CA2700735A1 - Induction heaters used to heat subsurface formations - Google Patents

Induction heaters used to heat subsurface formations Download PDF

Info

Publication number
CA2700735A1
CA2700735A1 CA2700735A CA2700735A CA2700735A1 CA 2700735 A1 CA2700735 A1 CA 2700735A1 CA 2700735 A CA2700735 A CA 2700735A CA 2700735 A CA2700735 A CA 2700735A CA 2700735 A1 CA2700735 A1 CA 2700735A1
Authority
CA
Canada
Prior art keywords
conductor
ferromagnetic
electrical
formation
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CA2700735A
Other languages
French (fr)
Other versions
CA2700735C (en
Inventor
Ronald Marshall Bass
Scott Vinh Nguyen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Salamander Solutions Inc
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CA2700735A1 publication Critical patent/CA2700735A1/en
Application granted granted Critical
Publication of CA2700735C publication Critical patent/CA2700735C/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F29/00Variable transformers or inductances not covered by group H01F21/00
    • H01F29/02Variable transformers or inductances not covered by group H01F21/00 with tappings on coil or winding; with provision for rearrangement or interconnection of windings
    • H01F29/04Variable transformers or inductances not covered by group H01F21/00 with tappings on coil or winding; with provision for rearrangement or interconnection of windings having provision for tap-changing without interrupting the load current
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B36/00Heating, cooling, insulating arrangements for boreholes or wells, e.g. for use in permafrost zones
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B36/00Heating, cooling, insulating arrangements for boreholes or wells, e.g. for use in permafrost zones
    • E21B36/04Heating, cooling, insulating arrangements for boreholes or wells, e.g. for use in permafrost zones using electrical heaters
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/24Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/24Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
    • E21B43/243Combustion in situ
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/30Specific pattern of wells, e.g. optimizing the spacing of wells
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B44/00Automatic control systems specially adapted for drilling operations, i.e. self-operating systems which function to carry out or modify a drilling operation without intervention of a human operator, e.g. computer-controlled drilling systems; Systems specially adapted for monitoring a plurality of drilling variables or conditions
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/02Determining slope or direction
    • E21B47/022Determining slope or direction of the borehole, e.g. using geomagnetism
    • E21B47/0228Determining slope or direction of the borehole, e.g. using geomagnetism using electromagnetic energy or detectors therefor
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/04Directional drilling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32917Plasma diagnostics
    • H01J37/32926Software, data control or modelling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32917Plasma diagnostics
    • H01J37/32935Monitoring and controlling tubes by information coming from the object and/or discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • H01F27/38Auxiliary core members; Auxiliary coils or windings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49082Resistor making
    • Y10T29/49083Heater type

Abstract

A heating system for a subsurface formation includes an elongated electrical conductor located in the subsurface formation. The electrical conductor extends between at least a first electrical contact and a second electrical contact. A ferromagnetic conductor at least partially surrounds and at least partially extends lengthwise around the electrical conductor. The electrical conductor, when energized with time-varying electrical current, induces sufficient electrical current flow in the ferromagnetic conductor such that the ferromagnetic conductor resistively heats to a temperature of at least about 300°C.

Description

INDUCTION HEATERS USED TO HEAT SUBSURFACE FORMATIONS
BACKGROUND
1. Field of the Invention [0001] The present invention relates generally to heating methods and heating systems for production of hydrocarbons, hydrogen, and/or other products from various subsurface formations such as hydrocarbon containing formations. Certain embodiments relate to heater systems for heating subsurface formations that induce current in ferromagnetic materials.
2. Description of Related Art [0002] Hydrocarbons obtained from subterranean formations are often used as energy resources, as feedstocks, and as consumer products. Concerns over depletion of available hydrocarbon resources and concerns over declining overall quality of produced hydrocarbons have led to development of processes for more efficient recovery, processing and/or use of available hydrocarbon resources. In situ processes may be used to remove hydrocarbon materials from subterranean formations. Chemical and/or physical properties of hydrocarbon material in a subterranean formation may need to be changed to allow hydrocarbon material to be more easily removed from the subterranean formation. The chemical and physical changes may include in situ reactions that produce removable fluids, composition changes, solubility changes, density changes, phase changes, and/or viscosity changes of the hydrocarbon material in the formation. A fluid may be, but is not limited to, a gas, a liquid, an emulsion, a slurry, and/or a stream of solid particles that has flow characteristics similar to liquid flow.
[0003] A wellbore may be formed in a formation. In some embodiments, a casing or other pipe system may be placed or formed in a wellbore. In some embodiments, an expandable tubular may be used in a wellbore. Heaters may be placed in wellbores to heat a formation during an in situ process.
[0004] Application of heat to oil shale formations is described in U.S. Patent Nos.
2,923,535 to Ljungstrom and 4,886,118 to Van Meurs et al. Heat may be applied to the oil shale formation to pyrolyze kerogen in the oil shale formation. The heat may also fracture the formation to increase permeability of the formation. The increased permeability may allow formation fluid to travel to a production well where the fluid is removed from the oil shale formation. In some processes disclosed by Ljungstrom, for example, an oxygen
5 PCT/US2008/079707 containing gaseous medium is introduced to a permeable stratum, preferably while still hot from a preheating step, to initiate combustion.
[0005] A heat source may be used to heat a subterranean formation. Electric heaters may be used to heat the subterranean formation by radiation and/or conduction. An electric heater may resistively heat an element. U.S. Patent Nos. 2,548,360 to Germain;
4,716,960 to Eastlund et al.; 4,716,960 to Eastlund et al.; and 5,065,818 to Van Egmond describes electric heating elements placed in wellbores. U.S. Patent No. 6,023,554 to Vinegar et al.
describes an electric heating element that is positioned in a casing. The heating element generates radiant energy that heats the casing.
[0006] U.S. Patent No. 4,570,715 to Van Meurs et al. describes an electric heating element.
The heating element has an electrically conductive core, a surrounding layer of insulating material, and a surrounding metallic sheath. The conductive core may have a relatively low resistance at high temperatures. The insulating material may have electrical resistance, compressive strength, and heat conductivity properties that are relatively high at high temperatures. The insulating layer may inhibit arcing from the core to the metallic sheath.
The metallic sheath may have tensile strength and creep resistance properties that are relatively high at high temperatures. U.S. Patent No. 5,060,287 to Van Egmond describes an electrical heating element having a copper-nickel alloy core.
[0007] Heaters may be manufactured from wrought stainless steels. U.S. Patent No.
7,153,373 to Maziasz et al. and U.S. Patent Application Publication No. US

to Maziasz et al. described modified 237 stainless steels as cast microstructures or fined grained sheets and foils.
[0008] As outlined above, there has been a significant amount of effort to develop heaters, methods and systems to economically produce hydrocarbons, hydrogen, and/or other products from hydrocarbon containing formations. At present, however, there are still many hydrocarbon containing formations from which hydrocarbons, hydrogen, and/or other products cannot be economically produced. Thus, there is still a need for improved heating methods and systems for production of hydrocarbons, hydrogen, and/or other products from various hydrocarbon containing formations.
SUMMARY
[0009] Embodiments described herein generally relate to systems, methods, and heaters for treating a subsurface formation. Embodiments described herein also generally relate to heaters that have novel components therein. Such heaters can be obtained by using the systems and methods described herein.
[0010] In certain embodiments, the invention provides one or more systems, methods, and/or heaters. In some embodiments, the systems, methods, and/or heaters are used for treating a subsurface formation.
[0011] In certain embodiments, the invention provides a heating system for a subsurface formation, comprising: an elongated electrical conductor located in the subsurface formation, wherein the electrical conductor extends between at least a first electrical contact and a second electrical contact; and a ferromagnetic conductor, wherein the ferromagnetic conductor at least partially surrounds and at least partially extends lengthwise around the electrical conductor; wherein the electrical conductor, when energized with time-varying electrical current, induces sufficient electrical current flow in the ferromagnetic conductor such that the ferromagnetic conductor resistively heats to a temperature of at least about 300 C.
[0012] In further embodiments, features from specific embodiments may be combined with features from other embodiments. For example, features from one embodiment may be combined with features from any of the other embodiments.
[0013] In further embodiments, treating a subsurface formation is performed using any of the methods, systems, or heaters described herein.
[0014] In further embodiments, additional features may be added to the specific embodiments described herein.

BRIEF DESCRIPTION OF THE DRAWINGS
[0015] Advantages of the present invention may become apparent to those skilled in the art with the benefit of the following detailed description and upon reference to the accompanying drawings in which:
[0016] FIG. 1 shows a schematic view of an embodiment of a portion of an in situ heat treatment system for treating a hydrocarbon containing formation.
[0017] FIG. 2 depicts an embodiment of a u-shaped heater that has an inductively energized tubular.
[0018] FIG. 3 depicts an embodiment of an electrical conductor centralized inside a tubular.
[0019] FIG. 4 depicts an embodiment of an induction heater with a sheath of an insulated conductor in electrical contact with a tubular.
[0020] FIG. 5 depicts an embodiment of a resistive heater with a tubular having radial grooved surfaces.
[0021] FIG. 6 depicts an embodiment of an induction heater with a tubular having radial grooved surfaces.
[0022] FIG. 7 depicts an embodiment of a heater divided into tubular sections to provide varying heat outputs along the length of the heater.
[0023] FIG. 8 depicts an embodiment of three electrical conductors entering the formation through a first common wellbore and exiting the formation through a second common wellbore with three tubulars surrounding the electrical conductors in the hydrocarbon layer.
[0024] FIG. 9 depicts a representation of an embodiment of three electrical conductors and three tubulars in separate wellbores in the formation coupled to a transformer.
[0025] FIG. 10 depicts an embodiment of a multilayer induction tubular.
[0026] FIG. 11 depicts a cross-sectional end view of an embodiment of an insulated conductor that is used as an induction heater.
[0027] FIG. 12 depicts a cross-sectional side view of the embodiment depicted in FIG. 11.
[0028] FIG. 13 depicts a cross-sectional end view of an embodiment of a two-leg insulated conductor that is used as an induction heater.
[0029] FIG. 14 depicts a cross-sectional side view of the embodiment depicted in FIG. 13.
[0030] FIG. 15 depicts a cross-sectional end view of an embodiment of a multilayered insulated conductor that is used as an induction heater.
[0031] FIG. 16 depicts an end view representation of an embodiment of three insulated conductors located in a coiled tubing conduit and used as induction heaters.
[0032] FIG. 17 depicts a representation of cores of insulated conductors coupled together at their ends.
[0033] FIG. 18 depicts an end view representation of an embodiment of three insulated conductors strapped to a support member and used as induction heaters.
[0034] FIG. 19 depicts a representation of an embodiment of an induction heater with a core and an electrical insulator surrounded by a ferromagnetic layer.
[0035] FIG. 20 depicts a representation of an embodiment of an insulated conductor surrounded by a ferromagnetic layer.
[0036] FIG. 21 depicts a representation of an embodiment of an induction heater with two ferromagnetic layers spirally wound onto a core and an electrical insulator.
[0037] FIG. 22 depicts an embodiment for assembling a ferromagnetic layer onto an insulated conductor.
[0038] FIG. 23 depicts an embodiment of a casing having an axial grooved or corrugated surface.
[0039] While the invention is susceptible to various modifications and alternative forms, specific embodiments thereof are shown by way of example in the drawings and may herein be described in detail. The drawings may not be to scale. It should be understood, however, that the drawings and detailed description thereto are not intended to limit the invention to the particular form disclosed, but on the contrary, the intention is to cover all modifications, equivalents and alternatives falling within the spirit and scope of the present invention as defined by the appended claims.

