CA2676186A1 - Method and system for producing a hydrogen enriched fuel using microwave assisted methane plasma decomposition on catalyst - Google Patents

Method and system for producing a hydrogen enriched fuel using microwave assisted methane plasma decomposition on catalyst Download PDF

Info

Publication number
CA2676186A1
CA2676186A1 CA002676186A CA2676186A CA2676186A1 CA 2676186 A1 CA2676186 A1 CA 2676186A1 CA 002676186 A CA002676186 A CA 002676186A CA 2676186 A CA2676186 A CA 2676186A CA 2676186 A1 CA2676186 A1 CA 2676186A1
Authority
CA
Canada
Prior art keywords
methane
catalyst
hydrogen
gas
product gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CA002676186A
Other languages
French (fr)
Other versions
CA2676186C (en
Inventor
Zhonghua John Zhu
Jiuling Chen
Gaoqing Max Lu
Gregory Solomon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eden Energy Ltd
Eden Innovations Ltd
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CA2676186A1 publication Critical patent/CA2676186A1/en
Application granted granted Critical
Publication of CA2676186C publication Critical patent/CA2676186C/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/22Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds
    • C01B3/24Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds of hydrocarbons
    • C01B3/26Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds of hydrocarbons using catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/087Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J19/088Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/122Incoherent waves
    • B01J19/126Microwaves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/501Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by diffusion
    • C01B3/503Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by diffusion characterised by the membrane
    • C01B3/505Membranes containing palladium
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/127Carbon filaments; Apparatus specially adapted for the manufacture thereof by thermal decomposition of hydrocarbon gases or vapours or other carbon-containing compounds in the form of gas or vapour, e.g. carbon monoxide, alcohols
    • D01F9/1271Alkanes or cycloalkanes
    • D01F9/1272Methane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0869Feeding or evacuating the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0873Materials to be treated
    • B01J2219/0875Gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0873Materials to be treated
    • B01J2219/0892Materials to be treated involving catalytically active material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/78Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • B01J37/18Reducing with gases containing free hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/349Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of flames, plasmas or lasers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0266Processes for making hydrogen or synthesis gas containing a decomposition step
    • C01B2203/0277Processes for making hydrogen or synthesis gas containing a decomposition step containing a catalytic decomposition step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0405Purification by membrane separation
    • C01B2203/041In-situ membrane purification during hydrogen production
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/048Composition of the impurity the impurity being an organic compound
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0855Methods of heating the process for making hydrogen or synthesis gas by electromagnetic heating
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0861Methods of heating the process for making hydrogen or synthesis gas by plasma
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • C01B2203/1058Nickel catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1076Copper or zinc-based catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1241Natural gas or methane
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/16Controlling the process
    • C01B2203/1642Controlling the product
    • C01B2203/1671Controlling the composition of the product
    • C01B2203/1676Measuring the composition of the product
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/16Controlling the process
    • C01B2203/169Controlling the feed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Abstract

A method for producing a hydrogen enriched fuel includes the steps of providing a flow of methane gas at a selected flow rate, providing a catalyst (56), producing a methane plasma at a negative pressure using microwave irradiation at a selected microwave power, directing the methane plasma over the catalyst (56), and controlling the flow of methane gas and the microwave power to produce a product gas having a selected composition. A system (10) for producing a hydrogen enriched fuel includes a methane gas source (16), a reactor (12) having a reaction chamber (22) containing a catalyst (56), a microwave power source (14) configured to form a methane plasma, and a vacuum pump (78) configured to maintain the reaction chamber (22) at a negative pressure.

