CA2671694A1 - Methods and devices for maintaining visibility and providing irrigation and/or suction during surgical procedures - Google Patents

Methods and devices for maintaining visibility and providing irrigation and/or suction during surgical procedures Download PDF

Info

Publication number
CA2671694A1
CA2671694A1 CA002671694A CA2671694A CA2671694A1 CA 2671694 A1 CA2671694 A1 CA 2671694A1 CA 002671694 A CA002671694 A CA 002671694A CA 2671694 A CA2671694 A CA 2671694A CA 2671694 A1 CA2671694 A1 CA 2671694A1
Authority
CA
Canada
Prior art keywords
sheath
fluid
passageway
distal
distal end
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CA002671694A
Other languages
French (fr)
Other versions
CA2671694C (en
Inventor
William B. Ii Weisenburgh
Carl J. Shurtleff
Darrel Powell
Christopher J. Hess
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ethicon Endo Surgery Inc
Original Assignee
Ethicon Endo Surgery Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ethicon Endo Surgery Inc filed Critical Ethicon Endo Surgery Inc
Publication of CA2671694A1 publication Critical patent/CA2671694A1/en
Application granted granted Critical
Publication of CA2671694C publication Critical patent/CA2671694C/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/012Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor characterised by internal passages or accessories therefor
    • A61B1/015Control of fluid supply or evacuation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00064Constructional details of the endoscope body
    • A61B1/00071Insertion part of the endoscope body
    • A61B1/0008Insertion part of the endoscope body characterised by distal tip features
    • A61B1/00091Nozzles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00131Accessories for endoscopes
    • A61B1/00135Oversleeves mounted on the endoscope prior to insertion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/12Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with cooling or rinsing arrangements
    • A61B1/126Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with cooling or rinsing arrangements provided with means for cleaning in-use
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/313Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor for introducing through surgical openings, e.g. laparoscopes
    • A61B1/3132Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor for introducing through surgical openings, e.g. laparoscopes for laparoscopy

Abstract

Methods and devices are provided for providing irrigation and/or suction to a surgical site and maintaining clear visibility through a lens of a scoping device during a surgical procedure. In general, the methods and devices can allow for a surgical instrument to maintain visibility during a surgical procedure using a fluid conduit coupled to the surgical instrument. A surgical device can include a sheath having at least one lumen extending therethrough configured to allow a surgical viewing instrument to be disposed therein. The sheath can also have a passageway extending therethrough configured to allow fluid to flow therethrough. The fluid conduit can be configured to be movable between positions that can allow alternative directions of fluid toward and/or away from a viewing element on the surgical instrument and fluid away from the viewing element and toward a surgical field in a body cavity.

Description

... .... . . .. . . . . . .,_., ... .... . . . .... . ...,.. ~....... . . ..
... .. .... . ,,:...... ..,.- ...... .. .. ...,... . . .

METHODS AND DEVICES FOR MAINTAINING VISIBILITY AND PROVIDING
IRRIGATION AND/OR SUCTION DURING SURGICAL PROCEDURES
FIELD OF THE INVENTION

[0001 ] The present invention relates to methods and devices for performing surgical procedures, and in particular to methods and devices for maintaining visibility and providing irrigation and/or suction during surgical procedures.

BACKGROUND OF THE INVENTION
[0002] During laparoscopic surgery, one or more small incisions are formed in the abdomen and a trocar is inserted through the incision to form a pathway that provides access to the abdominal cavity. The trocar is used to introduce various instruments and tools into the abdominal cavity, as well as to provide insufflation to elevate the abdominal wall above the organs. During such procedures, a scoping device, such as an endoscope or laparoscope, is inserted through one of the trocars to allow a surgeon to view the operative field on an external monitor coupled to the scoping device.
[0003] Scoping devices are often inserted and removed through a trocar multiple times during a single surgical procedure, and during each insertion and each removal a scope can encounter fluid that can adhere to the scope's lens and fully or partially impede visibility through the lens.
During some surgical procedures, fluid irrigation is provided to a surgical site, which can increase an amount of fluid present that can potentially impede visibility through the lens.
Furthermore, a scope can draw fluid from inside or outside a patient's body into the trocar, where the fluid can be deposited within the trocar until the scope or other instrument is reinserted through the trocar. Upon reinsertion, fluid can adhere to the scope's lens.
The scope's lens thus needs to be cleaned to restore visibility, often multiple times during a single surgical procedure.
With limited access to a scope in a body, each lens cleaning can require removing the scope from the body, cleaning the scope lens of fluid, and reintroducing the scope into the body. Such lens cleaning is a time-consuming procedure that also increases the chances of complications and contamination through repeated scope insertion and removal.
[0004] Accordingly, there is a need for methods and devices for providing irrigation and/or suction to a surgical site and maintaining clear visibility through a lens of a scoping device during a surgical procedure.

SUMMARY OF THE INVENTION
[0005] The present invention generally provides methods and devices for delivering irrigation and/or suction to a surgical site and maintaining clear visibility through a lens of a scoping device during a surgical procedure. In one embodiment, a surgical device is provided that includes an annular sheath configured to be disposed in a body cavity and to receive a surgical instrument in a lumen thereof, and a fluid conduit. The sheath also has a passageway having a proximal opening and a distal opening and configured to allow fluid to flow therethrough. The fluid conduit is at least partially located in a distal portion of the sheath and configured to be movable when the sheath is disposed in a body cavity between at least two positions to change a location of the distal opening of the passageway. For example, a first location of the distal opening can be in a distal end of the sheath and a second location of the distal opening can be proximal to the distal end of the sheath. A variety of surgical instruments can be disposed in the lumen of the sheath, e.g., a scope having a viewing element at a distal end of the scope.
[0006] The fluid conduit can have a variety of configurations. For example, the fluid conduit can be in a first position effective to direct fluid flowing through the passageway substantially toward the lumen, and in a second position to direct fluid flowing through the passageway away from the lumen and substantially toward a surgical field. For another example, the fluid conduit in at least one position can allow fluid to be directed through the passageway in a direction substantially aligned with a longitudinal axis of the passageway. In some embodiments, the fluid conduit can selectively allow for fluid irrigation through the passageway and for fluid suction through the passageway.
[0007] In an exemplary embodiment, the fluid conduit includes an axially adjustable arm. The arm can have a variety of configurations. For example, the arm can be movable between a first position where a distal end of the arm is proximal to a distal end of the sheath and a second position where the distal end of the arm is distal to the distal end of the sheath. The arm can be movable in a variety of ways, such as with an actuator coupled to a proximal portion of the arm, wherein manipulation of the actuator is effective to move the arm between at least two positions.
In some embodiments, the surgical device includes a self-sealing element disposed at a distal end of the sheath, and the arm can be movable between a position proximal to the self-sealing element and a position distal to the self-sealing element.
[0008] In another exemplary embodiment, the fluid conduit includes a movable ring disposed at the distal portion of the sheath. The ring can have a variety of configurations. For example, the ring can be located distal to a distal end of a surgical instrument attached to the sheath. For another example, the ring in a first rotated position can allow fluid to flow toward the lumen of the sheath through a distal opening of the passageway proximal to a distal end of the sheath, and the ring in a second rotated position can allow fluid to flow away from the sheath through the distal opening of the passageway at the distal end of the sheath. In some embodiments, the ring in the first rotated position can prevent fluid flow through the distal opening of the passageway away from the distal end of the sheath, and the ring in the second rotated position can prevent fluid flow through the distal opening of the passageway proximal to the distal end of the sheath.
[0009] In another embodiment, a surgical device includes a fluid conduit and an annular sheath having first and second passageways extending therethrough. The first passageway can receive a surgical instrument, and the second passageway can allow fluid to flow therethrough. The fluid conduit can move between a first position that allows a distal opening of the second passageway to be substantially directed toward a distal end of a surgical instrument disposed in the first passageway and a second position that allows the distal opening of the second passageway to be substantially directed away from a distal end of the sheath and into a body cavity. In some embodiments, the fluid conduit can be at least partially located proximate to a distal portion of the sheath.
[0010] In other aspects, a surgical method is provided. The method includes passing a sheath, having a surgical instrument disposed in a lumen thereof and having a fluid passageway extending therethrough, into a body cavity. A distal end of the surgical instrument is located proximal to a distal end of the sheath, and a fluid conduit that is at least partially located in a distal portion of the sheath can be movable between at least two positions to change a location of a distal opening of the fluid passageway. The method can have any number of variations. For example, passing the sheath into a body cavity can include passing the sheath through an introducer device having a working channel extending into a body cavity. In some embodiments, the fluid conduit can be movable to expose a distal opening of the fluid passageway effective to selectively irrigate and suction a site distal to the sheath. As another example, the fluid conduit can be movable to expose a distal opening of the fluid passageway effective to selectively irrigate and suction a distal end of a surgical instrument disposed in the lumen of the sheath.

BRIEF DESCRIPTION OF THE DRAWINGS

[0011 ] The invention will be more fully understood from the following detailed description taken in conjunction with the accompanying drawings, in which:

[0012] FIG. 1 is a partial cross-sectional view of one embodiment of a surgical device including a handpiece, and a sheath extending into a body cavity and having an adjustable arm disposed in the sheath and positioned in a first position;

[0013] FIG. 2 is a cross-sectional view of the sheath of FIG. 1 outside a body cavity;
[0014] FIG. 3 is a cross-sectional view of a distal portion of the sheath of FIG. 2;

[0015] FIG. 4 is a partial cross-sectional view of the surgical device of FIG.
1 with the adjustable arm disposed in the sheath and positioned in a second position;

[0016] FIG. 5 is schematic diagram of the handpiece of FIG. 1;

[0017] FIG. 6 is a partial cross-sectional view of one embodiment of a surgical device including a handpiece, and a sheath extending into a body cavity and having an adjustable arm and a protective lens disposed in the sheath;

[0018] FIG. 7 is a partial cross-sectional view of a distal portion of another embodiment of a surgical device including a sheath and having an adjustable arm disposed in the sheath;

[0019] FIG. 8 is a partial cross-sectional view of a distal portion of one embodiment of a surgical device including a sheath having a movable manifold and having an adjustable arm disposed in the sheath;

. ..

[0020] FIG. 9 is a partial cross-sectional view of yet another embodiment of a surgical device including a handpiece, and a sheath having an adjustable arm disposed in the sheath and positioned in a first position;

[0021 ] FIG. 10 is a partial cross-sectional view of the surgical device of FIG. 9 with the adjustable arm disposed in the sheath and positioned in a second position;

[0022] FIG. 11 is a partial cross-sectional view of a distal portion of one embodiment of a surgical device including a sheath and having a plurality of adjustable arms disposed in the sheath with the arms positioned in a first position;

[0023] FIG. 12 a partial cross-sectional view of the surgical device of FIG.
11 with the adjustable arms disposed in the sheath and positioned in a second position;

[0024] FIG. 13 is a partial perspective view of a distal end of the surgical device of FIG. 11;
[0025] FIG. 14 is a perspective view of the surgical device of FIG. 11;

[0026] FIG. 15 is a side view of the surgical device of FIG. 14;

[0027] FIG. 16 is a perspective view of one embodiment of a surgical device including a sheath and having a movable ring located at least partially in a distal portion of the sheath;

[0028] FIG. 17 is a side view of the surgical device of FIG. 16;

[0029] FIG. 18 is a partial perspective view of a distal end of the surgical device of FIG. 16 with the ring in a first position;

[0030] FIG. 19 is a partial cross-sectional view of a distal end of the surgical device of FIG. 16 with the ring in a first position;

[0031] FIG. 20 is a partial perspective view of a distal end of the surgical device of FIG. 16 with the ring in a second position;

[0032] FIG. 21 is a partial cross-sectional view of a distal end of the surgical device of FIG. 16 with the ring in a second position;

. . .... . . . . . .._.... .,.. ... . .. i... . , ..,, .., .... .. . . . . . .

[0033] FIG. 22 is a partial perspective view of a distal portion of one embodiment of a surgical device including a sheath and having a movable ring located at least partially in a distal portion of the sheath with the ring positioned in a first position;

[0034] FIG. 23 is a partial cross-sectional view of the surgical device of FIG. 22;

[0035] FIG. 24 is a partial perspective view of the surgical device of FIG. 22 with the ring being rotated;

[0036] FIG. 25 is a partial perspective view of the surgical device of FIG. 24 with the ring moved into a second position; and [0037] FIG. 26 is a partial cross-sectional view of the surgical device of FIG. 25.
DETAILED DESCRIPTION OF THE INVENTION

[0038] Certain exemplary embodiments will now be described to provide an overall understanding of the principles of the structure, function, manufacture, and use of the devices and methods disclosed herein. One or more examples of these embodiments are illustrated in the accompanying drawings. Those skilled in the art will understand that the devices and methods specifically described herein and illustrated in the accompanying drawings are non-limiting exemplary embodiments and that the scope of the present invention is defined solely by the claims. The features illustrated or described in connection with one exemplary embodiment may be combined with the features of other embodiments. Such modifications and variations are intended to be included within the scope of the present invention.

[0039] A person skilled in the art will appreciate that while the methods and devices are described in connection with endoscopic procedures, the methods and devices disclosed herein can be used in numerous surgical procedures and with numerous surgical instruments. By way of non-limiting example, the devices can be used in laparoscopic procedures, in which the device is introduced percutaneously. The methods and devices can also be used in open surgical procedures. Furthermore, a person skilled in the art will appreciate that the methods and devices disclosed herein can be used with numerous rigid and/or flexible surgical instruments. By way of non-limiting example, the surgical instrument can be a scope, e.g., an endoscope, a laparoscope, a colonoscope, an arthroscope, a gastroscope, etc., and any other type of surgical device that has a distal end that can be disposed in a body cavity and that has a viewing element configured to allow viewing of an image, such as a still or video image on a monitor or through an eyepiece.

[0040] A person skilled in the art will appreciate that the term "fluid" as used herein is intended to include any substance that, when on a surgical instrument, can adversely affect the functioning of the instrument or a surgeon's ability to use it. Fluids include any kind of bodily fluid, such as blood, and any kind of cleaning fluid introduced during a surgical procedure, such as saline or air. Fluids also include fluid/solid mixtures or fluids with particles (such as pieces of tissue) suspended or located therein, as well as viscous materials and gases. A person skilled in the art will also appreciate that the term "viewing element" as used herein is intended to encompass any one or more elements (e.g., a lens, a sensor, etc.) configured to allow for any type of visualization through still, moving, or other visual images and that the term "body cavity" as used herein is intended to encompass any internal body area, e.g., the abdominal cavity, the oral cavity, a body lumen, etc. A person skilled in the art will further appreciate that cleaning a distal end of a surgical instrument as discussed herein is intended to include cleaning at least a portion of a distal end of a surgical instrument disposed in a sheath and/or a viewing element disposed at the surgical instrument's distal end.

[0041 ] Various exemplary methods and devices are provided for providing irrigation and/or suction to a surgical site and maintaining clear visibility through a lens of a scoping device during a surgical procedure. In an exemplary embodiment, methods and devices can allow for a surgical instrument to maintain visibility during a surgical procedure using a fluid conduit coupled to the surgical instrument. Generally, a surgical device can include a sheath having at least one lumen extending therethrough configured to allow a surgical viewing instrument to be removably or fixedly disposed therein. The sheath can also have a passageway extending therethrough configured to allow fluid to flow therethrough. The fluid conduit can be removably coupled to or integrally formed in the sheath that is disposable around the surgical instrument such that the fluid conduit can be inserted into and withdrawn from a body cavity simultaneously with the surgical instrument disposed in the sheath. The fluid conduit can be configured to be movable between positions that can allow alternative directions of fluid flow toward and/or away . .,, from a viewing element on the surgical instrument to help clean the viewing element and fluid flow away from the viewing element and toward a surgical field in a body cavity to help cleanse the surgical field.