DETAILED DESCRIPTION
[0040] The following description generally relates to systems and methods for treating hydrocarbons in the formations. Such formations may be treated to yield hydrocarbon products, hydrogen, and other products.
[0041] "Alternating current (AC)" refers to a time-varying current that reverses direction substantially sinusoidally. AC produces skin effect electricity flow in a ferromagnetic conductor.
[0100] Bare metal" and "exposed metal" refer to metals of elongated members that do not include a layer of electrical insulation, such as mineral insulation, that is designed to provide electrical insulation for the metal throughout an operating temperature range of the elongated member. Bare metal and exposed metal may encompass a metal that includes a corrosion inhibiter such as a naturally occurring oxidation layer, an applied oxidation layer, and/or a film. Bare metal and exposed metal include metals with polymeric or other types of electrical insulation that cannot retain electrical insulating properties at typical operating temperature of the elongated member. Such material may be placed on the metal and may be thermally degraded during use of the heater.
[0101] "Curie temperature" is the temperature above which a ferromagnetic material loses all of its ferromagnetic properties. In addition to losing all of its ferromagnetic properties above the Curie temperature, the ferromagnetic material begins to lose its ferromagnetic properties when an increasing electrical current is passed through the ferromagnetic material.
[0042] "Fluid pressure" is a pressure generated by a fluid in a formation.
"Lithostatic pressure" (sometimes referred to as "lithostatic stress") is a pressure in a formation equal to a weight per unit area of an overlying rock mass. "Hydrostatic pressure" is a pressure in a formation exerted by a column of water.
[0043] A "formation" includes one or more hydrocarbon containing layers, one or more non-hydrocarbon layers, an overburden, and/or an underburden. "Hydrocarbon layers"
refer to layers in the formation that contain hydrocarbons. The hydrocarbon layers may contain non-hydrocarbon material and hydrocarbon material. The "overburden"
and/or the "underburden" include one or more different types of impermeable materials.
For example, the overburden and/or underburden may include rock, shale, mudstone, or wet/tight carbonate. In some embodiments of in situ heat treatment processes, the overburden and/or the underburden may include a hydrocarbon containing layer or hydrocarbon containing layers that are relatively impermeable and are not subjected to temperatures during in situ heat treatment processing that result in significant characteristic changes of the hydrocarbon containing layers of the overburden and/or the underburden.
For example, the underburden may contain shale or mudstone, but the underburden is not allowed to heat to pyrolysis temperatures during the in situ heat treatment process. In some cases, the overburden and/or the underburden may be somewhat permeable.
[0044] "Formation fluids" refer to fluids present in a formation and may include pyrolyzation fluid, synthesis gas, mobilized hydrocarbons, and water (steam).
Formation fluids may include hydrocarbon fluids as well as non-hydrocarbon fluids. The term "mobilized fluid" refers to fluids in a hydrocarbon containing formation that are able to flow as a result of thermal treatment of the formation. "Produced fluids"
refer to fluids removed from the formation.
[0045] A "heat source" is any system for providing heat to at least a portion of a formation substantially by conductive and/or radiative heat transfer. For example, a heat source may include electric heaters such as an insulated conductor, an elongated member, and/or a conductor disposed in a conduit. A heat source may also include systems that generate heat by burning a fuel external to or in a formation. The systems may be surface burners, downhole gas burners, flameless distributed combustors, and natural distributed combustors. In some embodiments, heat provided to or generated in one or more heat sources may be supplied by other sources of energy. The other sources of energy may directly heat a formation, or the energy may be applied to a transfer medium that directly or indirectly heats the formation. It is to be understood that one or more heat sources that are applying heat to a formation may use different sources of energy. Thus, for example, for a given formation some heat sources may supply heat from electric resistance heaters, some heat sources may provide heat from combustion, and some heat sources may provide heat from one or more other energy sources (for example, chemical reactions, solar energy, wind energy, biomass, or other sources of renewable energy). A chemical reaction may include an exothermic reaction (for example, an oxidation reaction). A heat source may also include a heater that provides heat to a zone proximate and/or surrounding a heating location such as a heater well.
[0046] A "heater" is any system or heat source for generating heat in a well or a near wellbore region. Heaters may be, but are not limited to, electric heaters, burners, combustors that react with material in or produced from a formation, and/or combinations thereof.
[0047] "Hydrocarbons" are generally defined as molecules formed primarily by carbon and hydrogen atoms. Hydrocarbons may also include other elements such as, but not limited to, halogens, metallic elements, nitrogen, oxygen, and/or sulfur. Hydrocarbons may be, but are not limited to, kerogen, bitumen, pyrobitumen, oils, natural mineral waxes, and asphaltites. Hydrocarbons may be located in or adjacent to mineral matrices in the earth.
Matrices may include, but are not limited to, sedimentary rock, sands, silicilytes, carbonates, diatomites, and other porous media. "Hydrocarbon fluids" are fluids that include hydrocarbons. Hydrocarbon fluids may include, entrain, or be entrained in non-hydrocarbon fluids such as hydrogen, nitrogen, carbon monoxide, carbon dioxide, hydrogen sulfide, water, and ammonia.
[0048] An "in situ conversion process" refers to a process of heating a hydrocarbon containing formation from heat sources to raise the temperature of at least a portion of the formation above a pyrolysis temperature so that pyrolyzation fluid is produced in the formation.
[0049] An "in situ heat treatment process" refers to a process of heating a hydrocarbon containing formation with heat sources to raise the temperature of at least a portion of the formation above a temperature that results in mobilized fluid, visbreaking, and/or pyrolysis of hydrocarbon containing material so that mobilized fluids, visbroken fluids, and/or pyrolyzation fluids are produced in the formation.
[0050] "Insulated conductor" refers to any elongated material that is able to conduct electricity and that is covered, in whole or in part, by an electrically insulating material.
[0051] "Phase transformation temperature" of a ferromagnetic material refers to a temperature or a temperature range during which the material undergoes a phase change (for example, from ferrite to austenite) that decreases the magnetic permeability of the ferromagnetic material. The reduction in magnetic permeability is similar to reduction in magnetic permeability due to the magnetic transition of the ferromagnetic material at the Curie temperature.
[0052] "Pyrolysis" is the breaking of chemical bonds due to the application of heat. For example, pyrolysis may include transforming a compound into one or more other substances by heat alone. Heat may be transferred to a section of the formation to cause pyrolysis.
[0053] "Pyrolyzation fluids" or "pyrolysis products" refers to fluid produced substantially during pyrolysis of hydrocarbons. Fluid produced by pyrolysis reactions may mix with other fluids in a formation. The mixture would be considered pyrolyzation fluid or pyrolyzation product. As used herein, "pyrolysis zone" refers to a volume of a formation (for example, a relatively permeable formation such as a tar sands formation) that is reacted or reacting to form a pyrolyzation fluid.
[0054] "Superposition of heat" refers to providing heat from two or more heat sources to a selected section of a formation such that the temperature of the formation at least at one location between the heat sources is influenced by the heat sources.
[0055] "Temperature limited heater" generally refers to a heater that regulates heat output (for example, reduces heat output) above a specified temperature without the use of external controls such as temperature controllers, power regulators, rectifiers, or other devices. Temperature limited heaters may be AC (alternating current) or modulated (for example, "chopped") DC (direct current) powered electrical resistance heaters.
[0056] "Time-varying current" refers to electrical current that produces skin effect electricity flow in a ferromagnetic conductor and has a magnitude that varies with time.
Time-varying current includes both alternating current (AC) and modulated direct current (DC).
[0057] Turndown ratio" for the temperature limited heater in which current is applied directly to the heater is the ratio of the highest AC or modulated DC
resistance below the Curie temperature to the lowest resistance above the Curie temperature for a given current.
Turndown ratio for an inductive heater is the ratio of the highest heat output below the Curie temperature to the lowest heat output above the Curie temperature for a given current applied to the heater.
[0058] A "u-shaped wellbore" refers to a wellbore that extends from a first opening in the formation, through at least a portion of the formation, and out through a second opening in the formation. In this context, the wellbore may be only roughly in the shape of a "v" or "u", with the understanding that the "legs" of the "u" do not need to be parallel to each other, or perpendicular to the "bottom" of the "u" for the wellbore to be considered "u-shaped".
[0059] "Upgrade" refers to increasing the quality of hydrocarbons. For example, upgrading heavy hydrocarbons may result in an increase in the API gravity of the heavy hydrocarbons.
[0060] The term "wellbore" refers to a hole in a formation made by drilling or insertion of a conduit into the formation. A wellbore may have a substantially circular cross section, or another cross-sectional shape. As used herein, the terms "well" and "opening,"
when referring to an opening in the formation may be used interchangeably with the term "wellbore."
[0061] A formation may be treated in various ways to produce many different products.
Different stages or processes may be used to treat the formation during an in situ heat treatment process. In some embodiments, one or more sections of the formation are solution mined to remove soluble minerals from the sections. Solution mining minerals may be performed before, during, and/or after the in situ heat treatment process. In some embodiments, the average temperature of one or more sections being solution mined may be maintained below about 120 C.
[0062] In some embodiments, one or more sections of the formation are heated to remove water from the sections and/or to remove methane and other volatile hydrocarbons from the sections. In some embodiments, the average temperature may be raised from ambient temperature to temperatures below about 220 C during removal of water and volatile hydrocarbons.
[0063] In some embodiments, one or more sections of the formation are heated to temperatures that allow for movement and/or visbreaking of hydrocarbons in the formation. In some embodiments, the average temperature of one or more sections of the formation are raised to mobilization temperatures of hydrocarbons in the sections (for example, to temperatures ranging from 100 C to 250 C, from 120 C to 240 C, or from 150 C to 230 C).
[0064] In some embodiments, one or more sections are heated to temperatures that allow for pyrolysis reactions in the formation. In some embodiments, the average temperature of one or more sections of the formation may be raised to pyrolysis temperatures of hydrocarbons in the sections (for example, temperatures ranging from 230 C to 900 C, from 240 C to 400 C or from 250 C to 350 C).
[0065] Heating the hydrocarbon containing formation with a plurality of heat sources may establish thermal gradients around the heat sources that raise the temperature of hydrocarbons in the formation to desired temperatures at desired heating rates. The rate of temperature increase through mobilization temperature range and/or pyrolysis temperature range for desired products may affect the quality and quantity of the formation fluids produced from the hydrocarbon containing formation. Slowly raising the temperature of the formation through the mobilization temperature range and/or pyrolysis temperature range may allow for the production of high quality, high API gravity hydrocarbons from the formation. Slowly raising the temperature of the formation through the mobilization temperature range and/or pyrolysis temperature range may allow for the removal of a large amount of the hydrocarbons present in the formation as hydrocarbon product.
[0066] In some in situ heat treatment embodiments, a portion of the formation is heated to a desired temperature instead of slowly heating the temperature through a temperature range. In some embodiments, the desired temperature is 300 C, 325 C, or 350 C. Other temperatures may be selected as the desired temperature.
[0067] Superposition of heat from heat sources allows the desired temperature to be relatively quickly and efficiently established in the formation. Energy input into the formation from the heat sources may be adjusted to maintain the temperature in the formation substantially at a desired temperature.
[0068] Mobilization and/or pyrolysis products may be produced from the formation through production wells. In some embodiments, the average temperature of one or more sections is raised to mobilization temperatures and hydrocarbons are produced from the production wells. The average temperature of one or more of the sections may be raised to pyrolysis temperatures after production due to mobilization decreases below a selected value. In some embodiments, the average temperature of one or more sections may be raised to pyrolysis temperatures without significant production before reaching pyrolysis temperatures. Formation fluids including pyrolysis products may be produced through the production wells.
[0069] In some embodiments, the average temperature of one or more sections may be raised to temperatures sufficient to allow synthesis gas production after mobilization and/or pyrolysis. In some embodiments, hydrocarbons may be raised to temperatures sufficient to allow synthesis gas production without significant production before reaching the temperatures sufficient to allow synthesis gas production. For example, synthesis gas may be produced in a temperature range from about 400 C to about 1200 C, about 500 C to about 1100 C, or about 550 C to about 1000 C. A synthesis gas generating fluid (for example, steam and/or water) may be introduced into the sections to generate synthesis gas. Synthesis gas may be produced from production wells.
[0070] Solution mining, removal of volatile hydrocarbons and water, mobilizing hydrocarbons, pyrolyzing hydrocarbons, generating synthesis gas, and/or other processes may be performed during the in situ heat treatment process. In some embodiments, some processes may be performed after the in situ heat treatment process. Such processes may include, but are not limited to, recovering heat from treated sections, storing fluids (for example, water and/or hydrocarbons) in previously treated sections, and/or sequestering carbon dioxide in previously treated sections.
[0071] FIG. 1 depicts a schematic view of an embodiment of a portion of the in situ heat treatment system for treating the hydrocarbon containing formation. The in situ heat treatment system may include barrier wells 200. Barrier wells are used to form a barrier around a treatment area. The barrier inhibits fluid flow into and/or out of the treatment area. Barrier wells include, but are not limited to, dewatering wells, vacuum wells, capture wells, injection wells, grout wells, freeze wells, or combinations thereof. In some embodiments, barrier wells 200 are dewatering wells. Dewatering wells may remove liquid water and/or inhibit liquid water from entering a portion of the formation to be heated, or to the formation being heated. In the embodiment depicted in FIG.
1, the barrier wells 200 are shown extending only along one side of heat sources 202, but the barrier wells may encircle all heat sources 202 used, or to be used, to heat a treatment area of the formation.
[0072] Heat sources 202 are placed in at least a portion of the formation.
Heat sources 202 may include heaters such as insulated conductors, conductor-in-conduit heaters, surface burners, flameless distributed combustors, and/or natural distributed combustors. Heat sources 202 may also include other types of heaters. Heat sources 202 provide heat to at least a portion of the formation to heat hydrocarbons in the formation. Energy may be supplied to heat sources 202 through supply lines 204. Supply lines 204 may be structurally different depending on the type of heat source or heat sources used to heat the formation. Supply lines 204 for heat sources may transmit electricity for electric heaters, may transport fuel for combustors, or may transport heat exchange fluid that is circulated in the formation. In some embodiments, electricity for an in situ heat treatment process may be provided by a nuclear power plant or nuclear power plants. The use of nuclear power may allow for reduction or elimination of carbon dioxide emissions from the in situ heat treatment process.
[0073] Production wells 206 are used to remove formation fluid from the formation. In some embodiments, production well 206 includes a heat source. The heat source in the production well may heat one or more portions of the formation at or near the production well. In some in situ heat treatment process embodiments, the amount of heat supplied to the formation from the production well per meter of the production well is less than the amount of heat applied to the formation from a heat source that heats the formation per meter of the heat source.
[0074] In some embodiments, the heat source in production well 206 allows for vapor phase removal of formation fluids from the formation. Providing heating at or through the production well may: (1) inhibit condensation and/or refluxing of production fluid when such production fluid is moving in the production well proximate the overburden, (2) increase heat input into the formation, (3) increase production rate from the production well as compared to a production well without a heat source, (4) inhibit condensation of high carbon number compounds (C6 and above) in the production well, and/or (5) increase formation permeability at or proximate the production well.
[0075] Subsurface pressure in the formation may correspond to the fluid pressure generated in the formation. As temperatures in the heated portion of the formation increase, the pressure in the heated portion may increase as a result of thermal expansion of fluids, increased fluid generation, and vaporization of water. Controlling rate of fluid removal from the formation may allow for control of pressure in the formation.
Pressure in the formation may be determined at a number of different locations, such as near or at production wells, near or at heat sources, or at monitor wells.
[0076] In some hydrocarbon containing formations, production of hydrocarbons from the formation is inhibited until at least some hydrocarbons in the formation have been mobilized and/or pyrolyzed. Formation fluid may be produced from the formation when the formation fluid is of a selected quality. In some embodiments, the selected quality includes an API gravity of at least about 15 , 20 , 25 , 30 , or 40 .
Inhibiting production until at least some hydrocarbons are mobilized and/or pyrolyzed may increase conversion of heavy hydrocarbons to light hydrocarbons. Inhibiting initial production may minimize the production of heavy hydrocarbons from the formation. Production of substantial amounts of heavy hydrocarbons may require expensive equipment and/or reduce the life of production equipment.
[0077] After mobilization or pyrolysis temperatures are reached and production from the formation is allowed, pressure in the formation may be varied to alter and/or control a composition of formation fluid produced, to control a percentage of condensable fluid as compared to non-condensable fluid in the formation fluid, and/or to control an API gravity of formation fluid being produced. For example, decreasing pressure may result in production of a larger condensable fluid component. The condensable fluid component may contain a larger percentage of olefins.
[0078] In some in situ heat treatment process embodiments, pressure in the formation may be maintained high enough to promote production of formation fluid with an API
gravity of greater than 20 . Maintaining increased pressure in the formation may inhibit formation subsidence during in situ heat treatment. Maintaining increased pressure may reduce or eliminate the need to compress formation fluids at the surface to transport the fluids in collection conduits to treatment facilities.
[0079] Maintaining increased pressure in a heated portion of the formation may surprisingly allow for production of large quantities of hydrocarbons of increased quality and of relatively low molecular weight. Pressure may be maintained so that formation fluid produced has a minimal amount of compounds above a selected carbon number. The selected carbon number may be at most 25, at most 20, at most 12, or at most 8. Some high carbon number compounds may be entrained in vapor in the formation and may be removed from the formation with the vapor. Maintaining increased pressure in the formation may inhibit entrainment of high carbon number compounds and/or multi-ring hydrocarbon compounds in the vapor. High carbon number compounds and/or multi-ring hydrocarbon compounds may remain in a liquid phase in the formation for significant time periods. The significant time periods may provide sufficient time for the compounds to pyrolyze to form lower carbon number compounds.
[0080] Formation fluid produced from production wells 206 may be transported through collection piping 208 to treatment facilities 210. Formation fluids may also be produced from heat sources 202. For example, fluid may be produced from heat sources 202 to control pressure in the formation adjacent to the heat sources. Fluid produced from heat sources 202 may be transported through tubing or piping to collection piping 208 or the produced fluid may be transported through tubing or piping directly to treatment facilities 210. Treatment facilities 210 may include separation units, reaction units, upgrading units, fuel cells, turbines, storage vessels, and/or other systems and units for processing produced formation fluids. The treatment facilities may form transportation fuel from at least a portion of the hydrocarbons produced from the formation. In some embodiments, the transportation fuel may be jet fuel.
[0081] FIG. 2 depicts a schematic of an embodiment of a u-shaped heater that has an inductively energized tubular. Heater 212 includes electrical conductor 214 and tubular 216 in an opening that spans between wellbore 218A and wellbore 218B. In certain embodiments, electrical conductor 214 and/or the current carrying portion of the electrical conductor is electrically insulated from tubular 216. Electrical conductor 214 and/or the current carrying portion of the electrical conductor is electrically insulated from tubular 216 such that electrical current does not flow from the electrical conductor to the tubular, or vice versa (for example, the tubular is not directly connected electrically to the electrical conductor).
[0082] In some embodiments, electrical conductor 214 is centralized inside tubular 216 (for example, using centralizers 220 or other support structures, as shown in FIG. 3).
Centralizers 220 may electrically insulate electrical conductor 214 from tubular 216. In some embodiments, tubular 216 contacts electrical conductor 214. For example, tubular 216 may hang, drape, or otherwise touch electrical conductor 214. In some embodiments, electrical conductor 214 includes electrical insulation (for example, magnesium oxide or porcelain enamel) that insulates the current carrying portion of the electrical conductor from tubular 216. The electrical insulation inhibits current from flowing between the current carrying portion of electrical conductor 214 and tubular 216 if the electrical conductor and the tubular are in physical contact with each other.
[0083] In some embodiments, electrical conductor 214 is an exposed metal conductor heater or a conductor-in-conduit heater. In certain embodiments, electrical conductor 214 is an insulated conductor such as a mineral insulated conductor. The insulated conductor may have a copper core, copper alloy core, or a similar electrically conductive, low resistance core that has low electrical losses. In some embodiments, the core is a copper core with a diameter between about 0.5" (1.27 cm) and about 1" (2.54 cm). The sheath or jacket of the insulated conductor may be a non-ferromagnetic, corrosion resistant steel such as 347 stainless steel, 625 stainless steel, 825 stainless steel, 304 stainless steel, or copper with a protective layer (for example, a protective cladding). The sheath may have an outer diameter of between about 1" (2.54 cm) and about 1.25" (3.18 cm).
