CA2674024C - Biocompatible wound dressing - Google Patents

Biocompatible wound dressing Download PDF

Info

Publication number
CA2674024C
CA2674024C CA2674024A CA2674024A CA2674024C CA 2674024 C CA2674024 C CA 2674024C CA 2674024 A CA2674024 A CA 2674024A CA 2674024 A CA2674024 A CA 2674024A CA 2674024 C CA2674024 C CA 2674024C
Authority
CA
Canada
Prior art keywords
reduced pressure
pressure delivery
scaffold
hydrogel
tissue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CA2674024A
Other languages
French (fr)
Other versions
CA2674024A1 (en
Inventor
Archel Ambrosio
Royce W. Johnson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
3M Innovative Properties Co
Original Assignee
KCI Licensing Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=38334961&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CA2674024(C) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by KCI Licensing Inc filed Critical KCI Licensing Inc
Publication of CA2674024A1 publication Critical patent/CA2674024A1/en
Application granted granted Critical
Publication of CA2674024C publication Critical patent/CA2674024C/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M35/00Devices for applying media, e.g. remedies, on the human body
    • A61M35/003Portable hand-held applicators having means for dispensing or spreading integral media
    • A61M35/006Portable hand-held applicators having means for dispensing or spreading integral media using sponges, foams, absorbent pads or swabs as spreading means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/52Hydrogels or hydrocolloids
    • A61F13/01012
    • A61F13/01029
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/02Adhesive plasters or dressings
    • A61F13/0203Adhesive plasters or dressings having a fluid handling member
    • A61F13/0206Adhesive plasters or dressings having a fluid handling member the fluid handling member being absorbent fibrous layer, e.g. woven or nonwoven absorbent pad, island dressings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/02Adhesive plasters or dressings
    • A61F13/0203Adhesive plasters or dressings having a fluid handling member
    • A61F13/0206Adhesive plasters or dressings having a fluid handling member the fluid handling member being absorbent fibrous layer, e.g. woven or nonwoven absorbent pad, island dressings
    • A61F13/0209Adhesive plasters or dressings having a fluid handling member the fluid handling member being absorbent fibrous layer, e.g. woven or nonwoven absorbent pad, island dressings comprising superabsorbent material
    • A61F13/05
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/22Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing macromolecular materials
    • A61L15/32Proteins, polypeptides; Degradation products or derivatives thereof, e.g. albumin, collagen, fibrin, gelatin
    • A61L15/325Collagen
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/90Negative pressure wound therapy devices, i.e. devices for applying suction to a wound to promote healing, e.g. including a vacuum dressing
    • A61M1/91Suction aspects of the dressing
    • A61M1/915Constructional details of the pressure distribution manifold
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/02Drugs for dermatological disorders for treating wounds, ulcers, burns, scars, keloids, or the like
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/90Negative pressure wound therapy devices, i.e. devices for applying suction to a wound to promote healing, e.g. including a vacuum dressing
    • A61M1/91Suction aspects of the dressing
    • A61M1/918Suction aspects of the dressing for multiple suction locations

Abstract

A multi-layer reduced pressure delivery apparatus is provided for applying reduced pressure tissue treatment to a tissue site. The multi-layer apparatus includes a tissue contact layer, a release layer, and a manifold layer. The tissue contact layer includes a scaffold adapted to contact the tissue site, the release layer includes a hydrogel-forming material and a plurality of flow channels, and the manifold layer includes a distribution manifold. The release layer is positioned between the tissue contact layer and the manifold layer to allow easy release of the manifold layer from the tissue contact layer following the administration of reduced pressure tissue treatment.

Description

BIOCOMPATIBLE WOUND DRESSING
BACKGROUND OF THE INVENTION
1. Field of the Invention This invention relates generally to a system or method of promoting tissue growth and more specifically to a multi-layer wound dressing having a tissue growth medium for enhancing the growth of tissue when exposed to reduced pressure.
2. Description of Related Art Vacuum induced healing of open wounds has recently been popularized by Kinetic Concepts, Inc. of San Antonio, Tex., by its commercially available V.A.C. product line.
The vacuum induced healing process has been described in commonly assigned U.S. Pat. No.
4,969,880 issued on Nov. 13, 1990 to Zamierowski, as well as its continuations and continuations in part, U.S. Pat, No. 5,100,396, issued on Mar. 31, 1992, U.S. Pat. No.
5,261,893, issued Nov.
16, 1993, and U.S. Pat. No. 5,527,293, issued Jun. 18, 1996. Further improvements and modifications of the vacuum induced healing process are also described in U.S.
Pat. No.
6,071,267, issued on Jun. 6, 2000 to Zamierowski and U.S. Pat. Nos. 5,636,643 and 5,645,081 issued to Argenta et al. on Jun. 10, 1997 and Jul. 8, 1997 respectively.
Substantial work has also been performed relating to the creation of bioabsorbable and includable, cell growth enhancing matrices, lattices, or scaffolds. Exemplary U.S. patents known to applicant include Kemp et al. U.S. Pat. No. 5,256,418 issued Oct. 26, 1993;
Chatelier et al. U.S. Pat. No. 5,449,383 issued Sep. 12, 1995; Bennett et al.
5,578,662 issued Nov. 26, 1996; and two patents issued to Yasukawa et al. U.S. Pat. No.
5,629,186 issued May 13, 1997 and U.S. Pat. No. 5,780,281 issued Jul. 14, 1998, both from a common parent application.
As is well known to those of ordinary skill in the art, closure of surface wounds involves the inward migration of epithelial and subcutaneous tissue adjacent the wound. This migration is ordinarily assisted through the inflammatory process, whereby blood flow is increased and various functional cell types are activated. Through the inflammatory process, blood flow through damaged or broken vessels is stopped by capillary level occlusion;
thereafter, cleanup and rebuilding operations may begin. Unfortunately, this process is hampered when a wound is large or has become infected. In such wounds, a zone of stasis (i.e.

an area in which localized swelling of tissue restricts the flow of blood to the tissues) forms near the surface of the wound.
Without sufficient blood flow, the epithelial and subcutaneous tissues surrounding the wound not only receive diminished oxygen and nutrients, but also are less able to successfully fight bacterial infection and thus are less able to naturally close the wound.
Until the advent of vacuum induced therapy, such difficult wounds were addressed only through the use of sutures or staples. Although still widely practiced and often effective, such mechanical closure techniques suffer a major disadvantage in that they produce tension on the skin tissue adjacent the wound. In particular, the tensile force required in order to achieve closure using sutures or staples may cause very high localized stresses at the suture or staple insertion point. These stresses commonly result in the rupture of the tissue at the insertion points, which can eventually cause wound dehiscence and additional tissue loss.
Additionally, some wounds harden and inflame to such a degree due to infection that closure by stapling or suturing is not feasible. Wounds not reparable by suturing or stapling generally require prolonged hospitalization, with its attendant high cost, and major surgical procedures, such as grafts of surrounding tissues. Examples of wounds not readily treatable with staples or suturing include large, deep, open wounds; decubitus ulcers;
ulcers resulting from chronic osteomyelitis; and partial thickness burns that subsequently develop into full thickness bums.
As a result of these and other shortcomings of mechanical closure devices, methods and apparatus for draining wounds by applying continuous negative pressures have been developed. When applied over a sufficient area of the wound, such negative pressures have been found to promote the migration toward the wound of epithelial and subcutaneous tissues.
In practice, the application to a wound of negative gauge pressure, commercialized by Assignee or its parent under the designation "Vacuum Assisted Closure" (or "V.A.C. ") therapy, typically involves the mechanical-like contraction of the wound with simultaneous removal of excess fluid. In this manner, V.A.C. therapy augments the body's natural inflammatory process while alleviating many of the known intrinsic side effects, such as the production of edema caused by increased blood flow absent the necessary vascular structure for proper venous return.
While V.A.C. therapy has been highly successful in the promotion of wound closure, healing many wounds previously thought largely untreatable, some difficulty remains.
Because the very nature of V.A.C. therapy dictates an atmospherically sealed wound site, the therapy must often be performed to the exclusion of other beneficial, and therefore desirable, wound treatment modalities. One of these hitherto excluded modalities is the encouragement of cell growth by the provision of an in situ cell growth-enhancing matrix.
Additional difficulty remains in the frequent changing of the wound dressing.
As the wound closes, binding of cellular tissue to the wound dressing may occur. Use of traditional V.A.C. therapy necessitates regular changing of the dressing. Reckless dressing changes can result in some tissue damage at the wound site if cellular tissue has grown excessively into the dressing.
BRIEF SUMMARY OF THE INVENTION
The problems presented by existing tissue dressings are solved by the systems and methods of the present invention. In accordance with one embodiment of the present invention, a reduced pressure delivery system is provided for applying reduced pressure tissue treatment to a tissue site. The reduced pressure delivery system includes a multi-layer reduced pressure delivery apparatus having a tissue contact layer, a release layer, and a manifold layer.
The tissue contact layer includes a scaffold adapted to contact the tissue site. The release layer includes a hydrogel-forming material and a plurality of flow channels, and the manifold layer includes a distribution manifold. The release layer is positioned between the tissue contact layer and the manifold layer, and the hydrogel-forming material of the release layer binds to at least one of the tissue contact layer and the manifold layer. A reduced-pressure delivery tube is fluidly connected to the manifold layer to deliver a reduced pressure to the tissue site.
In accordance with another embodiment of the present invention, a multi-layer reduced pressure delivery apparatus includes a first layer having a scaffold adapted to contact a tissue site and a second layer having a hydrogel-forming material and a plurality of flow channels.
The hydrogel-forming material contacts the scaffold. The reduced pressure delivery apparatus further includes a third layer having a distribution manifold contacting the hydrogel-forming material.
In still another embodiment of the present invention, a multi-layer reduced pressure delivery apparatus includes a tissue contact, a manifold layer, and a release layer. The tissue contact layer includes a scaffold adapted to contact the tissue site to receive in-growth of new tissue from the tissue site. The tissue contact layer further includes a first plurality of flow channels. The manifold layer includes a cellular material and a third plurality of flow channels, the cellular material being capable of distributing a reduced pressure to the tissue site. The release layer is positioned between the tissue contact layer and the manifold layer
3 and includes a hydrogel-forming material connected to at least one of the tissue contact layer and the manifold layer. The hydrogel-forming material is adapted to form a hydrogel upon the absorption of a fluid to release the at least one of the tissue contact layer and the manifold layer. The release layer further includes a second plurality of flow channels in fluid communication with the first and third plurality of flow channels.
In accordance with yet another embodiment of the present invention, a reduced pressure delivery apparatus is provided for applying reduced pressure tissue treatment to a tissue site. The reduced pressure delivery apparatus includes a scaffold adapted to contact a tissue site to receive in-growth of new tissue from the tissue site, a distribution manifold adapted to distribute a reduced pressure to the tissue site through the scaffold, and a release material positioned between and in contact with the scaffold and the distribution manifold to substantially prevent contact between the scaffold and the distribution manifold in areas where the release material is disposed.
Also in accordance with the present invention, another embodiment of the reduced pressure delivery system includes a reduced pressure delivery apparatus having a distribution manifold, a scaffold, and a hydrogel-forming material. The distribution manifold distributes a reduced pressure, and the scaffold encourages in-growth of new tissue from a tissue site. The distribution manifold and scaffold are bound together by the hydrogel-forming material, which is positioned between the distribution manifold and the scaffold. The system further includes a reduced-pressure delivery tube having a distal end fluidly connected to the distribution manifold to deliver the reduced pressure through the distribution manifold and scaffold to the tissue site.
In accordance with another embodiment of the present invention, a tissue growth kit for promoting new tissue growth at a tissue site is provided. The tissue growth kit includes a scaffold having a first and a second side, the first side adapted to contact the tissue site; a hydrogel-forming material adapted to contact the second side of the scaffold;
and a distribution manifold adapted to contact the hydrogel-forming material to distribute a reduced pressure to the tissue site through the scaffold.
In yet another embodiment of the present invention, a method for promoting new tissue growth at a tissue site includes positioning a scaffold in contact with the tissue site, positioning a hydrogel-forming material in contact with the scaffold, and positioning a manifold in contact with the hydrogel-forming material. A reduced pressure is applied to the tissue site through the manifold and scaffold.
4 In still another embodiment of the present invention, a method for promoting new tissue growth at a tissue site includes positioning a multi-layer reduced pressure delivery apparatus in contact with the tissue site. The multi-layer reduced pressure delivery apparatus includes a tissue contact layer having a scaffold adapted to contact the tissue site and a manifold layer having a distribution manifold. The reduced pressure delivery apparatus further includes a release layer having a hydrogel-forming material and a plurality of flow channels. The release layer is positioned between the tissue contact layer and the manifold layer, and the hydrogel-forming material of the release layer binds to at least one of the tissue contact layer and the manifold layer. The multi-layered reduced pressure delivery apparatus is oriented such that the tissue contact layer contacts the tissue site. A
reduced pressure is applied to the tissue site through the distribution manifold, the flow channels, and the scaffold.
In another embodiment of the present invention, a method for promoting new tissue growth at a tissue site includes positioning a multi-layer reduced pressure delivery apparatus in contact with the tissue site. The multi-layer reduced pressure delivery apparatus includes a first layer having a scaffold adapted to contact the tissue site, and a second layer having a hydrogel-forming material and a plurality of flow channels. The hydrogel-forming material contacts the scaffold. A third layer having a distribution manifold contacts the hydrogel-forming material. The multi-layered reduced pressure delivery apparatus is oriented such that the tissue contact layer contacts the tissue site, and a reduced pressure is applied to the tissue site through the distribution manifold, the flow channels, and the scaffold.
In accordance with yet another embodiment of the present invention, a method for promoting new tissue growth at a tissue site includes positioning a scaffold in contact with the tissue site, a hydrogel-forming material in contact with the scaffold, and a distribution manifold in contact with the hydrogel-forming material. New tissue growth is stimulated at the tissue site by applying a reduced pressure to the tissue site through the distribution manifold and the scaffold.
Other objects, features, and advantages of the present invention will become apparent with reference to the drawings and detailed description that follow.
5 BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 illustrates a partially cut away perspective view of a wound dressing according to an embodiment of the present invention, the wound dressing being shown applied to a tissue site;
FIG. 2 depicts a cross-sectional side view of a reduced pressure delivery system according to an embodiment of the present invention, the system including a reduced pressure delivery apparatus having a tissue contact layer, a release layer, and a manifold layer;
FIG. 3 illustrates a cross-sectional side view of a reduced pressure delivery system according to an embodiment of the present invention, the system including a reduced pressure delivery apparatus having a tissue contact layer, a release layer, and a manifold layer;
FIG. 4 depicts a top view of one embodiment of the release layer of FIGS. 2 and 3 taken at 4-4;
FIG. 5 illustrates a top view of another embodiment of the release layer of FIGS. 2 and 3 taken at 5-5;
FIG. 6 depicts a top view of still another embodiment of the release layer of FIGS. 2 and 3 taken at 6-6;
FIG. 7 illustrates a method of promoting new tissue growth at a tissue site according to one embodiment of the present invention;
FIG. 8 depicts a method of promoting new tissue growth at a tissue site according to another embodiment of the present invention; and FIG. 9 illustrates front view of a tissue growth kit according to an embodiment of the present invention.
6 DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
In the following detailed description of the preferred embodiments, reference is made to the accompanying drawings that form a part hereof, and in which is shown by way of illustration specific preferred embodiments in which the invention may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the invention, and it is understood that other embodiments may be utilized and that logical structural, mechanical, electrical, and chemical changes may be made without departing from the spirit or scope of the invention. To avoid detail not necessary to enable those skilled in the art to practice the invention, the description may omit certain information known to those skilled in the art. The following detailed description is, therefore, not to be taken in a limiting sense, and the scope of the present invention is defined only by the appended claims.
The term "manifold" as used herein generally refers to a substance or structure that is provided to assist in applying reduced pressure to, delivering fluids to, or removing fluids from a tissue site. A manifold typically includes a plurality of flow channels or pathways that are interconnected to improve distribution of fluids provided to and removed from the area of tissue around the manifold. Examples of manifolds may include without limitation devices that have structural elements arranged to form flow channels, cellular foam such as open-cell foam, porous tissue collections, and liquids, gels and foams that include or cure to include flow channels.
The term "reduced pressure" as used herein generally refers to a pressure less than the ambient pressure at a tissue site that is being subjected to treatment. In most cases, this reduced pressure will be less than the atmospheric pressure at which the patient is located.
Although the terms "vacuum" and "negative pressure" may be used to describe the pressure applied to the tissue site, the actual pressure applied to the tissue site may be significantly less than the pressure normally associated with a complete vacuum. Reduced pressure may initially generate fluid flow in the tube and the area of the tissue site. As the pressure around the tissue site approaches the desired reduced pressure, the flow may subside, and the reduced pressure is then maintained. Unless otherwise indicated, values of pressure stated herein are gage pressures.
The term "scaffold" as used herein refers to a substance or structure used to enhance or promote the growth of cells and/or the formation of tissue. A scaffold is typically a three dimensional porous structure that provides a template for cell growth. The scaffold may be infused with, coated with, or comprised of cells, growth factors, extracellular matrix
7 components, nutrients, integrins, or other substances to promote cell growth.
A scaffold may be used as a manifold in accordance with the embodiments described herein to administer reduced pressure tissue treatment to a tissue site.
The term "tissue site" as used herein refers to a wound or defect located on or within any tissue, including but not limited to, bone tissue, adipose tissue, muscle tissue, dermal tissue, vascular tissue, connective tissue, cartilage, tendons, or ligaments.
The term "tissue site" may further refer to areas of any tissue that are not necessarily wounded or defective, but are instead areas in which it is desired to add or promote the growth of additional tissue. For example, reduced pressure tissue treatment may be used in certain tissue areas to grow additional tissue that may be harvested and transplanted to another tissue location.
The present invention is a biocompatible wound dressing for use with negative pressure therapy. The term "wound" as used herein, may include bums, incisional wounds, excisional wounds, ulcers, traumatic wounds, and chronic open wounds. As used herein, the term "pad" refers to foam, screens, other porous-like materials. The term "conventional pad"

refers to polyurethane (PU) or polyvinylalcohol (PVA) foams commonly used with V.A.C. therapy. The term "V.A.C. therapy" as used herein, refers to negative pressure wound therapy as commercialized by the assignee or its parent, and further described in the aforementioned patents and patent applications.
Referring now to the figures, the present invention 10 is shown to generally comprise a foam pad 11 for insertion substantially into the wound site 12 and a wound drape 13 for sealing enclosure of the foam pad 11 at the wound site 12. According to the invention, the foam pad 11 is modified to contain a cell growth-enhancing matrix, or lattice 14, whereby a desired highly porous cell growth enhancing substrate may be directed into and about the wound site 12. After insertion into the wound site 12 and sealing with the wound drape 13, the foam pad 11 is placed in fluid communication with a vacuum source for promotion of fluid drainage, as known to those of ordinary skill in the art Foam pad 11 is modified from prior art pads in that the pad 11 comprises matrix 14 that is noninvasive to the known V.A.C. therapy and therefore requires no modification thereof.
According to the preferred embodiment of the present invention, the foam pad 11, wound drape 13 and vacuum source are implemented as known in the prior art, with the exception of those modifications to the foam pad 11 detailed further herein.
Each of these components is detailed in U.S. patent No. 7,611,500 filed Oct. 16, 1997.
8 As detailed in the'832 application, the foam pad 11 preferably comprises a highly reticulated, open-cell polyurethane or polyether foam for good permeability of wound fluids while under suction. As also detailed in the '832 application, the foam pad 11 is preferably placed in fluid communication, via a plastic or like material hose 15, with a vacuum source, which preferably comprises a canister safely placed under vacuum through fluid communication, via an interposed hydrophobic membrane filter, with a vacuum pump. Finally, the'832 application also details the wound drape 13, which preferably comprises an elastomeric material at least peripherally covered with a pressure sensitive, acrylic adhesive for sealing application over the wound site 12.

According to the preferred method of the present invention, those components as are described in the '832 application are generally employed as known in the art with the exception that the foam pad 11 is provided with a matrix 14. This matrix 14 is shown to comprise porous material 16 that has been formed into a plurality of sections 17. The material 16 is implanted in the foam pad 11 at the base 18 of the pad 11. Because it is necessary to trim the foam pad 11 in preparation for V.A.C. therapy wound treatment, material 16 preferably is placed in the central portion of pad 11. Applicant does not intend to limit itself to a regular or symmetrical arrangement of material 16 or sections 17 by use of the term "matrix".
Alternatively, or in addition to the preferred embodiment, the foam pad may be comprised of bioabsorbable branched polymers alone (not shown), or in combination with the matrix 14.

Upon placement of the pad 11, having the matrix 14 embedded therein, and/or protruding therefrom, and/or comprised of bioabsorbable branched polymers, the wound drape 13 is applied over the pad to form an airtight seal over the wound site. In use, the V.A.C.
therapy is conducted as known and, if desired, cell growth enhancement therapy is added by simply providing the matrix 14 comprising material 16. In this manner, cell growth enhancement therapy may be conveniently combined with existing V.A.C.
therapies, without loss of V.A.C. therapy performance and without inconvenience or overly increased cost.
9 EXAMPLE I
The above described open celled foam is formed into a pad. The general principles set forth in U.S. Pat. No. 5,795,584 issued to Totakura et al on Aug. 18, 1998 at Col. 5 lines 5 42, are followed to create a structure superimposed on the bottom of the pad.
Holes are placed in those portions of the non-bioabsorbable substrate relatively remote from the bioabsorbable cell growth enhancing matrix substrate. The matrix covers a portion of the pad located within the boundaries of the wound being treated. The pad is then completely covered by an airtight drape, and subjected to sub atmospheric pressure, as is the standard practice for utilizing V.A.C. therapy. The matrix is absorbed within the expected useful life of the pad, so, that when the pad is removed, the matrix had been absorbed, and the growing cells are not disturbed. The pad is replaced, if necessary, either by a conventional pad or by a matrix containing pad, as deemed therapeutically necessary.