[0042] The fluid conduit can thus help clean the viewing element and/or help wash away fluid from a body cavity in which the surgical instrument's viewing element is disposed, thereby helping to maintain acceptable visual clarity through the viewing element. The surgical instrument can therefore be less likely to require withdrawal from the body for replacement with another, clean surgical instrument and/or for cleaning or replacement of the viewing element. In this way, a surgical procedure is less likely to be interrupted one or more times to address a visually impeded viewing element, thereby reducing the time for the surgical procedure. By cleaning a surgical instrument's distal end while the surgical instrument is disposed in the body, the surgical instrument can substantially remain in a desired position near patient tissue of interest, and the surgeon need not take additional time to maneuver the surgical instrument back into desired position following the instrument's cleaning and/or replacement with another surgical instrument. Reducing the need to remove the surgical instrument out of the body, such as through an introducer device used to introduce the surgical instrument into or remove the surgical instrument from a body cavity, can also reduce chances of the surgical instrument drawing fluid into the introducer device that could obscure the viewing element's viewing path during its passage through the introducer device and/or upon the surgical instrument's reinsertion (or other surgical instrument's insertion) into the introducer device.
Furthermore, the fluid conduit in one or both of its alternate positions can allow fluid be to suctioned away from adjacent the viewing element or from a surgical site distally beyond the viewing element, such as smoke or mist within a body cavity, which can help remove fluid that could potentially obscure vision through the viewing element or could otherwise adversely affect a surgical procedure.
Providing fluid suction and fluid irrigation using the same sheath and fluid conduit system associated with a surgical instrument can also help reduce the amount of instrumentation needed during a surgical procedure.

[0043] FIGS. 1-5 illustrate one exemplary embodiment of surgical device 10 including a fluid conduit, e.g., an extendable arm 44, coupled to an annular sheath 12. The surgical device 10 can be formed from any type and any combination of materials, preferably fluid-impermeable, preferably rigid and/or semi-rigid, and preferably biocompatible materials.
The surgical device can be configured with a fluid conduit as discussed below but otherwise be configured similar to surgical devices described in U.S. Patent Publication No. 2008/0081948 filed October 3, 2006 entitled "Apparatus For Cleaning A Distal Scope End Of A Medical Viewing Scope" and in U.S.
Patent Application No. 12/047,474 (Attorney Docket No. END6345USNP) filed March 13, 2008 entitled "Apparatus For Keeping Clean A Distal Scope End Of A Medical Viewing Scope,"
which are incorporated by reference in their entireties. Generally, the surgical device 10 can include the annular sheath 12 having proximal and distal portions 16, 18 and having a lumen 14 with open proximal and distal ends 14a, 14b extending therethrough. The lumen 14 can be configured to receive a surgical instrument such as an endoscope 20 disposed at least partially therein. The sheath 12, before and/or after the endoscope 20 has been disposed within the lumen 14, can be configured to be directly inserted into a patient 22 or be inserted into the patient 22 through a working channel of an introducer device, e.g., a trocar 60, extending into the patient's body cavity 50.

[0044] The endoscope 20 can be fixedly attached to the sheath 12, or the endoscope 20 can be removably coupled to the sheath 20, such as by slidably disposing the endoscope 20, distal end 42 first, into the lumen 14 through the sheath's proximal portion 16. The endoscope's distal end 42 has an outside diameter. An inside diameter of a tubular wa1124 at the sheath's distal portion 18 can be less than the outside diameter of the endoscope's distal end 42 to help hold the endoscope 20 within the lumen 14 and to help prevent the endoscope 20 from sliding distally beyond the sheath's distal end 40. As shown in FIGS. 1 and 4, the endoscope's distal end 42 can make a press fit with the sheath 12 at the sheath's distal portion 18. The press fit can be accomplished in any way appreciated by a person skilled in the art, such as by varying the diameter of the lumen 14 such that the inside diameter of the tubular wa1124 tapers from the sheath's proximal end 52 to the sheath's distal end 40 or tapers along any portion thereof. The endoscope 20 can be coupled to the sheath 12 in any way appreciated by a person skilled in the art, e.g., by using an elastomeric sheath, a compression fitting, an elastomeric 0-ring attached to the sheath 12 proximate the sheath's distal end 40 and configured to attachingly engage the endoscope 20 which has been inserted into the sheath's proximal end 52, etc.

[0045] As mentioned above, the sheath 12 has a tubular wa1124, which has inside and outside diameters and contains a passageway 26 between the inside and outside diameters. The inside diameter of the tubular wa1124 is defined by the diameter of the lumen 14, while the outside diameter of the tubular wall 24 is defined by an outside diameter of the sheath 12. The passageway 26 has open proximal and distal portions 28, 30 configured to allow a fluid to flow therethrough. At least between the proximal and distal portions 28, 30, the passageway 26 can be substantially aligned with a longitudinal axis A2 of the sheath 12. The proximal portion 28 of the passageway 26 has an opening that can be fluidly coupled to at least one of a fluid irrigation source 32 and a fluid vacuum source 34 as discussed further below. The distal portion 30 of the passageway 26 has at least two openings that can alternatively serve as a distal end opening of the passageway 26 through adjustment of a fluid conduit as discussed further below.

[0046] The distal portion 18 of the sheath 12 has an annular manifold 36, illustrated in FIG. 3, which includes at least one proximal orifice 38 located in the distal portion 18 of the sheath 12 and proximal to a distal end 40 of the sheath 12 and preferably directed substantially toward the lumen 14, and more preferably directed substantially toward a position of a distal end 42 of the endoscope 20 disposed in the lumen 14. In this way, at least some of the time, fluid flowing through the passageway 26 can be configured to be in fluid communication with the lumen 14 and/or with the endoscope's distal end 42 in the lumen 14. In this way, fluid flowing out of the proximal orifice 38 (e.g., flowing in a distal direction through the passageway 26) can clean inside the lumen 14 and/or clean the endoscope's distal end 42, and hence also a viewing element at the endoscope's distal end 42. Similarly, allowing fluid to flow into the proximal orifice 38 (e.g., in a proximal direction through the passageway 26) can draw fluid away from inside the lumen 14 and/or from the endoscope's distal end 42. Two proximal orifices 38 are shown in FIGS. 1, 2, and 4, and four proximal orifices 38 are shown in FIG. 3, although the passageway 26 can have any number of proximal orifices, and each proximal orifice can optionally include a plurality of circumferentially spaced apart orifices. The annular manifold 36 can have a volume greater than a total volume of passages 37 between the manifold 36 and each of the proximal orifices 38. The passages 37 are portions of the passageway 26 extending to the proximal orifices 38 such that the passages 37 are portions of the passageway 26 prevented from having fluid flow therein when the arm 44 is in the second, distal position. A
plurality of proximal orifices 38 can be substantially axially aligned along a cross-sectional axis Al of the ... . . . ...,.., , ... .. . . . . .. .......... i . .. ...... ......... ... .
.. _ .. ...

= sheath 12, as shown in FIGS. 1, 2, and 4, or one or more proximal orifices 38 can be substantially non-axially aligned from any one or more other proximal orifices 38 such that at least two of the orifice(s) 38 are axially aligned with different cross-sectional axes of the sheath
12. The passages 37 are preferably substantially parallel to the cross-sectional axis Al, although each of the passages 37 can be linear or non-linear (same or different from any of the other passages 37). The sheath's distal portion 18 can have a circumferentially inner surface 54 containing the proximal orifice 38. Fluid can tend to adhere to the circumferentially inner surface 54, thereby helping to keep fluid off and away from the endoscope's distal end 42 and outside a viewing path of a viewing element at the endoscope's distal end 42.
The circumferentially inner surface 54 of the sheath's distal portion 18 can longitudinally extend from the sheath's distal end 40 to the endoscope's distal end 42, as seen in FIG. 1.

[0047] The passageway 26 can be configured to receive a fluid conduit, e.g., the extendable arm 44, disposed therein through which fluid can flow. The arm 44 has an outer diameter that is less than the diameter of the passageway 26 such that the arm 44 can slidably move within the passageway 26. The arm 44 can be rigid and/or flexible, but the arm 44 is preferably rigid enough to help move the arm 44 through the passageway 26 and to help penetrate a sea162 as discussed below. However, the arm 44 is also preferably flexible enough to help the arm 44 navigate any curves, bens, twists, etc. in the passageway 26. The arm 44 preferably has a constant cross-sectional area, at least in a fluid-carrying portion of the arm 44 configured to be disposable within the passageway 26, to help reduce flow losses and provide better response times for fluid flowing through the arm 44. The arm 44 also preferably has a cross-sectional shape that substantially matches the passageway's cross-sectional shape, e.g., circular, elliptical, crescent-shaped, etc., to help smoothly pass the arm 44 through the passageway 26.

[0048] When the arm 44 is in a first, proximal position, shown in FIG. 1, an open distal end 46 of the extendable arm 44 is located proximal to the passageway's proximal orifice 38 such that fluid flowing through the arm's distal end 46 is in fluid communication with the proximal orifice 38 such that fluid can flow through the passageway 26 and the proximal orifice 38. The arm 44 can be axially adjustable, e.g., adjustable substantially parallel to the longitudinal axis A2.
Advancing the arm 44 distally can advance at least a portion of the arm 44 including at least the arm's distal end 46 through the sea1621ocated between the proximal orifice 38 and the sheath's . . . . . .. . . . . . . ... _. .. i . . . . ._ .. ..... ...... . . .. . ...
....

distal end 40. The arm's distal end 46 can be substantially linear, as shown in FIGS. 1 and 4, or the distal end 46 can be non-linear, e.g., curved, conical, etc., to help the arm 44 "break" the seal 62 and/or to help increase a rate or pressure of fluid flowing distally through the distal end 46.
When the arm 44 is distally advanced through the seal 62 and in a second, distal position, shown in FIG. 4, the arm's distal end 46 is located distal to the proximal orifice 38 such that fluid is prevented from flowing through the proximal orifice 38 and instead can flow through the arm's distal end 46 and through at least one distal orifice 48 in the sheath 12.
Similar to that discussed above regarding the proximal orifice 38, the passageway 26 can include any number of distal orifices, and each distal orifice can optionally include a plurality of circumferentially spaced apart orifices. In the second, distal position, at least a portion of the arm 44 can extend distally beyond the sheath's distal end 40 such that fluid flowing through the passageway 26 can flow through the arm 44 and does not contact the passageway's inner wall, as shown in FIG. 4.
Alternatively, the arm 44 can be advanced through the sea162 a distance that allows the seal 62 to be "broken" or penetrated but that keeps the arm's distal end 46 contained within the sheath 12, e.g., located proximal to the sheath's distal orifice 48 and between the seal 62 and the sheath's distal end 40.

[0049] The sheath 12 can include a stop element in its distal portion 18 to help prevent the arm 44 from being distally advanced beyond the sheath's distal end 40 and to help reduce chances of the arm 44 interfering with a surgical site beyond the sheath's distal end 40.
Non-limiting examples of the stop element include a fluid-permeable mesh disposed over the sheath's distal orifice 48, a lip around the sheath's distal orifice, a diameter of the passageway 26 in at least a portion of the passageway 26 distal to the sea162 that is smaller than a diameter of the arm 44 similar to that described above regarding the endoscope 20 in the lumen 14, etc. However, in some surgical procedures it can be desirable to allow the arm 44 to extend beyond the sheath's distal end 40, as illustrated in the second position in FIG. 4, so fluid can be more directly irrigated into or suctioned from a surgical site. The distal orifice 48 is preferably formed in the sheath's distal end 40 to maximize flow of fluid beyond the sheath's distal end 40, but the distal orifice 48 can be at any location in the sheath 12 that can allow fluid flowing through the passageway 26 to be in fluid communication with the body cavity 50 in which at least part of the distal portion 18 of the sheath 12 is disposed, e.g., in a side of the sheath 12.

[0050] The sea162 can include any one or more fluid seals alone or in combination as will be appreciated by a person skilled in the art. The sea162 can include a zero-closure seal and/or an instrument seal, e.g., a duckbill seal, a flapper valve, a flapper door, a gel pad seal, an overlapping multi-layer seal, etc. Preferably, the sea162 is configured to be self-sealing such that the arm 44 can be distally advanced through the sea162 to penetrate the sea162 and can be proximally moved through the sea162 to "re-seal" the sea162. In some embodiments, the sea162 can be configured for one-time use such that distally advancing the arm 44 breaks the sea162 and proximally moving the arm 44 to a position proximal of the seal 62 does not allow for "re-sealing" of the seal 62.

[0051 ] In some embodiments, the arm 44 can be configured to engage the passageway 26, such as by having corresponding mating threads, grooves, or other engagement mechanism(s) on an inner surface of the passageway 26 and on an outer surface of the arm 44. Such an engagement mechanism can help hold the arm 44 in a desired position within the passageway 26 and/or help guide the arm 44 smoothly through the passageway 26. Alternatively or in addition, the arm 44 can include a locking mechanism, preferably at its proximal end 58 where it can be manipulated outside the patient 22, configured to hold the arm 44 in a desired position within the passageway 26. Non-limiting examples of the locking mechanism include tabs, corresponding depressions and protrusions on the sheath 12 and the arm 44 that allow for successive positions of the arm 44 within the passageway 26, etc.

[0052] The arm 44 can be moved between the first and second positions in a variety of ways. In an exemplary embodiment, the arm 44 can be moved by manually manipulating a handle 56 at the arm's proximal end 58. The handle 56 can have any size, shape, and configuration and is preferably configured to at least partially extend outside the patient 22 when at least a portion of the sheath 12 is disposed in the patient's body cavity 50. The handle 56 can be pushed distally to distally advance the arm 44, thereby moving the arm 44 from the first position to the second position. Correspondingly, the handle 56 can be pulled proximally to proximally retract the arm 44, thereby moving the arm 44 from the second position to the first position.
A person skilled in the art will appreciate that the arm 44 can be moved between any number of positions before and/or after the first and second positions. The handle 56 can include mechanical and/or electrical components. The handle 56 can be configured to abut the proximal end 52 of the
- 13 -sheath 12 to help prevent the arm 44 from being entirely disposed within the passageway 26. For example, the handle 56 can have a maximum diameter greater than a diameter of the passageway 26, at least at the second lumen's proximal portion 28, so that a distal surface of the handle 56 can abut the sheath's proximal portion 28 without sliding into the passageway 26. In other embodiments, the arm 44 can be configured to move in another way, such as through manipulation of a button, a lever, and/or other control in mechanical and/or electronic communication with the arm 44 such that the arm 44 can move when the control is manipulated, e.g., pushed, pulled, switched, etc.

