CA2700147A1 - Crystalline chromium alloy deposit - Google Patents

Crystalline chromium alloy deposit Download PDF

Info

Publication number
CA2700147A1
CA2700147A1 CA2700147A CA2700147A CA2700147A1 CA 2700147 A1 CA2700147 A1 CA 2700147A1 CA 2700147 A CA2700147 A CA 2700147A CA 2700147 A CA2700147 A CA 2700147A CA 2700147 A1 CA2700147 A1 CA 2700147A1
Authority
CA
Canada
Prior art keywords
chromium
deposit
crystalline
bath
tem
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CA2700147A
Other languages
French (fr)
Other versions
CA2700147C (en
Inventor
Agnes Rousseau
Craig V. Bishop
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Atotech Deutschland GmbH and Co KG
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CA2700147A1 publication Critical patent/CA2700147A1/en
Application granted granted Critical
Publication of CA2700147C publication Critical patent/CA2700147C/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/04Electroplating: Baths therefor from solutions of chromium
    • C25D3/06Electroplating: Baths therefor from solutions of chromium from solutions of trivalent chromium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/04Electroplating: Baths therefor from solutions of chromium
    • C25D3/10Electroplating: Baths therefor from solutions of chromium characterised by the organic bath constituents used

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroplating And Plating Baths Therefor (AREA)
  • Powder Metallurgy (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

An electrodeposited crystalline functional chromium deposit which is nanogranular as deposited, and the deposit may be both TEM and XRD crystalline or may be TEM crystalline and XRD
amorphous. In various embodiments, the deposit includes one or any combination of two or more of an alloy of chromium, carbon, nitrogen, oxygen and sulfur; a {111} preferred orientation; an average crystal grain cross-sectional area of less than about 500 nm2; and a lattice parameter of 2.8895 +/- 0.0025 A. A
process and an electrodeposition bath for electrodepositing the nanogranular crystalline functional chromium deposit on a substrate, including providing the electrodeposition bath including trivalent chromium, a source of divalent sulfur, a carboxylic acid, a source of nitrogen and being substantially free of hexavalent chromium; immersing a substrate in the bath; and applying an electrical current to electrodeposit the deposit on the substrate.

Description

CRYSTALLINE CHROMIUM ALLOY DEPOSIT
CROSS-REFERENCE TO RELATED APPLICATION
The present application is related to and claims benefit of U.S. Provisional Application 60/976,805, filed 02 October 2007, the entirety of which is hereby incorporated herein by reference.

TECHNICAL FIELD
The present invention relates generally to electrodeposited TEM crystalline chromium alloy deposited from trivalent chromium baths, methods and baths for electrodepositing such chromium alloy deposits and articles having such chromium alloy deposits applied thereto.

BACKGROUND
Chromium electroplating began in the late 19t" or early 20th century and provides a superior functional surface coating with respect to both wear and corrosion resistance. However, in the past, this superior coating, as a functional coating (as opposed to a decorative coating), has only been obtained from hexavalent chromium electroplating baths. Chromium electrodeposited from hexavalent chromium baths is deposited in a crystalline form, which is highly desirable. Amorphous forms of chromium plate are not useful for functional applications. The chemistry used in the conventional technology is based on hexavalent chromium ions, which are considered carcinogenic and known to be toxic. Hexavalent chromium plating operations are subject to strict and severe environmental limitations. While industry has developed many methods of working with hexavalent chromium to reduce the hazards, both industry and academia have for many years searched for a suitable alternative.
The most often sought alternative has been trivalent chromium. Until the present inventor's recent successes, the efforts to obtain a dependable, reliable functional chromium deposit based on a trivalent chromium process has continued without success for over one hundred years. Additional discussion of the need for a replacement for hexavalent chromium is included in the earlier application related to the present assignee's efforts in the area of chromium deposits from trivalent chromium, published as WO
2007/115030, the disclosure of which is hereby incorporated herein by reference.

As is apparent from the plethora of prior art attempts to obtain a functional crystalline chromium deposit from trivalent chromium, there has long been ample motivation to seek this goal. However, as is equally apparent, this goal has been elusive and, prior to the present invention, has not been attained in the prior art, despite quite literally a hundred years of trying.
For all these reasons, a long-felt need has remained unmet for (1) a crystalline-as-deposited functional chromium deposit, (2) an electrodeposition bath and process capable of forming such a functional chromium deposit, and (3) articles made with such a functional chromium deposit, in which the crystalline chromium deposit is free of macrocracks and is capable of providing the desired functional wear and corrosion resistance characteristics comparable to the conventional functional hard chromium deposit obtained from a hexavalent chromium electrodeposition process. The urgent need for a bath and process capable of providing a crystalline functional chromium deposit from a bath substantially free of hexavalent chromium heretofore has not been satisfied prior to the present invention and the present inventor's previous efforts as disclosed in WO 2007/115030.

SUMMARY
The present inventors have discovered and developed a process and bath for electrodepositing a nanogranular crystalline functional chromium alloy deposit from a trivalent chromium bath, substantially free of hexavalent chromium, in which the deposit obtained matches or exceeds the performance properties of a chromium deposit obtained from a hexavalent chromium process and bath. The alloy comprises chromium, carbon, nitrogen, oxygen and sulfur.
In one embodiment, the present invention relates to an electrodeposited crystalline functional chromium alloy deposit, in which the deposit is nanogranular as deposited. In one embodiment, the deposit is both TEM and XRD crystalline, as deposited. In another embodiment, the deposit is TEM crystalline and is XRD
amorphous.
In any of the embodiments of the present invention, the deposit may include one or any combination of two or more of (a) a{111 } preferred orientation; (b) an average crystal grain cross-sectional area of less than about 500 nm2; and (c) a lattice parameter of 2.8895 +/- 0.0025 A.
In any of the foregoing embodiments of the invention, the deposit may include from about 0.05 wt.% to about 20 wt.% sulfur. The deposit may include nitrogen, in an amount from about 0.1 to about 5 wt% nitrogen. The deposit may include carbon, in an amount of carbon less than that amount which renders the chromium deposit amorphous. In one embodiment, the deposit may include from about 0.07 wt.% to about 1.4 wt.% sulfur, from about 0.1 wt.% to about 3 wt.% nitrogen, and from about 0.1 wt.% to about 10 wt.% carbon. In one embodiment, the deposit further comprises oxygen, from about 0.5 wt.% to about 7 wt.% of the deposit, and in another embodiment, the deposit comprises oxygen, from about 1 wt.% to about 5 wt.%.
The deposit may also contain hydrogen.
In any of the foregoing embodiments of the invention, the deposit remains substantially free of macrocracking when subjected to a temperature of at least 190 C
for at least 3 hours and has a thickness in the range from about 3 microns to about 1000 microns.
In one embodiment, the invention further relates to an article including the deposit as described for any of the foregoing embodiments.
In one embodiment, the invention further relates to a process for electrodepositing a nanogranular crystalline functional chromium alloy deposit on a substrate, including:
providing an electrodeposition bath, in which the bath is prepared by combining ingredients including trivalent chromium, a source of divalent sulfur, a carboxylic acid, a source of sp3 nitrogen, wherein the bath is substantially free of hexavalent chromium;
immersing a substrate in the electroplating bath; and applying an electrical current to electrodeposit a functional crystalline chromium alloy deposit on the substrate, in which the deposit is crystalline and nanogranular as deposited. In one embodiment of the process, the deposit is both TEM and XRD
crystalline, and in another embodiment, the deposit is TEM crystalline and is XRD
amorphous. The alloy comprises chromium, carbon, nitrogen, oxygen and sulfur.
In one embodiment of the process, the deposit obtained includes one or any combination of two or more of (a) a{111 } preferred orientation; (b) an average crystal grain cross-sectional area of less than about 500 nm2; and (c) a lattice parameter of 2.8895 +/- 0.0025 A.
In any of the foregoing embodiments of the process, the deposit may include from about 0.05 wt.% to about 20 wt.% sulfur. The deposit may include from about 0.1 to about 5 wt% nitrogen. The deposit may include from about 0.5 to about 7 wt.%
oxygen. The deposit may include carbon, in an amount of carbon less than that amount which renders the chromium deposit amorphous. In one embodiment, the deposit comprises from about 0.07 wt.% to about 1.4 wt.% sulfur, from about 0.1 wt.%
to about 3 wt.% nitrogen, about 1 wt.% to about 5 wt.% oxygen, and from about 0.1 wt.% to about 10 wt.% carbon.
In any of the foregoing embodiments of the process, the deposit remains substantially free of macrocracking when subjected to a temperature of at least 190 C
for at least 3 hours and has a thickness in the range from about 3 microns to about 1000 microns.
In any of the foregoing embodiments of the process, the source of divalent sulfur may be present in the electrodeposition bath at a concentration from about 0.0001 M to about 0.05 M.
In any of the foregoing embodiments of the process, the electrodeposition bath may include a pH in the range from 5 to about 6.5.
In any of the foregoing embodiments of the process, the applying an electrical current may be carried out for a time sufficient to form the deposit to a thickness of at least 3 microns.
In one embodiment, the present invention further relates to an electrodeposition bath for electrodepositing a nanogranular crystalline functional chromium alloy deposit, in which the bath is prepared by combining ingredients including a source of trivalent chromium having a concentration of least 0.1 molar and being substantially free of added hexavalent chromium; a carboxylic acid; a source of sp3 nitrogen; a source of divalent sulfur, at a concentration in the range from about 0.0001 M
to about 0.05 M; and in which the bath has a pH in the range from 5 to about 6.5; an operating temperature in the range from about 35 C to about 95 C; and a source of electrical energy to be applied between an anode and a cathode immersed in the electrodeposition bath.
In any of the foregoing embodiments of the process and/or of the electrodeposition bath, the source of divalent sulfur comprises one or a mixture of two or more of:
thiomorpholine, thiodiethanol, L-cysteine, L-cystine, allyl sulfide, thiosalicylic acid, thiodipropanoic acid, 3,3'-dithiodipropanoic acid, 3-(3-aminopropyl disulfanyl) propylamine hydrochloride, [1,3]thiazin-3-ium chloride, thiazolidin-3-ium dichloride, a compound referred to as 3-(3-aminoalkyl disulfenyl) alkylamine having the formula:

R3NP-(CH2)n-S-S-(CH2)mE)NR13 2 XE) wherein R and R1 are independently H, methyl or ethyl and n and m are independently 1-4; or a compound referred to as a [1,3] thiazin-3-ium having the formula:
SN/ XE) ~-j \R1 wherein R and R1 are independently H, methyl or ethyl; or a compound referred to as a thiazolidin-3-ium having the formula:
S
cxe R \ 1 wherein R and R1 are independently H, methyl or ethyl; and wherein in each of the foregoing, X may be any halide or an anion other than nitrate (-N03 ), comprising one or more of cyano, formate, citrate, oxalate, acetate, malonate, S04-2, P04 3, H2PO3 1, H2PO2-1, pyrophosphate (P207-4), polyphosphate (P301 0-5), partial anions of the foregoing multivalent anions (e.g., HSO4 1 ) Cl-C18 alkyl sulfonic acids, Cl-C18 benzene sulfonic acids, and sulfamate.
In any of the foregoing embodiments of the electrodeposition bath, the source of electrical energy is capable of providing a current density of at least 10 A/dm2 based on an area of substrate to be plated.
In any of the foregoing embodiments of the electrodeposition bath, the bath may include a quantity of the source of nitrogen sufficient that the deposit comprises from about 0.1 to about 5 wt% nitrogen.
In any of the foregoing embodiments of the electrodeposition bath, the bath may include a quantity of the carboxylic acid sufficient that the chromium deposit comprises an amount of carbon less than that amount which renders the chromium deposit amorphous.
In any of the foregoing embodiments of the electrodeposition bath, the bath may include a quantity of the divalent sulfur compound, the source of nitrogen and the carboxylic acid sufficient that the deposit comprises from about 0.05 wt.% to about 1.4 wt.% sulfur, from about 0.1 wt.% to about 3 wt.% nitrogen, and from about 0.1 wt.% to about 10 wt.% carbon.
In any of the foregoing embodiments of the process and/or of the electrodeposition bath, the carboxylic acid may include one or more of formic acid, oxalic acid, glycine, acetic acid, and malonic acid or a salt of any thereof.
In any of the foregoing embodiments of the process and/or of the electrodeposition bath, the source of sp3 nitrogen may include ammonium hydroxide or a salt thereof, a primary, secondary or tertiary alkyl amine, in which the alkyl group is a Cl-C6 alkyl, an amino acid, a hydroxy amine, or a polyhydric alkanolamines, wherein alkyl groups in the source of nitrogen comprise Cj-C6 alkyl groups.
In any of the foregoing embodiments of the process and/or of the electrodeposition bath, the bath may include the source of divalent sulfur at a concentration sufficient to obtain either (a) a deposit that is both TEM and XRD
crystalline, as deposited or (b) a deposit that is TEM crystalline and XRD
amorphous, as deposited.
The present invention, although possibly useful for formation of decorative chromium deposits, is primarily applicable to and most useful in preparation of functional chromium deposits, and in particular for functional TEM crystalline chromium alloy deposits which heretofore have only been available through hexavalent chromium electrodeposition processes. In one embodiment, the invention is useful for preparation of functional TEM crystalline but XRD amorphous chromium alloy deposits which heretofore have been unknown. In one embodiment, the invention is useful for preparation of functional TEM crystalline and XRD crystalline nanogranular chromium deposits which heretofore have been unknown.
The present invention provides a solution to the problem of providing a functional chromium deposit from a trivalent chromium bath substantially free of hexavalent chromium, in which the deposit is crystalline as deposited, and which is capable of providing a product with functional characteristics substantially equivalent to the functional characteristics obtained from hexavalent chromium electrodeposits.
The invention provides a solution to the problem of replacing hexavalent chromium plating baths while still delivering the desired functional chromium which has been sought for so long.
BRIEF DESCRIPTION OF THE DRAWINGS
Fig. 1 includes four X-ray diffraction patterns (Cu k alpha) of two embodiments of nanogranular crystalline chromium alloy deposited in accordance with embodiments of the present invention, a hexavalent chromium of the prior art and an amorphous chromium deposit not in accordance with the present invention.
Fig. 2 is a typical X-ray diffraction pattern (Cu k alpha) showing the progressive effect of annealing an amorphous chromium deposit from a trivalent chromium bath of the prior art.
Fig. 3 is a series of electron photomicrographs showing the macrocracking effect of annealing an initially amorphous chromium deposit from a trivalent chromium bath of the prior art.
Fig. 4 is a graphical chart illustrating how the concentration of sulfur in one embodiment of a chromium deposit relates to the XRD crystallinity of the chromium deposit.
Fig. 5 is a graphical chart comparing the crystal lattice parameter, in Angstroms (A) for (1) a crystalline chromium deposit in accordance with an embodiment of the present invention, compared with (2) crystalline chromium deposits from hexavalent chromium baths and (3) annealed amorphous-as-deposited chromium deposits.
Fig. 6 is a series of nine X-ray diffraction scans of electrodeposited chromium obtained by the methods disclosed by Sakamoto.
Fig. 7 is a graph illustrating the lattice parameter values obtained by the present inventors applying the deposition methods disclosed by Sakamoto and the subsequently described lattice parameter determination method based upon the modified Bragg equation.
Fig. 8 is a graph illustrating the 75 C Sargent Cr+6 data lattice parameter values obtained by the present inventors applying the deposition methods disclosed by Sakamoto and evaluated using the subsequently described cos2/sin method.
Fig. 9 is a graphical presentation of various lattice parameters for chromium obtained both from the literature and by carrying out the method of Sakamoto, illustrating the consistency of the Sakamoto method lattice parameter data obtained by the present inventors with the known lattice parameters.
Fig. 10 is a high resolution transmission electron microscopy (TEM) photomicrograph of a focused ion beam cross sectioned lamella from a functional crystalline chromium deposit in accordance with the present invention.
Figs. 11-13 are dark field TEM photomicrographs of a cross sectioned lamella from chromium deposits in accordance with the present invention and conventional chromium deposit from a hexavalent chromium bath.
Figs. 14-17 are TEM diffraction pattern photomicrographs of chromium deposits, in which the deposits are XRD crystalline, TEM crystalline but XRD amorphous, both XRD and TEM amorphous, and a conventional chromium deposit from a hexavalent chromium bath and process, respectively.
Fig. 18 is a graph comparing Taber wear data for various chromium deposits, including both conventional chromium deposits and a chromium deposit in accordance with the present invention.
It should be appreciated that the process steps and structures described below may not necessarily form a complete process flow for manufacturing parts containing the functional crystalline chromium deposit of the present invention. The present invention can be practiced in conjunction with fabrication techniques currently used in the art, and only so much of the commonly practiced process steps are included as are necessary for an understanding of the present invention.
DETAILED DESCRIPTION
As used herein, a decorative chromium deposit is a chromium deposit with a thickness less than one micron, and often less than 0.8 micron which is primarily decorative in purpose and use and is typically applied over an electrodeposited nickel or nickel alloy coating, or over a series of copper and nickel or nickel alloy coatings whose combined thicknesses are in excess of three microns, and which provide the protective or other functional characteristics of the coating.
As used herein, a functional chromium deposit is a chromium deposit applied to (often directly to) a substrate such as strip steel ECCS (Electrolytically Chromium Coated Steel) where the chromium thickness is generally greater than 1 micron, most often greater than 3 microns, and is used for functional or industrial, not decorative, applications. Functional chromium deposits are generally applied directly to a substrate or over a relatively thin preparatory layer, in which the chromium layer, not the underlying layer(s), provides the sought protective or other functional characteristics of the coating. Functional chromium coatings take advantage of the special properties of chromium, including, e.g., its hardness, its resistance to heat, wear, corrosion and erosion, and its low coefficient of friction. Even though it has nothing to do with performance, many users want the functional chromium deposits to be like decorative chromium in appearance, so in some embodiments the functional chromium has a decorative appearance in addition to its functional properties. The thickness of the functional chromium deposit may range from the above-noted greater than 1 micron or, more often, to deposits having a thickness of 3 microns or much more, up to, e.g., 1000 microns. In some cases, the functional chromium deposit is applied over a`strike plate' such as nickel or iron plating on the substrate or a`duplex' system in which the nickel, iron or alloy coating has a thickness not usually greater than three microns and the chromium thickness generally is in excess of three microns.
The differences between decorative and functional chromium are well known to those of skill in the art. Strict specifications for functional chromium deposits have been developed by such standard setting organizations as ASTM. See, e.g., ASTM B