EXAMPLE II
A conventional pad is selected. A collagen cell growth matrix is applied to a portion of the bottom thereof The general principles of V.A.C. therapy are followed, with the matrix containing pad substituted for a conventional pad. During the expected duty cycle of the pad, the collagen matrix is absorbed by the growing cells, so that when the pad is removed, the matrix had been absorbed, and the growing cells are not disturbed. The pad is replaced, if necessary, either by a conventional pad or by a matrix containing pad, as deemed therapeutically necessary.
EXAMPLE III
The procedure set forth in EXAMPLE II is followed. However, an ultra-low density fused-fibrous ceramic, sometimes referred to under the trademark P.R.I.M.M., is substituted for the collagen matrix thereof. The general principles of V.A.C. therapy are followed.
During the expected duty cycle of the pad, the ultra-low density fused-fibrous ceramic is absorbed by the growing cells, so that when the pad is removed, the ultra-low density fused-fibrous ceramic had been absorbed, and the growing cells were not disturbed.
The pad is replaced, if necessary, either by a conventional pad or by a matrix containing pad, as deemed therapeutically necessary.
EXAMPLE IV
Many suitable bioabsorbable materials have been used for sutures, surgical implements, and the like. A small sample of these materials are set forth in the following U.S.
patents, to wit: U.S. Pat. No. 5,997,568, issued to Lin on Dec. 7, 1999 and the following patents issued in 1999 to Roby et al.: U.S. Pat. Nos. 5,914,387; 5,902,874 and 5,902,875. A
selected one or more of these, or similar materials, are placed upon a conventional pad. The general principles of V.A.C. therapy are followed. During the expected duty cycle of the pad, the bioabsorbable material is absorbed by the growing cells, so, that when the pad is removed, the bioabsorbable material had been absorbed, and the growing cells were not disturbed. The pad is replaced, if necessary, either by a conventional pad or by a matrix containing pad, as deemed therapeutically necessary.
EXAMPLE V
A bioabsorbable branched polymer, similar to that described in U.S. Pat. No.
5,578,662 issued to Bennet et al., forms the pad. The general principles of V.A.C.
therapy are followed with the bioabsorbable branched polymer pad substituted for the conventional pad. During the expected duty cycle of the pad, the pad is absorbed by the growing cells, so that there is no need to replace the pad and disturb the wound site. If further treatment is deemed necessary, a conventional pad, or an additional matrix containing pad, or an additional bioabsorbable branched polymer pad may be placed in the wound site, and V.A.C. therapy continued.
Referring to FIGS. 2 and 3, a reduced pressure delivery system 211 according to an embodiment of the present invention includes a biocompatible wound or tissue dressing, or reduced pressure delivery apparatus, 213, a reduced pressure delivery tube 217, and a reduced pressure source 219. The reduced pressure delivery system 211 is provided to administer a reduced pressure tissue treatment to a tissue site 221 of a person. The tissue site may include a burn or other wound, or alternatively may be healthy tissue upon which it is desired to promote new tissue growth. The reduced pressure source 219 is fluidly connected to a distal end of the reduced pressure delivery tube 217, and the reduced pressure delivery apparatus 213 is fluidly connected to a proximal end of the reduced pressure delivery tube 217. In FIG. 2, the reduced pressure delivery tube 217 is fluidly connected to the reduced pressure delivery apparatus 213 by a tubing connector 220 similar to that illustrated in FIG. 1.
In FIG. 3, the reduced pressure delivery tube 217 is placed directly inside or adjacent to the reduced pressure delivery apparatus 213 and may include a plurality of apertures 222 for communicating with the reduced pressure delivery apparatus 213. The reduced pressure source delivers a reduced pressure through the reduced pressure delivery tube 217 to the reduced pressure delivery apparatus 213, and the reduced pressure delivery apparatus 213 distributes the reduced pressure to the tissue site 221. A membrane 224 is positioned over the reduced pressure delivery apparatus 213 and sealingly connected to the tissue surrounding the tissue site 221.

The membrane 224 reduces contamination of the tissue site 221 and assists in maintaining the reduced pressure at the tissue site 221.
The reduced pressure delivery apparatus 213 is a multi-layer apparatus having a first layer, or tissue contact layer 223, a second layer, or release layer 225, and a third layer, or manifold layer 227. The first layer 223 includes a scaffold 233 and a first plurality of flow channels 234. The second layer 225 includes a release material 235 such as a hydrogel-forming material or a water-soluble polymer. The second layer 225 further includes a second plurality of flow channels 236. The third layer 227 includes a distribution manifold 237 and a third plurality of flow channels 238. The three layers are arranged such that the second layer 225 is positioned between the first layer 223 and the third layer 227, the first layer 223 being adjacent to the second layer 225, the second layer 225 being adjacent to the first and third layers 223, 227, and the third layer 227 being adjacent to the second layer 225.
In one embodiment, each of the layers 223, 225, 227 is connected to adjacent layers by any connection means appropriate for the type of material in each layer. For example, the third layer 227 may be bonded to the second layer 225, or the first layer 223 may be bonded to the second layer 225, or all three layers 223, 225, 227 may be bonded together. Bonding may be accomplished by heating one, both, or all of the layers at their interface and applying a force to press the layers into a bonded connection. Alternatively, adhesives or mechanical fasteners may be used to connect the layers to one another as long as the fastening or bonding means does not substantially and negatively affect the distribution of pressure through the layers. In another embodiment, the layers 223, 225, 227 may not be connected to one another, but rather, the layers 223, 225, 227 may simply be placed in contact with one another prior to and/or during application of the reduced pressure tissue treatment.
Alternatively, two of the layers may be bonded to one another, and a third of the layers placed in contact with one of the two bonded layers. For example, the second layer 225 may be connected to the third layer 227 in a way described previously, and the first layer 223 may be placed in contact with, but not connected to, the second layer 225. Instead, the second layer 225 may be connected to the first layer 223, and the second layer 225 may be placed in contact with, but not connected to, the third layer 227.
The first, second, and third plurality of flow channels 234, 236, 238 are provided in the first, second, and third layers 223, 225, 227, respectively, to allow distribution of reduced pressure within the reduced pressure delivery apparatus 213 and to the tissue site 221. The flow channels provided in each layer may be an inherent characteristic of the material provided in that layer (e.g. a naturally porous material), or the flow channels may be chemically, mechanically, or otherwise formed in the material prior to or after assembly of the three layers 223, 225, 227. The placement of the layers 223, 225, 227 adjacent to one another allows the flow channels in one layer to fluidly communicate with the flow channels in the adjacent layer. For example, the relative positioning or connection of the layers as described above allow the first plurality of flow channels 234 to fluidly communicate with the second plurality of flow channels 236, which are capable of fluidly communicating with the third plurality of flow channels 238.
The scaffold 233 of the first layer, or tissue contact layer, 223 promotes new tissue growth and accepts in-growth of new tissue from the tissue site 221. The scaffold 223 may be any porous, bioresorbable material that is capable of accepting and/or integrating new tissue growth into the scaffold. The pores of the scaffold 233 are preferably interconnected to define the first plurality of flow channels 234, but additional flow channels may be provided by mechanically, chemically, or otherwise forming the flow channels within the scaffold.
Suitable scaffold materials may include, without limitation, polylactic acid (PLA), polyglycolic acid (PGA), polycaprolactone, polyhydroxybutyrate, polyhydroxyvalerate, polydioxanone, polyorthoesthers, polyphosphazenes, polyurethanes, collagen, hyaluronic acid, chitosan, and copolymers, terpolymers, or blends of these materials.
Additional materials, which may be used with hard tissue applications include, but are not limited to, ceramics such as hydroxyapatite, coralline apatite, calcium phosphate, calcium sulfate, calcium carbonate or other carbonates, bioglass, allografts, autografts, and composites of these ceramics with the previously listed polymeric materials. The scaffold material may further include a polymeric blend of PLA, PGA, polycarbonates, polyfumarates, capralactones, and/or any of the above-mentioned materials. The scaffold 233 may be manufactured by any of the following processes: salt leaching, freeze-drying, phase-separation, weaving fibers, bonding non-woven fibers, foaming, or any other suitable manufacturing method for the selected material.
The pore sizes associated with the scaffold 233 are typically between about 50 and 500 microns, and more preferably between about 100 and 400 microns. Pore sizes below 50 microns tend to inhibit or prevent tissue growth. In one embodiment, the preferred average pore size of pores within the scaffold is about 100 microns.
The scaffold may be provided as a sheet or pad of material. The thickness of the scaffold is measured in a direction normal to the tissue site when the reduced pressure delivery apparatus is placed adjacent the tissue site. The thickness of the material may vary, but in one embodiment the scaffold is about 1 to 4 mm in thickness. The dimensions of the sheet or pad of scaffold material in a plane normal to the thickness dimension may vary depending on the size of the tissue site to be treated. The pad or sheet of material may be provided in a large size and then trimmed to fit the tissue site.
The release material 235 of the second layer, or release layer, 225 minimizes points of contact between the first layer 223 and the third layer 227. In one embodiment, the release material 235 will prevent any contact between the first and third layers 223, 227. By minimizing contact between the first and second layers 223, 227, the release material 235 serves as a barrier to tissue in-growth from the scaffold 233 into the distribution manifold 237 of the third layer 227.
The release material 235 also serves as a binder and a release agent for the first and third layers 223, 227. Prior to and during reduced pressure tissue treatment, the release material 235 may be used to bind the first and third layers as previously described. The release material 235 is preferably either a hydrogel-forming material or a water-soluble polymer.
As a hydrogel-forming material, the release material 235 is capable of forming a liquid and/or gel following exposure to water or other fluids. During initial application of the reduced pressure delivery apparatus 213 to the tissue site and during the administration of reduced pressure tissue treatment, the hydrogel-forming material is preferably in a solid, "non-hydrated" state. In other words, the hydrogel-forming material has not yet transformed into a liquid and/or gel-like state. As reduced pressure tissue treatment is administered, the hydrogel-forming material may be exposed to wound exudate and other fluids being drawn from or administered to the tissue site, but the compression of the first, second, and third layers under the influence of the reduced pressure preferably reduces or eliminates the absorption of fluids by the hydrogel-forming material. This allows the hydrogel-forming material to remain in a solid state until reduced pressure delivery is ceased.
Following cessation of reduced pressure therapy, the hydrogel-forming material may be hydrated by either applying water, saline solution, or other fluids to the hydrogel-forming material or by allowing wound exudate to hydrate the hydrogel-forming material. As the hydrogel-forming material hydrates, the material transforms into a liquid and/or gel state which allows easy release of the third layer 227 from the first layer 223.
The hydrogel-forming material may be any suitable material that is capable of accepting and/or forming a liquid or gel-like substance after exposure to water or other fluids for a specified period of time. The hydrogel-forming material is typically a cross-linked polymer; however, it is not required that the material be cross-linked.
Suitable hydrogel-forming materials may include, without limitation, cross-linked polyethylene glycol, hydrophilic polyethers, polyvinyl alcohol, polyvinyl acetate, polyacrylates, polysulfonates, polyphosphazene hydrogels, collagen, gelatin, hyaluronic acid, glucosaminoglycans, chitosan, and alginate. Uncrosslinked polymers with hydrophobic and hydrophilic portions may also be used, such as a copolymer of ethylene glycol and lactic acid or a polyurethane with a very long hydrophilic soft segment.
The release material 235 may also be a water-soluble polymer. As a water-soluble polymer, the release material 235 is capable of dissolving in the presence of water or other liquids. During initial application of the reduced pressure delivery apparatus 213 to the tissue site and during the administration of reduced pressure tissue treatment, the water-soluble polymer is preferably in a "non-hydrated" form. In other words, the polymer has not yet absorbed water or other liquids. As reduced pressure tissue treatment is administered, the water-soluble polymer may be exposed to wound exudate and other fluids being drawn from or administered to the tissue site, but the compression of the first, second, and third layers under the influence of the reduced pressure preferably reduces the solubility of the water-soluble polymer, which prevents the water-soluble polymer from prematurely dissolving. This allows the water-soluble polymer to remain in a solid state until reduced pressure delivery is ceased. Following cessation of reduced pressure therapy, the water-soluble polymer may be hydrated by either applying a fluid to the polymer or by allowing wound exudate to hydrate the polymer. As the water-soluble polymer hydrates, the polymer dissolves into the hydrating liquid which allows easy release of the third layer 227 from the first layer 223.
The water-soluble polymer may include, without limitation, uncrosslinked polyethylene glycol, hydrophilic polyethers, polyvinyl alcohol, polyvinyl acetate, polyacrylates, polysulfonates, polyphosphazenes, collagen, hyaluronic acid, glucosaminoglycans, chitosan, and deoxyribonucleic acid (DNA).
The presence of the second plurality flow channels 236 in the second layer 225 allows the distribution of reduced pressure from the distribution manifold 237 to the scaffold 233.
The second plurality of flow channels 236 further allow passage of any fluids being provided to or being removed from the tissue site 221. While the second plurality of flow channels 236 may be an inherent characteristic of the release material 235 (i.e.
interconnected pores or other flow channels within the material itself), it is more likely that the second plurality of flow channels 236 are mechanically, chemically, or otherwise formed in the release material 235.
For example, referring to FIG. 4, the second plurality of flow channels 236 may be defined by voids between adjacent strands of release material 235 arranged in a grid-like pattern.
Alternatively, referring to FIG. 5, the release material 235 may be applied as beads of material between the first and third layers 223, 227. In this particular configuration, the second plurality of flow channels 236 is defined by voids between adjacent beads of the release material 235. In still another configuration, referring to FIG. 6, a sheet of the release material 235 may be provided with apertures formed in the sheet to define the second plurality of flow channels 236. The shape, size, and positioning of the apertures and voids described above could vary, and in one embodiment, may be random.
Regardless of whether pores, voids, apertures, or some combination thereof are used to define the second plurality of flow channels 236, the porosity of the second layer 225 may be less than the porosity of the scaffold 233 to minimize in-growth of tissue into the second layer 225. The porosity of the second layer 225 may be controlled by limiting the size of the pores, voids, or apertures, or by controlling the number (i.e. density) of pores, voids, or apertures disposed in the second layer 225. The porosity of the second layer 225, however, must remain high enough to allow distribution of reduced pressure and the flow of fluids through the second layer 225.
Like the scaffold 233, the release material 235 may be provided as a sheet or pad of material (see FIG. 6). Alternatively, the release material 235 may be provided in grids of strands, dots, or other individual pieces of material (see FIGS. 4 and 5). The shape, size, and distribution of these individual pieces of material may vary and in some situations, the shape, size, and distribution may be random. The thickness of the release material 235 is measured in a direction normal to the tissue site when the reduced pressure delivery apparatus is placed adjacent the tissue site. Although not required, the thickness of the release material 235 is typically less than the thickness of the scaffold to save money on material costs. In one embodiment, the thickness of the release material 235 is about 200 to 500 microns prior to absorption of fluid. Following the hydration of the release material, the thickness may swell to about 500 micros to 1 millimeter. The dimensions of the sheet or pad of release material in a plane normal to the thickness dimension may vary depending on the size of the tissue site to be treated, but will typically be about the same size in length and width as that of the scaffold.
The pad or sheet of material may be provided in a large size and then trimmed to fit the tissue site.

The distribution manifold 237 of the third layer, or manifold layer 227 assists in distributing reduced pressure received from the reduced pressure delivery tube 217. The manifold may further be used to distribute fluids that are introduced to the tissue site or to manifold wound exudate and other fluids collected from the tissue site. The manifold 237 may be any porous material that is capable of accomplishing these tasks, and in one embodiment, the manifold is formed from a cellular material such as an open-cell foam. The material preferably includes cells that are fluidly connected to adjacent cells. The third plurality of flow channels 238 is formed by and between the "open cells" of the cellular material. The flow channels allow fluid communication throughout that portion of the cellular material having open cells. The cells and flow channels may be uniform in shape and size, or may include patterned or random variations in shape and size. Variations in shape and size of the cells of the cellular material result in variations in the third plurality of flow channels 238, and such characteristics can be used to alter the flow characteristics of fluid through the cellular material. The cellular material may further include portions that include "closed cells." These closed-cell portions of the cellular material contain a plurality of cells, the majority of which are not fluidly connected to adjacent cells. Closed-cell portions of cellular material may be selectively combined with open-cell portions to prevent transmission of fluids through selected portions of the manifold 237.
In one embodiment, the manifold 237 is made from an open-cell, reticulated polyetherurethane foam with pore sizes ranging from about 400-600 microns. An example of this foam may include GranuFoam manufactured by Kinetic Concepts, Inc. of San Antonio, Texas. The manifold 237 may also be polyurethane foam, polyvinyl alcohol foam, polyethylene foam, expanded polytetrafluoroethylene, silicone foam, loofa sponge, sea sponge, gauze, felted mats, or any other biocompatible material that is capable of providing fluid communication through a plurality of flow channels in three dimensions.
Like the scaffold 233 and the release material 235, the manifold 237 may be formed from a sheet or pad of material. The thickness of the manifold 237 may vary, but in one embodiment, the thickness will be at least as great as the thickness of the scaffold 233. The dimensions of the manifold in a plane normal to the thickness dimension may also vary depending on the size of the tissue site being treated. The pad or sheet of manifold material may be provided in a large size and then trimmed to fit the tissue site.
In operation, the reduced pressure delivery apparatus 213 is trimmed if necessary to match the shape and size of the tissue site 221. In many cases, the tissue site 221 may be an open wound, burn, or other-damaged tissue, but the tissue site 221 may similarly be a site that contains healthy tissue upon which it is desired to grow additional tissue.
The reduced pressure delivery apparatus 213 is placed adjacent the tissue site 221 such that the first layer 223 is in contact with the tissue site 221. As previously described, the multiple layers of the reduced pressure delivery apparatus 213 may be laminated, bonded, or otherwise connected, but the layers may also be separate from one another. If certain of the layers are not connected to one another, the various layers may be placed individually such that the first layer 223 is in contact with the tissue site, the second layer 225 is in contact with the first layer 223, and the third layer 227 is in contact with the second layer 225.
After positioning the reduced pressure delivery apparatus 213, a reduced pressure is delivered from the reduced pressure source 219 through the reduced pressure delivery tube 217 to the manifold 237 of the first layer 227. The reduced pressure is distributed through the third plurality of flow channels 238 associated with the manifold 237 to the second plurality of flow channels 236 associated with the second layer 225. The reduced pressure is then distributed to the first plurality of flow channels 234 associated with the scaffold 233 of the first layer 223. As reduced pressure reaches the tissue site 221, fluids at the tissue site 221 such as wound exudate may be drawn through the first, second, and third plurality of flow channels 234, 236, 238 and removed from the reduced pressure delivery apparatus 213. A
reservoir (not shown) and various filters may be provided between the reduced pressure delivery apparatus 213 and the reduced pressure source 219 to collect exudate and protect the reduced pressure source 219. In addition to allowing distribution of reduced pressure and the withdrawal of fluids from the tissue site 221, the first, second, and third plurality of flow channels 234, 236, 238 may be used to distribute fluids such as irrigation fluids, medication, antimicrobials, antibacterials, antivirals, and growth factors to the tissue site 221.
The application of reduced pressure to the tissue site 219 induces new tissue growth.
Some of the mechanisms by which new tissue growth is promoted include mircro-deformation of the tissue, epithelial migration, and improved blood flow. These factors contribute to increasing the development of granulation tissue at the tissue site, which results in new tissue growth. While the discussion of providing reduced pressure tissue treatment often refers to "delivering" reduced pressure to the tissue site, it should be apparent to a person of ordinary skill in the art that delivery of reduced pressure typically involves creating a pressure differential between the reduced pressure source 219 and the tissue site 221.
The pressure differential (with a lower pressure at the reduced pressure source 219 than at the tissue site 221) creates an initial fluid flow from the tissue site 221 toward the reduced pressure source 219. Once the pressure at the tissue site 221 nears or equals that of the pressure at the reduced pressure source 219, the reduced pressure may be maintained at the tissue site due to the fluid connection with the reduced pressure source 219 and the sealing function of the membrane 224.
As new tissue forms under the influence of reduced pressure, the new tissue is permitted to grow into the scaffold 233. The material chosen for the scaffold 233 preferably supports and encourages new tissue growth. Since the scaffold will remain at the tissue site following the administration of reduced pressure tissue treatment, it is preferred that new tissue penetrates the scaffold as much as possible. It has been observed that under the influence of reduced pressure, new tissue may penetrate up to 1 mm (thickness) of scaffold in a period of two days. Since the thickness of the scaffold 233 in some embodiments may only be about 1 to 4 mm, it may be desired to remove the second and third layers 225, 227 of the reduced pressure delivery apparatus 213 and replace the layers with a new dressing containing first, second, and third layers 223, 225, 227. In other words, a new scaffold 233 may be placed on top of the old scaffold 233 following removal of the second and third layers 225, 227. By removing only a portion of the reduced pressure delivery apparatus 213 and leaving the scaffold 233, it is possible to incrementally add new tissue growth to the tissue site 221 as new scaffolds 233 are stacked upon previously inserted scaffolds 233 that are already permeated with new tissue growth.
The release of the second and third layers 225, 227 from the first layer 223 is simplified by the presence of the release material 235. During the application of reduced pressure and removal of fluids from the tissue site 221, the release material 235 preferably remains in a solid state, thereby allowing the second plurality of flow channels 236 to remain open. While the release material will typically transform into a liquid or gel or will dissolve following the absorption of water or other fluids, this change is significantly reduced during the application of reduced pressure to the reduced pressure delivery apparatus 213. Reduced pressure results in a compression of the reduced pressure delivery apparatus 213, which reduces the surface area of the release material that is exposed to fluids flowing through the first, second, and third plurality of flow channels 234, 236, 238. Absorption of fluids by the release material 235 is thereby minimized until reduced pressure delivery is ceased.
During the application of reduced pressure, the release material preferably minimizes or prevents contact between the first and third layers 223, 227. New tissue growing into the scaffold 233 is hindered from growing in the manifold 237 by this separation between the scaffold 233 and manifold 237 and by the release material 235 itself. While tissue growth into the manifold 237 may still occur, the growth is minimized, which lessens pain to the patient upon removal of the manifold 237.
Following application of reduced pressure for a selected period of time, the release material may be hydrated by soaking the reduced pressure delivery apparatus 213 with water, saline solution, or other fluids. Alternatively, the reduced pressure delivery apparatus 213 may be allowed to sit until bodily fluids from the tissue site hydrate the release material 235.
If the release material 235 is a hydrogel-forming material, the release material 235 transforms into a gel-like state and typically expands as it hydrates. This allows for easier removal of the manifold 237 from the scaffold 233. Any hydrogel-forming material (or hydrogel) that remains following removal of the manifold 237 may be manually removed or dissolved by the introduction of additional fluids. Alternatively, if the release material 235 is a water-soluble polymer, it will be dissolved as it absorbs water or other fluids, thus releasing the third layer 227 from the first layer 223.
Referring to FIG. 7, a method 711 of promoting tissue growth at a tissue site according to an embodiment of the present invention is illustrated. The method 711 includes positioning a multi-layer reduced pressure delivery apparatus in contact with the tissue site at 715. The reduced pressure delivery apparatus includes a scaffold, a release material, and a manifold. At 719, the apparatus is oriented such that the scaffold contacts the tissue site. A reduced pressure is applied to the tissue site through the manifold and the scaffold at 723.
Referring to FIG. 8, a method 811 of promoting new tissue growth at a tissue site according to an embodiment of the present invention is illustrated. The method 811 includes at 815 positioning a scaffold in contact with the tissue site, a release material in contact with the scaffold, and a manifold in contact with the release material. At 819, new tissue growth is stimulated at the tissue site by applying a reduced pressure to the tissue site through the manifold and the scaffold.
Referring to FIG. 9, a tissue growth kit 911 for promoting new tissue growth at a tissue site according to an embodiment of the present invention includes a scaffold 913, a release material 915, and a distribution manifold 917. The scaffold 913 includes a first and second side, the first side of the scaffold 913 being adapted to contact the tissue site. The scaffold 913 is similar to the scaffold 233 described previously with reference to FIGS. 2 and 3. The release material 915 is adapted to contact the second side of the scaffold 913 and is similar to the release material 235 described previously with reference to FIGS. 2 and 3.
The distribution manifold 917 is adapted to contact the release material 915 to distribute a reduced pressure to the tissue site through the scaffold 913. The distribution manifold 917 is similar to the manifold 237 described previously with reference to FIGS. 2 and 3. The tissue growth kit 911 may further include a container 921 for housing the scaffold 913, release material 915, and distribution manifold 917 prior to use of the components. The container 921 may be a flexible bag, a box, or any other container suitable for storing the scaffold 913, release material 915, and distribution manifold 917.
While the multi-layer reduced pressure delivery apparatus disclosed herein is used in conjunction with a reduced pressure delivery source to provide reduced pressure tissue treatment to a tissue site, the reduced pressure delivery apparatus could also serve as an advanced tissue dressing alone in the absence of reduced pressure application.
The same materials, relative positioning, and connectivity between layers may be used in the advanced tissue dressing. Similar to the reduced pressure delivery apparatus described herein, the advanced tissue dressing may include a first layer to promote and accept growth of new tissue, a third layer to assist in directing fluids away from the tissue site, and a second layer to facilitate removal of the third layer from the first layer at a selected time.
The third layer of the advanced tissue dressing, instead of having a "manifold", may be considered to include a fluid reservoir for collecting and holding fluids exuded by the wound. The materials described herein as being suitable distribution manifold materials are similarly suitable materials for the reservoir of the third layer. The only requirement of the reservoir is that it be made from a material that is capable of storing fluids produced by or present at the tissue site.
While the systems and methods of the present invention have been described with reference to tissue growth and healing in human patients, it should be recognized that these systems and methods for applying reduced pressure tissue treatment can be used in any living organism in which it is desired to promote tissue growth or healing.
Similarly, the systems and methods of the present invention may be applied to any tissue, including without limitation bone tissue, adipose tissue, muscle tissue, dermal tissue, vascular tissue, connective tissue, cartilage, tendons, or ligaments. While the healing of tissue may be one focus of applying reduced pressure tissue treatment as described herein, the application of reduced pressure tissue treatment may also be used to generate tissue growth in tissues that are not diseased, defective, or damaged. For example, it may be desired to apply reduced pressure tissue treatment to grow additional tissue at a tissue site that can then be harvested. The harvested tissue may be transplanted to another tissue site to replace diseased or damaged tissue, or alternatively the harvested tissue may be transplanted to another patient.