Claims (32)

1. A method for producing a hydrogen enriched fuel comprising:
providing a flow of methane gas at a selected flow rate;
providing a catalyst;
irradiating the methane gas under a negative pressure using microwave irradiation at a selected microwave power to form a methane plasma;
directing the methane plasma over the catalyst; and controlling the flow of methane gas and the microwave power to produce a product gas having a selected composition.
2. The method of claim 1 wherein the product gas comprises from about 10%
to 30% hydrogen by volume, and from about 70% to 90% methane by volume.
3. The method of claim 1 wherein the catalyst comprises Ni or a Ni alloy prepared by coprecipitation with high activity and stability.
4. The method of claim 1 wherein the negative pressure is from about 20 mmHg to 200 mmHg and the microwave power is from about 70 W to 140 W.
5. The method of claim 1 further comprising pretreating the catalyst with a hydrogen gas prior to the directing step.
6. The method of claim 1 wherein the directing step is performed in a tube reactor made of a microwave transparent material.
7. The method of claim 1 wherein the directing step is performed with the catalyst placed on a microwave transparent holder configured to allow the methane plasma to pass through the catalyst.
8. The method of claim 1 wherein the methane gas comprises pure methane or natural gas.
9. A method for producing a hydrogen enriched fuel comprising:
forming a methane plasma using microwave irradiation of a methane gas under a negative pressure and at a selected microwave power;
directing the methane plasma over a catalyst; and controlling a flow of the methane plasma and the microwave power to produce a product gas comprising methane and hydrogen in selected volume percentages, and to remove solid carbon from the product gas in the form of solid fibrous carbon.
10. The method of claim 9 wherein the controlling step is performed to produce the product gas with about 10% to 30% hydrogen by volume.
11. The method of claim 9 wherein the controlling step is performed to produce the product gas with from about 70% to 90% methane by volume.
12. The method of claim 9 further comprising processing the product gas to recover substantially pure hydrogen.
13. The method of claim 9 wherein further comprising flowing the product gas under a vacuum pressure through a Pd/Ag membrane to recover substantially pure hydrogen.
14. The method of claim 9 wherein the microwave power is less than 120 W
and the product gas comprises 2% to 3% of C2H2, and negligible amounts of C2H4, C3H6, C3H8 and C3H4.
15. The method of claim 9 wherein the negative pressure is from about 20 mmHg to about 200 mmHg, and the microwave power is from about 70 W to 160 W.
16. The method of claim 9 wherein the catalyst comprises a metal selected from the group consisting of Ni100, Ni81A1, Ni93A1, Ni77Cu16A1, Ni54Cu27A1 and Ni83Mg6A1.
17. A method for producing a hydrogen enriched fuel comprising:

providing a tube reactor having microwave transparent walls in flow communication with a methane source configured to provide a flow of methane through the tube reactor;
irradiating the methane using microwave irradiation at a selected microwave power to produce a flow of methane plasma;
placing a catalyst in the tube reactor in the flow of methane plasma; and forming a product gas by converting a selected volume percentage of the methane to hydrogen by reaction of the methane plasma in contact with the catalyst, the product gas comprising about 10-30% hydrogen, about 70-90% methane.
18. The method of claim 17 further comprising pretreating the catalyst with hydrogen prior to the placing step.
19. The method of claim 17 wherein the forming the product gas step removes solid fibrous carbon from the product gas as a useful by-product.
20. The method of claim 17 wherein the methane plasma comprises CH4, CH3, CH2, CH, C2H2, C2H4, C2H6, H2 and (e-).
21. The method of claim 17 wherein the forming the product gas step includes a reaction on the surface of the catalyst of CH3, CH2 , CH_, or H_, with CH4, C2H2, or C2H4 and C2H6, to produce solid fibrous carbon and hydrogen.
22. The method of claim 17 wherein the microwave power is less than 120 W
and the product gas comprises 2% to 3% of C2H2, and negligible amounts of C2H4, C3H6, C3H8 and C3H4.
23. The method of claim 17 further comprising flowing the product gas under a vacuum pressure through a Pd/Ag membrane to recover substantially pure hydrogen.
24. A system for producing a hydrogen enriched fuel comprising:
a methane gas source configured to provide a methane gas flow;