95 (Reapproved 2002) relating to the specification for functional or hard chromium, which is also sometimes referred to as engineering chromium. As stated in ASTM
B
650, electrodeposited engineering chromium, which is also called "functional"
or "hard"
chromium, is usually applied directly to the basis metal and is much thicker than decorative chromium. As further stated in ASTM B 650, engineering chromium is used in the following exemplary purposes: to increase wear and abrasion resistance, to increase fretting resistance, to reduce static and kinetic friction, to reduce galling or seizing, or both, for various metal combinations, to increase corrosion resistance and to build up undersize or worn parts.
Decorative chromium plating baths are concerned with thin chromium deposits over a wide plating range so that articles of irregular shape are completely covered.
Functional chromium plating, on the other hand, is designed for thicker deposits on regularly shaped articles, where plating at a higher current efficiency and at higher current densities is important. Previous chromium plating processes employing trivalent chromium ion have generally been suitable for forming only "decorative"
finishes. The present invention provides "hard" or functional chromium deposits, but is not so limited, and can be used for decorative chromium finishes. "Hard", "engineering"
or "functional" chromium deposits and "decorative" chromium deposits are known terms of art, as described above.
As used herein, when used with reference to, e.g., an electroplating bath or other composition, "substantially free of hexavalent chromium" means that the electroplating bath or other composition so described is free of any intentionally added hexavalent chromium. As will be understood, such a bath or other composition may contain trace amounts of hexavalent chromium present as an impurity in materials added to the bath or composition or as a by-product of electrolytic or chemical processes carried out with bath or composition. However, in accordance with the present invention, hexavalent chromium is not purposely or intentionally added to the baths or processes disclosed herein.
As used herein, macrocracks (and cognate terms such as macrocracking) are defined as and refer to cracks (or formation of cracks) that extend through the entire thickness of the chromium layer, down to the substrate, and that are formed primarily after annealing at temperatures in the range from about 190 C to about 450 C for a time sufficient to crystallize an amorphous chromium deposit. Such time is generally from about 1 to about 12 hours. Macrocracks primarily occur in chromium deposits that are about 12 microns or greater in thickness, but can also occur in less thick chromium deposits. As is known in the art, macrocracks are generally only observed after the part bearing the chromium deposit of interest has been heated to temperatures in the above range during which the crystalline structure is formed from the amorphous material. The minimum heat treatment for embrittlement relief (i.e., annealing) of electrodeposited chromium deposits is spelled out in AMS-QQ-C-320 paragraph 3.2.6 as 375 F (190.5 C) for 3, 8, and 12 hours, with the times dependent upon the desired tensile strength and/or Rockwell hardness.
AMS-QQ-C-320 is the Aerospace Material Specification for Chromium Plating (Electrodeposited) published by SAE International, Warrendale, PA. Under these conditions, macrocracking can occur.
As used herein, the term "preferred orientation" carries the meaning that would be understood by those of skill in the crystallographic arts. Thus, "preferred orientation"
is a condition of polycrystalline aggregate in which the crystal orientations are not random, but rather exhibit a tendency for alignment with a specific direction in the bulk material. Thus, a preferred orientation may be, for example, {100}, {110}, {111 } and integral multiples thereof, such as (222), in which the integral multiples of a specifically identified orientation, such as {111 }, are deemed to be included with the specifically identified orientation, as would be understood by those of skill in the art.
Thus, as used herein, reference to the {111 } orientation includes integral multiples thereof, such as (222), unless otherwise specifically stated.
As used herein, the term "grain size" refers to the cross-sectional area of grains of the crystalline chromium deposit based on a TEM dark field image of representative or average grains, as determined using ImageJ 1.40 software, from the National Institutes of Health. Using the "analyze particles" subroutine of ImageJ, edge recognition of crystalline chromium grains may be obtained, the perimeters traced, and the areas calculated. ImageJ is well known for use in calculating the cross-sectional area of irregularly shaped particles by image analysis. Grain size is related to the yield strength of a material by relationships such as the Hall-Petch effect that states that yield strength increases as grain size decreases. Furthermore, it has been observed that small grains may improve corrosion resistance (see, e.g. U.S. Patent No.
6,174,610, the disclosure of which is incorporated by reference for its teachings relating to grain size).
As used herein, the term "nanogranular" refers to crystalline chromium grains having an average grain size or cross-sectional area from about 100 square nanometers (nm2) to about 5000 nm2, as determined by the above grain size definition.
By comparison, a crystalline chromium deposit that is XRD crystalline deposited according to applicant's prior published application WO 2007/115030, the crystalline chromium grains have an average grain size or cross-sectional area in the range from about 9,000 nm2 to about 100,000 nm2, and conventional chromium deposits from hexavalent chromium baths and processes have an average grain size or cross-sectional area in the range from about 200,000 nm2 to about 800,000 nm2, and larger.
Thus, there are clear differences between the nanogranular crystalline chromium deposits made in accordance with the present invention and those of other methods.
As used herein, the term "TEM crystalline" means that a deposit so described is crystalline as determined by transmission electron microscopy (TEM). TEM is capable of determining that a deposit is crystalline when the crystal grains in the deposit have a size from about 1 nm and up, depending on the applied energy. A given material may be determined by TEM to be crystalline, when the same material is not determined to be crystalline by the usual X-ray diffraction technique in which X-rays from a Cu ka source are employed.
As used herein, the term "TEM amorphous" means that a deposit so described is amorphous as determined by TEM. A deposit is TEM amorphous when it is not found to be TEM crystalline at applied energy of up to 200,000 eV. Using TEM, a deposit is confirmed to be amorphous when the selected area diffraction (SAD) pattern, obtained from TEM, has broad rings that lack "diffraction spots".
As used herein, the term "XRD crystalline" means that a deposit so described is crystalline as determined by X-ray diffraction (XRD) with a copper k alpha (Cu ka) x-ray source. Cu ka XRD has been commonly used to determine whether deposits are crystalline for many years, and has long been the standard method of determining whether a given electrodeposited metal is or is not crystalline. In the prior art, essentially all determinations of crystallinity of chromium deposits have been determined on one or both of two bases: (1) whether the chromium deposit forms macrocracks when it is annealed at a temperature above about 190 C; and/or (2) whether the deposit is or is not XRD crystalline as defined herein.
As used herein, the term "XRD amorphous" means that a deposit so described is amorphous as determined by X-ray diffraction (XRD) with a copper k alpha (Cu ka) X-ray source.
As will be understood by those of skill in the art, sufficiently energetic X-rays from an appropriately high-energy X-ray source may be able to discern and/or determine a grain size as small as 1 nm. Thus, the terms XRD crystalline and XRD
amorphous, as used herein, are based on the use of a copper k alpha X-ray source.
With respect to TEM and XRD crystalline materials, the present inventors have discovered that some materials, such as certain embodiments of the chromium deposits in accordance with the present invention, are not XRD crystalline, but nevertheless are TEM crystalline. A deposit that is XRD crystalline is always TEM
crystalline, but a TEM crystalline deposit may or may not be XRD crystalline.
More significantly, the present inventors have discovered that chromium deposits having superior properties, in terms of one or more of hardness, wear resistance, durability and brightness, can be obtained from trivalent chromium electroplating baths, when the deposits are TEM crystalline but are XRD amorphous. Thus, in one embodiment, the present invention relates to a crystalline functional chromium deposit that is TEM
crystalline and is XRD amorphous, the deposit also having a grain size as determined by cross-sectional area of less than about 500 nm2 and in which the deposit contains carbon, nitrogen, oxygen and sulfur.
As used herein, the term "chromium (or Cr or chrome) deposit" includes both chromium and chromium alloys in which the chromium alloy retains the BCC
crystal structure of chromium deposits. As disclosed herein, in one embodiment, the present invention includes a chromium deposit containing chromium, carbon, oxygen, nitrogen and sulfur, and possibly also hydrogen.
Figs. 14-17 are TEM diffraction pattern photomicrographs of chromium deposits, in which the deposits are XRD crystalline, TEM crystalline but XRD amorphous, both XRD and TEM amorphous, and a conventional chromium deposit from a hexavalent chromium bath and process, respectively. As can be observed upon comparison of the photomicrographs in Figs. 14-17, the differences between the TEM diffraction patterns for these chromium deposits is quite apparent. In Fig. 14, the chromium deposit is both XRD crystalline and TEM crystalline, in accordance with one embodiment of the present invention. Since the crystal grains in an XRD crystalline chromium deposit are relatively larger than the crystal grains in a deposit that is XRD amorphous and TEM
crystalline, the diffraction pattern is stronger, presenting more discrete exposure of the film. In Fig. 15, the chromium deposit is XRD amorphous and TEM crystalline, in accordance with another embodiment of the present invention. Since the crystal grains are relatively smaller in a chromium deposit that is XRD amorphous and TEM