[0053] The device 10 can also include a fluid system 64 configured to provide a fluid irrigation source and/or fluid evacuation source to the sheath 12, and more particularly to the fluid passageway 26 and the arm 44 disposed in the passageway 26. Generally, in an exemplary embodiment, the fluid system 64 can include the irrigation source 32, the vacuum source 34, a handpiece 66 having a fluid outlet 68, and a flexible fluid flow tube 70 having proximal and distal tube ends 72, 74. The distal tube end 74 can be coupled to the sheath 12 to be in fluid communication with the proximal portion 28 of the passageway 26, and more particularly to the arm 44 in the proximal portion 28 of the passageway 26. In this way, fluid flowing through the arm 44 in the passageway 26 can be able to flow through the tube 70 and vice versa. The arm 44 can be coupled to the tube 70 through a sidewall of the sheath 12, as shown in FIGS. 1 and 4.
Alternatively, the arm 44 can be coupled to the tube 70 proximal to the proximal end 52 of the sheath 12, such as through the arm's handle 56. The proximal tube end 48 can be coupled to the handpiece 66 to be in fluid communication with the fluid outlet 68. The handpiece 66 includes first and second fluid inlets 76, 78, with the first fluid inlet 76 fluidly coupled, e.g., via first tubing 80, to the irrigation source 32, and the second fluid inlet 78 fluidly coupled, e.g., via second tubing 82, to the vacuum source 34. The irrigation source 32 can include any one or more types of fluid (liquid and/or gas). The vacuum source 34 can provide any one or more of a full vacuum, a partial vacuum, and aspiration. A vacuum provided by the vacuum source 34 is relative to the pressure at the distal opening of the passageway 26, whether the distal opening is located at the proximal orifice 38 or the distal orifice 48. In some embodiments, the vacuum source 34 can be ambient room air when the passageway's distal opening is exposed to a higher pressure within, e.g., the insufflated abdomen of a patient. As will be appreciated by a person skilled in the art, in some embodiments, one or more additives, e.g., an anti-fogging agent such
-14-as a surfactant, can be added to fluid in one or more of the sources 32, 34, to fluid flowing through one or both of the tubings 80, 82, and/or through the tube 70. By way of non-limiting example only, the irrigation source 32 can include an operating-room saline bag, the first tubing 80 being fluidly connected to the bag, and the vacuum source 34 can include an operating-room suction canister, the second tubing 82 being fluidly connected to the canister. A bladder can optionally be placed around the saline bag to increase pressure of the irrigation fluid.

[0054] The handpiece 66 can be configured to alternatively switch between the irrigation source 32 and the vacuum source 34, such as by using first and second valve buttons 84, 86. In this way, fluid can flow proximally or distally through the passageway 26 to, respectively, provide fluid aspiration and irrigation. Pushing or otherwise actuating the first valve button 84 can fluidly connect the first fluid inlet 76 to the fluid outlet 68, and pushing or otherwise actuating the second valve button 86 can fluidly connect the second fluid inlet 78 to the fluid outlet 46.
Although other switching arrangements will be appreciated by a person skilled in the art, in an exemplary embodiment shown in FIG. 5, a "Y" passageway 88 can fluidly connect the first and second fluid inlets 76, 78 to the fluid outlet 68. The first valve button 84 is operatively connected to a first valve 90 disposed in a first arm 92 of the "Y" passageway 88. The second valve button 86 is operatively connected to a second valve 94 disposed in a second arm 96 of the "Y" passageway 88. Such as "Y" passageway configuration can allow for user-selectable fluid flow configurations that allow the fluid outlet 68 to be in fluid communication with one but not the other of the fluid inlets 76, 78 at any given time (or with neither of the fluid inlets 76, 78).
Various valve configurations are described in more detail in U.S. Patent Publication No.
2008/0081948 and U.S. Patent Application No. 12/047/474, both mentioned above.

[0055] FIG. 6 illustrates another embodiment of a surgical device 10' that can be used to irrigate and/or aspirate a distal end 42' of an endoscope 20' and/or a body cavity 50'.
The endoscope 20' is disposed in a lumen 14' of a sheath 12'. Also disposed in the lumen 14' is a protective lens 100 that can attach to the sheath 12', preferably fixedly although it can be removably attached. The lens 100 closes off the sheath 12' proximate to the sheath's distal end 40' by effectively closing off the lumen 14' proximate to the lumen's distal end 14b'. The endoscope 20' is insertable into the sheath's proximal portion 16' with its distal end 42' disposed proximate to the lens 100. The lumen 14' is tapered in this illustrated embodiment, and given the size of the endoscope 20'
-15-disposed therein, the endoscope 20' is prevented from contacting the lens 100, but another surgical instrument disposed in the lumen 14' can be configured to contact a proximal surface 104 of the lens 100. In this way, a distal surface 102 of the lens 100 helps protect the endoscope's distal end 42' and be in fluid communication with a proximal orifice 38' of a fluid passageway 26' such that when the proximal orifice 38' defines a distal opening of the passageway 26' based on a position of an arm 44' disposed in the passageway 26', fluid flowing through the proximal orifice 38' can help clean the distal surface 102 of the lens 100. The lens 100 can be optically clear and can be a non-magnifying or a magnifying lens.

[0056] FIG. 7 illustrates another embodiment of an annular sheath 110 having a lumen 112 extending therethrough in which a surgical instrument (not shown) can be disposed. The sheath 110 also has a fluid passageway 114 formed in the sheath's tubular wall 122 through which fluid can flow between a proximal opening of the passageway (not shown) and a distal opening of the passageway 114. The distal opening can either include a proximal orifice 116, which is substantially directed at the distal end 124 of the lumen 112 where a distal end of a surgical instrument can be positioned in the lumen 112, or a distal orifice 118, substantially directed beyond a distal end 120 of the sheath 110. The proximal orifice 116 or the distal orifice 118 can thus be selectively chosen as the passageway's 114 distal opening depending on a position of an extendable arm (not shown) disposed within the passageway 114. A proximal orifice passageway 126 between the sheath's passageway 114 and the proximal orifice 116 can taper, as shown in FIG. 7, to help increase a rate and/or pressure of fluid flowing out of the proximal orifice 116 when fluid is flowing in a distal direction indicated by arrow 128, although the proximal orifice passageway 126 can have any configuration. The proximal orifice 116 has a portion abutting the lumen's distal end 124 and a portion spaced apart from the lumen's distal end 124. A portion of the tubular wall 122 defines the distal end 124 of the lumen 112 such that the tubular wall 122 forms a stop element in the form of a lip or shelf that can contact a distal surface of a surgical instrument disposed within the lumen 112 and prevent further distal movement of the surgical instrument through the sheath 110. The tubular wall 122 can include an annular manifold, discussed above, and the stop element can be a part of the manifold. The lumen 112 and the tubular wall 122 are thereby configured to allow a distal end of a surgical instrument disposed in the lumen 112 to contact the lumen's distal end 124 and abut a portion of the tubular wall 122. In this way, when fluid is configured to flow through the proximal orifice
-16-116, fluid can be irrigated or suctioned substantially to or from the surgical instrument's distal end.

[0057] FIG. 8 illustrates another embodiment of an annular sheath 130 including proximal and distal sections 132, 134. The distal section 134 is coupled to the proximal section 132 and is manually expandable and rotatable with respect to the proximal section 132 of the sheath 130, although in other embodiments the rotation and/or expansion can be mechanically and/or electronically actuated. In an exemplary embodiment, the proximal and distal sections 132, 134 are coupled with a rotatable tongue 136 (rotatable about a central longitudinal axis 144) and an at-least-partially-annular groove 138 arrangement. At least one locking tab 140 formed on each of the proximal and distal sections 132, 134 can abut each other during extension of the distal section 134 with respect to the proximal section 132 to help prevent separation of the distal section 134 from the proximal section 132. A seal member 135 can be coupled to the proximal and distal sections 132, 134 and be disposed in a fluid passageway 137 of the sheath 130 to help fluidly seal the passageway 137 during extension of the distal section 134 so fluid can flow through the passageway 137 between the proximal and distal sections 132, 134.
In some embodiments, a distal end of a surgical instrument disposed in a lumen 146 of the sheath 130 can be angled for improved sideways viewing, the distal section can be correspondingly angled, and the rotatable feature can allow rotational alignment of the angled distal section with the angled distal end of the surgical instrument. A stop element 142 at a distal end of the lumen 146 in this embodiment is shown as a portion of the distal section 134. Surgical instruments can vary a small amount (such as one inch) in length, and the extendable and retractable distal section 134 can allow surgical instruments of varying length to be fully inserted in the sheath 130 against the stop element 142.

[0058] FIGS. 9 and 10 illustrate another exemplary embodiment of a surgical device 150 including a fluid conduit in the form of an extendable arm 152 disposed in a passageway 154 of an annular sheath 156. FIG. 9 illustrates the arm 152 in a first, distal position where the arm's distal end 158 is disposed proximal to a seal 160 in the passageway 154 such that fluid can flow through a proximal orifice 162.. FIG. 10 illustrates the arm 152 in a second, proximal position where the arm 152 has been pushed distally so the arm's distal end 158 has passed distally beyond the seal 160 such that fluid can flow through the arm's distal end 158 and beyond the
-17-sheath's distal end 164. Flow of fluid through the arm 152, whether the arm 152 is in the first or second position, can be controlled through manipulation of a trumpet valve 166. The trumpet valve 166 can be coupled to a proximal portion 168 of the sheath 156 to help allow for manipulation of the trumpet valve 166 outside a patient's body when at least a portion of the device 150 is disposed in a patient. As will be appreciated by a person skilled in the art, the trumpet valve 166 can be actuated using a button 168 configured to control flow of fluid through the trumpet valve's handle 170 and hence also through the passageway 154.

[0059] FIGS. 11-15 illustrate still an exemplary embodiment of a surgical device 180 that includes a plurality of fluid conduits, e.g., a plurality of extendable arms.
Having a plurality of extendable arms can allow the device 180 to provide fluid irrigation and/or fluid suction to a larger area. As shown in FIGS. 11 and 12, an annular sheath 182 includes first and second passageways 184a, 184b configured to respectively receive first and second extendable arms 186a, 186b. Although two passageways are shown in the sheath 182, the sheath 182 can include any number of passageways. The sheath 182 also includes a lumen 192 extending therethrough in which a surgical instrument 194 can be disposed. FIG. 11 shows the arms 186a, 186b in a first, distal position in which fluid can flow through the first and second arms 186a, 186b and respectively through proximal orifices 200a, 200b that are formed in the sheath 182 proximal to the sheath's distal end 196. FIG. 12 shows the arms 186a, 186b in a second, proximal position where distal ends 188a, 188b of the arms 186a, 186b have broken respective seals 190a, 190b and extend beyond a distal end 196 of the sheath 182. The sheath's distal end 196 can include formed therein first and second distal holes 198a, 198b, shown in FIGS. 13 and 14, through which the first and second arms 186a, 186b can respectively extend when in the second position or that fluid can directly flow through if the arms 186a, 186b are not distally advanced far enough in the second position to pass through the holes 198a, 198b. The holes 198a, 198b, and hence also the arms 186a, 186b, are equidistantly spaced around the sheath's distal circumference in this embodiment, but the holes 198a, 198b and the arms 186a, 186b can be spaced at any interval(s) in the sheath.

[0060] The first and second arms 186a, 186b can each be configured for fluid irrigation and for fluid suction, or the arms 186a, 186b can be individually dedicated such that one arm can be configured for fluid irrigation while the other can be configured for fluid suction. If the arms
-18-. . . .. . . . .. .._..:.. . ....... .. .... .... . . ...... .... .. .... ...
.....: . ........ . ._.. ...... .. ..... ...

186a, 186b are configured to each provide fluid irrigation and fluid suction, the arms 186a, 186b can be configured for simultaneous movement, e.g., manipulated using a single handle or other movement actuator controlling both arms 186a, 186b, or they can be configured for individual manipulation. If the arms 186a, 186b are configured to each provide fluid irrigation and fluid suction, the arms 186a, 186b can be fluidly coupled to the same fluid irrigation source and the same fluid vacuum source, or each of the arms 186a, 186b can have its own dedicated irrigation source and/or vacuum source. If the arms 186a, 186b are individually dedicated, one of the arms can be fluidly coupled to a fluid irrigation source while the other arm can be fluidly coupled to a fluid vacuum source. Individually dedicating the arms 186a, 186b can help reduce chances that fluid used for irrigation contains any undesirable, previously suctioned fluid because any previously suctioned fluid will not be in the arm used to provide fluid irrigation and thus cannot be undesirably mixed into the irrigation fluid. Individually dedicating the arms 186a, 186b can also allow for fluid to wash a desired area and be quickly aspirated with simultaneous fluid irrigation and fluid suction.

[0061 ] FIGS. 16-21 illustrate another exemplary embodiment of surgical device 210 including a fluid conduit, e.g., a rotatable ring or an adjustable cap 212, coupled to an annular sheath 214.
The surgical device 210 is similar to the surgical devices discussed above, and similarly named elements in various embodiments discussed herein can be similarly configured.
Generally, the sheath 214 has proximal and distal portions 216, 218 and has a lumen 220 extending therethrough that is configured to receive a surgical instrument, e.g., an endoscope 222, disposed therein. The sheath 214 also has at least one passageway extending therethrough that is formed within the sheath's tubular wall 226 and is configured to allow fluid to flow therethrough. First and second passageways 224a, 224b are illustrated in this embodiment, but the sheath 214 can have two or any other number of passageways. Proximal portions of each of the passageways 224a, 224b can be fluidly coupled to at least one of a fluid irrigation source and a fluid vacuum source through one or more tubes 236 coupled to the sheath 214 as discussed above such that fluid can flow proximally and/or distally through the passageways 224a, 224b.

[0062] The cap 212 can be disposed at the sheath's distal portion 218, preferably extending a distance proximally from the sheath's distal end 228, and be either fixedly removably coupled to the sheath 214. The cap's shape substantially conforms to the shape of the sheath 214, although
-19-. . . . . . ... .... . . .,.... ._. .,...... ., _... ... . i ....: . .. .
...... ... _... . ..... .. ..... . . _._. .....

. ,o the cap 212 can have any shape, and the cap 212 can have any size. The cap 212 can be configured to be movable between at least two positions to change locations of distal openings of the passageways 224a, 224b. When the cap 212 is in a first, proximal position, shown in FIGS.
18 and 19, the distal openings of the first and second passageways 224a, 224b include proximal orifices 226 such that fluid flowing through the first and second passageways 224a, 224b can be in fluid communication with the proximal orifices 226. Although four proximal orifices 226 are illustrated in this embodiment, the sheath 214 can include any number of proximal orifices. The proximal orifices 226 are located proximal to the sheath's distal end 228 and are preferably directed substantially toward the lumen 220, and more preferably directed substantially toward a position of a distal end 230 of the endoscope 222 disposed in the lumen 220.
The cap 212 can be moved between the first, proximal position and a second, distal position, shown in FIGS. 20 and 21. In the second, distal position, the cap 212 covers the proximal orifices 226, such that the proximal orifices 226 are fluidly sealed, and allows the distal openings of the first and second passageways 224a, 224b to include at least one distal orifice 232 in the sheath 214 such that fluid flowing through the first and second passageways 224a, 224b is prevented from flowing through the proximal orifices 226 and can instead be in fluid communication with the distal orifices 232.
Similarly, when the cap 212 is in the first position, the cap 212 covers the distal orifices 232 and uncovers the proximal orifices 226. Although two distal orifices 232 are illustrated in this embodiment, the sheath 214 can include any number of distal orifices.
Furthermore, each distal orifice can optionally include a plurality of circumferentially spaced apart orifices. The first position is preferably the cap's default, initial position, but either the first or second positions can be the cap's default, initial position.

