward movement of the inner sleeve ring.

Also in this embodiment, the inner sleeve flange 40b is here formed with an internal ramp portion 94, which defines a transition region on the inner surface of the locking sleeve 14 between a first diameter and a smaller second diameter. As will be discussed further below, the internal ramp portion 94 of the sleeve flange 40b serves to radially compress the forward deformable edge portion 92 of the inner sleeve ring 16a upon forward insertion of the sleeve into the rearward end 30 of the locking sleeve 14.

More particularly, the deformable edge portion 92 is designed to expand radially inward when pressed against the internal ramp portion 94 of the sleeve flange 40b. This radially inward expansion of the deformable edge portion 92 will cause it to engage the outer surface of the cable 100 to secure the cable to the connector 70.
In this regard, the deformable edge portion 92 of the inner sleeve ring l6a preferably terminates at a forward sharp edge 96 to enhance gripping of the cable jacket 110.
The deformable edge portion 92 is preferably in the form of an annularly continuous deformable skirt. However, it is also conceivable that the deformable edge portion 92 can be formed with a plurality of circumferentially arranged flexible fingers (not shown) extending in the forward longitudinal direction, where water-resistant sealing against the cable is not required. The fingers may be formed simply by providing longitudinal slots or recesses in the forward end 46a of the inner sleeve ring 16a.

In use, a cable 100 is prepared and inserted into the connector 90, as described above, wherein the cable jacket 110 is parted from the cable insulator 104 by the sharp edge 62 of the post 18. The locking sleeve 18 is driven forward in the direction of arrow A from a first position, as shown in Figure 9, to a second position, as shown in Figure 10. Again, cooperating detent structure 27, 28, 29 can be provided between the connector body 12 and the locking sleeve 14, as described above, to positively lock the locking sleeve in its first and second positions. At the same time, or subsequently, the inner sleeve ring 16a is driven forward from a first position, as shown in Figure 9, to a second position, as shown in Figure 10. As the inner sleeve ring 16a is driven forward, the forward end 46a of the sleeve engages the internal ramp portion 94 of the sleeve flange 40b thereby causing the deformable edge portion 92 of the ring to deflect inwardly whereby its inner diameter is reduced and wherein the edge portion engages the outer jacket 110 of the cable 100. Thus, a cable retention and sealing point is established directly by the inner sleeve ring 16a.

Although the illustrative embodiments of the present invention have been described herein with reference to the accompanying drawings, it is to be understood that the invention is not limited to those precise embodiments, and that various other changes and modifications may be effected therein by one skilled in the art without departing from the scope or spirit of the invention.

Various changes to the foregoing described and shown structures will now be evident to those skilled in the art. Accordingly, the particularly disclosed scope of the invention is set forth in the following claims.

Claims (24)

