CA2663654C - Cutting insert, tool holder, and related method - Google Patents

Cutting insert, tool holder, and related method Download PDF

Info

Publication number
CA2663654C
CA2663654C CA2663654A CA2663654A CA2663654C CA 2663654 C CA2663654 C CA 2663654C CA 2663654 A CA2663654 A CA 2663654A CA 2663654 A CA2663654 A CA 2663654A CA 2663654 C CA2663654 C CA 2663654C
Authority
CA
Canada
Prior art keywords
main
cutting edge
rake angle
radial
radial rake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA2663654A
Other languages
French (fr)
Other versions
CA2663654A1 (en
Inventor
Jean-Luc Dufour
X. Daniel Fang
David J. Wills
Gilles Festeau
Thomas B. Hartman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kennametal Inc
Original Assignee
TDY Industries LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDY Industries LLC filed Critical TDY Industries LLC
Publication of CA2663654A1 publication Critical patent/CA2663654A1/en
Application granted granted Critical
Publication of CA2663654C publication Critical patent/CA2663654C/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C5/00Milling-cutters
    • B23C5/02Milling-cutters characterised by the shape of the cutter
    • B23C5/06Face-milling cutters, i.e. having only or primarily a substantially flat cutting surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C5/00Milling-cutters
    • B23C5/16Milling-cutters characterised by physical features other than shape
    • B23C5/20Milling-cutters characterised by physical features other than shape with removable cutter bits or teeth or cutting inserts
    • B23C5/202Plate-like cutting inserts with special form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C5/00Milling-cutters
    • B23C5/16Milling-cutters characterised by physical features other than shape
    • B23C5/20Milling-cutters characterised by physical features other than shape with removable cutter bits or teeth or cutting inserts
    • B23C5/202Plate-like cutting inserts with special form
    • B23C5/205Plate-like cutting inserts with special form characterised by chip-breakers of special form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2200/00Details of milling cutting inserts
    • B23C2200/04Overall shape
    • B23C2200/0433Parallelogram
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2200/00Details of milling cutting inserts
    • B23C2200/08Rake or top surfaces
    • B23C2200/085Rake or top surfaces discontinuous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2200/00Details of milling cutting inserts
    • B23C2200/12Side or flank surfaces
    • B23C2200/125Side or flank surfaces discontinuous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2200/00Details of milling cutting inserts
    • B23C2200/12Side or flank surfaces
    • B23C2200/125Side or flank surfaces discontinuous
    • B23C2200/126Side or flank surfaces discontinuous stepped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2200/00Details of milling cutting inserts
    • B23C2200/20Top or side views of the cutting edge
    • B23C2200/208Wiper, i.e. an auxiliary cutting edge to improve surface finish
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2200/00Details of milling cutting inserts
    • B23C2200/28Angles
    • B23C2200/281Negative rake angles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2200/00Details of milling cutting inserts
    • B23C2200/28Angles
    • B23C2200/283Negative cutting angles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2200/00Details of milling cutting inserts
    • B23C2200/28Angles
    • B23C2200/286Positive cutting angles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2200/00Details of milling cutting inserts
    • B23C2200/28Angles
    • B23C2200/287Positive rake angles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2200/00Details of milling cutting inserts
    • B23C2200/36Other features of the milling insert not covered by B23C2200/04 - B23C2200/32
    • B23C2200/365Lands, i.e. the outer peripheral section of rake faces
    • B23C2200/366Variable
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T407/00Cutters, for shaping
    • Y10T407/19Rotary cutting tool
    • Y10T407/1906Rotary cutting tool including holder [i.e., head] having seat for inserted tool
    • Y10T407/1908Face or end mill
    • Y10T407/1924Specified tool shape
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T407/00Cutters, for shaping
    • Y10T407/23Cutters, for shaping including tool having plural alternatively usable cutting edges
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T407/00Cutters, for shaping
    • Y10T407/24Cutters, for shaping with chip breaker, guide or deflector
    • Y10T407/245Cutters, for shaping with chip breaker, guide or deflector comprising concave surface in cutting face of tool

Abstract

A generally parallelogram-shaped cutting insert includes a top face; first and second main radial clearance faces, each intersecting the top face; first and second minor axial clearance faces each intersecting the top face and connecting the first and second main radial clearance faces; and a main cutting edge at the intersection of the top face and the first main radial clearance face. According to one non-limiting embodiment, the main cutting edge comprises a variable radial rake angle including a portion having a positive radial rake angle and a portion having a negative radial rake angle.