[0063] The cap 212 can be moved between the first and second positions in a variety of ways.
The cap's movement is preferably from a location proximal to the cap 212, and more preferably from a location configured to be outside a patient's body when at least the distal portion 218 of the sheath 214 is disposed in a patient. As illustrated in this embodiment, the cap 212 can be at least partially rotatable in a clockwise direction and/or a counter-clockwise direction substantially around a central, longitudinal axis 234 of the cap 212. As will be appreciated by a person skilled in the art, in addition to or instead of being rotatable, the cap 212 can move between a plurality of positions in any one or more other ways, such as through linear movement substantially parallel to the cap's central axis 234. The cap's rotation can be manually,
-20-.... . ... . ... . . ..,: .._...... ._._.. ... . .... ... . . i _..._ .. . .
..,... ..... .. .. , .. . .. .. .. .

electrically, or otherwise effectuated as will be appreciated by a person skilled in the art.
Rotating the cap 212 in one direction, e.g., clockwise, can expose the proximal orifices 226 to the passageways 224a, 224b for fluid communication between the two and can cover the distal orifices 232 to prevent fluid communication between the distal orifices 232 and the passageways 224a, 224b, while rotating the cap 212 in an opposite direction, e.g., counter-clockwise, can expose the distal orifices 232 to the passageways 224a, 224b and cover the proximal orifices 226. Preferably, rotating the cap 212 as far as possible in a particular direction fully exposes the desired orifices and fully covers the other, undesired orifices such that it can be more easily apparent when the cap 212 is in a desired position to expose a desired distal opening of the passageways 224a, 224b because the cap's rotational movement in that direction ceases.
Alternatively, the cap 212 can be rotatable in one or both of the clockwise and counter-clockwise directions and have at least two locked positions within its range of rotational motion. At least one locked position can correspond to the first, distal position, and at least one locked position can correspond to the second, proximal position. One or more stop elements, e.g., a groove, a tab, corresponding protrusions and depressions, etc., formed on or in the sheath 214 can be configured for engagement with the cap 212 such that the cap 212 can "catch"
the stop element(s) during its rotation to help temporarily lock the cap 212 in one of the first and second positions and such that the cap 212 can be released from the stop element(s) to move to another position. However the cap 212 is movable between positions, movement of the cap 212 to selectively expose and cover orifices in the sheath's distal portion 218 can help create a scrubbing effect adjacent one or more of the orifices because movement of a solid surface of the cap 212 over an orifice can help scrub away or unclog fluid that may have built up at the orifice during previous fluid irrigation and/or suction through the orifice.

[0064] FIGS. 22-26 illustrate another exemplary embodiment of a surgical device 250 that has a fluid conduit in the form of an adjustable cap 252 that can selectively expose and cover four proximal orifices 254 and four distal orifices 256. The cap 252 is shown in a first, proximal position in FIGS. 22 and 23 where fluid can flow through a passageway 258 having its distal opening at the proximal orifices 254. The passageway 258 in this embodiment is illustrated as a single passageway formed in the device's annular sheath 260 such that the cap 252 acts as a manifold allowing fluid to flow through a plurality of distal openings formed in the cap 252. The cap 252 can be configured to rotate, e.g., clockwise as illustrated by directional arrows in FIG.
-21 -24, to redirect fluid flow through the passageway 258 by covering the proximal orifices 254 and exposing the distal orifices 256 as shown with the cap 252 moved into a second, distal position in FIGS. 24 and 25. When the cap 252 moves between the first and second positions, the proximal orifices 254 and the distal orifices 256 can both be at least partially exposed, as illustrated in FIG. 24. In such a mid-position between the first and second positions, the cap 252 can be configured to allow fluid to flow through the passageway 258 and both distal openings 254, 256 to allow for multi-directional fluid flow at and beyond the sheath's distal portion 262.
Preferably, however, the proximal and distal orifices 254, 256 and corresponding openings in the cap 252 that can expose the proximal and distal orifices 254, 256 have adequate space between them to prevent the proximal orifices 254 from being exposed when the distal orifices 256 are exposed, and vice versa.

[0065] The device disclosed herein can also be designed to be disposed of after a single use, or it can be designed to be used multiple times. In either case, however, the device can be reconditioned for reuse after at least one use. Reconditioning can include any combination of the steps of disassembly of the device, followed by cleaning or replacement of particular pieces and subsequent reassembly. In particular, the device can be disassembled, and any number of the particular pieces or parts of the device can be selectively replaced or removed in any combination. Upon cleaning and/or replacement of particular parts, the device can be reassembled for subsequent use either at a reconditioning facility, or by a surgical team immediately prior to a surgical procedure. Those skilled in the art will appreciate that reconditioning of a device can utilize a variety of techniques for disassembly, cleaning/replacement, and reassembly. Use of such techniques, and the resulting reconditioned device, are all within the scope of the present application.

[0066] One skilled in the art will appreciate further features and advantages of the invention based on the above-described embodiments. Accordingly, the invention is not to be limited by what has been particularly shown and described, except as indicated by the appended claims. All publications and references cited herein are expressly incorporated herein by reference in their entirety.
-22-

Claims (20)

1. A surgical device, comprising:
an annular sheath configured to be disposed in a body cavity and to receive a surgical instrument in a lumen thereof, the sheath further having a passageway configured to allow fluid to flow therethrough, the passageway having a proximal opening and a distal opening; and a fluid conduit at least partially located in a distal portion of the sheath and configured to be movable when the sheath is disposed in a body cavity between at least two positions to change a location of the distal opening of the passageway.
2. The device of claim 1, wherein a first location of the distal opening is in a distal end of the sheath and a second location of the distal opening is proximal to the distal end of the sheath.
3. The device of claim 1, wherein the fluid conduit is configured to be in a first position effective to direct fluid flowing through the passageway substantially toward the lumen, and a second position to direct fluid flowing through the passageway away from the lumen and substantially toward a surgical field.
4. The device of claim 1, wherein the fluid conduit is configured to selectively allow for fluid irrigation through the passageway and for fluid suction through the passageway.
5. The device of claim 1, wherein the surgical instrument comprises a scope having a viewing element at a distal end of the scope.
6. The device of claim 1, wherein the fluid conduit in at least one position allows fluid to be directed through the passageway in a direction substantially aligned with a longitudinal axis of the passageway.
7. The device of claim 1, wherein the fluid conduit comprises an axially adjustable arm.
8. The device of claim 7, wherein the arm is configured to be movable between a first position where a distal end of the arm is proximal to a distal end of the sheath and a second position where the distal end of the arm is distal to the distal end of the sheath.
9. The device of claim 7, further comprising a self-sealing element disposed at a distal end of the sheath, wherein the arm is configured to be movable between a position proximal to the self-sealing element and a position distal to the self-sealing element.
10. The device of claim 7, further comprising an actuator coupled to a proximal portion of the arm, wherein manipulation of the actuator is effective to move the arm between at least two positions.
11. The device of claim 1, wherein the fluid conduit comprises a movable ring disposed at the distal portion of the sheath.
12. The device of claim 11, wherein the ring in a first rotated position is configured to allow fluid to flow toward the lumen of the sheath through a distal opening of the passageway proximal to a distal end of the sheath and the ring in a second rotated position is configured to allow fluid to flow away from the sheath through the distal opening of the passageway at the distal end of the sheath.
13. The device of claim 12, wherein the ring in the first rotated position is configured to prevent fluid flow through the distal opening of the passageway away from the distal end of the sheath and the ring in the second rotated position is configured to prevent fluid flow through the distal opening of the passageway proximal to the distal end of the sheath.
14. The device of claim 11, wherein the ring is configured to be located distal to a distal end of a surgical instrument attached to the sheath.
15. A surgical device, comprising:
an annular sheath having first and second passageways extending therethrough, the first passageway configured to receive a surgical instrument and the second passageway configured to allow fluid to flow therethrough; and a fluid conduit configured to move between a first position that allows a distal opening of the second passageway to be substantially directed toward a distal end of a surgical instrument disposed in the first passageway and a second position that allows the distal opening of the second passageway to be substantially directed away from a distal end of the sheath and into a body cavity.
16. The device of claim 15, wherein the fluid conduit is at least partially located proximate to a distal portion of the sheath.
17. A surgical method, comprising:
passing a sheath having a surgical instrument disposed in a lumen thereof and having a fluid passageway extending therethrough into a body cavity, wherein a distal end of the surgical instrument is located proximal to a distal end of the sheath, and wherein a fluid conduit at least partially located in a distal portion of the sheath is configured to be movable between at least two positions to change a location of a distal opening of the fluid passageway.
18. The method of claim 17, wherein passing the sheath into a body cavity comprises passing the sheath through an introducer device having a working channel extending into a body cavity.
19. The method of claim 17, wherein the fluid conduit is movable to expose a distal opening of the fluid passageway effective to selectively irrigate and suction a site distal to the sheath.
20. The method of claim 17, wherein the fluid conduit is movable to expose a distal opening of the fluid passageway effective to selectively irrigate and suction a distal end of a surgical instrument disposed in the lumen of the sheath.
CA2671694A 2008-07-14 2009-07-14 Methods and devices for maintaining visibility and providing irrigation and/or suction during surgical procedures Expired - Fee Related CA2671694C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/172,349 2008-07-14
US12/172,349 US8915842B2 (en) 2008-07-14 2008-07-14 Methods and devices for maintaining visibility and providing irrigation and/or suction during surgical procedures

Publications (2)

Publication Number Publication Date
CA2671694A1 true CA2671694A1 (en) 2010-01-14
CA2671694C CA2671694C (en) 2018-01-02

Family

ID=41110776

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2671694A Expired - Fee Related CA2671694C (en) 2008-07-14 2009-07-14 Methods and devices for maintaining visibility and providing irrigation and/or suction during surgical procedures

Country Status (6)

Country Link
US (1) US8915842B2 (en)
EP (1) EP2145578B1 (en)
JP (1) JP5399149B2 (en)
CN (1) CN101627894B (en)
AT (1) ATE555713T1 (en)
CA (1) CA2671694C (en)