It should be apparent from the foregoing that an invention having significant advantages has been provided. While the invention is shown in only a few of its forms, it is not just limited but is susceptible to various changes and modifications without.

Claims (116)

We claim:
1. A reduced pressure delivery system for applying reduced pressure tissue treatment to a tissue site comprising:
a multi-layer reduced pressure delivery apparatus having a tissue contact layer, a release layer, and a manifold layer, the tissue contact layer including a scaffold adapted to contact the tissue site, the release layer including a hydrogel-forming material and a plurality of flow channels, the manifold layer including a distribution manifold, the release layer being positioned between the tissue contact layer and the manifold layer, the hydrogel-forming material of the release layer binding to at least one of the tissue contact layer and the manifold layer; and a reduced-pressure delivery tube fluidly connected to the manifold layer to deliver a reduced pressure to the tissue site.
2. The reduced pressure delivery system according to claim 1, wherein the hydrogel-forming material is positioned between the scaffold and the distribution manifold to substantially prevent contact between the scaffold and the distribution manifold in areas where the hydrogel-forming material is disposed.
3. The reduced pressure delivery system according to claim 2, wherein the distribution manifold contacts the scaffold in areas in which the hydrogel-forming material is not disposed during application of the reduced pressure.
4. The reduced pressure delivery system according to claim 1, wherein the tissue contact layer is from about 1 mm to about 4 mm in thickness.
5. The reduced pressure delivery system according to claim 1, wherein the thickness of the release layer is less than the thickness of the tissue contact layer.
6. The reduced pressure delivery system according to claim 1, wherein the plurality of flow channels of the release layer are provided by pores disposed in a sheet of the hydrogel-forming material.
7. The reduced pressure delivery system according to claim 6, wherein the pore sizes of the pores in the release layer are less than the pore sizes of the pores in the scaffold.
8. The reduced pressure delivery system according to claim 1, wherein:
the hydrogel-forming material is arranged in a grid pattern such that strands of the hydrogel-forming material are aligned in rows and columns; and the plurality of flow channels are formed by voids disposed between the rows and columns of the hydrogel-forming material.
9. The reduced pressure delivery system according to claim 1, wherein:
the hydrogel-forming material is provided as a plurality of individual beads, each bead being spaced apart from adjacent beads by a void; and the plurality of flow channels are formed by the voids disposed between the beads of the hydrogel-forming material.
10. The reduced pressure delivery system according to claim 9, wherein the porosity provided by the voids is less than the porosity provided by the scaffold.
11. The reduced pressure delivery system according to claim 1, wherein the distribution manifold is an open-cell, reticulated polyetherurethane foam.
12. The reduced pressure delivery system according to claim 1, wherein the hydrogel-forming material is a barrier to tissue penetration.
13. The reduced pressure delivery system according to claim 1, wherein the scaffold is comprised of at least one material selected from the group of polylactic acid, polyglycolic acid, polycaprolactone, polyhydroxybutyrate, polyhydroxyvalerate, polydioxanone, polyorthoesthers, polyphosphazenes, polyurethanes, collagen, hyaluronic acid, chitosan, hydroxyapatite, coralline apatite, calcium phosphate, calcium sulfate, calcium carbonate, bioglass, allografts, and autografts.
14. The reduced pressure delivery system according to claim 1, wherein the hydrogel-forming material is comprised of at least one material selected from the group of polyethylene glycol, hydrophilic polyethers, polyvinyl alcohol, polyvinyl acetate, polyacrylates, polysulfonates, polyphosphazene hydrogels, collagen, gelatin, hyaluronic acid, glucosaminoglycan, chitosan, alginate, and uncrosslinked copolymers of ethylene glycol and lactic acid.
15. The reduced pressure delivery system according to claim 1, wherein the distribution manifold is comprised of at least one material selected from the group of polyurethane foam, polyvinyl alcohol foam, polyethylene foam, expanded polytetrafluoroethylene, silicone foam, loofa sponge, sea sponge, gauze, and felted mats.
16. The reduced pressure delivery system according to claim 1 further comprising:
a reduced pressure source fluidly connected to a proximal end of the reduced-pressure delivery tube.
17. A multi-layer reduced pressure delivery apparatus for applying reduced pressure tissue treatment to a tissue site comprising:
a first layer having a scaffold adapted to contact a tissue site;
a second layer having a hydrogel-forming material and a plurality of flow channels, the hydrogel-forming material contacting the scaffold; and a third layer having a distribution manifold contacting the hydrogel-forming material.
18. The reduced pressure delivery apparatus according to claim 17, wherein the hydrogel-forming material is positioned between the first layer and the third layer and is connected to at least one of the scaffold and the distribution manifold.
19. The reduced pressure delivery apparatus according to claim 17 further comprising:
a reduced-pressure delivery tube fluidly connected to the third layer to deliver a reduced pressure to the tissue site.
20. The reduced pressure delivery apparatus according to claim 17, wherein the hydrogel-forming material is positioned between the scaffold and the distribution manifold to substantially prevent contact between the scaffold and the distribution manifold in areas where the hydrogel-forming material is disposed.
21. The reduced pressure delivery apparatus according to claim 17, wherein the distribution manifold contacts the scaffold in areas in which the hydrogel-forming material is not disposed during application of a reduced pressure.
22. The reduced pressure delivery apparatus according to claim 17, wherein a reduced pressure is delivered to the tissue site through the distribution manifold, the plurality of flow channels, and the scaffold.
23. The reduced pressure delivery apparatus according to claim 17, wherein the flow channels are capable of transmitting a fluid from the scaffold to the distribution manifold during the application of a reduced pressure.
24. The reduced pressure delivery apparatus according to claim 23, wherein the fluid is a wound exudate from the tissue site.
25. The reduced pressure delivery apparatus according to claim 17, wherein the first layer is from about 1 mm to about 4 mm in thickness.
26. The reduced pressure delivery apparatus according to claim 17, wherein the thickness of the second layer in a dehydrated state is less than the thickness of the first layer.
27. The reduced pressure delivery apparatus according to claim 17, wherein the scaffold includes pores having pore sizes ranging from about 50 microns to about 500 microns in diameter.
28. The reduced pressure delivery apparatus according to claim 17, wherein the scaffold includes pores having pore sizes ranging from about 100 microns to about 400 microns in diameter.
29. The reduced pressure delivery apparatus according to claim 17, wherein the plurality of flow channels of the second layer are provided by pores disposed in a sheet of the hydrogel-forming material.
30. The reduced pressure delivery apparatus according to claim 29, wherein the pore sizes of the pores in the second layer are less than the pore sizes of the pores in the scaffold.
31. The reduced pressure delivery apparatus according to claim 17, wherein:
the hydrogel-forming material is arranged in a grid pattern such that strands of the hydrogel-forming material are aligned in rows and columns; and the plurality of flow channels are formed by voids disposed between the rows and columns of the hydrogel-forming material.
32. The reduced pressure delivery apparatus according to claim 17, wherein:
the hydrogel-forming material is provided as a plurality of individual beads, each bead being spaced apart from adjacent beads by a void; and the plurality of flow channels are formed by the voids disposed between the beads of the hydrogel-forming material.
33. The reduced pressure delivery apparatus according to claim 32, wherein the porosity provided by the voids is less than the porosity provided by the scaffold.
34. The reduced pressure delivery apparatus according to claim 17, wherein the distribution manifold is a cellular foam.
35. The reduced pressure delivery apparatus according to claim 17, wherein the distribution manifold is an open-cell, reticulated polyetherurethane foam.
36. The reduced pressure delivery apparatus according to claim 17, wherein the distribution manifold includes pore sizes ranging from about 400 to about 600 microns in diameter.
37. The reduced pressure delivery apparatus according to claim 17, wherein the third layer includes an antimicrobial agent.
38. The reduced pressure delivery apparatus according to claim 17, wherein the hydrogel-forming material is bioabsorbable.
39. The reduced pressure delivery apparatus according to claim 17, wherein the hydrogel-forming material is a barrier to tissue penetration.
40. The reduced pressure delivery apparatus according to claim 17, wherein the tissue site is comprised of tissue selected from the group of adipose tissue, bone tissue, cartilage, connective tissue, dermal tissue, ligaments, muscle tissue, tendons, and vascular tissue.
41. The reduced pressure delivery apparatus according to claim 17, wherein the scaffold is comprised of at least one material selected from the group of polylactic acid, polyglycolic acid, polycaprolactone, polyhydroxybutyrate, polyhydroxyvalerate, polydioxanone, polyorthoesthers, polyphosphazenes, polyurethanes, collagen, hyaluronic acid, chitosan, hydroxyapatite, coralline apatite, calcium phosphate, calcium sulfate, calcium carbonate, bioglass, allografts, and autografts.
42. The reduced pressure delivery apparatus according to claim 17, wherein the hydrogel-forming material is comprised of at least one material selected from the group of polyethylene glycol, hydrophilic polyethers, polyvinyl alcohol, polyvinyl acetate, polyacrylates, polysulfonates, polyphosphazene hydrogels, collagen, gelatin, hyaluronic acid, glucosaminoglycan, chitosan, alginate, and uncrosslinked copolymers of ethylene glycol and lactic acid.
43. The reduced pressure delivery apparatus according to claim 17, wherein the cellular material is comprised of at least one material selected from the group of polyurethane foam, polyvinyl alcohol foam, polyethylene foam, expanded polytetrafluoroethylene, silicone foam, loofa sponge, sea sponge, gauze, and felted mats.
44. The reduced pressure delivery apparatus according to claim 17, wherein the cellular material is chosen from the group of a woven porous pad, a non-woven porous pad, a loofa sponge, and a sea sponge.
45. A multi-layer reduced pressure delivery apparatus for applying reduced pressure tissue treatment to a tissue site comprising:
a tissue contact layer having a scaffold adapted to contact the tissue site to receive in-growth of new tissue from the tissue site, the tissue contact layer further having a first plurality of flow channels;
a manifold layer having a cellular material to distribute a reduced pressure to the tissue site, the manifold layer further having a third plurality of flow channels; and a release layer positioned between the tissue contact layer and the manifold layer, the release layer including a hydrogel-forming material connected to at least one of the tissue contact layer and the manifold layer, the hydrogel-forming material adapted to form a hydrogel upon the absorption of a fluid to release the at least one of the tissue contact layer and the manifold layer, the release layer further having a second plurality of flow channels in fluid communication with the first and third plurality of flow channels.
46. The reduced pressure delivery apparatus according to claim 45 further comprising a reduced-pressure delivery tube fluidly connected to the manifold layer to deliver the reduced pressure to the tissue site through the third plurality of flow channels, the second plurality of flow channels, and the first plurality of flow channels.
47. The reduced pressure delivery apparatus according to claim 45, wherein:
the hydrogel-forming substantially prevents contact between the scaffold and the cellular material in areas where the hydrogel-forming material is disposed; and the cellular material contacts the scaffold in areas in which the hydrogel-forming material is not disposed during application of the reduced pressure
48. The reduced pressure delivery apparatus according to claim 45, wherein the tissue contact layer is from about 1 mm to about 4 mm in thickness.
49. The reduced pressure delivery apparatus according to claim 45, wherein the thickness of the release layer is less than the thickness of the tissue contact layer.
50. The reduced pressure delivery apparatus according to claim 45, wherein the scaffold includes pores having pore sizes ranging from about 50 microns to about 500 microns in diameter.
51. The reduced pressure delivery apparatus according to claim 45, wherein the second plurality of flow channels of the release layer are provided by pores disposed in a sheet of the hydrogel-forming material.
52. The reduced pressure delivery apparatus according to claim 51, wherein the pore sizes of the pores in the release layer are less than the pore sizes of the pores in the scaffold.
53. The reduced pressure delivery apparatus according to claim 45, wherein:
the hydrogel-forming material is arranged in a grid pattern such that strands of the hydrogel-forming material are aligned in rows and columns; and the second plurality of flow channels are formed by voids disposed between the rows and columns of the hydrogel-forming material.
54. The reduced pressure delivery apparatus according to claim 45, wherein:
the hydrogel-forming material is provided as a plurality of individual beads, each bead being spaced apart from adjacent beads by a void; and the second plurality of flow channels are formed by the voids disposed between the beads of the hydrogel-forming material.
55. The reduced pressure delivery apparatus according to claim 54, wherein the porosity provided by the voids is less than the porosity provided by the scaffold.
56. The reduced pressure delivery apparatus according to claim 45, wherein the cellular material is an open-cell, reticulated polyetherurethane foam.
57. The reduced pressure delivery apparatus according to claim 45, wherein the hydrogel-forming material is a barrier to tissue penetration.
58. The reduced pressure delivery apparatus according to claim 45, wherein the scaffold is comprised of at least one material selected from the group of polylactic acid, polyglycolic acid, polycaprolactone, polyhydroxybutyrate, polyhydroxyvalerate, polydioxanone, polyorthoesthers, polyphosphazenes, polyurethanes, collagen, hyaluronic acid, chitosan, hydroxyapatite, coralline apatite, calcium phosphate, calcium sulfate, calcium carbonate, bioglass, allografts, and autografts.
59. The reduced pressure delivery apparatus according to claim 45, wherein the hydrogel-forming material is comprised of at least one material selected from the group of polyethylene glycol, hydrophilic polyethers, polyvinyl alcohol, polyvinyl acetate, polyacrylates, polysulfonates, polyphosphazene hydrogels, collagen, gelatin, hyaluronic acid, glucosaminoglycan, chitosan, alginate, and uncrosslinked copolymers of ethylene glycol and lactic acid.
60. The reduced pressure delivery apparatus according to claim 45, wherein the cellular material is comprised of at least one material selected from the group of polyurethane foam, polyvinyl alcohol foam, polyethylene foam, expanded polytetrafluoroethylene, silicone foam, loofa sponge, sea sponge, gauze, and felted mats.
61. A reduced pressure delivery apparatus for applying reduced pressure tissue treatment to a tissue site comprising:
a scaffold adapted to contact a tissue site to receive in-growth of new tissue from the tissue site;
a distribution manifold adapted to distribute a reduced pressure to the tissue site through the scaffold; and a release material positioned between and in contact with the scaffold and the distribution manifold to substantially prevent contact between the scaffold and the distribution manifold in areas where the release material is disposed.
62. The reduced pressure delivery apparatus according to claim 61, wherein the release material is connected to at least one of the scaffold and the distribution manifold.
63. The reduced pressure delivery apparatus according to claim 61 further comprising:
a reduced-pressure delivery tube having a distal end fluidly connected to the distribution manifold to deliver the reduced pressure to the distribution manifold.
64. The reduced pressure delivery apparatus according to claim 61, wherein the distribution manifold contacts the scaffold in areas in which the release material is not disposed during application of the reduced pressure.
65. The reduced pressure delivery apparatus according to claim 61 further comprising:
a plurality of flow channels disposed between the scaffold and distribution manifold to allow fluid communication between the scaffold and distribution manifold.
66. The reduced pressure delivery apparatus according to claim 61, wherein the scaffold is from about 1 mm to about 4 mm in thickness.
67. The reduced pressure delivery apparatus according to claim 61, wherein the thickness of the release material is less than the thickness of the scaffold.
68. The reduced pressure delivery apparatus according to claim 61, wherein the scaffold includes pores having pore sizes ranging from about 50 microns to about 500 microns in diameter.
69. The reduced pressure delivery apparatus according to claim 61, wherein the scaffold includes pores having pore sizes ranging from about 100 microns to about 400 microns in diameter.
70. The reduced pressure delivery apparatus according to claim 61 further comprising:
a plurality of flow channels disposed between the scaffold and distribution manifold to allow fluid communication between the scaffold and distribution manifold; and wherein the plurality of flow channels are provided by pores disposed in a sheet of the release material.
71. The reduced pressure delivery apparatus according to claim 70, wherein the pore sizes of the pores in the sheet of the release material are less than the pore sizes of pores in the scaffold.
72. The reduced pressure delivery apparatus according to claim 61 further comprising:
a plurality of flow channels disposed between the scaffold and distribution manifold to allow fluid communication between the scaffold and distribution manifold;
wherein the release material is arranged in a grid pattern such that strands of the release material are aligned in rows and columns; and wherein the plurality of flow channels are formed by voids disposed between the rows and columns of the release material.
73. The reduced pressure delivery apparatus according to claim 61 further comprising:
a plurality of flow channels disposed between the scaffold and distribution manifold to allow fluid communication between the scaffold and distribution manifold;
the release material is provided as a plurality of individual beads, each bead being spaced apart from adjacent beads by a void; and the plurality of flow channels are formed by the voids disposed between the beads of the release material.
74. The reduced pressure delivery apparatus according to claim 73, wherein the porosity provided by the voids is less than the porosity provided by the scaffold.
75. The reduced pressure delivery apparatus according to claim 61, wherein the distribution manifold is a cellular foam.
76. The reduced pressure delivery apparatus according to claim 61, wherein the distribution manifold is an open-cell, reticulated polyetherurethane foam.
77. The reduced pressure delivery apparatus according to claim 61, wherein the distribution manifold includes pore sizes ranging from about 400 to about 600 microns in diameter.
78. The reduced pressure delivery apparatus according to claim 61, wherein the distribution manifold is infused with an antimicrobial agent.
79. The reduced pressure delivery apparatus according to claim 61, wherein the release material is bioabsorbable.
80. The reduced pressure delivery apparatus according to claim 61, wherein the release material is a barrier to tissue penetration.
81. The reduced pressure delivery apparatus according to claim 61, wherein the tissue site is comprised of tissue selected from the group of adipose tissue, bone tissue, cartilage, connective tissue, dermal tissue, ligaments, muscle tissue, tendons, and vascular tissue.
82. The reduced pressure delivery apparatus according to claim 61, wherein the scaffold is comprised of at least one material selected from the group of polylactic acid, polyglycolic acid, polycaprolactone, polyhydroxybutyrate, polyhydroxyvalerate, polydioxanone, polyorthoesthers, polyphosphazenes, polyurethanes, collagen, hyaluronic acid, chitosan, hydroxyapatite, coralline apatite, calcium phosphate, calcium sulfate, calcium carbonate, bioglass, allograffts, and autografts.
83. The reduced pressure delivery apparatus according to claim 61, wherein the release material is comprised of at least one material selected from the group of polyethylene glycol, hydrophilic polyethers, polyvinyl alcohol, polyvinyl acetate, polyacrylates, polysulfonates, polyphosphazene hydrogels, collagen, gelatin, hyaluronic acid, glucosaminoglycan, chitosan, alginate, deoxyribonucleic acid, and uncrosslinked copolymers of ethylene glycol and lactic acid.
84. The reduced pressure delivery apparatus according to claim 61, wherein the distribution manifold is comprised of at least one material selected from the group of polyurethane foam, polyvinyl alcohol foam, polyethylene foam, expanded polytetrafluoroethylene, silicone foam, loofa sponge, sea sponge, gauze, and felted mats.
85. The reduced pressure delivery apparatus according to claim 61, wherein the distribution manifold is chosen from the group of a woven porous pad, a non-woven porous pad, a loofa sponge, and a sea sponge.
86. A reduced pressure delivery system for applying reduced pressure tissue treatment to a tissue site comprising:
a reduced pressure delivery apparatus having a distribution manifold to distribute a reduced pressure and a scaffold to encourage in-growth of new tissue from the tissue site, the distribution manifold and scaffold being bound together by a hydrogel-forming material positioned between the distribution manifold and the scaffold;
a reduced-pressure delivery tube having a distal end fluidly connected to the distribution manifold to deliver the reduced pressure through the distribution manifold and scaffold to the tissue site.
87. The reduced pressure delivery system according to claim 86, wherein the hydrogel-forming material substantially prevents contact between the scaffold and the distribution manifold in areas where the hydrogel-forming material is disposed.
88. The reduced pressure delivery system according to claim 86, wherein the distribution manifold contacts the scaffold in areas in which the hydrogel-forming material is not disposed during application of the reduced pressure.
89. The reduced pressure delivery system according to claim 86 further comprising:
a plurality of flow channels disposed between the scaffold and distribution manifold to allow fluid communication between the scaffold and distribution manifold.
90. The reduced pressure delivery system according to claim 86, wherein the scaffold is from about 1 mm to about 4 mm in thickness.
91. The reduced pressure delivery system according to claim 86, wherein the thickness of the hydrogel-forming material is less than the thickness of the scaffold.
92. The reduced pressure delivery system according to claim 86 further comprising:
a plurality of flow channels disposed between the scaffold and distribution manifold to allow fluid communication between the scaffold and distribution manifold; and wherein the plurality of flow channels are provided by pores disposed in a sheet of the hydrogel-forming material.
93. The reduced pressure delivery system according to claim 92, wherein the pore sizes of the pores in the sheet of the hydrogel-forming material are less than the pore sizes of pores in the scaffold.
94. The reduced pressure delivery system according to claim 86 further comprising:
a plurality of flow channels disposed between the scaffold and distribution manifold to allow fluid communication between the scaffold and distribution manifold;
wherein the hydrogel-forming material is arranged in a grid pattern such that strands of the hydrogel-forming material are aligned in rows and columns; and wherein the plurality of flow channels are formed by voids disposed between the rows and columns of the hydrogel-forming material.
95. The reduced pressure delivery system according to claim 86 further comprising:
a plurality of flow channels disposed between the scaffold and distribution manifold to allow fluid communication between the scaffold and distribution manifold;
the hydrogel-forming material is provided as a plurality of individual beads, each bead being spaced apart from adjacent beads by a void; and the plurality of flow channels are formed by the voids disposed between the beads of the hydrogel-forming material.
96. The reduced pressure delivery system according to claim 95, wherein the porosity provided by the voids is less than the porosity provided by the scaffold.
97. The reduced pressure delivery system according to claim 86, wherein the distribution manifold is an open-cell, reticulated polyetherurethane foam.
98. The reduced pressure delivery system according to claim 86, wherein the hydrogel-forming material is a barrier to tissue penetration.
99. The reduced pressure delivery system according to claim 86, wherein the scaffold is comprised of at least one material selected from the group of polylactic acid, polyglycolic acid, polycaprolactone, polyhydroxybutyrate, polyhydroxyvalerate, polydioxanone, polyorthoesthers, polyphosphazenes, polyurethanes, collagen, hyaluronic acid, chitosan, hydroxyapatite, coralline apatite, calcium phosphate, calcium sulfate, calcium carbonate, bioglass, allografts, and autografts.
100. The reduced pressure delivery system according to claim 86, wherein the hydrogel-forming material is comprised of at least one material selected from the group of polyethylene glycol, hydrophilic polyethers, polyvinyl alcohol, polyvinyl acetate, polyacrylates, polysulfonates, polyphosphazene hydrogels, collagen, gelatin, hyaluronic acid, glucosaminoglycan, chitosan, alginate, and uncrosslinked copolymers of ethylene glycol and lactic acid.
101. The reduced pressure delivery system according to claim 86, wherein the distribution manifold is comprised of at least one material selected from the group of polyurethane foam, polyvinyl alcohol foam, polyethylene foam, expanded polytetrafluoroethylene, silicone foam, loofa sponge, sea sponge, gauze, and felted mats.
102. The reduced pressure delivery system according to claim 86 further comprising:
a reduced pressure source fluidly connected to a proximal end of the reduced-pressure delivery tube.
103. A tissue growth kit for promoting new tissue growth at a tissue site comprising:
a scaffold having a first and a second side, the first side adapted to contact the tissue site;
a hydrogel-forming material adapted to contact the second side of the scaffold;
and a distribution manifold adapted to contact the hydrogel-forming material to distribute a reduced pressure to the tissue site through the scaffold.
104. Use of a scaffold, a hydrogel forming material, and a manifold for promoting new tissue growth at a tissue site, the scaffold for being in contact with the tissue site;
the hydrogel-forming material for being in contact with the scaffold; and the manifold for being in contact with the hydrogel-forming material and for applying a reduced pressure to the tissue site through the manifold and scaffold.
105. The use according to claim 104, further comprising:
withdrawing exudate through the scaffold and manifold.
106. The use according to claim 104, wherein:
when the reduced pressure applied to the manifold is removed, the hydrogel-forming material is hydratable into a gel form; and the manifold is removable from the hydrogel-forming material.
107. The method according to claim 106, wherein the hydrogel-forming material is removable from the scaffold.
108. The use according to claim 106, wherein when the hydrogel-forming material is hydrated, a fluid is deliverable to the hydrogel-forming material through the manifold.
109. The use according to claim 106 wherein:
when the manifold is removed, a second scaffold is positionable in contact with the first scaffold;
a second hydrogel-forming material is positionable in contact with the second scaffold; and a second manifold is positionable in contact with the second hydrogel-forming material and for applying reduced pressure to the second manifold.
110. The use according to claim 104, wherein the tissue site comprises adipose tissue, bone tissue, muscle tissue, dermal tissue, vascular tissue, connective tissue, cartilage, tendons, or ligaments.
111. Use of a multilayer pressure delivery apparatus for promoting new tissue growth at a tissue site comprising:
the multi-layer reduced pressure delivery apparatus positionable in contact with the tissue site, the multi-layer reduced pressure delivery apparatus including:
a tissue contact layer having a scaffold adaptable to contact the tissue site;
a manifold layer having a distribution manifold; and a release layer having a hydrogel-forming material and a plurality of flow channels, the release layer positionable between the tissue contact layer and the manifold layer, the hydrogel-forming material of the release layer bindable to at least one of the tissue contact layer and the manifold layer;
the multi-layered reduced pressure delivery apparatus orientable such that the tissue contact layer contacts the tissue site; and the distribution manifold, flow channels, and the scaffold for applying.
a reduced pressure to the tissue site.
112. The use according to claim 111, further comprising:
withdrawing exudate through the scaffold, the flow channels, and the distribution manifold.
113. The use according to claim 111, wherein when the reduced pressure is removed, the hydrogel-forming material is hydratable into a gel form; and the distribution manifold is removable from the hydrogel-forming material.
114. The use according to claim 113, wherein when the distribution manifold is removed, a second multi-layer reduced pressure delivery apparatus is positionable in contact with the first scaffold for applying reduced pressure to the second multi-layer reduced pressure delivery apparatus.
115. Use of a multilayer reduced pressure delivery apparatus for promoting new tissue growth at a tissue site comprising:
the multi-layer reduced pressure delivery apparatus positionable in contact with the tissue site, the multi-layer reduced pressure delivery apparatus including:
a first layer having a scaffold adapted to contact the tissue site;
a second layer having a hydrogel-forming material and a plurality of flow channels, the hydrogel-forming material contacting the scaffold; and a third layer having a distribution manifold contacting the hydrogel-forming material;
the multi-layered reduced pressure delivery apparatus orientable such that the tissue contact layer contacts the tissue site; and the distribution manifold, the flow channels, and the scaffold for applying a reduced pressure to the tissue site.
116. Use of a scaffold, a hydrogel-forming material and a distribution manifold for promoting new tissue growth at a tissue site comprising:
a scaffold positionable in contact with the tissue site, a hydrogel-forming material in contact with the scaffold, and a distribution manifold in contact with the hydrogel-forming material; and the distribution manifold and the scaffold for applying a reduced pressure to the tissue site.

