CA2674193C - Implantable prosthetic valve assembly and method for making the same - Google Patents

Implantable prosthetic valve assembly and method for making the same Download PDF

Info

Publication number
CA2674193C
CA2674193C CA2674193A CA2674193A CA2674193C CA 2674193 C CA2674193 C CA 2674193C CA 2674193 A CA2674193 A CA 2674193A CA 2674193 A CA2674193 A CA 2674193A CA 2674193 C CA2674193 C CA 2674193C
Authority
CA
Canada
Prior art keywords
frame
valve member
diameter
expanded
frame portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CA2674193A
Other languages
French (fr)
Other versions
CA2674193A1 (en
Inventor
Netanel Benichou
Benjamin Spenser
Assaf Bash
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Edwards Lifesciences Corp
Original Assignee
Edwards Lifesciences Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Edwards Lifesciences Corp filed Critical Edwards Lifesciences Corp
Publication of CA2674193A1 publication Critical patent/CA2674193A1/en
Application granted granted Critical
Publication of CA2674193C publication Critical patent/CA2674193C/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2412Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body with soft flexible valve members, e.g. tissue valves shaped like natural valves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2412Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body with soft flexible valve members, e.g. tissue valves shaped like natural valves
    • A61F2/2415Manufacturing methods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2412Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body with soft flexible valve members, e.g. tissue valves shaped like natural valves
    • A61F2/2418Scaffolds therefor, e.g. support stents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/95Instruments specially adapted for placement or removal of stents or stent-grafts
    • A61F2/9522Means for mounting a stent or stent-graft onto or into a placement instrument
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2220/00Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2220/0008Fixation appliances for connecting prostheses to the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2220/00Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2220/0008Fixation appliances for connecting prostheses to the body
    • A61F2220/0016Fixation appliances for connecting prostheses to the body with sharp anchoring protrusions, e.g. barbs, pins, spikes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2220/00Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2220/0025Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2220/0075Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements sutured, ligatured or stitched, retained or tied with a rope, string, thread, wire or cable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0002Two-dimensional shapes, e.g. cross-sections
    • A61F2230/0028Shapes in the form of latin or greek characters
    • A61F2230/0054V-shaped
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0058Additional features; Implant or prostheses properties not otherwise provided for
    • A61F2250/0096Markers and sensors for detecting a position or changes of a position of an implant, e.g. RF sensors, ultrasound markers
    • A61F2250/0097Visible markings, e.g. indicia

Abstract

A folding apparatus (200) for use in mounting a prosthetic valve (102) on a stent (104), the valve having an expanded diameter, the apparatus configured to fold the valve into an undulated shape having multiple folds and a diameter that is less than the expanded diameter. The apparatus comprises: a base (202); a plurality of stationary posts (204) connected to the base at fixed locations, nd a plurality of moveable posts (206) connected to the base and moveable relative to the base radially inwardly toward each other and the center point and radially outwardly away from each other and the center point; wherein when the valve (102) is placed around the posts with the valve extending around outer sides of the stationary posts and inner sides of the moveable posts, moving the moveable posts radially inwardly toward each other folds the valve.

Description

2 - I -IMPLANTABLE PROSTHETIC VALVE ASSEMBLY AND METHOD
FOR MAKING THE SAME
FIELD
[001] The present disclosure concerns embodiments of an implantable prosthetic valve and method for making the same.
BACKGROUND
[002] Prosthetic cardiac valves have been used for many years to treat cardiac valvular disorders. The native heart valves (such as the aortic, pulmonary and mitral valves) serve critical functions in assuring the forward flow of an adequate supply of blood through the cardiovascular system. These heart valves can be rendered less effective by congenital, inflammatory or infectious conditions. Such damage to the valves can result in serious cardiovascular compromise and even death. For many years, the definitive treatment for such disorders was the surgical repair or replacement of the valve during open heart surgery,. but such surgeries are prone to many complications. More recently, a transvascular technique has been developed for introducing and implanting a prosthetic heart valve using a flexible catheter in a manner that is less invasive than open heart surgery.
[003] In this technique, a prosthetic heart valve is mounted in a crimped state on the end portion of a flexible catheter and advanced through a blood vessel of the patient until the valve reaches the implantation site. The valve at the catheter tip is then expanded to its functional size at the site of the defective native valve such as by inflating a balloon on which the valve is mounted.
[004] FIG. 1 shows a known percutaneous heart valve 10 in its deployed or expanded state. The valve 10 comprises a flexible prosthetic valve member 12 attached to an expandable frame, or support stent, 14 with sutures 16. The frame 14 includes angularly-spaced, axial struts 18 and circumferentially extending, zig-zag struts 20 secured to the axial struts 18. Between each pair of axial struts 18, each strut 20 comprises two linear strut members 22a, 22b forming a bend in the strut to facilitate crimping of the valve 10 to a smaller diameter for percutaneous delivery of the valve. As can be appreciated, the easiest and most straightforward way of attaching the valve member 12 to the frame 14 is when both the frame 14 and the valve member 12 are in the expanded state shown in FIG. 1. The assembled valve 10 typically is stored in the expanded state or a partially crimped state and then fully crimped to a much smaller profile in the operating room just prior to implantation.
[0051 An important characteristic of a percutaneous prosthetic heart valve is its ability to be crimped to as small diameter as possible to permit the crimped valve to be advanced through the blood vessels to an implantation site.
Another important characteristic of a percutaneous heart valve is its ability to retain an expanded shape once implanted. To maximize circumferential and radial rigidity of the valve frame, and therefore enhance the ability of the frame to retain an expanded shape once implanted, it is desirable to maximize the angle between strut members 22a, 22b. Ideally, the struts 20 should be nearly circular (i.e., the angles 0 are slightly less than 180 degrees) to provide maximum rigidity. Moreover, by increasing the rigidity of the struts, less metal can be used for forming the frame, which allows the valve to be crimped to a smaller profile.
[0061 Unfortunately, forming the struts 20 with angles 0 that are greater than 90 degrees can lead to uneven and unpredictable crimping. Thus, if the valve assembly is assembled in its expanded, functional shape, then in order to permit even and predictable crimping of the frame to a predetermined profile suitable for percutaneous delivery, rigid struts with obtuse angles 0 cannot be utilized.
SUMMARY
[007] In one aspect, the present disclosure concerns an implantable prosthetic valve assembly having a support stent, or frame, having circumferential struts with multiple bends forming obtuse angles when the valve assembly is expanded to its functional size. The frame can be manufactured with one or more of the circumferential struts in a partially collapsed state and a flexible valve member can be mounted to the partially collapsed frame. The partially collapsed struts can be formed with multiple bends having angles selected to facilitate crimping of the frame to a profile suitable for percutaneous delivery.
When the frame is expanded, the bends can expand to form obtuse angles, thereby enhancing the rigidity of the frame to better resist closing forces exerted on the valve assembly (for example, the recoil force exerted on the frame by the distorted stenosed native valve orifice). In particular embodiments, the bends of at least some of the struts when expanded form obtuse angles that are at least about 120 degrees or greater.
[008] In an exemplary embodiment, the frame is manufactured in a partially collapsed state having a generally tubular shape, and a valve member, such as a tricuspid valve member, is attached to the partially collapsed frame. The partially collapsed frame has plural, axial spaced circumferential struts formed with multiple bends that have angles selected to facilitate crimping of the valve assembly to a smaller diameter and that expand to obtuse angles when the valve member is expanded to its functional size. In certain embodiments, for example, the partially collapsed frame is formed with bends having acute angles and expanding the frame forms bends that are at least about 120 degrees. The frame desirably can be crimped to a diameter of about 24 French or less for delivery through a patient's vasculature on a catheter or equivalent mechanism.
[009] When the valve member is mounted to the partially collapsed frame, the diameter of the valve member is greater than the diameter of the partially collapsed frame. For instance, in certain implementations, the diameter of the valve member is twice that of the partially collapsed frame. The valve member therefore cannot conform to the shape of the partially collapsed frame, and as a result, assembly of the valve assembly is rendered more difficult. Various techniques therefore can be utilized to ensure that the valve member is connected to the frame in a manner that when the frame is expanded, the valve member can assume its functional shape.
[010] In one approach, a flexible skirt is used as an aid for mounting the valve member. The skirt has visual indicia marking the locations along the length of the skirt for attaching the skirt to the inner surface of the frame. Such visual indicia can be for example, markings on the surface of the skirt, slits or apertures, sutures attached to the skirt, or a longitudinal edge of the skirt shaped to indicate the attachment locations. The skirt is first attached to the inner surface of the frame and then the valve member is attached to the inner surface of the skirt. The skirt and the valve member are connected to the frame such that when the valve assembly is expanded, the skirt and the portion of the valve member attached to the skirt substantially conform to the shape of the expanded frame.
10111 In another approach, a folding device is used to fold or bend the valve member into an undulated shape having a diameter that is approximately equal to the diameter of the partially collapsed frame. In use, the valve member is placed in the folding device and is folded to a smaller diameter. The frame is placed around the folded valve member, which is then attached to the frame at the apexes of the folds contacting the frame. In another implementation, both the valve member and the skirt are placed in the folding device and folded to a smaller diameter. The frame is then placed around the folded skirt and valve member, which are then attached to the frame. In another implementation, the folding device can be used to fold the skirt, which is then attached to the frame.
The partially assembled valve is then removed from the folding device and the valve member is mounted to the frame.
[012] In one representative embodiment, a method is provided for assembling an implantable prosthetic valve comprising a crimpable frame and valve member. The method comprises connecting the valve member to an inner surface of the frame member while a portion of the frame is at least partially crimped, with the partially crimped frame portion having a diameter that is less than the diameter of the valve member when the valve member is expanded to its functional size.
[013] In another representative embodiment, a method of assembling an implantable prosthetic valve assembly comprises forming an annular frame in a partially crimped state, and mounting a flexible valve member to an inner
- 5 -surface of the partially crimped frame having a diameter that is less than the diameter of the valve member when expanded to its functional size.
[014] In another representative embodiment, a method of percutaneous heart valve replacement comprises assembling a heart valve assembly by connecting a valve member to an expandable support stent when the stent is in a partially collapsed state having a first diameter. The method further comprises storing the heart valve assembly with the stent in the partially collapsed state, compressing the valve assembly just prior to implantation to a collapsed state having second diameter that is less than the first diameter, delivering the valve assembly to a native valve site of a patient through the patient's vasculature, and expanding the valve assembly at the native valve site to an expanded state having a third diameter that is greater than the first diameter.
[015] In yet another representative embodiment, a prosthetic valve assembly comprises a frame that is radially compressible to a compressed state for percutaneous delivery of the valve assembly and radially expandable to an expanded state for operation of the valve assembly. The frame comprises first and second frame portions connected end-to-end, with each frame portion comprising a plurality of circumferential struts formed with multiple bends.
The bends of the first frame portion have angles that are less than the angles of the bends of the second frame portion when the frame is in the expanded state.
A valve member can be mounted to the frame when the first frame portion is in an expanded state and the second frame portion is in a partially collapsed state.
For example, a base portion of the valve member can be attached to the expanded first frame portion and the commissure tabs of the valve member can be attached to the first and second frame portions.
[016] In still another representative embodiment, a folding apparatus for use in mounting a prosthetic valve on a stent is configured to fold the valve into an undulated shape having multiple angularly-spaced, radially extending folds and a diameter that is less than the diameter of the expanded valve and stent.
-6-10171 The foregoing and other features and advantages of the invention will become more apparent from the following detailed description, which proceeds with reference to the accompanying figures.
BRIEF DESCRIPTION OF THE DRAWINGS
[0181 FIG. 1 is a perspective view of a prior art prosthetic heart valve assembly configured for percutaneous introduction.
[019] FIG. 2 is a perspective view of a percutaneous heart valve assembly shown in a partially compressed state, according to one embodiment.
1020] FIGS. 3A-3C show the frame of the heart valve assembly of FIG. 2 in a partially compressed state (FIG. 3A), an expanded state (FIG. 3B), and a compressed state (FIG. 3C).
[021] FIG. 4 is a perspective view of the heart valve assembly of FIG. 2 shown prior to the valve member being mounted to the assembly.
[022] FIG. 5 is a top plan view of the partially assembled valve assembly shown in FIG. 4.
[023] FIG. 6 is a plan view of an exemplary embodiment of a flexible skirt that can be used to attach a valve member to a frame.
[024] FIG. 7 is a plan view of another embodiment of a flexible skirt.
10251 FIG. 8 is a top plan view of an exemplary embodiment of a folding apparatus for use in assembling a valve assembly shown with a valve member retained in a folded state and a frame placed around the folded valve member.
[026] FIG. 9 is a perspective view of the folding apparatus.
[027] FIG. 10 is a partially exploded, perspective view of the folding apparatus shown with the housing removed.
[028] FIG. ills a perspective view of the support plate, bases and associated posts of the folding apparatus.
[029] FIG. 12 is a top plan view of the folding apparatus shown with the housing removed.
[030] FIG. 13 is a side elevation view of a radially compressible and expandable frame for a prosthetic valve assembly shown with an upper frame
- 7 -portion in a partially collapsed state and a lower frame portion in an expanded state, according to another embodiment.
[031] FIG. 14 is a side elevation view of the frame of FIG. 13 shown with both frame portions in expanded states.
10321 FIG. 15 is a perspective view of a radially compressible and expandable frame shown with a first frame portion in a partially crimped condition, according to another embodiment.
DETAILED DESCRIPTION
[033] As used herein, the singular forms "a," "an," and "the" refer to one or more than one, unless the context clearly dictates otherwise.
[034] As used herein, the term "includes" means "comprises." For example, a device that includes or comprises A and B contains A and B but may optionally contain C or other components other than A and B. A device that includes or comprises A or B may contain A or B or A and B, and optionally one or more other components such as C.
[035] As used herein, the "expanded" or "deployed" state of a valve assembly or frame refers to the state of the valve assembly/frame when radially expanded to its functional size. The "crimped" or "compressed" state of a valve assembly or frame refers to the state of the valve assembly/frame when radially compressed to a diameter suitable for delivering the valve assembly through a patient's vasculature on a catheter or equivalent mechanism. A valve assembly/frame that is "partially crimped" or "partially compressed" has a diameter that is less than the diameter of the valve assembly/frame in the expanded state and greater than the diameter of the valve assembly/frame in the compressed state. In particular embodiments, the diameter of the partially crimped valve assembly is about two times greater than the compressed diameter and the expanded diameter is about 1.5 times greater than the partially crimped diameter. In an exemplary embodiment, the expanded diameter of the valve assembly is about 23 mm, the partially crimped diameter is about 15 mm, and the compressed diameter is about 7 mm (about 22 French).
- 8 -[036] FIG. 2 shows a first embodiment of an expandable, percutaneous prosthetic heart valve assembly 100 in a partially collapsed or crimped state.

The valVe assembly 100 is suitable for crimping into a narrow configuration for positioning and expandable to a wider, deployed configuration so as to anchor the assembly in position at the desired target location in the body (e.g., at the aortic annulus). The valve assembly 100 in the illustrated embodiment comprises a flexible valve member 102 (also referred to herein in other embodiments as a valve) mounted on an expandable, annular support stent, or frame, 104. The valve member 102 is mounted to the frame 104 when the frame 104 is in the partially collapsed state shown in FIG. 2. A flexible skirt 106 can be situated between the outer surface of valve member 102 and the inner surface of the frame 104. The skirt 106 can be used to facilitate mounting of the valve member 102 to the frame 104, as described in detail below.
[037] The frame 104 in the illustrated embodiment comprises a plurality of angularly-spaced axial struts, or support members, 108 that extend axially (longitudinally) of the frame and a plurality of support posts, or beams, 110 spaced in the illustrated example at 120-degree intervals from each other around the frame 104. The support posts 110 can be formed with apertures 112 to facilitate mounting of the valve member 102 to the posts 110 such as by suturing the valve member 102 to the posts. The frame 104 can also include a plurality of axially-spaced, circumferential bands, or struts, 114 attached to the axial struts 108 and the support posts 110. The struts 114 are formed with multiple bends that allow the frame 104 to be crimped to a smaller diameter for delivery to an implantation site and expanded to a larger diameter for anchoring the valve assembly at the implantation site. For example, each of the struts in the illustrated configuration includes a plurality of linear strut members 116a, I 16b arranged in a zig-zag or saw-tooth configuration defining bends between adjacent strut members.
[038] In alternative embodiments, the frame can have other configurations.
For example, one or more of the circumferential bands 114 can have a curved or serpentine shape rather than a zig-zag shape. Further, the frame 104 can include
- 9 -various attachment elements (not shown), such as barbs, staples, flanges, and the like for enhancing the ability of the frame to anchor to the host tissue.
[0391 The frame 104 can be made from any of various suitable expandable and/or elastic materials and is typically made of a metal, such as stainless steel, titanium, or other biocompatible metals. The frame 104 also can be made from a shape memory alloy such as nickel titanium (NiTi) shape memory alloys, as marketed, for example, under the trade name Nitinol. The skirt 106 can be made from any of various suitable biocompatible synthetic materials, such as woven polyester or polytetrafluomethylene (PTFE).
[0401 The valve member 102 can have a leafed-valve configuration, such as the tricuspid valve configuration shown in the illustrated embodiment. The valve member 102 can be formed from three pieces of pliant material connected to each other at seams 118 (also referred to as commissure tabs) to form collapsible leaflets 122 and a base portion 120 (the lower portion of the valve member in FIG. 2). The valve member 102 can be connected to the skirt 106 at the base portion 120 of the valve member and to the posts 110 at the seams 118, Various other valve configurations also can be used. Examples of other valves that can be utilized are disclosed in U.S. Patent No. 6,730,118, U.S. Patent No.
6,767,362, and U.S. Patent No. 6,908,481.
[041] The valve member 102 can be made from biological matter, such as natural tissue, pericardial tissue (such as bovine, procine or equine pericardium), a harvested natural valve or other biological tissue.
Alternatively, the valve member 102 can be made from biocompatible polymers or similar materials.
[042] FIGS. 3A-3C are schematic views showing the frame 104 in the partially collapsed state (FIG. 3A) for mounting the valve member 102 (FIG. 2) to the frame; a collapsed, or compressed, state (FIG. 3C) for delivering the valve assembly; and an expanded state (FIG. 38) for anchoring the valve assembly at an implantation site. As shown, when the valve assembly 100 is assembled, the frame 104 has an initial diameter Di, and can be crimped to a
- 10 -diameter D2 that is less than DI and expanded to a diameter D3 that is greater than DI. In certain embodiments, for example, the diameter Di of the partially collapsed frame 104 is approximately twice the diameter D2 of the collapsed frame and the diameter D3 of the expanded frame is about 1.5 times greater than D. In an exemplary embodiment, DI is about 15 mm, D2 is about 7 mm, and D3 is about 23 mm. In certain embodiments, the frame 104 can be compressed to a diameter such that the strut members 116a, 116b are nearly vertical and parallel to axial struts 108.
[043] In particular embodiments, the frame 104 is manufactured in the partially collapsed state shown in FIG. 3A and need not be expanded or collapsed prior to its attachment to the valve member 102. Initially, the strut members 116a, 116b define angles al in the partially collapsed state and increase to angles a2 when the frame is expanded. The angles al defined between adjacent strut members 116a, 116b of the partially collapsed frame arc selected to allow for even and predictable crimping of the frame, yet provide sufficient strength and rigidity to the struts 114 when the frame is expanded to resist closing forces exerted on the frame (for example, the recoil force exerted on the frame by the distorted stenosed native valve orifice). For example, in certain implementations, the angles al of the partially collapsed frame are in the range of about 50 to about 90 degrees, with 70 degrees being a specific example, and the angles a2 of the expanded frame are in the range of about 90 to about 179 degrees, and more desirably in the range of about 90 to about 130 degrees, with 120 being a specific example.
[044] As discussed above, known valve assemblies typically are assembled with the frame in an expanded state. With the frame in the expanded state, the valve member can be expanded to closely conform to the inner surface of the frame, such as by mounting the valve member on a cylindrical mandrel having a diameter slightly smaller than the diameter of the expanded frame. As a result, it is a relatively simple matter to attach the valve member to the frame, such as with sutures. However, when attaching the valve member 102 to the frame 104 in the partially collapsed state, the diameter of the valve member 102 can be - II -much greater than the diameter DI of the partially collapsed frame 104. The valve member 102 in such cases cannot conform to the shape of the partially collapsed frame, and as a result, assembly of the valve assembly is rendered more difficult. Accordingly, one or more of the following techniques can be employed to facilitate the assembly process.
[045] In one approach, for example, the flexible skirt 106 (FIGS. 2 and 4-6) is used as an attachment aid. When assembling the valve assembly 100, the skirt 106 is first attached to the inner surface of the frame 104, such as with sutures 130 or other suitable attachment techniques or mechanisms. The length of the skirt 106 (when laid flat) is approximately equal to the inner circumference of the frame 104 when expanded. As best shown in FIG. 5, the skirt 106 therefore is attached to the frame 104 at discrete, spaced-apart locations 134 around the periphery of the skirt such that the skirt 106 takes on an undulated shape with slack portions 138 between the connection locations remaining unattached to the frame. The spacing between the connection locations 134 is such that when the frame 104 is expanded, the skirt takes on a substantially tubular shape closely conforming in an abutting relationship with the inner surface of the frame. After attaching the skirt 106 to the frame 104, the base portion 120 of the valve member 102 can then be attached to the skirt 106 and/or the support posts 110, such as with sutures 132 (FIG. 2) or other suitable fasteners. The valve member 102 is placed in a partially crimped state but when the frame 104 is expanded, the base portion of the valve member expands to a tubular shape closely conforming to the inner surface of the skirt 106 in an abutting relationship.
[046] As shown in FIG. 6, the skirt 106 (shown laid flat) can be provided with visual indicia along its length to identify the locations on the skirt for attaching the skirt to the frame 104. The visual indicia can be, for example, markings 136, slits or holes formed in the skirt, or sutures attached at spaced-apart locations along the length of the skirt. If sutures are used to mark the connecting locations, the sutures can also be used in connecting the skirt to the frame.