1. A coaxial cable connector comprising:
a connector body including a rearward cable receiving end, a first engagement portion having a first internal diameter and a second engagement portion having a second internal diameter, said second internal diameter being smaller than said first internal diameter;
a locking sleeve movably coupled to said rearward cable receiving end of said connector body; and a cable gripping ferrule disposed in said first engagement portion of said connector body forward of said locking sleeve, said cable gripping ferrule being forced into said second engagement portion of said connector body upon forward insertion of said locking sleeve within said connector body, wherein said gripping ferrule compresses in a radially inward direction for engaging a cable inserted in the connector, wherein said cable gripping ferrule is an integral forward portion of said locking sleeve, said integral forward portion having at least one slot formed therein to facilitate said radially inward compression.
2. A coaxial cable connector as defined in Claim 1, wherein said connector body further includes a ramp portion disposed between said first engagement portion and said second engagement portion, said ramp portion facilitating forward movement of said gripping ferrule from said first engagement portion into said second engagement portion.
3. A coaxial cable connector comprising:
a connector body including a rearward cable receiving end, a first engagement portion having a first internal diameter and a second engagement portion having a second internal diameter, said second internal diameter being smaller than said first internal diameter;
a locking sleeve movably coupled to said rearward cable receiving end of said connector body; and a cable gripping ferrule disposed in said first engagement portion of said connector body forward of said locking sleeve, said cable gripping ferrule being forced into said second engagement portion of said connector body upon forward insertion of said locking sleeve within said connector body, wherein said gripping ferrule compresses in a radially inward direction for engaging a cable inserted in the connector, wherein said cable gripping ferrule has a length, a first substantially constant outer diameter along its entire length when said gripping ferrule is disposed in said connector body first engagement portion and a second substantially constant outer diameter along its entire length when said gripping ferrule is disposed in said connector body second engagement portion, said second substantially constant outer diameter being smaller than said first substantially constant outer diameter.
4. A method for terminating a coaxial cable in a connector comprising the steps of:
inserting an end of a cable into a rearward cable receiving end of a connector body;
axially moving a locking sleeve coupled to said connector body in a forward direction; and axially moving a sleeve ring within said locking sleeve in a forward direction, said sleeve ring having a forward end adapted for retaining the cable within the connector upon forward insertion of said sleeve ring within said locking sleeve;
wherein said locking sleeve further comprises a forward cable gripping portion, said cable gripping portion being an integral forward portion of said locking sleeve and having at least one slot formed therein to facilitate said radially inward compression; and wherein said step of axially moving said locking sleeve comprises the step of compressing said forward cable gripping portion of said locking sleeve in a radially inward direction whereby said cable gripping portion engages the cable to retain the cable within the connector.
5. A method as defined in Claim 4, wherein the connector further comprises an annular post disposed within said connector body, and wherein said step of axially moving said sleeve ring comprises the step of urging the cable with said forward end of said sleeve ring against said post.
6. A method as defined in Claim 4, wherein said locking sleeve comprises a sleeve flange formed on an inner surface thereof, and said sleeve flange includes a flexible skirt, and wherein said step of axially moving said sleeve ring comprises the step of engaging said flexible skirt with said forward end of said sleeve ring to deflect said flexible skirt radially inward whereby said skirt engages the cable to retain the cable within the connector.
7. A method as defined in Claim 4, wherein the connector further comprises a cable engaging O-ring disposed within said locking sleeve, and wherein said step of axially moving said sleeve ring comprises the step of compressing said O-ring with said forward end of said sleeve ring to expand said O-ring radially inward whereby said O-ring engages the cable to seal the cable within the connector.
8. A method as defined in Claim 4, wherein said locking sleeve comprises a sleeve flange formed on an inner surface thereof, said sleeve flange including a ramped portion, and wherein said forward end of said sleeve ring includes a deformable edge portion, said deformable edge portion engaging said flange ramped portion upon forward insertion of said sleeve ring within said locking sleeve, wherein said deformable edge portion is deflected radially inward to engage the cable and retain the cable within the connector.
9. A coaxial cable connector as defined in Claim 1, further comprising a sleeve ring movably disposed within a rearward sleeve ring receiving end of said locking sleeve, said sleeve ring having a forward end adapted for retaining a cable within the connector upon forward insertion of said sleeve ring within said locking sleeve.
10. A coaxial cable connector as defined in Claim 9, further comprising an annular post disposed within said connector body, said forward end of said sleeve ring urging the cable against said post upon forward insertion of said sleeve ring within said locking sleeve.
11. A coaxial cable connector as defined in Claim 9, wherein said locking sleeve comprises a sleeve flange formed on an inner surface thereof, said sleeve flange including a flexible skirt, said forward end of said sleeve ring engaging said flexible skirt upon forward insertion of said sleeve ring within said locking sleeve to deflect said flexible skirt radially inward whereby said skirt engages the cable to retain the cable within the connector.
12. A coaxial cable connector as defined in Claim 11, wherein an annular gap is formed between said flexible skirt and said inner surface of said locking sleeve, and wherein said forward end of said sleeve ring is formed with a forward facing ramp portion, said ramp portion being received in said annular gap and deflecting said flexible skirt radially inward upon forward insertion of said sleeve ring within said locking sleeve.
13. A coaxial cable connector as defined in Claim 9, further comprising a cable engaging O-ring disposed within said locking sleeve, said forward end of said sleeve ring compressing said O-ring upon forward insertion of said sleeve ring within said locking sleeve to expand said O-ring radially inward whereby said O-ring engages the cable to seal the cable within the connector.
14. A coaxial cable connector as defined in Claim 13, wherein said locking sleeve comprises a flange formed on an inner surface thereof, said flange having a rearward facing wall, said O-ring being compressed against said rearward facing wall by said forward end of said sleeve ring upon forward insertion of said sleeve ring within said locking sleeve.
15. A coaxial cable connector as defined in Claim 9, wherein said locking sleeve comprises a sleeve flange formed on an inner surface thereof, said sleeve flange including a ramped portion, and wherein said forward end of said sleeve ring includes a deformable edge portion, said deformable edge portion engaging said flange ramped portion upon forward insertion of said sleeve ring within said locking sleeve, whereby said deformable edge portion is deflected radially inward to engage the cable and retain the cable within the connector.
16. A coaxial cable connector as defined in Claim 3, further comprising a sleeve ring movably disposed within a rearward sleeve ring receiving end of said locking sleeve, said sleeve ring having a forward end adapted for retaining a cable within the connector upon forward insertion of said sleeve ring within said locking sleeve.
17. A coaxial cable connector as defined in Claim 16, further comprising an annular post disposed within said connector body, said forward end of said sleeve ring urging the cable against said post upon forward insertion of said sleeve ring within said locking sleeve.
18. A coaxial cable connector as defined in Claim 16, wherein said locking sleeve comprises a sleeve flange formed on an inner surface thereof, said sleeve flange including a flexible skirt, said forward end of said sleeve ring engaging said flexible skirt upon forward insertion of said sleeve ring within said locking sleeve to deflect said flexible skirt radially inward whereby said skirt engages the cable to retain the cable within the connector.
19. A coaxial cable connector as defined in Claim 18, wherein an annular gap is formed between said flexible skirt and said inner surface of said locking sleeve, and wherein said forward end of said sleeve ring is formed with a forward facing ramp portion, said ramp portion being received in said annular gap and deflecting said flexible skirt radially inward upon forward insertion of said sleeve ring within said locking sleeve.
20. A coaxial cable connector as defined in Claim 16, further comprising a cable engaging O-ring disposed within said locking sleeve, said forward end of said sleeve ring compressing said O-ring upon forward insertion of said sleeve ring within said locking sleeve to expand said O-ring radially inward whereby said O-ring engages the cable to seal the cable within the connector.
21. A coaxial cable connector as defined in Claim 20, wherein said locking sleeve comprises a flange formed on an inner surface thereof, said flange having a rearward facing wall, said O-ring being compressed against said rearward facing wall by said forward end of said sleeve ring upon forward insertion of said sleeve ring within said locking sleeve.
22. A coaxial cable connector as defined in Claim 16, wherein said locking sleeve comprises a sleeve flange formed on an inner surface thereof, said sleeve flange including a ramped portion, and wherein said forward end of said sleeve ring includes a deformable edge portion, said deformable edge portion engaging said flange ramped portion upon forward insertion of said sleeve ring within said locking sleeve, whereby said deformable edge portion is deflected radially inward to engage the cable and retain the cable within the connector.
23. A coaxial cable connector as defined in Claim 3, wherein said cable gripping ferrule is an integral forward portion of said locking sleeve, said portion having at least one slot formed therein to facilitate said radially inward compression.
24. A coaxial cable connector as defined in Claim 3, wherein said cable gripping ferrule is a split ring formed separate from said locking sleeve, said ring having an outer diameter substantially equal to said first internal diameter of said connector body first engagement portion.
CA2628652A 2007-05-01 2008-04-09 Coaxial cable connector with inner sleeve ring Expired - Fee Related CA2628652C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA2764745A CA2764745C (en) 2007-05-01 2008-04-09 Coaxial cable connector with inner sleeve ring

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US92698607P 2007-05-01 2007-05-01
US60/926,986 2007-05-01

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CA2764745A Division CA2764745C (en) 2007-05-01 2008-04-09 Coaxial cable connector with inner sleeve ring

Publications (2)

Publication Number Publication Date
CA2628652A1 CA2628652A1 (en) 2008-11-01
CA2628652C true CA2628652C (en) 2012-01-17

Family

ID=39930790

Family Applications (2)

Application Number Title Priority Date Filing Date
CA2764745A Expired - Fee Related CA2764745C (en) 2007-05-01 2008-04-09 Coaxial cable connector with inner sleeve ring
CA2628652A Expired - Fee Related CA2628652C (en) 2007-05-01 2008-04-09 Coaxial cable connector with inner sleeve ring

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CA2764745A Expired - Fee Related CA2764745C (en) 2007-05-01 2008-04-09 Coaxial cable connector with inner sleeve ring

Country Status (2)

Country Link
US (1) US7794275B2 (en)
CA (2) CA2764745C (en)