41.
CA2674024A 2007-01-25 2008-01-17 Biocompatible wound dressing Active CA2674024C (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11/657,887 2007-01-25
US11/657,887 US7700819B2 (en) 2001-02-16 2007-01-25 Biocompatible wound dressing
PCT/US2008/000596 WO2008091521A2 (en) 2007-01-25 2008-01-17 Biocompatible wound dressing

Publications (2)

Publication Number Publication Date
CA2674024A1 CA2674024A1 (en) 2008-07-31
CA2674024C true CA2674024C (en) 2012-11-27

Family

ID=38334961

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2674024A Active CA2674024C (en) 2007-01-25 2008-01-17 Biocompatible wound dressing

Country Status (13)

Country Link
US (2) US7700819B2 (en)
EP (5) EP3127577B2 (en)
JP (1) JP4777462B2 (en)
KR (1) KR101164714B1 (en)
CN (2) CN103120610B (en)
AU (1) AU2008209626B2 (en)
CA (1) CA2674024C (en)
IL (1) IL199730A0 (en)
NO (1) NO20092687L (en)
RU (1) RU2433843C2 (en)
TW (1) TWI391128B (en)
WO (1) WO2008091521A2 (en)
ZA (1) ZA200904095B (en)

Families Citing this family (322)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0011202D0 (en) 2000-05-09 2000-06-28 Kci Licensing Inc Abdominal wound dressing
US7763769B2 (en) 2001-02-16 2010-07-27 Kci Licensing, Inc. Biocompatible wound dressing
US7700819B2 (en) * 2001-02-16 2010-04-20 Kci Licensing, Inc. Biocompatible wound dressing
US6648862B2 (en) 2001-11-20 2003-11-18 Spheric Products, Ltd. Personally portable vacuum desiccator
US7846141B2 (en) 2002-09-03 2010-12-07 Bluesky Medical Group Incorporated Reduced pressure treatment system
GB0224986D0 (en) 2002-10-28 2002-12-04 Smith & Nephew Apparatus
SG144168A1 (en) 2003-07-22 2008-07-29 Kci Licensing Inc Negative pressure wound treatment dressing
GB0323881D0 (en) * 2003-10-11 2003-11-12 Graham Neil W Novel occlusive dressing
GB0325130D0 (en) * 2003-10-28 2003-12-03 Smith & Nephew Apparatus with scaffold
GB0325129D0 (en) 2003-10-28 2003-12-03 Smith & Nephew Apparatus in situ
US7790945B1 (en) 2004-04-05 2010-09-07 Kci Licensing, Inc. Wound dressing with absorption and suction capabilities
US7909805B2 (en) 2004-04-05 2011-03-22 Bluesky Medical Group Incorporated Flexible reduced pressure treatment appliance
US8062272B2 (en) 2004-05-21 2011-11-22 Bluesky Medical Group Incorporated Flexible reduced pressure treatment appliance
US10058642B2 (en) 2004-04-05 2018-08-28 Bluesky Medical Group Incorporated Reduced pressure treatment system
US7951124B2 (en) * 2004-04-13 2011-05-31 Boehringer Technologies, Lp Growth stimulating wound dressing with improved contact surfaces
US7753894B2 (en) 2004-04-27 2010-07-13 Smith & Nephew Plc Wound cleansing apparatus with stress
CA2619929A1 (en) 2005-09-06 2007-03-15 Tyco Healthcare Group Lp Self contained wound dressing with micropump
EP1922095A2 (en) 2005-09-07 2008-05-21 Tyco Healthcare Group LP Wound dressing with vacuum reservoir
GB0524027D0 (en) * 2005-11-25 2006-01-04 Smith & Nephew Fibrous dressing
US7779625B2 (en) 2006-05-11 2010-08-24 Kalypto Medical, Inc. Device and method for wound therapy
US8338402B2 (en) * 2006-05-12 2012-12-25 Smith & Nephew Plc Scaffold
US8680360B2 (en) * 2006-09-26 2014-03-25 Smith & Nephew Inc. Lattice dressing
US9820888B2 (en) 2006-09-26 2017-11-21 Smith & Nephew, Inc. Wound dressing
WO2008057600A2 (en) 2006-11-09 2008-05-15 Kci Licensing Inc. Porous bioresorbable dressing conformable to a wound and methods of making same
EP3106140B2 (en) 2007-02-09 2022-05-18 KCI Licensing, Inc. A breathable interface system for topical reduced pressure
US8231533B2 (en) * 2007-02-16 2012-07-31 Buchalter Neal Ultrasound coupling device
EP2607477B1 (en) 2007-05-03 2020-09-23 The Brigham and Women's Hospital, Inc. Multipotent stem cells and uses thereof
WO2009021523A1 (en) * 2007-08-14 2009-02-19 Coloplast A/S Pressure-distributing element of closed cell foam
BRPI0817544A2 (en) * 2007-10-10 2017-05-02 Univ Wake Forest Health Sciences apparatus for treating damaged spinal cord tissue
US8246590B2 (en) * 2007-10-11 2012-08-21 Spiracur, Inc. Closed incision negative pressure wound therapy device and methods of use
EP3254650B1 (en) 2007-11-21 2020-01-08 Smith & Nephew plc Wound dressing
US8808274B2 (en) 2007-11-21 2014-08-19 Smith & Nephew Plc Wound dressing
GB0722820D0 (en) 2007-11-21 2008-01-02 Smith & Nephew Vacuum assisted wound dressing
EP2217298B1 (en) 2007-11-21 2015-11-11 T.J. Smith & Nephew Limited Suction device and dressing
US11253399B2 (en) 2007-12-06 2022-02-22 Smith & Nephew Plc Wound filling apparatuses and methods
GB0723874D0 (en) * 2007-12-06 2008-01-16 Smith & Nephew Dressing
GB0723855D0 (en) 2007-12-06 2008-01-16 Smith & Nephew Apparatus and method for wound volume measurement
GB0723875D0 (en) 2007-12-06 2008-01-16 Smith & Nephew Wound management
GB0723872D0 (en) * 2007-12-06 2008-01-16 Smith & Nephew Apparatus for topical negative pressure therapy
US20130096518A1 (en) 2007-12-06 2013-04-18 Smith & Nephew Plc Wound filling apparatuses and methods
GB2455962A (en) 2007-12-24 2009-07-01 Ethicon Inc Reinforced adhesive backing sheet, for plaster
US8377017B2 (en) 2008-01-03 2013-02-19 Kci Licensing, Inc. Low-profile reduced pressure treatment system
US20090177133A1 (en) * 2008-01-04 2009-07-09 Kristine Kieswetter Reduced pressure dressing coated with biomolecules
WO2009089016A1 (en) * 2008-01-08 2009-07-16 Southeastern Medical Technologies, Llc A methods and apparatuses for the treatment of wounds with pressures altered from atmospheric
WO2009089435A1 (en) * 2008-01-09 2009-07-16 Wake Forest University Health Sciences Device and method for treating central nervous system pathology
US20090198200A1 (en) * 2008-01-22 2009-08-06 David Tumey Wound dressing having undercut channels for negative pressure wound therapy
US20100047324A1 (en) * 2008-02-22 2010-02-25 Celonova Biosciences, Inc. Multi-Functional Wound Dressing Matrices and Related Methods
GB0803564D0 (en) 2008-02-27 2008-04-02 Smith & Nephew Fluid collection
US8449508B2 (en) 2008-03-05 2013-05-28 Kci Licensing, Inc. Dressing and method for applying reduced pressure to and collecting and storing fluid from a tissue site
EP2711034A1 (en) * 2008-03-05 2014-03-26 KCI Licensing Inc. Dressing for applying reduced pressure to and collecting and storing fluid from a tissue site
US8298200B2 (en) 2009-06-01 2012-10-30 Tyco Healthcare Group Lp System for providing continual drainage in negative pressure wound therapy
US9033942B2 (en) 2008-03-07 2015-05-19 Smith & Nephew, Inc. Wound dressing port and associated wound dressing
US8021347B2 (en) * 2008-07-21 2011-09-20 Tyco Healthcare Group Lp Thin film wound dressing
US20090234306A1 (en) 2008-03-13 2009-09-17 Tyco Healthcare Group Lp Vacuum wound therapy wound dressing with variable performance zones
GB0804654D0 (en) 2008-03-13 2008-04-16 Smith & Nephew Vacuum closure device
RU2010138979A (en) * 2008-03-13 2012-04-20 КейСиАй Лайсензинг Инк. (US) PRESSURE SENSORS, TRANSMITTERS, SYSTEMS AND METHODS FOR CARRYING OUT PRESSURE CONTROL AT A FABRIC SECTION
US9199012B2 (en) 2008-03-13 2015-12-01 Smith & Nephew, Inc. Shear resistant wound dressing for use in vacuum wound therapy
CA2722671A1 (en) * 2008-04-30 2009-11-05 Amy Mcnulty Use of nucleic acids with reduced pressure therapy
GB0808376D0 (en) 2008-05-08 2008-06-18 Bristol Myers Squibb Co Wound dressing
US20090281509A1 (en) * 2008-05-12 2009-11-12 Gellis Michael B Apparatus to collect body fluids following liposuction surgery
US10912869B2 (en) 2008-05-21 2021-02-09 Smith & Nephew, Inc. Wound therapy system with related methods therefor
US8414519B2 (en) 2008-05-21 2013-04-09 Covidien Lp Wound therapy system with portable container apparatus
BRPI0909606A2 (en) 2008-05-30 2016-02-16 Kci Licensing Inc system for providing strength to a desired treatment area in a curved body part of a person, system for providing compression force to a desired treatment area on a person's torso, method for manufacturing a system for providing compression force to a person desired treatment area in a curved part of a person's body
JP5269986B2 (en) 2008-05-30 2013-08-21 ケーシーアイ ライセンシング インコーポレイテッド Linear wound closure cushion and system under reduced pressure
CA2840415C (en) * 2008-06-25 2018-01-02 Kci Licensing, Inc. Absorbable, reduced-pressure manifolds and systems
CN102065929B (en) * 2008-06-26 2013-11-06 凯希特许有限公司 System for stimulation of cartilage formation using reduced pressure treatment
US8257326B2 (en) 2008-06-30 2012-09-04 Tyco Healthcare Group Lp Apparatus for enhancing wound healing
AU2009268997B2 (en) 2008-07-08 2015-04-02 Smith & Nephew Inc. Portable negative pressure wound therapy device
RU2544093C2 (en) 2008-07-18 2015-03-10 Уэйк Форест Юниверсити Хелс Сайенсиз Device and method for cardiac tissue modulation by local application of pressure below atmospheric for minimising cell death and injury
NO2309961T3 (en) 2008-08-08 2018-05-05
US8216198B2 (en) 2009-01-09 2012-07-10 Tyco Healthcare Group Lp Canister for receiving wound exudate in a negative pressure therapy system
US8827983B2 (en) 2008-08-21 2014-09-09 Smith & Nephew, Inc. Sensor with electrical contact protection for use in fluid collection canister and negative pressure wound therapy systems including same
US8251979B2 (en) 2009-05-11 2012-08-28 Tyco Healthcare Group Lp Orientation independent canister for a negative pressure wound therapy device
US9414968B2 (en) * 2008-09-05 2016-08-16 Smith & Nephew, Inc. Three-dimensional porous film contact layer with improved wound healing
AU2015200669B2 (en) * 2008-09-18 2016-09-08 Solventum Intellectual Properties Company Multi-layer dressings, systems, and methods for applying reduced pressure at a tissue site
RU2011107113A (en) * 2008-09-18 2012-10-27 КейСиАй Лайсензинг, Инк. (US) LAMINAR BANDAGES, SYSTEMS AND METHODS FOR APPLYING THE REDUCED PRESSURE TO THE FABRIC SECTION
EP2740501B1 (en) 2008-09-18 2019-07-03 KCI Licensing, Inc. System for controlling inflammatory response
GB0817796D0 (en) 2008-09-29 2008-11-05 Convatec Inc wound dressing
EP2337536B1 (en) 2008-10-02 2020-08-12 L.R. R & D Ltd. Interface layer wound dressing
US8158844B2 (en) 2008-10-08 2012-04-17 Kci Licensing, Inc. Limited-access, reduced-pressure systems and methods
EP2340060B1 (en) 2008-10-29 2017-01-25 KCI Licensing, Inc. Medical canister connectors
US8608776B2 (en) * 2008-10-29 2013-12-17 KCI Licencsing, Inc. Reduced-pressure, abdominal treatment systems and methods
US8460257B2 (en) * 2008-11-07 2013-06-11 Kci Licensing, Inc. Reduced-pressure, wound-treatment dressings and systems
RU2011114002A (en) 2008-11-14 2012-12-20 КейСиАй ЛАЙСЕНЗИНГ, ИНК. FLUID POCKET, SYSTEM AND METHOD FOR STORING A FLUID FROM A FABRIC SECTION
BRPI0915250A2 (en) * 2008-11-18 2019-09-10 Kci Licensing Inc reduced pressure treatment system for treating a patient injury, composite distributor for use in a reduced pressure treatment system, manufacturing method for a composite distributor for use in a reduced pressure treatment system and treatment method of a wound site in a patient with reduced pressure
US8529528B2 (en) * 2008-12-24 2013-09-10 Kci Licensing, Inc. Reduced-pressure wound treatment systems and methods employing microstrain-inducing manifolds
US8708984B2 (en) 2008-12-24 2014-04-29 Kci Licensing, Inc. Reduced-pressure wound treatment systems and methods employing manifold structures
SG171797A1 (en) * 2008-12-24 2011-07-28 Kci Licensing Inc Membranes, systems, and methods for applying reduced pressure to a subcutaneous tissue site
KR20110107357A (en) 2008-12-30 2011-09-30 케이씨아이 라이센싱 인코포레이티드 Reduced pressure augmentation of microfracture procedures for cartilage repair
EP2370144B1 (en) 2008-12-31 2014-09-24 KCI Licensing, Inc. Systems for inducing fluid flow to stimulate tissue growth
US9125766B2 (en) * 2008-12-31 2015-09-08 Kci Licensing, Inc. Tissue roll scaffolds
US7982087B2 (en) * 2009-01-09 2011-07-19 Smith & Nephew, Inc. Wound dressing
GB0900423D0 (en) 2009-01-12 2009-02-11 Smith & Nephew Negative pressure device
GB0902368D0 (en) 2009-02-13 2009-04-01 Smith & Nephew Wound packing
US9393267B2 (en) * 2009-02-19 2016-07-19 University Of Southern California Gel delivery system for tissue repair
TWI384969B (en) * 2009-03-12 2013-02-11 Ind Tech Res Inst Processing system and collecting device thereof
EP2416816B1 (en) * 2009-04-10 2014-10-15 Spiracur Inc. Methods and devices for applying closed incision negative pressure wound therapy
US8444614B2 (en) * 2009-04-10 2013-05-21 Spiracur, Inc. Methods and devices for applying closed incision negative pressure wound therapy
EP2419157A4 (en) 2009-04-17 2018-01-03 Kalypto Medical, Inc. Negative pressure wound therapy device
US20100305523A1 (en) * 2009-05-27 2010-12-02 Tyco Healthcare Group Lp Active Exudate Control System
US9421309B2 (en) * 2009-06-02 2016-08-23 Kci Licensing, Inc. Reduced-pressure treatment systems and methods employing hydrogel reservoir members
US20110196321A1 (en) 2009-06-10 2011-08-11 Tyco Healthcare Group Lp Fluid Collection Canister Including Canister Top with Filter Membrane and Negative Pressure Wound Therapy Systems Including Same
US20100324516A1 (en) 2009-06-18 2010-12-23 Tyco Healthcare Group Lp Apparatus for Vacuum Bridging and/or Exudate Collection
DE102009031992A1 (en) * 2009-07-06 2011-01-13 Paul Hartmann Ag Device for negative pressure therapy of wounds
US8469936B2 (en) * 2009-07-15 2013-06-25 Kci Licensing, Inc. Reduced-pressure dressings, systems, and methods employing desolidifying barrier layers
US8690844B2 (en) * 2009-08-27 2014-04-08 Kci Licensing, Inc. Re-epithelialization wound dressings and systems
US20110054420A1 (en) * 2009-08-27 2011-03-03 Christopher Brian Locke Reduced-pressure wound dressings and systems for re-epithelialization and granulation
EP2335747B1 (en) * 2009-12-16 2016-12-14 Paul Hartmann AG Device for negative pressure wound therapy
US9452247B2 (en) * 2009-12-16 2016-09-27 Paul Hartmann Ag Device for negative pressure wound therapy
EP3569376B1 (en) 2010-01-20 2022-12-14 3M Innovative Properties Company Method for making foam wound insert with regions of higher and lower densities
US10065030B2 (en) 2010-02-23 2018-09-04 Viaderm Llc Vacuum assisted percutaneous appliance
US8791315B2 (en) 2010-02-26 2014-07-29 Smith & Nephew, Inc. Systems and methods for using negative pressure wound therapy to manage open abdominal wounds
US8469935B2 (en) * 2010-03-11 2013-06-25 Kci Licensing, Inc. Abdominal treatment systems, delivery devices, and methods
US9358158B2 (en) * 2010-03-16 2016-06-07 Kci Licensing, Inc. Patterned neo-epithelialization dressings, systems, and methods
US8814842B2 (en) * 2010-03-16 2014-08-26 Kci Licensing, Inc. Delivery-and-fluid-storage bridges for use with reduced-pressure systems
US8632512B2 (en) * 2010-04-09 2014-01-21 Kci Licensing, Inc. Apparatuses, methods, and compositions for the treatment and prophylaxis of chronic wounds
US9999702B2 (en) 2010-04-09 2018-06-19 Kci Licensing Inc. Apparatuses, methods, and compositions for the treatment and prophylaxis of chronic wounds
US8785713B2 (en) * 2010-04-13 2014-07-22 Kci Licensing, Inc. Compositions with reactive ingredients, and wound dressings, apparatuses, and methods
US9492325B2 (en) * 2010-04-16 2016-11-15 Kci Licensing, Inc. Dressings and methods for treating a tissue site on a patient
US20110257611A1 (en) * 2010-04-16 2011-10-20 Kci Licensing, Inc. Systems, apparatuses, and methods for sizing a subcutaneous, reduced-pressure treatment device
US8604265B2 (en) 2010-04-16 2013-12-10 Kci Licensing, Inc. Dressings and methods for treating a tissue site on a patient
GB201006986D0 (en) * 2010-04-27 2010-06-09 Smith & Nephew Wound dressing
US9061095B2 (en) 2010-04-27 2015-06-23 Smith & Nephew Plc Wound dressing and method of use
US8623047B2 (en) * 2010-04-30 2014-01-07 Kci Licensing, Inc. System and method for sealing an incisional wound
GB201011173D0 (en) 2010-07-02 2010-08-18 Smith & Nephew Provision of wound filler
EP2417947A1 (en) * 2010-08-12 2012-02-15 John Bennett Integrated contoured negative pressure bandages
ES2639776T3 (en) 2010-09-20 2017-10-30 Smith & Nephew, Plc Negative pressure device
GB201015656D0 (en) 2010-09-20 2010-10-27 Smith & Nephew Pressure control apparatus
GB201020005D0 (en) * 2010-11-25 2011-01-12 Smith & Nephew Composition 1-1
MX337627B (en) * 2010-11-25 2016-03-10 Smith & Nephew Composition i-ii and products and uses thereof.
GB201020236D0 (en) 2010-11-30 2011-01-12 Convatec Technologies Inc A composition for detecting biofilms on viable tissues
US9440010B2 (en) * 2010-12-07 2016-09-13 Kci Licensing, Inc. Drape having microstrain inducing projections for treating a wound site
JP5965409B2 (en) 2010-12-08 2016-08-03 コンバテック・テクノロジーズ・インコーポレイテッドConvatec Technologies Inc Integrated system for assessing wound exudate
JP6151186B2 (en) 2010-12-08 2017-06-21 コンバテック・テクノロジーズ・インコーポレイテッドConvatec Technologies Inc Wound exudate system attachment device
JP2012125266A (en) * 2010-12-10 2012-07-05 Coloplast As Method of forming opening in base plate of stoma device, template sheet and label to be used in the method, and base plate and stoma device
US8613733B2 (en) * 2010-12-15 2013-12-24 Kci Licensing, Inc. Foam dressing with integral porous film
US8551525B2 (en) 2010-12-23 2013-10-08 Biostructures, Llc Bone graft materials and methods
GB2488749A (en) 2011-01-31 2012-09-12 Systagenix Wound Man Ip Co Bv Laminated silicone coated wound dressing
WO2012106590A2 (en) 2011-02-04 2012-08-09 University Of Massachusetts Negative pressure wound closure device
US9421132B2 (en) 2011-02-04 2016-08-23 University Of Massachusetts Negative pressure wound closure device
US8597264B2 (en) 2011-03-24 2013-12-03 Kci Licensing, Inc. Apparatuses, methods, and compositions for the treatment and prophylaxis of chronic wounds
US9302034B2 (en) * 2011-04-04 2016-04-05 Smith & Nephew, Inc. Negative pressure wound therapy dressing
GB201106491D0 (en) 2011-04-15 2011-06-01 Systagenix Wound Man Ip Co Bv Patterened silicone coating
GB201108229D0 (en) 2011-05-17 2011-06-29 Smith & Nephew Tissue healing
CN103842000A (en) 2011-05-24 2014-06-04 卡利普托医疗公司 Device with controller and pump modules for providing negative pressure for wound therapy
US9058634B2 (en) 2011-05-24 2015-06-16 Kalypto Medical, Inc. Method for providing a negative pressure wound therapy pump device
US9067003B2 (en) 2011-05-26 2015-06-30 Kalypto Medical, Inc. Method for providing negative pressure to a negative pressure wound therapy bandage
AU2012262311B2 (en) 2011-05-31 2016-04-28 Lifecell Corporation Adipose tissue matrices
BR112013031464A2 (en) 2011-06-07 2016-12-06 Smith & Nephew Wound Contact Methods and Limbs
WO2012170744A2 (en) 2011-06-07 2012-12-13 Spiracur, Inc. Solutions for bridging and pressure concentration reduction at wound sites
EP2545943A1 (en) 2011-07-12 2013-01-16 Dr. Suwelack Skin & Health Care AG Perforated, coated wound healing material
GB201115182D0 (en) 2011-09-02 2011-10-19 Trio Healthcare Ltd Skin contact material
WO2013066775A1 (en) 2011-10-31 2013-05-10 Smith & Nephew, Inc. Apparatuses and methods for detecting leaks in a negative pressure wound therapy system
US9084845B2 (en) 2011-11-02 2015-07-21 Smith & Nephew Plc Reduced pressure therapy apparatuses and methods of using same
US20150159066A1 (en) 2011-11-25 2015-06-11 Smith & Nephew Plc Composition, apparatus, kit and method and uses thereof
GB2497406A (en) 2011-11-29 2013-06-12 Webtec Converting Llc Dressing with a perforated binder layer
GB201120693D0 (en) 2011-12-01 2012-01-11 Convatec Technologies Inc Wound dressing for use in vacuum therapy
US10940047B2 (en) 2011-12-16 2021-03-09 Kci Licensing, Inc. Sealing systems and methods employing a hybrid switchable drape