[047] FIG. 7 shows a skirt 150, according to another embodiment. The skirt 150 is formed with a generally saw-tooth shaped edge 152 with apexes 154 marking the locations along the length of the skirt for attaching the skirt to the frame 104.
[048] In another approach for assembling the valve assembly 100, a folding device can be utilized to fold or bend the valve member 102 into an undulated shape for attaching the valve member 102 to the frame 104. FIGS. 8-12 show an exemplary embodiment of a folding device, indicated generally at 200.
Referring to FIGS. 8 and 9, the folding device 200 in the illustrated embodiment can comprise an outer housing, or casing, 202, a plurality of fixed posts, or pins, 204, and a plurality of moveable posts, or pins, 206 extending from the housing 202. In this manner, the housing serves as a base or support for the posts 204, 206.
[049] There are a total of six fixed posts 204 and a total of six moveable posts 206 in the illustrated embodiment, although the number of posts 204, 206 can vary in different applications. The fixed posts 204 can be mounted at fixed locations on the upper surface of the housing 202. The moveable posts 206 are slidable in respective radially extending slots 208 in the upper surface of the housing 202 so that the posts 206 can be moved radially toward and away from each other. The posts 204, 206 are angularly spaced around a center point C on the base 202 centrally located between the posts. The center point C in the illustrated embodiment coincides with the geometric center of the housing 202, although in other embodiments the center point C can be offset from the geometric center of the housing.
[050] In use, the valve member 102 can be placed around the posts 204, 206 with the valve member 102 extending around the outside of the fixed posts 204 and the inside of the moveable posts 206 (FIG. 8). The posts 206 can then be moved radially inwardly toward each other to form multiple angularly-spaced, radially extending folds 210 in the valve member, as depicted in the FIG. 8.
The folded valve member has a diameter (measured between diametrically opposing apexes 212) that is less than the diameter of the valve member in its expanded state. This allows the frame 104 (in the partially collapsed state) to be placed around and attached to the valve member 102 at the apexes 212 of the folds 210, such as by suturing the valve member to the frame at the apexes 212.
As shown, the spacing between the fixed posts 204 and the center point C
desirably is selected such that the partially collapsed frame 104 can contact the apexes 212 when placed around the folded valve member. Slack portions 230 of the folded valve member between the apexes 212 remain unattached to the frame 104. In certain embodiments, the apexes 212 of the folds are attached to the lower half of the frame 104 at the base portion 120 of the valve member and to the support posts 110 of the frame where the apexes 212 coincide with the seams of the valve member. Thus, when the frame 104 is expanded to its functional size, the base portion 120 of the valve member 102 expands to a tubular shape closely conforming to the inner surface of the frame in an abutting relationship.
[0511 The moveable posts 206 can be operatively connected to an adjustment mechanism that is operable to move posts 206 simultaneously such that the posts 206 are always equidistant from the center point C. In this manner, the folding device 200 can easily form substantially equal and symmetrical folds 210 in the valve member 102 without having to position individual posts 206.
[0521 For example, referring to FIGS. 10-12, the illustrated folding device 200 includes an adjustment mechanism 214 in the form of a circular plate positioned at the bottom of the folding device. The moveable posts 206 are mounted to respective bases 216, which are supported on a support plate 218 inside the housing 202. As shown in FIG. 11, each base 216 is provided with a downwardly projecting pin 220, each of which extends through a respective linear slot 222 formed in the support plate 218. As best shown in FIG. 12, the slots 222 are equally dispersed around the center point C of the device with each slot extending in a direction that is offset from the center point C by the same distance. The bottom plate 214 is formed with a plurality of arcuate slots 224, each of which receives the bottom end portion of a respective pin 220 of a base 216. The slots 224 are equally dispersed around the center point C with the center of curvature of each slot 224 being offset from the center point C by the same distance.
[053] By virtue of the arrangement of the slots 208, 222, 224, rotation of the bottom plate 214 is effective to move the posts 206 simultaneously toward or away from each other. For example, referring to FIG. 12, rotating the bottom plate 214 counterclockwise causes the pins 220 to move within their respective slots 222 (in the directions indicated by arrows 226), which in turn causes each base 216 to move in the same direction. The bases 216 in turn move their respective pins 206 radially inwardly toward each other to create the folds in the valve member 102 (FIG. 8). Rotating the bottom plate 214 clockwise in FIG. 12 causes the bases 216 to move in the opposite direction, which in turn causes the posts 206 to move simultaneously radially outwardly from each other.
[054] In another approach for assembling the valve assembly 100, the folding device 200 can be used to fold the skirt 106, which can then be attached to the frame 104 at the apexes of the folds contacting the frame. The frame 104 and skirt 106 are then removed from the folding device and the valve member 102 can be attached to the inner surface of the skirt 106.
[055) In certain embodiments, the valve assembly 100 can be assembled prior to storage. Just prior to implantation, the valve assembly is removed from the storage container, placed on the end portion of a delivery catheter and radially crimped about the catheter for percutaneous delivery. Alternatively, the components of the valve assembly can be stored separately and assembled in the operating theater just prior to implantation. A conventional crimping device can be used to crimp the valve assembly on the catheter. One such crimping device is described in U.S. Patent No. 6,730,118.
[056] Various procedures can be employed for delivering and deploying the valve assembly at a target site, as described for example in the '118 patent.
In one implementation, for example, the valve assembly is mounted on an inflatable balloon of a flexible catheter and inserted into the patient's vasculature via an introducer sheath or other cannula. The valve assembly is advanced through the patient's vasculature while mounted on the balloon until it reaches the desired target location (for example, at the aortic annulus in the case of an aortic valve assembly). The balloon is then inflated and the valve assembly expands radially, anchoring the frame to the surrounding tissue.
[057] In another implementation, the frame 104 can be made of a self-expanding material and the valve assembly can be mounted in a crimped state on the end of a catheter with a sheath over the valve assembly. The valve assembly is advanced through the patient's vasculature until it reaches the desired target location, at which point the sheath is retracted from the valve assembly to allow the frame to expand and engage the surrounding tissue. in another implementation, the valve assembly can be implanted in an open-heart procedure with the valve assembly being delivered to the target site using a valve holder, as known in the art.
[058] FIGS. 13 and 14 illustrate another embodiment of an expandable and collapsible frame 300 of a heart valve assembly. FIG. 13 shows the frame 300 in a partially collapsed state for mounting a valve member (e.g., valve member 102). FIG. 14 shows the frame 300 expands to its functional size. The frame 300 includes a first frame portion 302 connected end-to-end to a second frame portion 304. The valve member (not shown in the drawings) is connected to the second frame portion 304, which exhibits better crimpability than the first frame portion 302. The first frame portion 302, on the other hand, has a more rigid construction than the second frame portion 304, and therefore enhances the overall strength and rigidity of the frame 300. Prior to implantation, both frame portions 302, 304 can be crimped to a smaller diameter from the partially collapsed state shown in FIG. 13. When the valve assembly is positioned at the target site in a patient, the frame portions 302, 304 are expanded to their functional size, as shown in FIG. 14.
1059] The first frame portion 302 includes a plurality of circumferential, zig-zag struts 306 connected to a plurality of axial struts 308. The struts 306 comprise a plurality of linear strut members 314a, 314b, with each adjacent pair of strut members connected to each other at an angle 01 in the expanded state (FIG. 14). Similarly, the second frame portion 304 includes a plurality of circumferential, zig-zag struts 310 connected to a plurality of axial struts 312.
The struts 310 comprise a plurality of linear strut members 316a, 316b, with each adjacent pair of strut members connected to each other at an angle 02.
[060] The frame 300 is formed in the partially collapsed state (FIG. 13) with the second frame portion 304 at its functional size and the first frame portion 302 having a frusto-conical shape tapering from a first diameter at the end connected to the second frame portion to a second, smaller diameter at the opposite end. In this state, the second frame portion 304 has an inner diameter approximately equal to the outer diameter of the valve member so that the valve member can be easily attached to the second frame portion 304 using conventional techniques or mechanisms. For example, the valve member can be sutured to the second frame portion 304, similar to the valve assembly shown in FIG. 1.
[061] Alternatively, the base portion of the valve member can be attached to the second frame portion 304 around its circumference while the commissure tabs can be attached to both the first and second frame portions. In this alternative embodiment, the frame 300 can have an overall length (measured in the axial direction) that is approximately equal to or slightly greater than the valve member.
[062] The angles 02 between strut members 316a, 316b are selected to permit even and predictable crimping of the frame portion 304. In particular embodiments, for example, angles 02 are in the range of about 80 degrees to about 110 degrees, with 100 degrees being a specific example. In this manner, the second frame portion 304 with the valve member mounted thereon can have a construction that is similar to the valve assembly shown in FIG. 1.
[063] The angles 01 between strut members 314a, 314b of the first frame portion 302 when expanded are greater than the angles 02, and in particular embodiments the angles 01 are in the range of about 90 degrees to about 130 degrees, with about 120 degrees being a specific example. In this manner, the first frame portion 302 serves as the primary structural component of the frame 300 to enhance the rigidity of the frame and better resist closing forces on the valve assembly once it is implanted. Due to the first frame portion 302 being in a partially crimped state when the valve member is attached (FIG. 13), it can be more easily crimped to the fully crimped state for delivering the valve assembly through the patient's vasculature.
[064] FIG. 15 illustrates another embodiment of an expandable and collapsible frame 400 of a heart valve assembly. FIG. 15 shows the frame 400 in a partially collapsed state for mounting a valve member (e.g., valve member 102). The frame 400 includes a first frame portion 402 connected end-to-end to a second frame portion 404. The frame 400 is formed in the partially collapsed state with the second frame portion 404 at its expanded, functional size, while the first frame portion 402 is partially crimped and has a frusto-conical shape tapering from a first diameter at the end connected to the second frame portion to a second, smaller diameter at the opposite end. In this state, a valve member (e.g., valve member 102) can be attached to the first frame portion 402 and/or the second frame portion 404, such as by suturing the valve member to the frame.
[065] The first frame portion 402 serves as the primary structural component of the frame 400 and is generally more rigid than the second frame portion 404 once the frame is deployed. However, the geometry of the first frame portion 402 is generally less stable under crimping than the second frame portion 404 and therefore is formed in the partially crimped state shown in FIG. 15 so that it can be more easily crimped to a fully crimped state on a delivery catheter. In certain embodiments, the frame portions 402, 404 are constructed such that when both are expanded, the struts of the first frame portion 402 have bends defining angles that are greater than the struts of the second frame portion 404.
[066] The second frame portion 404 in the illustrated embodiment has a plurality of axially-spaced, circumferential struts 406, each of which includes a plurality of linear strut members 408a, 408b arranged in a zig-zag or saw-tooth configuration defining angles col between adjacent strut members. As shown, the second frame portion 404 in particular embodiments does not include axial or vertical strut members. Due to the absence of axial strut members, this geometry is generally more stable and less susceptible to buckling during crimping. Consequently, the second frame portion 404 can be formed with obtuse angles 0.)1 to enhance the overall structural rigidity of the frame once implanted. For example, in exemplary embodiments, the angles col are in the range of about 91 degrees to about 110 degrees, with about 100 degrees being a specific example. In alternative embodiments, however, the second frame portion 404 can be formed with angles col that are 90 degrees or less.
[067] The first frame portion 402 in the illustrated embodiment comprises a plurality of generally ring-shaped structures or cells 410 connected to each other at junctures 412 to form a circumferentially extending band. The first frame portion 402 can include angularly-spaced support posts, or beams, 414 spaced, for example, at 120-degree intervals from each other around the frame. The support posts 414 can be formed with apertures 416 to facilitate mounting of a valve member to the posts 414 such as by suturing the valve member to the posts. The lower end of each post 414 can be connected to the uppermost circumferential strut 406 of the second frame portion at the junction of two strut members 408a, 408b to interconnect the first and second frame portions. The first frame portion 402 can also be interconnected to the second frame 404 by axial strut members 418, each connected to and extending between a juncture 412 and the uppermost circumferential strut 406 at the junction of two strut members 408a, 408b.
[068] Each cell 410 in the illustrated configuration is formed by first and second arcuate strut members 420a, 420b, respectively, that intersect at upper and lower junction points 422a, 422b, respectively. The strut members 420a, 420b of each cell 410 define first and second angles co2. When expanded to its functional size, the first frame portion 402 expands radially to a generally cylindrical shape (indicated by the dashed outline in FIG. 15), causing the angles co2 to increase. In particular embodiments, the angles co2 of the first frame portion 402 in the partially crimped state are in the range of about 70 degrees to about 100 degrees, with 90 degrees being a specific example. When the first frame portion 402 is expanded to its functional size, the angles CO2 between the strut members 420a, 420b are in the range of about 90 degrees to about 130 degrees, with about 120 degrees being a specific example.

Claims (46)

We claim:
1. A method comprising connecting a valve member to an inner surface of a frame of an implantable prosthetic valve assembly, the frame being balloon-expandable and having an expanded state suitable for implant and a crimped state suitable for delivery, the method including connecting the valve member to the frame while a portion of the frame is partially crimped to a size between its expanded and its crimped states, the partially crimped frame portion having a diameter that is less than the diameter of the valve member when the valve member is expanded to its functional size, wherein the frame comprises a plurality of angularly-spaced, axial struts and a plurality of circumferential struts connected to the axial struts and extending circumferentially, each circumferential strut having multiple bends with each bend having an obtuse angle when the frame is radially expanded to a deployed state.
2. The method of claim 1, wherein the act of connecting the valve member to an inner surface of the frame comprises connecting the valve member to the partially crimped frame portion so as to place the valve member in a partially crimped state connected to the frame.
3. The method of claim 2, wherein the act of connecting the valve member to the partially crimped frame portion comprises folding the valve member to form multiple angularly spaced, radially extending folds and connecting apexes of the folds to the frame.
4. The method of claim 2, wherein the act of connecting the valve member to an inner surface of the frame comprises:
attaching a flexible skirt to an inner surface of the partially crimped frame portion at angularly spaced locations on the frame portion such that the skirt substantially conforms to the inner surface of the frame portion when the frame portion is radially expanded to a deployed state;
and attaching a portion of the valve member to an inner surface of the flexible skirt such that the attached portion of the valve member substantially conforms to the inner surface of the skirt when the frame portion is radially expanded to the deployed state.
5. The method of claim 4, wherein the flexible skirt is formed with a generally saw-tooth shaped edge with apexes.
6. The method of claim 4, wherein the act of attaching a flexible skirt to an inner surface of the partially crimped frame portion comprises folding the skirt to form multiple angularly- spaced, radially extending folds in the skirt and attaching apexes of the folds to the frame.
7. The method of claim 6, wherein the act of folding the skirt comprises placing the skirt around posts of a folding tool, and moving some of the posts radially inwardly toward each other to form the folds of the skirt
8. The method of claim 1, wherein each bend has an angle of about 120 degrees or greater when the frame is radially expanded to a deployed state.
9. The method of claim 8, wherein each circumferential strut comprises a plurality of linear strut members connected to each other at non-zero angles to form the multiple bends of the strut.
10. The method of claim 1, wherein:
the partially crimped frame portion comprises a first frame portion and the frame comprises a second frame portion connected end-to-end to the first frame portion; and the act of connecting the valve member to an inner surface of the frame comprises connecting the valve member to the second frame portion when the second frame portion is in ark expanded state.
11. The method of claim 10, wherein:
the first and second frame portions each comprises a plurality of angularly-spaced, axial struts and a plurality of circumferential struts attached to the axial struts and extending circumferentially of the frame, each of the circumferential struts having multiple bends; and wherein when both the first and second frame portions are in expanded states, the angles of the bends of the first frame portion are greater than that of the second frame portion.
12. The method of claim 1, wherein the partially crimped frame portion has a first diameter, the method further comprising:
after connecting the valve member to the partially crimped frame portion, storing the heart valve assembly with the frame portion in the partially crimped state;
compressing the valve assembly to a collapsed state having second diameter that is less than the first diameter just prior to implantation;
delivering the heart valve assembly to a native valve site of a patient through the patient's vasculature; and expanding the heart valve assembly at the native valve site to an expanded state having a third diameter that is greater than the first diameter.
13. The method of claim 12, wherein the act of connecting the valve member to the frame comprises bending the valve member into an undulated shape having a diameter that is less than an expanded diameter of the valve member what expanded to its functional size, placing the frame around the bent valve member, and connecting the valve member to the frame at spaced-apart locations on the frame such that when the valve assembly is expanded, the portion of the valve member connected to the frame substantially conforms to the inner surface of the frame.
14. The method of claim 12, wherein the third diameter is approximately at !east 1.5 times greater than the first diameter.
15. The method of claim 12, wherein the first diameter is approximately at !east twice the second diameter.
16. The method of claim 12, wherein the valve assembly is compressed on the tip portion of a delivery catheter and the act of delivering the valve assembly comprises advancing the delivery catheter through the patient's vasculature until the valve assembly is positioned at the native valve site.
17. The method of claim 1, wherein the act of connecting the valve member to the inner surface comprises bending the valve member with a folding apparatus configured to fold the valve member into an undulated shape having multiple angularly-spaced, radially extending folds and a diameter that is less than the expanded diameter.
18. The method of claim 17, wherein the apparatus comprises:
a base;
a plurality of stationary posts connected to the base at fixed locations, the stationary posts being angularly spaced about a center point on the base located centrally between the posts; and a plurality of moveable posts connected to the base at angularly spaced positions around the center point, the moveable posts being moveable relative to the base radially inwardly toward each other and the center point and radially outwardly away from each other and the center point;
wherein when the valve member is placed around the posts with the valve member extending around outer sides of the stationary posts and inner sides of the moveable posts, moving the moveable posts radially inwardly toward each other folds the valve member.
19. The method of claim 1, wherein the frame portion is formed in the partially crimped state.
20. The method of claim 1, further comprising:
after connecting the valve member to the frame, crimping the valve assembly to a delivery diameter that is less than the diameter of the frame portion when it is being connected to the valve member;
delivering the valve assembly to a native valve site; and expanding the valve assembly at the native valve site to an expanded state having a diameter that is greater than the diameter of the frame portion when is it being connected to the valve member.
21. The method of claim 1, wherein the diameter of the frame in its partially crimped state is about two times greater than the diameter of the frame in its crimped state, and the diameter of the frame in its expanded state is about 1.5 times greater than the diameter of the frame in its partially crimped state.
22. The method of claim 21, wherein the diameter of the frame in its expanded state is about 23 mm, the diameter of the frame in its partially crimped state is about 15 mm, and diameter of the frame in its crimped state is about 7 min.
23. The method of claim 1, wherein the frame comprises a plurality of angularly-spaced, axial struts and a plurality of circumferential struts connected to the axial struts and extending circumferentially, each circumferential strut having multiple bends that define angles .alpha.1 in the partially crimped state and obtuse angles .alpha.2 when the frame is in its expanded state, and wherein 90°< .alpha.2 <= 179°.
24. The method of claim 23, wherein 90°< .alpha.2 <= 130°.
25. The method of claim 24, wherein .alpha.2 is about 120°.
26. The method of claim 1, wherein the circumferential struts each define angles ai in the partially crimped state and obtuse angles .alpha.2 when the frame is in its expanded state, and wherein 50° <= .alpha.1<=90°.
27. The method of claim 26, wherein .alpha.1 is about 70°.
28. The method of claim 1, wherein the circumferential struts each define angles ai in the partially crimped state and obtuse angles .alpha.2 when the frame is in its expanded state, and wherein 90°< .alpha.2 <=179°.
29. The method of claim 28, wherein 90°< .alpha.2 <=130°.
30. The method of claim 29, wherein .alpha.2 is about 120°.
31. The method of claim 1, wherein the frame of an implantable prosthetic valve assembly is balloon-expandable.
32. The method of claim 31, wherein the frame material is selected from the group consisting of stainless steel and titanium.
33. A method of assembling an implantable prosthetic valve, comprising;
providing a flexible valve member having a functional size;
providing a balloon-expandable frame having an expanded state suitable for implant and a crimped state suitable for delivery, a portion of the frame being formed in a partially crimped state having a size between its expanded and its crimped states; and connecting the flexible valve member to an inner surface of the portion of the frame that is partially crimped, the partially crimped frame portion having a diameter that is less than the functional size of the valve member.
34. The method of claim 33, wherein the act of connecting the valve member to an inner surface of the frame comprises:

attaching a flexible skirt to an inner surface of the partially crimped frame portion at angularly spaced locations on the frame portion such that the skirt substantially conforms to the inner surface of the frame portion when the frame portion is radially expanded to a deployed state;
and attaching a portion of the valve member to an inner surface of the flexible skirt such that the attached portion of the valve member substantially conforms to the inner surface of the skirt when the frame portion is radially expanded to the deployed state.
35. The method of claim 34, wherein the act of attaching a flexible skirt to an inner surface of the partially crimped frame portion comprises folding the skirt to form multiple angularly-spaced, radially extending folds in the skirt and attaching apexes of the folds to the frame.
36. The method of claim 34, wherein the flexible skirt is formed with a generally saw-tooth shaped edge with apexes.
37. The method of claim 33, wherein the act of folding the skirt comprises placing the skirt around posts of a folding tool, and moving some of the posts radially inwardly toward each other to form the folds of the skirt.
38. The method of claim 33, wherein the diameter of the frame in its partially crimped state is about two times greater than the diameter of the frame in its crimped state, and the diameter of the frame in its expanded state is about 1.5 times greater than the diameter of the frame in its partially crimped state.
39. The method of claim 38, wherein the diameter of the frame in its expanded state is about 23 trim the diameter of the frame in its partially crimped state is about 15 mm, and diameter of the frame in its crimped state is about 7 mm.
40. The method of claim 33, wherein the act of connecting the valve member to the partially crimped frame portion comprises folding the valve member to form multiple angularly-spaced, radially extending folds and connecting apexes of the folds to the frame.
41. The method of claim 33, wherein the frame comprises a plurality of angularly-spaced, axial struts and a plurality of circumferential struts connected to the axial struts and extending circumferentially of the frame, each circumferential strut having multiple bends with each bend having an angle of about 120 degrees or greater when the frame is radially expanded to a deployed state.
42. The method of claim 33, wherein:
the partially crimped frame portion comprises a first frame portion and the frame comprises a second frame portion connected end-to-end to the first frame portion; and the act of connecting the valve member to an inner surface of the frame comprises connecting the valve member to the second frame portion when the second frame portion is in an expanded state.
43. The method of claim 42, wherein:

the first and second frame portions each comprises a plurality of angularly-spaced, axial struts and a plurality of circumferential struts attached to the axial struts and extending circumferentially of the frame, each of the circumferential struts having multiple bends; and wherein when both the first and second frame portions are in expanded states, the angles of the bends of the first frame portion are greater than that of the second frame portion.
44. The method of claim 33, wherein the frame comprises a plurality of angularly-spaced, axial struts and a plurality of circumferential struts connected to the axial struts and extending circumferentially, each circumferential strut having multiple bends that define angles .alpha.1 in the partially crimped state and obtuse angles .alpha.2 when the frame is in its expanded state.
45. The method of claim 44, wherein 50°<= .alpha.1 <=90°.
46. The method of claim 44, wherein .alpha.1 is about 70°.
CA2674193A 2006-12-22 2007-12-20 Implantable prosthetic valve assembly and method for making the same Active CA2674193C (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11/644,517 2006-12-22
US11/644,517 US8236045B2 (en) 2006-12-22 2006-12-22 Implantable prosthetic valve assembly and method of making the same
PCT/US2007/088353 WO2008079962A1 (en) 2006-12-22 2007-12-20 Implantable prosthetic valve assembly and method for making the same

Publications (2)

Publication Number Publication Date
CA2674193A1 CA2674193A1 (en) 2008-07-03
CA2674193C true CA2674193C (en) 2014-10-07

Family

ID=39259597

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2674193A Active CA2674193C (en) 2006-12-22 2007-12-20 Implantable prosthetic valve assembly and method for making the same

Country Status (4)

Country Link
US (3) US8236045B2 (en)
EP (1) EP2124824B1 (en)
CA (1) CA2674193C (en)
WO (1) WO2008079962A1 (en)