a reactor having a reaction chamber with microwave transparent walls in flow communication with the methane gas source and with a vacuum pump;
a microwave power source configured to form a methane plasma in the reaction chamber at a negative pressure; and a catalyst in the reaction chamber configured to contact the methane plasma and to initiate a reaction in which a product gas has a selected volumetric percentage of hydrogen and methane.
25. The system of claim 24 wherein the reactor includes a microwave transparent holder configured to hold the catalyst in contact with the methane plasma.
26. The system of claim 24 wherein the reactor comprises a tube reactor.
27. The system of claim 24 further comprising a hydrogen source in flow communication with the reactor configured to provide a flow of hydrogen gas for pretreating the catalyst.
28. The system of claim 24 further comprising an inert gas source in flow communication with the reactor configured to provide a flow of inert gas for purging the reaction chamber.
29. The system of claim 24 wherein the catalyst comprises Ni or a Ni alloy prepared by coprecipitation with high activity and stability.
30. The system of claim 24 wherein the product gas comprises about 10% to 30% hydrogen by volume, and from about 70% to 90% methane by volume.
31. The system of claim 24 further comprising an infrared sensor configured to measure a temperature of the methane plasma.
32. The system of claim 24 further comprising a gas chromatograph configured to analyze a chemical composition of the product gas.
CA2676186A 2007-01-25 2008-01-13 Method and system for producing a hydrogen enriched fuel using microwave assisted methane plasma decomposition on catalyst Active CA2676186C (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11/657,299 US8021448B2 (en) 2007-01-25 2007-01-25 Method and system for producing a hydrogen enriched fuel using microwave assisted methane plasma decomposition on catalyst
US11/657,299 2007-01-25
PCT/IB2008/000508 WO2008090466A2 (en) 2007-01-25 2008-01-13 Method and system for producing a hydrogen enriched fuel using microwave assisted methane plasma decomposition on catalyst

Publications (2)

Publication Number Publication Date
CA2676186A1 true CA2676186A1 (en) 2008-07-31
CA2676186C CA2676186C (en) 2012-11-13

Family

ID=39523611

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2676186A Active CA2676186C (en) 2007-01-25 2008-01-13 Method and system for producing a hydrogen enriched fuel using microwave assisted methane plasma decomposition on catalyst

Country Status (14)