Families Citing this family (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8157589B2 (en) 2004-11-24 2012-04-17 John Mezzalingua Associates, Inc. Connector having a conductively coated member and method of use thereof
US7114990B2 (en) 2005-01-25 2006-10-03 Corning Gilbert Incorporated Coaxial cable connector with grounding member
US7794275B2 (en) * 2007-05-01 2010-09-14 Thomas & Betts International, Inc. Coaxial cable connector with inner sleeve ring
US8171629B2 (en) * 2007-12-21 2012-05-08 Commscope Inc. Of North Carolina Reuseable coaxial connector method
US7740502B2 (en) * 2007-12-21 2010-06-22 Commscope, Inc. Of North Carolina Reuseable coaxial connectors and related methods
US8113875B2 (en) 2008-09-30 2012-02-14 Belden Inc. Cable connector
US8460031B2 (en) * 2008-11-05 2013-06-11 Andrew Llc Coaxial connector with cable diameter adapting seal assembly and interconnection method
US8025518B2 (en) 2009-02-24 2011-09-27 Corning Gilbert Inc. Coaxial connector with dual-grip nut
US7824216B2 (en) 2009-04-02 2010-11-02 John Mezzalingua Associates, Inc. Coaxial cable continuity connector
US20100275341A1 (en) * 2009-04-29 2010-11-04 Ansell Healthcare Products Llc Knitted Glove Having A Single Layer With A Plurality Of Yarns
US9017101B2 (en) 2011-03-30 2015-04-28 Ppc Broadband, Inc. Continuity maintaining biasing member
US8444445B2 (en) 2009-05-22 2013-05-21 Ppc Broadband, Inc. Coaxial cable connector having electrical continuity member
US8573996B2 (en) 2009-05-22 2013-11-05 Ppc Broadband, Inc. Coaxial cable connector having electrical continuity member
US9570845B2 (en) 2009-05-22 2017-02-14 Ppc Broadband, Inc. Connector having a continuity member operable in a radial direction
US8287320B2 (en) 2009-05-22 2012-10-16 John Mezzalingua Associates, Inc. Coaxial cable connector having electrical continuity member
US7887365B1 (en) * 2009-07-22 2011-02-15 Tyco Electronics Corporation Electrical plug and jack assembly
US8016613B2 (en) * 2009-11-12 2011-09-13 Amphenol Corporation Coaxial connector with locking sleeve for terminating cable
US8272893B2 (en) 2009-11-16 2012-09-25 Corning Gilbert Inc. Integrally conductive and shielded coaxial cable connector
US20110117777A1 (en) * 2009-11-16 2011-05-19 Thomas & Betts International, Inc. Cable connector
US8568164B2 (en) 2009-12-11 2013-10-29 Ppc Broadband, Inc. Coaxial cable connector sleeve
TWM392474U (en) * 2010-02-12 2010-11-11 Yueh-Chiung Lu Improved signal adapter structure
TWI549386B (en) 2010-04-13 2016-09-11 康寧吉伯特公司 Coaxial connector with inhibited ingress and improved grounding
US8172608B2 (en) * 2010-04-29 2012-05-08 Commscope Inc. Of North Carolina Reuseable coaxial connectors and related extraction tools and methods
EP2393158A1 (en) * 2010-06-04 2011-12-07 PPC, A Division of John Mezzalingua Associates, Inc. Short post cable connector with resilient clamping member
US8152551B2 (en) 2010-07-22 2012-04-10 John Mezzalingua Associates, Inc. Port seizing cable connector nut and assembly
US8079860B1 (en) 2010-07-22 2011-12-20 John Mezzalingua Associates, Inc. Cable connector having threaded locking collet and nut
US8113879B1 (en) 2010-07-27 2012-02-14 John Mezzalingua Associates, Inc. One-piece compression connector body for coaxial cable connector
US8888526B2 (en) 2010-08-10 2014-11-18 Corning Gilbert, Inc. Coaxial cable connector with radio frequency interference and grounding shield
US8556656B2 (en) 2010-10-01 2013-10-15 Belden, Inc. Cable connector with sliding ring compression
US8167636B1 (en) 2010-10-15 2012-05-01 John Mezzalingua Associates, Inc. Connector having a continuity member
US8075338B1 (en) * 2010-10-18 2011-12-13 John Mezzalingua Associates, Inc. Connector having a constant contact post
US8167635B1 (en) 2010-10-18 2012-05-01 John Mezzalingua Associates, Inc. Dielectric sealing member and method of use thereof
US8323053B2 (en) 2010-10-18 2012-12-04 John Mezzalingua Associates, Inc. Connector having a constant contact nut
US8167646B1 (en) 2010-10-18 2012-05-01 John Mezzalingua Associates, Inc. Connector having electrical continuity about an inner dielectric and method of use thereof
TWI558022B (en) 2010-10-27 2016-11-11 康寧吉伯特公司 Push-on cable connector with a coupler and retention and release mechanism
US8337229B2 (en) 2010-11-11 2012-12-25 John Mezzalingua Associates, Inc. Connector having a nut-body continuity element and method of use thereof
US8414322B2 (en) 2010-12-14 2013-04-09 Ppc Broadband, Inc. Push-on CATV port terminator
US8398421B2 (en) 2011-02-01 2013-03-19 John Mezzalingua Associates, Inc. Connector having a dielectric seal and method of use thereof
US8157588B1 (en) 2011-02-08 2012-04-17 Belden Inc. Cable connector with biasing element
US8342879B2 (en) 2011-03-25 2013-01-01 John Mezzalingua Associates, Inc. Coaxial cable connector
US8465322B2 (en) 2011-03-25 2013-06-18 Ppc Broadband, Inc. Coaxial cable connector
US8366481B2 (en) 2011-03-30 2013-02-05 John Mezzalingua Associates, Inc. Continuity maintaining biasing member
US8388377B2 (en) 2011-04-01 2013-03-05 John Mezzalingua Associates, Inc. Slide actuated coaxial cable connector
WO2012138644A2 (en) 2011-04-05 2012-10-11 Belden Inc. Locking and sealing connector
US8348697B2 (en) 2011-04-22 2013-01-08 John Mezzalingua Associates, Inc. Coaxial cable connector having slotted post member
US9711917B2 (en) 2011-05-26 2017-07-18 Ppc Broadband, Inc. Band spring continuity member for coaxial cable connector
US9203167B2 (en) 2011-05-26 2015-12-01 Ppc Broadband, Inc. Coaxial cable connector with conductive seal
US8758050B2 (en) 2011-06-10 2014-06-24 Hiscock & Barclay LLP Connector having a coupling member for locking onto a port and maintaining electrical continuity
US8591244B2 (en) 2011-07-08 2013-11-26 Ppc Broadband, Inc. Cable connector
US8771011B2 (en) 2011-07-19 2014-07-08 David J Ball Broadband interface connection system
US8721365B2 (en) * 2011-09-13 2014-05-13 Holland Electronics, Llc Compression type coaxial cable connector
US9190744B2 (en) 2011-09-14 2015-11-17 Corning Optical Communications Rf Llc Coaxial cable connector with radio frequency interference and grounding shield
US20130072057A1 (en) 2011-09-15 2013-03-21 Donald Andrew Burris Coaxial cable connector with integral radio frequency interference and grounding shield
BR112014004217A2 (en) * 2011-09-20 2017-03-21 Cabletech Cabos Ltda quick coupler connector
US9147955B2 (en) 2011-11-02 2015-09-29 Ppc Broadband, Inc. Continuity providing port
US9136654B2 (en) 2012-01-05 2015-09-15 Corning Gilbert, Inc. Quick mount connector for a coaxial cable
US9407016B2 (en) 2012-02-22 2016-08-02 Corning Optical Communications Rf Llc Coaxial cable connector with integral continuity contacting portion
CN103378485B (en) * 2012-04-28 2016-01-27 沈阳兴华航空电器有限责任公司 A kind of tail accessory with direct-push locking device
US9287659B2 (en) 2012-10-16 2016-03-15 Corning Optical Communications Rf Llc Coaxial cable connector with integral RFI protection
US9147963B2 (en) 2012-11-29 2015-09-29 Corning Gilbert Inc. Hardline coaxial connector with a locking ferrule
US9153911B2 (en) 2013-02-19 2015-10-06 Corning Gilbert Inc. Coaxial cable continuity connector
US9172154B2 (en) 2013-03-15 2015-10-27 Corning Gilbert Inc. Coaxial cable connector with integral RFI protection
WO2014172554A1 (en) 2013-04-17 2014-10-23 Ppc Broadband, Inc. Post assembly for coaxial cable connectors
US10290958B2 (en) 2013-04-29 2019-05-14 Corning Optical Communications Rf Llc Coaxial cable connector with integral RFI protection and biasing ring
EP3000154B1 (en) 2013-05-20 2019-05-01 Corning Optical Communications RF LLC Coaxial cable connector with integral rfi protection
US9548557B2 (en) 2013-06-26 2017-01-17 Corning Optical Communications LLC Connector assemblies and methods of manufacture
US9048599B2 (en) 2013-10-28 2015-06-02 Corning Gilbert Inc. Coaxial cable connector having a gripping member with a notch and disposed inside a shell
WO2016073309A1 (en) 2014-11-03 2016-05-12 Corning Optical Communications Rf Llc Coaxial cable connector with integral rfi protection
US9590287B2 (en) 2015-02-20 2017-03-07 Corning Optical Communications Rf Llc Surge protected coaxial termination
US10033122B2 (en) * 2015-02-20 2018-07-24 Corning Optical Communications Rf Llc Cable or conduit connector with jacket retention feature
US10211547B2 (en) 2015-09-03 2019-02-19 Corning Optical Communications Rf Llc Coaxial cable connector
US9525220B1 (en) 2015-11-25 2016-12-20 Corning Optical Communications LLC Coaxial cable connector
CA3016422A1 (en) * 2016-01-15 2017-07-20 Ppc Broadband, Inc. Coaxial connectors having a front gripping body
US10367312B2 (en) * 2016-11-04 2019-07-30 Corning Optical Communications Rf Llc Connector for a coaxial cable
CN113969839B (en) * 2021-09-30 2023-12-15 陕西航空电气有限责任公司 Aeroengine ignition cable sealing structure