crystalline than one that is both XRD and TEM crystalline, the diffraction pattern includes smaller, discrete exposure points and rings of diffuse reflections.
In Fig. 16, the deposit is both XRD amorphous and TEM amorphous, and is not in accordance with the present invention. Since there are no crystal grains in a TEM
amorphous chromium deposit, there are no discrete exposure points and relatively weak rings of diffuse reflections from the random chromium atoms in the deposit. Finally, in Fig. 17, for comparative purposes, a TEM diffraction pattern from a conventional chromium deposit from a hexavalent chromium bath and process is shown. Since the crystal grains in the conventional hexavalent chromium deposit are very much larger than the crystal grains in either alloy deposit according to the invention, i.e., a deposit that is both XRD and TEM crystalline or in a deposit that is XRD amorphous and TEM
crystalline, the diffraction pattern is much stronger, presenting very strong discrete exposure of the film, in a different pattern.
FUNCTIONAL CRYSTALLINE CHROMIUM ALLOY DEPOSITS
The present invention provides a reliably consistent body centered cubic (BCC
or bcc) functional crystalline chromium alloy deposit from a trivalent chromium bath, which bath is substantially free of hexavalent chromium, and in which the deposit is TEM crystalline as deposited, without requiring further treatment to crystallize the deposit, and in which the deposit is a functional chromium alloy deposit. In one embodiment, the invention provides a fiber texture nanogranular bcc crystalline functional chromium alloy deposit. In one embodiment, the electrodeposited crystalline functional chromium alloy deposit includes chromium, carbon, nitrogen, oxygen and sulfur, and the deposit is nanogranular as deposited. In some embodiments, the chromium deposit is both TEM crystalline and XRD crystalline, as well as nanogranular, while in other embodiments, the chromium deposit is TEM crystalline and XRD amorphous, as well as nanogranular. Thus, the present invention provides a solution to the long-standing, previously unsolved problem of obtaining a reliably consistent crystalline chromium deposit from an electroplating bath, and from a process, both of which are substantially free of hexavalent chromium.
In any of the embodiments of the present invention, the deposit may include one or any combination of two or more of:
a {111 } preferred orientation;
an average crystal grain cross-sectional area of less than about 500 nm2; and a lattice parameter of 2.8895 +/- 0.0025 A. In one embodiment, the deposit includes a{111 } preferred orientation and an average crystal grain cross-sectional area of less than about 500 nm2. In one embodiment, the deposit includes a{111}
preferred orientation and a lattice parameter of 2.8895 +/- 0.0025 A. In one embodiment, the deposit includes an average crystal grain cross-sectional area of less than about 500 nm2 and a lattice parameter of 2.8895 +/- 0.0025 A. In one embodiment, the deposit includes a{111 } preferred orientation, an average crystal grain cross-sectional area of less than about 500 nm2, and a lattice parameter of 2.8895 +/- 0.0025 A.
In any of the embodiments of the invention described herein, the deposit may include from about 0.05 wt.% to about 20 wt.% sulfur. The deposit may include nitrogen, in an amount from about 0.1 to about 5 wt% nitrogen. The deposit may include carbon, in an amount of carbon less than that amount which renders the chromium deposit amorphous. In one embodiment, the deposit may include from about 0.07 wt.% to about 1.4 wt.% sulfur, from about 0.1 wt.% to about 3 wt.%
nitrogen, and from about 0.1 wt.% to about 10 wt.% carbon. The deposit, in one embodiment, further comprises oxygen, from about 0.5 wt.% to about 7 wt.% of the deposit, and in another embodiment further comprises oxygen from about 1 wt.% to about 5 wt.%. The deposit may also contain hydrogen.
To accurately determine sulfur content at low concentrations PIXE is employed.
PIXE is an x-ray fluorescence method which can detect elements with atomic numbers greater than lithium but can not accurately quantify elements with low atomic numbers including carbon, nitrogen, and oxygen. Therefore, with PIXE, only chromium and sulfur can be accurately reported in a quantitative manner and the values are for these two elements only (e.g., the relative quantities do not account for other alloying elements). XPS can quantify low z elements except for hydrogen, but it does not have the sensitivity of PIXE, and it samples only a very thin sample volume.
Therefore, the alloy content is determined using XPS after sputtering away surface oxides and penetrating into the bulk region of the coating using an argon ion beam. The XPS
spectra is then obtained and while it does not include the likely presence of hydrogen, which can not be detected by XPS, the spectrum does effectively determine the relative amounts of carbon, nitrogen, oxygen, and chromium present in the material.
From the values obtained by XPS and PIXE, the total content of chromium, carbon, nitrogen oxygen and sulfur in the alloy can be calculated by those of ordinary skill in the art. In the present disclosure, all sulfur contents reported for the deposits are as determined by PIXE. In the present disclosure, all carbon, nitrogen and oxygen contents reported for the deposits are as determined by XPS. Chromium content reported for the deposits is determined by both methods.
In one embodiment, the crystalline chromium deposit of the present invention is substantially free of macrocracks, using standard test methods. That is, in this embodiment, under standard test methods, substantially no macrocracks are observed when samples of the chromium deposited are examined.
In one embodiment, the crystalline chromium deposit is substantially free of formation of macrocracks after exposure to elevated temperatures for extended periods. In one embodiment, the crystalline chromium deposit does not form macrocracks when heated to a temperature up to about 190 C for a period of about 1 to about 10 hours. In one embodiment, the crystalline chromium deposit does not change its crystalline structure when heated to a temperature up to about 190 C. In one embodiment, the crystalline chromium deposit does not form macrocracks when heated to a temperature up to about 250 C for a period of about 1 to about 10 hours.
In one embodiment, the crystalline chromium deposit does not change its crystalline structure when heated to a temperature up to about 250 C. In one embodiment, the crystalline chromium deposit does not form macrocracks when heated to a temperature up to about 300 C for a period of about 1 to about 10 hours. In one embodiment, the crystalline chromium deposit does not change its crystalline structure when heated to a temperature up to about 300 C..
Thus, in one embodiment, the crystalline chromium deposit wherein the deposit remains substantially free of macrocracking when subjected to a temperature of at least 190 C for at least 3 hours. In another embodiment, the deposit remains substantially free of macrocracking when subjected to a temperature of at least 190 C for at least 8 hours. In yet another embodiment, the deposit remains substantially free of macrocracking when subjected to a temperature of at least 190 C for at least 12 hours.
In one embodiment, the crystalline chromium deposit wherein the deposit remains substantially free of macrocracking when subjected to a temperature up to 350 C for at least 3 hours. In another embodiment, the deposit remains substantially free of macrocracking when subjected to a temperature up to 350 C for at least 8 hours. In yet another embodiment, the deposit remains substantially free of macrocracking when subjected to a temperature up to 350 C for at least 12 hours.
In one embodiment, the nanogranular functional crystalline chromium alloy deposit in accordance with the present invention has a cubic lattice parameter of 2.8895 +/- 0.0025 Angstroms (A). It is noted that the term "lattice parameter"
is also sometimes used as "lattice constant". For purposes of the present invention, these terms are considered synonymous. It is noted that for body centered cubic crystalline chromium, there is a single lattice parameter, since the unit cell is cubic.
This lattice parameter is more properly referred to as a cubic lattice parameter, since the crystal lattice of the crystalline chromium deposit of the present invention is a body centered cubic crystal, but herein is referred to simply as the "lattice parameter", with the understanding that, for the bcc chromium of the present invention, this refers to the cubic lattice parameter. In one embodiment, the crystalline chromium deposit in accordance with the present invention has a lattice parameter of 2.8895 A+/-0.0020 A.
In another embodiment, the crystalline chromium deposit in accordance with the present invention has a lattice parameter of 2.8895 A+/- 0.0015 A. In yet another embodiment, the crystalline chromium deposit in accordance with the present invention has a lattice parameter of 2.8895 A+/- 0.0010 A. Some specific examples are provided herein of crystalline chromium deposits having lattice parameters within these ranges.
The lattice parameters reported herein for the nanogranular functional crystalline chromium alloy deposit of the present invention are measured for the chromium deposit as deposited but these lattice parameters generally do not substantially change with annealing. The present inventors have measured the lattice parameter on samples of crystalline chromium deposits in accordance with the present invention (1) as deposited, (2) after annealing at 350 C for one hour and cooling to room temperature, (3) after a second annealing at 450 C and cooling to room temperature, and (4) after a third annealing at 550 C and cooling to room temperature. No change in lattice parameter is observed in (1)-(4). The present inventors generally carry out X-ray diffraction ("XRD") experiments in-situ in a furnace built into an XRD
apparatus manufactured by Anton Parr. The present inventors generally perform not do the grinding and cleaning process described below. Thus, in one embodiment of the present invention, the lattice parameter of the nanogranular functional crystalline chromium alloy deposit does not vary upon annealing at temperatures up to 550 C. In another embodiment, the lattice parameter of the functional crystalline chromium deposit does not vary upon annealing at temperatures up to 450 C. In another embodiment, the lattice parameter of the functional crystalline chromium deposit does not vary upon annealing at temperatures up to 350 C.
Elemental crystalline chromium has a lattice parameter of 2.8839 A which has been determined by numerous experts and reported by standards organizations such as the National Institute of Standards and Technology. A typical determination uses electrodeposited chromium from high purity chromic acid salts as reference material (ICD PDF 6-694, from Swanson, et al., Natl. Bur. Stand. (U.S.) Orc. 539, V, 20 (1955) ).
This material is then crushed, acid washed, annealed in hydrogen and then helium at 1200 C to allow grain growth and diminish internal stress, carefully cooled at 100 C per hour to room temperature in helium, then measured.
In all the literature on chromium lattice parameters there is a single reference to lattice parameter exceeding 2.887A. This reference is by Sakamoto who reported preparation of chromium electrodeposits on brass substrates from solutions that had different plating temperatures from 30 C to 75 C and measured lattice parameters of the as-deposited chromium on brass without consideration for residual stress.
Attempts to duplicate Sakamoto's results ignoring residual stress have been fruitless.
As discussed in more detail below, when the present inventors measured the lattice parameter as a function of temperature, using two different instruments, the results agreed with each other, and the lattice parameter values ranged from 2.8812 to 2.883 A, with a mean of 2.8821 A and a standard deviation of 0.0006 A, and did not show an increase in lattice parameter as bath temperature was increased. Further discussion of the present inventors' attempts to duplicate the Sakamoto results are provided hereinbelow.
Crystalline chromium electrodeposited from a hexavalent chromium bath has a lattice parameter ranging from about 2.8809 A to about 2.8858 A.
Annealed electrodeposited trivalent amorphous-as-deposited chromium has a lattice parameter ranging from about 2.8818 A to about 2.8852 A, but also has macrocracks.
Thus, the lattice parameter of the nanogranular functional crystalline chromium alloy deposit in accordance with the present invention is larger than the lattice parameter of other known forms of crystalline chromium. Although not to be bound by theory, it is considered that this difference may be due to the incorporation of the heteroatoms in the alloy, e.g., sulfur, nitrogen, carbon, oxygen and possibly hydrogen, into the crystal lattice of the deposit obtained in accordance with the present invention.
In one embodiment, the nanogranular functional crystalline chromium alloy deposit in accordance with the invention has a{111 } preferred orientation. As noted, the deposit may have, e.g., a (222) preferred orientation, which is understood to be within the {111} preferred orientation description and "family".
In one embodiment, the crystalline chromium deposit contains from about 0.05 wt.% to about 20 wt.% sulfur. In another embodiment, the chromium deposit contains from about 0.07 wt.% to about 1.4 wt.% sulfur. In another embodiment, the chromium deposit contains from about 1.5 wt.% to about 10 wt.% sulfur. In another embodiment, the chromium deposit contains from about 1.7 wt.% to about 4 wt.% sulfur. The sulfur is in the deposit present as elemental sulfur and may be a part of crystal lattice, i.e., replacing and thus taking the position of a chromium atom in the crystal lattice or taking a place in the tetrahedral or octahedral hole positions and distorting the lattice. In one embodiment, the source of sulfur may be a divalent sulfur compound. More details on exemplary sulfur sources are provided below.
In one embodiment, the nanogranular functional crystalline chromium alloy deposit contains from about 0.1 to about 5 wt% nitrogen. In another embodiment, the deposit contains from about 0.5 to about 3 wt% nitrogen. In another embodiment the deposit contains about 0.4 weight percent nitrogen.
In one embodiment, the nanogranular functional crystalline chromium alloy deposit contains from about 0.1 to about 5 wt% carbon. In another embodiment, the deposit contains from about 0.5 to about 3 wt% carbon. In another embodiment the deposit contains about 1.4 wt.% carbon. In one embodiment, the crystalline contains an amount of carbon less than that amount which renders the deposit amorphous.
That is, above a certain level, e.g., in one embodiment, above about 10 wt.%, the carbon renders the deposit amorphous, and therefore takes it out of the scope of the present invention. Thus, the carbon content should be controlled so that it does not render the deposit amorphous. The carbon may be present in the deposit as elemental carbon or as carbide carbon. If the carbon is present in the deposit as elemental carbon, it may be present either as graphitic or as amorphous carbon.
In one embodiment, the nanogranular functional crystalline chromium alloy deposit contains from about 0.1 to about 5 wt% oxygen. In another embodiment, the deposit contains from about 0.5 to about 3 wt% nitrogen. In another embodiment the deposit contains about 0.4 weight percent nitrogen.
In one embodiment, the TEM crystalline, XRD amorphous nanogranular functional chromium alloy deposit contains from about 0.06 wt.% to about 1.5 wt.%
sulfur, and in one embodiment, the TEM crystalline, XRD amorphous deposit contains from about 0.06 wt.% to less than 1 wt.% sulfur (e.g., up to about 0.95 or up to about 0.90 wt.% sulfur). The TEM crystalline, XRD amorphous deposit generally contains from about 0.1 wt.% to about 5 wt.% nitrogen, and from about 0.1 wt.% to about wt.% carbon. In one embodiment, the TEM crystalline, XRD amorphous deposit contains from about 0.05 wt.% to less than 4 wt.% sulfur (e.g., up to about 3.9 wt.%
sulfur), from about 0.1 wt.% to about 5 wt.% nitrogen, and from about 0.1 wt.%
to about 10 wt.% carbon.
In one embodiment, the XRD crystalline chromium alloy deposit contains from about 4 wt.% to about 20 wt.% sulfur, from about 0.1 wt.% to about 5 wt.%
nitrogen, and from about 0.1 wt.% to about 10 wt.% carbon.
In one embodiment, the TEM crystalline, XRD amorphous deposit of the present invention has grain size, as measured by cross-sectional area as described above, orders of magnitude smaller than that observed with deposits from hexavalent chromium, and has grain size substantially smaller than can be obtained with higher sulfur contents. Hexavalent chromium deposits have an average grain size or cross-sectional area in the range from about 200,000 nm2 to about 800,000 nm2, and larger, as determined by the ImageJ software.
In one embodiment, the nanogranular functional crystalline chromium alloy deposit of the present invention, on average, have an average grain size or cross-sectional area in the range from about 100 square nanometers (nm2) to about nm2, as determined by the lmageJ software. In one embodiment, the nanogranular functional crystalline chromium alloy deposit of the present invention, on average, have an average grain size or cross-sectional area in the range from about 300 square nanometers (nm2) to about 4000 nm2, as determined by the lmageJ software. In one embodiment, the nanogranular functional crystalline chromium alloy deposit of the present invention, on average, have an average grain size or cross-sectional area in the range from about 600 square nanometers (nm2) to about 2500 nm2, as determined by the lmageJ software. It is noted that these are average sizes, and to determine the average, a suitable number of grains should be examined, as readily determined by the person of skill in the art.
In one embodiment, the grains of the nanogranular functional crystalline chromium alloy deposit of the present invention, on average, have a width less than 50 nm and do not have axes elongated more than about five times (5X) the grain size, although many small grains with similar orientation may be stacked above each other.
In other embodiments, the grain size is significantly less than 50 nm, as discussed below in more detail. This stacking may be due to the fiber having been disrupted and made discontinuous, like a strand of pearls, rather than continuous as is the case with chromium from hexavalent solution.
In one embodiment, the nanogranular functional crystalline chromium alloy deposit of the present invention includes an average chromium alloy crystal grain width less than 70 nanometers (nm). In another embodiment, the deposit includes an average chromium crystal grain width less than about 50 nm. In another embodiment, the deposit includes an average chromium crystal grain width less than about 30 nm.
In one embodiment, the deposit includes an average chromium crystal grain width in the range from about 20 nm to about 70 nm, and in another embodiment, in the range from about 30 to about 60 nm. In one embodiment, the grain width of the deposits of the present invention are less than 20 nm, and in one embodiment, the grain width of the deposit has an average grain width in the range from 5 nm to 20 nm.
Smaller grain size is correlated to increasing hardness of the chromium deposit in accordance with the Hall-Petch effect, down to some minimum grain size in accordance with the reverse Hall-Petch effect. While smaller grain size is known to be related to greater strength, the small grain size attainable with the present invention, in combination with the other features of the present invention, provides a further novel aspect to the present invention.
In one embodiment of the present invention, the nanogranular functional crystalline chromium alloy deposit exhibits a microhardness in the range from about 50 to about 150 Vickers greater than the Vickers hardnesses obtained for hexavalent-derived chromium deposits, and in one embodiment, from about 100 to about 150 Vickers greater than comparable hexavalent-derived deposits (hardness measurements taken with a 25 gram load). Thus, in one embodiment, the functional crystalline chromium deposits in accordance with the present invention exhibit Vickers hardness values, measured under a 25 gram load, in the range from about 950 to about 1100, and in another embodiment from about 1000 to about 1050. Such hardness values are consistent with the small grain size noted above and are greater than the hardness values observed with functional chromium deposits obtained from hexavalent chromium electrodeposition baths.
PROCESSES FOR DEPOSITION OF FUNCTIONAL CRYSTALLINE CHROMIUM
ALLOY FROM TRIVALENT CHROMIUM BATHS
During the process of electrodepositing the nanogranular functional crystalline chromium alloy deposit of the present invention, the electrical current is applied at a current density of at least about 10 amperes per square decimeter (A/dm). In another embodiment, the current density is in the range from about 10 A/dm2 to about A/dm2, and in another embodiment, the current density is in the range from about 10 A/dm2 to about 100 A/dm2, and in another embodiment, the current density is in the range from about 20 A/dm2 to about 70 A/dm2, and in another embodiment, the current density is in the range from about 30 A/dm2 to about 60 A/dm2, during the electrodeposition of the deposit from the trivalent chromium bath in accordance with the present invention.
During the process of electrodepositing the nanogranular functional crystalline chromium alloy deposit of the present invention, the electrical current may be applied to the bath using any one or any combination of two or more of direct current, pulse waveform or pulse periodic reverse waveform.
In one embodiment, the present invention provides a process for electrodepositing a nanogranular functional crystalline chromium alloy deposit on a substrate, including providing an electrodeposition bath, in which the bath is prepared by combining ingredients comprising trivalent chromium, a source of divalent sulfur, a carboxylic acid, a source of sp3 nitrogen, and in which the bath is substantially free of hexavalent chromium; immersing a substrate in the electroplating bath; and applying an electrical current to electrodeposit a functional crystalline chromium deposit on the substrate, in which the alloy includes chromium, carbon, nitrogen, oxygen and sulfur, and the deposit is crystalline and nanogranular as deposited. In one embodiment, the deposit is both TEM and XRD crystalline. In one embodiment, the deposit is TEM
crystalline and is XRD amorphous. In one embodiment, the deposit further includes one or any combination of two or more of (a) a{111 } preferred orientation;
(b) an average crystal grain cross-sectional area of less than about 500 nm2; and (c) a lattice parameter of 2.8895 +/- 0.0025 A.
The contents of the components of the chromium alloy deposit, and the various physical features and properties of the deposit obtained by the process are described above, with respect to the deposit, and are not repeated here for brevity.

In one embodiment, the source of sp3 nitrogen includes ammonium hydroxide or a salt thereof, a primary, secondary or tertiary alkyl amine, in which the alkyl group is a Cl-C6 alkyl, an amino acid, a hydroxy amine, or a polyhydric alkanolamines, wherein alkyl groups in the source of nitrogen comprise Cl-C6 alkyl groups. In one embodiment, the source of sp3 nitrogen may be ammonium chloride and in another embodiment, ammonium bromide, and in another embodiment, a combination of both ammonium chloride and ammonium bromide.
In one embodiment, the carboxylic acid includes one or more of formic acid, oxalic acid, glycine, acetic acid, and malonic acid or a salt of any thereof.
The carboxylic acid provides both carbon and oxygen, which may be incorporated into the chromium alloy deposit of the present invention. Other carboxylic acids may be used, as will be recognized.
In one embodiment, the source of divalent sulfur comprises one or a mixture of two or more of:
thiomorpholine, thiodiethanol, L-cysteine, L-cystine, allyl sulfide, thiosalicylic acid, thiodipropanoic acid, 3,3'-dithiodipropanoic acid, 3-(3-aminopropyl disulfanyl) propylamine hydrochloride, [1,3]thiazin-3-ium chloride, thiazolidin-3-ium dichloride, a compound referred to as a 3-(3-aminoalkyl disulfenyl) alkylamine having the formula:

R3N (CH2)n-S-S-(CH2)mE) NR'3 2 XE) wherein R and R1 are independently H, methyl or ethyl and n and m are independently 1-4; or a compound referred to as a [1,3] thiazin-3-ium having the formula:
SN/ XE) in which R and R1 are independently H, methyl or ethyl; or a compound referred to as a thiazolidin-3-ium having the formula:
S
N XO

R \ 1 in which R and R1 are independently H, methyl or ethyl; and in which in each of the foregoing sources of divalent sulfur, X may be any halide or an anion other than nitrate (-N03 ), comprising one or more of cyano, formate, citrate, oxalate, acetate, malonate, SO~ 2, PO~ 3, H2P03 1, H2P02 ~, pyrophosphate (P207-4), polyphosphate (P301 0-5), partial anions of the foregoing multivalent anions, e.g., HS04 1, HP04-2, H2P04-1, Cl-C18 alkyl sulfonic acids, Cl-C18 benzene sulfonic acids, and sulfamate.
In one embodiment, the source of divalent sulfur is not saccharine.
In one embodiment, the source of divalent sulfur is not thiourea.
In one embodiment, the source of divalent sulfur is present in the electrodeposition bath at a concentration from about 0.0001 M to about 0.05 M.
In one embodiment, the source of divalent sulfur is present in the bath at a concentration sufficient to obtain a deposit that is both XRD and TEM crystalline. In one embodiment, the concentration of divalent sulfur in the bath that is sufficient to obtain such a deposit that is both XRD and TEM crystalline is in the range from about 0.01 M to about 0.10 M.

In another embodiment, the source of divalent sulfur is present in the bath at a concentration sufficient to obtain a deposit that is XRD amorphous and TEM
crystalline.
In one embodiment, the concentration of divalent sulfur in the bath that is sufficient to obtain such a deposit that is XRD amorphous and TEM crystalline is in the range from about 0.0001 M to less than about 0.01 M.
In one embodiment, the electrodeposition bath has a pH in the range from 5 to about 6.5. In one embodiment, the electrodeposition bath has a pH in the range from 5 to about 6. In one embodiment, the electrodeposition bath has a pH of about 5.5. At a pH outside the disclosed range, e.g., at about pH 4 and less, and at about pH
7 or greater, components of the bath begin to precipitate or the bath does not function as desired.
In one embodiment, the step of applying an electrical current is carried out for a time sufficient to form the deposit to a thickness of at least 3 microns. In one embodiment, the step of applying an electrical current is carried out for a time sufficient to form the deposit to a thickness of at least 10 microns. In one embodiment, the step of applying an electrical current is carried out for a time sufficient to form the deposit to a thickness of at least 15 microns.
In one embodiment, the cathodic efficiency ranges from about 5% to about 80%, and in one embodiment, the cathodic efficiency ranges from about 10% to about 40%, and in another embodiment, the cathodic efficiency ranges from about 20% to about 30%.
These processes in accordance with the invention may be carried out under the conditions described herein, and in accordance with standard practices for electrodeposition of chromium. Thus, any conditions not specifically stated herein may be set as for any conventional chromium electroplating process, as long as it does not depart from the scope of the present disclosure.
TRIVALENT CHROMIUM ELECTRODEPOSITION BATHS
In one embodiment, the present invention relates to an electrodeposition bath for electrodepositing the above-described nanogranular crystalline functional chromium alloy deposit, in which the alloy comprises chromium, carbon, nitrogen, oxygen and sulfur, and the bath includes an aqueous solution obtained by combining ingredients including a source of trivalent chromium having a concentration of least 0.1 molar and being substantially free of added hexavalent chromium; a carboxylic acid; a source of sp3 nitrogen; a source of divalent sulfur, at a concentration in the range from about 0.0001 M to about 0.05 M; and in which the bath further includes a pH in the range from to about 6.5; an operating temperature in the range from about 35 C to about 95 C;
and a source of electrical energy to be applied between an anode and a cathode 5 immersed in the electrodeposition bath.
This bath is generally a trivalent chromium electroplating bath, and in accordance with the present invention is substantially free of hexavalent chromium. In one embodiment, the bath is free of detectable amounts of hexavalent chromium.
In the baths of the present invention, hexavalent chromium is not intentionally or purposefully added. It is possible that some hexavalent chromium will be formed as a by-product, or that there may be some small quantity of hexavalent chromium impurity present, but this is neither sought nor desired. Suitable measures may be taken to avoid such formation of hexavalent chromium, as known in the art.

The trivalent chromium may be supplied as chromic chloride, CrC13, chromic fluoride, CrF3, chromic oxide, Cr203, chromic phosphate, CrPO4, or in a commercially available solution such as chromium hydroxy dichloride solution, chromic chloride solution, or chromium sulfate solution, e.g., from McGean Chemical Company or Sentury Reagents. Trivalent chromium is also available as chromium sulfate/sodium or potassium sulfate salts, e.g., Cr(OH)SO4=Na2SO4, often referred to as chrometans or kromtans, chemicals useful for tanning of leather, and available from companies such as Elementis, Lancashire Chemical, and Soda Sanayii. As noted below, the trivalent chromium may also be provided as chromic formate, Cr(HCOO)3 from Sentury Reagents. If provided as chromic formate, this would provide both the trivalent chromium and the carboxylic acid.