Description

CUTTING INSERT, TOOL HOLDER, AND RELATED METHOD
[0001] INVENTORS
Jean-Luc Dufour X. Daniel Fang David J. Wills Gilles Festeau Thomas B. Hartman TECHNICAL FIELD
[0002] The present disclosure is directed to cutting inserts and tool holders for replaceable and indexable cutting inserts. In one non-limiting embodiment, cutting inserts according to the present disclosure are particularly useful in peripheral rotary milling applications for machining difficult-to-machine materials.
BACKGROUND OF THE TECHNOLOGY
[0003] Cutting inserts suffer from a limited service life in peripheral rotary milling applications, especially when machining difficult-to-machine materials. Difficult-to-machine materials include, for example, specialty metals such as titanium and titanium alloys, nickel and nickel alloys, superalloys, and certain exotic metals. Cutting inserts comprising a positive rake face geometry on both the axial cutting face and the radial cutting face are commonly employed in milling operations involving the use of a peripheral rotary tool holder with an indexable capability. The positive cutting geometry of the inserts reduces the cutting forces and consequently reduces power consumption, resulting in a more efficient milling operation. In addition, the cutting inserts typically used in peripheral rotary milling are generally parallelogram-shaped (i.e., each has a generally parallelogram-shaped profile when viewed from a point above the insert's top surface), with two long sides forming two main cutting edges and two short sides forming two minor cutting edges. These types of cutting inserts provide more efficient machining by providing the capability of a larger depth of cut, though such inserts are not as strong as square-shaped cutting inserts.
[0004] European Patent No. 0 239 045 provides a parallelogram-shaped cutting insert having a constant positive radial rake angle and a constant radial clearance angle along the major cutting edges.
[0005] United States Patent No. 5,071,292 describes a parallelogram-shaped cutting insert having a continuous curved radial cutting face and radial clearance face wherein both the radial rake angle and the radial clearance angle remain substantially the same along the main cutting edge with respect to the associated cutter or tool holder.
[0006] United States Patent No. 5,052,863 provides a method for securely locating a parallelogram-shaped cutting insert having a relatively large positive radial clearance angle along the main cutting edge in a tool holder. The method involves adapting a tool holder designed to accommodate an insert having a lower radial clearance angle, to overcome the strength problems associated with greater unsupported overhang when using the parallelogram-shaped cutting inserts having larger radial clearance angle.
[0007] United States Patent No. 5,388,932 describes an angled chamfer at the elevated corner nose area of a parallelogram-shaped cutting insert, wherein the angled chamfer increases the cutting edge strength at the main corner nose while maintaining a positive radial rake angle along the main cutting edge.
[0008] United States Patent No. 6,142,716 also describes an angled chamfer with a positive radial rake angle, but further comprises a recess at the major cutting sides enabling more rigid localization of the cutting insert in the tool holder and use of less material in manufacturing the cutting insert.
[0009] Efforts in the industry to develop new or improved parallelogram-shaped cutting inserts have been directed toward achieving reduced cutting forces, reduced power consumption, increased cutting edge strength, and increased tool life.
From the point view of geometrical design, maintaining a positive or a positive plus constant radial rake angle along the main cutting edge has been a fundamental goal of these efforts.
[0010] The position of the cutting insert in the associated tool holder may also contribute to achieving the goals of reducing cutting forces and increasing cutting edge strength. Known patent publications and published literature regarding parallelogram-shaped cutting inserts including those described above do not recognize a quantitative relationship between the cutting insert geometry and the position of the cutting insert in the associated tool holder.
[0011] Therefore, there is a need for an improved parallelogram-shaped cutting insert and for a milling cutting tool system including plural cutting inserts and a tool holder providing a more efficient and more effective method for machining difficult-to-machine materials.
SUMMARY OF THE INVENTION
[0012] According to one non-limiting aspect of the present disclosure, a generally parallelogram-shaped cutting insert is provided, comprising: a top face; first and second main radial clearance faces, each intersecting the top face; first and second minor axial clearance faces each intersecting the top face and connecting the first and second main radial clearance faces; and a main cutting edge at the intersection of the top face and the first main radial clearance face. According to one non-limiting embodiment, the main cutting edge comprises a variable radial rake angle including a portion having a positive radial rake angle and a portion having a negative radial rake angle.
[0013] According to another non-limiting aspect of the present disclosure, a peripheral cutting tool is provided comprising a tool holder including at least one insert pocket. A cutting insert may be located in the at least one insert pocket of the tool holder such that a midpoint of the main cutting edge of the cutting insert is located in a radial plane comprising the axis of rotation of the tool holder, and wherein a support plane including a bottom surface of the insert pocket is perpendicular to a secondary radial plane. The secondary radial plane comprises the axis of rotation of the tool holder and is perpendicular to the primary radial plane.
[0014] According to yet another non-limiting aspect of the present disclosure, a method is provided for positioning a cutting insert comprising a main cutting edge in an insert pocket of a tool holder of peripheral cutting tool. The method comprises positioning the cutting insert in the insert pocket so that a midpoint of the main cutting edge is located in a primary radial plane comprising the axis of rotation of the tool holder, and wherein a support plane including a bottom surface of the insert pocket is perpendicular to a secondary radial plane that comprises the axis of rotation of the tool holder and is perpendicular to the primary radial plane.
BRIEF DESCRIPTION OF THE FIGURES
[0015] Certain non-limiting embodiments according to the present disclosure will be understood by reference to the following figures, wherein:
[0016] Figure 1 is a simplified drawing of a top view of a parallelogram-shaped cutting insert showing certain basic elements of the cutting insert;
[0017] Figure 2 includes simplified drawings of various views of a parallelogram-shaped cutting insert showing certain basic elements;
[0018] Figures 3a, 3b, 3c, and 3d are views illustrating features of one non-limiting embodiment of a parallelogram-shaped cutting insert according to the present disclosure;
[0019] Figures 4a, 4b, 4c, 4d, 4e, and 4f are various views illustrating the pattern of radial rake angles along the main cutting edge and axial rake angles along the minor cutting edge for one non-limiting embodiment of a parallelogram-shaped cutting insert according to the present disclosure;
[0020] Figure 5 shows an additional non-limiting embodiment of a parallelogram-shaped cutting insert according to the present disclosure wherein the curve of the main corner nose tangent to the facet edge differs from that of the parallelogram-shaped cutting insert shown in Figure 3, wherein the main corner nose is truncated by.the facet edge;
[0021] Figure 6 provides views of one non-limiting embodiment of a milling cutting tool system according to the present disclosure including seven identical parallelogram-shaped cutting inserts and an associated tool holder;
[0022] Figure 7a is a side view and Figure 7b is a front-end view of a non-limiting embodiment of a milling cutting tool system according to the present disclosure including seven identical parallelogram-shaped cutting inserts and an associated tool holder;
[0023] Figure 8 provides a front-end view along with a magnified view of one cutting insert of a non-limiting embodiment of a milling cutting tool system according to the present disclosure including seven identical parallelogram-shaped cutting inserts and an associated tool holder for a milling cutting tool system of this invention with seven identical parallelogram-shaped cutting inserts and an associated tool holder; and [0024] Figure 9 is a front-end view and a magnified view of a non-limiting embodiment of a milling cutting tool system according to the present disclosure including seven identical parallelogram-shaped cutting inserts and an associated tool holder.
[0025] The reader will appreciate the foregoing details, as well as others, upon considering the following detailed description of certain non-limiting embodiments of apparatus and methods according to the present disclosure. The reader also may comprehend certain of such additional details upon carrying out or using the apparatus and methods described herein.
DETAILED DESCRIPTION OF CERTAIN NON-LIMITING EMBODIMENTS
[0026] In the present description of non-limiting embodiments and in the claims, other than in the operating examples or where otherwise indicated, all numbers expressing quantities or characteristics of ingredients and products, processing conditions, and the like are to be understood as being modified in all instances by the term "about". Accordingly, unless indicated to the contrary, any numerical parameters set forth in the following description and the attached claims are approximations that may vary depending upon the desired properties one seeks to obtain in the apparatus and methods according to the present disclosure. At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the scope of the claims, each numerical parameter should at least be construed in light of the number of reported significant digits and by applying ordinary rounding techniques.
[0027] Any patent, publication, or other disclosure material, in whole or in part, that is said to be incorporated by reference herein is incorporated herein only to the extent that the incorporated material does not conflict with existing definitions, statements, or other disclosure material set forth in this disclosure. As such, and to the extent necessary, the disclosure as set forth herein supersedes any conflicting material incorporated herein by reference. Any material, or portion thereof, that is said to be incorporated by reference herein, but which conflicts with existing definitions, statements, or other disclosure material set forth herein is only incorporated to the extent that no conflict arises between that incorporated material and the existing disclosure material.