Family Cites Families (230)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1667485A (en) 1927-08-25 1928-04-24 Leo O Smith Connecter
GB524004A (en) 1939-01-19 1940-07-26 Cecil Oswald Browne Improvements in or relating to plug and socket connections
GB589697A (en) 1944-03-29 1947-06-27 Charles Duncan Henry Webb Improvements in electrical plug and socket connection
US2549647A (en) 1946-01-22 1951-04-17 Wilfred J Turenne Conductor and compressible insert connector means therefor
US2544654A (en) 1947-05-01 1951-03-13 Dancyger Mfg Company Shield for electric plugs
DE1191880B (en) 1959-09-07 1965-04-29 Microdot Inc Electrical coaxial connector
DE1117687B (en) 1960-07-05 1961-11-23 Georg Spinner Dipl Ing Connector fitting for coaxial high-frequency cables with solid metal sheath
US3103548A (en) 1961-11-16 1963-09-10 Crimped coaxial cable termination
US3184706A (en) 1962-09-27 1965-05-18 Itt Coaxial cable connector with internal crimping structure
US3292136A (en) 1964-10-01 1966-12-13 Gremar Mfg Co Inc Coaxial connector
US3275913A (en) 1964-11-20 1966-09-27 Lrc Electronics Inc Variable capacitor
US3350677A (en) 1965-03-30 1967-10-31 Elastic Stop Nut Corp Telescope waterseal connector
US3355698A (en) 1965-04-28 1967-11-28 Amp Inc Electrical connector
GB1087228A (en) 1966-04-05 1967-10-18 Automatic Metal Products Corp Electrical connectors for coaxial cables
US3373243A (en) 1966-06-06 1968-03-12 Bendix Corp Electrical multiconductor cable connecting assembly
US3475545A (en) 1966-06-28 1969-10-28 Amp Inc Connector for metal-sheathed cable
NL137270C (en) 1966-07-26
US3537065A (en) 1967-01-12 1970-10-27 Jerrold Electronics Corp Multiferrule cable connector
CH472790A (en) 1967-01-14 1969-05-15 Satra Ets Watertight socket and method for its realization
US3448430A (en) 1967-01-23 1969-06-03 Thomas & Betts Corp Ground connector
US3498647A (en) 1967-12-01 1970-03-03 Karl H Schroder Connector for coaxial tubes or cables
US3533051A (en) 1967-12-11 1970-10-06 Amp Inc Coaxial stake for high frequency cable termination
US3544705A (en) 1968-11-18 1970-12-01 Jerrold Electronics Corp Expandable cable bushing
US3629792A (en) 1969-01-28 1971-12-21 Bunker Ramo Wire seals
US3564487A (en) 1969-02-03 1971-02-16 Itt Contact member for electrical connector
GB1270846A (en) 1969-07-30 1972-04-19 Belling & Lee Ltd Improvements in or relating to coaxial electrical connectors
US3633150A (en) 1970-04-08 1972-01-04 Edward Swartz Watertight electric receptacle connector
US3668612A (en) 1970-08-07 1972-06-06 Lindsay Specialty Prod Ltd Cable connector
US3671922A (en) 1970-08-07 1972-06-20 Bunker Ramo Push-on connector
US3710005A (en) 1970-12-31 1973-01-09 Mosley Electronics Inc Electrical connector
US3694792A (en) 1971-01-13 1972-09-26 Wall Able Mfg Corp Electrical terminal clamp
GB1348806A (en) 1971-05-20 1974-03-27 C S Antennas Ltd Coaxial connectors
FR2147777B1 (en) 1971-05-28 1976-08-20 Commissariat Energie Atomique
DE2221936A1 (en) 1972-05-04 1973-11-15 Spinner Gmbh Elektrotech HF COAXIAL CONNECTOR
US3778535A (en) 1972-05-12 1973-12-11 Amp Inc Coaxial connector
US3781762A (en) 1972-06-26 1973-12-25 Tidal Sales Corp Connector assembly
DE2260734C3 (en) 1972-12-12 1984-09-20 Georg Dr.-Ing. 8152 Feldkirchen-Westerham Spinner RF coaxial connector
DE2261973A1 (en) 1972-12-18 1974-06-20 Siemens Ag CONNECTOR FOR COAXIAL CABLE
CA1009719A (en) 1973-01-29 1977-05-03 Harold G. Hutter Coaxial electrical connector
FR2219553B1 (en) 1973-02-26 1977-07-29 Cables De Lyon Geoffroy Delore
US3845453A (en) 1973-02-27 1974-10-29 Bendix Corp Snap-in contact assembly for plug and jack type connectors
US3846738A (en) 1973-04-05 1974-11-05 Lindsay Specialty Prod Ltd Cable connector
DE2328744A1 (en) 1973-06-06 1975-01-09 Bosch Gmbh Robert MULTIPOLE CONNECTOR
DE2331610A1 (en) 1973-06-20 1975-01-16 Spinner Georg CABLE CONNECTORS FOR FULLY INSULATED COAXIAL CABLES
US3910673A (en) 1973-09-18 1975-10-07 Us Energy Coaxial cable connectors
US3836700A (en) 1973-12-06 1974-09-17 Alco Standard Corp Conduit coupling
US3879102A (en) 1973-12-10 1975-04-22 Gamco Ind Inc Entrance connector having a floating internal support sleeve
DE2421321C3 (en) 1974-05-02 1978-05-11 Georg Dipl.-Ing. Dr.-Ing. 8152 Feldkirchen-Westerham Spinner Sealed coaxial connector
US3985418A (en) 1974-07-12 1976-10-12 Georg Spinner H.F. cable socket
US3980805A (en) 1975-03-31 1976-09-14 Bell Telephone Laboratories, Incorporated Quick release sleeve fastener
US4168921A (en) 1975-10-06 1979-09-25 Lrc Electronics, Inc. Cable connector or terminator
US4053200A (en) 1975-11-13 1977-10-11 Bunker Ramo Corporation Cable connector
CA1073068A (en) 1976-06-25 1980-03-04 Tetsuo Hashimoto Outer conductor attachment apparatus for coaxial connector
US4046451A (en) 1976-07-08 1977-09-06 Andrew Corporation Connector for coaxial cable with annularly corrugated outer conductor
US4059330A (en) 1976-08-09 1977-11-22 John Schroeder Solderless prong connector for coaxial cable
US4070751A (en) 1977-01-12 1978-01-31 Amp Incorporated Method of making a coaxial connector
US4093335A (en) 1977-01-24 1978-06-06 Automatic Connector, Inc. Electrical connectors for coaxial cables
US4150250A (en) 1977-07-01 1979-04-17 General Signal Corporation Strain relief fitting
JPS5744731Y2 (en) 1978-01-26 1982-10-02
US4156554A (en) 1978-04-07 1979-05-29 International Telephone And Telegraph Corporation Coaxial cable assembly
US4173385A (en) 1978-04-20 1979-11-06 Bunker Ramo Corporation Watertight cable connector
US4165554A (en) 1978-06-12 1979-08-28 Faget Charles J Hand-held portable calculator assembly
US4225162A (en) 1978-09-20 1980-09-30 Amp Incorporated Liquid tight connector