The concentration of the Cr+3 ions may be in the range from about 0.1 molar (M) to about 5 M. In one embodiment, the electrodeposition bath contains Cr+3 ions at a concentration in the range from about 0.1 M to about 2 M. The higher the concentration of trivalent chromium, the higher the current density that can be applied without resulting in a dendritic deposit, and consequently the faster the rate of crystalline chromium deposition that can be achieved.
In one embodiment, the electrodeposition bath contains a quantity of the divalent sulfur compound sufficient that the chromium deposit comprises from about 0.05 wt.%
to about 20 wt.% sulfur. In one embodiment, the concentration of the divalent sulfur compound in the bath may range from about 0.1 g/I to about 25 g/l, and in one embodiment, the divalent sulfur compound in the bath may range from about 1 g/I to about 5 g/I.
The trivalent chromium bath may further include a carboxylic acid such as formic acid or a salt thereof, such as one or more of sodium formate, potassium formate, ammonium formate, calcium formate, magnesium formate, etc. Other organic additives, including amino acids, such as glycine, and thiocyanate may also be used to produce crystalline chromium deposits from trivalent chromium and their use is within the scope of one embodiment of this invention. As noted above, chromium (III) formate, Cr(HCOO)3, may be used as a source of both trivalent chromium and formate.
At the pH of the bath, the formate will be present in a form to provide formic acid.
In one embodiment, the electrodeposition bath contains a quantity of the carboxylic acid sufficient that the chromium deposit comprises an amount of carbon less than that amount which renders the chromium deposit amorphous. In one embodiment, the concentration of the carboxylic acid in the bath may range from about 0.1 M to about 4 M.
The trivalent chromium bath may further include a source of nitrogen, which may be in the form of ammonium hydroxide or a salt thereof, or may be a primary, secondary or tertiary alkyl amine, in which the alkyl group is a Cl-C6 alkyl.
In one embodiment, the source of nitrogen is other than a quaternary ammonium compound.
In addition, amino acids, hydroxy amines such as quadrol and polyhydric alkanolamines, can be used as the source of nitrogen. In one embodiment of such nitrogen sources, the additives include Cl-C6 alkanol groups. In one embodiment, the source of nitrogen may be added as a salt, e.g., an amine salt such as a hydrohalide salt.
In one embodiment, the electrodeposition bath contains a quantity of the source of nitrogen sufficient that the chromium deposit comprises from about 0.1 to about 5 wt% nitrogen. In one embodiment, the concentration of the source of nitrogen in the bath may range from about 0.1 M to about 6 M.
As noted above, the crystalline chromium deposit may include carbon. The carbon source may be, for example, the organic compound such as formic acid or formic acid salt included in the bath. Similarly, the crystalline chromium may include oxygen and hydrogen, which may be obtained from other components of the bath including electrolysis of water, or may also be derived from the formic acid or salt thereof, or from other bath components.
In addition to the chromium atoms in the crystalline chromium deposit, other metals may be co-deposited. As will be understood by those of skill in the art, such metals may be suitably added to the trivalent chromium electroplating bath as desired to obtain various crystalline alloys of chromium in the deposit. Such metals include, but are not necessarily limited to, Re, Cu, Fe, W, Ni, Mn, and may also include, for example, P (phosphorus). In fact, all elements electrodepositable from aqueous solution, directly or by induction, as described by Pourbaix (Pourbaix, M., "Atlas of Electrochemical Equilibria", 1974, NACE (National Association of Corrosion Engineers)) or by Brenner (Brenner, A., "Electrodeposition of Alloys, Vol. I and Vol. II", 1963, Academic Press, NY) may be alloyed in this process. In one embodiment, the alloyed metal is other than aluminum. As is known in the art, metals electrodepositable from aqueous solution include: Ag, As, Au, Bi, Cd, Co, Cr, Cu, Ga, Ge, Fe, In, Mn, Mo, Ni, P, Pb, Pd, Pt, Rh, Re, Ru, S, Sb, Se, Sn, Te, TI, W and Zn, and inducible elements include B, C and N. As will be understood by those of skill in the art, the co-deposited metal or atom is present in an amount less than the amount of chromium in the deposit, and the deposit obtained thereby often should be body-centered cubic crystalline, as is the crystalline chromium deposit of the present invention obtained in the absence of such co-deposited metal or atom.
The trivalent chromium bath further comprises a pH of at least 5, and the pH
can range up to at least about 6.5. In one embodiment, the pH of the trivalent chromium bath is in the range from about 5 to about 6.5, and in another embodiment the pH of the trivalent chromium bath is in the range from about 5 to about 6, and in another embodiment, the pH of the trivalent chromium bath is about 5.5, and in another embodiment, the pH of the trivalent chromium bath is in the range from about 5.25 to about 5.75.
In one embodiment, the trivalent chromium bath is maintained at a temperature in the range from about 35 C to about 115 C or the boiling point of the solution, whichever is less, during the process of electrodepositing the crystalline chromium deposit of the present invention. In one embodiment, the bath temperature is in the range from about 45 C to about 75 C, and in another embodiment, the bath temperature is in the range from about 50 C to about 65 C, and in one embodiment, the bath temperature is maintained at about 55 C, during the process of electrodepositing the crystalline chromium deposit.
As noted above, a source of divalent sulfur is preferably provided in the trivalent chromium electroplating bath. A wide variety of divalent sulfur-containing compounds can be used in accordance with the present invention.
In one embodiment, the source of divalent sulfur may be any one of those described above with respect to the bath disclosed in the process embodiment.
In another embodiment, the source of divalent sulfur may include one or a mixture of two or more of a compound having the general formula (I):
X'-R'-(S)n-R2-X2 (I) wherein in (I), X' and X2 may be the same or different and each of X' and X2 independently comprise hydrogen, halogen, amino, cyano, nitro, nitroso, azo, alkylcarbonyl, formyl, alkoxycarbonyl, aminocarbonyl, alkylamino, dialkylamino, alkylaminocarbonyl, dialkylaminocarbonyl, carboxyl (as used herein, "carboxyl"
includes all forms of carboxyl groups, e.g., carboxylic acids, carboxylic alkyl esters and carboxylic salts), sulfonate, sulfinate, phosphonate, phosphinate, sulfoxide, carbamate, polyethoxylated alkyl, polypropoxylated alkyl, hydroxyl, halogen-substituted alkyl, alkoxy, alkyl sulfate ester, alkylthio, alkylsulfinyl, alkylsulfonyl, alkylphosphonate or alkylphosphinate, wherein the alkyl and alkoxy groups are Cl-C6, or X' and X2 taken together may form a bond from R' to R2, thus forming a ring containing the R' and R2 groups, wherein R' and R2 may be the same or different and each of R' and R2 independently comprise a single bond, alkyl, allyl, alkenyl, alkynyl, cyclohexyl, aromatic and heteroaromatic rings, alkoxycarbonyl, aminocarbonyl, alkylaminocarbonyl, dialkylaminocarbonyl, polyethoxylated and polypropoxylated alkyl, wherein the alkyl groups are Cl-C6, and wherein n has an average value ranging from 1 to about 5.
In one embodiment, the source of divalent sulfur may include one or a mixture of two or more of a compound having the general formula (Ila) and/or (IIb):

:xz:: 4 R4 S~ R5 and /or X
R3 m (Ila) (Ilb) wherein in (Ila) and (Ilb), R3, R4, R5 and R6 may be the same or different and independently comprise hydrogen, halogen, amino, cyano, nitro, nitroso, azo, alkylcarbonyl, formyl, alkoxycarbonyl, aminocarbonyl, alkylamino, dialkylamino, alkylaminocarbonyl, dialkylaminocarbonyl, carboxyl, sulfonate, sulfinate, phosphonate, phosphinate, sulfoxide, carbamate, polyethoxylated alkyl, polypropoxylated alkyl, hydroxyl, halogen-substituted alkyl, alkoxy, alkyl sulfate ester, alkylthio, alkylsulfinyl, alkylsulfonyl, alkylphosphonate or alkylphosphinate, wherein the alkyl and alkoxy groups are Cl-C6, wherein X represents carbon, nitrogen, oxygen, sulfur, selenium or tellurium and in which m ranges from 0 to about 3, wherein n has an average value ranging from 1 to about 5, and wherein each of (Ila) or (Ilb) includes at least one divalent sulfur atom.
In one embodiment, the source of divalent sulfur may include one or a mixture of two or more of a compound having the general formula (Illa) and/or (Illb):

:'z:: 4 RR5 and /or R3 m (Illa) (Illb) wherein, in (Illa) and (Illb), R3, R4, R5 and R6 may be the same or different and independently comprise hydrogen, halogen, amino, cyano, nitro, nitroso, azo, alkylcarbonyl, alkylamino, dialkylamino, formyl, alkoxycarbonyl, aminocarbonyl, alkylaminocarbonyl, dialkylaminocarbonyl, carboxyl, sulfonate, sulfinate, phosphonate, phosphinate, sulfoxide, carbamate, polyethoxylated alkyl, polypropoxylated alkyl, hydroxyl, halogen-substituted alkyl, alkoxy, alkyl sulfate ester, alkylthio, alkylsulfinyl, alkylsulfonyl, alkylphosphonate or alkylphosphinate, wherein the alkyl and alkoxy groups are Cl-C6, wherein X represents carbon, nitrogen, sulfur, selenium or tellurium and in which m ranges from 0 to about 3, wherein n has an average value ranging from 1 to about 5, and wherein each of (Illa) or (Illb) includes at least one divalent sulfur atom.
In one embodiment, in any of the foregoing sulfur containing compounds, the sulfur may be replaced by selenium or tellurium. Exemplary selenium compounds include seleno-DL-methionine, seleno-DL-cystine, other selenides, R-Se-R', diselenides, R-Se-Se-R' and selenols, R-Se-H, where R and R' independently may be an alkyl or aryl group having from 1 to about 20 carbon atoms, which may include other heteroatoms, such as oxygen or nitrogen, similar to those disclosed above for sulfur.
Exemplary tellurium compounds include ethoxy and methoxy telluride, Te(OC2H5)4 and Te(OCH3)4.
In one embodiment, the electrodeposition bath contains a quantity of the divalent sulfur compound, the source of nitrogen and the carboxylic acid sufficient that the deposit comprises from about 1.7 wt.% to about 4 wt.% sulfur, from about 0.1 wt.% to about 3 wt.% nitrogen, and from about 0.1 wt.% to about 10 wt.% carbon.
In one embodiment, the bath further includes a brightener. Suitable brighteners known in the art may be used. In one embodiment, the brightener comprises a polymer soluble in the bath and having the general formula:

I
CH2-t7-N N-tCH2-JMNL C1 F 2 P 2nX-R2 y R4 O
wherein m has the value 2 or 3, n has a value of at least 2, Rl, R2, R3 and R4, which may be the same or different, each independently denote methyl, ethyl or hydroxyethyl, p has a value in the range from 3 to 12, and X denotes CI , Br and/or I. The polymer may be included in the bath at a concentration in the range from about 0.1 g/L
to about 50 g/L, and in one embodiment, from about 1 g/L to about 10 g/L. These compounds are disclosed in U.S. Patent No. 6,652,728, the disclosure of which relating to these compounds and methods for preparation thereof is incorporated herein by reference.
In one embodiment, the brightener comprises a ureylene quaternary ammonium polymer, an iminoureylene quaternary ammonium polymer, or a thioureylene quaternary ammonium polymer. In on embodiment, the quaternary ammonium polymer has repeating groups of the formula R ~R (1) iN --(CH2)x NH-C-NH-(CH2.)x-N

R R
or the formula R R (2) 0 N1B(CHD,x "'1NH~s~C~~NH-(CH;)x'"" NT 0 R
wherein A is 0, S, N, x is 2 or 3, and R is methyl, ethyl, isopropyl, 2-hydroxyethyl, or -CH2CH(OCH2CH2)yOH, wherein y = 0-6, in alternating sequence with ethoxyethane or methoxyethane groups, and wherein R can be H in formula (2). The polymer may have a molecular weight in the range of 350 to 100,000, and in one embodiment, the molecular weight of the polymer is in the range 350 to 2,000. These compounds are disclosed in U.S. Patent No. 5,405,523, the disclosure of which relating to these compounds and methods for preparation thereof is incorporated herein by reference.
In one embodiment, the ureylene quaternary ammonium polymer has the formula:

Ri ~ R3 ~ (CH2)3-NHC-NH-(CH2)3- i +-Rg L2nC1-R2 R¾
n wherein Y is selected from the group consisting of S and 0; n is at least 1;
Rl, R2, R3 and R4 may be the same or different and are selected from the group consisting of methyl, ethyl, isopropyl, 2-hydroxyethyl and -CH2CH2(OCH2CH2)XOH wherein X may be 0 to 6; and R5 is selected from the group consisting of (CH2)2-0-(CH2)2 ;
(CH2)2-0-(CH2)2-0-(CH2)2 and CH2-CHOH-CH2-O-CH2-CHOH-CH2. In one embodiment, the polymer is MIRAPOLO WT, CAS No. 68555-36-2, which is sold by Rhone-Poulenc. The polymer in MIRAPOLO WT has an average molecular weight of 2200, n=6 (average), Y = 0, R, - R4 are all methyl and R5 is (CH2)2-0-(CH2)2.
The formula for the polymer in MIRAPOLO WT may be represented as follows:

[cH3 H3 ~
N+-(CH2)3'-NHC--NH(CH2)3"_` [ +--(CH2)2-C-(CH2)2 12 Cl~"

As will be understood, the substituents used should be selected so that the resulting compounds are soluble in the baths of the present invention.
As noted above, in one embodiment, the source of divalent sulfur is other than saccharine, and no saccharine is added to the bath. As noted above, in one embodiment, the source of divalent sulfur is other than thiourea, and no thiourea is added to the bath.

In one embodiment, the anodes may be isolated from the bath. In one embodiment, the anodes may be isolated by use of a fabric, which may be either tightly knit or loosely woven. Suitable fabrics include those known in the art for such use, including, e.g., cotton and polypropylene, the latter available from Chautauqua Metal Finishing Supply, Ashville, NY. In another embodiment, the anode may be isolated by use of anionic or cationic membranes, for example, such as perfluorosulfonic acid membranes sold under the tradenames NAFIONO (DuPont), ACIPLEXO (Asahi Kasei), FLEMIONO (Asahi Glass) or others supplied by Dow or by Membranes International Glen Rock, NJ. In one embodiment, the anode may be placed in a compartment, in which the compartment is filled with an acidic, neutral, or alkaline electrolyte that differs from the bulk electrolyte, by an ion exchange means such as a cationic or anionic membrane or a salt bridge.
COMPARATIVE EXAMPLES: HEXAVALENT CHROMIUM
In Table 1 comparative examples of various aqueous hexavalent chromic acid containing electrolytes that produce functional chromium deposits are listed, the crystallographic properties of the deposit tabulated, and reported elemental composition based upon C, 0, H, N and S analysis.

Table 1 Hexavalent chromium based electrolytes for functional chromium Cr03 (M) 2.50 2.50 2.50 2.50 2.50 8.00 H2SO4 (M) 0.026 0.015 0.029 MgSiF6 (M) 0.02 CH2(SO3Na)2 (M) 0.015 K103 (M) 0.016 0.009 HO3SCH2CO2H (M) 0.18 HCI (M) 0.070 H20 to 1 L to 1 L to 1 L to 1 L to 1 L to 1 L
Current Density (A/dm ) 30 20 45 50 50 62 Temperature, C 55 55 50 60 55 50 Cathodic efficiency, % 2-7 10-15 15-25 20-30 35-40 55-60 Lattice(s) BCC BCC BCC BCC BCC/SC BCC
Grain Preferred Random (222) (222) (222) (110) Random orientation PO (211) PO PO
PO
Lattice parameter as 2.883 2.882 2.883 2.881 2.882 2.886 deposited Bulk [C] at% - - 0.04 0.06 Bulk [H] at% 0.055 0.078 0.076 0.068 Bulk [02] at% 0.36 0.62 0.84 0.98 Bulk [S] at% - - 0.04 0.12 The only reference of which the present inventors are aware that purports to disclose a crystalline chromium deposit having a lattice parameter as high as 2.8880 A, obtained from a hexavalent chromium electrodeposition bath, is Sakamoto, Y., "On the crystal structures and electrolytic conditions of chromium electrodeposits", NIPPON
KINZOKU GAKKAISHI - JOURNAL OF THE JAPAN INSTITUTE OF METALS, Vol. 36, No. 5, May 1972, pp. 450-457 (XP009088028) ("Sakamoto"). Sakamoto purports to obtain a bcc crystalline chromium having a lattice parameter of 2.8880 A. This lattice parameter is purportedly obtained by measuring the diffracted ray peak position of the {211} plane of bcc-type chromium as deposited at 75 C by using a weighted average wavelength CrKa=2.29092A. Sakamoto reported finding that the lattice parameter (referred to by Sakamoto as the lattice constant) was dependent on the electrolysis temperature, in which the lattice parameter was reported to increase from a=2.8809 A
to 2.8880 A as the electrolysis temperature increased from 40 C to 75 C.
Despite repeated and earnest efforts, the present inventors have been unable to duplicate the results reported by Sakamoto. Therefore, the disclosure of Sakamoto, with respect to the lattice parameter of a bcc crystalline chromium being 2.8880 A, is in error and so must be considered non-enabling. The present inventors consider that possibly the error or discrepancy arose due to stress in the deposits, resulting, for example, from handling, bending, cutting or other effects subsequent to the electrodeposition. It is well known that lattice parameter will vary with the temperature of the material. The density varies; therefore, the lattice parameter also varies.
However, there is no evidence of which the present inventors are aware that the lattice parameter for an element will vary isothermally unless other elements are present either within the lattice or interstitially. There is a considerable amount of data showing that observed X-ray diffraction peak locations vary based upon stress and it is considered quite possible that such stress was not accounted for in the Sakamoto experiments.
The present inventors report the following repeated and earnest, but ultimately unsuccessful, attempts to duplicate the results reported by Sakamoto.
A solution of chromic acid was prepared using 250 g/I of Cr03 and 2.5 g/L of concentrated sulfuric acid. A lead anode was employed. Brass (60:40) coupons were used as substrates. A CPVC jig which effectively masked the edges of the brass coupons and exposed approximately 7x2 cm of brass was employed to hold the brass coupons as the cathode. The coupons were connected to a ripple free HP
rectifier, capable of constant current operation up to 30 amps not exceeding 25V DC.
Direct current was applied, in all cases, with a current density of 0.6 Amp/cm2 (60A/dm).
Plating was carried out at solution temperatures of 50 C, 60 C, 70 C, and 75 C. Two coupons were plated at each solution temperature. The thickness of the first coupon was measured and the plating time for the second coupon was adjusted to provide a coating of 22-28 microns in thickness.