Families Citing this family (325)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9060770B2 (en) 2003-05-20 2015-06-23 Ethicon Endo-Surgery, Inc. Robotically-driven surgical instrument with E-beam driver
US20070084897A1 (en) 2003-05-20 2007-04-19 Shelton Frederick E Iv Articulating surgical stapling instrument incorporating a two-piece e-beam firing mechanism
US11896225B2 (en) 2004-07-28 2024-02-13 Cilag Gmbh International Staple cartridge comprising a pan
US11484312B2 (en) 2005-08-31 2022-11-01 Cilag Gmbh International Staple cartridge comprising a staple driver arrangement
US10159482B2 (en) 2005-08-31 2018-12-25 Ethicon Llc Fastener cartridge assembly comprising a fixed anvil and different staple heights
US11246590B2 (en) 2005-08-31 2022-02-15 Cilag Gmbh International Staple cartridge including staple drivers having different unfired heights
US7934630B2 (en) 2005-08-31 2011-05-03 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
US7669746B2 (en) 2005-08-31 2010-03-02 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
US20070106317A1 (en) 2005-11-09 2007-05-10 Shelton Frederick E Iv Hydraulically and electrically actuated articulation joints for surgical instruments
US20120292367A1 (en) 2006-01-31 2012-11-22 Ethicon Endo-Surgery, Inc. Robotically-controlled end effector
US11793518B2 (en) 2006-01-31 2023-10-24 Cilag Gmbh International Powered surgical instruments with firing system lockout arrangements
US7845537B2 (en) 2006-01-31 2010-12-07 Ethicon Endo-Surgery, Inc. Surgical instrument having recording capabilities
US11278279B2 (en) 2006-01-31 2022-03-22 Cilag Gmbh International Surgical instrument assembly
US20110290856A1 (en) 2006-01-31 2011-12-01 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical instrument with force-feedback capabilities
US8708213B2 (en) 2006-01-31 2014-04-29 Ethicon Endo-Surgery, Inc. Surgical instrument having a feedback system
US8186555B2 (en) 2006-01-31 2012-05-29 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting and fastening instrument with mechanical closure system
US8820603B2 (en) 2006-01-31 2014-09-02 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of a surgical instrument
US7753904B2 (en) 2006-01-31 2010-07-13 Ethicon Endo-Surgery, Inc. Endoscopic surgical instrument with a handle that can articulate with respect to the shaft
US8992422B2 (en) 2006-03-23 2015-03-31 Ethicon Endo-Surgery, Inc. Robotically-controlled endoscopic accessory channel
US8357085B2 (en) 2009-03-31 2013-01-22 Ethicon Endo-Surgery, Inc. Devices and methods for providing access into a body cavity
US10568652B2 (en) 2006-09-29 2020-02-25 Ethicon Llc Surgical staples having attached drivers of different heights and stapling instruments for deploying the same
US11291441B2 (en) 2007-01-10 2022-04-05 Cilag Gmbh International Surgical instrument with wireless communication between control unit and remote sensor
US8652120B2 (en) 2007-01-10 2014-02-18 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between control unit and sensor transponders
US8684253B2 (en) 2007-01-10 2014-04-01 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor
US8701958B2 (en) 2007-01-11 2014-04-22 Ethicon Endo-Surgery, Inc. Curved end effector for a surgical stapling device
US8727197B2 (en) 2007-03-15 2014-05-20 Ethicon Endo-Surgery, Inc. Staple cartridge cavity configuration with cooperative surgical staple
US11672531B2 (en) 2007-06-04 2023-06-13 Cilag Gmbh International Rotary drive systems for surgical instruments
US8931682B2 (en) 2007-06-04 2015-01-13 Ethicon Endo-Surgery, Inc. Robotically-controlled shaft based rotary drive systems for surgical instruments
US8888689B2 (en) 2007-06-19 2014-11-18 Minimally Invasive Devices, Inc. Systems and methods for optimizing and maintaining visualization of a surgical field during the use of surgical scopes
US9211059B2 (en) 2007-06-19 2015-12-15 Minimally Invasive Devices, Inc. Systems and methods for optimizing and maintaining visualization of a surgical field during the use of surgical scopes
US11849941B2 (en) 2007-06-29 2023-12-26 Cilag Gmbh International Staple cartridge having staple cavities extending at a transverse angle relative to a longitudinal cartridge axis
US9179912B2 (en) 2008-02-14 2015-11-10 Ethicon Endo-Surgery, Inc. Robotically-controlled motorized surgical cutting and fastening instrument
US8636736B2 (en) 2008-02-14 2014-01-28 Ethicon Endo-Surgery, Inc. Motorized surgical cutting and fastening instrument
US7866527B2 (en) 2008-02-14 2011-01-11 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with interlockable firing system
US7819298B2 (en) 2008-02-14 2010-10-26 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with control features operable with one hand
BRPI0901282A2 (en) 2008-02-14 2009-11-17 Ethicon Endo Surgery Inc surgical cutting and fixation instrument with rf electrodes
US8210411B2 (en) 2008-09-23 2012-07-03 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument
US11648005B2 (en) 2008-09-23 2023-05-16 Cilag Gmbh International Robotically-controlled motorized surgical instrument with an end effector
US9386983B2 (en) 2008-09-23 2016-07-12 Ethicon Endo-Surgery, Llc Robotically-controlled motorized surgical instrument
US9005230B2 (en) 2008-09-23 2015-04-14 Ethicon Endo-Surgery, Inc. Motorized surgical instrument
US8608045B2 (en) 2008-10-10 2013-12-17 Ethicon Endo-Sugery, Inc. Powered surgical cutting and stapling apparatus with manually retractable firing system
US20100113883A1 (en) * 2008-10-30 2010-05-06 Widenhouse Christopher W Surgical access port with adjustable ring geometry
US20100249521A1 (en) * 2009-03-31 2010-09-30 Shelton Iv Frederick E Access Device Including Retractor And Insert
US8419635B2 (en) 2009-04-08 2013-04-16 Ethicon Endo-Surgery, Inc. Surgical access device having removable and replaceable components
US8257251B2 (en) * 2009-04-08 2012-09-04 Ethicon Endo-Surgery, Inc. Methods and devices for providing access into a body cavity
US8137267B2 (en) 2009-04-08 2012-03-20 Ethicon Endo-Surgery, Inc. Retractor with flexible sleeve
US20100268162A1 (en) * 2009-04-15 2010-10-21 Ethicon Endo-Surgery, Inc. Cannula with sealing elements
US20100274093A1 (en) * 2009-04-22 2010-10-28 Ethicon Endo-Surgery, Inc. Methods and devices for identifying sealing port size
US8033995B2 (en) 2009-06-05 2011-10-11 Ethicon Endo-Surgery, Inc. Inflatable retractor with insufflation and method
US8795163B2 (en) * 2009-06-05 2014-08-05 Ethicon Endo-Surgery, Inc. Interlocking seal components
US8361109B2 (en) * 2009-06-05 2013-01-29 Ethicon Endo-Surgery, Inc. Multi-planar obturator with foldable retractor
US8475490B2 (en) * 2009-06-05 2013-07-02 Ethicon Endo-Surgery, Inc. Methods and devices for providing access through tissue to a surgical site
US8241209B2 (en) * 2009-06-05 2012-08-14 Ethicon Endo-Surgery, Inc. Active seal components
US8465422B2 (en) 2009-06-05 2013-06-18 Ethicon Endo-Surgery, Inc. Retractor with integrated wound closure
US9078695B2 (en) * 2009-06-05 2015-07-14 Ethicon Endo-Surgery, Inc. Methods and devices for accessing a body cavity using a surgical access device with modular seal components
US9955858B2 (en) * 2009-08-21 2018-05-01 Maquet Cardiovascular Llc Surgical instrument and method for use
JP5468942B2 (en) * 2010-03-09 2014-04-09 オリンパスメディカルシステムズ株式会社 Endoscope device
DK2575590T4 (en) 2010-05-25 2019-02-11 Arc Medical Design Ltd COVER FOR A MEDICAL SHOPPING DEVICE
JP2012045328A (en) * 2010-08-30 2012-03-08 Fujifilm Corp Endoscope, mantle tube, and endoscope system
JP5584057B2 (en) * 2010-08-30 2014-09-03 富士フイルム株式会社 Rigid endoscope
US9700317B2 (en) 2010-09-30 2017-07-11 Ethicon Endo-Surgery, Llc Fastener cartridge comprising a releasable tissue thickness compensator
US9113865B2 (en) 2010-09-30 2015-08-25 Ethicon Endo-Surgery, Inc. Staple cartridge comprising a layer
US9351730B2 (en) 2011-04-29 2016-05-31 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprising channels
US10945731B2 (en) 2010-09-30 2021-03-16 Ethicon Llc Tissue thickness compensator comprising controlled release and expansion
US9629814B2 (en) 2010-09-30 2017-04-25 Ethicon Endo-Surgery, Llc Tissue thickness compensator configured to redistribute compressive forces
US11298125B2 (en) 2010-09-30 2022-04-12 Cilag Gmbh International Tissue stapler having a thickness compensator
US11812965B2 (en) 2010-09-30 2023-11-14 Cilag Gmbh International Layer of material for a surgical end effector
US9386988B2 (en) 2010-09-30 2016-07-12 Ethicon End-Surgery, LLC Retainer assembly including a tissue thickness compensator
US11925354B2 (en) 2010-09-30 2024-03-12 Cilag Gmbh International Staple cartridge comprising staples positioned within a compressible portion thereof
US8695866B2 (en) 2010-10-01 2014-04-15 Ethicon Endo-Surgery, Inc. Surgical instrument having a power control circuit
JP5554203B2 (en) * 2010-10-14 2014-07-23 日機装株式会社 Trocar
US8668642B2 (en) 2010-11-23 2014-03-11 Covidien Lp Port device including retractable endoscope cleaner
AU2012250197B2 (en) 2011-04-29 2017-08-10 Ethicon Endo-Surgery, Inc. Staple cartridge comprising staples positioned within a compressible portion thereof
US9072535B2 (en) 2011-05-27 2015-07-07 Ethicon Endo-Surgery, Inc. Surgical stapling instruments with rotatable staple deployment arrangements
JP5788261B2 (en) * 2011-08-03 2015-09-30 オリンパス株式会社 Endoscope
US8708889B2 (en) 2011-10-24 2014-04-29 Trocare, LLC Jawed trocar assembly
JP5487225B2 (en) * 2012-02-15 2014-05-07 富士フイルム株式会社 Endoscope device
JP6305979B2 (en) 2012-03-28 2018-04-04 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. Tissue thickness compensator with multiple layers
BR112014024098B1 (en) 2012-03-28 2021-05-25 Ethicon Endo-Surgery, Inc. staple cartridge
CN102631179B (en) 2012-04-25 2014-08-06 重庆天如生物科技有限公司 Vision field definition enhancement method for gastrointestinal endoscope diagnosis and treatment
US9101358B2 (en) 2012-06-15 2015-08-11 Ethicon Endo-Surgery, Inc. Articulatable surgical instrument comprising a firing drive
US9289256B2 (en) 2012-06-28 2016-03-22 Ethicon Endo-Surgery, Llc Surgical end effectors having angled tissue-contacting surfaces
US9282974B2 (en) 2012-06-28 2016-03-15 Ethicon Endo-Surgery, Llc Empty clip cartridge lockout
BR112014032776B1 (en) 2012-06-28 2021-09-08 Ethicon Endo-Surgery, Inc SURGICAL INSTRUMENT SYSTEM AND SURGICAL KIT FOR USE WITH A SURGICAL INSTRUMENT SYSTEM
US20140001231A1 (en) 2012-06-28 2014-01-02 Ethicon Endo-Surgery, Inc. Firing system lockout arrangements for surgical instruments
US9408606B2 (en) 2012-06-28 2016-08-09 Ethicon Endo-Surgery, Llc Robotically powered surgical device with manually-actuatable reversing system
US10595719B2 (en) 2012-08-01 2020-03-24 Ronald Hurst System and method for cleaning a cannula during a surgical procedure using a hinged tip
JP6154817B2 (en) * 2012-09-28 2017-06-28 テルモ株式会社 Medical long member and cleaning device
BR112015021098B1 (en) 2013-03-01 2022-02-15 Ethicon Endo-Surgery, Inc COVERAGE FOR A JOINT JOINT AND SURGICAL INSTRUMENT
US10398292B2 (en) * 2013-03-14 2019-09-03 Floshield, Inc. Fluid dispensing control systems and methods
US9629629B2 (en) 2013-03-14 2017-04-25 Ethicon Endo-Surgey, LLC Control systems for surgical instruments
WO2014145583A1 (en) * 2013-03-15 2014-09-18 Robinson James C Retractor vision system
US10136887B2 (en) 2013-04-16 2018-11-27 Ethicon Llc Drive system decoupling arrangement for a surgical instrument
BR112015026109B1 (en) 2013-04-16 2022-02-22 Ethicon Endo-Surgery, Inc surgical instrument
MX369362B (en) 2013-08-23 2019-11-06 Ethicon Endo Surgery Llc Firing member retraction devices for powered surgical instruments.
US9924942B2 (en) 2013-08-23 2018-03-27 Ethicon Llc Motor-powered articulatable surgical instruments
CN105491938B (en) 2013-09-26 2018-11-23 捷锐士阿希迈公司(以奥林巴斯美国外科技术名义) endoscope sheath arm
US9804618B2 (en) 2014-03-26 2017-10-31 Ethicon Llc Systems and methods for controlling a segmented circuit
EP3123967B1 (en) * 2014-03-27 2019-07-24 Fujifilm Corporation Overtube and endoscopic surgical device
CN106456176B (en) 2014-04-16 2019-06-28 伊西康内外科有限责任公司 Fastener cartridge including the extension with various configuration
BR112016023825B1 (en) 2014-04-16 2022-08-02 Ethicon Endo-Surgery, Llc STAPLE CARTRIDGE FOR USE WITH A SURGICAL STAPLER AND STAPLE CARTRIDGE FOR USE WITH A SURGICAL INSTRUMENT
JP6532889B2 (en) 2014-04-16 2019-06-19 エシコン エルエルシーEthicon LLC Fastener cartridge assembly and staple holder cover arrangement
US20150297222A1 (en) 2014-04-16 2015-10-22 Ethicon Endo-Surgery, Inc. Fastener cartridges including extensions having different configurations
CN104000658B (en) * 2014-05-15 2016-02-10 滕厚军 Surgical operation rinses assistor
US10080824B2 (en) * 2014-07-31 2018-09-25 Cook Medical Technologies Llc Elongate tubular member having a crossover port
US11311294B2 (en) 2014-09-05 2022-04-26 Cilag Gmbh International Powered medical device including measurement of closure state of jaws
US10135242B2 (en) 2014-09-05 2018-11-20 Ethicon Llc Smart cartridge wake up operation and data retention
BR112017004361B1 (en) 2014-09-05 2023-04-11 Ethicon Llc ELECTRONIC SYSTEM FOR A SURGICAL INSTRUMENT
US11523821B2 (en) 2014-09-26 2022-12-13 Cilag Gmbh International Method for creating a flexible staple line
US9924944B2 (en) 2014-10-16 2018-03-27 Ethicon Llc Staple cartridge comprising an adjunct material
US11141153B2 (en) 2014-10-29 2021-10-12 Cilag Gmbh International Staple cartridges comprising driver arrangements
US10517594B2 (en) 2014-10-29 2019-12-31 Ethicon Llc Cartridge assemblies for surgical staplers
US9844376B2 (en) 2014-11-06 2017-12-19 Ethicon Llc Staple cartridge comprising a releasable adjunct material
US10736636B2 (en) 2014-12-10 2020-08-11 Ethicon Llc Articulatable surgical instrument system
US10085748B2 (en) 2014-12-18 2018-10-02 Ethicon Llc Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors
US9987000B2 (en) 2014-12-18 2018-06-05 Ethicon Llc Surgical instrument assembly comprising a flexible articulation system
US10004501B2 (en) 2014-12-18 2018-06-26 Ethicon Llc Surgical instruments with improved closure arrangements
US9844375B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Drive arrangements for articulatable surgical instruments
US9844374B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member
RU2703684C2 (en) 2014-12-18 2019-10-21 ЭТИКОН ЭНДО-СЕРДЖЕРИ, ЭлЭлСи Surgical instrument with anvil which is selectively movable relative to staple cartridge around discrete fixed axis
US11154301B2 (en) 2015-02-27 2021-10-26 Cilag Gmbh International Modular stapling assembly
JP2020121162A (en) 2015-03-06 2020-08-13 エシコン エルエルシーEthicon LLC Time dependent evaluation of sensor data to determine stability element, creep element and viscoelastic element of measurement
US9993248B2 (en) 2015-03-06 2018-06-12 Ethicon Endo-Surgery, Llc Smart sensors with local signal processing
US10052044B2 (en) 2015-03-06 2018-08-21 Ethicon Llc Time dependent evaluation of sensor data to determine stability, creep, and viscoelastic elements of measures
US10441279B2 (en) 2015-03-06 2019-10-15 Ethicon Llc Multiple level thresholds to modify operation of powered surgical instruments
US10390825B2 (en) 2015-03-31 2019-08-27 Ethicon Llc Surgical instrument with progressive rotary drive systems
ES2863572T3 (en) 2015-05-15 2021-10-11 Covidien Lp Valve assembly for a surgical access device
US10105139B2 (en) 2015-09-23 2018-10-23 Ethicon Llc Surgical stapler having downstream current-based motor control
US10238386B2 (en) 2015-09-23 2019-03-26 Ethicon Llc Surgical stapler having motor control based on an electrical parameter related to a motor current
US11890015B2 (en) 2015-09-30 2024-02-06 Cilag Gmbh International Compressible adjunct with crossing spacer fibers
US10285699B2 (en) 2015-09-30 2019-05-14 Ethicon Llc Compressible adjunct
US10292704B2 (en) 2015-12-30 2019-05-21 Ethicon Llc Mechanisms for compensating for battery pack failure in powered surgical instruments
BR112018016098B1 (en) 2016-02-09 2023-02-23 Ethicon Llc SURGICAL INSTRUMENT
US11213293B2 (en) 2016-02-09 2022-01-04 Cilag Gmbh International Articulatable surgical instruments with single articulation link arrangements
US10448948B2 (en) 2016-02-12 2019-10-22 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US11224426B2 (en) 2016-02-12 2022-01-18 Cilag Gmbh International Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10426467B2 (en) 2016-04-15 2019-10-01 Ethicon Llc Surgical instrument with detection sensors
US10357247B2 (en) 2016-04-15 2019-07-23 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US10828028B2 (en) 2016-04-15 2020-11-10 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US10492783B2 (en) 2016-04-15 2019-12-03 Ethicon, Llc Surgical instrument with improved stop/start control during a firing motion
US11607239B2 (en) 2016-04-15 2023-03-21 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US11317917B2 (en) 2016-04-18 2022-05-03 Cilag Gmbh International Surgical stapling system comprising a lockable firing assembly
US10478181B2 (en) 2016-04-18 2019-11-19 Ethicon Llc Cartridge lockout arrangements for rotary powered surgical cutting and stapling instruments
US20170296173A1 (en) 2016-04-18 2017-10-19 Ethicon Endo-Surgery, Llc Method for operating a surgical instrument
EP4254045A3 (en) * 2016-04-21 2023-10-11 Baylor College of Medicine Trocars
JP6820121B2 (en) * 2016-04-27 2021-01-27 シーエスエー メディカル, インコーポレイテッド Vision-securing device for medical devices
CN109414280B (en) * 2016-07-13 2022-03-18 直观外科手术操作公司 Surgical instrument guide
WO2018013734A1 (en) 2016-07-13 2018-01-18 Intuitive Surgical Operations, Inc. Surgical instrument guide with insufflation channels
CN109414300B (en) * 2016-07-14 2021-11-09 直观外科手术操作公司 Instrument flushing system
US10709511B2 (en) 2016-08-16 2020-07-14 Ethicon Llc Control of jaw or clamp arm closure in concert with advancement of device
US10531929B2 (en) 2016-08-16 2020-01-14 Ethicon Llc Control of robotic arm motion based on sensed load on cutting tool
US10390895B2 (en) 2016-08-16 2019-08-27 Ethicon Llc Control of advancement rate and application force based on measured forces
US11246670B2 (en) 2016-08-16 2022-02-15 Cilag Gmbh International Modular surgical robotic tool
US10413373B2 (en) 2016-08-16 2019-09-17 Ethicon, Llc Robotic visualization and collision avoidance
US10398517B2 (en) 2016-08-16 2019-09-03 Ethicon Llc Surgical tool positioning based on sensed parameters
US10813703B2 (en) 2016-08-16 2020-10-27 Ethicon Llc Robotic surgical system with energy application controls
US10433925B2 (en) 2016-08-16 2019-10-08 Ethicon Llc Sterile barrier for robotic surgical system
US10548673B2 (en) 2016-08-16 2020-02-04 Ethicon Llc Surgical tool with a display
US10111719B2 (en) 2016-08-16 2018-10-30 Ethicon Llc Control of the rate of actuation of tool mechanism based on inherent parameters
US10080622B2 (en) 2016-08-16 2018-09-25 Ethicon Llc Robotics tool bailouts
US10231775B2 (en) 2016-08-16 2019-03-19 Ethicon Llc Robotic surgical system with tool lift control
US10363035B2 (en) 2016-08-16 2019-07-30 Ethicon Llc Stapler tool with rotary drive lockout
US10182875B2 (en) 2016-08-16 2019-01-22 Ethicon Llc Robotic visualization and collision avoidance
US9956050B2 (en) 2016-08-16 2018-05-01 Ethicon Endo-Surgery, Llc Methods, systems, and devices for controlling a motor of a robotic surgical system
US10016246B2 (en) 2016-08-16 2018-07-10 Ethicon Llc Methods, systems, and devices for controlling a motor of a robotic surgical system
US10478256B2 (en) 2016-08-16 2019-11-19 Ethicon Llc Robotics tool bailouts
US9943377B2 (en) 2016-08-16 2018-04-17 Ethicon Endo-Surgery, Llc Methods, systems, and devices for causing end effector motion with a robotic surgical system
US10045827B2 (en) 2016-08-16 2018-08-14 Ethicon Llc Methods, systems, and devices for limiting torque in robotic surgical tools