[0028] Cutting tool life becomes a critical factor in efficient peripheral rotary milling applications for machining difficult-to-machine materials, particularly specialty metals. Parallelogram-shaped cutting inserts are typically used in peripheral rotary milling due to their relatively large depth of cut obtained by the relatively longer main cutting edge as compared to square cutting inserts. The longer main cutting edge, however, increases the load on the cutting insert. To effectively overcome the increased cutting edge load problems while providing an efficient positive cutting action for applications involving machining difficult-to-machine materials, there is a need for an improved design of a cutting tool system including parallelogram-shaped cutting inserts and an associated tool holder.
[0029] Certain non-limiting embodiments according to the present disclosure include a generally parallelogram-shaped cutting insert comprising: a top face; first and second main radial clearance faces, each intersecting the top face; first and second minor axial clearance faces, each intersecting the top face and connecting the first and second main radial clearance faces; and a main cutting edge at the intersection of the top face and the first main radial clearance face. Certain non-limiting embodiments may further comprise a variable radial rake angle along the length of the main cutting edge comprising a portion having a positive radial rake angle and a portion having a negative radial rake angle. The variable radial rake angle of the cutting insert changes, preferably gradually, from a positive radial rake angle to a negative radial rake angle.
The result is that in certain embodiments, the radial rake angle near the main cutting corner is positive, and the radial rake angle near the minor cutting corner is negative.
Such a design provides a stronger cutting edge with a longer service life than a parallelogram-shaped cutting insert having a positive radial rake angle across the entire cutting edge.
[0030] Certain non-limiting embodiments of a parallelogram-shaped cutting insert according to the present disclosure comprise a main corner nose. The main corner nose provides a significant portion of the active cutting action by the cutting insert. In certain non-limiting embodiments, the portion of the main cutting edge comprising the positive radial rake angle is longer than the portion of the main cutting edge comprising the negative radial rake angle. Also, in certain non-limiting embodiments, the portion of the main cutting edge comprising a positive radial rake angle is at least three times longer than the portion of the main cutting edge comprising a negative radial rake angle. In yet other non-limiting embodiments, the portion of the main cutting edge comprising a positive radial rake angle is at least seven times longer than the portion of the main cutting edge comprising a negative radial rake angle. Non-limiting cutting insert embodiments according to the present disclosure comprise at least one point wherein the radial rake angle is zero, and one of the points having a zero rake angle is between the portion of the main cutting edge comprising the positive radial rake angle and the portion of the main cutting edge comprising the negative radial rake angle.
[0031] Parallelogram-shaped cutting inserts are typically indexable and often comprise a first main cutting edge at the intersection of the top face and the first main radial clearance face and a second cutting edge at the intersection of the top face and the second main radial clearance face. In certain non-limiting embodiments according to the present disclosure, each cutting edge comprises a variable radial rake angle along the length of the cutting edge, comprising a portion having a positive radial rake angle and a portion having a negative radial rake angle.
[0032] Figures 1 and 2 are simplified drawings of parallelogram-shaped cutting inserts showing some basic elements. Figure 1 is a top view of parallelogram-shaped cutting insert 1 that includes a center hole 2 for securing the cutting insert 1 to a tool holder; a top face 3 (the top face of a parallelogram-shaped cutting insert may comprise a flat face, an angled flat face, or a curved surface); two main cutting edges 4a and 4b;
two minor cutting edges 5a and 5b; two main corner noses 6a and 6b; and two minor corner noses 7a and 7b.
[0033] Figure 2 is a set of drawings of different simplified views of an embodiment of another parallelogram-shaped cutting insert 8 comprising: a top face 9 having rake cutting face 10 (functioning as a chip breaker to promote chip flow/chip breaking during machining); a bottom face 11; two main corner noses 12a and 12b; two main radial cutting edges 13a and 13b; two minor corner noses 14a and 14b; two minor cutting edges 15a and 15b; two radial clearance faces 16a and 16b below the two main cutting edges 13a and 13b; two axial clearance faces 17a and 17b below the two minor cutting edges 15a and 15b; two conical clearance faces 18a and 18b below the main corner noses 12a and 12b; and two conical clearance faces 19a and 19b below the minor corner noses 14a and 14b. In sectional view A-A of Figure 2, the radial clearance angle ORc is formed between the cutting insert center axis 20 and the radial clearance face 16a (or 16b). The radial rake angle ORR is formed between the top flat plane (a plane that is parallel to the bottom surface and intersects the cutting edge) and the rake cutting face 10. In sectional view B-B of Figure 2, the axial clearance angle 0Ac is formed between the cutting insert center axis 20 and the axial clearance face 17a (or 17b), and the axial rake angle OAR is formed between the top flat plane and the rake cutting face 10.
[0034] Typical parallelogram-shaped cutting inserts are significantly more complicated than those shown in Figures 1 and 2, which show only certain basic elements with less detail for the sake of clarity.
[0035] Figure 3 is a set of views illustrating some more detailed features of a non-limiting embodiment of a parallelogram-shaped cutting insert 27 according to the present disclosure, having a top face 28 with a chip breaker 29, a bottom surface 30, and a center hole 31. The cutting insert 27 includes: two main radial cutting edges 32a and 32b (which in this embodiment are curved cutting edges with a relatively large radius); two main corner noses 33a and 33b; two minor corner noses 34a and 34b; and two minor cutting edges, each of which includes two portions, i.e., a first portion 35a (or 35b) connecting to the main corner nose 33a (or 33b) and a second portion 36a (or 36b) connecting to the minor corner nose 34a (or 34b). In particular, the first portion of the minor radial cutting edge 35a (or 35b), a facet edge, may be a line parallel to the bottom face 30. The second portion of the minor cutting edge 36a (or 36b) is at an angle to the facet edge 35a (or 35b) and would not usually participate in cutting the material. The main corner noses 33a and 33b are at the highest points of the embodiment of cutting insert 27, while the minor corner noses 34a and 34b are at the lowest points, when viewed from the side as shown in Figure 3b. In such an embodiment, the main cutting edges 32a, 32b and the second portion of the minor cutting edges 36a, 36b are not parallel to the bottom surface 30 of the cutting insert 27.
[0036] The effective cutting length of the cutting insert 27 is defined as the length (LE) as shown in Figure 3b, which is measured parallel to the main cutting edge 32a (or 32b) from the first portion of the minor cutting edge or the facet edge 35a (or 35b) to the intersection point between the main cutting edge 32a (or 32b) and the minor corner noses 34a (or 34b). LE determines the maximal depth of cut of a parallelogram-shaped cutting insert when seated in a tool holder.
[0037] Cutting insert 27 has multiple (i.e., at least two) clearance faces below each of the cutting edges at the top face 28. In particular, the first axial clearance face 41, or the facet face, below the first portion of the minor cutting edge (35a or 35b) functions as a wiper contact face to improve the surface finish of the work materials in peripheral rotary milling operations (see Figure 3c). The upper second axial clearance face 42 (see below) is formed right below the second portion of the minor cutting edge (36a or 36b).
[0038] As illustrated in Figures 3b, 3c, and 3d, one non-limiting embodiment of a parallelogram-shaped cutting insert according to the present disclosure comprises a notch 43 that extends across the entire second axial clearance face and separates it into an upper second axial clearance face 42 and a lower second axial clearance face 45. The notch 43 may form an angle A with respect to the bottom face 30. Angle A is 0 degrees in the embodiment shown in Figure 3c (i.e., notch 43 is parallel to bottom face 30), but in certain embodiments may be up to 20 degrees. The notch is also grooved into the second axial clearance face at an angle B (see the cross-sectional view in Figure 3d) ranging from, for example, 90 to 105 degrees with respect to the bottom face 30. A function of the notch 43 is to prevent the cutting insert 27 from slipping inside the pocket on a tool holder. The axial clearance faces 46 and 47 provide additional clearance for the cutting insert 27 in a tool holder.
[0039] On the main side of the embodiment of the cutting insert 27 shown in Figure 3b, there are multiple radial clearance faces: upper radial clearance face 51, providing a cutting clearance angle for the main cutting edge; lower radial clearance face 52, which is a seating support surface for the cutting insert on the tool holder; and radial clearance faces 53 and 54, providing additional clearance for seating the cutting insert 27 in the tool holder. Cutting insert 27 also includes a notch 55 across the entire main side of the cutting insert, functioning as a separation between the upper radial clearance face 51 and lower radial clearance face 52. Similar to notch 43, notch 55 may have an angular shape, for example, a triangular or dovetail shape, or may have curved walls and be shaped as a semicircular groove.
[0040] Another feature of the embodiment shown as cutting insert 27 is illustrated in the various cross-sectional views of Figures 4b-f, wherein the radial rake angle (ORR) along the main cutting edge 61a (or 61b) changes from positive near the main corner nose 62a (or 62b) to negative near the minor corner nose 63a (or 63b).
Two concave surfaces 64a and 64b are formed near the minor corner noses 63a and 63b, respectively. The concave surface 64a (or 64b) is formed on the top face 28 with chip breaker 29 of cutting insert 27 and intersects with the main cutting edge 61a (or 61b), which in this embodiment is a curved cutting edge with a relatively large radius.