After plating, the coupons were examined by x-ray diffraction using a Bruker D-Bragg Brentano powder diffractometer equipped with Cu k alpha x-ray source, a Goebel mirror, and Soller slits. Detector configuration was varied and two detectors used: a multiwire 2 dimensional Vantek detector and a Nal scintillation detector equipped with Soller slits. Representative data is presented in Fig. 6. As shown by the data in Fig. 6, the number, location, and intensity of observed reflections varies depending upon the deposition temperature. All the deposits shown in Fig. 6 have a strong (222) reflection near 133 degrees two theta but most of the deposits have very weak or negligible peak intensities for the (211) reflection near 83 degrees two theta.
Despite this, Sakamoto chose to use the (211) reflection to derive the reported lattice parameters. Although not certain, this choice may underlie the apparent error in the lattice parameters reported by Sakamoto.
The plated coupons were also measured with a Scintag Xl powder diffractometer equipped with a position sensitive solid state Peltier cooled detector.
With the latter instrument the lattice parameter for NIST reference material silicon was measured as 5.431 A which compares favorably to the NIST value of 5.43102 A+/-0.00104 A (http://physics.nist.gov/cgi-bin/cuuNalue?asil).
The diffraction peaks that were observed varied with samples obtained from solutions of different temperatures although in all instances a relatively strong (222) reflection near 133 two theta was observed. Using the modified Bragg equation:

lattice constant = a = /\/[(2sin(6))*(h2+k2+12)0.5]

for different observed hkl, where /\(Cuka1)=1.54056, a is the lattice constant, and h, k and I are Miller indices, applied to peaks that were clearly present, the data shown in Fig. 7 was obtained. As shown in Fig. 7, the present inventors measured lattice parameters that varied little, ranging from 2.8812 to 2.883 A, with a mean of 2.8821 A
and a standard deviation of 0.0006 A, regardless of deposition temperature, instrument configuration, or instrument. From the XRD scan data it is evident that at all temperatures there is a strong (222) reflection and at 75 C there is a tendency towards random orientation with the (110), (200), and (211) reflections becoming stronger.
Consequently, the 75 C data is suitable for analysis using the analytical extrapolation parameter method of Cohen (M.U. Cohen, Rev. Sci. Instrum. 6(1935), 68; M.U.
Cohen, Rev. Sci. Instrum. 7(1936), 155) for cubic and non cubic systems cos2(0)/sin(6). Fig. 8 is a graph illustrating the 75 C Sargent data lattice parameter values obtained by the present inventors applying the methods disclosed by Sakamoto. The 75 C data provides an extrapolated lattice constant of 2.8817 A, within the range of 2.8816 to 2.88185 A, as shown in Fig. 8.
Thus, using two different instruments, three different instrument configurations, and two analytical methods for determining lattice constant, there is no evidence for lattice parameters greater than about 2.8830 A, and no evidence or suggestion whatsoever for larger lattice parameters, such as within the range of 2.8895 A+/-0.0025 A, having been produced from a bath with the composition described by Sakamoto. Furthermore, the data obtained by the present inventors and reported herein is consistent with the lattice parameter accepted by standards organizations such as the NIST (USA) of 2.8839 A and the present inventors' measured lattice parameters for hexavalent chromium, as disclosed previously, of 2.8809 A to 2.8858 A.
These data and those obtained by the present inventors applying the process disclosed by Sakamoto are graphically contrasted, in Fig. 9. Fig. 9 is a graphical presentation of various lattice parameters for chromium obtained both from the literature and by carrying out the method of Sakamoto, illustrating the consistency of the Sakamoto method lattice parameter data obtained by the present inventors with the known lattice parameters.
COMPARATIVE EXAMPLES: TRIVALENT CHROMIUM
In Table 2 comparative examples of trivalent chromium process solutions deemed by the Ecochrome project to be the best available technology are tabulated.
The Ecochrome project was a multiyear European Union-sponsored program (G1 RD
CT-2002-00718) to find an efficient and high performance hard chromium alternative based upon trivalent chromium (see, Hard Chromium Alternatives Team (HCAT) Meeting, San Diego, CA, Jan. 24-26, 2006). The three processes reviewed herein are from Cidetec, a consortium based in Spain; ENSME, a consortium based in France;
and, Musashi, a consortium based in Japan. In this table, where no chemical formula is specifically listed, the material is believed to be proprietary in the presentations from which these data were obtained, and is not available.

Table 2 Best available known technology for functional trivalent chromium processes from the Ecochrome project.

(Cidetec) (ENSME) Musashi Cr IIl M 0.40 1.19 CrC13.6H2O (M) from Cr OH 3+3HC1 1.13 H2NCH2CO2H (M) 0.67 Ligand 1 (M) 0.60 Ligand 2 (M) 0.30 Ligand 3 M 0.75 H3BO3 (M) 0.75 Conductivity salts (M) 2.25 HCO2H M 0.19 NH4CI M 0.19 2.43 H3B03 M 0.08 0.42 AIC13.6H20 M 0.27 Surfactant ml/L 0.225 0.2 pH 2-2.3 -0.1 -0.3 Temp C 45-50 50 50 Current density A/dm2 20.00 70.00 40.00 Cathodic efficiency 10% -27% 13%
Structure as plated amorphous amorphous amorphous Pref. Orientation NA NA NA
In the Table 2 comparative examples, the EC3 example contains aluminum chloride.
Other trivalent chromium solutions containing aluminum chloride have been described.
Suvegh et al. (Journal of Electroanalytical Chemistry 455 (1998) 69-73) use an electrolyte comprising 0.8 M[Cr(H20)4C12]CI=2H20, 0.5 M NH4CI, 0.5 M NaCI, 0.15 M
H3B03, 1 M glycine, and 0.45 M AIC13, pH not described. Hong et al. (Plating and Surface Finishing, March 2001) describe an electrolyte comprising mixtures of carboxylic acids, a chromium salt, boric acid, potassium chloride, and an aluminum salt, at pH 1-3. Ishida et al. (Journal of the Hard Chromium Platers Association of Japan 17, No. 2, Oct. 31, 2002) describe solutions comprising 1.126 M[Cr(H20)4CI2]CI=2H20, 0.67 M glycine, 2.43 M NH4CI, and 0.48 M H3B03 to which varying amounts of AIC13.6H20, from 0.11 to 0.41 M were added; pH was not described. Of these four references disclosing aluminum chloride in the trivalent chromium bath, only Ishida et al. contends that the chromium deposit is crystalline, stating that crystalline deposits accompany increasing concentrations of AIC13.

In Table 3 various aqueous ("T") trivalent chromium-containing electrolytes and one ionic liquid ("IL") trivalent chromium-containing electrolyte, all of which can produce chromium deposits in excess of one micron thickness, are listed and the crystallographic properties of the deposit tabulated.
Table 3 Trivalent chromium based electrolytes for functional chromium Cr(OH)SO4. 0.39 0.39 0.39 0.55 0.39 307 Na2SOa M
KCI (M) 3.35 74.55 H3B03 (M) 1.05 61.84 HCO2 K+ (IVl) 0.62 84.1 CrC13=6H2O (M) 1.13 2.26 266.4 Cr(HCO2)3 (M) 0.38 187 CH2OHCH2N+(C
H3 3CI (M) 2.13 139.5 NH4CHO2 (M) 3.72 5.55 63.1 LiCI (IVl) 2.36 42.4 HCO2H (M) 3.52 3.03 3.52 0.82 4.89 46.02 NH4OH (M) 5.53 4.19 5.53 35 (NH4)2SO4 (M) 0.61 0.61 1.18 132.1 NH4CI (M) 0.56 0.56 1.87 0.56 0.56 53.5 NH4Br (M) 0.10 0.10 0.51 0.10 0.10 0.10 97.96 Na4P2O7=10 H2O 0.034 0.034 0.034 446 M
KBr (M) 0.042 119 H20 to 1 L to 1 L to 1 L to 1 L to 1 L to 1 L to 1 L none 18 pH 0.1-3 0.1-3 0.1-3 0.1-3 0.1-3 0.1-3 0.1-3 NA
Current density 12.4 20 20 20 20 50 80 A/d m Temp. C 45 45 45 45 45 45 45 80 Cathodic eff. 25% 15% 15% 15% 15% 30% -10%
Lattice(s) as Amor. Amor. Amor. Amor. Amor. Amor. NA SC
deposited Grain Pref.
Orientation as NA NA NA NA NA Pwdr Pwdr Rndm deposited Lattice parameter after 2.882 2.884 2.882 2.886 2.883 NA NA -anneal 4 hr./191 C
Organic additives Amor. xtal. xtal. xtal. xtal. xtal. xtal. ------pH>4 Grain Orientation (111), (111), (111), (111), (111), (111), after anneal rndm rndm rndm rndm rndm rndm Electrolyte +AIC13=6H20 0.62 Amor. xtal. xtal. xtal. xtal. xtal. xtal.
M, pH<3 (In Table 3: "Amor." = amorphous; rndm = random; pwdr = powder; NA = not applicable; SC = simple cubic; xtal. = crystalline) In Table 4 the various deposits from Tables 1, 2 and 3 are compared using standard test methods frequently used for evaluation of as-deposited functional chromium electrodeposits. From this table it can be observed that amorphous deposits, and deposits that are not BCC (body centered cubic) do not pass all the necessary initial tests.
Table 4 Comparison of test results on as-deposited functional chromium from electrolytes in tables 1-3 Electro- Structure Orient- Appear- Grind Macro- Hardness Cracks lyte ation ance test crack Vickers from after (100g) indent-heatin ation?
HI BCC random powdery fail Yes -- --H2 BCC (222) lustrous pass No 900 No H3 BCC 222 211 lustrous pass No 950 No H4 BCC (222) lustrous pass No 950 No H5 BCC + SC 222 110 lustrous fail No 900 No H6 BCC random. lustrous fail No 960 Yes EC1 amor. NA lustrous fail Yes 845-1000 Yes EC2 amor. NA lustrous fail Yes 1000 Yes EC3 amor. NA lustrous fail Yes -- Yes T1 amor. NA lustrous fail Yes 1000 Yes T2 amor. NA lustrous fail Yes 950 Yes T3 amor. NA lustrous fail Yes 950 Yes T4 amor. NA lustrous fail Yes 900 Yes T5 amor. NA lustrous fail Yes 1050 No T6 amor. NA lustrous fail Yes 950 Yes -- -- -- -- -- --T7 powdery black IL1 SC random particulate fail Yes -- --THE PRESENT INVENTION: NANOGRANULAR TEM or TEM+XRD FUNCTIONAL
CRYSTALLINE CHROMIUM FROM TRIVALENT CHROMIUM BATH AND PROCESS
In accordance with industrial requirements for replacement of hexavalent chromium electrodeposition baths, the deposits from trivalent chromium electrodeposition baths must be crystalline to be effective and useful as a functional chromium deposit. It has been found by the present inventors that certain additives can be used together with adjustments in the process variables of the electrodeposition process to obtain a desirably crystalline functional chromium deposit from a trivalent chromium bath that is substantially free of hexavalent chromium. Typical process variables include current density, solution temperature, solution agitation, concentration of additives, manipulation of the applied current waveform, and solution pH.
Various tests may be used to accurately assess the efficacy of a particular additive, including, e.g., X-ray diffraction (XRD)(to study the structure of the chromium deposit), TEM
diffraction (to study the structure of the chromium deposit, including determining that the deposit is TEM crystalline, even when XRD amorphous in addition to XRD
crystalline), X-ray photoelectron spectroscopy (XPS)(for determination of alloying components of the chromium deposit, greater than about 0.2-0.5 wt.%), PIXE, (Particle Induced X-ray Emission) is a powerful, non-destructive elemental analysis technique, which can be used for very low concentrations of sulfur, carbon, nitrogen and oxygen in the chromium alloy deposit), and electron microscopy (for determination of physical or morphological characteristics such as cracking) and presence of nanocrystalline structure.
In the prior art, it has been generally and widely considered that chromium deposition from trivalent chromium baths must occur at pH values less than about 2.5.
However, there are isolated trivalent chromium plating processes, including brush plating processes, where variously higher pH has been used, although the higher pH
used in these brush plating solutions do not result in a crystalline chromium deposit.
Therefore, in order to assess the efficacy of various additives, stable, high pH
electrolytes were tested as well as the commonly accepted low pH electrolytes.
The present inventors discovered that addition of a divalent sulfur-containing compound to the trivalent chromium bath, together with certain combinations of other additives, allows the deposition of a crystalline chromium deposit that is TEM only or both TEM
and XRD crystalline, as deposited. The divalent sulfur additive is sometimes generally referred to as a "crystallization inducing additive", or "CIA".

Table 5 Additives inducing crystallization from trivalent chromium bath T2.
Crystallization Concentration Range T2 pH 2.5: T2 pH 4.2:
Inducing Additive dded C stalline? Crystalline?
Methionine 0.1, 0.5, 1.0, 1.5 g/L no no, es, es, na Cystine 0.1, 0.5, 1.0, 1.5 /L no es, es, es, es hiomorpholine 0.1, 0.5, 1, 1.5, 2, 3 mL/L no no, no, yes, yes, yes, es hiodi ro ionic Acid 0.1, 0.5, 1.0, 1.5 g/L no no, es, es, es hiodiethanol 0.1, 0.5, 1.0, 1.5 g/L no no, es, es, es Cysteine 0.1, 1, 2.0, 3.0 /L no es, es, es, es, II I Sulfide 0.5, 1.0, 1.5 mL/L no no, es, es, na hiosalic lic Acid 0.5, 1, 1.5 no es, es, yes 3,3'-dithio 1, 2, 5, 10 g/L no yes, yes, yes, yes, i ro anoic acid etrah drothiophene 0.5, 1.0, 1.5 mL/L no no, es, es From the data shown in Table 5 it is apparent that compounds that have divalent sulfur in their structure induce crystallization when functional chromium is electrodeposited from a trivalent chromium solution, at about the above-stated concentrations and when the pH of the bath is greater than about 4, or in some embodiments, greater than 5, or in some embodiments, in the range from about 5 to about 6, in which the chromium crystals have the lattice parameter of 2.8895 +/- 0.0025 A, in accordance with the present invention. In one embodiment, other divalent sulfur compounds can be used in the baths described herein to electrodeposit crystalline chromium having the lattice parameter of the present invention. In one embodiment, compounds having sulfur, selenium or tellurium, when used as described herein, also induce crystallization of chromium. In one embodiment, the selenium and tellurium compounds correspond to the above-identified sulfur compounds, and like the sulfur compounds, result in the electrodeposition of crystalline chromium having a lattice parameter of 2.8895 +/- 0.0025 A.
To further illustrate the induction of crystallization, studies on crystallization inducing additives using electrolyte T3 at pH 5.5 and temperature 50 C with identical cathode current densities of 40 A/dm2 and plating times of thirty minutes using brass substrate are reported in Table 6. After plating is complete the coupons are examined using X-ray diffraction, X-ray induced X-ray fluorescence for thickness determination, and electron induced X-ray fluorescence with an energy dispersive spectrophotometer to measure sulfur content. Table 6 summarizes the data for the induction of sulfur from various divalent sulfur additives and the effects on as-plated crystallization of chromium deposit for trivalent chromium solution, and plating rate. The data suggest that it is not only the presence of a divalent sulfur compound in the solution at a concentration exceeding a threshold concentration, but also the presence of sulfur in the deposit that is important, as well as the combination with the other components of the bath, in inducing crystallization of the chromium deposit as it is deposited.