US10993760B2 (en) 2016-08-16 2021-05-04 Ethicon, Llc Modular surgical robotic tool
US10687904B2 (en) 2016-08-16 2020-06-23 Ethicon Llc Robotics tool exchange
US10675103B2 (en) 2016-08-16 2020-06-09 Ethicon Llc Robotics communication and control
US10849698B2 (en) 2016-08-16 2020-12-01 Ethicon Llc Robotics tool bailouts
US9968412B2 (en) 2016-08-16 2018-05-15 Ethicon Endo-Surgery, Llc Methods, systems, and devices for controlling a motor of a robotic surgical system
US10537399B2 (en) 2016-08-16 2020-01-21 Ethicon Llc Surgical tool positioning based on sensed parameters
US11419606B2 (en) 2016-12-21 2022-08-23 Cilag Gmbh International Shaft assembly comprising a clutch configured to adapt the output of a rotary firing member to two different systems
US20180168625A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Surgical stapling instruments with smart staple cartridges
US20180168615A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Method of deforming staples from two different types of staple cartridges with the same surgical stapling instrument
US10588632B2 (en) 2016-12-21 2020-03-17 Ethicon Llc Surgical end effectors and firing members thereof
US10517595B2 (en) 2016-12-21 2019-12-31 Ethicon Llc Jaw actuated lock arrangements for preventing advancement of a firing member in a surgical end effector unless an unfired cartridge is installed in the end effector
JP7010956B2 (en) 2016-12-21 2022-01-26 エシコン エルエルシー How to staple tissue
CN110099619B (en) 2016-12-21 2022-07-15 爱惜康有限责任公司 Lockout device for surgical end effector and replaceable tool assembly
US10675026B2 (en) 2016-12-21 2020-06-09 Ethicon Llc Methods of stapling tissue
US10588630B2 (en) 2016-12-21 2020-03-17 Ethicon Llc Surgical tool assemblies with closure stroke reduction features
US10675025B2 (en) 2016-12-21 2020-06-09 Ethicon Llc Shaft assembly comprising separately actuatable and retractable systems
CN107198504A (en) * 2017-03-17 2017-09-26 世耀生技股份有限公司 Introscope lens cleaning structure
GB2561167A (en) * 2017-03-30 2018-10-10 Creo Medical Ltd Electrosurgical energy conveying structure and electrosurgical device incorporating the same
US20180289248A1 (en) * 2017-04-06 2018-10-11 Everich Biotecology Corporation Cleaning structure for endoscope lens
US11653914B2 (en) 2017-06-20 2023-05-23 Cilag Gmbh International Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument according to articulation angle of end effector
US10307170B2 (en) 2017-06-20 2019-06-04 Ethicon Llc Method for closed loop control of motor velocity of a surgical stapling and cutting instrument
US11517325B2 (en) 2017-06-20 2022-12-06 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured displacement distance traveled over a specified time interval
US10779820B2 (en) 2017-06-20 2020-09-22 Ethicon Llc Systems and methods for controlling motor speed according to user input for a surgical instrument
US11382638B2 (en) 2017-06-20 2022-07-12 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified displacement distance
US10881399B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Techniques for adaptive control of motor velocity of a surgical stapling and cutting instrument
US10993716B2 (en) 2017-06-27 2021-05-04 Ethicon Llc Surgical anvil arrangements
US11324503B2 (en) 2017-06-27 2022-05-10 Cilag Gmbh International Surgical firing member arrangements
EP3420947B1 (en) 2017-06-28 2022-05-25 Cilag GmbH International Surgical instrument comprising selectively actuatable rotatable couplers
US11564686B2 (en) 2017-06-28 2023-01-31 Cilag Gmbh International Surgical shaft assemblies with flexible interfaces
US11020114B2 (en) 2017-06-28 2021-06-01 Cilag Gmbh International Surgical instruments with articulatable end effector with axially shortened articulation joint configurations
USD906355S1 (en) 2017-06-28 2020-12-29 Ethicon Llc Display screen or portion thereof with a graphical user interface for a surgical instrument
US11678880B2 (en) 2017-06-28 2023-06-20 Cilag Gmbh International Surgical instrument comprising a shaft including a housing arrangement
US10765427B2 (en) 2017-06-28 2020-09-08 Ethicon Llc Method for articulating a surgical instrument
US10932772B2 (en) 2017-06-29 2021-03-02 Ethicon Llc Methods for closed loop velocity control for robotic surgical instrument
US11944300B2 (en) 2017-08-03 2024-04-02 Cilag Gmbh International Method for operating a surgical system bailout
US11471155B2 (en) 2017-08-03 2022-10-18 Cilag Gmbh International Surgical system bailout
US11304695B2 (en) 2017-08-03 2022-04-19 Cilag Gmbh International Surgical system shaft interconnection
KR101837055B1 (en) * 2017-10-17 2018-03-09 충남대학교산학협력단 Surgical instrument for suction and irrigation
US10842490B2 (en) 2017-10-31 2020-11-24 Ethicon Llc Cartridge body design with force reduction based on firing completion
US10779826B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Methods of operating surgical end effectors
US10835330B2 (en) 2017-12-19 2020-11-17 Ethicon Llc Method for determining the position of a rotatable jaw of a surgical instrument attachment assembly
US11179151B2 (en) 2017-12-21 2021-11-23 Cilag Gmbh International Surgical instrument comprising a display
US11311290B2 (en) 2017-12-21 2022-04-26 Cilag Gmbh International Surgical instrument comprising an end effector dampener
US11197968B2 (en) * 2018-06-22 2021-12-14 Conmed Corporation Surgical gas delivery device with internal gaseous sealing module and filtered tube set therefor
US11324501B2 (en) 2018-08-20 2022-05-10 Cilag Gmbh International Surgical stapling devices with improved closure members
US11412921B2 (en) * 2018-10-02 2022-08-16 Covidien Lp Multi lumen access device
WO2020084735A1 (en) * 2018-10-25 2020-04-30 オリンパス株式会社 Endoscope attachment and endoscope system
CN109394163A (en) * 2018-11-26 2019-03-01 中南大学湘雅三医院 One kind being used for the antipollution air-flow protection set of laparoscope mirror surface
CN113631074A (en) * 2019-01-29 2021-11-09 维希涅夫斯基·帕维尔 Organ irrigation and drainage unit
US11696761B2 (en) 2019-03-25 2023-07-11 Cilag Gmbh International Firing drive arrangements for surgical systems
US11925315B2 (en) 2019-04-23 2024-03-12 Boston Scientific Scimed, Inc. Flexible ureteroscope with quick medical device access and exchange
US11253254B2 (en) 2019-04-30 2022-02-22 Cilag Gmbh International Shaft rotation actuator on a surgical instrument
US11426251B2 (en) 2019-04-30 2022-08-30 Cilag Gmbh International Articulation directional lights on a surgical instrument
US11452528B2 (en) 2019-04-30 2022-09-27 Cilag Gmbh International Articulation actuators for a surgical instrument
US11432816B2 (en) 2019-04-30 2022-09-06 Cilag Gmbh International Articulation pin for a surgical instrument
US11903581B2 (en) 2019-04-30 2024-02-20 Cilag Gmbh International Methods for stapling tissue using a surgical instrument
US11648009B2 (en) 2019-04-30 2023-05-16 Cilag Gmbh International Rotatable jaw tip for a surgical instrument
US11471157B2 (en) 2019-04-30 2022-10-18 Cilag Gmbh International Articulation control mapping for a surgical instrument
US11553971B2 (en) 2019-06-28 2023-01-17 Cilag Gmbh International Surgical RFID assemblies for display and communication
US11361176B2 (en) 2019-06-28 2022-06-14 Cilag Gmbh International Surgical RFID assemblies for compatibility detection
US11399837B2 (en) 2019-06-28 2022-08-02 Cilag Gmbh International Mechanisms for motor control adjustments of a motorized surgical instrument
US11376098B2 (en) 2019-06-28 2022-07-05 Cilag Gmbh International Surgical instrument system comprising an RFID system
US11298127B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Interational Surgical stapling system having a lockout mechanism for an incompatible cartridge
US11426167B2 (en) 2019-06-28 2022-08-30 Cilag Gmbh International Mechanisms for proper anvil attachment surgical stapling head assembly
US11684434B2 (en) 2019-06-28 2023-06-27 Cilag Gmbh International Surgical RFID assemblies for instrument operational setting control
US11229437B2 (en) 2019-06-28 2022-01-25 Cilag Gmbh International Method for authenticating the compatibility of a staple cartridge with a surgical instrument
US11523822B2 (en) 2019-06-28 2022-12-13 Cilag Gmbh International Battery pack including a circuit interrupter
US11464601B2 (en) 2019-06-28 2022-10-11 Cilag Gmbh International Surgical instrument comprising an RFID system for tracking a movable component
US11638587B2 (en) 2019-06-28 2023-05-02 Cilag Gmbh International RFID identification systems for surgical instruments
US11627959B2 (en) 2019-06-28 2023-04-18 Cilag Gmbh International Surgical instruments including manual and powered system lockouts
US11291451B2 (en) 2019-06-28 2022-04-05 Cilag Gmbh International Surgical instrument with battery compatibility verification functionality
US11497492B2 (en) 2019-06-28 2022-11-15 Cilag Gmbh International Surgical instrument including an articulation lock
US11478241B2 (en) 2019-06-28 2022-10-25 Cilag Gmbh International Staple cartridge including projections
US11771419B2 (en) 2019-06-28 2023-10-03 Cilag Gmbh International Packaging for a replaceable component of a surgical stapling system
US11853835B2 (en) 2019-06-28 2023-12-26 Cilag Gmbh International RFID identification systems for surgical instruments
US11298132B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Inlernational Staple cartridge including a honeycomb extension
US11660163B2 (en) 2019-06-28 2023-05-30 Cilag Gmbh International Surgical system with RFID tags for updating motor assembly parameters
CN110613421A (en) * 2019-09-23 2019-12-27 马玉龙 Lens washing unit is used in operation
US11805968B2 (en) 2019-11-05 2023-11-07 Bayou Surgical, Inc. Intraoperative endoscope cleaning system
US11701111B2 (en) 2019-12-19 2023-07-18 Cilag Gmbh International Method for operating a surgical stapling instrument
US11529139B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Motor driven surgical instrument
US11291447B2 (en) 2019-12-19 2022-04-05 Cilag Gmbh International Stapling instrument comprising independent jaw closing and staple firing systems
US11844520B2 (en) 2019-12-19 2023-12-19 Cilag Gmbh International Staple cartridge comprising driver retention members
US11464512B2 (en) 2019-12-19 2022-10-11 Cilag Gmbh International Staple cartridge comprising a curved deck surface
US11504122B2 (en) 2019-12-19 2022-11-22 Cilag Gmbh International Surgical instrument comprising a nested firing member
US11911032B2 (en) 2019-12-19 2024-02-27 Cilag Gmbh International Staple cartridge comprising a seating cam
US11607219B2 (en) 2019-12-19 2023-03-21 Cilag Gmbh International Staple cartridge comprising a detachable tissue cutting knife
US11529137B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Staple cartridge comprising driver retention members
US11446029B2 (en) 2019-12-19 2022-09-20 Cilag Gmbh International Staple cartridge comprising projections extending from a curved deck surface
US11304696B2 (en) 2019-12-19 2022-04-19 Cilag Gmbh International Surgical instrument comprising a powered articulation system
US11576672B2 (en) 2019-12-19 2023-02-14 Cilag Gmbh International Surgical instrument comprising a closure system including a closure member and an opening member driven by a drive screw
US11559304B2 (en) 2019-12-19 2023-01-24 Cilag Gmbh International Surgical instrument comprising a rapid closure mechanism
US20220175237A1 (en) * 2020-01-30 2022-06-09 Igor Renato De Abreu Structural arrangement applied to a rigid endoscope for cleaning the objective lens during video surgery procedure
US11547782B2 (en) * 2020-01-31 2023-01-10 Covidien Lp Fluid collecting sheaths for endoscopic devices and systems
USD966512S1 (en) 2020-06-02 2022-10-11 Cilag Gmbh International Staple cartridge
USD976401S1 (en) 2020-06-02 2023-01-24 Cilag Gmbh International Staple cartridge
USD975850S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
USD975278S1 (en) 2020-06-02 2023-01-10 Cilag Gmbh International Staple cartridge
USD975851S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
USD974560S1 (en) 2020-06-02 2023-01-03 Cilag Gmbh International Staple cartridge
USD967421S1 (en) 2020-06-02 2022-10-18 Cilag Gmbh International Staple cartridge
US20220031350A1 (en) 2020-07-28 2022-02-03 Cilag Gmbh International Surgical instruments with double pivot articulation joint arrangements
US11717289B2 (en) 2020-10-29 2023-08-08 Cilag Gmbh International Surgical instrument comprising an indicator which indicates that an articulation drive is actuatable
US11896217B2 (en) 2020-10-29 2024-02-13 Cilag Gmbh International Surgical instrument comprising an articulation lock
US11617577B2 (en) 2020-10-29 2023-04-04 Cilag Gmbh International Surgical instrument comprising a sensor configured to sense whether an articulation drive of the surgical instrument is actuatable
USD980425S1 (en) 2020-10-29 2023-03-07 Cilag Gmbh International Surgical instrument assembly
US11844518B2 (en) 2020-10-29 2023-12-19 Cilag Gmbh International Method for operating a surgical instrument
US11779330B2 (en) 2020-10-29 2023-10-10 Cilag Gmbh International Surgical instrument comprising a jaw alignment system
US11452526B2 (en) 2020-10-29 2022-09-27 Cilag Gmbh International Surgical instrument comprising a staged voltage regulation start-up system
USD1013170S1 (en) 2020-10-29 2024-01-30 Cilag Gmbh International Surgical instrument assembly
US11534259B2 (en) 2020-10-29 2022-12-27 Cilag Gmbh International Surgical instrument comprising an articulation indicator
US11517390B2 (en) 2020-10-29 2022-12-06 Cilag Gmbh International Surgical instrument comprising a limited travel switch
US11931025B2 (en) 2020-10-29 2024-03-19 Cilag Gmbh International Surgical instrument comprising a releasable closure drive lock
US11944296B2 (en) 2020-12-02 2024-04-02 Cilag Gmbh International Powered surgical instruments with external connectors
US11678882B2 (en) 2020-12-02 2023-06-20 Cilag Gmbh International Surgical instruments with interactive features to remedy incidental sled movements
US11744581B2 (en) 2020-12-02 2023-09-05 Cilag Gmbh International Powered surgical instruments with multi-phase tissue treatment
US11890010B2 (en) 2020-12-02 2024-02-06 Cllag GmbH International Dual-sided reinforced reload for surgical instruments
US11737751B2 (en) 2020-12-02 2023-08-29 Cilag Gmbh International Devices and methods of managing energy dissipated within sterile barriers of surgical instrument housings
US11653915B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Surgical instruments with sled location detection and adjustment features
US11627960B2 (en) 2020-12-02 2023-04-18 Cilag Gmbh International Powered surgical instruments with smart reload with separately attachable exteriorly mounted wiring connections
US11849943B2 (en) 2020-12-02 2023-12-26 Cilag Gmbh International Surgical instrument with cartridge release mechanisms
CN112545569B (en) * 2020-12-02 2021-08-24 中国人民解放军总医院 Bronchoalveolar lavage fluid sample collector
US11653920B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Powered surgical instruments with communication interfaces through sterile barrier
US11102381B1 (en) 2021-01-05 2021-08-24 Board Of Regents, The University Of Texas System Clearcam Inc. Methods, systems and controllers for facilitating cleaning of an imaging element of an imaging device
US11723657B2 (en) 2021-02-26 2023-08-15 Cilag Gmbh International Adjustable communication based on available bandwidth and power capacity
US11730473B2 (en) 2021-02-26 2023-08-22 Cilag Gmbh International Monitoring of manufacturing life-cycle
US11793514B2 (en) 2021-02-26 2023-10-24 Cilag Gmbh International Staple cartridge comprising sensor array which may be embedded in cartridge body
US11812964B2 (en) 2021-02-26 2023-11-14 Cilag Gmbh International Staple cartridge comprising a power management circuit
US11751869B2 (en) 2021-02-26 2023-09-12 Cilag Gmbh International Monitoring of multiple sensors over time to detect moving characteristics of tissue
US11749877B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Stapling instrument comprising a signal antenna
US11696757B2 (en) 2021-02-26 2023-07-11 Cilag Gmbh International Monitoring of internal systems to detect and track cartridge motion status
US11701113B2 (en) 2021-02-26 2023-07-18 Cilag Gmbh International Stapling instrument comprising a separate power antenna and a data transfer antenna
US11744583B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Distal communication array to tune frequency of RF systems
US11925349B2 (en) 2021-02-26 2024-03-12 Cilag Gmbh International Adjustment to transfer parameters to improve available power
US11826012B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Stapling instrument comprising a pulsed motor-driven firing rack
US11717291B2 (en) 2021-03-22 2023-08-08 Cilag Gmbh International Staple cartridge comprising staples configured to apply different tissue compression
US11723658B2 (en) 2021-03-22 2023-08-15 Cilag Gmbh International Staple cartridge comprising a firing lockout
US11806011B2 (en) 2021-03-22 2023-11-07 Cilag Gmbh International Stapling instrument comprising tissue compression systems
US11759202B2 (en) 2021-03-22 2023-09-19 Cilag Gmbh International Staple cartridge comprising an implantable layer
US11737749B2 (en) 2021-03-22 2023-08-29 Cilag Gmbh International Surgical stapling instrument comprising a retraction system
US11826042B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Surgical instrument comprising a firing drive including a selectable leverage mechanism
US11832816B2 (en) 2021-03-24 2023-12-05 Cilag Gmbh International Surgical stapling assembly comprising nonplanar staples and planar staples
US11903582B2 (en) 2021-03-24 2024-02-20 Cilag Gmbh International Leveraging surfaces for cartridge installation
US11744603B2 (en) 2021-03-24 2023-09-05 Cilag Gmbh International Multi-axis pivot joints for surgical instruments and methods for manufacturing same
US11849944B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Drivers for fastener cartridge assemblies having rotary drive screws
US11857183B2 (en) 2021-03-24 2024-01-02 Cilag Gmbh International Stapling assembly components having metal substrates and plastic bodies
US11944336B2 (en) 2021-03-24 2024-04-02 Cilag Gmbh International Joint arrangements for multi-planar alignment and support of operational drive shafts in articulatable surgical instruments
US11896219B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Mating features between drivers and underside of a cartridge deck
US11786239B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Surgical instrument articulation joint arrangements comprising multiple moving linkage features
US11896218B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Method of using a powered stapling device
US11793516B2 (en) 2021-03-24 2023-10-24 Cilag Gmbh International Surgical staple cartridge comprising longitudinal support beam
US11849945B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Rotary-driven surgical stapling assembly comprising eccentrically driven firing member
US11786243B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Firing members having flexible portions for adapting to a load during a surgical firing stroke
US20220378426A1 (en) 2021-05-28 2022-12-01 Cilag Gmbh International Stapling instrument comprising a mounted shaft orientation sensor
US11844544B2 (en) 2021-08-25 2023-12-19 Medtronic Ps Medical, Inc. Irrigation devices in debridement systems
US11877745B2 (en) 2021-10-18 2024-01-23 Cilag Gmbh International Surgical stapling assembly having longitudinally-repeating staple leg clusters
US11937816B2 (en) 2021-10-28 2024-03-26 Cilag Gmbh International Electrical lead arrangements for surgical instruments