Families Citing this family (543)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK124690D0 (en) * 1990-05-18 1990-05-18 Henning Rud Andersen FAT PROTECTION FOR IMPLEMENTATION IN THE BODY FOR REPLACEMENT OF NATURAL FLEET AND CATS FOR USE IN IMPLEMENTING A SUCH FAT PROTECTION
US6006134A (en) * 1998-04-30 1999-12-21 Medtronic, Inc. Method and device for electronically controlling the beating of a heart using venous electrical stimulation of nerve fibers
EP0850607A1 (en) 1996-12-31 1998-07-01 Cordis Corporation Valve prosthesis for implantation in body channels
US6254564B1 (en) * 1998-09-10 2001-07-03 Percardia, Inc. Left ventricular conduit with blood vessel graft
US8579966B2 (en) 1999-11-17 2013-11-12 Medtronic Corevalve Llc Prosthetic valve for transluminal delivery
US7018406B2 (en) 1999-11-17 2006-03-28 Corevalve Sa Prosthetic valve for transluminal delivery
US8016877B2 (en) 1999-11-17 2011-09-13 Medtronic Corevalve Llc Prosthetic valve for transluminal delivery
US7749245B2 (en) 2000-01-27 2010-07-06 Medtronic, Inc. Cardiac valve procedure methods and devices
US6692513B2 (en) 2000-06-30 2004-02-17 Viacor, Inc. Intravascular filter with debris entrapment mechanism
DE10010074B4 (en) 2000-02-28 2005-04-14 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Device for fastening and anchoring heart valve prostheses
US6454799B1 (en) 2000-04-06 2002-09-24 Edwards Lifesciences Corporation Minimally-invasive heart valves and methods of use
US20020022860A1 (en) 2000-08-18 2002-02-21 Borillo Thomas E. Expandable implant devices for filtering blood flow from atrial appendages
US7556646B2 (en) 2001-09-13 2009-07-07 Edwards Lifesciences Corporation Methods and apparatuses for deploying minimally-invasive heart valves
US6733525B2 (en) 2001-03-23 2004-05-11 Edwards Lifesciences Corporation Rolled minimally-invasive heart valves and methods of use
US8623077B2 (en) 2001-06-29 2014-01-07 Medtronic, Inc. Apparatus for replacing a cardiac valve
US8771302B2 (en) 2001-06-29 2014-07-08 Medtronic, Inc. Method and apparatus for resecting and replacing an aortic valve
US7544206B2 (en) 2001-06-29 2009-06-09 Medtronic, Inc. Method and apparatus for resecting and replacing an aortic valve
FR2826863B1 (en) 2001-07-04 2003-09-26 Jacques Seguin ASSEMBLY FOR PLACING A PROSTHETIC VALVE IN A BODY CONDUIT
FR2828263B1 (en) 2001-08-03 2007-05-11 Philipp Bonhoeffer DEVICE FOR IMPLANTATION OF AN IMPLANT AND METHOD FOR IMPLANTATION OF THE DEVICE
US7097659B2 (en) 2001-09-07 2006-08-29 Medtronic, Inc. Fixation band for affixing a prosthetic heart valve to tissue
US6893460B2 (en) 2001-10-11 2005-05-17 Percutaneous Valve Technologies Inc. Implantable prosthetic valve
US9579194B2 (en) 2003-10-06 2017-02-28 Medtronic ATS Medical, Inc. Anchoring structure with concave landing zone
US8603160B2 (en) 2003-12-23 2013-12-10 Sadra Medical, Inc. Method of using a retrievable heart valve anchor with a sheath
US11278398B2 (en) 2003-12-23 2022-03-22 Boston Scientific Scimed, Inc. Methods and apparatus for endovascular heart valve replacement comprising tissue grasping elements
US20120041550A1 (en) 2003-12-23 2012-02-16 Sadra Medical, Inc. Methods and Apparatus for Endovascular Heart Valve Replacement Comprising Tissue Grasping Elements
US7988724B2 (en) 2003-12-23 2011-08-02 Sadra Medical, Inc. Systems and methods for delivering a medical implant
US8840663B2 (en) 2003-12-23 2014-09-23 Sadra Medical, Inc. Repositionable heart valve method
US8343213B2 (en) 2003-12-23 2013-01-01 Sadra Medical, Inc. Leaflet engagement elements and methods for use thereof
US7959666B2 (en) 2003-12-23 2011-06-14 Sadra Medical, Inc. Methods and apparatus for endovascularly replacing a heart valve
US9005273B2 (en) 2003-12-23 2015-04-14 Sadra Medical, Inc. Assessing the location and performance of replacement heart valves
US8052749B2 (en) 2003-12-23 2011-11-08 Sadra Medical, Inc. Methods and apparatus for endovascular heart valve replacement comprising tissue grasping elements
US8579962B2 (en) 2003-12-23 2013-11-12 Sadra Medical, Inc. Methods and apparatus for performing valvuloplasty
US20050137687A1 (en) 2003-12-23 2005-06-23 Sadra Medical Heart valve anchor and method
US9526609B2 (en) 2003-12-23 2016-12-27 Boston Scientific Scimed, Inc. Methods and apparatus for endovascularly replacing a patient's heart valve
US7381219B2 (en) 2003-12-23 2008-06-03 Sadra Medical, Inc. Low profile heart valve and delivery system
ITTO20040135A1 (en) 2004-03-03 2004-06-03 Sorin Biomedica Cardio Spa CARDIAC VALVE PROSTHESIS
US20060025857A1 (en) 2004-04-23 2006-02-02 Bjarne Bergheim Implantable prosthetic valve
DE102005003632A1 (en) 2005-01-20 2006-08-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Catheter for the transvascular implantation of heart valve prostheses
ITTO20050074A1 (en) 2005-02-10 2006-08-11 Sorin Biomedica Cardio Srl CARDIAC VALVE PROSTHESIS
WO2006097931A2 (en) 2005-03-17 2006-09-21 Valtech Cardio, Ltd. Mitral valve treatment techniques
US7962208B2 (en) 2005-04-25 2011-06-14 Cardiac Pacemakers, Inc. Method and apparatus for pacing during revascularization
US7914569B2 (en) 2005-05-13 2011-03-29 Medtronics Corevalve Llc Heart valve prosthesis and methods of manufacture and use
US7780723B2 (en) 2005-06-13 2010-08-24 Edwards Lifesciences Corporation Heart valve delivery system
US8951285B2 (en) 2005-07-05 2015-02-10 Mitralign, Inc. Tissue anchor, anchoring system and methods of using the same
WO2007038540A1 (en) 2005-09-26 2007-04-05 Medtronic, Inc. Prosthetic cardiac and venous valves
DE102005051849B4 (en) 2005-10-28 2010-01-21 JenaValve Technology Inc., Wilmington Device for implantation and attachment of heart valve prostheses
DE102005052628B4 (en) 2005-11-04 2014-06-05 Jenavalve Technology Inc. Self-expanding, flexible wire mesh with integrated valvular prosthesis for the transvascular heart valve replacement and a system with such a device and a delivery catheter
WO2007058857A2 (en) 2005-11-10 2007-05-24 Arshad Quadri Balloon-expandable, self-expanding, vascular prosthesis connecting stent
US20070213813A1 (en) 2005-12-22 2007-09-13 Symetis Sa Stent-valves for valve replacement and associated methods and systems for surgery
US8075615B2 (en) 2006-03-28 2011-12-13 Medtronic, Inc. Prosthetic cardiac valve formed from pericardium material and methods of making same
US20070239254A1 (en) * 2006-04-07 2007-10-11 Chris Chia System for percutaneous delivery and removal of a prosthetic valve
WO2008013915A2 (en) 2006-07-28 2008-01-31 Arshad Quadri Percutaneous valve prosthesis and system and method for implanting same
EP2068765B1 (en) 2006-07-31 2018-05-09 Syntheon TAVR, LLC Sealable endovascular implants
US9585743B2 (en) 2006-07-31 2017-03-07 Edwards Lifesciences Cardiaq Llc Surgical implant devices and methods for their manufacture and use
US9408607B2 (en) 2009-07-02 2016-08-09 Edwards Lifesciences Cardiaq Llc Surgical implant devices and methods for their manufacture and use
US11304800B2 (en) 2006-09-19 2022-04-19 Medtronic Ventor Technologies Ltd. Sinus-engaging valve fixation member
US8348995B2 (en) 2006-09-19 2013-01-08 Medtronic Ventor Technologies, Ltd. Axial-force fixation member for valve
US8834564B2 (en) 2006-09-19 2014-09-16 Medtronic, Inc. Sinus-engaging valve fixation member
EP2083901B1 (en) 2006-10-16 2017-12-27 Medtronic Ventor Technologies Ltd. Transapical delivery system with ventriculo-arterial overflow bypass
WO2008055301A1 (en) 2006-11-07 2008-05-15 Univ Sydney Devices and methods for the treatment of heart failure
US9232997B2 (en) 2006-11-07 2016-01-12 Corvia Medical, Inc. Devices and methods for retrievable intra-atrial implants
US20110257723A1 (en) 2006-11-07 2011-10-20 Dc Devices, Inc. Devices and methods for coronary sinus pressure relief
US10413284B2 (en) 2006-11-07 2019-09-17 Corvia Medical, Inc. Atrial pressure regulation with control, sensing, monitoring and therapy delivery
US9883943B2 (en) 2006-12-05 2018-02-06 Valtech Cardio, Ltd. Implantation of repair devices in the heart
US11259924B2 (en) 2006-12-05 2022-03-01 Valtech Cardio Ltd. Implantation of repair devices in the heart
CN101641061B (en) 2006-12-06 2013-12-18 美顿力科尔瓦有限责任公司 System and method for transapical delivery of annulus anchored self-expanding valve
US8236045B2 (en) 2006-12-22 2012-08-07 Edwards Lifesciences Corporation Implantable prosthetic valve assembly and method of making the same
US8105375B2 (en) * 2007-01-19 2012-01-31 The Cleveland Clinic Foundation Method for implanting a cardiovascular valve
EP2129333B1 (en) 2007-02-16 2019-04-03 Medtronic, Inc Replacement prosthetic heart valves
US11660190B2 (en) 2007-03-13 2023-05-30 Edwards Lifesciences Corporation Tissue anchors, systems and methods, and devices
US9138315B2 (en) 2007-04-13 2015-09-22 Jenavalve Technology Gmbh Medical device for treating a heart valve insufficiency or stenosis
US7896915B2 (en) 2007-04-13 2011-03-01 Jenavalve Technology, Inc. Medical device for treating a heart valve insufficiency
FR2915087B1 (en) 2007-04-20 2021-11-26 Corevalve Inc IMPLANT FOR TREATMENT OF A HEART VALVE, IN PARTICULAR OF A MITRAL VALVE, EQUIPMENT INCLUDING THIS IMPLANT AND MATERIAL FOR PLACING THIS IMPLANT.
EP3150171A1 (en) 2007-05-15 2017-04-05 JenaValve Technology, Inc. Handle for manipulating a catheter tip, catheter system and medical insertion system for inserting a self-expandalbe heart valve stent
DE102007034363A1 (en) * 2007-07-24 2009-01-29 Biotronik Vi Patent Ag endoprosthesis
US9566178B2 (en) 2010-06-24 2017-02-14 Edwards Lifesciences Cardiaq Llc Actively controllable stent, stent graft, heart valve and method of controlling same
US8747458B2 (en) 2007-08-20 2014-06-10 Medtronic Ventor Technologies Ltd. Stent loading tool and method for use thereof
ES2384199T3 (en) 2007-08-24 2012-07-02 St. Jude Medical, Inc. Prosthetic aortic heart valves
DE102007043830A1 (en) 2007-09-13 2009-04-02 Lozonschi, Lucian, Madison Heart valve stent
AU2008305600B2 (en) 2007-09-26 2013-07-04 St. Jude Medical, Inc. Collapsible prosthetic heart valves
WO2009045334A1 (en) 2007-09-28 2009-04-09 St. Jude Medical, Inc. Collapsible/expandable prosthetic heart valves with native calcified leaflet retention features
US9532868B2 (en) 2007-09-28 2017-01-03 St. Jude Medical, Inc. Collapsible-expandable prosthetic heart valves with structures for clamping native tissue
US10856970B2 (en) 2007-10-10 2020-12-08 Medtronic Ventor Technologies Ltd. Prosthetic heart valve for transfemoral delivery
US9848981B2 (en) 2007-10-12 2017-12-26 Mayo Foundation For Medical Education And Research Expandable valve prosthesis with sealing mechanism
US10166127B2 (en) 2007-12-12 2019-01-01 Intact Vascular, Inc. Endoluminal device and method
US9375327B2 (en) 2007-12-12 2016-06-28 Intact Vascular, Inc. Endovascular implant
US8128677B2 (en) 2007-12-12 2012-03-06 Intact Vascular LLC Device and method for tacking plaque to a blood vessel wall
US9603730B2 (en) 2007-12-12 2017-03-28 Intact Vascular, Inc. Endoluminal device and method
US10022250B2 (en) 2007-12-12 2018-07-17 Intact Vascular, Inc. Deployment device for placement of multiple intraluminal surgical staples
US7896911B2 (en) 2007-12-12 2011-03-01 Innovasc Llc Device and method for tacking plaque to blood vessel wall
EP2628464B1 (en) 2007-12-14 2020-02-12 Edwards Lifesciences Corporation Prosthetic valve
WO2009094197A1 (en) * 2008-01-24 2009-07-30 Medtronic, Inc. Stents for prosthetic heart valves
US8157852B2 (en) 2008-01-24 2012-04-17 Medtronic, Inc. Delivery systems and methods of implantation for prosthetic heart valves
US9149358B2 (en) 2008-01-24 2015-10-06 Medtronic, Inc. Delivery systems for prosthetic heart valves
EP3744291B1 (en) * 2008-01-24 2022-11-23 Medtronic, Inc. Stents for prosthetic heart valves
US9393115B2 (en) 2008-01-24 2016-07-19 Medtronic, Inc. Delivery systems and methods of implantation for prosthetic heart valves
US9044318B2 (en) 2008-02-26 2015-06-02 Jenavalve Technology Gmbh Stent for the positioning and anchoring of a valvular prosthesis
US9168130B2 (en) 2008-02-26 2015-10-27 Jenavalve Technology Gmbh Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient
BR112012021347A2 (en) 2008-02-26 2019-09-24 Jenavalve Tecnology Inc stent for positioning and anchoring a valve prosthesis at an implantation site in a patient's heart
US8398704B2 (en) 2008-02-26 2013-03-19 Jenavalve Technology, Inc. Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient
US8465540B2 (en) 2008-02-26 2013-06-18 Jenavalve Technology, Inc. Stent for the positioning and anchoring of a valvular prosthesis
US8317858B2 (en) 2008-02-26 2012-11-27 Jenavalve Technology, Inc. Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient
WO2009108355A1 (en) 2008-02-28 2009-09-03 Medtronic, Inc. Prosthetic heart valve systems
CA3063001A1 (en) 2008-02-29 2009-09-03 Edwards Lifesciences Corporation Expandable member for deploying a prosthetic device
US9241792B2 (en) 2008-02-29 2016-01-26 Edwards Lifesciences Corporation Two-step heart valve implantation
US8382829B1 (en) 2008-03-10 2013-02-26 Mitralign, Inc. Method to reduce mitral regurgitation by cinching the commissure of the mitral valve
US8313525B2 (en) 2008-03-18 2012-11-20 Medtronic Ventor Technologies, Ltd. Valve suturing and implantation procedures
US8430927B2 (en) 2008-04-08 2013-04-30 Medtronic, Inc. Multiple orifice implantable heart valve and methods of implantation
US8312825B2 (en) 2008-04-23 2012-11-20 Medtronic, Inc. Methods and apparatuses for assembly of a pericardial prosthetic heart valve
US8696743B2 (en) 2008-04-23 2014-04-15 Medtronic, Inc. Tissue attachment devices and methods for prosthetic heart valves
US20090276040A1 (en) 2008-05-01 2009-11-05 Edwards Lifesciences Corporation Device and method for replacing mitral valve
EP2119417B2 (en) 2008-05-16 2020-04-29 Sorin Group Italia S.r.l. Atraumatic prosthetic heart valve prosthesis
EP3476367B1 (en) 2008-06-06 2019-12-25 Edwards Lifesciences Corporation Low profile transcatheter heart valve
US8323335B2 (en) 2008-06-20 2012-12-04 Edwards Lifesciences Corporation Retaining mechanisms for prosthetic valves and methods for using
ES2584315T3 (en) 2008-07-15 2016-09-27 St. Jude Medical, Inc. Collapsible and re-expandable prosthetic heart valve sleeve designs and complementary technological applications
US8652202B2 (en) 2008-08-22 2014-02-18 Edwards Lifesciences Corporation Prosthetic heart valve and delivery apparatus
EP4018967A1 (en) 2008-09-15 2022-06-29 Medtronic Ventor Technologies Ltd Prosthetic heart valve having identifiers for aiding in radiographic positioning
US8721714B2 (en) 2008-09-17 2014-05-13 Medtronic Corevalve Llc Delivery system for deployment of medical devices
US9375310B2 (en) 2012-12-31 2016-06-28 Edwards Lifesciences Corporation Surgical heart valves adapted for post-implant expansion
JP2012504031A (en) 2008-09-29 2012-02-16 カルディアック バルブ テクノロジーズ,インコーポレーテッド Heart valve
CA2739275C (en) 2008-10-01 2017-01-17 Impala, Inc. Delivery system for vascular implant
US8790387B2 (en) 2008-10-10 2014-07-29 Edwards Lifesciences Corporation Expandable sheath for introducing an endovascular delivery device into a body
US8690936B2 (en) 2008-10-10 2014-04-08 Edwards Lifesciences Corporation Expandable sheath for introducing an endovascular delivery device into a body
WO2010042950A2 (en) 2008-10-10 2010-04-15 Sadra Medical, Inc. Medical devices and delivery systems for delivering medical devices
US8137398B2 (en) 2008-10-13 2012-03-20 Medtronic Ventor Technologies Ltd Prosthetic valve having tapered tip when compressed for delivery
US8986361B2 (en) * 2008-10-17 2015-03-24 Medtronic Corevalve, Inc. Delivery system for deployment of medical devices
US8926696B2 (en) 2008-12-22 2015-01-06 Valtech Cardio, Ltd. Adjustable annuloplasty devices and adjustment mechanisms therefor
US8545553B2 (en) 2009-05-04 2013-10-01 Valtech Cardio, Ltd. Over-wire rotation tool
US10517719B2 (en) 2008-12-22 2019-12-31 Valtech Cardio, Ltd. Implantation of repair devices in the heart
US8715342B2 (en) 2009-05-07 2014-05-06 Valtech Cardio, Ltd. Annuloplasty ring with intra-ring anchoring
US8241351B2 (en) 2008-12-22 2012-08-14 Valtech Cardio, Ltd. Adjustable partial annuloplasty ring and mechanism therefor
US8834563B2 (en) 2008-12-23 2014-09-16 Sorin Group Italia S.R.L. Expandable prosthetic valve having anchoring appendages
US8353956B2 (en) 2009-02-17 2013-01-15 Valtech Cardio, Ltd. Actively-engageable movement-restriction mechanism for use with an annuloplasty structure
US20100217382A1 (en) * 2009-02-25 2010-08-26 Edwards Lifesciences Mitral valve replacement with atrial anchoring
JP5659168B2 (en) 2009-02-27 2015-01-28 セント・ジュード・メディカル,インコーポレイテッド Foldable prosthetic heart valve stent features
AU2010236288A1 (en) * 2009-04-15 2011-10-20 Cardiaq Valve Technologies, Inc. Vascular implant and delivery system
WO2010124219A2 (en) * 2009-04-24 2010-10-28 The Usa, As Represented By The Secretary, Dept. Of Health & Human Services Stent for valve replacement
EP2246011B1 (en) 2009-04-27 2014-09-03 Sorin Group Italia S.r.l. Prosthetic vascular conduit
US9968452B2 (en) 2009-05-04 2018-05-15 Valtech Cardio, Ltd. Annuloplasty ring delivery cathethers
US8468667B2 (en) 2009-05-15 2013-06-25 Jenavalve Technology, Inc. Device for compressing a stent
US8075611B2 (en) * 2009-06-02 2011-12-13 Medtronic, Inc. Stented prosthetic heart valves
US9757107B2 (en) 2009-09-04 2017-09-12 Corvia Medical, Inc. Methods and devices for intra-atrial shunts having adjustable sizes
US20110313515A1 (en) 2010-06-21 2011-12-22 Arshad Quadri Replacement heart valve
US9730790B2 (en) 2009-09-29 2017-08-15 Edwards Lifesciences Cardiaq Llc Replacement valve and method
US8808369B2 (en) 2009-10-05 2014-08-19 Mayo Foundation For Medical Education And Research Minimally invasive aortic valve replacement
US10098737B2 (en) 2009-10-29 2018-10-16 Valtech Cardio, Ltd. Tissue anchor for annuloplasty device
US9180007B2 (en) 2009-10-29 2015-11-10 Valtech Cardio, Ltd. Apparatus and method for guide-wire based advancement of an adjustable implant
WO2011067770A1 (en) 2009-12-02 2011-06-09 Valtech Cardio, Ltd. Delivery tool for implantation of spool assembly coupled to a helical anchor
US8449599B2 (en) 2009-12-04 2013-05-28 Edwards Lifesciences Corporation Prosthetic valve for replacing mitral valve
EP3838223A1 (en) 2009-12-08 2021-06-23 Avalon Medical Ltd. Device and system for transcatheter mitral valve replacement
US8870950B2 (en) 2009-12-08 2014-10-28 Mitral Tech Ltd. Rotation-based anchoring of an implant
US20110146361A1 (en) 2009-12-22 2011-06-23 Edwards Lifesciences Corporation Method of Peening Metal Heart Valve Stents
US9504562B2 (en) 2010-01-12 2016-11-29 Valve Medical Ltd. Self-assembling modular percutaneous valve and methods of folding, assembly and delivery
US8475525B2 (en) 2010-01-22 2013-07-02 4Tech Inc. Tricuspid valve repair using tension
US9307980B2 (en) 2010-01-22 2016-04-12 4Tech Inc. Tricuspid valve repair using tension
US10058323B2 (en) 2010-01-22 2018-08-28 4 Tech Inc. Tricuspid valve repair using tension
CN102905626A (en) 2010-01-29 2013-01-30 Dc设备公司 Devices and systems for treating heart failure
US9277995B2 (en) 2010-01-29 2016-03-08 Corvia Medical, Inc. Devices and methods for reducing venous pressure
DE102010008382A1 (en) 2010-02-17 2011-08-18 Transcatheter Technologies GmbH, 93053 A method of crimping or folding a medical implant on a device for introducing or introducing same using zero-pressure crimping and devices
US9226826B2 (en) 2010-02-24 2016-01-05 Medtronic, Inc. Transcatheter valve structure and methods for valve delivery
US8795354B2 (en) * 2010-03-05 2014-08-05 Edwards Lifesciences Corporation Low-profile heart valve and delivery system
WO2011111047A2 (en) 2010-03-10 2011-09-15 Mitraltech Ltd. Prosthetic mitral valve with tissue anchors
EP3527173A3 (en) * 2010-03-26 2019-12-11 Thubrikar Aortic Valve Inc. Valve component, frame component and prosthetic valve device including the same for implantation in a body lumen
US8652204B2 (en) 2010-04-01 2014-02-18 Medtronic, Inc. Transcatheter valve with torsion spring fixation and related systems and methods
WO2011126572A2 (en) * 2010-04-07 2011-10-13 Office Of Technology Transfer An expandable stent that collapses into a non-convex shape and expands into an expanded, convex shape
US8579964B2 (en) 2010-05-05 2013-11-12 Neovasc Inc. Transcatheter mitral valve prosthesis
US11278406B2 (en) 2010-05-20 2022-03-22 Jenavalve Technology, Inc. Catheter system for introducing an expandable heart valve stent into the body of a patient, insertion system with a catheter system and medical device for treatment of a heart valve defect
US10856978B2 (en) 2010-05-20 2020-12-08 Jenavalve Technology, Inc. Catheter system
IT1400327B1 (en) 2010-05-21 2013-05-24 Sorin Biomedica Cardio Srl SUPPORT DEVICE FOR VALVULAR PROSTHESIS AND CORRESPONDING CORRESPONDENT.
BR112012029896A2 (en) 2010-05-25 2017-06-20 Jenavalve Tech Inc prosthetic heart valve for stent graft and stent graft
WO2011159342A1 (en) 2010-06-17 2011-12-22 St. Jude Medical, Inc. Collapsible heart valve with angled frame
EP2590595B1 (en) 2010-07-09 2015-08-26 Highlife SAS Transcatheter atrio-ventricular valve prosthesis
US9132009B2 (en) 2010-07-21 2015-09-15 Mitraltech Ltd. Guide wires with commissural anchors to advance a prosthetic valve
US8992604B2 (en) 2010-07-21 2015-03-31 Mitraltech Ltd. Techniques for percutaneous mitral valve replacement and sealing
US9763657B2 (en) 2010-07-21 2017-09-19 Mitraltech Ltd. Techniques for percutaneous mitral valve replacement and sealing
US11653910B2 (en) 2010-07-21 2023-05-23 Cardiovalve Ltd. Helical anchor implantation
WO2012012761A2 (en) 2010-07-23 2012-01-26 Edwards Lifesciences Corporation Retaining mechanisms for prosthetic valves
US9039759B2 (en) 2010-08-24 2015-05-26 St. Jude Medical, Cardiology Division, Inc. Repositioning of prosthetic heart valve and deployment
US8814931B2 (en) 2010-08-24 2014-08-26 St. Jude Medical, Cardiology Division, Inc. Staged deployment devices and methods for transcatheter heart valve delivery systems
WO2012030598A2 (en) 2010-09-01 2012-03-08 Medtronic Vascular Galway Limited Prosthetic valve support structure