At a point along each main cutting edge, typically in the concave section 64a or 64b, the rake angle will be zero. Certain non-limiting embodiments of the cutting insert of the present invention comprising a variable radial rake angle along the length of the cutting edge will not comprise a point where the rake angle is zero. For those embodiments comprising a point wherein the rake angle is zero, the distance measured in cutting insert's top view plane from the minor corner nose to the point at which the rake angle is zero is defined as. The distance LN for one embodiment is shown in Figure 4a:
Also, for certain non-limiting embodiments, the length of effective cutting edge (LE
in Figure 3b) may be projected onto the plane of the top view of Figure 4a and defined as L-rop.
In various embodiments, the radial rake angle (ORR) at different points along the main cutting edge 61a can be defined by the following equations:
LN <
ORR-x > 0, if Lx < Lrop ¨ LN
ORR-x = 0, if Lx = - LN Eq. (1) ORRA < 0, if Lx > Lrop LN
where Lx is the length measured in the top view plane from the facet edge 65a to the point X along the main cutting edge where the radial rake angle ORR-x is measured.
[0041] The above relationships are illustrated by the cross-sectional views of Figures 4d, 4e and 4f, which provide examples of different radial rake angles (ORR-x, X=1, 2, 3). Such a design maintains positive cutting along most of the main cutting edge, while enhancing the cutting edge strength near the minor corner nose. In the embodiment of the cutting insert of Figures 4b and 4c, the indicated axial rake angles (OAR-x, X=1, 2) at the minor cutting edge are positive. In certain other possible cutting insert embodiments, however, the axial rake angle may be a variable radial rake angle comprising a portion having a positive radial rake angle and a portion having a negative radial rake angle.
[0042] Figure 5 shows another non-limiting embodiment of a parallelogram-shaped cutting insert 71 according to the present disclosure. The cutting insert 71 shown in Figure 5 is different from the cutting insert 27 shown in Figures 3 and 4 at least in that the first portion of the minor cutting edge, or the facet edge, 72a (or 72b) is tangent to the main corner nose 73a (73b). Cutting insert 27 (Figure 3) comprises a first portion of the minor cutting edge, or the facet edge, 35a (or 35b) that is not tangent to the main corner nose 33a (or 33b). In other words, the cutting insert shown in Figure 5 has full main corner noses 73a and 73b, while the cutting insert shown in Figure 3 has truncated main corner noses 33a and 33b.
[0043] In addition to improving the geometry of a cutting insert, a milling cutting tool system for machining difficult-to-machine materials may also be improved by modifying the associated tool holder to optimize how a parallelogram-shaped cutting insert is positioned in the insert pocket. In certain embodiments according to the present disclosure, a tool holder is provided that maintains a certain quantitative relationship between the geometry of a parallelogram-shaped cutting insert and its position in the associated tool holder to thereby provide balanced and optimized cutting performance for the cutting inserts and the tool holder.
[0044] A non-limiting embodiment of a milling cutting tool system 80 according to the present disclosure including multiple parallelogram-shaped cutting inserts 81a, 81b, 81c, 81d, 81e, 81f, 81g seated in a tool holder 82 is shown in Figures 6a and 6b.
The tool holder 82 has multiple insert pockets 83 to secure each cutting insert with a fastener, such as screw 84. The tool holder 82 may optionally comprise cooling hole 85 and relief surface 86 for each pocket. The tool holder 82 together with all cutting inserts rotates about its axial centerline 87. Figures 6a and 6b further show radial centerlines 88 and 89 of tool holder 82.
[0045] Certain non-limiting embodiments of a peripheral cutting tool according to the present disclosure comprise a tool holder comprising at least one insert pocket.
The tool holder may have more than one insert pocket and typically comprises from 2-25 insert pockets. A cutting insert must be attached in each pocket. In one embodiment, the cutting insert comprises a main cutting edge. The inventors have found that the cutting operation may be performed more efficiently if the cutting insert is positioned in the insert pocket of the tool holder such that a midpoint of the main cutting edge is located in a radial plane comprising the axis of rotation of the tool holder. For example, as illustrated in Figure 7, tool holder 91 has seven parallelogram-shaped cutting inserts, 92a, 92b, 92c, 92d, 92e, 92f and 92g. The axis of rotation 93 of the tool holder 91, shown in the side view of Figure 7a, will appear on end as point P
in the front view of Figure 7b. Taking the cutting insert 92a as an example, the midpoint of the main cutting edge 101 is located in the primary radial plane 102 comprising the axis of rotation 93 (i.e. through the point P in Figure 7b) of the tool holder 91.
Secondary radial plane 104 is perpendicular to primary radial plane 102 and includes the axis of rotation 93. To locate the cutting insert according an aspect of the present disclosure, a support plane including the bottom surface 103 of the cutting insert 92a (or including the bottom surface of the insert pocket of toolholder 91) is also perpendicular to the secondary radial plane 104. In another example, cutting insert 92d comprises midpoint 111 of the main cutting edge. Midpoint 111 is located in the primary radial plane 112 comprising the axis of rotation 93 (i.e., through the point P in Figure 7b) of the tool holder 91 and, at the same time, a plane including the bottom surface 113 of the cutting insert 92d is perpendicular to the secondary radial plane 114, which also comprises the axis of rotation 93 of the tool holder 91 and is perpendicular to the primary radial plane 112.
[0046] Through a thorough study, the inventors surprisingly found that a more balanced and efficient milling operation can be achieved by positioning the cutting inserts in a tool holder in the above-described manner, which can also be mathematically expressed by the following set of equations. For example, the best performance is achieved in machining difficult-to-machine specialty metals when a cutting insert wherein the rake angles are designed according to the several equations of above Eq. (1) is seated in the associated tool holder. Such a position for the parallelogram-shaped cutting inset can be mathematically defined by applying the following set of equations. The projected side view shown in Figure 8 is obtained by rotating the tool holder 121 around the axis of rotation 122, which is collinear with the X
axis of the Cartesian coordinate system as illustrated, until the bottom surface 123 of the cutting insert 124 (as an example) is perpendicular to the X-Y plane (equivalent to the secondary radial plane 104 as shown in Figure 7b) of the Cartesian coordinate system. Thus, the first equation for positioning the middle point D (as shown in the Magnified View of Figure 8) of the main cutting edge 125 so as to intersect the axis of rotation 122 of the tool holder 121 in the X-Z plane of Figure 8, or in other words, positioning the middle point D in the X-Z plane which is equivalent to the primary radial plane 102 as shown in Figure 7b, can be mathematically expressed as:
L1 = L2 = L/2 Eq. (2) where, as shown at the Magnified View in Figure 8, L1 is the length of the main cutting edge 125 measured from the cutting edge start point D1 to the midpoint D; L2 is the length of the main cutting edge 125 measured from the middle point D to the cutting edge end point D2; and L is the total length of the main cutting edge 125. A
reasonable manufacturing tolerance applies to the above equation.
[0047] The second equation is to set an equalized radial cutting angle to position each parallelogram-shaped cutting insert, for instance cutting insert 131, in the associated tool holder 132, as shown in the front-end and magnified insert views of Figure 9, which can be mathematically described as:
ORC-D1 = ORC-D2 Eq. (3) where ORc-D1 is the radial cutting angle formed between the cutting edge start point D1 in the radial plane with the center at P and the radial center line 133, and ORc-D2 is the radial cutting angle formed between the cutting edge end point D2 in the radial plane with the center at P and the radial center line 133. A reasonable manufacturing tolerance also applies to the above equation.
[0048] When the parallelogram-shaped cutting inserts are designed based on above Eq. (1) and positioned in the associated tool holder according to above Eqs. (2) and (3), improved results can be achieved, including improved stability, balanced performance between cutting efficiency and edge strength, and prolonged tool life in applications of machining difficult-to-machine materials.
[0049] Furthermore, certain non-limiting embodiments according to the present disclosure relate to multiple parallelogram-shaped cutting inserts and an associated tool holder. It will be understood, however, that inserts and tool holders within the scope of the present disclosure may be embodied in forms and applied to end uses that are not specifically and expressly described herein. For example, one skilled in the art will appreciate that embodiments within the scope of the present disclosure and the following claims may be manufactured as cutting inserts and/or tool holders adapted for other methods of removing metal from all types of work materials.
[0050] Certain non-limiting embodiments according to the present disclosure are directed to parallelogram-shaped cutting inserts providing a combination of advantages exhibited by varying the radial rake angle along the main cutting edge to achieve balanced and optimal performance between efficient cutting action and an enhanced cutting edge. The parallelogram-shaped cutting inserts described herein may be of conventional size and adapted for conventional use in a variety of machining applications. Certain other embodiments according to the present disclosure are directed to a tool holder and a unique and quantitative method to determine how to position parallelogram-shaped cutting inserts in the tool holder to achieve optimized performance for the cutting inserts and the tool holder as an entity.
[0051] It will be understood that the present description illustrates those aspects of the invention relevant to a clear understanding of the invention.
Certain aspects that would be apparent to those of ordinary skill in the art and that, therefore, would not facilitate a better understanding of the invention have not been presented in order to simplify the present description. Although only a limited number of embodiments of the present invention are necessarily described herein, one of ordinary skill in the art will, upon considering the foregoing description, recognize that many modifications and variations of the invention may be employed. All such variations and modifications of the invention are intended to be covered by the foregoing description and the following claims.