Family Cites Families (180)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3850162A (en) 1972-07-03 1974-11-26 J Iglesias Endoscope with continuous irrigation
US4245624A (en) * 1977-01-20 1981-01-20 Olympus Optical Co., Ltd. Endoscope with flexible tip control
US4207874A (en) 1978-03-27 1980-06-17 Choy Daniel S J Laser tunnelling device
US4281646A (en) 1978-06-30 1981-08-04 Olympus Optical Co., Ltd. Cleaning device for an observation window of an endoscope
JPS5789840A (en) 1980-11-25 1982-06-04 Olympus Optical Co Water sending apparatus for endoscope
JPS57110226A (en) 1980-12-26 1982-07-09 Olympus Optical Co Air and liquid sending and sucking apparatus of endoscope
JPS5928939A (en) 1982-08-05 1984-02-15 旭光学工業株式会社 Water sending apparatus of endoscope
JPS59111125A (en) 1982-12-15 1984-06-27 Sumitomo Electric Ind Ltd Fiberscope
US4617013A (en) 1983-03-14 1986-10-14 Timron Instruments, Incorporated Method and apparatus for surgical irrigation, aspiration and illumination
JPS59172621A (en) 1983-03-22 1984-09-29 Sumitomo Electric Ind Ltd Fiberscope
US4567880A (en) 1984-12-26 1986-02-04 Goodman Tobias M Endoscopic device with three-way valve
JPH0446721Y2 (en) 1986-06-12 1992-11-04
US4741326A (en) 1986-10-01 1988-05-03 Fujinon, Inc. Endoscope disposable sheath
US4878894A (en) 1987-02-26 1989-11-07 Sutter Leroy V Gas/saline valve with suction control
JPH0793921B2 (en) 1987-04-02 1995-10-11 旭光学工業株式会社 Pipeline switching device for endoscopes
US4747408A (en) 1987-08-24 1988-05-31 Chuan Chih Huang Portable sauna-bath jacket
US4874364A (en) 1988-03-22 1989-10-17 Circon Corporation Inspection instrument channel aspirator and pressure neutralizing device
US4852551A (en) 1988-04-22 1989-08-01 Opielab, Inc. Contamination-free endoscope valves for use with a disposable endoscope sheath
JPH01310638A (en) 1988-06-10 1989-12-14 Toshiba Corp Endoscope device
US4877016A (en) 1988-07-29 1989-10-31 Kantor Edward A Video endoscopic microscope
US4991565A (en) 1989-06-26 1991-02-12 Asahi Kogaku Kogyo Kabushiki Kaisha Sheath device for endoscope and fluid conduit connecting structure therefor
JPH03136630A (en) 1989-10-24 1991-06-11 Olympus Optical Co Ltd Endoscope guide tube
US5019054A (en) 1989-11-06 1991-05-28 Mectra Labs, Inc. Medical device valving mechanism
US5188591A (en) 1990-01-26 1993-02-23 Dorsey Iii James H Irrigation control valve for endoscopic instrument
US5391145A (en) 1990-01-26 1995-02-21 Dorsey, Iii; James H. Irrigation control valve for endoscopic instrument
US5312400A (en) 1992-10-09 1994-05-17 Symbiosis Corporation Cautery probes for endoscopic electrosurgical suction-irrigation instrument
US5167220A (en) 1990-08-09 1992-12-01 Brown Cathy K Systems and methods for maintaining a clear visual field during endoscopic procedures
US5225001A (en) 1990-09-19 1993-07-06 Healthtek Single channel scope cleaning method and apparatus
US5112308A (en) 1990-10-03 1992-05-12 Cook Incorporated Medical device for and a method of endoscopic surgery
US5224929A (en) 1990-12-21 1993-07-06 C. R. Bard, Inc. Irrigation/aspiration cannula and valve assembly
US5279549A (en) 1991-01-04 1994-01-18 Sherwood Medical Company Closed ventilation and suction catheter system
US5247966A (en) 1991-01-11 1993-09-28 Tahoe Surgical Instruments, Inc. Suction irrigator valve apparatus
US5207213A (en) 1991-02-01 1993-05-04 Circon Corporation Laparoscope having means for removing image impeding material from a distal lens
EP0549739A4 (en) 1991-05-14 1995-07-05 Mervyn John Murdoch Laparoscopic telescope lens cleaner and protector
US5386817A (en) 1991-06-10 1995-02-07 Endomedical Technologies, Inc. Endoscope sheath and valve system
DE4220701C2 (en) 1991-08-02 2001-02-08 Olympus Optical Co Endoscope cleaning device
JPH05103752A (en) * 1991-10-16 1993-04-27 Olympus Optical Co Ltd Endoscope
US5303735A (en) 1991-12-04 1994-04-19 Ryder International Corporation Valve assembly
US5496280A (en) 1992-07-02 1996-03-05 Applied Medical Resources Corporation Trocar valve assembly
US5241990A (en) 1992-07-10 1993-09-07 Inlet Medical, Inc. Irrigation/aspiration valve and probe for laparoscopy
US5339800A (en) 1992-09-10 1994-08-23 Devmed Group Inc. Lens cleaning means for invasive viewing medical instruments with anti-contamination means
US5313934A (en) 1992-09-10 1994-05-24 Deumed Group Inc. Lens cleaning means for invasive viewing medical instruments
TW259716B (en) 1992-10-09 1995-10-11 Birtcher Med Syst
US5468240A (en) 1992-12-03 1995-11-21 Conmed Corporation Manual control device for laparoscopic instrument
US5460168A (en) * 1992-12-25 1995-10-24 Olympus Optical Co., Ltd. Endoscope cover assembly and cover-system endoscope
US5347992A (en) 1993-01-22 1994-09-20 Karl Storz Endoscopy America, Inc. Single axis three way selector valve for endoscopes
US5458640A (en) 1993-01-29 1995-10-17 Gerrone; Carmen J. Cannula valve and seal system
US5320608A (en) 1993-01-29 1994-06-14 Gerrone Carmen J Combined pneumo-needle and trocar apparatus
US5312351A (en) 1993-01-29 1994-05-17 Gerrone Carmen J Combined pneumo-needle and trocar apparatus
US5536236A (en) 1993-02-12 1996-07-16 Olympus Optical Co., Ltd. Covered endoscope system
AU7047694A (en) 1993-06-03 1995-01-03 Xomed, Inc Disposable endoscope sheath
US5447148A (en) 1993-07-08 1995-09-05 Vision Sciences, Inc. Endoscopic contamination protection system to facilitate cleaning of endoscopes
CA2144316A1 (en) 1993-07-22 1995-02-02 Dennis Reisdorf Disposable endoscope sheath
US5575756A (en) 1993-08-16 1996-11-19 Olympus Optical Co., Ltd. Endoscope apparatus
US5392766A (en) 1993-10-06 1995-02-28 Innerdyne Medical, Inc. System and method for cleaning viewing scope lenses
US5449145A (en) 1993-10-08 1995-09-12 Surgin Surgical Instrumentation, Inc. Valve device for controlling flows in surgical applications
US5484402A (en) 1993-12-30 1996-01-16 Stryker Corporation Surgical suction irrigator
EP0664101A1 (en) 1994-01-21 1995-07-26 Devmed Group Inc. Lens cleaning apparatus
US5464008A (en) 1994-04-14 1995-11-07 Kim; John H. Laparoscope defogging
US5697888A (en) 1994-04-21 1997-12-16 Olympus Optical Co., Ltd. Endoscope apparatus having valve device for supplying water and gas
JPH07289514A (en) 1994-04-25 1995-11-07 I L:Kk Front end lens washing pipe for endoscope
US5514084A (en) 1994-07-26 1996-05-07 Fisher; Yale Retractable wipe for cleaning endoscopic surgical devices
US5603702A (en) 1994-08-08 1997-02-18 United States Surgical Corporation Valve system for cannula assembly
DE69528953T2 (en) 1994-12-26 2003-07-03 Adachi Co Process for cleaning an endoscope using an atomizing device
US5643227A (en) 1995-01-19 1997-07-01 Stevens; Robert C. Hemostasis cannula valve apparatus and method of using same
GB2298906A (en) 1995-03-15 1996-09-18 Microsurgical Equipment Ltd Modular seal system for trocars
US5662614A (en) 1995-05-09 1997-09-02 Edoga; John K. Balloon expandable universal access sheath
US5643301A (en) 1995-06-07 1997-07-01 General Surgical Innovations, Inc. Cannula assembly with squeeze operated valve
US5652984A (en) 1995-07-19 1997-08-05 Korb; Lothar Mattress handle
US5957888A (en) 1995-10-10 1999-09-28 United States Surgical Corporation Surgical cannula having a variable length
US6258083B1 (en) * 1996-03-29 2001-07-10 Eclipse Surgical Technologies, Inc. Viewing surgical scope for minimally invasive procedures
DE19619065C2 (en) 1996-05-13 2000-12-28 Storz Karl Gmbh & Co Kg Trocar sleeve with a valve
EP0920276B1 (en) 1996-08-12 2003-08-20 MGB Endoskopische Geräte GmbH Berlin Rigid endoscope with lighting
WO1998009673A1 (en) 1996-09-05 1998-03-12 Applied Medical Resources Corporation Modular trocar
CA2289101C (en) 1997-05-02 2006-07-18 David C. Racenet Trocar seal system
EP1015049B1 (en) 1997-05-28 2004-08-18 United States Surgical Corporation Trocar seal system
US6454871B1 (en) 1997-06-23 2002-09-24 Princeton Trade & Technology, Inc. Method of cleaning passageways using a mixed phase flow of gas and a liquid
DE19731965A1 (en) 1997-07-24 1999-01-28 Etm Endotech Gmbh Medizintechn Air / water and suction valves on endoscopes
US6004326A (en) 1997-09-10 1999-12-21 United States Surgical Method and instrumentation for implant insertion
US6217510B1 (en) * 1997-10-02 2001-04-17 Olympus Optical Co., Ltd. Endoscopes and endoscope devices which image regular observation images and fluorescent images as well as which provide easier operation of treatment tools
US7776014B2 (en) 1998-01-29 2010-08-17 Peter Visconti Disposable surgical suction/irrigation trumpet valve tube cassette
US5989224A (en) 1998-02-23 1999-11-23 Dexide Corporation Universal seal for use with endoscopic cannula
US6176825B1 (en) 1998-06-22 2001-01-23 Origin Medsystems, Inc. Cannula-based irrigation system and method
US6406425B1 (en) 1998-06-22 2002-06-18 Origin Medasystems Cannula-based irrigation system and method
US6282442B1 (en) 1998-09-11 2001-08-28 Surgical Laser Technologies, Inc. Multi-fit suction irrigation hand piece
US6126592A (en) 1998-09-12 2000-10-03 Smith & Nephew, Inc. Endoscope cleaning and irrigation sheath
US6921380B1 (en) 1998-10-01 2005-07-26 Baxter International Inc. Component mixing catheter
DE19910295C2 (en) 1999-03-09 2002-06-20 Storz Karl Gmbh & Co Kg Medical or technical endoscopic instrument
US6258065B1 (en) 1999-03-26 2001-07-10 Core Dynamics, Inc. Surgical instrument seal assembly
US6860869B2 (en) 1999-03-26 2005-03-01 William G. Dennis Surgical instrument seal assembly
JP2000279370A (en) 1999-03-31 2000-10-10 Fuji Photo Optical Co Ltd Washing device for observation window of endoscope
DE19917624C2 (en) 1999-04-19 2003-04-03 Ferton Holding Sa endoscope
US6254061B1 (en) 1999-04-30 2001-07-03 Scimed Life Systems, Inc. Medical suction valve
US6375635B1 (en) 1999-05-18 2002-04-23 Hydrocision, Inc. Fluid jet surgical instruments
US6358224B1 (en) 1999-09-24 2002-03-19 Tyco Healthcare Group Lp Irrigation system for endoscopic surgery
US6447446B1 (en) 1999-11-02 2002-09-10 Medtronic Xomed, Inc. Method and apparatus for cleaning an endoscope lens
US6354992B1 (en) 1999-11-08 2002-03-12 Daniel T. Kato Automated laparoscopic lens cleaner
US6436067B1 (en) 1999-12-03 2002-08-20 Stryker Corporation Powered surgical handpiece with suction conduit including a stepped valve to regulate flow through the suction conduit
JP4633274B2 (en) 2000-02-17 2011-02-16 オリンパス株式会社 Endoscope cleaning and disinfection device
CA2400381A1 (en) 2000-02-18 2001-08-23 Richard M. Beane Devices and methods for warming and cleaning lenses of optical surgical instruments
US6319266B1 (en) 2000-03-16 2001-11-20 United States Surgical Corporation Trocar system and method of use
JP2001258824A (en) 2000-03-23 2001-09-25 Asahi Optical Co Ltd Observation window cleaning part for endoscope
JP2001286435A (en) 2000-04-06 2001-10-16 Asahi Optical Co Ltd Cleaning device for observation window of endoscope
DE10024728A1 (en) 2000-05-19 2001-11-22 Ami Gmbh Unit cleaning endoscopic instrument window in-situ during intervention, comprises detachable end casing with insufflation- and flushing channels
US6340344B1 (en) 2000-07-18 2002-01-22 Evergreen Medical Incorporated Endoscope with a removable suction tube
JP3785908B2 (en) 2000-08-17 2006-06-14 フジノン株式会社 Endoscope observation window cleaning device
JP2002065586A (en) 2000-08-25 2002-03-05 Asahi Optical Co Ltd Forward view type endoscope
CA2357209A1 (en) 2000-09-08 2002-03-08 Pall Corporation Cannula assembly
US6652488B1 (en) 2000-09-11 2003-11-25 Stryker Corporation Surgical suction irrigator
US6364853B1 (en) 2000-09-11 2002-04-02 Scion International, Inc. Irrigation and suction valve and method therefor
JP2002119465A (en) 2000-10-18 2002-04-23 Koken Co Ltd Tip lens cleaning device for endoscope
JP3845296B2 (en) 2000-11-29 2006-11-15 オリンパス株式会社 Endoscope dirt remover
JP4554808B2 (en) 2000-12-14 2010-09-29 Hoya株式会社 Endoscope water supply device
JP4681729B2 (en) 2000-12-27 2011-05-11 Hoya株式会社 The tip of a side-viewing endoscope
US6786865B2 (en) 2001-01-17 2004-09-07 Innon Holdings, Llc Endoscope valve assembly and method
US6712757B2 (en) 2001-05-16 2004-03-30 Stephen Becker Endoscope sleeve and irrigation device
US7344519B2 (en) 2001-08-31 2008-03-18 Conmed Corporation Trocar system
US20040260244A1 (en) 2001-08-31 2004-12-23 Piechowicz Michael E. Seals for trocars
JP3869692B2 (en) 2001-09-03 2007-01-17 ペンタックス株式会社 Electronic endoscope apparatus and electronic endoscope system
US20030050603A1 (en) 2001-09-12 2003-03-13 Todd Erik F. Cannula that provides bi-directional fluid flow that is regulated by a single valve
US6695772B1 (en) 2001-11-26 2004-02-24 Visionary Biomedical, Inc. Small diameter cannula devices, systems and methods
TWI258356B (en) 2002-03-28 2006-07-21 Onestep Co Ltd Cleaning member for medical tubes, porous member for cleaning treatment appliance insertion lumen of endoscope, and cleaning apparatus for cleaning treatment appliance insertion lumen of endoscope
JP2005532869A (en) 2002-07-13 2005-11-04 ストライカー・コーポレーション Nose and throat cleaning system and cleaning method
US20040034339A1 (en) 2002-08-16 2004-02-19 The Regents Of The University Of California Device for improved visualization of operative sites during surgery
US7083626B2 (en) 2002-10-04 2006-08-01 Applied Medical Resources Corporation Surgical access device with pendent valve
JP4324758B2 (en) 2002-10-23 2009-09-02 フジノン株式会社 Endoscope fluid delivery device
US7854724B2 (en) 2003-04-08 2010-12-21 Surgiquest, Inc. Trocar assembly with pneumatic sealing
JP2004313283A (en) 2003-04-14 2004-11-11 Pentax Corp Intracavital washing water jetting device for endoscope
GB0315479D0 (en) 2003-07-02 2003-08-06 Paz Adrian Virtual ports devices
US6981642B2 (en) 2003-07-17 2006-01-03 Symbol Technologies, Inc. Non-parallax optical auto-focusing system and method
WO2005009227A1 (en) 2003-07-29 2005-02-03 Pentax Corporation Internal treatment apparatus for a patient and an internal treatment system for a patient
US7771384B2 (en) 2003-08-20 2010-08-10 Biagio Ravo Trocar with integral irrigation and suction tube
CA2539552A1 (en) 2003-09-24 2005-04-07 Applied Medical Resources Corporation Anti-inversion trocar seal
US20050070850A1 (en) 2003-09-30 2005-03-31 Albrecht Thomas E. Low-profile, recessed stop-cock valve for trocar assembly
US7785294B2 (en) 2003-09-30 2010-08-31 Ethicon Endo-Surgery, Inc. Woven protector for trocar seal assembly
US8034032B2 (en) 2003-09-30 2011-10-11 Ethicon Endo-Surgery, Inc. Multi-angled duckbill seal assembly
US20050070947A1 (en) 2003-09-30 2005-03-31 Franer Paul T. Rotational latching system for a trocar
US8029475B2 (en) 2003-09-30 2011-10-04 Ethicon Endo-Surgery, Inc. Reinforced seal assembly
AU2004305533A1 (en) 2003-12-12 2005-07-07 Applied Medical Resources Corporation Shielded septum trocar seal
US7635345B2 (en) 2004-01-09 2009-12-22 G. I. View Ltd. Pressure-propelled system for body lumen
US20050171467A1 (en) 2004-01-30 2005-08-04 Jaime Landman Multiple function surgical device
JP2005230360A (en) 2004-02-20 2005-09-02 Olympus Corp Endoscope
JP4448348B2 (en) * 2004-03-10 2010-04-07 Hoya株式会社 Endoscope water channel
US7311660B2 (en) 2004-04-16 2007-12-25 Ricardo Alexander Gomez Method and apparatus for heating and applying warm antifog solution to endoscopes as well as a distal lens protector
GB0409474D0 (en) 2004-04-28 2004-06-02 Ucl Biomedica Plc Colonoscope and a colon cleaning method for use therewith
US7811228B2 (en) 2004-07-26 2010-10-12 Medtronic Xomed, Inc. Disposable endoscope sheath having adjustable length
JP2006075238A (en) 2004-09-07 2006-03-23 Olympus Corp Endoscope
EP1799096A2 (en) 2004-09-30 2007-06-27 Boston Scientific Scimed, Inc. System and method of obstruction removal
US7479106B2 (en) 2004-09-30 2009-01-20 Boston Scientific Scimed, Inc. Automated control of irrigation and aspiration in a single-use endoscope
JP4661190B2 (en) 2004-11-30 2011-03-30 富士フイルム株式会社 Cleaning adapter
US7811253B2 (en) 2004-12-09 2010-10-12 Applied Medical Resources Corporation Insufflation gas warmer and humidifier
DE102005019142A1 (en) 2005-04-20 2006-11-02 Karl Storz Gmbh & Co. Kg Endoscope with a deflection element for flushing media
US7591802B2 (en) 2005-04-29 2009-09-22 Applied Medical Resources Corporation Seal housing having anti-inversion features
US20060293559A1 (en) 2005-06-24 2006-12-28 Grice George D Iii Disposable scope cleaner and method of using same
US20070005087A1 (en) 2005-06-30 2007-01-04 Smith Robert C Thin bladed obturator with curved surfaces
EP2000099A3 (en) 2005-10-14 2009-07-29 Applied Medical Resources Corporation Surgical Access Port
US8152717B2 (en) 2006-01-30 2012-04-10 Ricardo Alexander Gomez Device for white balancing and appying an anti-fog agent to medical videoscopes prior to medical procedures
WO2007098495A2 (en) 2006-02-22 2007-08-30 Applied Medical Resources Corporation Trocar seal
JP2007252673A (en) 2006-03-24 2007-10-04 Fujinon Corp Endoscope observation window washing system
US7726821B2 (en) 2006-04-03 2010-06-01 Pourang Bral Means and method to prevent liquids and flying debris from blocking the viewing pathway of an optical element
US8579807B2 (en) 2008-04-28 2013-11-12 Ethicon Endo-Surgery, Inc. Absorbing fluids in a surgical access device
JP2007296002A (en) 2006-04-28 2007-11-15 Fujinon Corp Endoscopic system
JP2007296164A (en) 2006-05-01 2007-11-15 Fujinon Corp Endoscopic system
US8001984B2 (en) 2006-06-06 2011-08-23 Sasaki Larry S Laparoscopic lens cleaner
US20070299310A1 (en) 2006-06-21 2007-12-27 Phillips Edward H Device for shielding the lens of a flexible or rigid surgical endoscope
US20080081948A1 (en) 2006-10-03 2008-04-03 Ethicon Endo-Surgery, Inc. Apparatus for cleaning a distal scope end of a medical viewing scope
WO2008077080A2 (en) 2006-12-18 2008-06-26 Surgiquest, Incorporated System for surgical insufflation and gas recirculation
US9591965B2 (en) * 2007-04-10 2017-03-14 Boston Scientific Scimed, Inc. Endoscopes including distal chamber and related methods of use
US20090093682A1 (en) 2007-10-05 2009-04-09 Tyco Healthcare Group Lp Surgical portal with foam and fabric composite seal assembly
JP5432924B2 (en) 2008-01-25 2014-03-05 アプライド メディカル リソーシーズ コーポレイション Insufflation access system
WO2009111430A1 (en) 2008-03-03 2009-09-11 Applied Medical Resources Corporation Balloon trocar advanced fixation
US20090234193A1 (en) 2008-03-13 2009-09-17 Ethicon Endo-Surgery, Inc. Apparatus for keeping clean a distal scope end of a medical viewing scope
AU2009223316B2 (en) 2008-03-14 2014-05-29 Applied Medical Resources Corporation Instrument seal
US8075530B2 (en) 2008-03-20 2011-12-13 Applied Medical Resources Corporation Instrument seal with inverting shroud
US8550988B2 (en) 2008-04-21 2013-10-08 Covidien Lp Endoscopic cleaner
US8273060B2 (en) 2008-04-28 2012-09-25 Ethicon Endo-Surgery, Inc. Fluid removal in a surgical access device
US9358041B2 (en) 2008-04-28 2016-06-07 Ethicon Endo-Surgery, Llc Wicking fluid management in a surgical access device
US8568362B2 (en) 2008-04-28 2013-10-29 Ethicon Endo-Surgery, Inc. Surgical access device with sorbents
US8870747B2 (en) 2008-04-28 2014-10-28 Ethicon Endo-Surgery, Inc. Scraping fluid removal in a surgical access device
US7981092B2 (en) 2008-05-08 2011-07-19 Ethicon Endo-Surgery, Inc. Vibratory trocar