Country Link
US (1) US8021448B2 (en)
EP (1) EP2106385B1 (en)
JP (1) JP2010516609A (en)
KR (1) KR20090118940A (en)
CN (1) CN101679026A (en)
AU (1) AU2008208613B2 (en)
BR (1) BRPI0806409A2 (en)
CA (1) CA2676186C (en)
MX (1) MX2009007795A (en)
MY (1) MY147169A (en)
NZ (1) NZ578552A (en)
RU (1) RU2427527C2 (en)
WO (1) WO2008090466A2 (en)
ZA (1) ZA200905725B (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8092778B2 (en) * 2007-01-24 2012-01-10 Eden Energy Ltd. Method for producing a hydrogen enriched fuel and carbon nanotubes using microwave assisted methane decomposition on catalyst
US8075869B2 (en) * 2007-01-24 2011-12-13 Eden Energy Ltd. Method and system for producing a hydrogen enriched fuel using microwave assisted methane decomposition on catalyst
US8021448B2 (en) 2007-01-25 2011-09-20 Eden Energy Ltd. Method and system for producing a hydrogen enriched fuel using microwave assisted methane plasma decomposition on catalyst
US20090205254A1 (en) * 2008-02-14 2009-08-20 Zhonghua John Zhu Method And System For Converting A Methane Gas To A Liquid Fuel
JP5489004B2 (en) 2011-03-11 2014-05-14 株式会社日本製鋼所 Method and system for producing synthesis gas and nanocarbon
US8733543B2 (en) * 2011-05-12 2014-05-27 Pro-Cyl, Llc Environmentally friendly fuel gas within a refillable and non-corrosive gas cylinder
GB2531233A (en) * 2014-02-27 2016-04-20 C Tech Innovation Ltd Plasma enhanced catalytic conversion method and apparatus
US20160096161A1 (en) * 2014-10-03 2016-04-07 William Curtis Conner, JR. Method of conversion of alkanes to alkylenes and device for accomplishing the same
CN108037236B (en) * 2017-11-21 2023-03-03 中国科学院西北生态环境资源研究院 Experimental device for collecting quantitative analysis gas of methane conversion rate in torch discharge
CN108722327A (en) * 2018-04-19 2018-11-02 山东科技大学 A kind of biomass membrane type micro-wave reactor and its experimental provision and method applied to methane reforming
CN108745362B (en) * 2018-06-26 2021-11-26 山东科技大学 Preparation method and application of microwave discharge metal catalyst coated by characteristic carbon film
EP3960700A4 (en) * 2019-04-23 2022-04-20 Mitsubishi Electric Corporation Gas production system and gas production method
CN114502505A (en) * 2019-07-23 2022-05-13 牛津大学创新有限公司 Method
CN112619565A (en) * 2019-10-09 2021-04-09 中国科学院大连化学物理研究所 Device and method for directly preparing low-carbon hydrocarbons from methane/natural gas by low-temperature plasma combined with catalyst
RU2755267C1 (en) * 2020-04-28 2021-09-14 Общество с ограниченной ответственностью "Газпром трансгаз Томск" (ООО "Газпром трансгаз Томск") Apparatus for producing methane-hydrogen fuel from hydrocarbon gas
CN113772628A (en) * 2021-08-13 2021-12-10 中国石油大学(北京) Method for preparing hydrogen by utilizing methane
WO2023242335A2 (en) 2022-06-16 2023-12-21 Fundación Centro De Investigación Cooperativa De Energías Alternativas Cic Energigune Fundazioa Catalytic system containing ionic liquids and a process for producing hydrogen from plastic materials using said catalytic system