CN103987348B (en) 2011-12-16 2016-05-11 凯希特许有限公司 Releasable medical cloth list
WO2013096605A1 (en) * 2011-12-20 2013-06-27 Bionova Medical, Inc. Systems and methods for delivering an agent to a wound under negative pressure
GB2501055B (en) 2012-02-01 2017-08-30 Banwell Paul Scar reduction apparatus
CN111685936A (en) * 2012-02-02 2020-09-22 凯希特许有限公司 Foam structure wound insert for directional granulation
US10220125B2 (en) 2012-02-03 2019-03-05 Smith & Nephew Plc Apparatuses and methods for wound therapy
CN107260399B (en) 2012-03-12 2022-02-22 史密夫及内修公开有限公司 Wound dressing apparatus for reduced pressure wound therapy
US9901664B2 (en) 2012-03-20 2018-02-27 Smith & Nephew Plc Controlling operation of a reduced pressure therapy system based on dynamic duty cycle threshold determination
CA2867135C (en) * 2012-04-30 2020-01-21 Ivwatch, Llc Appliance for an electromagnetic spectrum sensor monitoring an intravascular infusion
US9427505B2 (en) 2012-05-15 2016-08-30 Smith & Nephew Plc Negative pressure wound therapy apparatus
WO2013175310A2 (en) 2012-05-22 2013-11-28 Smith & Nephew Plc Apparatuses and methods for wound therapy
EP2852419B1 (en) 2012-05-22 2019-11-20 Smith & Nephew plc Wound closure device
RU2014151468A (en) 2012-05-23 2016-07-20 СМИТ ЭНД НЕФЬЮ ПиЭлСи DEVICES AND METHODS OF TREATING RAS WITH APPLICATION OF NEGATIVE PRESSURE
EP3470029A1 (en) 2012-05-24 2019-04-17 Smith & Nephew, Inc. Devices for treating and closing wounds with negative pressure
EP2872191B1 (en) 2012-07-13 2019-08-07 LifeCell Corporation Methods for improved treatment of adipose tissue
ES2806552T3 (en) * 2012-07-16 2021-02-18 Univ Massachusetts Negative pressure wound closure device
US9962295B2 (en) 2012-07-16 2018-05-08 Smith & Nephew, Inc. Negative pressure wound closure device
CN102839813A (en) * 2012-07-24 2012-12-26 戚文军 Fire-extinguishing scaffold device
US10076449B2 (en) 2012-08-01 2018-09-18 Smith & Nephew Plc Wound dressing and method of treatment
CN104884008B (en) 2012-08-01 2020-02-28 史密夫及内修公开有限公司 Wound dressing
ES2663014T3 (en) 2012-09-26 2018-04-10 Lifecell Corporation Adipose tissue processed
US10016527B2 (en) 2012-10-23 2018-07-10 Orthovita, Inc. Materials and methods for repair of cartilage defects
EP4279094A3 (en) 2012-11-16 2024-02-28 3M Innovative Properties Company Medical drape with pattern adhesive layers
GB201222770D0 (en) 2012-12-18 2013-01-30 Systagenix Wound Man Ip Co Bv Wound dressing with adhesive margin
US20150354096A1 (en) 2012-12-20 2015-12-10 Convatec Technologies Inc. Processing of chemically modified cellulosic fibres
CA2900771C (en) * 2013-02-12 2020-02-18 Electrochemical Oxygen Concepts, Inc. Dressing for wound treatment
CA2902776C (en) 2013-03-13 2023-03-07 Smith & Nephew Inc. Wound treatment apparatus and use thereof
JP2016517290A (en) 2013-03-14 2016-06-16 スミス アンド ネフュー ピーエルシーSmith & Nephew Public Limited Company Compressible wound filler and system and method for use in treating wounds with negative pressure
JP6491188B2 (en) * 2013-03-14 2019-03-27 ケーシーアイ ライセンシング インコーポレイテッド Absorbent substrate for collecting skin grafts
EP3434236B1 (en) 2013-03-14 2021-12-29 3M Innovative Properties Company Absorbent dressing with hybrid drape
JP6715598B2 (en) 2013-03-15 2020-07-01 スミス アンド ネフュー ピーエルシーSmith & Nephew Public Limited Company Wound dressing and treatment method
US20160120706A1 (en) 2013-03-15 2016-05-05 Smith & Nephew Plc Wound dressing sealant and use thereof
US10695226B2 (en) 2013-03-15 2020-06-30 Smith & Nephew Plc Wound dressing and method of treatment
EP2976095B1 (en) 2013-03-15 2020-12-23 3M Innovative Properties Company Wound healing compositions
US20150011980A1 (en) * 2013-07-02 2015-01-08 Hong Tan Body contour-fit wound dressing for vacuum therapy
CN103394155B (en) * 2013-07-24 2016-04-06 中国人民解放军第二军医大学 Disposable portable negative pressure wound surface therapy system
CA2920766A1 (en) * 2013-08-07 2015-02-12 Plurogen Therapeutics, Inc. Delivery of medicants under continuous negative pressure dressing
EP3033117A4 (en) * 2013-08-20 2017-04-19 Wake Forest University Health Sciences Tissue repair devices utilizing self-assembled materials
EP3038667B1 (en) 2013-08-26 2019-10-09 KCI Licensing, Inc. Dressing interface with moisture controlling feature and sealing function
WO2015041080A1 (en) * 2013-09-21 2015-03-26 テルモ株式会社 Living body insertion tool and suction method
US10660992B2 (en) 2013-10-21 2020-05-26 Smith & Nephew, Inc. Negative pressure wound closure device
EP3470030A1 (en) 2013-10-28 2019-04-17 KCI Licensing, Inc. Hybrid sealing tape
WO2015065616A1 (en) 2013-10-30 2015-05-07 Kci Licensing, Inc. Dressing with sealing and retention intereface
AU2014342903B2 (en) 2013-10-30 2018-09-20 Solventum Intellectual Properties Company Dressing with differentially sized perforations
EP3527237B1 (en) 2013-10-30 2020-09-09 KCI Licensing, Inc. Absorbent conduit and system
EP3257486B1 (en) 2013-10-30 2019-06-05 KCI Licensing, Inc. Condensate absorbing and dissipating system
FR3015230B1 (en) * 2013-12-19 2020-08-07 Commissariat Energie Atomique ARTICLE FOR ABSORBING A PHYSIOLOGICAL LIQUID, IN PARTICULAR DRESSING
CA2937399C (en) 2014-01-21 2023-01-24 Smith & Nephew Plc Collapsible dressing for negative pressure wound treatment
US10179073B2 (en) 2014-01-21 2019-01-15 Smith & Nephew Plc Wound treatment apparatuses
KR102304753B1 (en) * 2014-02-14 2021-09-23 아토믹 메디컬 이노베이션스, 인코포레이티드 Systems and methods for tissue healing
WO2015130471A1 (en) 2014-02-28 2015-09-03 Kci Licensing, Inc. Hybrid drape having a gel-coated perforated mesh
US11026844B2 (en) 2014-03-03 2021-06-08 Kci Licensing, Inc. Low profile flexible pressure transmission conduit
USD796684S1 (en) * 2014-03-18 2017-09-05 Bio-Medical Carbon Technology Co., Ltd. Wound dressing
EP3122301B1 (en) * 2014-03-28 2018-04-25 3M Innovative Properties Company Article and method for negative pressure wound therapy
WO2015168681A1 (en) 2014-05-02 2015-11-05 Kci Licensing, Inc. Fluid storage devices, systems, and methods
AU2015255723B2 (en) * 2014-05-09 2019-09-19 Solventum Intellectual Properties Company Dressing with contracting layer for linear tissue sites
DE102014106518A1 (en) * 2014-05-09 2015-11-12 Paul Hartmann Ag Foam wound dressing for negative pressure therapy
WO2015175270A1 (en) 2014-05-16 2015-11-19 3M Innovative Properties Company Articles including a porous elastomeric material with an integrated elastomeric material and methods of making same
BR122019024398B1 (en) * 2014-05-29 2021-08-17 Access Closure, Inc. USE OF A LYOPHILLED HYDROGEL OF POLYETHYLENEGLYCOL (PEG) AND CHITOSAN AND METHOD OF MAKING A SEALANT TO SEALE A PUNCTURE THROUGH THE TISSUE
WO2015188003A1 (en) 2014-06-05 2015-12-10 Kci Licensing, Inc. Dressing with fluid acquisition and distribution characteristics
US10610414B2 (en) 2014-06-18 2020-04-07 Smith & Nephew Plc Wound dressing and method of treatment
JP6644764B2 (en) 2014-07-31 2020-02-12 スミス アンド ネフュー インコーポレイテッド Systems and methods for delivering decompression therapy
CA2955060A1 (en) * 2014-08-11 2016-02-18 Kci Licensing, Inc. Protease modulating wound interface layer for use with negative pressure wound therapy
US10123789B1 (en) * 2014-08-22 2018-11-13 James Woodfin Kennedy Variable compressible wound closure device and method
US10398604B2 (en) * 2014-12-17 2019-09-03 Kci Licensing, Inc. Dressing with offloading capability
SG11201704254XA (en) 2014-12-22 2017-07-28 Smith & Nephew Negative pressure wound therapy apparatus and methods
AU2016209327A1 (en) 2015-01-20 2017-08-10 Plurogen Therapeutics, Llc Compositions and methods of treating microbes
US10596194B2 (en) * 2015-04-03 2020-03-24 Biochange Ltd. Powder compositions for generating cross-linked protein foams and methods of using thereof
CA2983292A1 (en) * 2015-04-23 2017-01-19 Sharklet Technologies, Inc. Bilayered devices for enhanced healing
CA2980511A1 (en) 2015-04-27 2016-11-03 Smith & Nephew Plc Reduced pressure apparatuses and methods
AU2016254119A1 (en) 2015-04-29 2017-10-05 Smith & Nephew Inc. Negative pressure wound closure device
US10568770B2 (en) * 2015-05-07 2020-02-25 Kci Licensing, Inc. Controlled release iodine structure for use with wound care
WO2016182977A1 (en) 2015-05-08 2016-11-17 Kci Licensing, Inc. Low acuity dressing with integral pump
AU2015400343B2 (en) * 2015-06-30 2020-07-09 Kimberly-Clark Worldwide, Inc. Absorbent article with oxygen delivery and method of manufacture
WO2017040045A1 (en) 2015-09-01 2017-03-09 Kci Licensing, Inc. Dressing with increased apposition force
US20180256402A1 (en) * 2015-09-17 2018-09-13 Hollister Incorporated Scaffold-based wound care delivery system and method
US10973694B2 (en) 2015-09-17 2021-04-13 Kci Licensing, Inc. Hybrid silicone and acrylic adhesive cover for use with wound treatment
KR101744708B1 (en) * 2015-10-16 2017-06-09 (주)시지바이오 Connector for reduced pressure treatment and a reduced pressure treatment apparatus using the same
CN108472159B (en) * 2015-10-30 2021-02-19 洛雷恩社区学院创新基金会 Wound treatment devices and methods
US10814049B2 (en) 2015-12-15 2020-10-27 University Of Massachusetts Negative pressure wound closure devices and methods
US10575991B2 (en) 2015-12-15 2020-03-03 University Of Massachusetts Negative pressure wound closure devices and methods
US11364150B2 (en) 2015-12-30 2022-06-21 Smith & Nephew Plc Negative pressure wound therapy apparatus
WO2017115146A1 (en) 2015-12-30 2017-07-06 Smith & Nephew Plc Absorbent negative pressure wound therapy dressing
JP6391607B2 (en) * 2016-02-08 2018-09-19 スミス アンド ネフュー ピーエルシーSmith & Nephew Public Limited Company Blockage management
JP1586116S (en) 2016-02-29 2017-09-19
AU2017227923B2 (en) 2016-03-04 2022-01-27 Smith & Nephew Plc Negative pressure wound therapy apparatus for post breast surgery wounds
AU2017230775B2 (en) 2016-03-07 2021-12-23 Smith & Nephew Plc Wound treatment apparatuses and methods with negative pressure source integrated into wound dressing
JP2019513238A (en) 2016-03-30 2019-05-23 クオリザイム・ダイアグノスティクス・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング・ウント・コムパニー・コマンディットゲゼルシャフトQualizyme Diagnostics Gmbh And Co. Kg Detection of microbial infections in wounds
KR20190013725A (en) 2016-03-30 2019-02-11 컨바텍 테크놀러지스 인크 Detection of microbial infection in wound
EP4049692A1 (en) 2016-04-26 2022-08-31 Smith & Nephew PLC Wound dressings and methods of use with integrated negative pressure source having a fluid ingress inhibition component
CA3022587A1 (en) 2016-05-03 2017-11-09 Smith & Nephew Plc Systems and methods for driving negative pressure sources in negative pressure therapy systems
US11173240B2 (en) 2016-05-03 2021-11-16 Smith & Nephew Plc Optimizing power transfer to negative pressure sources in negative pressure therapy systems
WO2017191154A1 (en) 2016-05-03 2017-11-09 Smith & Nephew Plc Negative pressure wound therapy device activation and control
ITUA20164153A1 (en) * 2016-06-07 2017-12-07 Jointherapeutics S R L Polysaccharide compositions usable in tissue repair
WO2018009428A1 (en) 2016-07-05 2018-01-11 Lifecell Corporation Tissue matrices incorporating multiple tissue types
TW201805036A (en) 2016-07-08 2018-02-16 美商康瓦鐵克科技股份有限公司 Fluid collection apparatus
CN109689005B (en) 2016-07-08 2022-03-04 康沃特克科技公司 Fluid flow sensing
TW201805034A (en) 2016-07-08 2018-02-16 美商康瓦鐵克科技股份有限公司 Flexible negative pressure system
WO2018037075A1 (en) 2016-08-25 2018-03-01 Smith & Nephew Plc Absorbent negative pressure wound therapy dressing
EP3506865B1 (en) * 2016-08-30 2021-10-06 Smith & Nephew plc Systems for applying reduced pressure therapy
US11096832B2 (en) 2016-09-27 2021-08-24 Smith & Nephew Plc Wound closure devices with dissolvable portions
US11564847B2 (en) 2016-09-30 2023-01-31 Smith & Nephew Plc Negative pressure wound treatment apparatuses and methods with integrated electronics
WO2018085457A1 (en) 2016-11-02 2018-05-11 Smith & Nephew Inc. Wound closure devices
US10426874B2 (en) * 2016-12-02 2019-10-01 Apex Medical Corp. Wound management assembly and negative pressure wound therapy system
US11806217B2 (en) 2016-12-12 2023-11-07 Smith & Nephew Plc Wound dressing
EP3573677A2 (en) * 2017-01-27 2019-12-04 KCI Licensing, Inc. Multi-layer abdominal closure dressing with instillation capabilities
CN106539645A (en) * 2017-02-07 2017-03-29 周代君 A kind of wound repair negative pressure drainage device
CN110582257B (en) 2017-03-08 2022-03-15 史密夫及内修公开有限公司 Negative pressure wound therapy device control in the presence of fault conditions
EP3384882A1 (en) 2017-04-05 2018-10-10 Mölnlycke Health Care AB Composite material for fluid flow management
CN106872497B (en) * 2017-05-03 2018-05-01 青岛海洋地质研究所 The special hydrate resistivity test devices of CT and method
AU2018265052B2 (en) 2017-05-09 2023-08-31 Smith & Nephew Plc Redundant controls for negative pressure wound therapy systems
AU2018282163B2 (en) * 2017-06-07 2023-09-28 Solventum Intellectual Properties Company Peel and place dressing for thick exudate and instillation
US10695227B2 (en) 2017-06-07 2020-06-30 Kci Licensing, Inc. Methods for manufacturing and assembling dual material tissue interface for negative-pressure therapy
CA3065379A1 (en) 2017-06-07 2018-12-13 Kci Licensing, Inc. Systems, apparatuses, and methods for negative-pressure treatment with reduced tissue in-growth
CA3065521A1 (en) 2017-06-07 2018-12-13 Kci Licensing, Inc. Multi-layer wound filler for extended wear time
WO2018226691A1 (en) 2017-06-07 2018-12-13 Kci Licensing, Inc. Methods for manufacturing and assembling dual material tissue interface for negative-pressure therapy
JP7204685B2 (en) 2017-06-07 2023-01-16 スリーエム イノベイティブ プロパティズ カンパニー A composite dressing that promotes granulation formation and reduces maceration in negative pressure therapy
US11607342B2 (en) 2017-06-07 2023-03-21 Kci Licensing, Inc. Peel and place dressing for negative-pressure therapy
AU2018280128B2 (en) 2017-06-07 2024-04-18 Solventum Intellectual Properties Company Composite dressings for improved granulation and reduced maceration with negative-pressure treatment
WO2018226627A1 (en) 2017-06-07 2018-12-13 Kci Licensing, Inc. Composite dressings for improved granulation and reduced maceration with negative-pressure treatment
WO2018226707A1 (en) 2017-06-07 2018-12-13 Kci Licensing, Inc. Composite dressings for improved granulation reduced maceration with negative-pressure treatment
CN110662516B (en) 2017-06-13 2022-02-22 史密夫及内修公开有限公司 Wound closure devices and methods of use
US11324876B2 (en) 2017-06-13 2022-05-10 Smith & Nephew Plc Collapsible structure and method of use
JP7419072B2 (en) 2017-06-14 2024-01-22 スミス アンド ネフュー ピーエルシー Foldable sheet for wound closure and method of use
US11395873B2 (en) 2017-06-14 2022-07-26 Smith & Nephew, Inc. Control of wound closure and fluid removal management in wound therapy
WO2018229011A1 (en) 2017-06-14 2018-12-20 Smith & Nephew Plc Collapsible structure for wound closure and method of use
JP7155162B2 (en) 2017-06-14 2022-10-18 ティージェイ スミス アンド ネフュー リミテッド Negative pressure wound therapy unit
AU2018284233B2 (en) 2017-06-14 2024-01-04 Smith & Nephew, Inc. Fluid removal management and control of wound closure in wound therapy
CN107296976B (en) * 2017-06-27 2020-03-17 吉林大学第一医院 Medical multifunctional hemostatic dressing and preparation method thereof
EP3658090B1 (en) 2017-07-27 2021-11-10 Smith & Nephew PLC Customizable wound closure device
WO2019030136A1 (en) 2017-08-07 2019-02-14 Smith & Nephew Plc Wound closure device with protective layer and method of use
WO2019042790A1 (en) 2017-08-29 2019-03-07 Smith & Nephew Plc Systems and methods for monitoring wound closure
GB201718070D0 (en) 2017-11-01 2017-12-13 Smith & Nephew Negative pressure wound treatment apparatuses and methods with integrated electronics
US11701265B2 (en) 2017-09-13 2023-07-18 Smith & Nephew Plc Negative pressure wound treatment apparatuses and methods with integrated electronics
US11123375B2 (en) 2017-10-18 2021-09-21 Lifecell Corporation Methods of treating tissue voids following removal of implantable infusion ports using adipose tissue products
WO2019079570A1 (en) 2017-10-18 2019-04-25 Lifecell Corporation Adipose tissue products and methods of production
US11246994B2 (en) 2017-10-19 2022-02-15 Lifecell Corporation Methods for introduction of flowable acellular tissue matrix products into a hand
US11826488B2 (en) 2017-10-19 2023-11-28 Lifecell Corporation Flowable acellular tissue matrix products and methods of production
WO2019086332A1 (en) 2017-11-01 2019-05-09 Smith & Nephew Plc Negative pressure wound treatment apparatuses and methods with integrated electronics
GB201718072D0 (en) 2017-11-01 2017-12-13 Smith & Nephew Negative pressure wound treatment apparatuses and methods with integrated electronics
GB201718054D0 (en) 2017-11-01 2017-12-13 Smith & Nephew Sterilization of integrated negative pressure wound treatment apparatuses and sterilization methods
CN111432761B (en) 2017-11-03 2022-09-09 3M创新知识产权公司 Dressing for extending wearing time
US20200345557A1 (en) * 2017-11-09 2020-11-05 Kci Usa, Inc. Multilayered primary contact wound dressing
WO2019136164A1 (en) * 2018-01-04 2019-07-11 Kci Licensing, Inc. Peel and place dressing for thick exudate and instillation
JP7348901B2 (en) * 2018-01-04 2023-09-21 スリーエム イノベイティブ プロパティズ カンパニー Peel-and-stick dressing for thick exudates and drips
US20200000642A1 (en) * 2018-06-28 2020-01-02 Systagenix Wound Management, Limited Multilayer absorbent dressing construction
GB201811449D0 (en) 2018-07-12 2018-08-29 Smith & Nephew Apparatuses and methods for negative pressure wound therapy
WO2020036785A1 (en) * 2018-08-13 2020-02-20 Kci Licensing, Inc. Disruptive dressing for use with negative pressure and fluid instillation
WO2020046443A1 (en) * 2018-08-28 2020-03-05 Kci Licensing, Inc. Dressings for reduced tissue ingrowth
US11419972B2 (en) * 2018-09-04 2022-08-23 Kci Licensing, Inc. Wound therapy device, kit, and method for improved application to wounds on complex geometries
USD898925S1 (en) 2018-09-13 2020-10-13 Smith & Nephew Plc Medical dressing
WO2020081322A1 (en) * 2018-10-17 2020-04-23 Kci Licensing, Inc. Peel and place dressing having a closed-cell contact layer
CN111068111B (en) * 2018-10-19 2022-03-22 胡尚秀 Injectable self-assembled microsphere gel, application and preparation method thereof
TWI673103B (en) 2018-10-19 2019-10-01 國立清華大學 Injectable self-assembling microbead-gel, use thereof, and method for preparing injectable self-assembling microbead-gel
CA3116899A1 (en) * 2018-10-24 2020-04-30 Somnio Global Holdings, Llc Functional wound healing dressings
WO2020124038A1 (en) 2018-12-13 2020-06-18 University Of Massachusetts Negative pressure wound closure devices and methods
US11506658B2 (en) 2019-04-24 2022-11-22 Progenitec, Inc. System for analysis of body fluids and wound-associated biomolecules
AU2020269760A1 (en) * 2019-05-07 2021-12-09 Aroa Biosurgery Limited Negative pressure wound dressing
JP2022531489A (en) 2019-05-08 2022-07-06 マスキュロスケレタル トランスプラント ファウンデーション Tissue-derived porous matrix and its preparation and usage
EP3976127A1 (en) 2019-05-30 2022-04-06 LifeCell Corporation Biologic breast implant
WO2021024165A1 (en) * 2019-08-08 2021-02-11 Kci Licensing, Inc. Tissue interface with fold-retaining fastener
US20220355021A1 (en) * 2019-09-05 2022-11-10 Kci Licensing, Inc. Long-Term Wear Tissue Interfaces For High-Closure Force Negative- Pressure Therapy Dressings
US11771819B2 (en) 2019-12-27 2023-10-03 Convatec Limited Low profile filter devices suitable for use in negative pressure wound therapy systems
US11331221B2 (en) 2019-12-27 2022-05-17 Convatec Limited Negative pressure wound dressing
CN112155828A (en) * 2020-10-12 2021-01-01 吕修波 Injection molding type fracture and limb fracture fixing device