Table 6 Crystallization Inducing Additive Crystalline Thickness [S] wt% in Additive ("CIA") per L (um) deposit 0.1 g no 3.13 2.1 Methionine 0.5 yes 2.57 4.3 1.0 yes 4.27 3.8 1.5 g (insoluble) 7.17 2.6 0.1 yes 1.62 3.9 Cystine 0.5 yes 0.75 7.1 1.0 yes 1.39 9.3 1.5 yes 0.25 8.6 0.1 mL no 6.87 1.7 0.5 mL no 11.82 3.9 Thiomorpholine 1 mL yes 7.7 5.9 1.5 mL yes 2.68 6.7 2 mL yes 4.56 7.8 3mL yes 6.35 7.1 0.1 no 6.73 1 Thiodipropionic Acid 0.5 g yes 4.83 3.5 1.0 yes 8.11 1.8 1.5 es 8.2 3.1 0.1 mL no 4.88 0.8 Thiodiethanol 0.5 mL yes 5.35 4 1.0 mL yes 6.39 4 1.5 mL yes 3.86 4.9 0.1 yes 2.08 5.1 Cysteine 1.0 yes 1.3 7.5 2.0 g yes 0.35 8.3 3.0 es 0.92 9.7 0.1 mL no 6.39 1.3 Allyl Sulfide 0.5 mL yes 4.06 3.4 (oily) 1.0 mL yes 1.33 4.9 1.5 mL (insoluble) 5.03 2.6 0.5 g yes 2.09 5.8 Thiosalicylic Acid 1.0 yes 0.52 5.5 1.5 yes 0.33 7.2 1.5 g yes 0.33 7.2 1 yes 7.5 5.9 3,3'-dithiodipropanoic acid 2 yes 6 6.1 yes 4 6 yes 1 6.2 3,3-APDSP* 3 yes 2.03 9.47 5 yes 1.56 15.06 1 g yes 4.30 6.28 [1,3]thiazin-3-ium chloride 2 yes 4.32 7.79 5 yes 4.74 9.79 1 g yes 4.34 7.14 Thiazolidin-3-ium dichloride 2 yes 4.07 7.74 5 yes 2.99 8.49 (S content determined by EDS) ("(insoluble)" means the additive was saturated at the given concentration) ~ 3,3-APDSP = 3-(3-aminopropyl disulfanyl) propylamine hydrochloride The following Table 7 provides additional data relating to electroplating baths of trivalent chromium in accordance with the present invention, including representative formulations for production of as-deposited crystalline chromium from baths containing, inter alia, trivalent chromium.

Table 7 Pro- Electro- Additive pH- C- Cathode preferred H, [C] [S] [N]]
cess lyte A/dm2 Efficiency orientation P1 T2 4 ml/L thio- 5.5-50-40 5-10% (222) 900- 3.3 1.57 0.6 morpholine 980 P2 T2 3 mI/L thio- 5.5-50-40 10% Random - 3.0 1.4 0.6 diethanol and (222) P3 T2 1 g/L L- 5.5-50-40 5% Random -cysteine and (222) P4 T5 4 ml/L thio- 5.5-50-40 5-10% (222) 900-morpholine 980 P5 T5 3 ml/L thio- 5.5-50-40 10% Random -diethanol and (222) P6 T5 1 g/L I- 5.5-50-40 5% Random -cysteine and (222) P7 T5 4 ml/L thio- 5.5-50-40 15% (222) 900-mor holine 980 P8 T5 3 ml/L thio- 5.5-50-40 10-12% Random -diethanol and (222) P9 T5 1 g/L L- 5.5-50-40 7-9% Random -cysteine and (222) P10 T5 2 g/L 5.5-50-40 10-12% (222) 940- 5.5 1.8 1.3 thiosalicylic 975 acid P11 T5 2 g/L 3,3'- 5.5-50-40 12-15% (222) 930- 4.9 2.1 1.1 dithiodiprop- 980 anoic acid P12 T5 3 g/L 5.5-50-40 12-15% (222) 3,3-APDSP*
P13 T5 2 g/L 5.5-50-40 12-15% (222) [1,3]thiazin-3-ium CI
P14 T5 2 g/L 5.5-50-40 12-15% (222) Thiazolidin-3-ium 2C1 ~ 3,3-APDSP = 3-(3-aminopropyl disulfanyl) propylamine hydrochloride Although the hardness, C, S and N concentrations are not yet available for the T5 electrolyte examples P12, P13 and P14, since the deposits are clearly crystalline as deposited, it is considered that these data fall within the ranges disclosed herein for each of these parameters.
The above examples are prepared with direct current and without the use of complex cathodic waveforms such as pulse or periodic reverse pulse plating, although such variations on the applied electrical current are within the scope of the present invention. All of the examples in Table 7 that are crystalline have a lattice constant of 2.8895 +/- 0.0025 A, as deposited.
When deposits from processes P12, P13 and P14 are taken for TEM analysis, results consistent with a crystalline chromium deposit having very small grain size are obtained. A thin 10-30 nm lamella about 200 x 400 nm in size is extracted from the deposit using a focused ion beam extraction method and welded to a TEM grid.
The lamella is then examined with a 300 kV field emission TEM by high resolution lattice imaging, dark field and bright field illumination, and by convergent beam electron diffraction (CBED). Several CBED patterns are observed consistent with crystalline deposits, but regions having grains that are oriented in different directions perpendicular to the TEM beam. The obtained high resolution images, such as that shown in Fig 14, show regions with distinct lattice patterns on the scale of 5-20 nm.
The dark field TEM, such as that shown in Fig. 11, shows grains stacked above each with similar contrast suggesting a field oriented fiber was disrupted during growth creating a series of small, nearly symmetric, grains in the 5-20 nm size range. Thus, the grain size of the crystalline chromium deposits in these embodiments of the present invention are quite small, and are substantially smaller than the grain size obtained from hexavalent chromium baths and processes. In one embodiment, the grain size of the crystalline chromium deposits of the present invention have an average grain size of less than 20 nm, and in one embodiment, the grain size of the crystalline chromium deposits of the present invention have an average grain size in the range from 5 nm to 20 nm.
Figs. 11-13 are dark field TEM photomicrographs of a cross sectioned lamella from chromium deposits in accordance with the present invention and conventional chromium deposit from a hexavalent chromium bath. The superimposed arrow in each of Figs. 11-13 shows the direction toward the surface interface. Fig. 11, as noted above, is a dark field TEM of a nanogranular TEM crystalline XRD amorphous chromium alloy deposit in accordance with an embodiment of the present invention.
The chromium alloy crystal grain shown in Fig. 11 has an approximate cross-sectional area of 332 nm2, estimated using ImageJ software. Fig. 12 is a dark field TEM
of a both TEM and XRD nanogranular crystalline chromium alloy deposit. The chromium alloy crystal grain shown in Fig. 12 has an approximate cross-sectional area of 20,600 nm2, estimated using ImageJ software. Fig. 13 is a dark field TEM of a XRD
crystalline chromium deposit from a hexavalent process. The chromium crystal grain nearest the arrow shown in Fig. 13 has an approximate cross-sectional area of 138860 nm2, estimated using ImageJ software, although it appears this grain extends outside the image range, and so is likely to have a considerably larger cross-sectional area. It is noted that each of Figs. 11-13 is at a different scale, appropriate to the grain size depicted in the respective dark field TEM.
In a further example of the utility of this invention pulse depositions are performed using simple pulse waveforms generated with a Princeton Applied Research Model 273A galvanostat equipped with a power booster interface and a Kepco bipolar +/-10A power supply, using process P1, with and without thiomorpholine. Pulse waveforms are square wave, 50% duty cycle, with sufficient current to produce a 40A/dm2 current density overall. The frequencies employed are 0.5 Hz, 5 Hz, 50 Hz, and 500 Hz. At all frequencies the deposits from process P1 without thiomorpholine are amorphous while the deposits from process P1 with thiomorpholine are crystalline as deposited.
In a further example of the utility of this invention pulse depositions are performed using simple pulse waveforms generated with a Princeton Applied Research Model 273A galvanostat equipped with a power booster interface and a Kepco bipolar +/-10A power supply, using process P1, with and without thiomorpholine. Pulse waveforms are square wave, 50% duty cycle, with sufficient current to produce a 40A/dm2 current density overall. The frequencies employed are 0.5 Hz, 5 Hz, 50 Hz, and 500 Hz. At all frequencies the deposits from process P1 without thiomorpholine are amorphous while the deposits from process P1 with thiomorpholine are crystalline as deposited, and have a lattice constant of 2.8895 +/- 0.0025 A.
Similarly the electrolyte T5 is tested with and without thiosalicylic acid at a concentration of 2 g/L using a variety of pulse waveforms having current ranges of 66-109 A/dm2 with pulse durations from 0.4 to 200 ms and rest durations of 0.1 to 1 ms including periodic reverse waveforms with reverse current of 38-55 A/dm2 and durations of 0.1 to 2 ms. In all cases, without thiosalicylic acid the deposit is amorphous, with thiosalicylic acid the deposit is crystalline, and has a lattice constant of 2.8895 +/-0.0025 A.
In one embodiment, the crystalline chromium deposits are homogeneous, without the deliberate inclusion of particles, and have a lattice constant of 2.8895 +/-0.0025 A. For example, particles of alumina, Teflon, silicon carbide, tungsten carbide, titanium nitride, etc. may be used with the present invention to form crystalline chromium deposits including such particles within the deposit. Use of such particles with the present invention is carried out substantially in the same manner as is known from prior art processes.
The foregoing examples use anodes of platinized titanium. However, the invention is in no way limited to the use of such anodes. In one embodiment, a graphite anode may be used as an insoluble anode. In another embodiment, a soluble chromium or ferrochromium anodes may be used. In another embodiment an iridium anode is employed.
In one embodiment, exemplified by certain of the data shown in the following Table 8 for some exemplary embodiments of the present invention, the present invention relates to a chromium deposit that is crystalline as determined by transmission electron microscopy (TEM) but which is amorphous as determined by X-ray diffraction using a copper K alpha (Cu K a) source (XRD). In one embodiment, when the sulfur content of the chromium deposit is in the range from about 0.05 wt.% to about 2.5 wt.%, the chromium deposit in accordance with this embodiment is TEM
crystalline and XRD amorphous. In one embodiment, the sulfur content of the chromium deposit is in the range from about 0.06 wt.% to about 1 wt.%. In one embodiment, the sulfur content of the chromium deposit is in the range from about 0.06 wt.% to less than 1 wt.%, e.g., up to about 0.9 wt.%, or up to about 0.95 wt.%, or up to about 0.98 wt.%.
As an indication of the significance of the sulfur content, even as low as 0.06 wt.%, when zero sulfur is present in the deposit, the deposit is TEM amorphous as well as XRD amorphous. In one embodiment, the zero sulfur deposit is obtained by preparing an electroplating bath containing all of the herein disclosed ingredients except for the divalent sulfur source, and plating a chromium deposit from the bath.

Because the quantity of sulfur in the chromium deposit according to the invention is so low, this method was used to obtain such a deposit.
In addition, in one embodiment, the SEM crystalline, XRD amorphous chromium deposit having the foregoing sulfur contents exhibits significantly improved Taber wear test results, in accordance with the test method of ASTM G195-08.
Fig. 18 is a graph comparing Taber wear data for various chromium deposits, including both conventional chromium deposits and a chromium deposit in accordance with the present invention. The data underlying the graph in Fig. 18 is shown in the following, in which the Taber wear index is reported as milligrams lost per 1000 cycles under a 1 kg load:

Sample Taber wear 95% low 95% high index chromium from hexavalent 1.7 1.35 2.05 amorphous chromium from trivalent 15 14 16 XRD crystalline chromium from trivalent, 7.3 6.72 7.88 6.5 wt.% sulfur XRD amorphous, TEM crystalline 2.2 1.8 2.5 chromium alloy from trivalent, <0.5 wt.%
sulfur As shown in Fig. 18, and in the data above, the Taber wear test results for an embodiment of the present invention in which the nanogranular TEM crystalline XRD
amorphous chromium alloy deposit contains less than 0.5 wt.% sulfur compares quite favorably with the Taber wear test results for a conventional chromium deposit obtained from a hexavalent chromium process. In addition, as shown in Fig. 18, the Taber wear test results for an embodiment of the present invention in which the nanogranular TEM
crystalline XRD amorphous chromium alloy deposit contains less than 0.5 wt.%
sulfur compares very favorably with the Taber wear test results for a XRD crystalline chromium deposit containing about 6.5 wt.% sulfur, which is not nanogranular.
As shown in Fig. 18, the Taber wear test results for an embodiment of the present invention in which the nanogranular TEM crystalline XRD amorphous chromium alloy deposit contains less than 0.5 wt.% sulfur compares very favorably with the Taber wear test results for a TEM and XRD amorphous chromium deposit from a conventional trivalent chromium process (one not in accordance with the present invention).

In addition, in one embodiment, the SEM crystalline, XRD amorphous chromium deposit having the foregoing sulfur contents exhibits significantly improved Vickers hardness when tested in accordance with the test method of ASTM E92-82(2003)e2 Standard test Method for Vickers Hardness of Metallic Materials.
The data in Table 8 is provided as examples of the present invention, and is not intended to be limiting of the scope of the invention, but rather is provided to enable those of skill in the art to better understand and appreciate the invention.
Experimental:

A high pH electrodeposition bath in accordance with an embodiment of the present invention is prepared by combining the following ingredients:

CIA (3,3'-dithiodipropanoic acid) 3 g/L (initial) Cr+3 ion 20 g/L (as Cr(OH)SO4=Na2SO4 = 118.5 g/L) 90% formic acid 180 mL/L
NH4CI 30 g/L
NH4Br 10 g/L
pH 5.5 A series of steel coupons is prepared by electrodeposition from the above-described bath, which initially contains 4.5 g/L of CIA. A control electrodeposition bath is prepared in the same manner but without the CIA. By continuously electroplating from the solution, monitoring the amount of sulfur in the deposit, which gradually decreases with continued operation of the electrolysis, and comparing the properties of the deposits obtained on the coupons, the properties of the deposit can be compared as a function of sulfur content. The process begins with all of the coupons in the electrodeposition bath, and coupons are withdrawn at the times indicated by the Ah/L, when the bath is operated at a current density of 30-40 A/dm2. (This is an exemplary current density range, and other suitable current densities may be used, with appropriate adjustments as known in the art.) Composition and properties of the deposit are measured using the following methods:

The correlation between sulfur in the deposit and small amounts of CIA may be used to estimate the amount of CIA in the baths that produce nanogranular, TEM
crystalline, XRD amorphous chromium deposits. The consumption rate of the CIA is in the approximate range from 0.11 g/AH (estimated from a 1 L scale bath) to 0.16 g/AH
(estimated from a 400 L scale bath). The correlation equation between CIA in solution and sulfur content in the deposit, for less than 2 wt% sulfur in the deposit, is [S](wt%) = 15.5 [CIA](g/L), where [S] is the sulfur content in the deposit and [CIA] is the concentration of the CIA in the electrodeposition bath.

Determination of the concentration of the CIA may be carried out by use of differential pulse stripping polarography with a Hanging Mercury Drop Electrode (HMDE). The conditions for the analysis are as follows:

- purge time: 300s (with Nitrogen);
- Conditioning potential: 0;
- Conditioning time: 10s;
- Deposition time: 120s;
- Deposition potential: 0;
- Initial Potential: 0;
- Final potential: - 0.8V or -1.5V;
- Scan rate: 2 mV/s;
- Pulse height: 50 mV.
Sulfur and chromium in the deposit are measured by six x-ray fluorescence methods using the S k and Cr k x-ray emission lines: (1) Electron induced (15 kV) x-ray fluorescence (XRF); (2) Energy dispersive spectroscopy (EDAXO EDS) in a LEO
scanning electron microscope (SEM); (3) X-ray (40 kV) induced XRF in a non- vacuum environment with a Phillips XRF; (4) Electron induced (15 kV) XRF using a Bruker Quantax silicon drift detector (SDD) EDS with an SEM; (5) radiation induced XRF from a radioactive isotope source; and (6) particle (proton) induced XRF (PIXE) with 1.2 MeV excitation using an NEC
tandem pelletron.

Surface roughness is determined using two methods: (1) Stylus profilometry with a Mitotoyo Surftest 501 profilometer and (2) non contact profilometry using an Olympus laser scanning confocal microscopy (LSCM) with 405 nm laser radiation. and subsequent data analysis using the ImageJ image analysis software from the NIH Various statistics may be obtained, including Ra and Rq, the arithmetic and root mean square deviations of roughness, respectively, and SA/IA, the estimated surface area to image area.
Methods defined by ASME Y14.36M-1996 and ISO 1302:2001 may be used to define roughness statistics.

Carbon, oxygen, chromium and sulfur in the bulk deposit are estimated using x-ray photoelectron spectroscopy (XPS) with a PHI VersaProbe XPS utilizing a monochromated aluminum x-ray source after argon ion sputtering to depths of about 500 to 1000 nm.

XRD crystallinity is determined with a Bruker D8 diffractometer utilizing Cu K
a x-ray source. The XRD pattern is examined and determined to be representative of a crystalline material when sharp peaks are observed at diffraction angles that match those of standard chromium reference patterns.

TEM crystallinity and cross sectional grain area is determined using a Phillips/FEI
Tecnai F-30 300 keV field emission transmission electron microscope (TEM).
Lamella approximately 20 x 8 x 0.2 micron for the TEM may be prepared with an FEI dual beam Nanolab field emission focused ion beam (FIB) equipped with either a Kleindeik or Omniprobe micromanipulator. The cross sectional area is determined by examining dark field photomicrographs and utilizing the ImageJ image processing software to estimate the cross-sectional area as a measure of grain size.

Microhardness is determined by preparing metallographic cross sections and using a Struers/Duramin Vickers/Knoop hardness tester, as in ASTM D-1474.

Nanohardness and reduced modulus is determined using Veeco DI 3100 atomic force microscope equipped with a Hysitron nanoindenter. The data obtained is expressed as nanohardness perpendicular to the surface and reduced modulus. The nanoindentation instrument obtains data related to the modulus (E) and Poisson's ratio (u) as they relate to reduced modulus (Er) based upon Oliver and Pharr, and often represented as:
1/Er=(1-ui2)/Ei-(1-us2)/Es where the subscripts describe the indenting and sample material and experimentally determined from the stiffness of the material obtained by unloading during indentation.
The determination of nanohardness is carried out in accordance with the procedure described in a paper: Pharr, G.M., "Measurement of mechanical properties by ultra-low load indentation", Mat. Sci. Eng. A 253 (1-2), 151-159 (1998).

Wear rates are determined using a Taber abrader and Taber test panels. Wear rates express the amount of material eroded under repeated cycles by an abrasive wheel under load, in accordance with ASTM G195-08.