US4227765A (en) 1979-02-12 1980-10-14 Raytheon Company Coaxial electrical connector
US4408821A (en) 1979-07-09 1983-10-11 Amp Incorporated Connector for semi-rigid coaxial cable
FR2462798A1 (en) 1979-08-02 1981-02-13 Cables De Lyon Geoffroy Delore Spiral wound coaxial cable connector - has rubber joint compressed against threaded metal shell screwed onto cable spiral sheath
US4280749A (en) 1979-10-25 1981-07-28 The Bendix Corporation Socket and pin contacts for coaxial cable
US4339166A (en) 1980-06-19 1982-07-13 Dayton John P Connector
AU7252181A (en) 1980-07-03 1982-01-07 Tyree, C. Co-axial cable connector
US4408822A (en) 1980-09-22 1983-10-11 Delta Electronic Manufacturing Corp. Coaxial connectors
US4373767A (en) 1980-09-22 1983-02-15 Cairns James L Underwater coaxial connector
DE3036215C2 (en) 1980-09-25 1982-11-25 Georg Dipl.-Ing. Dr.-Ing. 8152 Feldkirchen-Westerham Spinner Cable connector for RF coaxial cables
US4346958A (en) 1980-10-23 1982-08-31 Lrc Electronics, Inc. Connector for co-axial cable
US4354721A (en) 1980-12-31 1982-10-19 Amerace Corporation Attachment arrangement for high voltage electrical connector
US4688876A (en) 1981-01-19 1987-08-25 Automatic Connector, Inc. Connector for coaxial cable
US4400050A (en) 1981-05-18 1983-08-23 Gilbert Engineering Co., Inc. Fitting for coaxial cable
EP0072104B1 (en) 1981-07-23 1986-01-02 AMP INCORPORATED (a New Jersey corporation) Sealed electrical connector
US4444453A (en) 1981-10-02 1984-04-24 The Bendix Corporation Electrical connector
US4540231A (en) 1981-10-05 1985-09-10 Amp Connector for semirigid coaxial cable
US4456323A (en) 1981-11-09 1984-06-26 Automatic Connector, Inc. Connector for coaxial cables
US4484792A (en) 1981-12-30 1984-11-27 Chabin Corporation Modular electrical connector system
NL8200018A (en) 1982-01-06 1983-08-01 Philips Nv COAXIAL CABLE WITH A CONNECTOR.
DE3211008A1 (en) 1982-03-25 1983-10-20 Wolfgang 2351 Trappenkamp Freitag Plug connector for coaxial cables
EP0110823B1 (en) 1982-11-24 1988-06-15 HUBER & SUHNER AG KABEL-, KAUTSCHUK-, KUNSTSTOFF-WERKE Pluggable connector and method of connecting it
DE8235915U1 (en) 1982-12-21 1983-04-14 Siemens AG, 1000 Berlin und 8000 München COAXIAL CONNECTOR
US4596434A (en) 1983-01-21 1986-06-24 M/A-Com Omni Spectra, Inc. Solderless connectors for semi-rigid coaxial cable
US4575274A (en) 1983-03-02 1986-03-11 Gilbert Engineering Company Inc. Controlled torque connector assembly
US4738009A (en) 1983-03-04 1988-04-19 Lrc Electronics, Inc. Coaxial cable tap
US4593964A (en) 1983-03-15 1986-06-10 Amp Incorporated Coaxial electrical connector for multiple outer conductor coaxial cable
US4583811A (en) 1983-03-29 1986-04-22 Raychem Corporation Mechanical coupling assembly for a coaxial cable and method of using same
DE3329127A1 (en) * 1983-08-11 1985-02-28 Bayer Ag, 5090 Leverkusen REINFORCEMENT ELEMENTS FOR ELASTOMERS, PRODUCTION OF THE REINFORCED ELASTOMERS AND REINFORCED ELASTOMERS
US5120260A (en) 1983-08-22 1992-06-09 Kings Electronics Co., Inc. Connector for semi-rigid coaxial cable
US4650228A (en) 1983-09-14 1987-03-17 Raychem Corporation Heat-recoverable coupling assembly
US4598961A (en) 1983-10-03 1986-07-08 Amp Incorporated Coaxial jack connector
US4533191A (en) 1983-11-21 1985-08-06 Burndy Corporation IDC termination having means to adapt to various conductor sizes
US4600263A (en) 1984-02-17 1986-07-15 Itt Corporation Coaxial connector
US4596435A (en) 1984-03-26 1986-06-24 Adams-Russell Co., Inc. Captivated low VSWR high power coaxial connector
EP0167738A3 (en) 1984-06-04 1987-07-22 Allied Corporation Electrical connector having means for retaining a coaxial cable
US4640572A (en) 1984-08-10 1987-02-03 Conlon Thomas R Connector for structural systems
US4674818B1 (en) 1984-10-22 1994-08-30 Raychem Corp Method and apparatus for sealing a coaxial cable coupling assembly
ID834B (en) 1984-10-25 1996-07-29 Matsushita Electric Works Ltd COAXIAL CABLE CONNECTOR
GB8431301D0 (en) 1984-12-12 1985-01-23 Amp Great Britain Lead sealing assembly
US4668043A (en) 1985-01-16 1987-05-26 M/A-Com Omni Spectra, Inc. Solderless connectors for semi-rigid coaxial cable
US4645281A (en) 1985-02-04 1987-02-24 Lrc Electronics, Inc. BNC security shield
US4688878A (en) 1985-03-26 1987-08-25 Amp Incorporated Electrical connector for an electrical cable
US4676577A (en) 1985-03-27 1987-06-30 John Mezzalingua Associates, Inc. Connector for coaxial cable
US4703987A (en) 1985-09-27 1987-11-03 Amphenol Corporation Apparatus and method for retaining an insert in an electrical connector
US4682832A (en) 1985-09-27 1987-07-28 Allied Corporation Retaining an insert in an electrical connector
US4655159A (en) 1985-09-27 1987-04-07 Raychem Corp. Compression pressure indicator
US4660921A (en) 1985-11-21 1987-04-28 Lrc Electronics, Inc. Self-terminating coaxial connector
US4632487A (en) 1986-01-13 1986-12-30 Brunswick Corporation Electrical lead retainer with compression seal
US4691976A (en) 1986-02-19 1987-09-08 Lrc Electronics, Inc. Coaxial cable tap connector
JPH0341434Y2 (en) 1986-09-17 1991-08-30
US4722222A (en) * 1986-09-25 1988-02-02 Skisonics Corporation Ski speedometer
US4717355A (en) 1986-10-24 1988-01-05 Raychem Corp. Coaxial connector moisture seal
US4755152A (en) 1986-11-14 1988-07-05 Tele-Communications, Inc. End sealing system for an electrical connection
US4813886A (en) 1987-04-10 1989-03-21 Eip Microwave, Inc. Microwave distribution bar
US4761146A (en) 1987-04-22 1988-08-02 Spm Instrument Inc. Coaxial cable connector assembly and method for making
US4789355A (en) 1987-04-24 1988-12-06 Noel Lee Electrical compression connector
DE3727116A1 (en) 1987-08-14 1989-02-23 Bosch Gmbh Robert COAXIAL CONNECTOR FOR VEHICLE ANTENNA CABLES