Family Cites Families (370)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1355846A (en) 1920-02-06 1920-10-19 David A Rannells Medical appliance
US2547758A (en) 1949-01-05 1951-04-03 Wilmer B Keeling Instrument for treating the male urethra
US2632443A (en) 1949-04-18 1953-03-24 Eleanor P Lesher Surgical dressing
GB692578A (en) 1949-09-13 1953-06-10 Minnesota Mining & Mfg Improvements in or relating to drape sheets for surgical use
US2682873A (en) 1952-07-30 1954-07-06 Johnson & Johnson General purpose protective dressing
NL189176B (en) * 1956-07-13 1900-01-01 Hisamitsu Pharmaceutical Co PLASTER BASED ON A SYNTHETIC RUBBER.
US2969057A (en) 1957-11-04 1961-01-24 Brady Co W H Nematodic swab
US3066672A (en) 1960-09-27 1962-12-04 Jr William H Crosby Method and apparatus for serial sampling of intestinal juice
US3367332A (en) 1965-08-27 1968-02-06 Gen Electric Product and process for establishing a sterile area of skin
US3520300A (en) 1967-03-15 1970-07-14 Amp Inc Surgical sponge and suction device
US3568675A (en) * 1968-08-30 1971-03-09 Clyde B Harvey Fistula and penetrating wound dressing
US3682180A (en) 1970-06-08 1972-08-08 Coilform Co Inc Drain clip for surgical drain
BE789293Q (en) 1970-12-07 1973-01-15 Parke Davis & Co MEDICO-SURGICAL DRESSING FOR BURNS AND SIMILAR LESIONS
US3826254A (en) 1973-02-26 1974-07-30 Verco Ind Needle or catheter retaining appliance
DE2527706A1 (en) 1975-06-21 1976-12-30 Hanfried Dr Med Weigand DEVICE FOR THE INTRODUCTION OF CONTRAST AGENTS INTO AN ARTIFICIAL INTESTINAL OUTLET
DE2654426A1 (en) * 1975-12-02 1977-06-23 Simplex Ets GEAR SHIFTING FOR BICYCLES OR SIMILAR VEHICLES
US4118470A (en) 1976-06-01 1978-10-03 American Cyanamid Company Normally-solid, bioabsorbable, hydrolyzable, polymeric reaction product
DE2640413C3 (en) 1976-09-08 1980-03-27 Richard Wolf Gmbh, 7134 Knittlingen Catheter monitor
NL7710909A (en) 1976-10-08 1978-04-11 Smith & Nephew COMPOSITE STRAPS.
GB1562244A (en) 1976-11-11 1980-03-05 Lock P M Wound dressing materials
US4080970A (en) 1976-11-17 1978-03-28 Miller Thomas J Post-operative combination dressing and internal drain tube with external shield and tube connector
US4139004A (en) 1977-02-17 1979-02-13 Gonzalez Jr Harry Bandage apparatus for treating burns
US4184510A (en) * 1977-03-15 1980-01-22 Fibra-Sonics, Inc. Valued device for controlling vacuum in surgery
US4165748A (en) 1977-11-07 1979-08-28 Johnson Melissa C Catheter tube holder
US4245637A (en) * 1978-07-10 1981-01-20 Nichols Robert L Shutoff valve sleeve
SE414994B (en) 1978-11-28 1980-09-01 Landstingens Inkopscentral VENKATETERFORBAND
BR7908937A (en) 1978-12-06 1981-06-30 Svedman Paul DEVICE FOR TREATING FABRICS, FOR EXAMPLE, SKIN
US4284079A (en) 1979-06-28 1981-08-18 Adair Edwin Lloyd Method for applying a male incontinence device
US4261363A (en) 1979-11-09 1981-04-14 C. R. Bard, Inc. Retention clips for body fluid drains
US4569348A (en) 1980-02-22 1986-02-11 Velcro Usa Inc. Catheter tube holder strap
EP0035583B1 (en) 1980-03-11 1985-08-14 Schmid, Eduard, Dr.Dr.med. Skin graft pressure bandage
US4297995A (en) 1980-06-03 1981-11-03 Key Pharmaceuticals, Inc. Bandage containing attachment post
US4333468A (en) 1980-08-18 1982-06-08 Geist Robert W Mesentery tube holder apparatus
US4465485A (en) * 1981-03-06 1984-08-14 Becton, Dickinson And Company Suction canister with unitary shut-off valve and filter features
US4392853A (en) 1981-03-16 1983-07-12 Rudolph Muto Sterile assembly for protecting and fastening an indwelling device
US4373519A (en) 1981-06-26 1983-02-15 Minnesota Mining And Manufacturing Company Composite wound dressing
US4392858A (en) 1981-07-16 1983-07-12 Sherwood Medical Company Wound drainage device
US4419097A (en) 1981-07-31 1983-12-06 Rexar Industries, Inc. Attachment for catheter tube
AU550575B2 (en) 1981-08-07 1986-03-27 Richard Christian Wright Wound drainage device
SE429197B (en) 1981-10-14 1983-08-22 Frese Nielsen SAR TREATMENT DEVICE
DE3146266A1 (en) 1981-11-21 1983-06-01 B. Braun Melsungen Ag, 3508 Melsungen COMBINED DEVICE FOR A MEDICAL SUCTION DRAINAGE
US4551139A (en) 1982-02-08 1985-11-05 Marion Laboratories, Inc. Method and apparatus for burn wound treatment
US4475909A (en) 1982-05-06 1984-10-09 Eisenberg Melvin I Male urinary device and method for applying the device
DE3361779D1 (en) 1982-07-06 1986-02-20 Dow Corning Medical-surgical dressing and a process for the production thereof
NZ206837A (en) 1983-01-27 1986-08-08 Johnson & Johnson Prod Inc Thin film adhesive dressing:backing material in three sections
US4548202A (en) 1983-06-20 1985-10-22 Ethicon, Inc. Mesh tissue fasteners
US4540412A (en) 1983-07-14 1985-09-10 The Kendall Company Device for moist heat therapy
GB2148901A (en) * 1983-10-04 1985-06-05 Johnson & Johnson Protein/polysaccharide complexes
US4543100A (en) 1983-11-01 1985-09-24 Brodsky Stuart A Catheter and drain tube retainer
US4525374A (en) 1984-02-27 1985-06-25 Manresa, Inc. Treating hydrophobic filters to render them hydrophilic
GB2157958A (en) 1984-05-03 1985-11-06 Ernest Edward Austen Bedding Ball game net support
US4897081A (en) 1984-05-25 1990-01-30 Thermedics Inc. Percutaneous access device
US5215522A (en) 1984-07-23 1993-06-01 Ballard Medical Products Single use medical aspirating device and method
GB8419745D0 (en) * 1984-08-02 1984-09-05 Smith & Nephew Ass Wound dressing
US4872450A (en) 1984-08-17 1989-10-10 Austad Eric D Wound dressing and method of forming same
US4826494A (en) 1984-11-09 1989-05-02 Stryker Corporation Vacuum wound drainage system
US4655754A (en) 1984-11-09 1987-04-07 Stryker Corporation Vacuum wound drainage system and lipids baffle therefor
US4605399A (en) 1984-12-04 1986-08-12 Complex, Inc. Transdermal infusion device
US4595713A (en) 1985-01-22 1986-06-17 Hexcel Corporation Medical putty for tissue augmentation
US5037397A (en) 1985-05-03 1991-08-06 Medical Distributors, Inc. Universal clamp
US4640688A (en) 1985-08-23 1987-02-03 Mentor Corporation Urine collection catheter
US4710165A (en) * 1985-09-16 1987-12-01 Mcneil Charles B Wearable, variable rate suction/collection device
US4758220A (en) 1985-09-26 1988-07-19 Alcon Laboratories, Inc. Surgical cassette proximity sensing and latching apparatus
US4733659A (en) * 1986-01-17 1988-03-29 Seton Company Foam bandage
US4838883A (en) 1986-03-07 1989-06-13 Nissho Corporation Urine-collecting device
JPS62281965A (en) 1986-05-29 1987-12-07 テルモ株式会社 Catheter and catheter fixing member
GB8621884D0 (en) 1986-09-11 1986-10-15 Bard Ltd Catheter applicator
GB2195255B (en) 1986-09-30 1991-05-01 Vacutec Uk Limited Apparatus for vacuum treatment of an epidermal surface
US4743232A (en) 1986-10-06 1988-05-10 The Clinipad Corporation Package assembly for plastic film bandage
DE3634569A1 (en) 1986-10-10 1988-04-21 Sachse Hans E CONDOM CATHETER, A URINE TUBE CATHETER FOR PREVENTING RISING INFECTIONS
JPS63135179A (en) 1986-11-26 1988-06-07 立花 俊郎 Subcataneous drug administration set
GB8628564D0 (en) 1986-11-28 1987-01-07 Smiths Industries Plc Anti-foaming agent suction apparatus
US4837015A (en) 1987-03-05 1989-06-06 Carolina Medical Products Company, Inc. Alkali metal ion-charged, cation exchanger and use thereof to adjust sodium, potassium and calcium body fluid levels
US5085861A (en) 1987-03-12 1992-02-04 The Beth Israel Hospital Association Bioerodable implant composition comprising crosslinked biodegradable polyesters
GB8706116D0 (en) 1987-03-14 1987-04-15 Smith & Nephew Ass Adhesive dressings
US4787888A (en) 1987-06-01 1988-11-29 University Of Connecticut Disposable piezoelectric polymer bandage for percutaneous delivery of drugs and method for such percutaneous delivery (a)
US4863449A (en) 1987-07-06 1989-09-05 Hollister Incorporated Adhesive-lined elastic condom cathether
US4772287A (en) 1987-08-20 1988-09-20 Cedar Surgical, Inc. Prosthetic disc and method of implanting
EP0317780B1 (en) 1987-11-25 1992-05-20 American Cyanamid Company Sustained (controlled) release delivery system for substituted dihydropyridine calcium channel blockers
US5176663A (en) 1987-12-02 1993-01-05 Pal Svedman Dressing having pad with compressibility limiting elements
US4906240A (en) 1988-02-01 1990-03-06 Matrix Medica, Inc. Adhesive-faced porous absorbent sheet and method of making same
US4985019A (en) 1988-03-11 1991-01-15 Michelson Gary K X-ray marker
GB8812803D0 (en) 1988-05-28 1988-06-29 Smiths Industries Plc Medico-surgical containers
US4919654A (en) 1988-08-03 1990-04-24 Kalt Medical Corporation IV clamp with membrane
US5000741A (en) 1988-08-22 1991-03-19 Kalt Medical Corporation Transparent tracheostomy tube dressing
JPH02270874A (en) 1989-01-16 1990-11-05 Roussel Uclaf Azabicyclo compounds and their salts, their production, pharmaceutical compound containing them and their use as remedy
US4969880A (en) 1989-04-03 1990-11-13 Zamierowski David S Wound dressing and treatment method
US5261893A (en) 1989-04-03 1993-11-16 Zamierowski David S Fastening system and method
US5527293A (en) 1989-04-03 1996-06-18 Kinetic Concepts, Inc. Fastening system and method
US5100396A (en) 1989-04-03 1992-03-31 Zamierowski David S Fluidic connection system and method
JP2719671B2 (en) 1989-07-11 1998-02-25 日本ゼオン株式会社 Wound dressing
US5358494A (en) 1989-07-11 1994-10-25 Svedman Paul Irrigation dressing
US5232453A (en) 1989-07-14 1993-08-03 E. R. Squibb & Sons, Inc. Catheter holder
US5487897A (en) 1989-07-24 1996-01-30 Atrix Laboratories, Inc. Biodegradable implant precursor
US5324519A (en) 1989-07-24 1994-06-28 Atrix Laboratories, Inc. Biodegradable polymer composition
US5077049A (en) 1989-07-24 1991-12-31 Vipont Pharmaceutical, Inc. Biodegradable system for regenerating the periodontium
GB2235877A (en) 1989-09-18 1991-03-20 Antonio Talluri Closed wound suction apparatus
US5674192A (en) 1990-12-28 1997-10-07 Boston Scientific Corporation Drug delivery
US5134994A (en) 1990-02-12 1992-08-04 Say Sam L Field aspirator in a soft pack with externally mounted container
US5092858A (en) 1990-03-20 1992-03-03 Becton, Dickinson And Company Liquid gelling agent distributor device
US5102983A (en) 1990-04-02 1992-04-07 United States Surgical Corporation Process for preparing foamed, bioabsorbable polymer particles
US5256418A (en) 1990-04-06 1993-10-26 Organogenesis, Inc. Collagen constructs
US6399569B1 (en) 1991-03-11 2002-06-04 Curis, Inc. Morphogen treatments for limiting proliferation of epithelial cells
US5149331A (en) 1991-05-03 1992-09-22 Ariel Ferdman Method and device for wound closure
US5278100A (en) 1991-11-08 1994-01-11 Micron Technology, Inc. Chemical vapor deposition technique for depositing titanium silicide on semiconductor wafers
US5636643A (en) * 1991-11-14 1997-06-10 Wake Forest University Wound treatment employing reduced pressure
US7198046B1 (en) * 1991-11-14 2007-04-03 Wake Forest University Health Sciences Wound treatment employing reduced pressure
US5645081A (en) 1991-11-14 1997-07-08 Wake Forest University Method of treating tissue damage and apparatus for same
IT1254170B (en) 1991-12-18 1995-09-11 Mini Ricerca Scient Tecnolog COMPOSITE MEMBRANES FOR GUIDED REGENERATION OF FABRICS
US5824335A (en) 1991-12-18 1998-10-20 Dorigatti; Franco Non-woven fabric material comprising auto-crosslinked hyaluronic acid derivatives
US5279550A (en) 1991-12-19 1994-01-18 Gish Biomedical, Inc. Orthopedic autotransfusion system
US5449383A (en) * 1992-03-18 1995-09-12 Chatelier; Ronald C. Cell growth substrates
US5167613A (en) 1992-03-23 1992-12-01 The Kendall Company Composite vented wound dressing
FR2690617B1 (en) 1992-04-29 1994-06-24 Cbh Textile TRANSPARENT ADHESIVE DRESSING.
US5303719A (en) 1992-08-14 1994-04-19 Wilk Peter J Surgical method and associated instrument assembly
GB2272645B8 (en) * 1992-11-23 2010-02-10 Johnson & Johnson Medical Wound dressing
CA2114290C (en) 1993-01-27 2006-01-10 Nagabushanam Totakura Post-surgical anti-adhesion device
DE4306478A1 (en) 1993-03-02 1994-09-08 Wolfgang Dr Wagner Drainage device, in particular pleural drainage device, and drainage method
AU6553994A (en) 1993-03-31 1994-10-24 Trustees Of The University Of Pennsylvania, The Methods of affecting the growth of living tissue in mammals and compounds and compositions therefor
US5342376A (en) 1993-05-03 1994-08-30 Dermagraphics, Inc. Inserting device for a barbed tissue connector
US6241747B1 (en) 1993-05-03 2001-06-05 Quill Medical, Inc. Barbed Bodily tissue connector
FR2706768B1 (en) 1993-05-13 1995-12-01 Inoteb
US5447725A (en) 1993-06-11 1995-09-05 The Procter & Gamble Company Methods for aiding periodontal tissue regeneration
US5344415A (en) 1993-06-15 1994-09-06 Deroyal Industries, Inc. Sterile system for dressing vascular access site
US5437651A (en) 1993-09-01 1995-08-01 Research Medical, Inc. Medical suction apparatus
US6255277B1 (en) 1993-09-17 2001-07-03 Brigham And Women's Hospital Localized use of nitric oxide-adducts to prevent internal tissue damage
US6087479A (en) 1993-09-17 2000-07-11 Nitromed, Inc. Localized use of nitric oxide-adducts to prevent internal tissue damage
US5549584A (en) 1994-02-14 1996-08-27 The Kendall Company Apparatus for removing fluid from a wound
US6197320B1 (en) 1994-03-11 2001-03-06 Shalaby W. Shalaby Absorbable E-caprolactone polymers and medical devices
AU1999995A (en) * 1994-04-08 1995-11-10 Atrix Laboratories, Inc. An adjunctive polymer system for use with medical device
US5629186A (en) 1994-04-28 1997-05-13 Lockheed Martin Corporation Porous matrix and method of its production
US5556375A (en) 1994-06-16 1996-09-17 Hercules Incorporated Wound dressing having a fenestrated base layer
US5607388A (en) 1994-06-16 1997-03-04 Hercules Incorporated Multi-purpose wound dressing
US5664270A (en) 1994-07-19 1997-09-09 Kinetic Concepts, Inc. Patient interface system
US5578662A (en) 1994-07-22 1996-11-26 United States Surgical Corporation Bioabsorbable branched polymers containing units derived from dioxanone and medical/surgical devices manufactured therefrom
US6290991B1 (en) 1994-12-02 2001-09-18 Quandrant Holdings Cambridge Limited Solid dose delivery vehicle and methods of making same
GB9424708D0 (en) 1994-12-07 1995-02-01 Bristol Myers Squibb Co Use of inflammatory modulators in the treatment of chronic or recalcitrant skin damage
US5621035A (en) * 1995-02-08 1997-04-15 M.E.D. Usa Ceramic fused fiber enhanced dental materials
US6403655B1 (en) 1995-03-06 2002-06-11 Ethicon, Inc. Method of preventing adhesions with absorbable polyoxaesters
DE29504378U1 (en) 1995-03-15 1995-09-14 Mtg Medizinisch Tech Geraeteba Electronically controlled low-vacuum pump for chest and wound drainage
US5900245A (en) 1996-03-22 1999-05-04 Focal, Inc. Compliant tissue sealants
US6040431A (en) 1995-06-07 2000-03-21 Stryker Corporation Single chain analogs of the TGF-β superfamily (morphons)
SE507465C2 (en) 1995-07-07 1998-06-08 Lund Instr Ab Apparatus for heat treatment of prostate tissue
US6103491A (en) 1995-07-26 2000-08-15 Creative Biomolecules, Inc. Methods and compositions for identifying morphogen analogs
US5834188A (en) 1995-07-26 1998-11-10 Creative Biomolecule, Inc. Methods and compositions for identifying morphogen analogs
US7306903B1 (en) 1995-07-26 2007-12-11 Curis, Inc. Methods and compositions for identifying morphogen analogs
US5932716A (en) 1995-07-26 1999-08-03 Creative Biomolecules, Inc. Morphogen-responsive regulatory elements
US6090544A (en) 1995-07-26 2000-07-18 Creative Biomolecules, Inc. Methods and compositions for identifying morphogen analogs
US5776193A (en) * 1995-10-16 1998-07-07 Orquest, Inc. Bone grafting matrix
US6200606B1 (en) 1996-01-16 2001-03-13 Depuy Orthopaedics, Inc. Isolation of precursor cells from hematopoietic and nonhematopoietic tissues and their use in vivo bone and cartilage regeneration
DE69728307T2 (en) * 1996-01-19 2005-02-17 United States Surgical Corp., Norwalk Absorbable polymer mixtures and surgical articles made therefrom
US5951295A (en) * 1996-02-08 1999-09-14 Materials Evolution And Development Usa, Inc. Ceramic fused fiber enhanced dental materials
GB2311027B (en) * 1996-03-15 1999-10-27 Johnson & Johnson Medical Coated bioabsorbable beads for wound treatment
EP1364655B1 (en) 1996-03-22 2010-12-29 Stryker Corporation Method for enhancing functional recovery of motor coordination, speech or sensory perception after central nervous system ischemia or trauma
SE9601243D0 (en) 1996-03-29 1996-03-29 Hans Arne Hansson Promotion of regeneration of organized tissues
WO1997036553A1 (en) 1996-04-01 1997-10-09 American Cyanamid Company Crystalline copolymers and methods of producing such copolymers
US6498142B1 (en) 1996-05-06 2002-12-24 Curis, Inc. Morphogen treatment for chronic renal failure
SE9602200D0 (en) * 1996-06-03 1996-06-03 Astra Ab Wound dressing
US5711958A (en) 1996-07-11 1998-01-27 Life Medical Sciences, Inc. Methods for reducing or eliminating post-surgical adhesion formation
US6696499B1 (en) 1996-07-11 2004-02-24 Life Medical Sciences, Inc. Methods and compositions for reducing or eliminating post-surgical adhesion formation
US6093388A (en) 1996-08-12 2000-07-25 Btg International Limited Mannose-6-phosphate composition and its use in treating fibrotic disorders
ZA978537B (en) 1996-09-23 1998-05-12 Focal Inc Polymerizable biodegradable polymers including carbonate or dioxanone linkages.
US7009034B2 (en) 1996-09-23 2006-03-07 Incept, Llc Biocompatible crosslinked polymers
ES2232932T3 (en) 1997-01-28 2005-06-01 United States Surgical Corporation POLYESTERAMIDS FROM CYCLICAL MONOMERS AND SURGICAL ARTICLES MADE WITH THEM.
DE69812903T2 (en) 1997-01-28 2003-12-04 United States Surgical Corp POLYESTERAMIDE, ITS PRODUCTION AND SURGICAL DEVICES MANUFACTURED WITH IT
CA2279270C (en) 1997-01-28 2007-05-15 United States Surgical Corporation Polyesteramides with amino acid-derived groups alternating with alpha-hydroxyacid-derived groups and surgical articles made therefrom
ATE354600T1 (en) 1997-05-12 2007-03-15 Metabolix Inc POLYHYDROXYALKANOATES FOR IN VIVO APPLICATIONS
US7192984B2 (en) 1997-06-17 2007-03-20 Fziomed, Inc. Compositions of polyacids and polyethers and methods for their use as dermal fillers
US6211249B1 (en) 1997-07-11 2001-04-03 Life Medical Sciences, Inc. Polyester polyether block copolymers
US6135116A (en) 1997-07-28 2000-10-24 Kci Licensing, Inc. Therapeutic method for treating ulcers
AU755496B2 (en) 1997-09-12 2002-12-12 Kci Licensing, Inc. Surgical drape and suction head for wound treatment
GB9719520D0 (en) 1997-09-12 1997-11-19 Kci Medical Ltd Surgical drape and suction heads for wound treatment
US20060198867A1 (en) 1997-09-25 2006-09-07 Abbott Laboratories, Inc. Compositions and methods of administering rapamycin analogs using medical devices for long-term efficacy
JP3483753B2 (en) 1997-12-29 2004-01-06 タキロン株式会社 Biodegradable absorbent plastic adhesive
US6071267A (en) 1998-02-06 2000-06-06 Kinetic Concepts, Inc. Medical patient fluid management interface system and method
JP3412039B2 (en) 1998-02-12 2003-06-03 株式会社ビーエムジー Surgical adhesive composition
US6001117A (en) 1998-03-19 1999-12-14 Indigo Medical, Inc. Bellows medical construct and apparatus and method for using same
US6192014B1 (en) 1998-06-05 2001-02-20 Winbond Electronics Corporation Playback method and apparatus for reading interleaved audio programs recorded on a record carrier
US6514534B1 (en) 1998-08-14 2003-02-04 Incept Llc Methods for forming regional tissue adherent barriers and drug delivery systems
US7347850B2 (en) 1998-08-14 2008-03-25 Incept Llc Adhesion barriers applicable by minimally invasive surgery and methods of use thereof
US6488643B1 (en) 1998-10-08 2002-12-03 Kci Licensing, Inc. Wound healing foot wrap
US7083634B2 (en) 1998-11-12 2006-08-01 Poly Med Inc Stabilized polyester/cyanoacrylate tissue adhesive formulation
JP2002531217A (en) 1998-12-04 2002-09-24 チャンドラシェカー ピー. パサック, Biocompatible crosslinked polymer
JP2002536323A (en) 1999-02-04 2002-10-29 ジェンザイム コーポレーション Prevent abscess formation
EP1038538A1 (en) 1999-03-19 2000-09-27 IsoTis B.V. Muscle tissue engineering
US6287316B1 (en) 1999-03-26 2001-09-11 Ethicon, Inc. Knitted surgical mesh
US7799004B2 (en) 2001-03-05 2010-09-21 Kci Licensing, Inc. Negative pressure wound treatment apparatus and infection identification system and method
US6856821B2 (en) 2000-05-26 2005-02-15 Kci Licensing, Inc. System for combined transcutaneous blood gas monitoring and vacuum assisted wound closure
AU4476600A (en) 1999-04-22 2000-11-10 Vanderbilt University Polymeric encapsulation system promoting angiogenesis
US6991643B2 (en) 2000-12-20 2006-01-31 Usgi Medical Inc. Multi-barbed device for retaining tissue in apposition and methods of use
US6306424B1 (en) * 1999-06-30 2001-10-23 Ethicon, Inc. Foam composite for the repair or regeneration of tissue
US6391209B1 (en) 1999-08-04 2002-05-21 Mykrolis Corporation Regeneration of plating baths
EP1208850A1 (en) 1999-08-05 2002-05-29 Takeda Chemical Industries, Ltd. Pastes with the sustained release of osteogenesis promoter
ATE383873T1 (en) 1999-10-22 2008-02-15 Biogen Idec Inc USE OF A CD40:CD154 LINKAGE DISRUPTER FOR THE TREATMENT OF IMMUNOLOGICAL EYE COMPLICATIONS
US6800073B2 (en) 1999-10-28 2004-10-05 Scimed Life Systems, Inc. Biocompatible pharmaceutical articles
US6462169B1 (en) 1999-11-30 2002-10-08 Poly-Med, Inc. Amorphous polymeric polyaxial initiators and compliant crystalline copolymers therefrom