Family Cites Families (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4435376A (en) * 1982-03-26 1984-03-06 Phillips Petroleum Company Fibrous carbon production
US4574038A (en) * 1985-08-01 1986-03-04 Alberta Oil Sands Technology And Research Authority Microwave induced catalytic conversion of methane to ethylene and hydrogen
US5131993A (en) * 1988-12-23 1992-07-21 The Univeristy Of Connecticut Low power density plasma excitation microwave energy induced chemical reactions
US5015349A (en) * 1988-12-23 1991-05-14 University Of Connecticut Low power density microwave discharge plasma excitation energy induced chemical reactions
US5277773A (en) 1989-12-27 1994-01-11 Exxon Research & Engineering Co. Conversion of hydrocarbons using microwave radiation
US5205912A (en) * 1989-12-27 1993-04-27 Exxon Research & Engineering Company Conversion of methane using pulsed microwave radiation
US5205915A (en) * 1989-12-27 1993-04-27 Exxon Research & Engineering Company Conversion of methane using continuous microwave radiation (OP-3690)
EP0435591A3 (en) 1989-12-27 1991-11-06 Exxon Research And Engineering Company Conversion of methane using microwave radiation
CA2031959A1 (en) 1989-12-27 1991-06-28 William J. Murphy Conversion of methane using microwave radiation
CA2039422A1 (en) * 1990-04-16 1991-10-17 William J. Murphy Regenerating a plasma initiator using molecular hydrogen
US5266175A (en) 1990-07-31 1993-11-30 Exxon Research & Engineering Company Conversion of methane, carbon dioxide and water using microwave radiation
CA2084196A1 (en) 1990-07-31 1992-02-01 Exxon Research And Engineering Company Conversion of methane and carbon dioxide using microwave radiation
US5139002A (en) * 1990-10-30 1992-08-18 Hydrogen Consultants, Inc. Special purpose blends of hydrogen and natural gas
IT1254304B (en) * 1992-02-07 1995-09-14 Enea CATALYTIC CERAMIC MEMBRANE REACTOR FOR THE SEPARATION OF HYDROGEN AND / OR ITS ISOTOPES FROM FLUID CURRENTS.
US5372617A (en) * 1993-05-28 1994-12-13 The Charles Stark Draper Laboratory, Inc. Hydrogen generation by hydrolysis of hydrides for undersea vehicle fuel cell energy systems
EP0634211A1 (en) * 1993-07-16 1995-01-18 Texaco Development Corporation Oxidative coupling of methane on manganese oxide octahedral molecular sieve catalyst
US5525322A (en) * 1994-10-12 1996-06-11 The Regents Of The University Of California Method for simultaneous recovery of hydrogen from water and from hydrocarbons
US5516967A (en) * 1995-01-30 1996-05-14 Chemisar Laboratories Inc. Direct conversion of methane to hythane
AU2221599A (en) * 1998-01-06 1999-07-26 Stephen A. Birdsell Apparatus and method for simultaneous recovery of hydrogen from water and from hydrocarbons
JPH11278802A (en) * 1998-03-31 1999-10-12 Fujitsu Ltd Production of gaseous hydrogen and fuel cell
JPH11322638A (en) * 1998-05-12 1999-11-24 Tatsuaki Yamaguchi Production of 2c hydrocarbon, carbon monoxide and/or hydrogen
US5972175A (en) 1998-07-24 1999-10-26 Governors Of The University Of Alberta Catalytic microwave conversion of gaseous hydrocarbons
US6602920B2 (en) * 1998-11-25 2003-08-05 The Texas A&M University System Method for converting natural gas to liquid hydrocarbons
US6333016B1 (en) * 1999-06-02 2001-12-25 The Board Of Regents Of The University Of Oklahoma Method of producing carbon nanotubes
US6746508B1 (en) * 1999-10-22 2004-06-08 Chrysalis Technologies Incorporated Nanosized intermetallic powders
AU2001258109A1 (en) 2000-05-11 2001-11-20 Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of National Defence Process for preparing carbon nanotubes
JP3654820B2 (en) * 2000-06-20 2005-06-02 大日本塗料株式会社 Resin composition for water-based paint
US6509000B1 (en) * 2000-08-31 2003-01-21 Council Of Scientific And Industrial Research Low temperature process for the production of hydrogen
KR100382879B1 (en) * 2000-09-22 2003-05-09 일진나노텍 주식회사 Method of synthesizing carbon nanotubes and apparatus being used therein.
JP4721525B2 (en) * 2001-01-19 2011-07-13 東京瓦斯株式会社 City gas supply method and apparatus
JP2002226873A (en) 2001-01-29 2002-08-14 Takeshi Hatanaka Method and plant for producing liquid fuel oil
US6592723B2 (en) * 2001-01-31 2003-07-15 Chang Yul Cha Process for efficient microwave hydrogen production
JP2002338203A (en) * 2001-05-22 2002-11-27 National Institute Of Advanced Industrial & Technology Method for generating hydrogen by low temperature plasma