CA2808673C (en) 2010-09-10 2019-07-02 Symetis Sa Valve replacement devices, delivery device for a valve replacement device and method of production of a valve replacement device
WO2012036741A2 (en) 2010-09-17 2012-03-22 St. Jude Medical, Cardiology Division, Inc. Staged deployment devices and methods for transcatheter heart valve delivery
USD653342S1 (en) 2010-09-20 2012-01-31 St. Jude Medical, Inc. Stent connections
USD660432S1 (en) 2010-09-20 2012-05-22 St. Jude Medical, Inc. Commissure point
USD660433S1 (en) 2010-09-20 2012-05-22 St. Jude Medical, Inc. Surgical stent assembly
USD648854S1 (en) 2010-09-20 2011-11-15 St. Jude Medical, Inc. Commissure points
USD652926S1 (en) 2010-09-20 2012-01-24 St. Jude Medical, Inc. Forked end
USD653343S1 (en) 2010-09-20 2012-01-31 St. Jude Medical, Inc. Surgical cuff
USD660967S1 (en) 2010-09-20 2012-05-29 St. Jude Medical, Inc. Surgical stent
USD653341S1 (en) 2010-09-20 2012-01-31 St. Jude Medical, Inc. Surgical stent
USD652927S1 (en) 2010-09-20 2012-01-24 St. Jude Medical, Inc. Surgical stent
USD654170S1 (en) 2010-09-20 2012-02-14 St. Jude Medical, Inc. Stent connections
USD684692S1 (en) 2010-09-20 2013-06-18 St. Jude Medical, Inc. Forked ends
JP2013540484A (en) 2010-09-20 2013-11-07 セント・ジュード・メディカル,カーディオロジー・ディヴィジョン,インコーポレイテッド Valve leaflet mounting device in foldable artificial valve
USD654169S1 (en) 2010-09-20 2012-02-14 St. Jude Medical Inc. Forked ends
EP2618784B1 (en) 2010-09-23 2016-05-25 Edwards Lifesciences CardiAQ LLC Replacement heart valves and delivery devices
AU2015268755B2 (en) * 2010-10-05 2017-06-15 Edwards Lifesciences Corporation Prosthetic heart valve
PT3593762T (en) 2010-10-05 2021-01-27 Edwards Lifesciences Corp Prosthetic heart valve
US8568475B2 (en) 2010-10-05 2013-10-29 Edwards Lifesciences Corporation Spiraled commissure attachment for prosthetic valve
CA3027755C (en) 2010-12-14 2021-05-11 Colibri Heart Valve Llc Percutaneously deliverable heart valve including folded membrane cusps with integral leaflets
US9717593B2 (en) 2011-02-01 2017-08-01 St. Jude Medical, Cardiology Division, Inc. Leaflet suturing to commissure points for prosthetic heart valve
CN107334512B (en) 2011-02-10 2021-04-13 可维亚媒体公司 Device for creating and maintaining an intra-atrial pressure relief opening
ES2641902T3 (en) 2011-02-14 2017-11-14 Sorin Group Italia S.R.L. Sutureless anchoring device for cardiac valve prostheses
EP2486894B1 (en) 2011-02-14 2021-06-09 Sorin Group Italia S.r.l. Sutureless anchoring device for cardiac valve prostheses
US9155619B2 (en) 2011-02-25 2015-10-13 Edwards Lifesciences Corporation Prosthetic heart valve delivery apparatus
US9308087B2 (en) 2011-04-28 2016-04-12 Neovasc Tiara Inc. Sequentially deployed transcatheter mitral valve prosthesis
US9554897B2 (en) 2011-04-28 2017-01-31 Neovasc Tiara Inc. Methods and apparatus for engaging a valve prosthesis with tissue
EP2520251A1 (en) 2011-05-05 2012-11-07 Symetis SA Method and Apparatus for Compressing Stent-Valves
US9289282B2 (en) 2011-05-31 2016-03-22 Edwards Lifesciences Corporation System and method for treating valve insufficiency or vessel dilatation
US10271973B2 (en) 2011-06-03 2019-04-30 Intact Vascular, Inc. Endovascular implant
US9532887B2 (en) * 2011-06-15 2017-01-03 St. Jude Medical, Inc. Multi-layer stent
US10792152B2 (en) 2011-06-23 2020-10-06 Valtech Cardio, Ltd. Closed band for percutaneous annuloplasty
US9918840B2 (en) 2011-06-23 2018-03-20 Valtech Cardio, Ltd. Closed band for percutaneous annuloplasty
US8998976B2 (en) 2011-07-12 2015-04-07 Boston Scientific Scimed, Inc. Coupling system for medical devices
US8795357B2 (en) 2011-07-15 2014-08-05 Edwards Lifesciences Corporation Perivalvular sealing for transcatheter heart valve
CA2842288A1 (en) 2011-07-21 2013-01-24 4Tech Inc. Method and apparatus for tricuspid valve repair using tension
US9119716B2 (en) 2011-07-27 2015-09-01 Edwards Lifesciences Corporation Delivery systems for prosthetic heart valve
EP2739214B1 (en) 2011-08-05 2018-10-10 Cardiovalve Ltd Percutaneous mitral valve replacement and sealing
WO2013021374A2 (en) 2011-08-05 2013-02-14 Mitraltech Ltd. Techniques for percutaneous mitral valve replacement and sealing
US8852272B2 (en) 2011-08-05 2014-10-07 Mitraltech Ltd. Techniques for percutaneous mitral valve replacement and sealing
US20140324164A1 (en) 2011-08-05 2014-10-30 Mitraltech Ltd. Techniques for percutaneous mitral valve replacement and sealing
CA3040390C (en) 2011-08-11 2022-03-15 Tendyne Holdings, Inc. Improvements for prosthetic valves and related inventions
US9060860B2 (en) 2011-08-18 2015-06-23 St. Jude Medical, Cardiology Division, Inc. Devices and methods for transcatheter heart valve delivery
US8797966B2 (en) 2011-09-23 2014-08-05 Ofinno Technologies, Llc Channel state information transmission
US9510947B2 (en) 2011-10-21 2016-12-06 Jenavalve Technology, Inc. Catheter system for introducing an expandable heart valve stent into the body of a patient
US9827093B2 (en) 2011-10-21 2017-11-28 Edwards Lifesciences Cardiaq Llc Actively controllable stent, stent graft, heart valve and method of controlling same
US8858623B2 (en) 2011-11-04 2014-10-14 Valtech Cardio, Ltd. Implant having multiple rotational assemblies
EP3656434B1 (en) 2011-11-08 2021-10-20 Valtech Cardio, Ltd. Controlled steering functionality for implant-delivery tool
CA3097364C (en) 2011-12-09 2023-08-01 Edwards Lifesciences Corporation Prosthetic heart valve having improved commissure supports
US9827092B2 (en) 2011-12-16 2017-11-28 Tendyne Holdings, Inc. Tethers for prosthetic mitral valve
US8885569B2 (en) 2011-12-19 2014-11-11 Ofinno Technologies, Llc Beamforming signaling in a wireless network
US9205236B2 (en) 2011-12-22 2015-12-08 Corvia Medical, Inc. Methods, systems, and devices for resizable intra-atrial shunts
EP2609893B1 (en) 2011-12-29 2014-09-03 Sorin Group Italia S.r.l. A kit for implanting prosthetic vascular conduits
WO2013112768A1 (en) 2012-01-25 2013-08-01 Intact Vascular, Inc. Endoluminal device and method
US10172708B2 (en) 2012-01-25 2019-01-08 Boston Scientific Scimed, Inc. Valve assembly with a bioabsorbable gasket and a replaceable valve implant
AU2013222451B2 (en) 2012-02-22 2018-08-09 Edwards Lifesciences Cardiaq Llc Actively controllable stent, stent graft, heart valve and method of controlling same
US9011515B2 (en) 2012-04-19 2015-04-21 Caisson Interventional, LLC Heart valve assembly systems and methods
US9427315B2 (en) 2012-04-19 2016-08-30 Caisson Interventional, LLC Valve replacement systems and methods
EP2849678B1 (en) 2012-05-16 2022-08-10 JenaValve Technology, Inc. Catheter delivery system for introducing an expandable heart valve prosthesis and medical device for the treatment of a heart valve defect
US9345573B2 (en) 2012-05-30 2016-05-24 Neovasc Tiara Inc. Methods and apparatus for loading a prosthesis onto a delivery system
US8961594B2 (en) 2012-05-31 2015-02-24 4Tech Inc. Heart valve repair system
CZ2012376A3 (en) * 2012-06-05 2013-12-18 Institut Klinické A Experimentální Medicíny Process for preparing pericardial prosthesis of cardiac valve, cardiac valve pericardial prosthesis produced in such a manner, device for conditioning and modification of autologous pericardial tissue for pericardial prosthesis of heart valve
US9883941B2 (en) 2012-06-19 2018-02-06 Boston Scientific Scimed, Inc. Replacement heart valve
US9289292B2 (en) 2012-06-28 2016-03-22 St. Jude Medical, Cardiology Division, Inc. Valve cuff support
US9554902B2 (en) 2012-06-28 2017-01-31 St. Jude Medical, Cardiology Division, Inc. Leaflet in configuration for function in various shapes and sizes
US9241791B2 (en) 2012-06-29 2016-01-26 St. Jude Medical, Cardiology Division, Inc. Valve assembly for crimp profile
US20140005776A1 (en) 2012-06-29 2014-01-02 St. Jude Medical, Cardiology Division, Inc. Leaflet attachment for function in various shapes and sizes
US9615920B2 (en) 2012-06-29 2017-04-11 St. Jude Medical, Cardiology Divisions, Inc. Commissure attachment feature for prosthetic heart valve
US9808342B2 (en) 2012-07-03 2017-11-07 St. Jude Medical, Cardiology Division, Inc. Balloon sizing device and method of positioning a prosthetic heart valve
US10004597B2 (en) 2012-07-03 2018-06-26 St. Jude Medical, Cardiology Division, Inc. Stent and implantable valve incorporating same
WO2014022124A1 (en) 2012-07-28 2014-02-06 Tendyne Holdings, Inc. Improved multi-component designs for heart valve retrieval device, sealing structures and stent assembly
US9675454B2 (en) 2012-07-30 2017-06-13 Tendyne Holdings, Inc. Delivery systems and methods for transcatheter prosthetic valves
US9510946B2 (en) 2012-09-06 2016-12-06 Edwards Lifesciences Corporation Heart valve sealing devices
US9216018B2 (en) 2012-09-29 2015-12-22 Mitralign, Inc. Plication lock delivery system and method of use thereof
US10524909B2 (en) 2012-10-12 2020-01-07 St. Jude Medical, Cardiology Division, Inc. Retaining cage to permit resheathing of a tavi aortic-first transapical system
US9801721B2 (en) 2012-10-12 2017-10-31 St. Jude Medical, Cardiology Division, Inc. Sizing device and method of positioning a prosthetic heart valve
US10376266B2 (en) 2012-10-23 2019-08-13 Valtech Cardio, Ltd. Percutaneous tissue anchor techniques
EP2911594B1 (en) 2012-10-23 2018-12-05 Valtech Cardio, Ltd. Controlled steering functionality for implant-delivery tool
US8628571B1 (en) 2012-11-13 2014-01-14 Mitraltech Ltd. Percutaneously-deliverable mechanical valve
ES2931210T3 (en) 2012-11-21 2022-12-27 Edwards Lifesciences Corp Retention Mechanisms for Prosthetic Heart Valves
WO2014087402A1 (en) 2012-12-06 2014-06-12 Valtech Cardio, Ltd. Techniques for guide-wire based advancement of a tool
US10966820B2 (en) * 2012-12-19 2021-04-06 W. L. Gore & Associates, Inc. Geometric control of bending character in prosthetic heart valve leaflets
US10543085B2 (en) 2012-12-31 2020-01-28 Edwards Lifesciences Corporation One-piece heart valve stents adapted for post-implant expansion
CN105007832B (en) 2013-01-09 2018-01-23 4科技有限公司 Organize ancora equipment
JP6010836B2 (en) * 2013-01-24 2016-10-19 株式会社グッドマン Stent and prosthetic valve with stent
ES2934670T3 (en) 2013-01-24 2023-02-23 Cardiovalve Ltd Ventricularly Anchored Prosthetic Valves
US9314163B2 (en) 2013-01-29 2016-04-19 St. Jude Medical, Cardiology Division, Inc. Tissue sensing device for sutureless valve selection
US9186238B2 (en) 2013-01-29 2015-11-17 St. Jude Medical, Cardiology Division, Inc. Aortic great vessel protection
US9655719B2 (en) 2013-01-29 2017-05-23 St. Jude Medical, Cardiology Division, Inc. Surgical heart valve flexible stent frame stiffener
US9439763B2 (en) 2013-02-04 2016-09-13 Edwards Lifesciences Corporation Prosthetic valve for replacing mitral valve
US9168129B2 (en) 2013-02-12 2015-10-27 Edwards Lifesciences Corporation Artificial heart valve with scalloped frame design
US9724084B2 (en) 2013-02-26 2017-08-08 Mitralign, Inc. Devices and methods for percutaneous tricuspid valve repair
US9844435B2 (en) 2013-03-01 2017-12-19 St. Jude Medical, Cardiology Division, Inc. Transapical mitral valve replacement
US9901470B2 (en) 2013-03-01 2018-02-27 St. Jude Medical, Cardiology Division, Inc. Methods of repositioning a transcatheter heart valve after full deployment
US9480563B2 (en) 2013-03-08 2016-11-01 St. Jude Medical, Cardiology Division, Inc. Valve holder with leaflet protection
US10583002B2 (en) 2013-03-11 2020-03-10 Neovasc Tiara Inc. Prosthetic valve with anti-pivoting mechanism
US9398951B2 (en) 2013-03-12 2016-07-26 St. Jude Medical, Cardiology Division, Inc. Self-actuating sealing portions for paravalvular leak protection
WO2014143126A1 (en) 2013-03-12 2014-09-18 St. Jude Medical, Cardiology Division, Inc. Self-actuating sealing portions for paravalvular leak protection
US9636222B2 (en) 2013-03-12 2017-05-02 St. Jude Medical, Cardiology Division, Inc. Paravalvular leak protection
US10314698B2 (en) 2013-03-12 2019-06-11 St. Jude Medical, Cardiology Division, Inc. Thermally-activated biocompatible foam occlusion device for self-expanding heart valves
US10271949B2 (en) 2013-03-12 2019-04-30 St. Jude Medical, Cardiology Division, Inc. Paravalvular leak occlusion device for self-expanding heart valves
US9339274B2 (en) 2013-03-12 2016-05-17 St. Jude Medical, Cardiology Division, Inc. Paravalvular leak occlusion device for self-expanding heart valves
US9326856B2 (en) 2013-03-14 2016-05-03 St. Jude Medical, Cardiology Division, Inc. Cuff configurations for prosthetic heart valve
US9730791B2 (en) 2013-03-14 2017-08-15 Edwards Lifesciences Cardiaq Llc Prosthesis for atraumatically grasping intralumenal tissue and methods of delivery
WO2014141239A1 (en) 2013-03-14 2014-09-18 4Tech Inc. Stent with tether interface
US9681951B2 (en) 2013-03-14 2017-06-20 Edwards Lifesciences Cardiaq Llc Prosthesis with outer skirt and anchors
US10449333B2 (en) 2013-03-14 2019-10-22 Valtech Cardio, Ltd. Guidewire feeder
US20140277427A1 (en) 2013-03-14 2014-09-18 Cardiaq Valve Technologies, Inc. Prosthesis for atraumatically grasping intralumenal tissue and methods of delivery
US9131982B2 (en) 2013-03-14 2015-09-15 St. Jude Medical, Cardiology Division, Inc. Mediguide-enabled renal denervation system for ensuring wall contact and mapping lesion locations
EP2968847B1 (en) 2013-03-15 2023-03-08 Edwards Lifesciences Corporation Translation catheter systems
US10463489B2 (en) 2013-04-02 2019-11-05 Tendyne Holdings, Inc. Prosthetic heart valve and systems and methods for delivering the same
US9486306B2 (en) 2013-04-02 2016-11-08 Tendyne Holdings, Inc. Inflatable annular sealing device for prosthetic mitral valve
US11224510B2 (en) 2013-04-02 2022-01-18 Tendyne Holdings, Inc. Prosthetic heart valve and systems and methods for delivering the same
US9572665B2 (en) 2013-04-04 2017-02-21 Neovasc Tiara Inc. Methods and apparatus for delivering a prosthetic valve to a beating heart
US10478293B2 (en) 2013-04-04 2019-11-19 Tendyne Holdings, Inc. Retrieval and repositioning system for prosthetic heart valve
WO2014179763A1 (en) 2013-05-03 2014-11-06 Medtronic Inc. Valve delivery tool
MX361339B (en) 2013-05-20 2018-12-04 Edwards Lifesciences Corp Prosthetic heart valve delivery apparatus.
US9610159B2 (en) 2013-05-30 2017-04-04 Tendyne Holdings, Inc. Structural members for prosthetic mitral valves
US10321991B2 (en) 2013-06-19 2019-06-18 St. Jude Medical, Cardiology Division, Inc. Collapsible valve having paravalvular leak protection
WO2014210124A1 (en) 2013-06-25 2014-12-31 Mark Christianson Thrombus management and structural compliance features for prosthetic heart valves
US9668856B2 (en) 2013-06-26 2017-06-06 St. Jude Medical, Cardiology Division, Inc. Puckering seal for reduced paravalvular leakage
US9724083B2 (en) 2013-07-26 2017-08-08 Edwards Lifesciences Cardiaq Llc Systems and methods for sealing openings in an anatomical wall
JP6465883B2 (en) 2013-08-01 2019-02-06 テンダイン ホールディングス,インコーポレイテッド Epicardial anchor device and method
SG10201805117UA (en) 2013-08-12 2018-07-30 Mitral Valve Tech Sarl Apparatus and methods for implanting a replacement heart valve
JP6563394B2 (en) 2013-08-30 2019-08-21 イェーナヴァルヴ テクノロジー インコーポレイテッド Radially foldable frame for an artificial valve and method for manufacturing the frame
US10070857B2 (en) 2013-08-31 2018-09-11 Mitralign, Inc. Devices and methods for locating and implanting tissue anchors at mitral valve commissure
USD730521S1 (en) 2013-09-04 2015-05-26 St. Jude Medical, Cardiology Division, Inc. Stent with commissure attachments
USD730520S1 (en) 2013-09-04 2015-05-26 St. Jude Medical, Cardiology Division, Inc. Stent with commissure attachments
US9867611B2 (en) 2013-09-05 2018-01-16 St. Jude Medical, Cardiology Division, Inc. Anchoring studs for transcatheter valve implantation
US10117742B2 (en) 2013-09-12 2018-11-06 St. Jude Medical, Cardiology Division, Inc. Stent designs for prosthetic heart valves
JP2016536048A (en) * 2013-10-08 2016-11-24 メディカル リサーチ, インフラストラクチュア アンド ヘルス サービシーズ ファンド オブ ザ テル アビブ メディカル センター Cardiac prosthesis and its placement
WO2015058039A1 (en) 2013-10-17 2015-04-23 Robert Vidlund Apparatus and methods for alignment and deployment of intracardiac devices
US9050188B2 (en) 2013-10-23 2015-06-09 Caisson Interventional, LLC Methods and systems for heart valve therapy
US10299793B2 (en) 2013-10-23 2019-05-28 Valtech Cardio, Ltd. Anchor magazine
ES2773255T3 (en) 2013-10-28 2020-07-10 Tendyne Holdings Inc Prosthetic heart valve and systems to supply it
US9526611B2 (en) 2013-10-29 2016-12-27 Tendyne Holdings, Inc. Apparatus and methods for delivery of transcatheter prosthetic valves
US10052095B2 (en) 2013-10-30 2018-08-21 4Tech Inc. Multiple anchoring-point tension system
EP3062709A2 (en) 2013-10-30 2016-09-07 4Tech Inc. Multiple anchoring-point tension system
US10022114B2 (en) 2013-10-30 2018-07-17 4Tech Inc. Percutaneous tether locking
CN103550015B (en) * 2013-11-01 2015-07-01 金仕生物科技(常熟)有限公司 Heart valve prosthesis valve frame and intervened heart valve prosthesis using valve frame
EP2870946B1 (en) 2013-11-06 2018-10-31 St. Jude Medical, Cardiology Division, Inc. Paravalvular leak sealing mechanism
US9913715B2 (en) 2013-11-06 2018-03-13 St. Jude Medical, Cardiology Division, Inc. Paravalvular leak sealing mechanism
US9700409B2 (en) 2013-11-06 2017-07-11 St. Jude Medical, Cardiology Division, Inc. Reduced profile prosthetic heart valve
CN116158889A (en) 2013-11-11 2023-05-26 爱德华兹生命科学卡迪尔克有限责任公司 System and method for manufacturing a stent frame
US9549818B2 (en) 2013-11-12 2017-01-24 St. Jude Medical, Cardiology Division, Inc. Pneumatically power-assisted tavi delivery system
EP3071149B1 (en) 2013-11-19 2022-06-01 St. Jude Medical, Cardiology Division, Inc. Sealing structures for paravalvular leak protection
US9622863B2 (en) 2013-11-22 2017-04-18 Edwards Lifesciences Corporation Aortic insufficiency repair device and method
EP3073964A1 (en) 2013-11-27 2016-10-05 St. Jude Medical, Cardiology Division, Inc. Cuff stitching reinforcement
US10098734B2 (en) 2013-12-05 2018-10-16 Edwards Lifesciences Corporation Prosthetic heart valve and delivery apparatus
ES2771900T3 (en) 2013-12-19 2020-07-07 St Jude Medical Cardiology Div Inc Valve-sleeve fixings for prosthetic heart valve
US9610162B2 (en) 2013-12-26 2017-04-04 Valtech Cardio, Ltd. Implantation of flexible implant
US20150209141A1 (en) 2014-01-24 2015-07-30 St. Jude Medical, Cardiology Division, Inc. Stationary intra-annular halo designs for paravalvular leak (pvl) reduction-passive channel filling cuff designs
US9820852B2 (en) 2014-01-24 2017-11-21 St. Jude Medical, Cardiology Division, Inc. Stationary intra-annular halo designs for paravalvular leak (PVL) reduction—active channel filling cuff designs
WO2016112085A2 (en) 2015-01-07 2016-07-14 Mark Christianson Prosthetic mitral valves and apparatus and methods for delivery of same
WO2015120122A2 (en) 2014-02-05 2015-08-13 Robert Vidlund Apparatus and methods for transfemoral delivery of prosthetic mitral valve
US9867556B2 (en) 2014-02-07 2018-01-16 St. Jude Medical, Cardiology Division, Inc. System and method for assessing dimensions and eccentricity of valve annulus for trans-catheter valve implantation
US10292711B2 (en) 2014-02-07 2019-05-21 St. Jude Medical, Cardiology Division, Inc. Mitral valve treatment device having left atrial appendage closure
US9986993B2 (en) 2014-02-11 2018-06-05 Tendyne Holdings, Inc. Adjustable tether and epicardial pad system for prosthetic heart valve
EP3107496B1 (en) 2014-02-18 2018-07-04 St. Jude Medical, Cardiology Division, Inc. Bowed runners for paravalvular leak protection
CA2938614C (en) 2014-02-21 2024-01-23 Edwards Lifesciences Cardiaq Llc Delivery device for controlled deployement of a replacement valve
CN106068109B (en) 2014-03-10 2019-07-23 坦迪尼控股股份有限公司 Device and method for positioning and monitoring the tether load of prosthetic mitral valve
US10675450B2 (en) 2014-03-12 2020-06-09 Corvia Medical, Inc. Devices and methods for treating heart failure
EP3119351B1 (en) 2014-03-18 2021-10-20 St. Jude Medical, Cardiology Division, Inc. Mitral valve replacement toggle cell securement
US9763778B2 (en) 2014-03-18 2017-09-19 St. Jude Medical, Cardiology Division, Inc. Aortic insufficiency valve percutaneous valve anchoring
EP3119352B1 (en) 2014-03-21 2023-12-20 St. Jude Medical, Cardiology Division, Inc. Leaflet abrasion mitigation
CR20160424A (en) 2014-03-26 2016-12-08 St Jude Medical Cardiology Div Inc Transcather mitral valve stent frames
WO2015152980A1 (en) 2014-03-31 2015-10-08 St. Jude Medical, Cardiology Division, Inc. Paravalvular sealing via extended cuff mechanisms
EP3131504B1 (en) 2014-04-14 2023-03-15 St. Jude Medical, Cardiology Division, Inc. Leaflet abrasion mitigation in prosthetic heart valves
ES2795358T3 (en) 2014-05-16 2020-11-23 St Jude Medical Cardiology Div Inc Subannular sealing for paravalvular leak protection
US9668858B2 (en) 2014-05-16 2017-06-06 St. Jude Medical, Cardiology Division, Inc. Transcatheter valve with paravalvular leak sealing ring
EP3142605A1 (en) 2014-05-16 2017-03-22 St. Jude Medical, Cardiology Division, Inc. Stent assembly for use in prosthetic heart valves
CA3161000A1 (en) 2014-05-19 2015-11-26 Edwards Lifesciences Cardiaq Llc Replacement mitral valve with annular flap
US10500042B2 (en) 2014-05-22 2019-12-10 St. Jude Medical, Cardiology Division, Inc. Stents with anchoring sections
US9532870B2 (en) 2014-06-06 2017-01-03 Edwards Lifesciences Corporation Prosthetic valve for replacing a mitral valve
EP2954875B1 (en) 2014-06-10 2017-11-15 St. Jude Medical, Cardiology Division, Inc. Stent cell bridge for cuff attachment
US9974647B2 (en) 2014-06-12 2018-05-22 Caisson Interventional, LLC Two stage anchor and mitral valve assembly
EP3157607B1 (en) 2014-06-19 2019-08-07 4Tech Inc. Cardiac tissue cinching
US10195026B2 (en) 2014-07-22 2019-02-05 Edwards Lifesciences Corporation Mitral valve anchoring
JP6799526B2 (en) 2014-07-23 2020-12-16 コルヴィア メディカル インコーポレイテッド Equipment and methods for the treatment of heart failure
EP3174502B1 (en) 2014-07-30 2022-04-06 Cardiovalve Ltd Apparatus for implantation of an articulatable prosthetic valve