Claims (38)

1. A generally parallelogram-shaped cutting insert, comprising:
a top face;
first and second main radial clearance faces, each intersecting the top face;
first and second minor axial clearance faces, each intersecting the top face and connecting the first and second main radial clearance faces;
a main cutting edge at the intersection of the top face and the first main radial clearance face; and a variable radial rake angle along the length of the main cutting edge, the main cutting edge comprising a portion having a positive radial rake angle and a portion having a negative radial rake angle;
wherein the first main radial clearance face and the second main radial clearance face each comprise at least two radial clearance surfaces; and the first minor axial clearance face and the second minor axial clearance face each comprise at least two axial clearance surfaces.
2. The generally parallelogram-shaped cutting insert of claim 1, wherein the radial rake angle of the main cutting edge changes from a positive radial rake angle to a negative radial rake angle along the main cutting edge.
3. The generally parallelogram-shaped cutting insert of claim 1, further comprising: a main corner nose.
4. The generally parallelogram-shaped cutting insert of claim 1, wherein the radial rake angle of the main cutting edge near the main corner nose is positive.
5. The generally parallelogram-shaped cutting insert of claim 4, wherein the radial rake angle is zero at least at one point along the main cutting edge.
6. The generally parallelogram-shaped cutting insert of claim 5, wherein the radial rake angle is zero at only one point along the main cutting edge.
7. The generally parallelogram-shaped cutting insert of claim 1, wherein the length of the portion of the main cutting edge having a positive radial rake angle is at least three times longer than the length of the portion of the main cutting edge having a negative radial rake angle.
8. The generally parallelogram-shaped cutting insert of claim 1, further comprising:
a cutting edge at the intersection of the top face and the first main radial clearance face; and a cutting edge at the intersection of the top face and the second main radial clearance face;
wherein each cutting edge includes a variable radial rake angle along the length of the cutting edge, the main cutting edge comprising a portion having a positive radial rake angle and a portion having a negative radial rake angle.
9. The generally parallelogram-shaped cutting insert of claim 8, further comprising:
a bottom face; and two minor cutting edges, each minor cutting edge comprising at least a first portion and a second portion, wherein the first portion comprises a facet edge parallel to the bottom face and the second portion at an angle to the facet edge of the first portion.
10. The generally parallelogram-shaped cutting insert of claim 1, further comprising:
two main corner noses and two minor corner noses, each major corner nose and each minor corner nose connecting a main cutting edge and a minor cutting edge, and wherein each of the main corner noses is one of a full nose and a truncated nose.
11. The generally parallelogram-shaped cutting insert of claim 1, wherein at least one radial clearance face includes a notch.
12. The generally parallelogram-shaped cutting insert of claim 1, wherein at least one radial clearance face includes a notch extending across the entire radial clearance face.
13. The generally parallelogram-shaped cutting insert of claim 1, wherein at least one axial clearance face includes a notch.
14. The generally parallelogram-shaped cutting insert of claim 13, wherein at least one axial clearance face includes a notch extending across at least a portion of the axial clearance face.
15. A peripheral cutting tool, comprising:
a tool holder comprising at least one insert pocket; and a generally parallelogram-shaped cutting insert comprising a main cutting edge, wherein the cutting insert is positioned in the insert pocket of the tool holder such that a midpoint of the main cutting edge is located in a primary radial plane comprising the axis of rotation of the tool holder, and wherein a support plane including a bottom surface of the insert pocket is perpendicular to a secondary radial plane that comprises the axis of rotation of the tool holder and is perpendicular to the primary radial plane;
wherein the generally parallelogram-shaped cutting insert comprises:
a top face;
first and second main radial clearance faces, each intersecting the top face;
first and second minor axial clearance faces, each intersecting the top face and connecting the first and second main radial clearance faces;

a main cutting edge at the intersection of the top face and the first main radial clearance face; and a variable radial rake angle along the length of the main cutting edge, the main cutting edge comprising a portion having a positive radial rake angle and a portion having a negative radial rake angle.
16. The peripheral cutting tool of claim 15, wherein the radial rake angle of the main cutting edge changes from a positive radial rake angle to a negative radial rake angle along the main cutting edge.
17. The peripheral cutting tool of claim 16, wherein the length of the portion of the main cutting edge having a positive radial rake angle is at least three times longer than the length of the portion of the main cutting edge having a negative radial rake angle.
18. The peripheral cutting tool of claim 15, wherein the generally parallelogram-shaped cutting insert comprises a main corner nose.
19. The peripheral cutting tool of claim 15, wherein the radial rake angle of the main cutting edge near the main corner nose is positive.
20. The peripheral cutting tool of claim 15, wherein the parallelogram-shaped cutting insert comprises:
a cutting edge at the intersection of the top face and the first main radial clearance face; and a cutting edge at the intersection of the top face and the second main radial clearance faces;
wherein each such cutting edge has a variable radial rake angle along the length of the cutting edge, each such cutting edge comprising a portion having a positive radial rake angle and a portion having a negative radial rake angle.
21. A method for positioning a generally parallelogram-shaped cutting insert comprising a main cutting edge in an insert pocket of a tool holder of peripheral cutting tool, the method comprising:
positioning the cutting insert in the insert pocket so that a midpoint of the main cutting edge is located in a primary radial plane comprising the axis of rotation of the tool holder, and wherein a support plane including a bottom surface of the insert pocket is perpendicular to a secondary radial plane that comprises the axis of rotation of the tool holder and is perpendicular to the primary radial plane;
wherein the generally parallelogram-shaped cutting insert comprises:
a top face;
first and second main radial clearance faces, each intersecting the top face;
first and second minor axial clearance faces, each intersecting the top face and connecting the first and second main radial clearance faces;
a main cutting edge at the intersection of the top face and the first main radial clearance face; and a variable radial rake angle along the length of the main cutting edge, the main cutting edge comprising a portion having a positive radial rake angle and a portion having a negative radial rake angle.
22. The method of claim 21, wherein the radial rake angle of the main cutting edge changes from a positive radial rake angle to a negative radial rake angle along the main cutting edge.
23. The method of claim 21, wherein the generally parallelogram-shaped cutting insert comprises a main corner nose.
24. The method of claim 21, wherein the radial rake angle of the main cutting edge near the main corner nose is positive.
25. The method claim 21, wherein the length of the portion of the main cutting edge having a positive radial rake angle is at least three times longer than the length of the portion of the main cutting edge having a negative radial rake angle.
26. A generally parallelogram-shaped cutting insert, comprising:
a top face;
a bottom face;
first and second main radial clearance faces, each intersecting the top face;
first and second minor axial clearance faces, each intersecting the top face and connecting the first and second main radial clearance faces;
a main cutting edge at the intersection of the top face and the first main radial clearance face;
a variable radial rake angle along the length of the main cutting edge, the main cutting edge comprising a portion having a positive radial rake angle and a portion having a negative radial rake angle;
a cutting edge at the intersection of the top face and the first main radial clearance face;
a cutting edge at the intersection of the top face and the second main radial clearance face;
wherein each cutting edge includes a variable radial rake angle along the length of the cutting edge, the main cutting edge comprising a portion having a positive, radial rake angle and a portion having a negative radial rake angle;
and two minor cutting edges, each minor cutting edge comprising at least a first portion and a second portion, wherein the first portion comprises a facet edge parallel to the bottom face and the second portion at an angle to the facet edge of the first portion.
27. The generally parallelogram-shaped cutting insert of claim 26, wherein the radial rake angle of the main cutting edge changes from a positive radial rake angle to a negative radial rake angle along the main cutting edge.
28. The generally parallelogram-shaped cutting insert of claim 26, further comprising:
a main corner nose.
29. The generally parallelogram-shaped cutting insert of claim 26, wherein the radial rake angle of the main cutting edge near the main corner nose is positive.
30. The generally parallelogram-shaped cutting insert of claim 29, wherein the radial rake angle is zero at least at one point along the main cutting edge.
31. The generally parallelogram-shaped cutting insert of claim 30, wherein the radial rake angle is zero at only one point along the main cutting edge.
32. The generally parallelogram-shaped cutting insert of claim 26, wherein the length of the portion of the main cutting edge having a positive radial rake angle is at least three times longer than the length of the portion of the main cutting edge having a negative radial rake angle.
33. The generally parallelogram-shaped cutting insert of claim 26, further comprising:
two main corner noses and two minor corner noses, each major corner nose and each minor corner nose connecting a main cutting edge and a minor cutting edge, and wherein each of the main corner noses is one of a full nose and a truncated nose.
34. The generally parallelogram-shaped cutting insert of claim 26, wherein the first main radial clearance face and the second main radial clearance face each comprise at least two radial clearance surfaces; and the first minor axial clearance face and the second minor axial clearance face each comprise at least two axial clearance surfaces.
35. The generally parallelogram-shaped cutting insert of claim 26, wherein at least one radial clearance face includes a notch.
36. The generally parallelogram-shaped cutting insert of claim 26, wherein at least one radial clearance face includes a notch extending across the entire radial clearance face.
37. The generally parallelogram-shaped cutting insert of claim 26, wherein at least one axial clearance face includes a notch.
38. The generally parallelogram-shaped cutting insert of claim 37, wherein at least one axial clearance face includes a notch extending across at least a portion of the axial clearance face.
CA2663654A 2007-01-16 2007-12-07 Cutting insert, tool holder, and related method Expired - Fee Related CA2663654C (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US88505307P 2007-01-16 2007-01-16
US60/885,053 2007-01-16
US11/743,803 US7905687B2 (en) 2007-01-16 2007-05-03 Cutting insert, tool holder, and related method
US11/743,803 2007-05-03
PCT/US2007/086717 WO2008088621A2 (en) 2007-01-16 2007-12-07 Cutting insert, tool holder, and related method