US6579533B1 (en) 1999-11-30 2003-06-17 Bioasborbable Concepts, Ltd. Bioabsorbable drug delivery system for local treatment and prevention of infections
US6491693B1 (en) * 1999-12-07 2002-12-10 Michael Lytinas Method of promoting osteogenesis by application of a vacuum to affected bone areas, and device for same
US6566345B2 (en) 2000-04-28 2003-05-20 Fziomed, Inc. Polyacid/polyalkylene oxide foams and gels and methods for their delivery
US20040127475A1 (en) 1999-12-29 2004-07-01 Estrogen Vascular Technology, Llc Apparatus and method for delivering compounds to a living organism
AU2001236454A1 (en) 2000-01-12 2001-07-24 Emory University Use of cyclopentenone derivatives for bone and periodontal regeneration
US6521223B1 (en) 2000-02-14 2003-02-18 Genzyme Corporation Single phase gels for the prevention of adhesions
AU2001241761B2 (en) 2000-02-24 2005-06-23 Venetec International, Inc. Universal catheter anchoring system
MXPA02009236A (en) 2000-03-20 2004-04-05 Novovascular Inc Matrices containing nitric oxide donors and reducing agents and their use.
US20030060752A1 (en) 2000-04-14 2003-03-27 Olav Bergheim Glaucoma device and methods thereof
US7708711B2 (en) 2000-04-14 2010-05-04 Glaukos Corporation Ocular implant with therapeutic agents and methods thereof
US6719987B2 (en) 2000-04-17 2004-04-13 Nucryst Pharmaceuticals Corp. Antimicrobial bioabsorbable materials
CA2407235A1 (en) 2000-04-28 2001-11-08 Fziomed, Inc. Hemostatic compositions of polyacids and polyalkylene oxides and methods for their use
GB0011202D0 (en) * 2000-05-09 2000-06-28 Kci Licensing Inc Abdominal wound dressing
WO2001085664A2 (en) 2000-05-10 2001-11-15 Princeton University Compounds and methods for regulating bacterial growth and pathogenesis
EP1294325B1 (en) * 2000-05-22 2008-09-10 Arthur C. Coffey Combination sis and vacuum bandage
US20030185901A1 (en) 2000-07-27 2003-10-02 Burrell Robert E. Methods of treating conditions with a metal-containing material
US7255881B2 (en) 2000-07-27 2007-08-14 Nucryst Pharmaceuticals Corp. Metal-containing materials
CA2417279C (en) 2000-07-27 2007-04-03 Nucryst Pharmaceuticals Corp. Treatment of hyperproliferative skin disorders and diseases
US7008647B2 (en) 2001-04-23 2006-03-07 Nucryst Pharmaceuticals Corp. Treatment of acne
FR2812551B1 (en) 2000-08-07 2003-03-28 Virsol PHARMACEUTICAL FORM COMPRISING A METHYLIDENE MALONATE-BASED SUPPORT MATERIAL AND A CELL REGULATING FACTOR
US7304122B2 (en) 2001-08-30 2007-12-04 Cornell Research Foundation, Inc. Elastomeric functional biodegradable copolyester amides and copolyester urethanes
US20060177416A1 (en) 2003-10-14 2006-08-10 Medivas, Llc Polymer particle delivery compositions and methods of use
AU2002239697A1 (en) 2000-10-24 2002-06-03 Clear Solutions Biotech, Inc. Sodium hyaluronate microspheres
US6783793B1 (en) 2000-10-26 2004-08-31 Advanced Cardiovascular Systems, Inc. Selective coating of medical devices
US20040018228A1 (en) 2000-11-06 2004-01-29 Afmedica, Inc. Compositions and methods for reducing scar tissue formation
US20060286063A1 (en) 2000-11-06 2006-12-21 Afmedica, Inc. Combination drug therapy for reducing scar tissue formation
US6599518B2 (en) 2000-11-21 2003-07-29 Xylos Corporation Solvent dehydrated microbially-derived cellulose for in vivo implantation
US7052708B2 (en) 2000-12-12 2006-05-30 The Corato Foundation Compositions and methods of crop protection
US7041868B2 (en) 2000-12-29 2006-05-09 Kimberly-Clark Worldwide, Inc. Bioabsorbable wound dressing
PT2314293T (en) 2001-01-16 2017-04-11 Vascular Therapies Llc Implantable device containing resorbable matrix material and rapamycin for preventing or treating vasuloproliferative diseases
US7070584B2 (en) 2001-02-20 2006-07-04 Kci Licensing, Inc. Biocompatible wound dressing
US7763769B2 (en) 2001-02-16 2010-07-27 Kci Licensing, Inc. Biocompatible wound dressing
US7700819B2 (en) * 2001-02-16 2010-04-20 Kci Licensing, Inc. Biocompatible wound dressing
US6540705B2 (en) 2001-02-22 2003-04-01 Core Products International, Inc. Ankle brace providing upper and lower ankle adjustment
US20030211793A1 (en) * 2001-03-05 2003-11-13 Eugene Bell Injectable bio-compatible material and methods of use
EP1385821A4 (en) 2001-03-12 2006-03-08 Cerno Biosciences Llc Novel anti-adhesive compounds and uses thereof
US8187625B2 (en) 2001-03-12 2012-05-29 Boston Scientific Scimed, Inc. Cross-linked gelatin composition comprising a wetting agent
US20060198815A1 (en) 2001-03-19 2006-09-07 Praecis Pharmaceuticals, Inc. Pharmaceutical formulations for sustained release
US7048939B2 (en) 2001-04-20 2006-05-23 The Board Of Trustees Of The Leland Stanford Junior University Methods for the inhibition of neointima formation
DE60210441T2 (en) 2001-04-23 2006-11-16 Nucryst Pharmaceuticals Corp., Fort Saskatchewan MEDICAMENT OR PLASTER CONTAINS A METAL SUCH AS SILVER, GOLD, PLATINUM OR PALLADIUM AS AN ANTIMICROBIAL ACTIVE INGREDIENT AND ITS USE IN THE TREATMENT OF SKIN INFUSION
US20030003127A1 (en) 2001-06-27 2003-01-02 Ethicon, Inc. Porous ceramic/porous polymer layered scaffolds for the repair and regeneration of tissue
US20080063620A1 (en) 2001-08-13 2008-03-13 Yissum Research Development Company Of The Hebrew University Of Jerusalem Novel reverse thermo-sensitive block copolymers
IL151288A0 (en) 2001-08-27 2003-04-10 Yissum Res Dev Co Multi-component reverse thermo-sensitive polymeric systems
EP1429689A4 (en) 2001-09-24 2006-03-08 Medtronic Ave Inc Rational drug therapy device and methods
US20030118651A1 (en) 2001-12-21 2003-06-26 Jampani Hanuman B. Bio-compatible means for controlled drug delivery to tissue and method of use
US6913589B2 (en) 2002-01-14 2005-07-05 Codman & Shurtleff, Inc. Multi-catheter insertion device and method
EP1334990A1 (en) 2002-02-06 2003-08-13 Polyganics B.V. DL-Lactide-epsilon-caprolactone copolymers
CA2475187A1 (en) 2002-02-07 2003-08-14 Rutgers, The State University Of New Jersey Therapeutic polyesters and polyamides
AU2003245750A1 (en) 2002-02-14 2003-09-04 Alpenstock Holdings Limited Use of polyanhydroglucuronic acid comprising microdispersed oxidised cellulose as immunomodulator
US7462366B2 (en) 2002-03-29 2008-12-09 Boston Scientific Scimed, Inc. Drug delivery particle
US7326426B2 (en) 2002-03-29 2008-02-05 Ethicon, Inc. Compositions and medical devices utilizing bioabsorbable liquid polymers
US7201925B2 (en) 2002-04-23 2007-04-10 Nueryst Pharmaceuticals Corp. Treatment of ungual and subungual diseases
US7649023B2 (en) 2002-06-11 2010-01-19 Novartis Ag Biodegradable block copolymeric compositions for drug delivery
US20030232087A1 (en) 2002-06-18 2003-12-18 Lawin Laurie R. Bioactive agent release coating with aromatic poly(meth)acrylates
JP2006175153A (en) 2004-12-24 2006-07-06 Goodman Co Ltd Biodegradable bio-absorbable material for clinical practice
US20050163822A1 (en) 2002-06-25 2005-07-28 Hiroyuki Shirahama Biodegradable bio-absorbable material for clinical practice and method for producing the same
US6893424B2 (en) 2002-07-04 2005-05-17 Semyon Shchervinsky Drain catheters
WO2004009147A1 (en) 2002-07-18 2004-01-29 Medtronic Ave Inc. Medical devices comprising a protein-tyrosine kinase inhibitor to inhibit restonosis
AU2002950340A0 (en) 2002-07-23 2002-09-12 Commonwealth Scientific And Industrial Research Organisation Biodegradable polyurethane/urea compositions
US20040142888A1 (en) 2002-08-07 2004-07-22 Veeraswamy Manne Modulators of RabGGT and methods of use thereof
US7381211B2 (en) * 2002-08-21 2008-06-03 Kci Licensing, Inc. Medical closure screen device and method
US7413571B2 (en) 2002-08-21 2008-08-19 Kci Licensing, Inc. Flexible medical closure screen and method
US7413570B2 (en) 2002-08-21 2008-08-19 Kci Licensing, Inc. Medical closure screen installation systems and methods
US7410495B2 (en) 2002-08-21 2008-08-12 Kci Licensing, Inc. Medical closure clip system and method
US7351250B2 (en) 2002-08-21 2008-04-01 Kci Licensing, Inc. Circumferential medical closure device and method
CA2497048A1 (en) 2002-08-28 2004-03-11 Curis, Inc. Conjoint administration of morphogens and ace inhibitors in treatment of chronic renal failure
US8012454B2 (en) 2002-08-30 2011-09-06 Boston Scientific Scimed, Inc. Embolization
US20030039697A1 (en) 2002-09-12 2003-02-27 Yi-Ju Zhao Matrices containing nitric oxide donors and reducing agents and their use
AU2003272719A1 (en) 2002-09-26 2004-04-19 Carbomer, Inc. Inhibitors of the nitrix oxide synthase iii (nos iii) as neuroprotective agents
AU2003284885A1 (en) 2002-10-21 2004-05-13 Kensey Nash Corporation Device and methods for sequential, regional delivery of multiple cytotoxic agents
GB0224986D0 (en) 2002-10-28 2002-12-04 Smith & Nephew Apparatus
EP1415671A1 (en) 2002-11-01 2004-05-06 Polyganics B.V. Biodegradable drains for medical applications
DE60232380D1 (en) 2002-11-07 2009-06-25 Rolf Weidenhagen
US6979352B2 (en) 2002-11-21 2005-12-27 Depuy Acromed Methods of performing embolism-free vertebroplasty and devices therefor
KR100622365B1 (en) 2002-11-26 2006-09-12 가부시키가이샤 리코 Inkjet recording device, image forming apparatus and sheet conveyance device
US20040111144A1 (en) 2002-12-06 2004-06-10 Lawin Laurie R. Barriers for polymeric coatings
US20040217146A1 (en) 2002-12-20 2004-11-04 Joachim Beck Surgical stapler apparatus and method
US8007822B2 (en) 2003-01-24 2011-08-30 Tyco Healthcare Group Lp Bioabsorbable composition and coatings including same
US7074412B2 (en) 2003-01-30 2006-07-11 The University Of Zurich Pharmaceutical composition
US7985414B2 (en) 2003-02-04 2011-07-26 Warsaw Orthopedic, Inc. Polyurethanes for osteoimplants
AU2004211991B2 (en) 2003-02-12 2011-03-31 Syncera, Inc. Random and non-random alkylene oxide polymer alloy compositions
DE602004024288D1 (en) 2003-02-17 2010-01-07 Kawamura Inst Chem Res POLYMER GEL WITH BIOKOMPATIBLE MATERIAL, DRY GEL AND PRODUCTION PROCESS FOR POLYMER GEL
EP1457499A1 (en) 2003-03-12 2004-09-15 Tufts University School Of Medicine Inhibitors of extracellular Hsp90
US8383158B2 (en) 2003-04-15 2013-02-26 Abbott Cardiovascular Systems Inc. Methods and compositions to treat myocardial conditions
US20060177417A1 (en) 2003-04-29 2006-08-10 Praecis Pharmaceuticals, Inc. Pharmaceutical formulations for sustained drug delivery
US20050112087A1 (en) 2003-04-29 2005-05-26 Musso Gary F. Pharmaceutical formulations for sustained drug delivery
US7662864B2 (en) 2003-06-04 2010-02-16 Rutgers, The State University Of New Jersey Solution polymerization processes to prepare a polymer that degrades to release a physiologically active agent
US7186789B2 (en) 2003-06-11 2007-03-06 Advanced Cardiovascular Systems, Inc. Bioabsorbable, biobeneficial polyester polymers for use in drug eluting stent coatings
JP2005006779A (en) 2003-06-17 2005-01-13 Terumo Corp Lumen of living body cleaning device
TWI248947B (en) 2003-07-21 2006-02-11 Ind Tech Res Inst Biodegradable copolymer, and polymeric micelle composition containing the copolymer
US7129210B2 (en) 2003-07-23 2006-10-31 Covalent Medical, Inc. Tissue adhesive sealant
EP1663333B1 (en) 2003-09-05 2018-11-07 Synthes GmbH Bone cement compositions having fiber-reinforcement and/or increased flowability
WO2006031922A2 (en) 2004-09-15 2006-03-23 Ordway Research Institute Thyroid hormone analogs for promoting angiogenesis
US20050063937A1 (en) 2003-09-16 2005-03-24 Cheng Li Multiple-arm peptide compounds, methods of manufacture and use in therapy
US20050249697A1 (en) 2003-09-24 2005-11-10 Uhrich Kathryn E Compositions and methods for the inhibition of bone growth and resorption
EP1673109B1 (en) 2003-09-25 2019-03-20 Rutgers, The State University of New Jersey Inherently radiopaque polymeric products for embolotherapy
US8124118B2 (en) 2003-10-22 2012-02-28 Lidds Ab Composition comprising biodegradable hydrating ceramics for controlled drug delivery
GB0325130D0 (en) * 2003-10-28 2003-12-03 Smith & Nephew Apparatus with scaffold
WO2005041987A1 (en) 2003-10-29 2005-05-12 Gentis, Inc. Polymerizable emulsions for tissue engineering
KR100588614B1 (en) 2003-11-10 2006-06-13 주식회사 바이오레인 Anti-adhesion agent with gas bubble
US20050148512A1 (en) 2003-11-10 2005-07-07 Angiotech International Ag Medical implants and fibrosis-inducing agents
US7182758B2 (en) 2003-11-17 2007-02-27 Mccraw John B Apparatus and method for drainage
BRPI0417341A (en) 2003-12-03 2007-04-17 Neose Technologies Inc glyceguiled factor ix
AU2004298393A1 (en) 2003-12-19 2005-06-30 Protemix Corporation Limited Copper antagonist compounds
CA2552677A1 (en) 2004-01-13 2005-07-28 Vasogenix Pharmaceuticals, Inc. Controlled release cgrp delivery composition for cardiovascular and renal indications
US20050175667A1 (en) 2004-02-10 2005-08-11 Wenda Carlyle Use of endothelin antagonists to prevent restenosis
US20050187268A1 (en) 2004-02-23 2005-08-25 Prolexys Pharmaceuticals Inc. Non-peptidyl agents with pHSP20-like activity, and uses thereof
US9034378B2 (en) 2004-03-24 2015-05-19 Polynovo Biomaterials Pty Ltd Biodegradable polyurethane and polyurethane ureas
WO2005096989A1 (en) 2004-03-31 2005-10-20 Cook Incorporated Graft material and stent graft comprising extra collagen matrix and method of preparation
US7654997B2 (en) 2004-04-21 2010-02-02 Acclarent, Inc. Devices, systems and methods for diagnosing and treating sinusitus and other disorders of the ears, nose and/or throat
US7361168B2 (en) 2004-04-21 2008-04-22 Acclarent, Inc. Implantable device and methods for delivering drugs and other substances to treat sinusitis and other disorders
US8293890B2 (en) 2004-04-30 2012-10-23 Advanced Cardiovascular Systems, Inc. Hyaluronic acid based copolymers
CA2467321A1 (en) 2004-05-14 2005-11-14 Paul J. Santerre Polymeric coupling agents and pharmaceutically-active polymers made therefrom
US20050266086A1 (en) 2004-06-01 2005-12-01 Sawhney Amarpreet S Intrauterine applications of materials formed in situ
GB2415382A (en) 2004-06-21 2005-12-28 Johnson & Johnson Medical Ltd Wound dressings for vacuum therapy
AU2005269868B2 (en) 2004-07-08 2008-10-23 Reva Medical, Inc. Side-chain crystallizable polymers for medical applications
WO2006005939A1 (en) 2004-07-09 2006-01-19 Ethicon, Inc. Vacuum wound dressings
US20060069068A1 (en) 2004-07-15 2006-03-30 Nanobac Pharmaceuticals, Inc. Methods and compositions for the treatment of diseases characterized by pathological calcification
US20060045912A1 (en) 2004-08-30 2006-03-02 Peter Truog 4-phenylbutyric acid controlled-release formulations for therapeutic use
CA2578951A1 (en) 2004-08-30 2006-03-09 Theregen, Inc. Cultured three dimensional tissues and uses thereof
US8063052B2 (en) 2004-09-01 2011-11-22 Systagenix Wound Management (Us), Inc. Wound healing
US9011831B2 (en) 2004-09-30 2015-04-21 Advanced Cardiovascular Systems, Inc. Methacrylate copolymers for medical devices
US8663625B2 (en) * 2004-10-15 2014-03-04 Cornell Research Foundation Diffusively permeable monolithic biomaterial with embedded microfluidic channels
WO2006050119A2 (en) 2004-10-29 2006-05-11 Smith & Nephew, Inc. Bioabsorbable polymers comprising calcium carbonate
US7390497B2 (en) 2004-10-29 2008-06-24 Advanced Cardiovascular Systems, Inc. Poly(ester amide) filler blends for modulation of coating properties
DE202004017052U1 (en) 2004-11-02 2005-06-09 Riesinger, Birgit Device for wound treatment using negative pressure
EP1807145B1 (en) * 2004-11-05 2016-03-23 ConvaTec Technologies Inc. Vacuum wound dressing
US7816461B2 (en) 2004-11-18 2010-10-19 Shanfeng Wang Block copolymers of polycarpolactone and poly (propylene funarate)
US20080086110A1 (en) 2004-11-19 2008-04-10 Galdonik Jason A Extendable Device On An Aspiration Catheter
WO2006055820A2 (en) 2004-11-19 2006-05-26 G & L Consulting Llc Biodegradable pericardial constraint system and method
US20060115449A1 (en) 2004-11-30 2006-06-01 Advanced Cardiovascular Systems, Inc. Bioabsorbable, biobeneficial, tyrosine-based polymers for use in drug eluting stent coatings
KR20070095921A (en) 2004-12-10 2007-10-01 탈리마 테라퓨틱스 인코포레이티드 Compositions and methods for treating conditions of the nail unit
US8007775B2 (en) 2004-12-30 2011-08-30 Advanced Cardiovascular Systems, Inc. Polymers containing poly(hydroxyalkanoates) and agents for use with medical articles and methods of fabricating the same
US7968668B2 (en) 2005-01-10 2011-06-28 Ethicon Inc. Diisocyanate terminated macromer and formulation thereof for use as an internal adhesive or sealant
US20060153796A1 (en) 2005-01-10 2006-07-13 Fitz Benjamin D Diisocyanate terminated macromer and formulation thereof for use as an internal adhesive or sealant
WO2006081407A1 (en) 2005-01-26 2006-08-03 Micrus Corporation Implantable microcoil with microscopic porosity surface
DE102005007016A1 (en) * 2005-02-15 2006-08-24 Fleischmann, Wilhelm, Dr.med. Device for the treatment of wounds
US20060292077A1 (en) 2005-03-18 2006-12-28 Zhao Jonathon Z Dendritic and star-shaped contrast agents for medical devices and bioabsorbable radiopaque bulk material and method for producing same
US7342048B2 (en) 2005-04-28 2008-03-11 Nipro Corporation Bioabsorbable pharmaceutical formulation
US20060251612A1 (en) 2005-05-09 2006-11-09 Dimiter Kotzev Bioresorbable cyanoacrylate adhesives
US9180229B2 (en) 2005-05-19 2015-11-10 Ethicon, Inc. Antimicrobial polymer compositions and the use thereof
EP1738760A1 (en) 2005-06-29 2007-01-03 Lifescan, Inc. Use of biocompatible amphiphilic polymers as an anti-inflammatory agent
WO2007008755A2 (en) 2005-07-08 2007-01-18 The Board Of Regents, The University Of Texas System Surface functionalization of polymeric materials
US9101654B2 (en) 2005-07-12 2015-08-11 University Of South Carolina Bioresorbable composite for repairing skeletal tissue
US20070027414A1 (en) 2005-07-28 2007-02-01 Integra Lifesciences Corporation Laminar construction negative pressure wound dressing including bioabsorbable material
WO2007019439A2 (en) 2005-08-04 2007-02-15 Angiotech International Ag Block copolymer compositions and uses thereof
WO2007056316A2 (en) 2005-11-04 2007-05-18 University Of Virginia Patent Foundation Injectable physiological temperature setting cement composites for spinal fusion and related method thereof
GB0524027D0 (en) 2005-11-25 2006-01-04 Smith & Nephew Fibrous dressing
AU2006321915B2 (en) 2005-12-06 2012-04-26 Covidien Lp Bioabsorbable surgical composition
WO2007067623A2 (en) 2005-12-06 2007-06-14 Tyco Healthcare Group Lp Biocompatible tissue sealants and adhesives
JP5333911B2 (en) 2005-12-06 2013-11-06 コヴィディエン リミテッド パートナーシップ Biocompatible surgical composition
EP1973554B1 (en) 2005-12-07 2015-01-14 Isto Technologies Inc. Cartilage repair methods
EP2213293A3 (en) 2005-12-08 2011-09-28 The Polymer Technology Group Incorporated Self-assembling monomers and oligomers as surface-modifying endgroups for polymers
WO2007082331A1 (en) 2006-01-20 2007-07-26 Starpharma Pty Limited Modified macromolecule
US8235939B2 (en) 2006-02-06 2012-08-07 Kci Licensing, Inc. System and method for purging a reduced pressure apparatus during the administration of reduced pressure treatment
US7294350B2 (en) 2006-03-21 2007-11-13 Marraccini Philip A Healing powder and method of use thereof
FR2899479B1 (en) 2006-04-10 2009-07-24 Agelys Lab CICATRISANTE COMPOSITION
EP2012803A4 (en) 2006-04-20 2012-08-01 Univ Utah Res Found Polymeric compositions and methods of making and using thereof
US7779625B2 (en) 2006-05-11 2010-08-24 Kalypto Medical, Inc. Device and method for wound therapy
US7615036B2 (en) 2006-05-11 2009-11-10 Kalypto Medical, Inc. Device and method for wound therapy
US8956640B2 (en) 2006-06-29 2015-02-17 Advanced Cardiovascular Systems, Inc. Block copolymers including a methoxyethyl methacrylate midblock
US8808754B2 (en) 2006-06-29 2014-08-19 Systagenix Wound Management (Us), Inc. Methods for the treatment of wounds
US9265865B2 (en) 2006-06-30 2016-02-23 Boston Scientific Scimed, Inc. Stent having time-release indicator
US20100047235A1 (en) 2006-07-07 2010-02-25 Gorman James R Novel regimens for treating diseases and disorders
US20080014170A1 (en) 2006-07-14 2008-01-17 Olexander Hnojewyj Drug delivery polyanhydride composition and method
EP2046288B1 (en) 2006-07-14 2013-07-03 FMC Biopolymer AS Hydrogels containing low molecular weight alginates and biostructures made therefrom
US8936780B2 (en) 2006-08-30 2015-01-20 Advanced Cardiovascular Systems, Inc. Stimuli responsive polyester amide particles
AU2007297579B2 (en) 2006-09-19 2013-02-14 Solventum Intellectual Properties Company Reduced pressure treatment system having blockage clearing and dual-zone pressure protection capabilities
EP2081618B1 (en) 2006-10-13 2016-01-06 Bluesky Medical Group Inc. Improved control circuit and apparatus for negative pressure wound treatment
CA2985942A1 (en) 2006-10-17 2008-04-24 Bluesky Medical Group Inc. Auxiliary powered negative pressure wound therapy apparatuses and methods
US9675696B2 (en) 2006-11-14 2017-06-13 Warsaw Orthopedic, Inc. Method and use for increasing efficacy of anti-adhesive compositions in controlling inflammation and pain
US20080160064A1 (en) 2006-12-22 2008-07-03 Capelli Christopher C Devices and methods for inhibiting fibrosis
US8377016B2 (en) 2007-01-10 2013-02-19 Wake Forest University Health Sciences Apparatus and method for wound treatment employing periodic sub-atmospheric pressure
US20090177133A1 (en) * 2008-01-04 2009-07-09 Kristine Kieswetter Reduced pressure dressing coated with biomolecules