[0084] In some embodiments, the sheath or jacket of the insulated conductor is in physical contact with the tubular 216 (for example, the tubular is in physical contact with the sheath along the length of the tubular) or the sheath is electrically connected to the tubular. In such embodiments, the electrical insulation of the insulated conductor electrically insulates the core of the insulated conductor from the jacket and the tubular. FIG. 4 depicts an embodiment of an induction heater with the sheath of an insulated conductor in electrical contact with tubular 216. Electrical conductor 214 is the insulated conductor.
The sheath of the insulated conductor is electrically connected to tubular 216 using electrical contactors 222. In some embodiments, electrical contactors 222 are sliding contactors. In certain embodiments, electrical contactors 222 electrically connect the sheath of the insulated conductor to tubular 216 at or near the ends of the tubular.
Electrically connecting at or near the ends of tubular 216 substantially equalizes the voltage along the tubular with the voltage along the sheath of the insulated conductor.
Equalizing the voltages along tubular 216 and along the sheath may inhibit arcing between the tubular and the sheath.
[0085] Tubular 216, such as the tubular shown in FIGS. 2, 3, and 4, may be ferromagnetic or include ferromagnetic materials. Tubular 216 may have a thickness such that when electrical conductor 214 induces electrical current flow on the surfaces of tubular 216 when the electrical conductor is energized with time-varying current. The electrical conductor induces electrical current flow due to the ferromagnetic properties of the tubular. Current flow is induced on both the inside surface of the tubular and the outside surface of tubular 216. Tubular 216 may operate as a skin effect heater when current flow is induced in the skin depth of one or more of the tubular surfaces. In certain embodiments, the induced current circulates axially (longitudinally) on the inside and/or outside surfaces of tubular 216. Longitudinal flow of current through electrical conductor 214 induces primarily longitudinal current flow in tubular 216 (the majority of the induced current flow is in the longitudinal direction in the tubular). Having primarily longitudinal induced current flow in tubular 216 may provide a higher resistance per foot than if the induced current flow is primarily angular current flow.
[0086] In certain embodiments, current flow in tubular 216 is induced with low frequency current in electrical conductor 214 (for example, from 50 Hz or 60 Hz up to about 1000 Hz). In some embodiments, induced currents on the inside and outside surfaces of tubular 216 are substantially equal.
[0087] In certain embodiments, tubular 216 has a thickness that is greater than the skin depth of the ferromagnetic material in the tubular at or near the Curie temperature of the ferromagnetic material or at or near the phase transformation temperature of the ferromagnetic material. For example, tubular 216 may have a thickness of at least 2.1, at least 2.5 times, at least 3 times, or at least 4 times the skin depth of the ferromagnetic material in the tubular near the Curie temperature or the phase transformation temperature of the ferromagnetic material. In certain embodiments, tubular 216 has a thickness of at least 2.1 times, at least 2.5 times, at least 3 times, or at least 4 times the skin depth of the ferromagnetic material in the tubular at about 50 C below the Curie temperature or the phase transformation temperature of the ferromagnetic material.
[0088] In certain embodiments, tubular 216 is carbon steel. In some embodiments, tubular 216 is coated with a corrosion resistant coating (for example, porcelain or ceramic coating) and/or an electrically insulating coating. In some embodiments, electrical conductor 214 has an electrically insulating coating. Examples of the electrically insulating coating on tubular 216 and/or electrical conductor 214 include, but are not limited to, a porcelain enamel coating, an alumina coating, or an alumina-titania coating.
[0089] In some embodiments, tubular 216 and/or electrical conductor 214 are coated with a coating such as polyethylene or another suitable low friction coefficient coating that may melt or decompose when the heater is energized. The coating may facilitate placement of the tubular and/or the electrical conductor in the formation.
[0090] In some embodiments, tubular 216 includes corrosion resistant ferromagnetic material such as, but not limited to, 410 stainless steel, 446 stainless steel, T/P91 stainless steel, T/P92 stainless steel, alloy 52, alloy 42, and Invar 36. In some embodiments, tubular 216 is a stainless steel tubular with cobalt added (for example, between about 3% by weight and about 10% by weight cobalt added) and/or molybdenum (for example, about 0.5 % molybdenum by weight).
[0091] At or near the Curie temperature or the phase transformation temperature of the ferromagnetic material in tubular 216, the magnetic permeability of the ferromagnetic material decreases rapidly. When the magnetic permeability of tubular 216 decreases at or near the Curie temperature or the phase transformation temperature, there is little or no current flow in the tubular because, at these temperatures, the tubular is essentially non-ferromagnetic and electrical conductor 214 is unable to induce current flow in the tubular.
With little or no current flow in tubular 216, the temperature of the tubular will drop to lower temperatures until the magnetic permeability increases and the tubular becomes ferromagnetic. Thus, tubular 216 self-limits at or near the Curie temperature or the phase transformation temperature and operates as a temperature limited heater due to the ferromagnetic properties of the ferromagnetic material in the tubular. Because current is induced in tubular 216, the turndown ratio may be higher and the drop in current sharper for the tubular than for temperature limited heaters that apply current directly to the ferromagnetic material. For example, heaters with current induced in tubular 216 may have turndown ratios of at least about 5, at least about 10, or at least about 20 while temperature limited heaters that apply current directly to the ferromagnetic material may have turndown ratios that are at most about 5.
[0092] When current is induced in tubular 216, the tubular provides heat to hydrocarbon layer 224 and defines the heating zone in the hydrocarbon layer. In certain embodiments, tubular 216 heats to temperatures of at least about 300 C, at least about 500 C, or at least about 700 C. Because current is induced on both the inside and outside surfaces of tubular 216, the heat generation of the tubular is increased as compared to temperature limited heaters that have current directly applied to the ferromagnetic material and current flow is limited to one surface. Thus, less current may be provided to electrical conductor 214 to generate the same heat as heaters that apply current directly to the ferromagnetic material. Using less current in electrical conductor 214 decreases power consumption and reduces power losses in the overburden of the formation.
[0093] In certain embodiments, tubulars 216 have large diameters. The large diameters may be used to equalize or substantially equalize high pressures on the tubular from either the inside or the outside of the tubular. In some embodiments, tubular 216 has a diameter in a range between about 1.5" (about 3.8 cm) and about 6" (about 15.2 cm). In some embodiments, tubular 216 has a diameter in a range between about 3 cm and about 13 cm, between about 4 cm and about 12 cm, or between about 5 cm and about 11 cm.
Increasing the diameter of tubular 216 may provide more heat output to the formation by increasing the heat transfer surface area of the tubular.
[0094] In certain embodiments, tubular 216 has surfaces that are shaped to increase the resistance of the tubular. FIG. 5 depicts an embodiment of a heater with tubular 216 having radial grooved surfaces. Heater 212 may include electrical conductors 214A,B
coupled to tubular 216. Electrical conductors 214A,B may be insulated conductors.
Electrical contactors may electrically and physically couple electrical conductors 214A,B
to tubular 216. In certain embodiments, the electrical contactors are attached to ends of electrical conductors 214A,B. The electrical contactors have a shape such that when the ends of electrical conductors 214A,B are pushed into the ends of tubular 216, the electrical contactors physically and electrically couple the electrical conductors to the tubular. For example, the electrical contactors may be cone shaped. Heater 212 generates heat when current is applied directly to tubular 216. Current is provided to tubular 216 using electrical conductors 214A,B. Grooves 226 may increase the heat transfer surface area of tubular 216.
[0095] In some embodiments, one or more surfaces of the tubular of an induction heater may be textured to increase the resistance of the heater and increase the heat transfer surface area of the tubular. FIG. 6 depicts heater 212 that is an induction heater. Electrical conductor 214 extends through tubular 216.
[0096] Tubular 216 may include grooves 226. In some embodiments, grooves 226 are cut in tubular 216. In some embodiments, fins are coupled to tubular to form ridges and grooves 226. The fins may be welded or otherwise attached to the tubular. In an embodiment, the fins are coupled to a tubular sheath that is placed over the tubular. The sheath is physically and electrically coupled to the tubular to form tubular 216.
[0097] In certain embodiments, grooves 226 are on the outer surface of tubular 216. In some embodiments, the grooves are on the inner surface of the tubular. In some embodiments, the grooves are on both the inner and outer surfaces of the tubular.
[0098] In certain embodiments, grooves 226 are radial grooves (grooves that wrap around the circumference of tubular 216). In certain embodiments, grooves 226 are straight, angled, or spiral grooves or protrusions. In some embodiments, grooves 226 are evenly spaced grooves along the surface of tubular 216. In some embodiments, grooves 226 are part of a threaded surface on tubular 216 (the grooves are formed as a winding thread on the surface). Grooves 226 may have a variety of shapes as desired. For example, grooves 226 may have square edges, rectangular edges, v-shaped edges, u-shaped edges, or have rounded edges.
[0099] Grooves 226 increase the effective resistance of tubular 216 by increasing the path length of induced current on the surface of the tubular. Grooves 226 increase the effective resistance of tubular 216 as compared to a tubular with the same inside and outside diameters with smooth surfaces. Because induced current travels axially, the induced current has to travel up and down the grooves along the surface of the tubular. Thus, the depth of grooves 226 may be varied to provide a selected resistance in tubular 216. For example, increasing the grooves depth increases the path length and the resistance.
[0100] Increasing the resistance of tubular 216 with grooves 226 increases the heat generation of the tubular as compared to a tubular with smooth surfaces. Thus, the same electrical current in electrical conductor 214 will provide more heat output in the radial grooved surface tubular than the smooth surface tubular. Therefore, to provide the same heat output with the radial grooved surface tubular as the smooth surface tubular, less current is needed in electrical conductor 214 with the radial grooved surface tubular.
[0101] In some embodiments, grooves 226 are filled with materials that decompose at lower temperatures to protect the grooves during installation of tubular 216.
For example, grooves 226 may be filled with polyethylene or asphalt. The polyethylene or asphalt may melt and/or desorb when heater 212 reaches normal operating temperatures of the heater.
[0102] It is to be understood that grooves 226 may be used in other embodiments of tubulars 216 described herein to increase the resistance of such tubulars. For example, grooves 226 may be used in embodiments of tubulars 216 depicted in FIGS. 2, 3, and 4.
[0103] FIG. 7 depicts an embodiment of heater 212 divided into tubular sections to provide varying heat outputs along the length of the heater. Heater 212 may include tubular sections 216A, 216B, 216C, 216D that have different properties to provide different heat outputs in each tubular section. Heat output from tubular sections 216D may be less than the heat output from grooved sections 216A, 216B, 216C. Examples of properties that may be varied include, but are not limited to, thicknesses, diameters, cross-sectional areas, resistances, materials, number of grooves, depth of grooves. The different properties in tubular sections 216A, 216B, and 216C may provide different maximum operating temperatures (for example, different Curie temperatures or phase transformation temperatures) along the length of heater 212. The different maximum temperatures of the tubular sections provides different heat outputs from the tubular sections.
Sections such as grooved section 216A may be separate sections that are placed down the wellbore in separation installation procedures. Some sections, such as grooved section 216B and 216C
may be connected together by non-grooved section 216D, and may be placed down the wellbore together.
[0104] Providing different heat outputs along heater 212 may provide different heating in one or more hydrocarbon layers. For example, heater 212 may be divided into two or more sections of heating to provide different heat outputs to different sections of a hydrocarbon layer and/or different hydrocarbon layers.
[0105] In one embodiment, a first portion of heater 212 may provide heat to a first section of the hydrocarbon layer and a second portion of the heater may provide heat to a second section of the hydrocarbon layer. Hydrocarbons in the first section may be mobilized by the heat provided by the first portion of the heater. Hydrocarbons in the second section may be heated by the second portion of the heater to a higher temperature than the first section. The higher temperature in the second section may upgrade hydrocarbons in the second section relative to the first section. For example, the hydrocarbons may be mobilized, visbroken, and/or pyrolyzed in the second section. Hydrocarbons from the first section may be moved into the second section by, for example, a drive fluid provided to the first section. As another example, heater 212 may have end sections that provide higher heat outputs to counteract heat losses at the ends of the heater to maintain a more constant temperature in the heated portion of the formation.
[0106] In certain embodiments, three, or multiples of three, electrical conductors enter and exit the formation through common wellbores with tubulars surrounding the electrical conductors in the portion of the formation to be heated. FIG. 8 depicts an embodiment of three electrical conductors 214A,B,C entering the formation through first common wellbore 218A and exiting the formation through second common wellbore 218C
with three tubulars 216A,B,C surrounding the electrical conductors in hydrocarbon layer 224.
In some embodiments, electrical conductors 214A,B,C are powered by a single, three-phase wye transformer. Tubulars 216A,B,C and portions of electrical conductors 214A,B,C may be in three separate wellbores in hydrocarbon layer 224. The three separate wellbores may be formed by drilling the wellbores from first common wellbore 218A to second common wellbore 218B, vice versa, or drilling from both common wellbores and connecting the drilled openings in the hydrocarbon layer.
[0107] Having multiple induction heaters extending from only two wellbores in hydrocarbon layer 224 reduces the footprint of wells on the surface needed for heating the formation. The number of overburden wellbores drilled in the formation is reduced, which reduces capital costs per heater in the formation. Power losses in the overburden may be a smaller fraction of total power supplied to the formation because of the reduced number of wells through the overburden used to treat the formation. In addition, power losses in the overburden may be smaller because the three phases in the common wellbores substantially cancel each other and inhibit induced currents in the casings or other structures of the wellbores.
[0108] In some embodiments, three, or multiples of three, electrical conductors and tubulars are located in separate wellbores in the formation. FIG. 9 depicts an embodiment of three electrical conductors 214A,B,C and three tubulars 216A,B,C in separate wellbores in the formation. Electrical conductors 214A,B,C may be powered by single, three-phase wye transformer 230 with each electrical conductor coupled to one phase of the transformer. In some embodiments, the single, three-phase wye transformer is used to power 6, 9, 12, or other multiples of three electrical conductors. Connecting multiples of three electrical conductors to the single, three-phase wye transformer may reduce equipment costs for providing power to the induction heaters.
[0109] In some embodiments, two, or multiples of two, electrical conductors enter the formation from a first common wellbore and exit the formation from a second common wellbore with tubulars surrounding each electrical conductor in the hydrocarbon layer.
The multiples of two electrical conductors may be powered by a single, two-phase transformer. In such embodiments, the electrical conductors may be homogenous electrical conductors (for example, insulated conductors using the same materials throughout) in the overburden sections and heating sections of the insulated conductor.
The reverse flow of current in the overburden sections may reduce power losses in the overburden sections of the wellbores because the currents reduce or cancel inductive effects in the overburden sections.
[0110] In certain embodiments, tubulars 216 depicted in FIGS. 2-8 include multiple layers of ferromagnetic materials separated by electrical insulators. FIG. 10 depicts an embodiment of a multilayered induction tubular. Tubular 216 includes ferromagnetic layers 232A,B,C separated by electrical insulators 236A,B. Three ferromagnetic layers and two layers of electrical insulators are shown in FIG. 10. Tubular 216 may include additional ferromagnetic layers and/or electrical insulators as desired. For example, the number of layers may be chosen to provide a desired heat output from the tubular.
[0111] Ferromagnetic layers 232A,B,C are electrically insulated from electrical conductor 214 by, for example, an air gap. Ferromagnetic layers 232A,B,C are electrically insulated from each other by electrical insulator 236A and electrical insulator 236B.
Thus, direct flow of current is inhibited between ferromagnetic layers 232A,B,C and electrical conductor 214. When current is applied to electrical conductor 214, electrical current flow is induced in ferromagnetic layers 232A,B,C because of the ferromagnetic properties of the layers. Having two or more electrically insulated ferromagnetic layers provides multiple current induction loops for the induced current. The multiple current induction loops may effectively appear as electrical loads in series to a power source for electrical conductor 214. The multiple current induction loops may increase the heat generation per unit length of tubular 216 as compared to a tubular with only one current induction loop.
For the same heat output, the tubular with multiple layers may have a higher voltage and lower current as compared to the single layer tubular.
[0112] In certain embodiments, ferromagnetic layers 232A,B,C include the same ferromagnetic material. In some embodiments, ferromagnetic layers 232A,B,C
include different ferromagnetic materials. Properties of ferromagnetic layers 232A,B,C
may be varied to provide different heat outputs from the different layers. Examples of properties of ferromagnetic layers 232A,B,C that may be varied include, but are not limited to, ferromagnetic material and thicknesses of the layers.
[0113] Electrical insulators 236A and 236B may be magnesium oxide, porcelain enamel, and/or another suitable electrical insulator. The thicknesses and/or materials of electrical insulators 236A and 236B may be varied to provide different operating parameters for tubular 216.
[0114] In some embodiments, fluids are circulated through tubulars 216 depicted in FIGS.
2-8. In some embodiments, fluids are circulated through the tubulars to add heat to the formation. For example, fluids may be circulated through the tubulars to preheat the formation prior to energizing the tubulars (providing current to the heating system). In some embodiments, fluids are circulated through the tubulars to recover heat from the formation. The recovered heat may be used to provide heat to other portions of the formation and/or surface processes used to treat fluids produced from the formation. In some embodiments, the fluids are used to cool down the heater.
[0115] In certain embodiments, insulated conductors are operated as induction heaters.
FIG. 11 depicts a cross-sectional end view of an embodiment of insulated conductor 240 that is used as an induction heater. FIG. 12 depicts a cross-sectional side view of the embodiment depicted in FIG. 11. Insulated conductor 240 includes core 234, electrical insulator 236, and jacket 238. Core 234 maybe copper or another non-ferromagnetic electrical conductor with low resistance that provides little or no heat output. In some embodiments, core may be clad with a thin layer of material such as nickel to inhibit migration of portions of the core into electrical insulator 236. Electrical insulator 236 may be magnesium oxide or another suitable electrical insulator that inhibits arcing at high voltages.
[0116] Jacket 238 includes at least one ferromagnetic material. In certain embodiments, jacket 238 includes carbon steel or another ferromagnetic steel (for example, 410 stainless steel, 446 stainless steel, T/P91 stainless steel, T/P92 stainless steel, alloy 52, alloy 42, and Invar 36). In some embodiments, jacket 238 includes an outer layer of corrosion resistant material (for example, stainless steel such as 347H stainless steel or 304 stainless steel).
The outer layer may be clad to the ferromagnetic material or otherwise coupled to the ferromagnetic material using methods known in the art.
[0117] In certain embodiments, jacket 238 has a thickness of at least about 2 skin depths of the ferromagnetic material in the jacket. In some embodiments, jacket 238 has a thickness of at least about 3 skin depths, at least about 4 skin depths, or at least about 5 skin depths.
Increasing the thickness of jacket 238 may increase the heat output from insulated conductor 240.
[0118] In one embodiment, core 234 is copper with a diameter of about 0.5"
(1.27 cm), electrical insulator 236 is magnesium oxide with a thickness of about 0.20"
(0.5 cm) (the outside diameter is about 0.9" (2.3 cm)), and jacket 238 is carbon steel with an outside diameter of about 1.6" (4.1 cm) (the thickness is about 0.35" (0.88 cm)). A
thin layer (about 0.1" (0.25 cm) thickness (outside diameter of about 1.7" (4.3 cm)) of corrosion resistant material 347H stainless steel may be clad on the outside of jacket 238.
[0119] In another embodiment, core 234 is copper with a diameter of about 0.338" (0.86 cm), electrical insulator 236 is magnesium oxide with a thickness of about 0.096" (0.24 cm) (the outside diameter is about 0.53" (1.3 cm)), and jacket 238 is carbon steel with an outside diameter of about 1.13" (2.9 cm) (the thickness is about 0.30" (0.76 cm)). A thin layer (about 0.065" (0.17 cm) thickness (outside diameter of about 1.26" (3.2 cm)) of corrosion resistant material 347H stainless steel may be clad on the outside of jacket 238.
[0120] In another embodiment, core 234 is copper, electrical insulator 236 is magnesium oxide, and jacket 238 is a thin layer of copper surrounded by carbon steel.
Core 234, electrical insulator 236, and the thin copper layer of jacket 238 maybe obtained as a single piece of insulated conductor. Such insulated conductors may be obtained as long pieces of insulated conductors (for example, lengths of about 500' (about 150 m) or more). The carbon steel layer of jacket 238 may be added by drawing down the carbon steel over the long insulated conductor. Such an insulated conductor may only generate heat on the outside of jacket 238 as the thin copper layer in the jacket shorts to the inside surface of the jacket.
[0121] In some embodiments, jacket 238 is made of multiple layers of ferromagnetic material. The multiple layers may be the same ferromagnetic material or different ferromagnetic materials. For example, in one embodiment, jacket 238 is a 0.35"
(0.88 cm) thick carbon steel jacket made from three layers of carbon steel. The first and second layers are 0.10" (0.25 cm) thick and the third layer is 0.15" (0.38 cm) thick.
In another embodiment, jacket 238 is a 0.3" (0.76 cm) thick carbon steel jacket made from three 0.10"
(0.25 cm) thick layers of carbon steel.
[0122] In certain embodiments, jacket 238 and core 234 are electrically insulated such that there is no direct electrical connection between the jacket and the core. Core 234 may be electrically coupled to a single power source with each end of the core being coupled to one pole of the power source. For example, insulated conductor 240 may be a u-shaped heater located in a u-shaped wellbore with each end of core 234 being coupled to one pole of the power source.
[0123] When core 234 is energized with time-varying current, the core induces electrical current flow on the surfaces of jacket 238 (as shown by the arrows in FIG. 12) due to the ferromagnetic properties of the ferromagnetic material in the jacket. In certain embodiments, current flow is induced on both the inside and outside surfaces of jacket 238.