Deposition rates are determined by mass gain of the plated parts.

a (.0 LO 00 N c~0 (c 6i ni 6 6 o U) o o rn rn o 0? rn ~ LO
~ rn rn o 0 o rn ao o LO o W x a ~ ~ LO r~
r~
r y cp y N
E o a E o0 0 'K 0 O v 0 c~
Q'~ O N
N
Q
CD

O
O
O O O O O
O O O O O
f~ lf~ N (' ) N
E
`-' O
y N
Cp E
E t) o 0 0 0 0 0 0 0~1 o 0 0 0 0 0 0 m Q. d E ~ N N N (o F-O O O O O O O
W f0 O O O O O O O
X

f0 r- O O O O O O O O O O O O O O O O O O O O O O O O O O O O

~ O
J Q. c:
- a p 0 CD CD m m N N o0 N 0 Q~+ O c+') c+') N O p O
U~ c`0 L

W O CO CO f~ <' ) O 6) ~ 6) CO CO p (/) a+ x 7 N 00 7 lz~ lz~ 17 O O O 0 a cfl Lci Lci Ln 4 4 N - o 0 0 0 0 0 ~ p - ~ ~ rn a~o o' c+~ ~ rn o0 ~ ~ m N
~ 3 W cfl cfl cfl LO LO `O `O LO ~ cYi N - 0 O Nle W 00 r M 0 1~ M r M 0 1~ M No0 O N~~O 00 O M Lf~
~ O MIO q NIO q Nul OO Nul OO ll~ OO ll~ 1~ ll~ 1~ O M 1~ O M
O r N M Lf~ ~O 1~ ~ O r M~ Lf~ 1~ 00 ~ r N M Lf~ ~O 1~ O r M~
r r r r r r r r N N N N N N N M M M M
LO M 1~ r L! ~~ M 1~ r L! ~~ M 1~ r L! ~~ M 1- 0 mi M 1~ a) a) O O O
~p r r N N N M M~~~ ~! ~ ~! ~~O ~O ~O 1~ 1~ 00 00 00 r r r a To produce an XRD amorphous, TEM crystalline deposit, the electroplating bath contains a source of divalent sulfur. This source of divalent sulfur may be referred to as the CIA. In one embodiment, the CIA is present at a concentration sufficient to co-deposit from about 0.05 wt.% to about 2.5 wt.% sulfur, considering only S and Cr in the deposit (as by XPS analysis). In one embodiment, the CIA is present at a concentration sufficient to co-deposit from about 0.05 wt.% to about 1.4 wt.% sulfur. In one embodiment, the CIA is present at a concentration sufficient to co-deposit from about 0.05 wt.% to about 0.28 wt.%
sulfur. Without the CIA, the deposit is not TEM crystalline (and is not XRD
crystalline), even though sulfur from sulfate (S04 2) is present in the bath.

In one embodiment, the XRD amorphous, TEM crystalline nanogranular functional chromium alloy deposit obtains significantly improved Vickers hardness as compared to embodiments in which the crystalline chromium alloy deposit is both XRD
crystalline and TEM crystalline, and the deposit contains a higher sulfur content. The following Table 9 shows Vickers hardness data, including standard deviation and 95% confidence intervals for selected panels from those shown above in Table 8.

Table 9 Panel# [S] content Crystalline? Hardness Standard 95%
(wt.%) deviation confidence 41 4.11 (PIXE) XRD, TEM 585 17 10 49 4.68 (EDS) XRD, TEM 642 36 22 57 2.43 PIXE XRD, TEM 667 41 25 65 1.40 (PIXE) TEM only 743 20 12 73 0.28 (EDS) TEM only 807 21 13 101 0.06 (PIXE) TEM only 828 22 14 As is evident from the data shown in Tables 8 and 9, the Vickers hardness for the panels 65, 73 and 101, in which the nanogranular functional chromium alloy deposit is TEM
crystalline and XRD amorphous is considerably higher than for panels 41, 49 and 57, in which the nanogranular functional chromium alloy deposit is both TEM
crystalline and XRD
crystalline.

The following Table 10 shows the chromium, carbon, oxygen, nitrogen and sulfur contents of six representative coupons from those listed in Table 8.

Table 10 Element Coupon Coupon Coupon Coupon Coupon Coupon 17, wt.% 41, wt.% 57, wt.% 65, wt.% 77, wt.% 89, wt.%
Cr 93.98 94.02 94.50 90.64 88.23 88.69 C 0.84 0.74 1.52 4.47 6.04 6.34 0 1.87 2.11 2.37 3.48 4.78 4.04 N 0.65 0.68 0.15 0.33 0.57 0.32 S 2.66 2.45 1.45 1.07 0.25 0.32 Fig. 1 includes four X-ray diffraction patterns (Cu k a) of chromium deposits, labeled (a), (b), (d) and (d). The X-ray diffraction pattern labeled (a) is from an amorphous chromium deposit from a prior art trivalent chromium process and bath, and shows the typical pattern for an amorphous chromium deposit. The X-ray diffraction pattern labeled (b) is from a TEM crystalline, XRD amorphous nanogranular functional chromium alloy deposited in accordance with an embodiment of the present invention.
The (b) pattern shows only that the deposit is XRD amorphous, since Cu K a X-rays cannot discern the nanogranular crystallinity of this deposit, which is clearly present as shown by the TEM diffraction pattern, such as that shown in Fig. 15. The X-ray diffraction pattern labeled (c) is from a TEM crystalline, XRD crystalline nanogranular functional chromium alloy deposited in accordance with another embodiment of the present invention. The (c) pattern shows that the crystallinity of this deposit is discernible to the Cu K a X-rays, and shows that the deposit is XRD
crystalline. The X-ray diffraction pattern labeled (d) is from a crystalline functional chromium deposited from a hexavalent chromium process of the prior art.

Fig. 2 is a series of typical X-ray diffraction pattern (Cu k alpha) showing the progressive effect of annealing an amorphous chromium deposit from a trivalent chromium bath of the prior art, containing no sulfur. In Fig. 2 there is shown a series of X-ray diffraction scans, starting at the lower portion and proceeding upward in Fig. 2, as the chromium deposit is annealed for longer and longer periods of time. As shown in Fig. 2, initially, the amorphous chromium deposit results in an initially amorphous X-ray diffraction pattern typical of an amorphous chromium similar to that of (a) in Fig. 1, but with continued annealing, the chromium deposit gradually crystallizes, resulting in a pattern of sharp peaks corresponding to the regularly occurring atoms in the ordered crystal structure. The lattice parameter of the annealed chromium deposit is in the 2.882 to 2.885 range, although the quality of this series is not good enough to measure accurately.

Fig. 3 is a series of electron photomicrographs of cross-sectioned chromium deposits showing the macrocracking effect of annealing an initially amorphous chromium deposit from a trivalent chromium bath of the prior art. In the photomicrograph labeled "As deposited amorphous chromium" the chromium layer is the lighter-colored layer deposited on the mottled-appearing substrate. In the photomicrograph labeled "1 h at 250 C", after annealing at 250 C for one hour, macrocracks have formed, while the chromium deposit crystallizes, the macrocracks extend through the thickness of the chromium deposit, down to the substrate.
In this and the subsequent photomicrographs, the interface between the chromium deposit and the substrate is the faint line running roughly perpendicular to the direction of propagation of the macrocracks, and is marked by the small black square with "P1"
within. In the photomicrograph labeled "1 h at 350 C", after annealing at 350 C for one hour, larger and more definite macrocracks have formed (compared to the "1 h at 250 C" sample), while the chromium deposit crystallizes, the macrocracks extend through the thickness of the chromium deposit, down to the substrate. In the photomicrograph labeled "1 h at 450 C", after annealing at 450 C for one hour, the macrocracks have formed and are larger than the lower temperature samples, while the chromium deposit crystallizes, the macrocracks extend through the thickness of the chromium deposit, down to the substrate. In the photomicrograph labeled "1 h at 550 C", after annealing at 550 C for one hour, the macrocracks have formed and appear to be larger yet than the lower temperature samples, while the chromium deposit crystallizes, the macrocracks extend through the thickness of the chromium deposit, down to the substrate.

Fig. 4 is a graphical chart illustrating how the concentration of sulfur in one embodiment of a chromium deposit relates to the crystallinity of the chromium deposit.

In the graph shown in Fig. 4, if the deposit is crystalline, the crystallinity axis is assigned a value of one, while if the deposit is amorphous, the crystallinity axis is assigned a value of zero. Thus, in the embodiment shown in Fig. 4, where the sulfur content of the chromium deposit ranges from about 1.7 wt.% to about 4 wt.%, the deposit is crystalline, while outside this range, the deposit is amorphous. It is noted in this regard, that the amount of sulfur present in a given crystalline chromium deposit can vary. That is, in some embodiments, a crystalline chromium deposit may contain, for example, about 1 wt.% sulfur and be crystalline, and in other embodiments, with this sulfur content, the deposit would be amorphous (as in the single point shown in Fig. 4).
In other embodiments, a higher sulfur content, for example, up to about 20 wt.%, might be found in a chromium deposit that is crystalline, while in other embodiments, if the sulfur content is greater than 4 wt.%, the deposit may be amorphous. Thus, sulfur content is important, but not controlling and not the only variable affecting the crystallinity of the trivalent-derived chromium deposit.

It is noted that the XRD amorphous deposits shown in Fig. 4, in accordance with one embodiment of the present invention, can be TEM crystalline, despite being XRD
amorphous.

Fig. 5 is a graphical chart comparing the crystal lattice parameter, in Angstroms (A) for a crystalline chromium deposit in accordance with the present invention with crystalline chromium deposits from hexavalent chromium baths and annealed amorphous-as deposited chromium deposits. As shown in Fig. 5, the lattice parameter of a crystalline chromium deposit in accordance with the present invention is significantly greater and distinct from the lattice parameter of pyrometallurgically derived chromium ("PyroCr"), is significantly greater and distinct from the lattice parameters of all of the hexavalent chromium deposits ("H1"-"H6"), and is significantly greater and distinct from the lattice parameters of the annealed amorphous-as-deposited chromium deposits ("T1(350 C)", "T1(450 C)" and "T1(550 C)"). The difference between the lattice parameters of the trivalent crystalline chromium deposits of the present invention and the lattice parameters of the other chromium deposits, such as those illustrated in Fig. 5, is statistically significant, at least at the 95%
confidence level, according to the standard Student's `t' test.

Figs. 6-9 relate to the present inventors' attempts to duplicate the process and obtain the deposit reported in the Sakamoto publication and have been discussed above.

Fig. 10 is a high resolution transmission electron microscopy photomicrograph of a cross sectioned lamella from a functional crystalline chromium deposit in accordance with the present invention, showing different lattice orientations corresponding to grain sizes less than 20 nm.

Figs. 11-13 are dark field TEM photomicrographs of cross sectioned lamella from chromium deposits in accordance with two embodiments of the present invention, and of a chromium deposit obtained from a hexavalent plating bath, showing grains arranged in a disrupted fiber-like manner. These figures have been discussed above.
Figs. 14-17 are TEM diffraction pattern photomicrographs of chromium deposits, in which the deposits are XRD crystalline, TEM crystalline but XRD amorphous, both XRD and TEM amorphous, and a conventional chromium deposit from a hexavalent chromium bath and process, respectively. These figures have been discussed above.
In one embodiment additional alloying of the crystalline chromium electrodeposit, in which the chromium has a lattice constant of 2.8895 +/- 0.0025 A, may be performed using ferrous sulfate and sodium hypophosphite as sources of iron and phosphorous with and without the addition of 2 g/L thiosalicylic acid. Additions of 0.1g/L
to 2 g/L of ferrous ion to electrolyte T7 result in alloys containing 2 to 20% iron. The alloys are amorphous without the addition of thiosalicylic acid. Additions of 1 to 20 g/L
sodium hypophosphite resulted in alloys containing 2 to 12% phosphorous in the deposit. The alloys were amorphous unless thiosalicylic acid is added.

In another embodiment, crystalline chromium deposits having a lattice constant of 2.8895 +/- 0.0025 A are obtained from electrolyte T7 with 2 g/L
thiosalicylic acid agitated using ultrasonic energy at a frequency of 25kHz and 0.5 MHz. The resulting deposits are crystalline, having a lattice constant of 2.8895 +/- 0.0025 A, bright, and there is no significant variation in deposition rate regardless of the frequency used.

It is noted that, throughout the specification and claims, the numerical limits of the disclosed ranges and ratios may be combined, and are deemed to include all intervening values. Thus, for example, where ranges of 1-100 and 10-50 are specifically disclosed, ranges of 1-10, 1-50, 10-100 and 50-100 are deemed to be within the scope of the disclosure, as are the intervening integral values.
Furthermore, all numerical values are deemed to be preceded by the modifier "about", whether or not this term is specifically stated. Furthermore, when the chromium deposit is electrodeposited from a trivalent chromium bath as disclosed herein in accordance with the present invention, and the thus-formed deposit is stated herein as being crystalline, it is deemed to have a lattice constant of 2.8895 +/- 0.0025 A, whether or not this lattice constant is specifically stated. Finally, all possible combinations of disclosed elements and components are deemed to be within the scope of the disclosure, whether or not specifically mentioned. That is, terms such as "in one embodiment" are deemed to disclose unambiguously to the skilled person that such embodiments may be combined with any and all other embodiments disclosed in the present specification.

While the principles of the invention have been explained in relation to certain particular embodiments, and are provided for purposes of illustration, it is to be understood that various modifications thereof will become apparent to those skilled in the art upon reading the specification. Therefore, it is to be understood that the invention disclosed herein is intended to cover such modifications as fall within the scope of the appended claims. The scope of the invention is limited only by the scope of the claims.

Claims

CA2700147A 2007-10-02 2008-10-02 Crystalline chromium alloy deposit Active CA2700147C (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US97680507P 2007-10-02 2007-10-02
US60/976,805 2007-10-02
PCT/US2008/078561 WO2009046181A1 (en) 2007-10-02 2008-10-02 Crystalline chromium alloy deposit

Publications (2)

Publication Number Publication Date
CA2700147A1 true CA2700147A1 (en) 2009-04-09
CA2700147C CA2700147C (en) 2015-12-29

Family

ID=40084454

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2700147A Active CA2700147C (en) 2007-10-02 2008-10-02 Crystalline chromium alloy deposit

Country Status (11)

Country Link
US (1) US8187448B2 (en)
EP (1) EP2217745B1 (en)
JP (1) JP5570423B2 (en)
KR (1) KR101557481B1 (en)
CN (1) CN101849041B (en)
BR (1) BRPI0817924B1 (en)
CA (1) CA2700147C (en)
ES (1) ES2491517T3 (en)
MX (1) MX2010003543A (en)
PL (1) PL2217745T3 (en)
WO (1) WO2009046181A1 (en)