Also Published As

Publication number Publication date
US20100010310A1 (en) 2010-01-14
JP2010017559A (en) 2010-01-28
JP5399149B2 (en) 2014-01-29
CA2671694C (en) 2018-01-02
EP2145578A1 (en) 2010-01-20
US8915842B2 (en) 2014-12-23
EP2145578B1 (en) 2012-05-02
CN101627894B (en) 2013-08-07
CN101627894A (en) 2010-01-20
ATE555713T1 (en) 2012-05-15

Similar Documents

Publication Publication Date Title
CA2671694C (en) Methods and devices for maintaining visibility and providing irrigation and/or suction during surgical procedures
CN101836874B (en) Flexible port seal
CA2746371C (en) Systems and methods for optimizing and maintaining visualization of a surgical field during the use of surgical scopes
US5207213A (en) Laparoscope having means for removing image impeding material from a distal lens
US20090234193A1 (en) Apparatus for keeping clean a distal scope end of a medical viewing scope
US20080058595A1 (en) Medical device introduction systems and methods
US11412921B2 (en) Multi lumen access device
EP2600759A1 (en) Systems and methods for optimizing and maintaining visualization of a surgical field during the use of surgical scopes
JP6351591B2 (en) Medical insertion aid
US20130310647A1 (en) Method and device for flushing during endoscopic surgery
US5605537A (en) Endoscopic device
WO2018013734A1 (en) Surgical instrument guide with insufflation channels
JP2021176515A (en) Cleaning cap for surgical access device
EP3632293A2 (en) Multi lumen access device
US11540858B2 (en) Multi-lumen arthroscopy cannula (MLAC) and methods of use
US20140275768A1 (en) Thoracic Scope With Skirt And Gap
WO2022032631A1 (en) Endoscope cleaning device
WO2023026118A1 (en) In-situ scope cleaner
WO2023122603A1 (en) Endoscopic tubular minimally invasive surgical system

Legal Events

Date Code Title Description
EEER Examination request

Effective date: 20140710

MKLA Lapsed

Effective date: 20220301

MKLA Lapsed

Effective date: 20200831