Publications (2)

Publication Number Publication Date
CA2663654A1 CA2663654A1 (en) 2008-07-24
CA2663654C true CA2663654C (en) 2013-07-16

Family

ID=39617914

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2663654A Expired - Fee Related CA2663654C (en) 2007-01-16 2007-12-07 Cutting insert, tool holder, and related method

Country Status (16)

Country Link
US (1) US7905687B2 (en)
EP (2) EP2077174B1 (en)
JP (1) JP5451400B2 (en)
KR (1) KR101262440B1 (en)
CN (1) CN101522351B (en)
AT (1) ATE554872T1 (en)
BR (1) BRPI0716534A2 (en)
CA (1) CA2663654C (en)
DK (1) DK2077174T3 (en)
IL (2) IL197342A (en)
MX (1) MX2009002840A (en)
PL (1) PL2077174T3 (en)
PT (1) PT2077174E (en)
RU (1) RU2465105C2 (en)
TW (1) TWI343846B (en)
WO (1) WO2008088621A2 (en)

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7220083B2 (en) 2003-10-15 2007-05-22 Tdy Industries, Inc. Cutting insert for high feed face milling
US8337123B2 (en) * 2007-05-28 2012-12-25 Kyocera Corporation Cutting insert, cutting tool, and cutting method using the cutting tool
EP2260960B1 (en) * 2008-02-27 2014-12-17 Kyocera Corporation Cutting insert for drill, drill, and cutting method using same
US7905689B2 (en) * 2008-05-07 2011-03-15 Tdy Industries, Inc. Cutting tool system, cutting insert, and tool holder
US8491234B2 (en) * 2009-02-12 2013-07-23 TDY Industries, LLC Double-sided cutting inserts for high feed milling
US7976250B2 (en) * 2009-02-12 2011-07-12 Tdy Industries, Inc. Double-sided cutting inserts for high feed milling
US9586264B2 (en) * 2009-04-28 2017-03-07 Kennametal Inc. Double-sided cutting insert for drilling tool
US8961076B2 (en) * 2009-06-26 2015-02-24 Kyocera Corporation Cutting insert, cutting tool, and method of manufacturing machined product using the same
SE535147C2 (en) * 2009-12-18 2012-04-24 Sandvik Intellectual Property Device for milling material
US8807884B2 (en) * 2009-12-18 2014-08-19 Kennametal Inc. Tool holder for multiple differently-shaped cutting inserts
FR2972948B1 (en) * 2011-03-22 2014-04-11 Renault Sa METHOD AND DEVICE FOR MILLING SURFACING
US9387544B2 (en) 2011-05-02 2016-07-12 Fairfield Manufacturing Company, Inc. Smilled spline apparatus and smilling process for manufacturing the smilled spline apparatus
DE102012012980B4 (en) 2011-07-22 2019-10-17 Kennametal India Ltd. drilling
DE102012014092B4 (en) 2011-07-22 2020-12-17 Kennametal India Ltd. Indexable drill bit and drill body with indexable drill bit
KR20140039309A (en) 2011-07-22 2014-04-01 케나메탈 인디아 리미티드 An indexable drill insert
JP5906976B2 (en) * 2011-10-04 2016-04-20 三菱マテリアル株式会社 Cutting insert and cutting edge changeable cutting tool
DE102012104082A1 (en) * 2012-05-09 2013-11-14 Walter Ag Indexable insert for shoulder cutters
CN103447591B (en) 2012-05-28 2020-02-28 钴碳化钨硬质合金印度有限公司 Quadrangular indexable drill insert
US9011049B2 (en) 2012-09-25 2015-04-21 Kennametal Inc. Double-sided cutting inserts with anti-rotation features
US9283626B2 (en) 2012-09-25 2016-03-15 Kennametal Inc. Double-sided cutting inserts with anti-rotation features
CN105209198B (en) 2013-01-23 2017-04-05 钴碳化钨硬质合金印度有限公司 Indexable drill blade and the rotary cutting tool using the blade
EP3045247B1 (en) * 2013-09-11 2021-05-05 Mitsubishi Hitachi Tool Engineering, Ltd. Replaceable-cutting-edge rotary cutting tool and insert used in same
US9358622B2 (en) 2013-11-21 2016-06-07 Iscar, Ltd. Single sided indexable ramping milling insert and ramping milling tool
USD738412S1 (en) * 2013-12-25 2015-09-08 Taegutec Ltd. Cutting insert
CN103934496B (en) * 2014-05-12 2016-05-11 哈尔滨理工大学 A kind of profile milling cutter of complex-shaped surface mould processing use
USD752664S1 (en) * 2014-09-25 2016-03-29 Taegutec Ltd. Cutting insert
EP3050655B1 (en) 2015-01-30 2017-03-22 Sandvik Intellectual Property AB A milling insert and a milling tool
US10058933B2 (en) 2015-04-03 2018-08-28 The Boeing Company Orbital cutting tool having cutting edges with axially varying circumferential spacing
US9993884B2 (en) * 2015-07-16 2018-06-12 Kennametal Inc. Double-sided tangential cutting insert
US9981323B2 (en) * 2015-07-16 2018-05-29 Kennametal Inc. Double-sided tangential cutting insert and cutting tool system using the same
US9889510B2 (en) 2016-01-05 2018-02-13 The Boeing Company Variable rake fatigue enhancing orbital drilling cutter
US10953481B2 (en) 2016-03-13 2021-03-23 The Boeing Company Machining/burnishing dual geometry orbital drilling tool
CN110023015B (en) * 2016-12-09 2020-07-03 三菱日立工具株式会社 Cutting insert and indexable insert type rotary cutting tool
JP6869492B2 (en) * 2019-08-28 2021-05-12 株式会社タンガロイ Cutting insert
WO2022049659A1 (en) * 2020-09-02 2022-03-10 住友電工ハードメタル株式会社 Cutting insert for rotational cutting tool and rotational cutting tool