Also Published As

Publication number Publication date
JP4777462B2 (en) 2011-09-21
CA2674024A1 (en) 2008-07-31
EP2121110A4 (en) 2012-08-08
CN101588836B (en) 2013-03-20
WO2008091521A3 (en) 2008-10-16
CN103120610A (en) 2013-05-29
RU2433843C2 (en) 2011-11-20
EP3563816A1 (en) 2019-11-06
EP2767305B2 (en) 2024-04-03
WO2008091521A2 (en) 2008-07-31
EP3127577A1 (en) 2017-02-08
AU2008209626A1 (en) 2008-07-31
US7700819B2 (en) 2010-04-20
US20070185426A1 (en) 2007-08-09
IL199730A0 (en) 2010-04-15
CN101588836A (en) 2009-11-25
US20100249688A1 (en) 2010-09-30
RU2009122936A (en) 2011-02-27
NO20092687L (en) 2009-07-16
US8163974B2 (en) 2012-04-24
TW200845948A (en) 2008-12-01
EP3372207A1 (en) 2018-09-12
AU2008209626B2 (en) 2013-09-12
EP2767305A1 (en) 2014-08-20
EP2121110B1 (en) 2014-06-25
EP3127577B2 (en) 2021-07-14
ZA200904095B (en) 2010-04-28
KR101164714B1 (en) 2012-07-11
EP2767305B1 (en) 2016-10-05
JP2010516387A (en) 2010-05-20
CN103120610B (en) 2014-11-12
EP3563816B1 (en) 2023-01-11
KR20090122206A (en) 2009-11-26
TWI391128B (en) 2013-04-01
EP3127577B1 (en) 2018-03-07
EP2121110A2 (en) 2009-11-25

Similar Documents

Publication Publication Date Title
CA2674024C (en) Biocompatible wound dressing
US11850351B2 (en) Reduced-pressure dressings employing tissue-fixation elements
US8084664B2 (en) Biocompatible wound dressing
US7070584B2 (en) Biocompatible wound dressing
AU2013270493B2 (en) Biocompatible wound dressing
AU2015268580B2 (en) Biocompatible wound dressing

Legal Events

Date Code Title Description
EEER Examination request