In these induction heater embodiments, jacket 238 operates as the heating element of insulated conductor 240.
[0124] At or near the Curie temperature or the phase transformation temperature of the ferromagnetic material in jacket 238, the magnetic permeability of the ferromagnetic material decreases rapidly. When the magnetic permeability of jacket 238 decreases at or near the Curie temperature or the phase transformation temperature, there is little or no current flow in the jacket because, at these temperatures, the jacket is essentially non-ferromagnetic and core 234 is unable to induce current flow in the jacket.
With little or no current flow in jacket 238, the temperature of the jacket will drop to lower temperatures until the magnetic permeability increases and the jacket becomes ferromagnetic. Thus, jacket 238 self-limits at or near the Curie temperature or the phase transformation temperature and insulated conductor 240 operates as a temperature limited heater due to the ferromagnetic properties of the jacket. Because current is induced in jacket 238, the turndown ratio may be higher and the drop in current sharper for the jacket than if current is directly applied to the jacket.
[0125] In certain embodiments, portions of jacket 238 in the overburden of the formation do not include ferromagnetic material (for example, are non-ferromagnetic).
Having the overburden portions of jacket 238 made of non-ferromagnetic material inhibits current induction in the overburden portions of the jackets. Power losses in the overburden are inhibited or reduced by inhibiting current induction in the overburden portions.
[0126] FIG. 13 depicts a cross-sectional view of an embodiment of two-leg insulated conductor 240 that is used as an induction heater. FIG. 14 depicts a longitudinal cross-sectional view of the embodiment depicted in FIG. 13. Insulated conductor 240 is a two-leg insulated conductor that includes two cores 234A,B; two electrical insulators 236A,B;
and two jackets 238A,B. The two legs of insulated conductor 240 maybe in physical contact with each other such that jacket 238A contacts jacket 238B along their lengths.
Cores 234A,B; electrical insulators 236A,B; and jackets 238A,B may include materials such as those used in the embodiment of insulated conductor 240 depicted in FIGS. 11 and 12.
[0127] As shown in FIG. 14, core 234A and core 234B are coupled to transformer 230 and terminal block 242. Thus, core 234A and core 234B are electrically coupled in series such that current in core 234A flows in an opposite direction from current in core 234B, as shown by the arrows in FIG. 14. Current flow in cores 234A,B induces current flow in jackets 238A,B, respectively, as shown by the arrows in FIG. 14.
[0128] I n certain embodiments, portions of jacket 238A and/or jacket 238B are coated with an electrically insulating coating (for example, a porcelain enamel coating, alumina coating, and/or alumina-titania coating). The electrically insulating coating may inhibit the currents in one jacket from affecting current in the other jacket or vice versa (for example, current in one jacket cancelling out current in the other jacket).
Electrically insulating the jackets from each other may inhibit the turndown ratio of the heater from being reduced by the interaction of induced currents in the jackets.
[0129] Because core 234A and core 234B are electrically coupled in series to a single transformer (transformer 230), insulated conductor 240 may be located in a wellbore that terminates in the formation (for example, a wellbore with a single surface opening such as an L-shaped or J-shaped wellbore). Insulated conductor 240, as depicted in FIG. 14, may be operated as a subsurface termination induction heater with electrical connections between the heater and the power source (the transformer) being made through one surface opening.
[0130] Portions of jackets 238A,B in the overburden and/or adjacent to portions of the formation that are not to be significantly heated (for example, thick shale breaks between two hydrocarbon layers) may be non-ferromagnetic to inhibit induction currents in such portions. The jacket may include one or more sections that are electrically insulating to restrict induced current flow to heater portions of the insulated conductor.
Inhibiting induction currents in the overburden portion of the jackets inhibits inductive heating and/or power losses in the overburden. Induction effects in other structures in the overburden that surround insulated conductor 240 (for example, overburden casings) may be inhibited because the current in core 234A flows in an opposite direction from the current in core 234B.
[0131] FIG. 15 depicts a cross-sectional view of an embodiment of a multilayered insulated conductor that is used as an induction heater. Insulated conductor 240 includes core 234 surrounded by electrical insulator 236A and jacket 238A. Electrical insulator 236A and jacket 238A comprise a first layer of insulated conductor 240. The first layer is surrounded by a second layer that includes electrical insulator 236B and jacket 238B. Two layers of electrical insulators and jackets are shown in FIG. 15. The insulated conductor may include additional layers as desired. For example, the number of layers may be chosen to provide a desired heat output from the insulated conductor.
[0132] Jacket 238A and jacket 238B are electrically insulated from core 234 and each other by electrical insulator 236A and electrical insulator 236B. Thus, direct flow of current is inhibited between jacket 238A and jacket 238B and core 234. When current is applied to core 234, electrical current flow is induced in both jacket 238A
and jacket 238B
because of the ferromagnetic properties of the jackets. Having two or more layers of electrical insulators and jackets provides multiple current induction loops.
The multiple current induction loops may effectively appear as electrical loads in series to a power source for insulated conductor 240. The multiple current induction loops may increase the heat generation per unit length of insulated conductor 240 as compared to an insulated conductor with only one current induction loop. For the same heat output, the insulated conductor with multiple layers may have a higher voltage and lower current as compared to the single layer insulated conductor.
[0133] In certain embodiments, jacket 238A and jacket 238B include the same ferromagnetic material. In some embodiments, jacket 238A and jacket 238B
include different ferromagnetic materials. Properties of jacket 238A and jacket 238B
maybe varied to provide different heat outputs from the different layers. Examples of properties of jacket 238A and jacket 238B that may be varied include, but are not limited to, ferromagnetic material and thicknesses of the layers.
[0134] Electrical insulators 236A and 236B maybe magnesium oxide, porcelain enamel, and/or another suitable electrical insulator. The thicknesses and/or materials of electrical insulators 236A and 236B may be varied to provide different operating parameters for insulated conductor 240.
[0135] FIG. 16 depicts an end view of an embodiment of three insulated conductors 240 located in a coiled tubing conduit and used as induction heaters. Insulated conductors 240 may each be, for example, the insulated conductor depicted in FIGS. 11, 12, and 15. The cores of insulated conductors 240 may be coupled to each other such that the insulated conductors are electrically coupled in a three-phase wye configuration. FIG.
17 depicts a representation of cores 234 of insulated conductors 240 coupled together at their ends.
[0136] As shown in FIG. 16, insulated conductors 240 are located in tubular 216. Tubular 216 may be a coiled tubing conduit or other coiled tubing tubular or casing.
Insulated conductors 240 may be in a spiral or helix formation inside tubular 216 to reduce stresses on the insulated conductors when the insulated conductors are coiled, for example, on a coiled tubing reel. Tubular 216 allows the insulated conductors to be installed in the formation using a coiled tubing rig and protects the insulated conductors during installation into the formation.
[0137] FIG. 18 depicts an end view of an embodiment of three insulated conductors 240 located on a support member and used as induction heaters. Insulated conductors 240 may each be, for example, the insulated conductor depicted in FIGS. 11, 12, and 15. The cores of insulated conductors 240 may be coupled to each other such that the insulated conductors are electrically coupled in a three-phase wye configuration. For example, the cores may be coupled together as shown in FIG. 17.
[0138] As shown in FIG. 18, insulated conductors 240 are coupled to support member 244.
Support member 244 provides support for insulated conductors 240. Insulated conductors 240 may be wrapped around support member 244 in a spiral or helix formation.
In some embodiments, support member 244 includes ferromagnetic material. Current flow may be induced in the ferromagnetic material of support member 244. Thus, support member 244 may generate some heat in addition to the heat generated in the jackets of insulated conductors 240.
[0139] In certain embodiments, insulated conductors 240 are held together on support member 244 with band 246. Band 246 may be stainless steel or another non-corrosive material. In some embodiments, band 246 includes a plurality of bands that hold together insulated conductors 240. The bands may be periodically placed around insulated conductors 240 to hold the conductors together.
[0140] In some embodiments, jacket 238, depicted in FIGS. 11 and 12, or jackets 238A,B, depicted in FIG. 14, include grooves or other structures on the outer surface and/or the inner surface of the jacket to increase the effective resistance of the jacket. Increasing the resistance of jacket 238 and/or jackets 238A,B with grooves increases the heat generation of the jackets as compared to jackets with smooth surfaces. Thus, the same electrical current in core 234 and/or cores 234A,B will provide more heat output in the grooved surface jackets than the smooth surface jackets.
[0141] In some embodiments, jacket 238 (such as the jackets depicted in FIGS.
11 and 12, or jackets 238A,B depicted in FIG. 14) are divided into sections to provide varying heat outputs along the length of the heaters. For example, jacket 238 and/or jackets 238A,B
may be divided into sections such as tubular sections 216A, 216B, and 216C, depicted in FIG. 7. The sections of the jackets 238 depicted in FIGS. 11, 12, and 14 may have different properties to provide different heat outputs in each section.
Examples of properties that may be varied include, but are not limited to, thicknesses, diameters, resistances, materials, number of grooves, depth of grooves. The different properties in the sections may provide different maximum operating temperatures (for example, different Curie temperatures or phase transformation temperatures) along the length of insulated conductor 240. The different maximum temperatures of the sections provides different heat outputs from the sections.
[0142] In certain embodiments, induction heaters include insulated electrical conductors surrounded by spiral wound ferromagnetic materials. For example, the spiral wound ferromagnetic materials may operate as inductive heating elements similarly to tubulars 216, depicted in FIGS. 2-8. FIG. 19 depicts a representation of an embodiment of an induction heater with core 234 and electrical insulator 236 surrounded by ferromagnetic layer 232. Core 234 may be copper or another non-ferromagnetic electrical conductor with low resistance that provides little or no heat output. Electrical insulator 236 may be a polymeric electrical insulator such as Teflon , XPLE (cross-linked polyethylene), or EPDM (ethylene-propylene diene monomer). In some embodiments, core 234 and electrical insulator 236 are obtained together as a polymer (insulator) coated cable. In some embodiments, electrical insulator 236 is magnesium oxide or another suitable electrical insulator that inhibits arcing at high voltages and/or at high temperatures.
[0143] In certain embodiments, ferromagnetic layer 232 is spirally wound onto core 234 and electrical insulator 236. Ferromagnetic layer 232 may include carbon steel or another ferromagnetic steel (for example, 410 stainless steel, 446 stainless steel, T/P91 stainless steel, T/P92 stainless steel, alloy 52, alloy 42, and Invar 36).
[0144] In some embodiments, ferromagnetic layer 232 is spirally wound onto an insulated conductor. In some embodiments, ferromagnetic layer 232 includes an outer layer of corrosion resistant material. In some embodiments, ferromagnetic layer is bar stock. FIG.
20 depicts a representation of an embodiment of insulated conductor 240 surrounded by ferromagnetic layer 232. Insulated conductor 240 includes core 234, electrical insulator 236, and jacket 238. Core 234 is copper or another non-ferromagnetic electrical conductor with low resistance that provides little or no heat output. Electrical insulator 236 is magnesium oxide or another suitable electrical insulator. Ferromagnetic layer 232 is spirally wound onto insulated conductor 240.
[0145] Spirally winding ferromagnetic layer 232 onto the heater may increase control over the thickness of the ferromagnetic layer as compared to other construction methods for induction heaters. For example, more than one ferromagnetic layer 232 may be wound onto the heater to vary the output of the heater. The number of ferromagnetic layers 232 may be chosen to provide desired output from the heater. FIG. 21 depicts a representation of an embodiment of an induction heater with two ferromagnetic layers 232A,B
spirally wound onto core 234 and electrical insulator 236. In some embodiments, ferromagnetic layer 232A is counter-wound relative to ferromagnetic layer 232B to provide neutral torque on the heater. Neutral torque may be useful when the heater is suspended or allowed to hang freely in an opening in the formation.
[0146] The number of spiral windings (for example, the number of ferromagnetic layers) may be varied to alter the heat output of the induction heater. In addition, other parameters may be varied to alter the heat output of the induction heater. Examples of other varied parameters include, but are not limited to, applied current, applied frequency, geometry, ferromagnetic materials, and thickness and/or number of spiral windings.
[0147] Use of spiral wound ferromagnetic layers may allow induction heaters to be manufactured in continuous long lengths by spiral winding the ferromagnetic material onto long lengths of conventional or easily manufactured insulated cable. Thus, spiral wound induction heaters may have reduced manufacturing costs as compared to other induction heaters. The spiral wound ferromagnetic layers may increase the mechanical flexibility of the induction heater as compared to solid ferromagnetic tubular induction heaters. The increased flexibility may allow spiral wound induction heaters to be bent over surface protrusions such as hanger j oints.
[0148] FIG. 22 depicts an embodiment for assembling ferromagnetic layer 232 onto insulated conductor 240. Insulated conductor 240 may be an insulated conductor cable (for example, mineral insulated conductor cable or polymer insulated conductor cable) or other suitable electrical conductor core covered by insulation.
[0149] In certain embodiments, ferromagnetic layer 232 is made of ferromagnetic material 254 fed from reel 252 and wound onto insulated conductor 240. Reel 252 may be a coiled tubing rig or other rotatable feed rig. Reel 252 may rotate around insulated conductor 240 as ferromagnetic material 254 is wound onto the insulated conductor to form ferromagnetic layer 232. Insulated conductor 240 may be fed from a reel or from a mill as reel 252 rotates around the insulated conductor.
[0150] In some embodiments, ferromagnetic material 254 is heated prior to winding the material onto insulated conductor 240. For example, ferromagnetic material 254 may be heated using inductive heater 256. Pre-heating ferromagnetic material 254 prior to winding the ferromagnetic material may allow the ferromagnetic material to contract and grip onto insulated conductor 240 when the ferromagnetic material cools.
[0151] In some embodiments, portions of casings in the overburden sections of heater wellbores have surfaces that are shaped to increase the effective diameter of the casing.
Casings in the overburden sections of heater wellbores may include, but are not limited to, overburden casings, heater casings, heater tubulars, and/or jackets of insulated conductors.
Increasing the effective diameter of the casing may reduce inductive effects in the casing when current used to power a heater or heaters below the overburden is transmitted through the casing (for example, when one phase of power is being transmitted through the overburden section). When current is transmitted in only one direction through the overburden, the current may induce other currents in ferromagnetic or other electrically conductive materials such as those found in overburden casings. These induced currents may provide undesired power losses and/or undesired heating in the overburden of the formation.
[0152] FIG. 23 depicts an embodiment of casing 248 having a grooved or corrugated surface. In certain embodiments, casing 248 includes grooves 250. In some embodiments, grooves 250 are corrugations or include corrugations. Grooves 250 may be formed as a part of the surface of casing 248 (for example, the casing is formed with grooved surfaces) or the grooves may be formed by adding or removing (for example, milling) material on the surface of the casing. For example, grooves 250 may be located on a long piece of tubular that is welded to casing 248.
[0153] In certain embodiments, grooves 250 are on the outer surface of casing 248. In some embodiments, grooves 250 are on the inner surface of casing 248. In some embodiments, grooves 250 are on both the inner and outer surfaces of casing 248.
[0154] In certain embodiments, grooves 250 are axial grooves (grooves that go longitudinally along the length of casing 248). In certain embodiments, grooves 250 are straight, angled, or longitudinally spiral. In some embodiments, grooves 250 are substantially axial grooves or spiral grooves with a significant longitudinal component (i.e., the spiral angle is less than 10 , less than 5 , or less than 1 ). In some embodiments, grooves 250 extend substantially axially along the length of casing 248. In some embodiments, grooves 250 are evenly spaced grooves along the surface of casing 248.
Grooves 250 may have a variety of shapes as desired. For example, grooves 250 may have square edges, v-shaped edges, u-shaped edges, rectangular edges, or have rounded edges.
[0155] Grooves 250 increase the effective circumference of casing 248. Grooves increase the effective circumference of casing 248 as compared to the circumference of a casing with the same inside and outside diameters and smooth surfaces. The depth of grooves 250 may be varied to provide a selected effective circumference of casing 248.
For example, axial grooves that are'/4" (0.63 cm) wide and'/4" (0.63 cm) deep, and spaced '/4" (0.63 cm) apart may increase the effective circumference of a 6" (15.24 cm) diameter pipe from 18.84" (47.85 cm) to 37.68" (95.71 cm) (or the circumference of a 12" (30.48 cm) diameter pipe).
[0156] In certain embodiments, grooves 250 increase the effective circumference of casing 248 by a factor of at least about 2 as compared to a casing with the same inside and outside diameters and smooth surfaces. In some embodiments, grooves 250 increase the effective circumference of casing 248 by a factor of at least about 3, at least about 4, or at least about 6 as compared to a casing with the same inside and outside diameters and smooth surfaces.
[0157] Increasing the effective circumference of casing 248 with grooves 250 increases the surface area of the casing. Increasing the surface area of casing 248 reduces the induced current in the casing for a given current flux. Power losses associated with inductive heating in casing 248 are reduced as compared to a casing with smooth surfaces because of the reduced induced current. Thus, the same electrical current will provide less heat output from inductive heating in the axial grooved surface casing than the smooth surface casing.
Reducing the heat output in the overburden section of the heater will increase the efficiency of, and reduce the costs associated with, operating the heater.
Increasing the effective circumference of casing 248 and reducing inductive effects in the casing allows the casing to be made with less expensive materials such as carbon steel.
[0158] In some embodiments, an electrically insulating coating (for example, a porcelain enamel coating) is placed on one or more surfaces of casing 248 to inhibit current and/or power losses from the casing. In some embodiments, casing 248 is formed from two or more longitudinal sections of casing (for example, longitudinal sections welded or threaded together end to end). The longitudinal sections may be aligned so that the grooves on the sections are aligned. Aligning the sections may allow for cement or other material to flow along the grooves.
[0159] Further modifications and alternative embodiments of various aspects of the invention may be apparent to those skilled in the art in view of this description.
Accordingly, this description is to be construed as illustrative only and is for the purpose of teaching those skilled in the art the general manner of carrying out the invention. It is to be understood that the forms of the invention shown and described herein are to be taken as the presently preferred embodiments. Elements and materials may be substituted for those illustrated and described herein, parts and processes may be reversed, and certain features of the invention may be utilized independently, all as would be apparent to one skilled in the art after having the benefit of this description of the invention. Changes may be made in the elements described herein without departing from the spirit and scope of the invention as described in the following claims. In addition, it is to be understood that features described herein independently may, in certain embodiments, be combined.