FR2827591B1 (en) 2001-07-17 2004-09-10 Cie D Etudes Des Technologies PROCESS AND DEVICE FOR PRODUCING A HYDROGEN-RICH GAS BY THERMAL HYDROCARBON PYROLYSIS
US6875417B1 (en) * 2001-10-24 2005-04-05 University Of Kentucky Research Foundation Catalytic conversion of hydrocarbons to hydrogen and high-value carbon
US6752389B2 (en) * 2001-10-30 2004-06-22 Lord Corporation Mount having integrated damper and load carrying spring
SG126710A1 (en) * 2001-10-31 2006-11-29 Univ Singapore Carbon nanotubes fabrication and hydrogen production
JP2003212502A (en) * 2002-01-21 2003-07-30 Daido Steel Co Ltd Method and apparatus for producing hydrogen
US7011768B2 (en) * 2002-07-10 2006-03-14 Fuelsell Technologies, Inc. Methods for hydrogen storage using doped alanate compositions
KR20050053595A (en) * 2002-07-23 2005-06-08 이프라스 게엠베하 Plasma reactor for carrying out gas reactions and method for the plasma-supported reaction of gases
US6998103B1 (en) * 2002-11-15 2006-02-14 The Regents Of The University Of California Method for producing carbon nanotubes
US7094679B1 (en) * 2003-03-11 2006-08-22 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Carbon nanotube interconnect
JP2004315305A (en) * 2003-04-17 2004-11-11 Toyota Motor Corp Hydrogen gas generation equipment
JP2004324004A (en) 2003-04-23 2004-11-18 Kansai Electric Power Co Inc:The Carbon fiber and method for producing the same
ES2307014T5 (en) 2003-05-16 2012-02-17 Johnson & Johnson Gmbh CLEAR EMULSIONS OF WATER OIL.
US7001586B2 (en) * 2003-09-23 2006-02-21 Catalytic Materials, Llc CO-free hydrogen from decomposition of methane
US7183451B2 (en) * 2003-09-23 2007-02-27 Synfuels International, Inc. Process for the conversion of natural gas to hydrocarbon liquids
WO2005063615A1 (en) 2003-12-29 2005-07-14 Council Of Scientific & Industrial Research Process for continuous production of carbon monoxide-free hydrogen from methane-rich hydrocarbons
WO2006135378A2 (en) 2004-07-27 2006-12-21 University Of North Texas Method and apparatus for hydrogen production from greenhouse gas saturated carbon nanotubes and synthesis of carbon nanostructures therefrom
ATE458146T1 (en) * 2004-12-20 2010-03-15 Peroni Pompe S P A PUMP WITH A DEVICE FOR TIGHTENING THE STUFFING BOX NUT
US20060130400A1 (en) 2004-12-21 2006-06-22 World Hydrogen, Inc. Device and method for producing hydrogen without the formation of carbon dioxide
US20080115660A1 (en) * 2004-12-30 2008-05-22 Edward Hensel Remotely Controlled Marker For Hunting Games
KR100664545B1 (en) 2005-03-08 2007-01-03 (주)씨엔티 Carbon nano tubes mass fabrication device and mass fabrication method
CN100376477C (en) * 2005-03-18 2008-03-26 清华大学 Growth appts. of carson nanotube array and growth method of multi-wall carbon nanotube array
CN100376478C (en) * 2005-04-22 2008-03-26 清华大学 Apparatus for preparing carbon nano tube array structure
KR100810620B1 (en) 2005-05-17 2008-03-06 한국기초과학지원연구원 Method for producing hydrogen gas by microwave plasma discharge
JP5343297B2 (en) 2005-06-23 2013-11-13 株式会社豊田中央研究所 Catalytic reactor, catalyst heating method, and fuel reforming method
EP1797950A1 (en) 2005-12-14 2007-06-20 Nanocyl S.A. Catalyst for a multi-walled carbon nanotube production process
CN1935637B (en) * 2005-09-23 2010-05-05 清华大学 Method for preparing carbon nano tube
US7601294B2 (en) * 2006-05-02 2009-10-13 Babcock & Wilcox Technical Services Y-12, Llc High volume production of nanostructured materials
US20070277438A1 (en) 2006-05-30 2007-12-06 Brehon Energy Plc System and method for producing a hydrogen enriched fuel
US20090035619A1 (en) 2006-10-20 2009-02-05 Charles Terrel Adams Methods and systems of producing molecular hydrogen using a plasma system in combination with an electrical swing adsorption separation system
US8092778B2 (en) 2007-01-24 2012-01-10 Eden Energy Ltd. Method for producing a hydrogen enriched fuel and carbon nanotubes using microwave assisted methane decomposition on catalyst
US8075869B2 (en) 2007-01-24 2011-12-13 Eden Energy Ltd. Method and system for producing a hydrogen enriched fuel using microwave assisted methane decomposition on catalyst
US8021448B2 (en) 2007-01-25 2011-09-20 Eden Energy Ltd. Method and system for producing a hydrogen enriched fuel using microwave assisted methane plasma decomposition on catalyst
US20090205254A1 (en) 2008-02-14 2009-08-20 Zhonghua John Zhu Method And System For Converting A Methane Gas To A Liquid Fuel