US9808201B2 (en) 2014-08-18 2017-11-07 St. Jude Medical, Cardiology Division, Inc. Sensors for prosthetic heart devices
EP3182932B1 (en) 2014-08-18 2019-05-15 St. Jude Medical, Cardiology Division, Inc. Annuloplasty ring with sensor
EP3182927A1 (en) 2014-08-18 2017-06-28 St. Jude Medical, Cardiology Division, Inc. Prosthetic heart devices having diagnostic capabilities
US10058424B2 (en) 2014-08-21 2018-08-28 Edwards Lifesciences Corporation Dual-flange prosthetic valve frame
US10016272B2 (en) 2014-09-12 2018-07-10 Mitral Valve Technologies Sarl Mitral repair and replacement devices and methods
EP3922213A1 (en) 2014-10-14 2021-12-15 Valtech Cardio, Ltd. Leaflet-restraining techniques
US9750607B2 (en) 2014-10-23 2017-09-05 Caisson Interventional, LLC Systems and methods for heart valve therapy
US9750605B2 (en) 2014-10-23 2017-09-05 Caisson Interventional, LLC Systems and methods for heart valve therapy
JP6717820B2 (en) 2014-12-02 2020-07-08 4テック インコーポレイテッド Eccentric tissue anchor
US9855141B2 (en) * 2014-12-18 2018-01-02 W. L. Gore & Associates, Inc. Prosthetic valves with mechanically coupled leaflets
US9375336B1 (en) 2015-01-29 2016-06-28 Intact Vascular, Inc. Delivery device and method of delivery
US9433520B2 (en) 2015-01-29 2016-09-06 Intact Vascular, Inc. Delivery device and method of delivery
WO2016126524A1 (en) 2015-02-03 2016-08-11 Boston Scientific Scimed, Inc. Prosthetic heart valve having tubular seal
CN107896484B (en) 2015-02-05 2020-09-08 坦迪尼控股股份有限公司 Expandable epicardial pad and delivery devices and methods therefor
CN110141399B (en) 2015-02-05 2021-07-27 卡迪尔维尔福股份有限公司 Prosthetic valve with axially sliding frame
US9974651B2 (en) 2015-02-05 2018-05-22 Mitral Tech Ltd. Prosthetic valve with axially-sliding frames
US20160256269A1 (en) 2015-03-05 2016-09-08 Mitralign, Inc. Devices for treating paravalvular leakage and methods use thereof
US10426617B2 (en) 2015-03-06 2019-10-01 Boston Scientific Scimed, Inc. Low profile valve locking mechanism and commissure assembly
US10314699B2 (en) 2015-03-13 2019-06-11 St. Jude Medical, Cardiology Division, Inc. Recapturable valve-graft combination and related methods
AU2016233216B2 (en) 2015-03-19 2020-08-20 Caisson Interventional, LLC Systems and methods for heart valve therapy
WO2016154168A1 (en) 2015-03-23 2016-09-29 St. Jude Medical, Cardiology Division, Inc. Heart valve repair
US10070954B2 (en) 2015-03-24 2018-09-11 St. Jude Medical, Cardiology Division, Inc. Mitral heart valve replacement
WO2016154166A1 (en) 2015-03-24 2016-09-29 St. Jude Medical, Cardiology Division, Inc. Prosthetic mitral valve
EP3280359A1 (en) 2015-04-07 2018-02-14 St. Jude Medical, Cardiology Division, Inc. System and method for intraprocedural assessment of geometry and compliance of valve annulus for trans-catheter valve implantation
US10327896B2 (en) 2015-04-10 2019-06-25 Edwards Lifesciences Corporation Expandable sheath with elastomeric cross sectional portions
US10792471B2 (en) 2015-04-10 2020-10-06 Edwards Lifesciences Corporation Expandable sheath
US10064718B2 (en) 2015-04-16 2018-09-04 Edwards Lifesciences Corporation Low-profile prosthetic heart valve for replacing a mitral valve
EP3283010B1 (en) 2015-04-16 2020-06-17 Tendyne Holdings, Inc. Apparatus for delivery and repositioning of transcatheter prosthetic valves
US10010417B2 (en) 2015-04-16 2018-07-03 Edwards Lifesciences Corporation Low-profile prosthetic heart valve for replacing a mitral valve
US10441416B2 (en) 2015-04-21 2019-10-15 Edwards Lifesciences Corporation Percutaneous mitral valve replacement device
US10376363B2 (en) 2015-04-30 2019-08-13 Edwards Lifesciences Cardiaq Llc Replacement mitral valve, delivery system for replacement mitral valve and methods of use
CN114515173A (en) 2015-04-30 2022-05-20 瓦尔泰克卡迪欧有限公司 Valvuloplasty techniques
CN107530168B (en) 2015-05-01 2020-06-09 耶拿阀门科技股份有限公司 Device and method with reduced pacemaker ratio in heart valve replacement
WO2016201024A1 (en) 2015-06-12 2016-12-15 St. Jude Medical, Cardiology Division, Inc. Heart valve repair and replacement
CA2990872C (en) 2015-06-22 2022-03-22 Edwards Lifescience Cardiaq Llc Actively controllable heart valve implant and methods of controlling same
US10092400B2 (en) 2015-06-23 2018-10-09 Edwards Lifesciences Cardiaq Llc Systems and methods for anchoring and sealing a prosthetic heart valve
US9974650B2 (en) * 2015-07-14 2018-05-22 Edwards Lifesciences Corporation Prosthetic heart valve
US10639149B2 (en) 2015-07-16 2020-05-05 St. Jude Medical, Cardiology Division, Inc. Sutureless prosthetic heart valve
WO2017027541A1 (en) 2015-08-12 2017-02-16 St. Jude Medical, Cardiology Division, Inc. Collapsible heart valve including stents with tapered struts
US11026788B2 (en) 2015-08-20 2021-06-08 Edwards Lifesciences Corporation Loader and retriever for transcatheter heart valve, and methods of crimping transcatheter heart valve
US10117744B2 (en) 2015-08-26 2018-11-06 Edwards Lifesciences Cardiaq Llc Replacement heart valves and methods of delivery
US10575951B2 (en) 2015-08-26 2020-03-03 Edwards Lifesciences Cardiaq Llc Delivery device and methods of use for transapical delivery of replacement mitral valve
US10350066B2 (en) 2015-08-28 2019-07-16 Edwards Lifesciences Cardiaq Llc Steerable delivery system for replacement mitral valve and methods of use
JP6547541B2 (en) * 2015-09-17 2019-07-24 日本ゼオン株式会社 Diameter reduction device
US10327894B2 (en) 2015-09-18 2019-06-25 Tendyne Holdings, Inc. Methods for delivery of prosthetic mitral valves
US10470876B2 (en) 2015-11-10 2019-11-12 Edwards Lifesciences Corporation Transcatheter heart valve for replacing natural mitral valve
US10376364B2 (en) 2015-11-10 2019-08-13 Edwards Lifesciences Corporation Implant delivery capsule
EP4309628A3 (en) 2015-12-03 2024-04-10 Tendyne Holdings, Inc. Frame features for prosthetic mitral valves
JP6795591B2 (en) 2015-12-28 2020-12-02 テンダイン ホールディングス,インコーポレイテッド Atrial pocket closure for artificial heart valve
EP3397207A4 (en) 2015-12-30 2019-09-11 Mitralign, Inc. System and method for reducing tricuspid regurgitation
EP3960127A1 (en) 2015-12-30 2022-03-02 Caisson Interventional, LLC Systems and methods for heart valve therapy
US10751182B2 (en) 2015-12-30 2020-08-25 Edwards Lifesciences Corporation System and method for reshaping right heart
US10993824B2 (en) 2016-01-01 2021-05-04 Intact Vascular, Inc. Delivery device and method of delivery
CA3007670A1 (en) 2016-01-29 2017-08-03 Neovasc Tiara Inc. Prosthetic valve for avoiding obstruction of outflow
US10179043B2 (en) 2016-02-12 2019-01-15 Edwards Lifesciences Corporation Prosthetic heart valve having multi-level sealing member
US10531866B2 (en) 2016-02-16 2020-01-14 Cardiovalve Ltd. Techniques for providing a replacement valve and transseptal communication
SG10202108804RA (en) 2016-03-24 2021-09-29 Edwards Lifesciences Corp Delivery system for prosthetic heart valve
USD815744S1 (en) 2016-04-28 2018-04-17 Edwards Lifesciences Cardiaq Llc Valve frame for a delivery system
US10470877B2 (en) 2016-05-03 2019-11-12 Tendyne Holdings, Inc. Apparatus and methods for anterior valve leaflet management
US10231829B2 (en) 2016-05-04 2019-03-19 Boston Scientific Scimed Inc. Leaflet stitching backer
USD802765S1 (en) 2016-05-13 2017-11-14 St. Jude Medical, Cardiology Division, Inc. Surgical stent
USD802766S1 (en) 2016-05-13 2017-11-14 St. Jude Medical, Cardiology Division, Inc. Surgical stent
EP3454785B1 (en) 2016-05-13 2021-11-17 St. Jude Medical, Cardiology Division, Inc. Heart valve with stent having varying cell densities
EP3454795B1 (en) 2016-05-13 2023-01-11 JenaValve Technology, Inc. Heart valve prosthesis delivery system for delivery of heart valve prosthesis with introducer sheath and loading system
USD802764S1 (en) 2016-05-13 2017-11-14 St. Jude Medical, Cardiology Division, Inc. Surgical stent
US10201416B2 (en) 2016-05-16 2019-02-12 Boston Scientific Scimed, Inc. Replacement heart valve implant with invertible leaflets
US10702274B2 (en) 2016-05-26 2020-07-07 Edwards Lifesciences Corporation Method and system for closing left atrial appendage
US11039921B2 (en) 2016-06-13 2021-06-22 Tendyne Holdings, Inc. Sequential delivery of two-part prosthetic mitral valve
JP6968113B2 (en) 2016-06-30 2021-11-17 テンダイン ホールディングス,インコーポレイテッド Transapical delivery device for artificial heart valves
GB201611910D0 (en) 2016-07-08 2016-08-24 Valtech Cardio Ltd Adjustable annuloplasty device with alternating peaks and troughs
US11065116B2 (en) 2016-07-12 2021-07-20 Tendyne Holdings, Inc. Apparatus and methods for trans-septal retrieval of prosthetic heart valves
US10350062B2 (en) 2016-07-21 2019-07-16 Edwards Lifesciences Corporation Replacement heart valve prosthesis
US11096781B2 (en) 2016-08-01 2021-08-24 Edwards Lifesciences Corporation Prosthetic heart valve
USD800908S1 (en) 2016-08-10 2017-10-24 Mitraltech Ltd. Prosthetic valve element
CA3031187A1 (en) 2016-08-10 2018-02-15 Cardiovalve Ltd. Prosthetic valve with concentric frames
CA3033666A1 (en) 2016-08-19 2018-02-22 Edwards Lifesciences Corporation Steerable delivery system for replacement mitral valve and methods of use
CN109843219B (en) 2016-08-26 2022-04-05 爱德华兹生命科学公司 Multi-part replacement heart valve prosthesis
US10548722B2 (en) 2016-08-26 2020-02-04 St. Jude Medical, Cardiology Division, Inc. Prosthetic heart valve with paravalvular leak mitigation features
US10456249B2 (en) 2016-09-15 2019-10-29 St. Jude Medical, Cardiology Division, Inc. Prosthetic heart valve with paravalvular leak mitigation features
EP3531977A1 (en) 2016-10-28 2019-09-04 St. Jude Medical, Cardiology Division, Inc. Prosthetic mitral valve
US10758398B2 (en) * 2016-11-01 2020-09-01 Covidien Lp Apparatus and associated methodologies for creating a stoma
US10758348B2 (en) 2016-11-02 2020-09-01 Edwards Lifesciences Corporation Supra and sub-annular mitral valve delivery system
US10463484B2 (en) 2016-11-17 2019-11-05 Edwards Lifesciences Corporation Prosthetic heart valve having leaflet inflow below frame
US10973631B2 (en) * 2016-11-17 2021-04-13 Edwards Lifesciences Corporation Crimping accessory device for a prosthetic valve
CN113893064A (en) 2016-11-21 2022-01-07 内奥瓦斯克迪亚拉公司 Methods and systems for rapid retrieval of transcatheter heart valve delivery systems
WO2018102525A1 (en) 2016-12-02 2018-06-07 St. Jude Medical, Cardiology Division, Inc. Transcatheter delivery system with two modes of actuation
WO2018102520A1 (en) 2016-12-02 2018-06-07 St. Jude Medical, Cardiology Division, Inc. Transcatheter delivery system with transverse wheel actuation
US10603165B2 (en) 2016-12-06 2020-03-31 Edwards Lifesciences Corporation Mechanically expanding heart valve and delivery apparatus therefor
US11654023B2 (en) 2017-01-23 2023-05-23 Edwards Lifesciences Corporation Covered prosthetic heart valve
US11185406B2 (en) 2017-01-23 2021-11-30 Edwards Lifesciences Corporation Covered prosthetic heart valve
US11013600B2 (en) 2017-01-23 2021-05-25 Edwards Lifesciences Corporation Covered prosthetic heart valve
CN110392557A (en) 2017-01-27 2019-10-29 耶拿阀门科技股份有限公司 Heart valve simulation
WO2018160790A1 (en) 2017-03-03 2018-09-07 St. Jude Medical, Cardiology Division, Inc. Transcatheter mitral valve design
US11045627B2 (en) 2017-04-18 2021-06-29 Edwards Lifesciences Corporation Catheter system with linear actuation control mechanism
USD875935S1 (en) 2017-05-15 2020-02-18 St. Jude Medical, Cardiology Division, Inc. Stent having tapered struts
US10898324B2 (en) 2017-05-15 2021-01-26 St. Jude Medical, Cardiology Division, Inc. Transcatheter delivery system with wheel actuation
USD889653S1 (en) 2017-05-15 2020-07-07 St. Jude Medical, Cardiology Division, Inc. Stent having tapered struts
USD875250S1 (en) 2017-05-15 2020-02-11 St. Jude Medical, Cardiology Division, Inc. Stent having tapered aortic struts
US11135056B2 (en) * 2017-05-15 2021-10-05 Edwards Lifesciences Corporation Devices and methods of commissure formation for prosthetic heart valve
EP3630013B1 (en) 2017-05-22 2024-04-24 Edwards Lifesciences Corporation Valve anchor
US20210401571A9 (en) 2017-05-31 2021-12-30 Edwards Lifesciences Corporation Sealing member for prosthetic heart valve
US10869759B2 (en) 2017-06-05 2020-12-22 Edwards Lifesciences Corporation Mechanically expandable heart valve
US11026785B2 (en) 2017-06-05 2021-06-08 Edwards Lifesciences Corporation Mechanically expandable heart valve
EP3634311A1 (en) 2017-06-08 2020-04-15 Boston Scientific Scimed, Inc. Heart valve implant commissure support structure
CN110996855B (en) 2017-07-06 2022-05-06 爱德华兹生命科学公司 Steerable rail delivery system
CA3068527C (en) 2017-07-13 2022-07-05 Tendyne Holdings, Inc. Prosthetic heart valves and apparatus and methods for delivery of same
US10918473B2 (en) 2017-07-18 2021-02-16 Edwards Lifesciences Corporation Transcatheter heart valve storage container and crimping mechanism
US11660218B2 (en) 2017-07-26 2023-05-30 Intact Vascular, Inc. Delivery device and method of delivery
CN111163729B (en) 2017-08-01 2022-03-29 波士顿科学国际有限公司 Medical implant locking mechanism
US11246704B2 (en) 2017-08-03 2022-02-15 Cardiovalve Ltd. Prosthetic heart valve
US10537426B2 (en) 2017-08-03 2020-01-21 Cardiovalve Ltd. Prosthetic heart valve
US10888421B2 (en) 2017-09-19 2021-01-12 Cardiovalve Ltd. Prosthetic heart valve with pouch
US10575948B2 (en) 2017-08-03 2020-03-03 Cardiovalve Ltd. Prosthetic heart valve
US11793633B2 (en) 2017-08-03 2023-10-24 Cardiovalve Ltd. Prosthetic heart valve
CN114767339A (en) 2017-08-11 2022-07-22 爱德华兹生命科学公司 Sealing element for prosthetic heart valve
US11083575B2 (en) 2017-08-14 2021-08-10 Edwards Lifesciences Corporation Heart valve frame design with non-uniform struts
US10932903B2 (en) 2017-08-15 2021-03-02 Edwards Lifesciences Corporation Skirt assembly for implantable prosthetic valve
EP3668449A1 (en) 2017-08-16 2020-06-24 Boston Scientific Scimed, Inc. Replacement heart valve commissure assembly
US10898319B2 (en) * 2017-08-17 2021-01-26 Edwards Lifesciences Corporation Sealing member for prosthetic heart valve
US10973628B2 (en) 2017-08-18 2021-04-13 Edwards Lifesciences Corporation Pericardial sealing member for prosthetic heart valve
US10722353B2 (en) * 2017-08-21 2020-07-28 Edwards Lifesciences Corporation Sealing member for prosthetic heart valve
WO2019036810A1 (en) 2017-08-25 2019-02-28 Neovasc Tiara Inc. Sequentially deployed transcatheter mitral valve prosthesis
EP3675774B1 (en) 2017-08-28 2023-06-21 Tendyne Holdings, Inc. Prosthetic heart valves with tether coupling features
US10973629B2 (en) 2017-09-06 2021-04-13 Edwards Lifesciences Corporation Sealing member for prosthetic heart valve
US20190069996A1 (en) * 2017-09-07 2019-03-07 Edwards Lifesciences Corporation Integral flushing solution for blood stasis prevention in artificial heart valves
US11147667B2 (en) 2017-09-08 2021-10-19 Edwards Lifesciences Corporation Sealing member for prosthetic heart valve
US11382751B2 (en) 2017-10-24 2022-07-12 St. Jude Medical, Cardiology Division, Inc. Self-expandable filler for mitigating paravalvular leak
US10835221B2 (en) 2017-11-02 2020-11-17 Valtech Cardio, Ltd. Implant-cinching devices and systems
US11135062B2 (en) 2017-11-20 2021-10-05 Valtech Cardio Ltd. Cinching of dilated heart muscle
GB201720803D0 (en) 2017-12-13 2018-01-24 Mitraltech Ltd Prosthetic Valve and delivery tool therefor
GB201800399D0 (en) 2018-01-10 2018-02-21 Mitraltech Ltd Temperature-control during crimping of an implant
EP3740170A1 (en) 2018-01-19 2020-11-25 Boston Scientific Scimed, Inc. Medical device delivery system with feedback loop
EP3740160A2 (en) 2018-01-19 2020-11-25 Boston Scientific Scimed Inc. Inductance mode deployment sensors for transcatheter valve system
WO2019145947A1 (en) 2018-01-24 2019-08-01 Valtech Cardio, Ltd. Contraction of an annuloplasty structure
CN111818877B (en) 2018-01-25 2023-12-22 爱德华兹生命科学公司 Delivery system for assisting in recapture and repositioning of replacement valves after deployment
EP3743014B1 (en) 2018-01-26 2023-07-19 Edwards Lifesciences Innovation (Israel) Ltd. Techniques for facilitating heart valve tethering and chord replacement
WO2019157156A1 (en) 2018-02-07 2019-08-15 Boston Scientific Scimed, Inc. Medical device delivery system with alignment feature
US11439732B2 (en) 2018-02-26 2022-09-13 Boston Scientific Scimed, Inc. Embedded radiopaque marker in adaptive seal
US11051934B2 (en) 2018-02-28 2021-07-06 Edwards Lifesciences Corporation Prosthetic mitral valve with improved anchors and seal
US11813413B2 (en) 2018-03-27 2023-11-14 St. Jude Medical, Cardiology Division, Inc. Radiopaque outer cuff for transcatheter valve
WO2019195860A2 (en) 2018-04-04 2019-10-10 Vdyne, Llc Devices and methods for anchoring transcatheter heart valve
US11234812B2 (en) 2018-04-18 2022-02-01 St. Jude Medical, Cardiology Division, Inc. Methods for surgical valve expansion
US11318011B2 (en) 2018-04-27 2022-05-03 Edwards Lifesciences Corporation Mechanically expandable heart valve with leaflet clamps
WO2019222367A1 (en) 2018-05-15 2019-11-21 Boston Scientific Scimed, Inc. Replacement heart valve commissure assembly
US11504231B2 (en) 2018-05-23 2022-11-22 Corcym S.R.L. Cardiac valve prosthesis
USD944398S1 (en) 2018-06-13 2022-02-22 Edwards Lifesciences Corporation Expanded heart valve stent
US11241310B2 (en) 2018-06-13 2022-02-08 Boston Scientific Scimed, Inc. Replacement heart valve delivery device
WO2019246268A1 (en) * 2018-06-20 2019-12-26 W. L. Gore & Associates, Inc. Support structure for an implantable device with enhanced compressive stiffness region(s)
AU2019301967A1 (en) 2018-07-12 2021-01-21 Edwards Lifesciences Innovation (Israel) Ltd. Annuloplasty systems and locking tools therefor
US11344413B2 (en) 2018-09-20 2022-05-31 Vdyne, Inc. Transcatheter deliverable prosthetic heart valves and methods of delivery
US10321995B1 (en) 2018-09-20 2019-06-18 Vdyne, Llc Orthogonally delivered transcatheter heart valve replacement
US11278437B2 (en) 2018-12-08 2022-03-22 Vdyne, Inc. Compression capable annular frames for side delivery of transcatheter heart valve replacement
EP3852679A1 (en) 2018-09-20 2021-07-28 St. Jude Medical, Cardiology Division, Inc. Attachment of leaflets to prosthetic heart valve
US11364117B2 (en) 2018-10-15 2022-06-21 St. Jude Medical, Cardiology Division, Inc. Braid connections for prosthetic heart valves
CN214511420U (en) 2018-10-19 2021-10-29 爱德华兹生命科学公司 Implantable prosthetic device, medical device assembly, and delivery assembly
AU2019374743B2 (en) 2018-11-08 2022-03-03 Neovasc Tiara Inc. Ventricular deployment of a transcatheter mitral valve prosthesis
US11241312B2 (en) 2018-12-10 2022-02-08 Boston Scientific Scimed, Inc. Medical device delivery system including a resistance member
WO2020123267A1 (en) 2018-12-10 2020-06-18 St. Jude Medical, Cardiology Division, Inc. Prosthetic tricuspid valve replacement design
US11253359B2 (en) 2018-12-20 2022-02-22 Vdyne, Inc. Proximal tab for side-delivered transcatheter heart valves and methods of delivery
US11273030B2 (en) 2018-12-26 2022-03-15 St. Jude Medical, Cardiology Division, Inc. Elevated outer cuff for reducing paravalvular leakage and increasing stent fatigue life
JP2022517423A (en) * 2019-01-17 2022-03-08 エドワーズ ライフサイエンシーズ コーポレイション Frame for artificial valve
US11273032B2 (en) 2019-01-26 2022-03-15 Vdyne, Inc. Collapsible inner flow control component for side-deliverable transcatheter heart valve prosthesis
US11648109B2 (en) 2019-02-04 2023-05-16 Medtronic, Inc. Balloon expandable frame for transcatheter implantation of a cardiac valve prosthesis
AU2020231221A1 (en) * 2019-03-05 2021-09-23 Vdyne, Inc. Tricuspid regurgitation control devices for orthogonal transcatheter heart valve prosthesis
WO2020198273A2 (en) 2019-03-26 2020-10-01 Edwards Lifesciences Corporation Prosthetic heart valve
EP3946163A4 (en) 2019-04-01 2022-12-21 Neovasc Tiara Inc. Controllably deployable prosthetic valve
EP3952792A4 (en) 2019-04-10 2023-01-04 Neovasc Tiara Inc. Prosthetic valve with natural blood flow
EP3965701A4 (en) 2019-05-04 2023-02-15 Vdyne, Inc. Cinch device and method for deployment of a side-delivered prosthetic heart valve in a native annulus
US11439504B2 (en) 2019-05-10 2022-09-13 Boston Scientific Scimed, Inc. Replacement heart valve with improved cusp washout and reduced loading
US11771554B2 (en) 2019-05-17 2023-10-03 Medtronic, Inc. Supra annular tapered balloon expandable stent for transcatheter implantation of a cardiac valve prosthesis
CA3140925A1 (en) 2019-05-20 2020-11-26 Neovasc Tiara Inc. Introducer with hemostasis mechanism
AU2020295566B2 (en) 2019-06-20 2023-07-20 Neovasc Tiara Inc. Low profile prosthetic mitral valve
EP4003230A1 (en) 2019-07-31 2022-06-01 St. Jude Medical, Cardiology Division, Inc. Alternate stent caf design for tavr
CA3152042A1 (en) 2019-08-20 2021-02-25 Vdyne, Inc. Delivery and retrieval devices and methods for side-deliverable transcatheter prosthetic valves
AU2020337235A1 (en) 2019-08-26 2022-03-24 Vdyne, Inc. Side-deliverable transcatheter prosthetic valves and methods for delivering and anchoring the same
WO2021084407A1 (en) 2019-10-29 2021-05-06 Valtech Cardio, Ltd. Annuloplasty and tissue anchor technologies
US11648110B2 (en) 2019-12-05 2023-05-16 Tendyne Holdings, Inc. Braided anchor for mitral valve
US11648114B2 (en) 2019-12-20 2023-05-16 Tendyne Holdings, Inc. Distally loaded sheath and loading funnel
US11234813B2 (en) 2020-01-17 2022-02-01 Vdyne, Inc. Ventricular stability elements for side-deliverable prosthetic heart valves and methods of delivery
US20210275298A1 (en) * 2020-03-04 2021-09-09 Medtronic, Inc. Balloon expandable stent with lengthened commissure posts for transcatheter implantation of a cardiac valve prosthesis
US11951002B2 (en) 2020-03-30 2024-04-09 Tendyne Holdings, Inc. Apparatus and methods for valve and tether fixation
US11678980B2 (en) 2020-08-19 2023-06-20 Tendyne Holdings, Inc. Fully-transseptal apical pad with pulley for tensioning
US20230139876A1 (en) * 2021-11-02 2023-05-04 Medtronic, Inc. Mechanical guides for preferential leaflet folding during crimping