Claims (26)

1. A heating system for a subsurface formation, comprising:
an elongated electrical conductor located in the subsurface formation, wherein the electrical conductor extends between at least a first electrical contact and a second electrical contact; and a ferromagnetic conductor, wherein the ferromagnetic conductor at least partially surrounds and at least partially extends lengthwise around the electrical conductor;
wherein the electrical conductor, when energized with time-varying electrical current, induces sufficient electrical current flow in the ferromagnetic conductor such that the ferromagnetic conductor resistively heats to a temperature of at least about 300 °C.
2. The system of claim 1, wherein the electrical conductor comprises a substantially u-shaped electrical conductor.
3. The system of claim 1, wherein the ferromagnetic conductor is configured to provide heat to at least a portion of the subsurface formation.
4. The system of claim 1, wherein the ferromagnetic conductor is configured to resistively heat to a temperature of at least about 500 °C.
5. The system of claim 1, wherein the ferromagnetic conductor is configured to resistively heat to a temperature of at least about 700 °C.
6. The system of claim 1, wherein at least about 10 m of length of the ferromagnetic conductor is configured to resistively heat to the temperature of at least about 300 °C.
7. The system of claim 1, wherein the ferromagnetic conductor comprises carbon steel.
8. The system of claim 1, wherein the electrical conductor is the core of an insulated conductor.
9. The system of claim 1, wherein the ferromagnetic conductor has a thickness of at least 2.1 times the skin depth of the ferromagnetic material in the ferromagnetic conductor at 50 °C below the Curie temperature of the ferromagnetic material.
10. The system of claim 1, wherein the ferromagnetic conductor and the electrical conductor are configured in relation to each other such that electrical current does not flow from the electrical conductor to the ferromagnetic conductor, or vice versa.
11. The system of claim 1, wherein the ferromagnetic conductor is configured to provide different heat outputs along at least a portion of the length of the ferromagnetic conductor.
12. The system of claim 1, wherein the ferromagnetic conductor has different materials along at least a portion of the length of the ferromagnetic conductor that are configured to provide different heat outputs along at least a portion of the length of the ferromagnetic conductor.
13. The system of claim 1, wherein the ferromagnetic conductor has different dimensions along at least a portion of the length of the ferromagnetic conductor that are configured to provide different heat outputs along at least a portion of the length of the ferromagnetic conductor.
14. The system of claim 1, further comprising a corrosion resistant material coating on at least a portion of the ferromagnetic conductor.
15. The system of claim 1, wherein the ferromagnetic conductor is substantially cylindrical, and between about 3 cm and about 13 cm in diameter.
16. The system of claim 1, wherein at least about 10 m of length of the ferromagnetic conductor is positioned in a hydrocarbon containing layer in the subsurface formation.
17. The system of claim 1, wherein the electrical conductor is configured to flow electrical current in one direction from the first electrical contact to the second electrical contact.
18. The system of claim 1, wherein the ferromagnetic conductor comprises a ferromagnetic tubular.
19. The system of claim 1, wherein the ferromagnetic conductor comprises two or more ferromagnetic layers, the ferromagnetic layers being separated by one or more insulation layers, wherein the electrical conductor, when energized with time-varying electrical current, induces sufficient electrical current flow in at least two of the ferromagnetic layers such that at least two of the ferromagnetic layers resistively heat.
20. The system of claim 1, wherein the electrical conductor is a substantially u-shaped electrical conductor located in a u-shaped wellbore in the formation.
21. A method for heating a subsurface formation, comprising:
providing time-varying electrical current to the system of any of claims 1-20;