US4772222A (en) 1987-10-15 1988-09-20 Amp Incorporated Coaxial LMC connector
US4923412A (en) 1987-11-30 1990-05-08 Pyramid Industries, Inc. Terminal end for coaxial cable
US4854893A (en) 1987-11-30 1989-08-08 Pyramid Industries, Inc. Coaxial cable connector and method of terminating a cable using same
US4806116A (en) 1988-04-04 1989-02-21 Abram Ackerman Combination locking and radio frequency interference shielding security system for a coaxial cable connector
US4874331A (en) 1988-05-09 1989-10-17 Whittaker Corporation Strain relief and connector - cable assembly bearing the same
US4869679A (en) 1988-07-01 1989-09-26 John Messalingua Assoc. Inc. Cable connector assembly
NL8801841A (en) 1988-07-21 1990-02-16 White Products Bv DEMONTABLE COAXIAL COUPLING.
US4925403A (en) 1988-10-11 1990-05-15 Gilbert Engineering Company, Inc. Coaxial transmission medium connector
US4834675A (en) 1988-10-13 1989-05-30 Lrc Electronics, Inc. Snap-n-seal coaxial connector
US4902246A (en) 1988-10-13 1990-02-20 Lrc Electronics Snap-n-seal coaxial connector
US4892275A (en) 1988-10-31 1990-01-09 John Mezzalingua Assoc. Inc. Trap bracket assembly
US4929188A (en) 1989-04-13 1990-05-29 M/A-Com Omni Spectra, Inc. Coaxial connector assembly
US4906207A (en) 1989-04-24 1990-03-06 W. L. Gore & Associates, Inc. Dielectric restrainer
US4952174A (en) 1989-05-15 1990-08-28 Raychem Corporation Coaxial cable connector
US5127853A (en) 1989-11-08 1992-07-07 Raychem Corporation Feedthrough coaxial cable connector
US5207602A (en) 1989-06-09 1993-05-04 Raychem Corporation Feedthrough coaxial cable connector
US5073129A (en) 1989-06-12 1991-12-17 John Mezzalingua Assoc. Inc. Coaxial cable end connector
US4990106A (en) 1989-06-12 1991-02-05 John Mezzalingua Assoc. Inc. Coaxial cable end connector
US4927385A (en) 1989-07-17 1990-05-22 Cheng Yu F Connector jack
US4979911A (en) 1989-07-26 1990-12-25 W. L. Gore & Associates, Inc. Cable collet termination
US5002503A (en) 1989-09-08 1991-03-26 Viacom International, Inc., Cable Division Coaxial cable connector
US4957456A (en) 1989-09-29 1990-09-18 Hughes Aircraft Company Self-aligning RF push-on connector
US5083943A (en) 1989-11-16 1992-01-28 Amphenol Corporation Catv environmental f-connector
FR2655208B1 (en) 1989-11-24 1994-02-18 Alcatel Cit METAL HOUSING FOR ELECTRICAL CONNECTOR.
US5024606A (en) 1989-11-28 1991-06-18 Ming Hwa Yeh Coaxial cable connector
US4990104A (en) 1990-05-31 1991-02-05 Amp Incorporated Snap-in retention system for coaxial contact
US5037328A (en) 1990-05-31 1991-08-06 Amp Incorporated Foldable dielectric insert for a coaxial contact
US4990105A (en) 1990-05-31 1991-02-05 Amp Incorporated Tapered lead-in insert for a coaxial contact
US5007861A (en) 1990-06-01 1991-04-16 Stirling Connectors Inc. Crimpless coaxial cable connector with pull back cable engagement
US5021010A (en) 1990-09-27 1991-06-04 Gte Products Corporation Soldered connector for a shielded coaxial cable
US5066248A (en) 1991-02-19 1991-11-19 Lrc Electronics, Inc. Manually installable coaxial cable connector
US5131862A (en) 1991-03-01 1992-07-21 Mikhail Gershfeld Coaxial cable connector ring
AU1571892A (en) 1991-03-22 1992-10-21 Raychem Corporation Coaxial cable connector with mandrel spacer and method of preparing coaxial cable
US5141451A (en) 1991-05-22 1992-08-25 Gilbert Engineering Company, Inc. Securement means for coaxial cable connector
US5315684A (en) * 1991-06-12 1994-05-24 John Mezzalingua Assoc. Inc. Fiber optic cable end connector
SE468918B (en) 1991-08-16 1993-04-05 Molex Inc SKARVDON SPREADING TWO COAXIAL CABLES
US5542861A (en) 1991-11-21 1996-08-06 Itt Corporation Coaxial connector
US5195906A (en) 1991-12-27 1993-03-23 Production Products Company Coaxial cable end connector
WO1993016507A1 (en) 1992-02-14 1993-08-19 Itt Industries Limited Improvements relating to electrical conductor terminating arrangements
EP0626102B1 (en) 1992-02-14 1995-12-20 Itt Industries Limited Electrical connectors
US5283853A (en) 1992-02-14 1994-02-01 John Mezzalingua Assoc. Inc. Fiber optic end connector
US5269701A (en) 1992-03-03 1993-12-14 The Whitaker Corporation Method for applying a retention sleeve to a coaxial cable connector
US5161993A (en) 1992-03-03 1992-11-10 Amp Incorporated Retention sleeve for coupling nut for coaxial cable connector and method for applying same
NO175334C (en) 1992-03-26 1994-09-28 Kaare Johnsen Coaxial cable connector housing
WO1993024973A1 (en) 1992-05-29 1993-12-09 Down William J Longitudinally compressible coaxial cable connector
US5217391A (en) 1992-06-29 1993-06-08 Amp Incorporated Matable coaxial connector assembly having impedance compensation
US5316494A (en) 1992-08-05 1994-05-31 The Whitaker Corporation Snap on plug connector for a UHF connector
US5217393A (en) 1992-09-23 1993-06-08 Augat Inc. Multi-fit coaxial cable connector
US5295864A (en) 1993-04-06 1994-03-22 The Whitaker Corporation Sealed coaxial connector
US5284449A (en) 1993-05-13 1994-02-08 Amphenol Corporation Connector for a conduit with an annularly corrugated outer casing
US5338225A (en) 1993-05-27 1994-08-16 Cabel-Con, Inc. Hexagonal crimp connector
US5354217A (en) 1993-06-10 1994-10-11 Andrew Corporation Lightweight connector for a coaxial cable
US5456611A (en) 1993-10-28 1995-10-10 The Whitaker Corporation Mini-UHF snap-on plug
US5431583A (en) 1994-01-24 1995-07-11 John Mezzalingua Assoc. Inc. Weather sealed male splice adaptor
US5456614A (en) 1994-01-25 1995-10-10 John Mezzalingua Assoc., Inc. Coaxial cable end connector with signal seal
US5393244A (en) 1994-01-25 1995-02-28 John Mezzalingua Assoc. Inc. Twist-on coaxial cable end connector with internal post