Family Cites Families (247)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1127325A (en) * 1965-08-23 1968-09-18 Henry Berry Improved instrument for inserting artificial heart valves
US3587115A (en) * 1966-05-04 1971-06-28 Donald P Shiley Prosthetic sutureless heart valves and implant tools therefor
US3472230A (en) 1966-12-19 1969-10-14 Fogarty T J Umbrella catheter
US3548417A (en) * 1967-09-05 1970-12-22 Ronnie G Kischer Heart valve having a flexible wall which rotates between open and closed positions
US3671979A (en) * 1969-09-23 1972-06-27 Univ Utah Catheter mounted artificial heart valve for implanting in close proximity to a defective natural heart valve
US3657744A (en) * 1970-05-08 1972-04-25 Univ Minnesota Method for fixing prosthetic implants in a living body
US3714671A (en) * 1970-11-30 1973-02-06 Cutter Lab Tissue-type heart valve with a graft support ring or stent
US3755823A (en) * 1971-04-23 1973-09-04 Hancock Laboratories Inc Flexible stent for heart valve
GB1402255A (en) 1971-09-24 1975-08-06 Smiths Industries Ltd Medical or surgical devices of the kind having an inflatable balloon
US4035849A (en) * 1975-11-17 1977-07-19 William W. Angell Heart valve stent and process for preparing a stented heart valve prosthesis
CA1069652A (en) * 1976-01-09 1980-01-15 Alain F. Carpentier Supported bioprosthetic heart valve with compliant orifice ring
US4056854A (en) * 1976-09-28 1977-11-08 The United States Of America As Represented By The Department Of Health, Education And Welfare Aortic heart valve catheter
US4297749A (en) * 1977-04-25 1981-11-03 Albany International Corp. Heart valve prosthesis
US4265694A (en) * 1978-12-14 1981-05-05 The United States Of America As Represented By The Department Of Health, Education And Welfare Method of making unitized three leaflet heart valve
US4222126A (en) * 1978-12-14 1980-09-16 The United States Of America As Represented By The Secretary Of The Department Of Health, Education & Welfare Unitized three leaflet heart valve
US4574803A (en) * 1979-01-19 1986-03-11 Karl Storz Tissue cutter
GB2056023B (en) * 1979-08-06 1983-08-10 Ross D N Bodnar E Stent for a cardiac valve
US4373216A (en) * 1980-10-27 1983-02-15 Hemex, Inc. Heart valves having edge-guided occluders
US4339831A (en) * 1981-03-27 1982-07-20 Medtronic, Inc. Dynamic annulus heart valve and reconstruction ring
US4470157A (en) * 1981-04-27 1984-09-11 Love Jack W Tricuspid prosthetic tissue heart valve
US4345340A (en) * 1981-05-07 1982-08-24 Vascor, Inc. Stent for mitral/tricuspid heart valve
US4406022A (en) * 1981-11-16 1983-09-27 Kathryn Roy Prosthetic valve means for cardiovascular surgery
SE445884B (en) * 1982-04-30 1986-07-28 Medinvent Sa DEVICE FOR IMPLANTATION OF A RODFORM PROTECTION
IT1212547B (en) 1982-08-09 1989-11-30 Iorio Domenico INSTRUMENT FOR SURGICAL USE INTENDED TO MAKE INTERVENTIONS FOR THE IMPLANTATION OF BIOPROTESIS IN HUMAN ORGANS EASIER AND SAFER
GB8300636D0 (en) * 1983-01-11 1983-02-09 Black M M Heart valve replacements
US4535483A (en) * 1983-01-17 1985-08-20 Hemex, Inc. Suture rings for heart valves
US4612011A (en) * 1983-07-22 1986-09-16 Hans Kautzky Central occluder semi-biological heart valve
US4585705A (en) 1983-11-09 1986-04-29 Dow Corning Corporation Hard organopolysiloxane release coating
US4787899A (en) * 1983-12-09 1988-11-29 Lazarus Harrison M Intraluminal graft device, system and method
US4627436A (en) * 1984-03-01 1986-12-09 Innoventions Biomedical Inc. Angioplasty catheter and method for use thereof
US4592340A (en) * 1984-05-02 1986-06-03 Boyles Paul W Artificial catheter means
US4883458A (en) * 1987-02-24 1989-11-28 Surgical Systems & Instruments, Inc. Atherectomy system and method of using the same
US4979939A (en) * 1984-05-14 1990-12-25 Surgical Systems & Instruments, Inc. Atherectomy system with a guide wire
US5007896A (en) * 1988-12-19 1991-04-16 Surgical Systems & Instruments, Inc. Rotary-catheter for atherectomy
DE3426300A1 (en) 1984-07-17 1986-01-30 Doguhan Dr.med. 6000 Frankfurt Baykut TWO-WAY VALVE AND ITS USE AS A HEART VALVE PROSTHESIS
DE3442088A1 (en) * 1984-11-17 1986-05-28 Beiersdorf Ag, 2000 Hamburg HEART VALVE PROSTHESIS
SU1271508A1 (en) 1984-11-29 1986-11-23 Горьковский государственный медицинский институт им.С.М.Кирова Artificial heart valve
US4759758A (en) * 1984-12-07 1988-07-26 Shlomo Gabbay Prosthetic heart valve
DE3530262A1 (en) * 1985-08-22 1987-02-26 Siemens Ag CIRCUIT ARRANGEMENT FOR TESTING A PASSIVE BUS NETWORK SYSTEM (CSMA / CD ACCESS METHOD)
US4733665C2 (en) * 1985-11-07 2002-01-29 Expandable Grafts Partnership Expandable intraluminal graft and method and apparatus for implanting an expandable intraluminal graft
DE3640745A1 (en) * 1985-11-30 1987-06-04 Ernst Peter Prof Dr M Strecker Catheter for producing or extending connections to or between body cavities
CH672247A5 (en) * 1986-03-06 1989-11-15 Mo Vysshee Tekhnicheskoe Uchil
US4878906A (en) * 1986-03-25 1989-11-07 Servetus Partnership Endoprosthesis for repairing a damaged vessel
US4777951A (en) * 1986-09-19 1988-10-18 Mansfield Scientific, Inc. Procedure and catheter instrument for treating patients for aortic stenosis
US4762128A (en) 1986-12-09 1988-08-09 Advanced Surgical Intervention, Inc. Method and apparatus for treating hypertrophy of the prostate gland
US4878495A (en) * 1987-05-15 1989-11-07 Joseph Grayzel Valvuloplasty device with satellite expansion means
US4796629A (en) * 1987-06-03 1989-01-10 Joseph Grayzel Stiffened dilation balloon catheter device
US4829990A (en) * 1987-06-25 1989-05-16 Thueroff Joachim Implantable hydraulic penile erector
US4851001A (en) * 1987-09-17 1989-07-25 Taheri Syde A Prosthetic valve for a blood vein and an associated method of implantation of the valve
US5266073A (en) 1987-12-08 1993-11-30 Wall W Henry Angioplasty stent
US5032128A (en) * 1988-07-07 1991-07-16 Medtronic, Inc. Heart valve prosthesis
DE8815082U1 (en) * 1988-11-29 1989-05-18 Biotronik Mess- Und Therapiegeraete Gmbh & Co Ingenieurbuero Berlin, 1000 Berlin, De
US4856516A (en) * 1989-01-09 1989-08-15 Cordis Corporation Endovascular stent apparatus and method
US4966604A (en) * 1989-01-23 1990-10-30 Interventional Technologies Inc. Expandable atherectomy cutter with flexibly bowed blades
US4994077A (en) * 1989-04-21 1991-02-19 Dobben Richard L Artificial heart valve for implantation in a blood vessel
US5609626A (en) * 1989-05-31 1997-03-11 Baxter International Inc. Stent devices and support/restrictor assemblies for use in conjunction with prosthetic vascular grafts
DE69016426T2 (en) * 1989-05-31 1995-08-17 Baxter Int BIOLOGICAL VALVE PROSTHESIS.
US5047041A (en) * 1989-08-22 1991-09-10 Samuels Peter B Surgical apparatus for the excision of vein valves in situ
US4986830A (en) * 1989-09-22 1991-01-22 Schneider (U.S.A.) Inc. Valvuloplasty catheter with balloon which remains stable during inflation
US5108370A (en) 1989-10-03 1992-04-28 Paul Walinsky Perfusion balloon catheter
US5089015A (en) * 1989-11-28 1992-02-18 Promedica International Method for implanting unstented xenografts and allografts
US5591185A (en) * 1989-12-14 1997-01-07 Corneal Contouring Development L.L.C. Method and apparatus for reprofiling or smoothing the anterior or stromal cornea by scraping
US5141494A (en) 1990-02-15 1992-08-25 Danforth Biomedical, Inc. Variable wire diameter angioplasty dilatation balloon catheter
US5037434A (en) * 1990-04-11 1991-08-06 Carbomedics, Inc. Bioprosthetic heart valve with elastic commissures
US5059177A (en) 1990-04-19 1991-10-22 Cordis Corporation Triple lumen balloon catheter
US5411552A (en) 1990-05-18 1995-05-02 Andersen; Henning R. Valve prothesis for implantation in the body and a catheter for implanting such valve prothesis
DK124690D0 (en) 1990-05-18 1990-05-18 Henning Rud Andersen FAT PROTECTION FOR IMPLEMENTATION IN THE BODY FOR REPLACEMENT OF NATURAL FLEET AND CATS FOR USE IN IMPLEMENTING A SUCH FAT PROTECTION
US5085635A (en) * 1990-05-18 1992-02-04 Cragg Andrew H Valved-tip angiographic catheter
US5152771A (en) * 1990-12-31 1992-10-06 The Board Of Supervisors Of Louisiana State University Valve cutter for arterial by-pass surgery
US5282847A (en) * 1991-02-28 1994-02-01 Medtronic, Inc. Prosthetic vascular grafts with a pleated structure
JPH05184611A (en) * 1991-03-19 1993-07-27 Kenji Kusuhara Valvular annulation retaining member and its attaching method
US5295958A (en) * 1991-04-04 1994-03-22 Shturman Cardiology Systems, Inc. Method and apparatus for in vivo heart valve decalcification
US5167628A (en) * 1991-05-02 1992-12-01 Boyles Paul W Aortic balloon catheter assembly for indirect infusion of the coronary arteries
US5397351A (en) * 1991-05-13 1995-03-14 Pavcnik; Dusan Prosthetic valve for percutaneous insertion
US5769812A (en) 1991-07-16 1998-06-23 Heartport, Inc. System for cardiac procedures
US5370685A (en) 1991-07-16 1994-12-06 Stanford Surgical Technologies, Inc. Endovascular aortic valve replacement
US5232446A (en) 1991-10-30 1993-08-03 Scimed Life Systems, Inc. Multi-sinus perfusion balloon dilatation catheter
US5192297A (en) 1991-12-31 1993-03-09 Medtronic, Inc. Apparatus and method for placement and implantation of a stent
US5756476A (en) * 1992-01-14 1998-05-26 The United States Of America As Represented By The Department Of Health And Human Services Inhibition of cell proliferation using antisense oligonucleotides
US5163953A (en) * 1992-02-10 1992-11-17 Vince Dennis J Toroidal artificial heart valve stent
US5683448A (en) 1992-02-21 1997-11-04 Boston Scientific Technology, Inc. Intraluminal stent and graft
US5332402A (en) * 1992-05-12 1994-07-26 Teitelbaum George P Percutaneously-inserted cardiac valve
DE4327825C2 (en) 1992-11-24 1996-10-02 Mannesmann Ag Throttle check element
GB9312666D0 (en) * 1993-06-18 1993-08-04 Vesely Ivan Bioprostetic heart valve
CA2125258C (en) 1993-08-05 1998-12-22 Dinah B Quiachon Multicapsule intraluminal grafting system and method
US5411522A (en) 1993-08-25 1995-05-02 Linvatec Corporation Unitary anchor for soft tissue fixation
US5545209A (en) * 1993-09-30 1996-08-13 Texas Petrodet, Inc. Controlled deployment of a medical device
US5480424A (en) * 1993-11-01 1996-01-02 Cox; James L. Heart valve replacement using flexible tubes
US6245040B1 (en) 1994-01-14 2001-06-12 Cordis Corporation Perfusion balloon brace and method of use
US5609627A (en) 1994-02-09 1997-03-11 Boston Scientific Technology, Inc. Method for delivering a bifurcated endoluminal prosthesis
US5728068A (en) * 1994-06-14 1998-03-17 Cordis Corporation Multi-purpose balloon catheter
US5554185A (en) * 1994-07-18 1996-09-10 Block; Peter C. Inflatable prosthetic cardiovascular valve for percutaneous transluminal implantation of same
US5599305A (en) 1994-10-24 1997-02-04 Cardiovascular Concepts, Inc. Large-diameter introducer sheath having hemostasis valve and removable steering mechanism
US5639274A (en) 1995-06-02 1997-06-17 Fischell; Robert E. Integrated catheter system for balloon angioplasty and stent delivery
US5571175A (en) * 1995-06-07 1996-11-05 St. Jude Medical, Inc. Suture guard for prosthetic heart valve
US5716417A (en) * 1995-06-07 1998-02-10 St. Jude Medical, Inc. Integral supporting structure for bioprosthetic heart valve
DE19532846A1 (en) 1995-09-06 1997-03-13 Georg Dr Berg Valve for use in heart
DE19546692C2 (en) 1995-12-14 2002-11-07 Hans-Reiner Figulla Self-expanding heart valve prosthesis for implantation in the human body via a catheter system
FR2742994B1 (en) 1995-12-28 1998-04-03 Sgro Jean-Claude INTRACORPOREAL LIGHT SURGICAL TREATMENT ASSEMBLY
US5855602A (en) * 1996-09-09 1999-01-05 Shelhigh, Inc. Heart valve prosthesis
US5716370A (en) 1996-02-23 1998-02-10 Williamson, Iv; Warren Means for replacing a heart valve in a minimally invasive manner
DE69719237T2 (en) * 1996-05-23 2003-11-27 Samsung Electronics Co Ltd Flexible, self-expandable stent and method for its manufacture
US5855601A (en) * 1996-06-21 1999-01-05 The Trustees Of Columbia University In The City Of New York Artificial heart valve and method and device for implanting the same
US6217585B1 (en) 1996-08-16 2001-04-17 Converge Medical, Inc. Mechanical stent and graft delivery system
US5968069A (en) 1996-08-23 1999-10-19 Scimed Life Systems, Inc. Stent delivery system having stent securement apparatus
US5968068A (en) 1996-09-12 1999-10-19 Baxter International Inc. Endovascular delivery system
US5749890A (en) * 1996-12-03 1998-05-12 Shaknovich; Alexander Method and system for stent placement in ostial lesions
NL1004827C2 (en) 1996-12-18 1998-06-19 Surgical Innovations Vof Device for regulating blood circulation.
EP0850607A1 (en) 1996-12-31 1998-07-01 Cordis Corporation Valve prosthesis for implantation in body channels
GB9701479D0 (en) 1997-01-24 1997-03-12 Aortech Europ Ltd Heart valve
US5957949A (en) * 1997-05-01 1999-09-28 World Medical Manufacturing Corp. Percutaneous placement valve stent
US6206917B1 (en) 1997-05-02 2001-03-27 St. Jude Medical, Inc. Differential treatment of prosthetic devices
US5855597A (en) * 1997-05-07 1999-01-05 Iowa-India Investments Co. Limited Stent valve and stent graft for percutaneous surgery
US6245102B1 (en) 1997-05-07 2001-06-12 Iowa-India Investments Company Ltd. Stent, stent graft and stent valve
US5984959A (en) 1997-09-19 1999-11-16 United States Surgical Heart valve replacement tools and procedures
US5925063A (en) 1997-09-26 1999-07-20 Khosravi; Farhad Coiled sheet valve, filter or occlusive device and methods of use
AU2011699A (en) 1997-12-29 1999-07-19 Ivan Vesely System for minimally invasive insertion of a bioprosthetic heart valve
US6530952B2 (en) 1997-12-29 2003-03-11 The Cleveland Clinic Foundation Bioprosthetic cardiovascular valve system
EP0935978A1 (en) 1998-02-16 1999-08-18 Medicorp S.A. Angioplasty and stent delivery catheter
US6174327B1 (en) 1998-02-27 2001-01-16 Scimed Life Systems, Inc. Stent deployment apparatus and method
EP0943300A1 (en) 1998-03-17 1999-09-22 Medicorp S.A. Reversible action endoprosthesis delivery device.
US5980570A (en) 1998-03-27 1999-11-09 Sulzer Carbomedics Inc. System and method for implanting an expandable medical device into a body
US6527979B2 (en) 1999-08-27 2003-03-04 Corazon Technologies, Inc. Catheter systems and methods for their use in the treatment of calcified vascular occlusions
US6334873B1 (en) 1998-09-28 2002-01-01 Autogenics Heart valve having tissue retention with anchors and an outer sheath
DE19857887B4 (en) 1998-12-15 2005-05-04 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Anchoring support for a heart valve prosthesis
FR2788217A1 (en) 1999-01-12 2000-07-13 Brice Letac PROSTHETIC VALVE IMPLANTABLE BY CATHETERISM, OR SURGICAL
US6350277B1 (en) 1999-01-15 2002-02-26 Scimed Life Systems, Inc. Stents with temporary retaining bands
US6425916B1 (en) 1999-02-10 2002-07-30 Michi E. Garrison Methods and devices for implanting cardiac valves
DE19907646A1 (en) 1999-02-23 2000-08-24 Georg Berg Valve for blood vessels uses flap holders and counterpart holders on stent to latch together in place and all channeled for guide wire.
US6210408B1 (en) 1999-02-24 2001-04-03 Scimed Life Systems, Inc. Guide wire system for RF recanalization of vascular blockages
US6231602B1 (en) 1999-04-16 2001-05-15 Edwards Lifesciences Corporation Aortic annuloplasty ring
EP1057460A1 (en) 1999-06-01 2000-12-06 Numed, Inc. Replacement valve assembly and method of implanting same
US6299637B1 (en) * 1999-08-20 2001-10-09 Samuel M. Shaolian Transluminally implantable venous valve
IT1307268B1 (en) 1999-09-30 2001-10-30 Sorin Biomedica Cardio Spa DEVICE FOR HEART VALVE REPAIR OR REPLACEMENT.
US6440164B1 (en) * 1999-10-21 2002-08-27 Scimed Life Systems, Inc. Implantable prosthetic valve
US7018406B2 (en) 1999-11-17 2006-03-28 Corevalve Sa Prosthetic valve for transluminal delivery
FR2815844B1 (en) 2000-10-31 2003-01-17 Jacques Seguin TUBULAR SUPPORT FOR THE PERCUTANEOUS POSITIONING OF A REPLACEMENT HEART VALVE
US20070043435A1 (en) * 1999-11-17 2007-02-22 Jacques Seguin Non-cylindrical prosthetic valve system for transluminal delivery
FR2800984B1 (en) 1999-11-17 2001-12-14 Jacques Seguin DEVICE FOR REPLACING A HEART VALVE PERCUTANEOUSLY
DE19955490A1 (en) 1999-11-18 2001-06-13 Thermamed Gmbh Medical heating device
US6458153B1 (en) 1999-12-31 2002-10-01 Abps Venture One, Ltd. Endoluminal cardiac and venous valve prostheses and methods of manufacture and delivery thereof
AU780931B2 (en) 2000-01-27 2005-04-28 3F Therapeutics, Inc. Prosthetic heart valve
DE60128069D1 (en) 2000-01-31 2007-06-06 Cook Biotech Inc STENT VALVE FLAP
DE10010073B4 (en) 2000-02-28 2005-12-22 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Anchoring for implantable heart valve prostheses
DE10010074B4 (en) 2000-02-28 2005-04-14 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Device for fastening and anchoring heart valve prostheses
US6454799B1 (en) * 2000-04-06 2002-09-24 Edwards Lifesciences Corporation Minimally-invasive heart valves and methods of use
US6869444B2 (en) 2000-05-22 2005-03-22 Shlomo Gabbay Low invasive implantable cardiac prosthesis and method for helping improve operation of a heart valve
US6419695B1 (en) 2000-05-22 2002-07-16 Shlomo Gabbay Cardiac prosthesis for helping improve operation of a heart valve
WO2002022054A1 (en) 2000-09-12 2002-03-21 Gabbay S Valvular prosthesis and method of using same
US7510572B2 (en) 2000-09-12 2009-03-31 Shlomo Gabbay Implantation system for delivery of a heart valve prosthesis
US6461382B1 (en) 2000-09-22 2002-10-08 Edwards Lifesciences Corporation Flexible heart valve having moveable commissures
DE10049815B4 (en) 2000-10-09 2005-10-13 Universitätsklinikum Freiburg Device for local ablation of an aortic valve on the human or animal heart
DE10049814B4 (en) 2000-10-09 2006-10-19 Universitätsklinikum Freiburg Device for supporting surgical procedures within a vessel, in particular for minimally invasive explantation and implantation of heart valves
DE10049812B4 (en) 2000-10-09 2004-06-03 Universitätsklinikum Freiburg Device for filtering out macroscopic particles from the bloodstream during local removal of an aortic valve on the human or animal heart
DE10049813C1 (en) 2000-10-09 2002-04-18 Universitaetsklinikum Freiburg Instrument for the local removal of built-up matter at an aortic valve, in a human or animal heart, is a hollow catheter with a cutting unit at the far end within a closure cap for minimum invasion
US6482228B1 (en) 2000-11-14 2002-11-19 Troy R. Norred Percutaneous aortic valve replacement
AU780015B2 (en) 2000-11-16 2005-02-24 Cordis Corporation A stent graft having an improved means for attaching a stent to a graft
EP1335683B1 (en) 2000-11-21 2005-08-10 Rex Medical, LP Percutaneous aortic valve
US6494909B2 (en) 2000-12-01 2002-12-17 Prodesco, Inc. Endovascular valve
WO2002047575A2 (en) 2000-12-15 2002-06-20 Angiomed Gmbh & Co. Medizintechnik Kg Stent with valve
US6468660B2 (en) 2000-12-29 2002-10-22 St. Jude Medical, Inc. Biocompatible adhesives
US8038708B2 (en) * 2001-02-05 2011-10-18 Cook Medical Technologies Llc Implantable device with remodelable material and covering material
US6488704B1 (en) * 2001-05-07 2002-12-03 Biomed Solutions, Llc Implantable particle measuring apparatus
US7374571B2 (en) 2001-03-23 2008-05-20 Edwards Lifesciences Corporation Rolled minimally-invasive heart valves and methods of manufacture
US6733525B2 (en) 2001-03-23 2004-05-11 Edwards Lifesciences Corporation Rolled minimally-invasive heart valves and methods of use
US7556646B2 (en) 2001-09-13 2009-07-07 Edwards Lifesciences Corporation Methods and apparatuses for deploying minimally-invasive heart valves
US6936067B2 (en) 2001-05-17 2005-08-30 St. Jude Medical Inc. Prosthetic heart valve with slit stent
US6893460B2 (en) * 2001-10-11 2005-05-17 Percutaneous Valve Technologies Inc. Implantable prosthetic valve
US6740105B2 (en) 2001-11-23 2004-05-25 Mind Guard Ltd. Expandable delivery appliance particularly for delivering intravascular devices
US7182779B2 (en) 2001-12-03 2007-02-27 Xtent, Inc. Apparatus and methods for positioning prostheses for deployment from a catheter
US7887573B2 (en) 2002-02-22 2011-02-15 Boston Scientific Scimed, Inc. Method and apparatus for deployment of an endoluminal device
US7141064B2 (en) 2002-05-08 2006-11-28 Edwards Lifesciences Corporation Compressed tissue for heart valve leaflets
US8348963B2 (en) 2002-07-03 2013-01-08 Hlt, Inc. Leaflet reinforcement for regurgitant valves
US6878162B2 (en) 2002-08-30 2005-04-12 Edwards Lifesciences Ag Helical stent having improved flexibility and expandability
US7137184B2 (en) 2002-09-20 2006-11-21 Edwards Lifesciences Corporation Continuous heart valve support frame and method of manufacture
US7381210B2 (en) 2003-03-14 2008-06-03 Edwards Lifesciences Corporation Mitral valve repair system and method for use
US7399315B2 (en) 2003-03-18 2008-07-15 Edwards Lifescience Corporation Minimally-invasive heart valve with cusp positioners
DE602004023708D1 (en) 2003-04-24 2009-12-03 Cook Inc ARTIFICIAL FLAP FLAP WITH IMPROVED FLOW BEHAVIOR
EP1635736A2 (en) 2003-06-05 2006-03-22 FlowMedica, Inc. Systems and methods for performing bi-lateral interventions or diagnosis in branched body lumens
JP4447011B2 (en) 2003-07-21 2010-04-07 ザ・トラスティーズ・オブ・ザ・ユニバーシティ・オブ・ペンシルバニア Percutaneous heart valve
US7160322B2 (en) 2003-08-13 2007-01-09 Shlomo Gabbay Implantable cardiac prosthesis for mitigating prolapse of a heart valve
US20050075725A1 (en) 2003-10-02 2005-04-07 Rowe Stanton J. Implantable prosthetic valve with non-laminar flow
US20060259137A1 (en) 2003-10-06 2006-11-16 Jason Artof Minimally invasive valve replacement system
US7381219B2 (en) * 2003-12-23 2008-06-03 Sadra Medical, Inc. Low profile heart valve and delivery system
US7988724B2 (en) 2003-12-23 2011-08-02 Sadra Medical, Inc. Systems and methods for delivering a medical implant
US7887574B2 (en) 2003-12-23 2011-02-15 Scimed Life Systems, Inc. Stent delivery catheter
US20050137694A1 (en) * 2003-12-23 2005-06-23 Haug Ulrich R. Methods and apparatus for endovascularly replacing a patient's heart valve
US7959666B2 (en) 2003-12-23 2011-06-14 Sadra Medical, Inc. Methods and apparatus for endovascularly replacing a heart valve
US8052749B2 (en) 2003-12-23 2011-11-08 Sadra Medical, Inc. Methods and apparatus for endovascular heart valve replacement comprising tissue grasping elements
US20050137686A1 (en) * 2003-12-23 2005-06-23 Sadra Medical, A Delaware Corporation Externally expandable heart valve anchor and method
CA2556077C (en) 2004-02-05 2012-05-01 Children's Medical Center Corporation Transcatheter delivery of a replacement heart valve
CA2813136A1 (en) 2004-02-27 2005-09-15 Aortx, Inc. Prosthetic heart valve delivery systems and methods
ITTO20040135A1 (en) 2004-03-03 2004-06-03 Sorin Biomedica Cardio Spa CARDIAC VALVE PROSTHESIS
EP1734903B2 (en) 2004-03-11 2022-01-19 Percutaneous Cardiovascular Solutions Pty Limited Percutaneous heart valve prosthesis
US20060004323A1 (en) 2004-04-21 2006-01-05 Exploramed Nc1, Inc. Apparatus and methods for dilating and modifying ostia of paranasal sinuses and other intranasal or paranasal structures
US20060025857A1 (en) 2004-04-23 2006-02-02 Bjarne Bergheim Implantable prosthetic valve
US20050288766A1 (en) 2004-06-28 2005-12-29 Xtent, Inc. Devices and methods for controlling expandable prostheses during deployment
US7276078B2 (en) 2004-06-30 2007-10-02 Edwards Lifesciences Pvt Paravalvular leak detection, sealing, and prevention
US7462191B2 (en) 2004-06-30 2008-12-09 Edwards Lifesciences Pvt, Inc. Device and method for assisting in the implantation of a prosthetic valve
US20060052867A1 (en) 2004-09-07 2006-03-09 Medtronic, Inc Replacement prosthetic heart valve, system and method of implant
JP2008513060A (en) 2004-09-14 2008-05-01 エドワーズ ライフサイエンシーズ アーゲー Device and method for treatment of heart valve regurgitation
CA2588140C (en) * 2004-11-19 2013-10-01 Medtronic Inc. Method and apparatus for treatment of cardiac valves
US7579381B2 (en) 2005-03-25 2009-08-25 Edwards Lifesciences Corporation Treatment of bioprosthetic tissues to mitigate post implantation calcification
US8062359B2 (en) 2005-04-06 2011-11-22 Edwards Lifesciences Corporation Highly flexible heart valve connecting band
US20060259135A1 (en) 2005-04-20 2006-11-16 The Cleveland Clinic Foundation Apparatus and method for replacing a cardiac valve
SE531468C2 (en) 2005-04-21 2009-04-14 Edwards Lifesciences Ag An apparatus for controlling blood flow
US7914569B2 (en) * 2005-05-13 2011-03-29 Medtronics Corevalve Llc Heart valve prosthesis and methods of manufacture and use
US7739971B2 (en) * 2005-06-07 2010-06-22 Edwards Lifesciences Corporation Systems and methods for assembling components of a fabric-covered prosthetic heart valve
US7780723B2 (en) 2005-06-13 2010-08-24 Edwards Lifesciences Corporation Heart valve delivery system
US20080058856A1 (en) 2005-06-28 2008-03-06 Venkatesh Ramaiah Non-occluding dilation device
JP2007011557A (en) 2005-06-29 2007-01-18 Nissan Motor Co Ltd Traffic jam detection system, onboard information terminal, information center, and method for detecting traffic jam
US8790396B2 (en) 2005-07-27 2014-07-29 Medtronic 3F Therapeutics, Inc. Methods and systems for cardiac valve delivery
US8167932B2 (en) 2005-10-18 2012-05-01 Edwards Lifesciences Corporation Heart valve delivery system with valve catheter
US8778017B2 (en) 2005-10-26 2014-07-15 Cardiosolutions, Inc. Safety for mitral valve implant
US7785366B2 (en) 2005-10-26 2010-08-31 Maurer Christopher W Mitral spacer
US8449606B2 (en) 2005-10-26 2013-05-28 Cardiosolutions, Inc. Balloon mitral spacer
US8764820B2 (en) 2005-11-16 2014-07-01 Edwards Lifesciences Corporation Transapical heart valve delivery system and method
US8147541B2 (en) 2006-02-27 2012-04-03 Aortx, Inc. Methods and devices for delivery of prosthetic heart valves and other prosthetics
US8932348B2 (en) 2006-05-18 2015-01-13 Edwards Lifesciences Corporation Device and method for improving heart valve function
CA3106148A1 (en) 2006-09-08 2008-03-13 Edwards Lifesciences Corporation Delivery apparatus for prosthetic heart valve
US8348995B2 (en) 2006-09-19 2013-01-08 Medtronic Ventor Technologies, Ltd. Axial-force fixation member for valve
US8029556B2 (en) 2006-10-04 2011-10-04 Edwards Lifesciences Corporation Method and apparatus for reshaping a ventricle
CA2666485C (en) 2006-10-27 2015-10-06 Edwards Lifesciences Corporation Biological tissue for surgical implantation
US8052732B2 (en) 2006-11-14 2011-11-08 Medtronic Vascular, Inc. Delivery system for stent-graft with anchoring pins
US8236045B2 (en) 2006-12-22 2012-08-07 Edwards Lifesciences Corporation Implantable prosthetic valve assembly and method of making the same
EP2111190B1 (en) 2007-01-19 2013-10-09 Medtronic, Inc. Stented heart valve devices for atrioventricular valve replacement
US20080294247A1 (en) 2007-05-25 2008-11-27 Medical Entrepreneurs Ii, Inc. Prosthetic Heart Valve
US9572660B2 (en) 2007-06-04 2017-02-21 St. Jude Medical, Inc. Prosthetic heart valves
ES2384199T3 (en) 2007-08-24 2012-07-02 St. Jude Medical, Inc. Prosthetic aortic heart valves
DE102007043830A1 (en) 2007-09-13 2009-04-02 Lozonschi, Lucian, Madison Heart valve stent
EP2628464B1 (en) 2007-12-14 2020-02-12 Edwards Lifesciences Corporation Prosthetic valve
US8357387B2 (en) 2007-12-21 2013-01-22 Edwards Lifesciences Corporation Capping bioprosthetic tissue to reduce calcification
US20090171456A1 (en) 2007-12-28 2009-07-02 Kveen Graig L Percutaneous heart valve, system, and method
EP3744291B1 (en) 2008-01-24 2022-11-23 Medtronic, Inc. Stents for prosthetic heart valves
US8313525B2 (en) 2008-03-18 2012-11-20 Medtronic Ventor Technologies, Ltd. Valve suturing and implantation procedures
JP2009252172A (en) 2008-04-10 2009-10-29 Fujitsu Component Ltd Remote operation system
US20090276040A1 (en) 2008-05-01 2009-11-05 Edwards Lifesciences Corporation Device and method for replacing mitral valve
US9061119B2 (en) 2008-05-09 2015-06-23 Edwards Lifesciences Corporation Low profile delivery system for transcatheter heart valve
EP3476367B1 (en) 2008-06-06 2019-12-25 Edwards Lifesciences Corporation Low profile transcatheter heart valve
US8323335B2 (en) 2008-06-20 2012-12-04 Edwards Lifesciences Corporation Retaining mechanisms for prosthetic valves and methods for using
ES2584315T3 (en) 2008-07-15 2016-09-27 St. Jude Medical, Inc. Collapsible and re-expandable prosthetic heart valve sleeve designs and complementary technological applications
US8652202B2 (en) 2008-08-22 2014-02-18 Edwards Lifesciences Corporation Prosthetic heart valve and delivery apparatus
US20100262233A1 (en) 2009-04-12 2010-10-14 Texas Tech University System Mitral Valve Coaptation Plate For Mitral Valve Regurgitation
AU2010236288A1 (en) 2009-04-15 2011-10-20 Cardiaq Valve Technologies, Inc. Vascular implant and delivery system
US8439970B2 (en) 2009-07-14 2013-05-14 Edwards Lifesciences Corporation Transapical delivery system for heart valves
PT3593762T (en) 2010-10-05 2021-01-27 Edwards Lifesciences Corp Prosthetic heart valve
US8888843B2 (en) 2011-01-28 2014-11-18 Middle Peak Medical, Inc. Device, system, and method for transcatheter treatment of valve regurgitation