inducing electrical current flow in the ferromagnetic conductor with the time-varying electrical current in the electrical conductor; and resistively heating the ferromagnetic conductor with the induced electrical current flow such that the ferromagnetic conductor resistively heats to a temperature of at least about 300 °C.
22. The method of claim 21, further comprising allowing heat to transfer from the ferromagnetic conductor to at least a portion of the subsurface formation.
23. The method of claim 21, further comprising applying the electrical current to the electrical conductor in one direction from the first electrical contact to the second electrical contact.
24. The method of claim 21, further comprising allowing heat to transfer from the ferromagnetic conductor to at least a portion of the subsurface formation such that hydrocarbons in the formation are mobilized.
25. The method of claim 21, further comprising allowing heat to transfer from the ferromagnetic conductor to at least a portion of the subsurface formation such that hydrocarbons in the formation are mobilized, and producing at least some of the mobilized hydrocarbons from the formation.
26. The method of claim 21, further comprising resistively heating at least one additional ferromagnetic conductor located in the formation, and providing heat from one or more of the ferromagnetic conductors such that heat from at least two of the ferromagnetic conductors is superpositioned in the formation and mobilizes hydrocarbons in the formation.
CA2700735A 2007-10-19 2008-10-13 Induction heaters used to heat subsurface formations Active CA2700735C (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US99983907P 2007-10-19 2007-10-19
US60/999,839 2007-10-19
US4632908P 2008-04-18 2008-04-18
US61/046,329 2008-04-18
PCT/US2008/079707 WO2009052045A1 (en) 2007-10-19 2008-10-13 Induction heaters used to heat subsurface formations