Family Cites Families (129)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3399442A (en) 1966-09-08 1968-09-03 Kennametal Inc Cutting insert
US3557416A (en) 1968-08-16 1971-01-26 Kennametal Inc Cutting insert
US3621549A (en) * 1970-03-06 1971-11-23 James O Billups Cutting tool insert assembly
US3806713A (en) 1971-10-21 1974-04-23 Honeywell Inf Systems Method and apparatus for maximizing the length of straight line segments approximating a curve
JPS5950450B2 (en) 1976-02-25 1984-12-08 ダイジヱツト工業株式会社 Throwaway tip
FR2364724A1 (en) 1976-09-17 1978-04-14 Walter Gmbh Montanwerke Indexable cutting insert for milling tool - has rectangular plate with cutting edges for mounting in tool
SU814573A1 (en) 1978-07-31 1981-03-25 Ярославский Политехническийинститут Multiposition cutting blade
US4274766A (en) 1979-11-28 1981-06-23 The Valeron Corporation Cutter assembly for broaching
US4292365A (en) * 1980-01-21 1981-09-29 Owens-Corning Fiberglas Corporation Polymeric mats having continuous filaments with an asymmetrical cross-sectional shape
US4294565A (en) 1980-03-06 1981-10-13 General Electric Company Indexable finishing insert for a milling cutter
US4595322A (en) 1981-08-10 1986-06-17 Burke Clement Spade drill bit
DE3200191A1 (en) 1982-01-07 1983-07-14 Otto 8961 Reicholzried Zettl "MILLING TOOL"
DE3204210C2 (en) 1982-02-08 1986-04-03 Stellram GmbH, 6056 Heusenstamm Drilling tool for metallic materials
US4659264A (en) * 1982-07-06 1987-04-21 Kennametal Inc. Drill and indexable carbide insert therefor
JPS59214501A (en) 1983-05-23 1984-12-04 Toshiba Corp Throw-away chip
SU1278110A1 (en) * 1984-01-31 1986-12-23 Государственное Проектное Конструкторско-Технологическое Бюро Машиностроения Научно-Производственного Объединения "Технолог" Tool head
JPH0131371Y2 (en) * 1985-06-06 1989-09-26
DE3618574C2 (en) 1985-06-06 1989-11-02 Mitsubishi Kinzoku K.K., Tokio/Tokyo, Jp POSITIVE INSERT
SE448431B (en) 1985-07-03 1987-02-23 Santrade Ltd REQUEST FOR TEAM DISPOSAL PROCESSING
CH667407A5 (en) * 1986-03-27 1988-10-14 Stellram Sa STRAWBERRY WITH REMOVABLE CUTTING INSERTS.
US4760548A (en) 1986-06-13 1988-07-26 International Business Machines Corporation Method and apparatus for producing a curve image
JPH0782554B2 (en) 1986-09-10 1995-09-06 フアナツク株式会社 Curved surface processing method
SU1504006A1 (en) 1987-11-30 1989-08-30 В.Г. Чернавский, В.Г. Дигтенко, А.И. Дронов и Т.Б. Грищенко Cutting plate
IL93883A (en) * 1989-04-12 1993-02-21 Iscar Ltd Cutting insert for a milling cutting tool
US5094572A (en) 1989-12-04 1992-03-10 Thomas Grismer Spade drill for hard material
US5137398A (en) 1990-04-27 1992-08-11 Sumitomo Electric Industries, Ltd. Drill bit having a diamond-coated sintered body
GB9010769D0 (en) * 1990-05-14 1990-07-04 Iscar Hartmetall Cutting insert
US5244318A (en) * 1990-07-04 1993-09-14 Mitsubishi Materials Corporation Throwaway insert and cutting tool therefor
US5333972A (en) 1990-10-04 1994-08-02 Valenite Inc. Special boring insert
US5232319A (en) 1990-10-25 1993-08-03 Iscar Ltd. Insert for a milling cutter
SE500310C2 (en) 1990-12-03 1994-05-30 Sandvik Ab Cutting and cutting tool
US5092718A (en) 1990-12-10 1992-03-03 Metal Cutting Tools Corp. Drill with replaceable cutting inserts
SE467727B (en) 1991-01-28 1992-09-07 Sandvik Ab DRILL WITH AT LEAST TWO CUTTERS, AS WELL AS SYMMETRIC DRILLING AND OTHER LONG CUTTER EDGE
JP3057781B2 (en) 1991-03-07 2000-07-04 三菱マテリアル株式会社 Indexable tip
US5338135A (en) 1991-04-11 1994-08-16 Sumitomo Electric Industries, Ltd. Drill and lock screw employed for fastening the same
US5408598A (en) 1991-05-23 1995-04-18 International Business Machines Corporation Method for fast generation of parametric curves employing a pre-calculated number of line segments in accordance with a determined error threshold
DE4118070C2 (en) 1991-06-01 1995-02-09 Widia Heinlein Gmbh Machining tool
DE4118065C2 (en) 1991-06-01 1994-09-01 Krupp Widia Gmbh Polygonal or round cutting insert
US5377116A (en) 1991-07-01 1994-12-27 Valenite Inc. Method and system for designing a cutting tool
US5226761A (en) 1991-09-27 1993-07-13 Iscar Ltd. Metal cutting insert and metal cutting tool utilizing the metal cutting insert
US5203649A (en) 1991-10-07 1993-04-20 Gte Valentine Corporation High productivity, high metal removal rate insert
DE4141368A1 (en) * 1991-12-14 1993-06-17 Krupp Widia Gmbh CUTTING INSERT
CA2062213C (en) * 1992-03-03 1996-07-16 Alfonso Minicozzi Indexable cutting insert for rotary cutting tools
JPH0615517A (en) 1992-07-01 1994-01-25 Sumitomo Electric Ind Ltd Throwaway tip and front face milling cutter
IL103115A (en) 1992-09-09 1996-09-12 Iscar Ltd Milling cutter insert
US5346336A (en) 1992-11-04 1994-09-13 Sandvik, Inc. Metal-cutting insert having a round cutting edge
DE4239236C2 (en) 1992-11-21 1997-06-26 Widia Gmbh Cutting insert
JPH06218618A (en) * 1993-01-21 1994-08-09 Mitsubishi Materials Corp Throwaway tip
SE500722C2 (en) 1993-01-27 1994-08-15 Sandvik Ab Cut with twisted chip surface
JP3196394B2 (en) * 1993-02-01 2001-08-06 三菱マテリアル株式会社 Indexable tip
US5725334A (en) 1993-03-29 1998-03-10 Widia Gmbh Cutting insert
EP0625395B1 (en) 1993-05-10 1995-04-19 STELLRAM GmbH Boring tool for metallic materials
KR960703045A (en) 1993-06-25 1996-06-19 데이비드 티. 코퍼 INSERT CORNER GEOMETRY FOR IMPROVED SURFACE ROUGHNESS for Improved Surface Roughness
US5388932A (en) * 1993-09-13 1995-02-14 Kennametal Inc. Cutting insert for a milling cutter
JP3166022B2 (en) 1993-12-28 2001-05-14 三菱マテリアル株式会社 Indexable insert and method of manufacturing the same
DE4400538A1 (en) 1994-01-11 1995-07-13 Gustav Werthwein Milling tool with reduced oscillation
WO1995019238A1 (en) 1994-01-14 1995-07-20 Sandvik Ab Indexable insert for finish milling and cutter body therefor
SE509224C2 (en) 1994-05-19 1998-12-21 Sandvik Ab Inserts
IL110785A (en) 1994-08-25 1998-04-05 Iscar Ltd Cutting insert for a rotary milling cutter
DE4430171C2 (en) 1994-08-25 1996-08-14 Walter Ag Form-locked insert
IL111367A0 (en) * 1994-10-23 1994-12-29 Iscar Ltd An exchangeable cutting insert
US5791833A (en) 1994-12-29 1998-08-11 Kennametal Inc. Cutting insert having a chipbreaker for thin chips
JP3109561B2 (en) * 1995-03-08 2000-11-20 住友電気工業株式会社 Indexable inserts and cutting tools
US5807031A (en) 1995-03-10 1998-09-15 Mitsubishi Materials Corp. Throw-away tip and throw-away type cutter
JPH08261167A (en) 1995-03-24 1996-10-08 Toyota Autom Loom Works Ltd Compressor
DE19516893A1 (en) 1995-05-09 1996-11-14 Widia Gmbh Cutting insert and milling tool
SE506679C2 (en) 1995-06-21 1998-01-26 Seco Tools Ab Cutting tools, preferably for milling
JP3634909B2 (en) 1995-11-27 2005-03-30 京セラ株式会社 Drill insert
JPH09216113A (en) 1996-02-13 1997-08-19 Sumitomo Electric Ind Ltd Throw-away tip and cutting tool
IL118797A (en) * 1996-07-05 1999-10-28 Iscar Ltd Cutting insert
US6100904A (en) 1997-06-25 2000-08-08 Adobe Systems Incorporated Curvature smoothing
SE512253C2 (en) 1997-06-30 2000-02-21 Sandvik Ab Inserts
IL123685A (en) 1998-03-16 2001-09-13 Iscar Ltd Modular cutting tool assembly
SE512040C2 (en) 1998-05-06 2000-01-17 Sandvik Ab Inserts for stick cutters
RU2138371C1 (en) * 1998-06-26 1999-09-27 Алтайский государственный технический университет им.И.И.Ползунова Milling cutter
US5957635A (en) 1998-08-21 1999-09-28 Allied Machine & Engineering Corp. Drill tool assembly
SE514032C2 (en) * 1998-09-08 2000-12-11 Seco Tools Ab Tools and cutters for milling
US6238133B1 (en) 1998-10-20 2001-05-29 Kennametal Pc Inc. Anti-rotation mounting mechanism for round cutting insert
US6186705B1 (en) 1999-02-23 2001-02-13 Ingersoll Cutting Tool Company Cutting insert with chip control
US6050752A (en) * 1999-03-19 2000-04-18 Kennametal Inc. Cutting insert
JP4465809B2 (en) 1999-07-09 2010-05-26 三菱マテリアル株式会社 Throwaway tip
SE515070C2 (en) 1999-10-22 2001-06-05 Sandvik Ab Double negative cutting tool for chip separating machining
US6270297B1 (en) 2000-01-28 2001-08-07 Ati Properties, Inc. Cutting tools and drill inserts with chip control geometry
SE519575C2 (en) 2000-04-11 2003-03-18 Sandvik Ab Metal-cutting drill has a tip formed of cutting edges of a specific geometry designed to optimise metal cutting speed
DE10018452A1 (en) 2000-04-13 2001-10-25 Widia Gmbh Cutter insert in holder has polygonal body with face and support surface joined by free surfaces, rounded cutting corner and two cutting edges and radii of curvature
JP4576735B2 (en) 2000-05-23 2010-11-10 三菱マテリアル株式会社 Throw-away tip and throw-away cutter
KR100387406B1 (en) 2000-08-29 2003-06-18 한국야금 주식회사 Cutting insert with curved cutting edge
US6684742B1 (en) 2000-10-19 2004-02-03 Keith Alan White Machining apparatuses and methods of use
EP1205877A1 (en) 2000-11-14 2002-05-15 Honda R&D Europe (Deutschland) GmbH Approximate fitness functions
US6769844B2 (en) 2001-01-10 2004-08-03 Kennametal Inc. Cutting insert and method of making the same
IL141089A (en) 2001-01-25 2006-08-20 Amir Satran Cutting insert
JP4228557B2 (en) 2001-02-05 2009-02-25 三菱マテリアル株式会社 Throwaway tip
JP2002301603A (en) 2001-04-02 2002-10-15 Manabe Seisakusho:Kk Throwaway cutting tip and method of positioning cutting tip holder and throwaway cutting tip
US6540448B2 (en) 2001-05-14 2003-04-01 Ingersoll Cutting Tool Company Cutting tool with improved insert seat arrangement for indexable cutting inserts
KR100916280B1 (en) 2001-05-25 2009-09-10 히타치 쓰루 가부시키가이샤 Insert-exchangeable rotary tool
US6503028B1 (en) 2001-06-15 2003-01-07 Sandvik Aktiebolag Sintered cutting insert having center hole for clamp screw
JP4797292B2 (en) * 2001-07-17 2011-10-19 株式会社タンガロイ Throw-away end mill and cutting edge insert
US6623217B2 (en) 2001-09-24 2003-09-23 Valenite, Inc. Indexable turning insert
SE523617C2 (en) 2001-10-01 2004-05-04 Sandvik Ab Cuts for chip separating machining with chip breaking geometry
JP3951766B2 (en) 2002-03-20 2007-08-01 三菱マテリアル株式会社 Throw-away inserts and throw-away cutting tools
JP3775321B2 (en) 2002-03-20 2006-05-17 三菱マテリアル株式会社 Throw-away inserts and throw-away cutting tools
US20030206777A1 (en) * 2002-05-03 2003-11-06 Gyllengahm Ulf Stefan Metal cutting insert having straight cutting edge and curved abutment surface
SE525241C2 (en) 2002-05-29 2005-01-11 Sandvik Ab Drill tool kit, drill tool and indexable drill bit for this
IL150015A (en) 2002-06-04 2007-06-17 Amir Satran Cutting insert and milling cutter
DE10225070A1 (en) * 2002-06-06 2004-01-15 Hilti Ag Core drill bit with geometrically defined cutting elements
US6960049B2 (en) 2002-06-25 2005-11-01 Ngk Spark Plug Co., Ltd. Insert, holder and cutting tool
SE525878C2 (en) 2002-10-10 2005-05-17 Seco Tools Ab Milling tools and indexable cutting with parallel sides
JP4121449B2 (en) 2003-01-16 2008-07-23 日本特殊陶業株式会社 Throw away tip and bite
DE10312922B4 (en) 2003-03-22 2006-02-16 Walter Ag Cutting plate and milling tool
JP4351460B2 (en) * 2003-03-25 2009-10-28 京セラ株式会社 Throwaway end mill
US7722297B2 (en) 2003-04-15 2010-05-25 Tdy Industries, Inc. Antirotation tool holder and cutting insert
DE10317760B4 (en) 2003-04-17 2005-08-25 Walter Ag Milling tool and cutting plate for such
KR100556681B1 (en) * 2003-04-28 2006-03-07 대구텍 주식회사 tool holder assembly for multifunctional machining
US7234899B2 (en) 2003-05-19 2007-06-26 Tdy Industries, Inc. Cutting tool having a wiper nose corner
DE10326662A1 (en) 2003-06-11 2005-01-05 Sandvik Ab Cutting insert for turning and milling
US7220083B2 (en) 2003-10-15 2007-05-22 Tdy Industries, Inc. Cutting insert for high feed face milling
IL160223A (en) 2004-02-04 2008-11-26 Carol Smilovici Double-sided cutting insert and milling cutter
US7070363B2 (en) 2004-07-15 2006-07-04 Kennametal Inc. Cutting insert for high-speed milling cutter
SE527617C8 (en) 2004-09-06 2006-06-13 Sandvik Intellectual Property Milling tools, cutters for milling tools and solid milling tools
US7325471B2 (en) 2004-09-07 2008-02-05 Kennametal Inc. Toolholder and cutting insert for a toolholder assembly
US7452167B2 (en) 2004-11-26 2008-11-18 Kyocera Corporation Cutting insert and milling tool
RU2318634C2 (en) * 2005-04-13 2008-03-10 Валентин Алексеевич Настасенко Cutting, cutting-deforming and deforming end milling cutter, working tips for it, method for making such tips, method for working by means of deforming milling cutter
DE102005025815A1 (en) 2005-06-02 2006-12-07 Kennametal Widia Produktions Gmbh & Co. Kg Cutting insert, in particular for crankshaft machining
IL169491A (en) 2005-06-30 2009-06-15 Carol Smilovici Cutting insert
JP4231496B2 (en) 2005-08-01 2009-02-25 住友電工ハードメタル株式会社 Throwaway tip
JP2007044782A (en) 2005-08-08 2007-02-22 Sumitomo Electric Hardmetal Corp Throw-away tip and milling cutter using it
IL182343A0 (en) 2007-04-01 2007-07-24 Iscar Ltd Cutting insert and tool for milling and ramping at high feed rates
US7905689B2 (en) 2008-05-07 2011-03-15 Tdy Industries, Inc. Cutting tool system, cutting insert, and tool holder
US7976250B2 (en) 2009-02-12 2011-07-12 Tdy Industries, Inc. Double-sided cutting inserts for high feed milling