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7723262B2 (en) 2005-11-21 2010-05-25 Energ2, Llc Activated carbon cryogels and related methods
CN101410556B (en) * 2006-03-31 2010-12-29 爱托特奇德国股份有限公司 Crystalline chromium deposit
EP2100317B1 (en) 2006-11-15 2016-01-27 Energ2, Inc. Electric double layer capacitance device
US8725477B2 (en) 2008-04-10 2014-05-13 Schlumberger Technology Corporation Method to generate numerical pseudocores using borehole images, digital rock samples, and multi-point statistics
US9581723B2 (en) * 2008-04-10 2017-02-28 Schlumberger Technology Corporation Method for characterizing a geological formation traversed by a borehole
US8293818B2 (en) 2009-04-08 2012-10-23 Energ2 Technologies, Inc. Manufacturing methods for the production of carbon materials
US8311788B2 (en) 2009-07-01 2012-11-13 Schlumberger Technology Corporation Method to quantify discrete pore shapes, volumes, and surface areas using confocal profilometry
WO2011003033A1 (en) 2009-07-01 2011-01-06 Energ2, Inc. Ultrapure synthetic carbon materials
EP2510569B1 (en) * 2009-12-11 2020-07-22 Basf Se Carbon materials comprising an electrochemical modifier
US8916296B2 (en) 2010-03-12 2014-12-23 Energ2 Technologies, Inc. Mesoporous carbon materials comprising bifunctional catalysts
CN101928914B (en) * 2010-09-02 2011-12-21 南京大学 Method for preparing large-area two-dimensional super-structure material
WO2012045002A1 (en) 2010-09-30 2012-04-05 Energ2 Technologies, Inc. Enhanced packing of energy storage particles
DE102010055968A1 (en) 2010-12-23 2012-06-28 Coventya Spa Substrate with corrosion-resistant coating and process for its preparation
WO2012092210A1 (en) 2010-12-28 2012-07-05 Energ2 Technologies, Inc. Carbon materials comprising enhanced electrochemical properties
US20120262127A1 (en) 2011-04-15 2012-10-18 Energ2 Technologies, Inc. Flow ultracapacitor
EP2886683B1 (en) * 2011-05-03 2019-12-18 ATOTECH Deutschland GmbH Electroplating bath and method for producing dark chromium layers
US10522836B2 (en) 2011-06-03 2019-12-31 Basf Se Carbon-lead blends for use in hybrid energy storage devices
US9771661B2 (en) * 2012-02-06 2017-09-26 Honeywell International Inc. Methods for producing a high temperature oxidation resistant MCrAlX coating on superalloy substrates
US9409777B2 (en) 2012-02-09 2016-08-09 Basf Se Preparation of polymeric resins and carbon materials
CN102965696B (en) * 2012-11-28 2015-05-20 郑州市大有制版有限公司 Efficient gravure chromeplating additive
WO2014143213A1 (en) 2013-03-14 2014-09-18 Energ2 Technologies, Inc. Composite carbon materials comprising lithium alloying electrochemical modifiers
US10195583B2 (en) 2013-11-05 2019-02-05 Group 14 Technologies, Inc. Carbon-based compositions with highly efficient volumetric gas sorption
EP2899299A1 (en) 2014-01-24 2015-07-29 COVENTYA S.p.A. Electroplating bath containing trivalent chromium and process for depositing chromium
KR102347131B1 (en) 2014-03-14 2022-01-04 그룹14 테크놀로지스, 인코포레이티드 Novel methods for sol-gel polymerization in absence of solvent and creation of tunable carbon structure from same
TWI551435B (en) 2014-05-05 2016-10-01 國立臺灣大學 Steel sheet and fabrication method thereof
DE102014116717A1 (en) * 2014-11-14 2016-05-19 Maschinenfabrik Kaspar Walter Gmbh & Co Kg Electrolyte and process for the production of chrome layers
US10087540B2 (en) 2015-02-17 2018-10-02 Honeywell International Inc. Surface modifiers for ionic liquid aluminum electroplating solutions, processes for electroplating aluminum therefrom, and methods for producing an aluminum coating using the same
CN104789996A (en) * 2015-04-15 2015-07-22 吉林莱德化学科技有限公司 Trivalent chrominm plating electroplating liquid
US20190097222A1 (en) 2015-08-14 2019-03-28 Energ2 Technologies, Inc. Composites of porous nano-featured silicon materials and carbon materials
WO2017040299A1 (en) 2015-08-28 2017-03-09 Energ2 Technologies, Inc. Novel materials with extremely durable intercalation of lithium and manufacturing methods thereof
FR3043939B1 (en) * 2015-11-19 2019-12-20 Safran AIRCRAFT ENGINE PART COMPRISING AN EROSION PROTECTION COATING AND METHOD FOR MANUFACTURING SUCH A PART
TWI612184B (en) * 2016-10-18 2018-01-21 德創奈米科技股份有限公司 Yarn guiding elements for textile machine with coating composite metal carbide ceramic electroplating layer and production method the same
EP3593369A4 (en) 2017-03-09 2021-03-03 Group14 Technologies, Inc. Decomposition of silicon-containing precursors on porous scaffold materials
ES2823149T3 (en) * 2017-12-22 2021-05-06 Atotech Deutschland Gmbh A method of increasing the corrosion resistance of a substrate comprising an outer layer of chromium alloy
DE102018133532A1 (en) * 2018-12-21 2020-06-25 Maschinenfabrik Kaspar Walter Gmbh & Co Kg Electrolyte and process for the production of chrome layers
US11807929B2 (en) 2019-03-14 2023-11-07 Unison Industries, Llc Thermally stabilized nickel-cobalt materials and methods of thermally stabilizing the same
JP2020158872A (en) * 2019-03-28 2020-10-01 株式会社豊田中央研究所 Slide system
FI129420B (en) * 2020-04-23 2022-02-15 Savroc Ltd An aqueous electroplating bath
US11639292B2 (en) 2020-08-18 2023-05-02 Group14 Technologies, Inc. Particulate composite materials
US11335903B2 (en) 2020-08-18 2022-05-17 Group14 Technologies, Inc. Highly efficient manufacturing of silicon-carbon composites materials comprising ultra low z
US11174167B1 (en) 2020-08-18 2021-11-16 Group14 Technologies, Inc. Silicon carbon composites comprising ultra low Z
JP7409998B2 (en) 2020-08-27 2024-01-09 日立Astemo株式会社 Buffer and buffer manufacturing method
CN113388868A (en) * 2021-06-21 2021-09-14 集美大学 Method for preparing self-stripping ultrathin copper foil by using discrete chromium crystal nucleus
CN113403650A (en) * 2021-06-21 2021-09-17 集美大学 Method for improving coating uniformity of release agent by using discrete crystal nuclei
JP2023018744A (en) * 2021-07-28 2023-02-09 株式会社Jcu White trivalent chromium plating bath and white trivalent chromium plating method for object to be plated using the same
CN113774438A (en) * 2021-08-24 2021-12-10 上原汽车铭牌(惠州)有限公司 Trivalent chromium electroplating solution formula for automobile mark production and trivalent chromium electroplating process

Family Cites Families (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US900597A (en) 1908-01-16 1908-10-06 Franz Salzer Process for producing an electrolytic deposit of metallic chromium.
US1496845A (en) 1923-04-13 1924-06-10 Metal & Thermit Corp Process of producing pure chromium by electrolysis
US2470378A (en) 1944-06-07 1949-05-17 M M Warner Production of chromium ammonium chloride complexes
US2927066A (en) 1955-12-30 1960-03-01 Glenn R Schaer Chromium alloy plating
US2962428A (en) 1959-01-15 1960-11-29 Metal & Thermit Corp Process for chromium plating
DE1098066B (en) 1959-01-31 1961-01-26 Merten Geb Electrical connector
FR1563847A (en) 1968-01-30 1969-04-18
GB1378883A (en) 1971-02-23 1974-12-27 Albright & Wilson Electroplating
GB1368749A (en) 1971-09-30 1974-10-02 British Non Ferrous Metals Res Electrodeposition of chromium
US4054494A (en) 1973-12-13 1977-10-18 Albright & Wilson Ltd. Compositions for use in chromium plating
GB1455580A (en) 1973-12-13 1976-11-17 Albright & Wilson Electrodeposition of chromium
US4062737A (en) 1974-12-11 1977-12-13 International Business Machines Corporation Electrodeposition of chromium
GB1558169A (en) 1975-07-03 1979-12-19 Albright & Wilson Chromium electroplating
US4161432A (en) 1975-12-03 1979-07-17 International Business Machines Corporation Electroplating chromium and its alloys
US4093521A (en) 1975-12-18 1978-06-06 Stanley Renton Chromium electroplating
DE2606852C2 (en) 1976-02-20 1977-09-15 Bauer, Wilhelm, Bauer, Hans, Dipl Chem, 3000 Hannover Bath for galvanic direct chrome plating of calender rolls
SE7708780L (en) 1976-08-06 1978-02-07 Montedison Spa FLUORSULFONYLOXAFLUOROALKANES, THEIR DERIVATIVES, FLUOROSULPHONYLOLEFINS, THEIR COPOLYMERS AND PROCEDURES FOR THE MANUFACTURE
JPS53108041A (en) 1977-02-28 1978-09-20 Toyo Soda Mfg Co Ltd Chromium electroplating bath
JPS53106348A (en) * 1977-02-28 1978-09-16 Toyo Soda Mfg Co Ltd Electrolytic bath for chromium plating
GB1552263A (en) 1977-03-04 1979-09-12 Bnf Metals Tech Centre Trivalent chromium plating baths
US4167460A (en) 1978-04-03 1979-09-11 Oxy Metal Industries Corporation Trivalent chromium plating bath composition and process
GB2051861B (en) 1979-06-29 1983-03-09 Ibm Deposition of thick chromium films from trivalent chromium plating solutions
US4477318A (en) 1980-11-10 1984-10-16 Omi International Corporation Trivalent chromium electrolyte and process employing metal ion reducing agents
US4392922A (en) * 1980-11-10 1983-07-12 Occidental Chemical Corporation Trivalent chromium electrolyte and process employing vanadium reducing agent
GB2093861B (en) 1981-02-09 1984-08-22 Canning Materials W Ltd Bath for electrodeposition of chromium
EP0073221B1 (en) 1981-03-09 1986-01-29 Battelle Development Corporation High-rate chromium alloy plating
GB2110242B (en) 1981-11-18 1985-06-12 Ibm Electroplating chromium
GB2109817B (en) 1981-11-18 1985-07-03 Ibm Electrodeposition of chromium
GB2109816B (en) 1981-11-18 1985-01-23 Ibm Electrodeposition of chromium
GB2109815B (en) 1981-11-18 1985-09-04 Ibm Electrodepositing chromium
ATE33686T1 (en) 1982-02-09 1988-05-15 Ibm ELECTROLYTIC DEPOSITION OF CHROMIUM AND ITS ALLOYS.
US4543167A (en) 1982-03-05 1985-09-24 M&T Chemicals Inc. Control of anode gas evolution in trivalent chromium plating bath
FR2529581A1 (en) 1982-06-30 1984-01-06 Armines ELECTROLYSIS BATH BASED ON TRIVALENT CHROME
US4450052A (en) 1982-07-28 1984-05-22 M&T Chemicals Inc. Zinc and nickel tolerant trivalent chromium plating baths
US4432843A (en) * 1982-07-29 1984-02-21 Omi International Corporation Trivalent chromium electroplating baths and processes using thiazole addition agents
CA1244376A (en) 1983-05-12 1988-11-08 Thaddeus W. Tomaszewski Trivalent chromium electrolyte and process
US4461680A (en) 1983-12-30 1984-07-24 The United States Of America As Represented By The Secretary Of Commerce Process and bath for electroplating nickel-chromium alloys
GB8409073D0 (en) 1984-04-07 1984-05-16 Inter Metals & Minerals Sa Electrodeposition of chromium &c
JPS6156294A (en) 1984-08-27 1986-03-20 Nippon Kokan Kk <Nkk> Chromium alloy plating bath
GB2171114A (en) 1985-02-06 1986-08-20 Canning W Materials Ltd Trivalent chromium electroplating baths and rejuvenation thereof
US4690735A (en) 1986-02-04 1987-09-01 University Of Florida Electrolytic bath compositions and method for electrodeposition of amorphous chromium
US4804446A (en) 1986-09-19 1989-02-14 The United States Of America As Represented By The Secretary Of Commerce Electrodeposition of chromium from a trivalent electrolyte
EP0285931B1 (en) 1987-03-31 1993-08-04 Nippon Steel Corporation Corrosion resistant plated steel strip and method for producing same
US4960735A (en) 1988-11-03 1990-10-02 Kennametal Inc. Alumina-zirconia-silicon carbide-magnesia ceramics
US5770090A (en) 1989-07-28 1998-06-23 Lewis, Iii; Tom Method for recovery of heavy metal from waste water
JPH03255271A (en) * 1990-03-06 1991-11-14 Teikoku Piston Ring Co Ltd Piston ring
JPH03255270A (en) 1990-03-06 1991-11-14 Teikoku Piston Ring Co Ltd Piston ring
US5269905A (en) 1990-04-30 1993-12-14 Elf Atochem North America, Inc. Apparatus and process to regenerate a trivalent chromium bath
US5196109A (en) 1991-08-01 1993-03-23 Geoffrey Scott Trivalent chromium electrolytes and plating processes employing same
US5294326A (en) 1991-12-30 1994-03-15 Elf Atochem North America, Inc. Functional plating from solutions containing trivalent chromium ion
JPH05292300A (en) 1992-04-16 1993-11-05 Canon Inc Image forming device
US5352266A (en) 1992-11-30 1994-10-04 Queen'university At Kingston Nanocrystalline metals and process of producing the same
US5433797A (en) 1992-11-30 1995-07-18 Queen's University Nanocrystalline metals
US5338433A (en) 1993-06-17 1994-08-16 Mcdonnell Douglas Corporation Chromium alloy electrodeposition and surface fixation of calcium phosphate ceramics
US5415763A (en) 1993-08-18 1995-05-16 The United States Of America As Represented By The Secretary Of Commerce Methods and electrolyte compositions for electrodepositing chromium coatings
FR2726289B1 (en) 1994-10-28 1997-03-28 Floquet Monopole PROCESS FOR ELECTRODEPOSITION OF A CHROME COATING COMPRISING SOLID INCLUSIONS AND BATH IMPLEMENTED IN THIS PROCESS
US5578167A (en) 1996-01-31 1996-11-26 Motorola, Inc. Substrate holder and method of use
US20010054557A1 (en) * 1997-06-09 2001-12-27 E. Jennings Taylor Electroplating of metals using pulsed reverse current for control of hydrogen evolution
JP3918142B2 (en) 1998-11-06 2007-05-23 株式会社日立製作所 Chrome-plated parts, chromium-plating method, and method of manufacturing chromium-plated parts
US6773573B2 (en) 2001-10-02 2004-08-10 Shipley Company, L.L.C. Plating bath and method for depositing a metal layer on a substrate
US6652731B2 (en) 2001-10-02 2003-11-25 Shipley Company, L.L.C. Plating bath and method for depositing a metal layer on a substrate
US6736954B2 (en) 2001-10-02 2004-05-18 Shipley Company, L.L.C. Plating bath and method for depositing a metal layer on a substrate
US6911068B2 (en) 2001-10-02 2005-06-28 Shipley Company, L.L.C. Plating bath and method for depositing a metal layer on a substrate
JP3332373B1 (en) 2001-11-30 2002-10-07 ディップソール株式会社 A treatment solution for forming a hexavalent chromium-free rust preventive film on zinc and zinc alloy plating, a hexavalent chromium-free rust preventive film, and a method for forming the same.
JP3332374B1 (en) 2001-11-30 2002-10-07 ディップソール株式会社 A treatment solution for forming a hexavalent chromium-free rust preventive film on zinc and zinc alloy plating, a hexavalent chromium-free rust preventive film, and a method for forming the same.
EP1467001A4 (en) * 2002-01-18 2007-02-21 Japan Science & Tech Agency METHOD FOR FORMING Re COATING FILM OR Re-Cr ALLOY COATING FILM THROUGH ELECTROPLATING
US7052592B2 (en) 2004-06-24 2006-05-30 Gueguine Yedigarian Chromium plating method
CN101410556B (en) * 2006-03-31 2010-12-29 爱托特奇德国股份有限公司 Crystalline chromium deposit
WO2008057123A1 (en) 2006-11-09 2008-05-15 Massachusetts Institute Of Technology Preparation and properties of cr-c-p hard coatings annealed at high temperature for high temperature applications
US20080169199A1 (en) * 2007-01-17 2008-07-17 Chang Gung University Trivalent chromium electroplating solution and an electroplating process with the solution

Also Published As

Publication number Publication date
KR20100075888A (en) 2010-07-05
JP5570423B2 (en) 2014-08-13
CA2700147C (en) 2015-12-29
ES2491517T3 (en) 2014-09-08
CN101849041A (en) 2010-09-29
JP2010540781A (en) 2010-12-24
CN101849041B (en) 2013-01-23
BRPI0817924A2 (en) 2015-04-07
EP2217745B1 (en) 2014-06-11
PL2217745T3 (en) 2014-11-28
KR101557481B1 (en) 2015-10-02
US8187448B2 (en) 2012-05-29
US20090114544A1 (en) 2009-05-07
BRPI0817924A8 (en) 2019-01-29
WO2009046181A1 (en) 2009-04-09
MX2010003543A (en) 2010-05-17
EP2217745A1 (en) 2010-08-18
BRPI0817924B1 (en) 2019-02-12

Similar Documents

Publication Publication Date Title
CA2700147C (en) Crystalline chromium alloy deposit
CA2647571C (en) Crystalline chromium deposit
Tsyntsaru et al. Tribological and corrosive characteristics of electrochemical coatings based on cobalt and iron superalloys
Bełtowska-Lehman et al. Electrodeposition and characterization of Ni/Al2O3 nanocomposite coatings
Mahdavi et al. Characteristics and properties of Cr coatings electrodeposited from Cr (III) baths
Ved et al. Electroplating and functional properties of Fe-Mo and Fe-Mo-W coatings
Kazimierczak et al. Electrodeposition of Sn-Mn layers from aqueous citrate electrolytes
Hordienko et al. Electrodeposition of chromium coatings from sulfate–carbamide electrolytes based on Cr (III) compounds
Rashwan Electrodeposition of Zn–Cu coatings from alkaline sulphate bath containing glycine
Diafi et al. Study of Zn-Ni alloy coatingsmodified by nano-Al2O3 particles incorporation
Bigos et al. Electrodeposition and properties of nanocrystalline Ni-based alloys with refractory metal from citrate baths
Barron The electrochemistry of Zn in deep eutectic solvents
Bedir et al. Effect of pH values on the characterization of electrodeposited Zn–Mn coatings in chloride-based acidic environment
Mbugua et al. The Influence of Co Concentration on the Properties of Conventionally Electrodeposited Ni–Co–Al 2 O 3–SiC Nanocomposite Coatings
Yang et al. Electrodeposition of iron‐enriched nanocrystalline Fe‐Ni alloy foil from chloride‐sulfate solutions
VASILACHE ADVANCED CHARACTERIZATION METHODS FOR NICKEL AND ZINC-NICKEL ALLOY LAYERS ELECTROCHEMICALLY DEPOSITED
POROCH-SERIŢAN et al. SYNTHESIS AND CHARACTERIZATION OF ELECTRODEPOSITED NI–W ALLOYS WITH DIFFERENT LEVELS OF TUNGSTEN CONTENT
Fouladvari et al. Electrodeposition of zinc-nickel alloys from ethylene glycol-based electrolytes in presence of additives for corrosion protection
Bigos et al. Electrodeposition and Properties of Nanocrystalline Ni-Based Alloys with Refractory Metal from Citrate Baths/Elektroosadzanie I Wlasciwosci Nanokrystalicznych Stopow Na Osnowie Niklu Z Trudnotopliwym Metalem Z Kapieli Cytrynianowych
BATHS et al. observed. In the selected bath of the optimum pH value, the effect of cathodic current density, as a crucial operating parameter which strongly controls the chemical composition and microstructure parameters (eg phase compositions, crystallite size), on the mechanical and tribological properties of the resulting coatings has been determined. It has been shown that–under all investigated current density range–crack-free, well adherent Ni-Mo coatings, characterized by microhardness of 6.5-7.8 GPa, were obtained. Alloys deposited at higher tested current densities (above 3.5 A/dm2) were characterized by compact and
Vasilache et al. STUDIES ABOUT STRUCTURE AND SOME PHYSICAL PROPERTIES OF NICKEL AND ZINC-NICKEL ALLOY LAYERS ELECTROCHEMICALLY DEPOSITED

Legal Events

Date Code Title Description
EEER Examination request

Effective date: 20130909