Publications (2)

Publication Number Publication Date
CA2700735A1 true CA2700735A1 (en) 2009-04-23
CA2700735C CA2700735C (en) 2017-05-09

Family

ID=40567745

Family Applications (7)

Application Number Title Priority Date Filing Date
CA2700735A Active CA2700735C (en) 2007-10-19 2008-10-13 Induction heaters used to heat subsurface formations
CA2701166A Active CA2701166C (en) 2007-10-19 2008-10-13 Variable voltage load tap changing transformer
CA2701169A Abandoned CA2701169A1 (en) 2007-10-19 2008-10-13 Systems, methods, and processes utilized for treating subsurface formations
CA2700998A Expired - Fee Related CA2700998C (en) 2007-10-19 2008-10-13 Irregular spacing of heat sources for treating hydrocarbon containing formations
CA2700737A Abandoned CA2700737A1 (en) 2007-10-19 2008-10-13 Three-phase heaters with common overburden sections for heating subsurface formations
CA2698564A Expired - Fee Related CA2698564C (en) 2007-10-19 2008-10-13 In situ oxidation of subsurface formations
CA2700732A Abandoned CA2700732A1 (en) 2007-10-19 2008-10-13 Cryogenic treatment of gas

Family Applications After (6)

Application Number Title Priority Date Filing Date
CA2701166A Active CA2701166C (en) 2007-10-19 2008-10-13 Variable voltage load tap changing transformer
CA2701169A Abandoned CA2701169A1 (en) 2007-10-19 2008-10-13 Systems, methods, and processes utilized for treating subsurface formations
CA2700998A Expired - Fee Related CA2700998C (en) 2007-10-19 2008-10-13 Irregular spacing of heat sources for treating hydrocarbon containing formations
CA2700737A Abandoned CA2700737A1 (en) 2007-10-19 2008-10-13 Three-phase heaters with common overburden sections for heating subsurface formations
CA2698564A Expired - Fee Related CA2698564C (en) 2007-10-19 2008-10-13 In situ oxidation of subsurface formations
CA2700732A Abandoned CA2700732A1 (en) 2007-10-19 2008-10-13 Cryogenic treatment of gas

Country Status (13)

Country Link
US (14) US8146661B2 (en)
EP (4) EP2198118A1 (en)
JP (4) JP5379804B2 (en)
KR (1) KR20100087717A (en)
CN (1) CN101827999B (en)
AU (1) AU2008312713B2 (en)
CA (7) CA2700735C (en)
GB (3) GB2467655B (en)
IL (4) IL204375A (en)
MA (5) MA31852B1 (en)
RU (6) RU2496067C2 (en)
WO (7) WO2009052041A1 (en)
ZA (1) ZA201001711B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011127262A1 (en) * 2010-04-09 2011-10-13 Shell Oil Company Low temperature inductive heating of subsurface formations