Also Published As

Publication number Publication date
ZA200905725B (en) 2010-04-28
RU2009128364A (en) 2011-02-27
JP2010516609A (en) 2010-05-20
WO2008090466A8 (en) 2009-07-23
EP2106385B1 (en) 2020-07-08
KR20090118940A (en) 2009-11-18
US8021448B2 (en) 2011-09-20
AU2008208613A1 (en) 2008-07-31
MY147169A (en) 2012-11-14
WO2008090466A3 (en) 2008-09-12
CN101679026A (en) 2010-03-24
WO2008090466A2 (en) 2008-07-31
EP2106385A2 (en) 2009-10-07
CA2676186C (en) 2012-11-13
MX2009007795A (en) 2009-10-12
BRPI0806409A2 (en) 2011-09-06
NZ578552A (en) 2011-05-27
US20080181845A1 (en) 2008-07-31
AU2008208613B2 (en) 2013-04-11
RU2427527C2 (en) 2011-08-27

Similar Documents

Publication Publication Date Title
CA2676186A1 (en) Method and system for producing a hydrogen enriched fuel using microwave assisted methane plasma decomposition on catalyst
RU2009128365A (en) METHOD AND INSTALLATION FOR PRODUCING HYDROGEN-RICHED FUEL BY MEANS OF DECOMPOSITION OF METHANE ON THE CATALYST WITH MICROWAVE EXPOSURE
Gryaznov Metal containing membranes for the production of ultrapure hydrogen and the recovery of hydrogen isotopes
CN100420517C (en) Reduction method for copper-radic catalyst for reforming methanol vapour to produce hydrogen
EP3034155A1 (en) Hydrogen separation membrane and selectively permeable membrane reactor
KR101893723B1 (en) Solar fuel cell
Otsuka et al. Production of hydrogen from gasoline range alkanes with reduced CO2 emission
Hao et al. Elevated temperature pressure swing adsorption using LaNi4. 3Al0. 7 for efficient hydrogen separation
KR101368569B1 (en) The preparing method of nickel catalyst using Atomic Layer Deposition
Betteridge et al. The separation of hydrogen from gas mixtures
Katayama et al. Demonstration of tritium extraction from tritiated methane in helium by utilizing plasma decomposition
AU2012354917B2 (en) CO shift conversion device and shift conversion method
US9314757B2 (en) Method and a device for generating a carburizing gas mixture
Chaiya et al. Use of non-thermal microwave plasma for syngas production from dry reforming of compressed biomethane
Feng et al. Effect of surface oxidation on the surface condition and deuterium permeability of a palladium membrane
Qin et al. Hydrogenation of CO over carbides of tungsten
RU2021139081A (en) METHOD FOR OBTAINING GRAPHENE
JP2012153561A (en) Hydrogen production-separation integrated type functional thin film, and method of manufacturing the same
Mihalcea et al. Pulse radiolysis of liquids at high pressures. IV. Hydrogen--atom reactions in aqueous 0.1 M HClO $ sub 4$ solutions
Frusteri et al. Lab-scale production of grid-grade biomethane via supercritical water gasification of biowastes and sequential gas phase conversion according to a catalytic tandem approach
Eckle et al. Carriers Selective Methanation of CO in CO2–rich feed Gases on Supported Ru Catalysts
TH62897A (en) Process of gas recovery

Legal Events

Date Code Title Description
EEER Examination request