Also Published As

Publication number Publication date
PL2077174T3 (en) 2012-09-28
IL197342A0 (en) 2009-12-24
JP5451400B2 (en) 2014-03-26
CA2663654A1 (en) 2008-07-24
DK2077174T3 (en) 2012-07-30
RU2009111888A (en) 2010-10-10
US7905687B2 (en) 2011-03-15
BRPI0716534A2 (en) 2013-09-24
ATE554872T1 (en) 2012-05-15
IL197342A (en) 2013-11-28
CN101522351B (en) 2012-02-01
EP2077174A1 (en) 2009-07-08
IL227059A (en) 2014-09-30
EP2064015A2 (en) 2009-06-03
EP2077174B1 (en) 2012-04-25
KR20090110817A (en) 2009-10-22
KR101262440B1 (en) 2013-05-08
MX2009002840A (en) 2009-06-04
WO2008088621A2 (en) 2008-07-24
WO2008088621A3 (en) 2008-10-09
CN101522351A (en) 2009-09-02
TWI343846B (en) 2011-06-21
JP2010515591A (en) 2010-05-13
RU2465105C2 (en) 2012-10-27
PT2077174E (en) 2012-06-25
EP2064015B1 (en) 2016-08-17
US20080170919A1 (en) 2008-07-17
TW200833442A (en) 2008-08-16

Similar Documents

Publication Publication Date Title
CA2663654C (en) Cutting insert, tool holder, and related method
CA2541901C (en) Cutting insert for high feed face milling
EP2101947B1 (en) Cutting insert and cutting tool
JP2010515591A5 (en)
KR101978078B1 (en) Double-sided cutting insert and milling tool
RU2404025C2 (en) Cutter plate
WO2010035831A1 (en) Cutting insert, cutting tool, and cutting method using cutting insert and cutting tool
WO2013088851A1 (en) Cutting insert and interchangeable cutting edge-type cutting tool
JP2013176846A (en) Face milling insert
JP2014083667A (en) Cutting insert and tip replaceable cutting tool
JP6384683B2 (en) Cutting inserts and cutting tools
JP6432556B2 (en) Cutting inserts and cutting tools
US11278972B2 (en) Cutting insert and tool for machining a workpiece
WO2023171359A1 (en) Cutting insert, tool body, and edge-replaceable rotary cutting tool
JPH11197909A (en) Throw-away tip

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed

Effective date: 20151207