US5455548A (en) 1994-02-28 1995-10-03 General Signal Corporation Broadband rigid coaxial transmission line
US5501616A (en) 1994-03-21 1996-03-26 Holliday; Randall A. End connector for coaxial cable
US5651699A (en) 1994-03-21 1997-07-29 Holliday; Randall A. Modular connector assembly for coaxial cables
US5667405A (en) 1994-03-21 1997-09-16 Holliday; Randall A. Coaxial cable connector for CATV systems
US5435745A (en) 1994-05-31 1995-07-25 Andrew Corporation Connector for coaxial cable having corrugated outer conductor
US5470257A (en) 1994-09-12 1995-11-28 John Mezzalingua Assoc. Inc. Radial compression type coaxial cable end connector
US5525076A (en) 1994-11-29 1996-06-11 Gilbert Engineering Longitudinally compressible coaxial cable connector
US5607325A (en) 1995-06-15 1997-03-04 Astrolab, Inc. Connector for coaxial cable
US5586910A (en) 1995-08-11 1996-12-24 Amphenol Corporation Clamp nut retaining feature
US5571028A (en) 1995-08-25 1996-11-05 John Mezzalingua Assoc., Inc. Coaxial cable end connector with integral moisture seal
US5598132A (en) 1996-01-25 1997-01-28 Lrc Electronics, Inc. Self-terminating coaxial connector
DE19734236C2 (en) 1996-09-14 2000-03-23 Spinner Gmbh Elektrotech Coaxial cable connector
CA2240724C (en) 1996-10-23 2001-02-06 Thomas & Betts International, Inc. Coaxial cable connector
US5863220A (en) 1996-11-12 1999-01-26 Holliday; Randall A. End connector fitting with crimping device
US6089913A (en) 1996-11-12 2000-07-18 Holliday; Randall A. End connector and crimping tool for coaxial cable
US6153830A (en) 1997-08-02 2000-11-28 John Mezzalingua Associates, Inc. Connector and method of operation
US5879191A (en) 1997-12-01 1999-03-09 Gilbert Engineering Co, Inc. Zip-grip coaxial cable F-connector
US5967852A (en) 1998-01-15 1999-10-19 Adc Telecommunications, Inc. Repairable connector and method
US6261126B1 (en) 1998-02-26 2001-07-17 Cabletel Communications Corp. Coaxial cable connector with retractable bushing that grips cable and seals to rotatable nut
US6146197A (en) 1998-02-28 2000-11-14 Holliday; Randall A. Watertight end connector for coaxial cable
US5975951A (en) 1998-06-08 1999-11-02 Gilbert Engineering Co., Inc. F-connector with free-spinning nut and O-ring
US5997350A (en) 1998-06-08 1999-12-07 Gilbert Engineering Co., Inc. F-connector with deformable body and compression ring
US6210222B1 (en) 1999-12-13 2001-04-03 Eagle Comtronics, Inc. Coaxial cable connector
US6241553B1 (en) 2000-02-02 2001-06-05 Yu-Chao Hsia Connector for electrical cords and cables
CN103178365B (en) * 2000-05-10 2018-04-17 托马斯及贝茨国际股份有限公司 Coaxial connector with detachable locking sleeve
US6217383B1 (en) 2000-06-21 2001-04-17 Holland Electronics, Llc Coaxial cable connector
US6425782B1 (en) 2000-11-16 2002-07-30 Michael Holland End connector for coaxial cable
US6331123B1 (en) * 2000-11-20 2001-12-18 Thomas & Betts International, Inc. Connector for hard-line coaxial cable
USD461166S1 (en) 2001-09-28 2002-08-06 John Mezzalingua Associates, Inc. Co-axial cable connector
USD462327S1 (en) 2001-09-28 2002-09-03 John Mezzalingua Associates, Inc. Co-axial cable connector
USD461778S1 (en) 2001-09-28 2002-08-20 John Mezzalingua Associates, Inc. Co-axial cable connector
USD462058S1 (en) 2001-09-28 2002-08-27 John Mezzalingua Associates, Inc. Co-axial cable connector
USD468696S1 (en) 2001-09-28 2003-01-14 John Mezzalingua Associates, Inc. Co-axial cable connector
USD458904S1 (en) 2001-10-10 2002-06-18 John Mezzalingua Associates, Inc. Co-axial cable connector
USD460739S1 (en) 2001-12-06 2002-07-23 John Mezzalingua Associates, Inc. Knurled sleeve for co-axial cable connector in closed position
USD462060S1 (en) 2001-12-06 2002-08-27 John Mezzalingua Associates, Inc. Knurled sleeve for co-axial cable connector in open position
USD461167S1 (en) 2001-12-13 2002-08-06 John Mezzalingua Associates, Inc. Sleeve for co-axial cable connector
USD460740S1 (en) 2001-12-13 2002-07-23 John Mezzalingua Associates, Inc. Sleeve for co-axial cable connector
USD460948S1 (en) 2001-12-13 2002-07-30 John Mezzalingua Associates, Inc. Sleeve for co-axial cable connector
USD460946S1 (en) 2001-12-13 2002-07-30 John Mezzalingua Associates, Inc. Sleeve for co-axial cable connector
USD460947S1 (en) 2001-12-13 2002-07-30 John Mezzalingua Associates, Inc. Sleeve for co-axial cable connector
US6790081B2 (en) 2002-05-08 2004-09-14 Corning Gilbert Inc. Sealed coaxial cable connector and related method
US6817897B2 (en) 2002-10-22 2004-11-16 Alexander B. Chee End connector for coaxial cable
US6783394B1 (en) * 2003-03-18 2004-08-31 Randall A. Holliday Universal multi-stage compression connector
TW558156U (en) 2003-03-04 2003-10-11 Ai Ti Ya Ind Co Ltd Structure improvement of signal connector
US6817896B2 (en) * 2003-03-14 2004-11-16 Thomas & Betts International, Inc. Cable connector with universal locking sleeve
US6805584B1 (en) 2003-07-25 2004-10-19 Chiung-Ling Chen Signal adaptor
US6884113B1 (en) * 2003-10-15 2005-04-26 John Mezzalingua Associates, Inc. Apparatus for making permanent hardline connection
US6767248B1 (en) * 2003-11-13 2004-07-27 Chen-Hung Hung Connector for coaxial cable
US7118416B2 (en) * 2004-02-18 2006-10-10 John Mezzalingua Associates, Inc. Cable connector with elastomeric band
US7455549B2 (en) * 2005-08-23 2008-11-25 Thomas & Betts International, Inc. Coaxial cable connector with friction-fit sleeve
US7458851B2 (en) * 2007-02-22 2008-12-02 John Mezzalingua Associates, Inc. Coaxial cable connector with independently actuated engagement of inner and outer conductors
US7794275B2 (en) * 2007-05-01 2010-09-14 Thomas & Betts International, Inc. Coaxial cable connector with inner sleeve ring
US8113875B2 (en) * 2008-09-30 2012-02-14 Belden Inc. Cable connector