Also Published As

Publication number Publication date
EP2124824B1 (en) 2012-10-31
US8236045B2 (en) 2012-08-07
CA2674193A1 (en) 2008-07-03
US9114008B2 (en) 2015-08-25
WO2008079962A1 (en) 2008-07-03
US20120303113A1 (en) 2012-11-29
EP2124824A1 (en) 2009-12-02
US20140128968A1 (en) 2014-05-08
US8628569B2 (en) 2014-01-14
US20080154355A1 (en) 2008-06-26

Similar Documents

Publication Publication Date Title
CA2674193C (en) Implantable prosthetic valve assembly and method for making the same
US11813162B2 (en) Sealing structures for paravalvular leak protection
US11219521B2 (en) Self-actuating sealing portions for paravalvular leak protection
US20230090160A1 (en) Mitral Heart Valve Replacement
JP6600028B2 (en) Transcatheter valve replacement
US20170281345A1 (en) Method for treating an aortic valve
US7331991B2 (en) Implantable small percutaneous valve and methods of delivery
EP2720641B1 (en) Prosthetic heart valve with multi-layer stent
JP5687070B2 (en) Stent for prosthetic heart valve
US20160367362A1 (en) Delivery Systems and Methods of Implantation for Replacement Prosthetic Heart Valve
CN114767338A (en) Sealing member for prosthetic heart valve
US20150209141A1 (en) Stationary intra-annular halo designs for paravalvular leak (pvl) reduction-passive channel filling cuff designs
US20080275550A1 (en) Implantable small percutaneous valve and methods of delivery
WO2016154172A2 (en) Mitral heart valve replacement
WO2024023627A1 (en) Valve prosthesis having a gradual release for improved positioning
CN115486969A (en) Hybrid frame for prosthetic heart valve

Legal Events

Date Code Title Description
EEER Examination request