Also Published As

Publication number Publication date
CA2764745C (en) 2013-10-22
CA2764745A1 (en) 2008-11-01
CA2628652A1 (en) 2008-11-01
US7794275B2 (en) 2010-09-14
US20080274644A1 (en) 2008-11-06

Similar Documents

Publication Publication Date Title
CA2628652C (en) Coaxial cable connector with inner sleeve ring
CA2628726C (en) Coaxial cable connector with gripping ferrule
US7288002B2 (en) Coaxial cable connector with self-gripping and self-sealing features
US7455549B2 (en) Coaxial cable connector with friction-fit sleeve
US20070093128A1 (en) Coaxial cable connector having collar with cable gripping features
EP1777783B1 (en) Prepless coaxial cable connector
EP1207586B1 (en) Connector for hard-line coaxial cable
JP4510770B2 (en) Coaxial connector with cable grip
EP2909891B1 (en) Coaxial cable connector with a compressible ferrule
US7252546B1 (en) Coaxial cable connector with replaceable compression ring
US7008263B2 (en) Coaxial cable connector with deformable compression sleeve
EP2912724B1 (en) Quick mount connector for a coaxial cable
EP3382809B1 (en) Quick mount connector for a coaxial cable
US11031731B2 (en) Breakaway connectors for coaxial cables
EP3987615A1 (en) Breakaway connectors for coaxial cables

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed

Effective date: 20150409