Families Citing this family (333)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001081239A2 (en) 2000-04-24 2001-11-01 Shell Internationale Research Maatschappij B.V. In situ recovery from a hydrocarbon containing formation
AU2002257221B2 (en) 2001-04-24 2008-12-18 Shell Internationale Research Maatschappij B.V. In situ recovery from a oil shale formation
NZ532089A (en) 2001-10-24 2005-09-30 Shell Int Research Installation and use of removable heaters in a hydrocarbon containing formation
DE10245103A1 (en) * 2002-09-27 2004-04-08 General Electric Co. Control cabinet for a wind turbine and method for operating a wind turbine
NZ567052A (en) 2003-04-24 2009-11-27 Shell Int Research Thermal process for subsurface formations
DE10323774A1 (en) * 2003-05-26 2004-12-16 Khd Humboldt Wedag Ag Process and plant for the thermal drying of a wet ground cement raw meal
US8296968B2 (en) * 2003-06-13 2012-10-30 Charles Hensley Surface drying apparatus and method
SE527166C2 (en) * 2003-08-21 2006-01-10 Kerttu Eriksson Method and apparatus for dehumidification
US7984566B2 (en) * 2003-10-27 2011-07-26 Staples Wesley A System and method employing turbofan jet engine for drying bulk materials
MXPA06011334A (en) * 2004-04-02 2007-03-21 Skill Associates Inc Biomass converters and processes.
US7685737B2 (en) * 2004-07-19 2010-03-30 Earthrenew, Inc. Process and system for drying and heat treating materials
US8224165B2 (en) 2005-04-22 2012-07-17 Shell Oil Company Temperature limited heater utilizing non-ferromagnetic conductor
AU2006239999B2 (en) 2005-04-22 2010-06-17 Shell Internationale Research Maatschappij B.V. In situ conversion process systems utilizing wellbores in at least two regions of a formation
US8256532B2 (en) * 2005-07-01 2012-09-04 Board Of Regents, The University Of Texas System System, program products, and methods for controlling drilling fluid parameters
WO2007005822A2 (en) * 2005-07-01 2007-01-11 Board Of Regents, The University Of Texas System System, program products, and methods for controlling drilling fluid parameters
EP1941003B1 (en) * 2005-10-24 2011-02-23 Shell Internationale Research Maatschappij B.V. Methods of filtering a liquid stream produced from an in situ heat treatment process
US8017681B2 (en) 2006-03-30 2011-09-13 Maxwell Products, Inc. Systems and methods for providing a thermoplastic product that includes packaging therefor
US7533719B2 (en) 2006-04-21 2009-05-19 Shell Oil Company Wellhead with non-ferromagnetic materials
WO2008016623A2 (en) * 2006-08-01 2008-02-07 Dingee H Clay Iv Improved drying system
JP4986559B2 (en) * 2006-09-25 2012-07-25 株式会社Kelk Fluid temperature control apparatus and method
GB2455947B (en) 2006-10-20 2011-05-11 Shell Int Research Heating hydrocarbon containing formations in a checkerboard pattern staged process
JP2010507702A (en) * 2006-10-24 2010-03-11 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ Method for producing purified liquefied natural gas
BRPI0808508A2 (en) 2007-03-22 2014-08-19 Exxonmobil Upstream Res Co METHODS FOR HEATING SUB-SURFACE FORMATION AND ROCK FORMATION RICH IN ORGANIC COMPOUNDS, AND METHOD FOR PRODUCING A HYDROCARBON FLUID
GB2460980B (en) 2007-04-20 2011-11-02 Shell Int Research Controlling and assessing pressure conditions during treatment of tar sands formations
AU2008262537B2 (en) 2007-05-25 2014-07-17 Exxonmobil Upstream Research Company A process for producing hydrocarbon fluids combining in situ heating, a power plant and a gas plant
JP5063195B2 (en) * 2007-05-31 2012-10-31 ラピスセミコンダクタ株式会社 Data processing device
US7793714B2 (en) 2007-10-19 2010-09-14 Baker Hughes Incorporated Device and system for well completion and control and method for completing and controlling a well
US7784543B2 (en) * 2007-10-19 2010-08-31 Baker Hughes Incorporated Device and system for well completion and control and method for completing and controlling a well
US20090101336A1 (en) * 2007-10-19 2009-04-23 Baker Hughes Incorporated Device and system for well completion and control and method for completing and controlling a well
US7913755B2 (en) 2007-10-19 2011-03-29 Baker Hughes Incorporated Device and system for well completion and control and method for completing and controlling a well
US8146661B2 (en) 2007-10-19 2012-04-03 Shell Oil Company Cryogenic treatment of gas
CA2705198A1 (en) * 2007-11-19 2009-05-28 Shell Internationale Research Maatschappij B.V. Systems and methods for producing oil and/or gas
CN101861445B (en) * 2007-11-19 2014-06-25 国际壳牌研究有限公司 Systems and methods for producing oil and/or gas
WO2009129143A1 (en) 2008-04-18 2009-10-22 Shell Oil Company Systems, methods, and processes utilized for treating hydrocarbon containing subsurface formations
US8555958B2 (en) 2008-05-13 2013-10-15 Baker Hughes Incorporated Pipeless steam assisted gravity drainage system and method
US8113292B2 (en) 2008-05-13 2012-02-14 Baker Hughes Incorporated Strokable liner hanger and method
US8171999B2 (en) 2008-05-13 2012-05-08 Baker Huges Incorporated Downhole flow control device and method
US7789152B2 (en) 2008-05-13 2010-09-07 Baker Hughes Incorporated Plug protection system and method
WO2009142782A2 (en) * 2008-05-23 2009-11-26 Schlumberger Canada Limited System and method for densely packing wells using magnetic ranging while drilling
US8499471B2 (en) * 2008-08-20 2013-08-06 The Board Of Regents Of The Nevada System Of Higher Education, On Behalf Of The University Of Nevada, Reno System and method for energy production from sludge
US9089928B2 (en) 2008-08-20 2015-07-28 Foro Energy, Inc. Laser systems and methods for the removal of structures
US9664012B2 (en) 2008-08-20 2017-05-30 Foro Energy, Inc. High power laser decomissioning of multistring and damaged wells
US9669492B2 (en) 2008-08-20 2017-06-06 Foro Energy, Inc. High power laser offshore decommissioning tool, system and methods of use
US20120067643A1 (en) * 2008-08-20 2012-03-22 Dewitt Ron A Two-phase isolation methods and systems for controlled drilling
EP2159496A1 (en) * 2008-08-29 2010-03-03 Vito NV Controller for energy supply systems
WO2010045115A2 (en) * 2008-10-13 2010-04-22 Shell Oil Company Treating subsurface hydrocarbon containing formations and the systems, methods, and processes utilized
US8095317B2 (en) * 2008-10-22 2012-01-10 Gyrodata, Incorporated Downhole surveying utilizing multiple measurements
US8387707B2 (en) * 2008-12-11 2013-03-05 Vetco Gray Inc. Bellows type adjustable casing
US8355815B2 (en) 2009-02-12 2013-01-15 Baker Hughes Incorporated Methods, systems, and devices for manipulating cutting elements for earth-boring drill bits and tools
US9758881B2 (en) * 2009-02-12 2017-09-12 The George Washington University Process for electrosynthesis of energetic molecules
US8056620B2 (en) * 2009-03-12 2011-11-15 Tubel, LLC Low cost rigless intervention and production system
CA2758192A1 (en) 2009-04-10 2010-10-14 Shell Internationale Research Maatschappij B.V. Treatment methodologies for subsurface hydrocarbon containing formations
DE102009021036B4 (en) * 2009-05-06 2013-08-29 Maschinenfabrik Reinhausen Gmbh Method for gas analysis on on-load tap-changers
US8132624B2 (en) 2009-06-02 2012-03-13 Baker Hughes Incorporated Permeability flow balancing within integral screen joints and method
US8056627B2 (en) 2009-06-02 2011-11-15 Baker Hughes Incorporated Permeability flow balancing within integral screen joints and method
US8151881B2 (en) 2009-06-02 2012-04-10 Baker Hughes Incorporated Permeability flow balancing within integral screen joints
US20110121222A1 (en) * 2009-09-30 2011-05-26 Guymon Michael P Systems and methods for providing a dry froth material
US9466896B2 (en) 2009-10-09 2016-10-11 Shell Oil Company Parallelogram coupling joint for coupling insulated conductors
US8356935B2 (en) 2009-10-09 2013-01-22 Shell Oil Company Methods for assessing a temperature in a subsurface formation
US8816203B2 (en) 2009-10-09 2014-08-26 Shell Oil Company Compacted coupling joint for coupling insulated conductors
DK177946B9 (en) 2009-10-30 2015-04-20 Maersk Oil Qatar As well Interior
DK179473B1 (en) 2009-10-30 2018-11-27 Total E&P Danmark A/S A device and a system and a method of moving in a tubular channel
US20110132592A1 (en) * 2009-11-06 2011-06-09 Apple Robert B Integrated system for the extraction, incineration and monitoring of waste or vented gases
US20110132571A1 (en) * 2009-12-04 2011-06-09 General Electric Company Systems relating to geothermal energy and the operation of gas turbine engines
DK178339B1 (en) 2009-12-04 2015-12-21 Maersk Oil Qatar As An apparatus for sealing off a part of a wall in a section drilled into an earth formation, and a method for applying the apparatus
CA2688392A1 (en) * 2009-12-09 2011-06-09 Imperial Oil Resources Limited Method of controlling solvent injection to aid recovery of hydrocarbons from an underground reservoir
DE102010010600A1 (en) * 2010-03-08 2011-09-08 Alstom Technology Ltd. Dual-feed asynchronous machine function monitoring method, involves pressing sheets into composite using bolts, and measuring and evaluating flow of current through source and/or through bolts, where insulation of bolts is measured
US8863839B2 (en) 2009-12-17 2014-10-21 Exxonmobil Upstream Research Company Enhanced convection for in situ pyrolysis of organic-rich rock formations
JP5502504B2 (en) * 2010-01-25 2014-05-28 株式会社東芝 Substation automatic control system
US8490695B2 (en) * 2010-02-08 2013-07-23 Apache Corporation Method for drilling and fracture treating multiple wellbores
CA2693640C (en) 2010-02-17 2013-10-01 Exxonmobil Upstream Research Company Solvent separation in a solvent-dominated recovery process
WO2011115601A1 (en) * 2010-03-15 2011-09-22 Fmc Technologies, Inc. Optical scanning tool for wellheads
EP2547862A4 (en) * 2010-03-15 2017-04-19 Landmark Graphics Corporation Systems and methods for positioning horizontal wells within boundaries
CA2696638C (en) 2010-03-16 2012-08-07 Exxonmobil Upstream Research Company Use of a solvent-external emulsion for in situ oil recovery
US8931549B2 (en) * 2010-03-26 2015-01-13 David Randolph Smith Method and apparatus for a subterranean and marine-submersible electrical transmission system for oil and gas wells
JP5602219B2 (en) * 2010-04-06 2014-10-08 ニチアス株式会社 Jacket heater and mounting method thereof
US9033042B2 (en) 2010-04-09 2015-05-19 Shell Oil Company Forming bitumen barriers in subsurface hydrocarbon formations
US8833453B2 (en) 2010-04-09 2014-09-16 Shell Oil Company Electrodes for electrical current flow heating of subsurface formations with tapered copper thickness
CA2792292A1 (en) * 2010-04-09 2011-10-13 Shell Internationale Research Maatschappij B.V. Leak detection in circulated fluid systems for heating subsurface formations
US8939207B2 (en) 2010-04-09 2015-01-27 Shell Oil Company Insulated conductor heaters with semiconductor layers
US8631866B2 (en) 2010-04-09 2014-01-21 Shell Oil Company Leak detection in circulated fluid systems for heating subsurface formations
EP2556210A4 (en) * 2010-04-09 2014-07-09 Shell Oil Co Insulated conductor heaters with semiconductor layers
US9127538B2 (en) 2010-04-09 2015-09-08 Shell Oil Company Methodologies for treatment of hydrocarbon formations using staged pyrolyzation
US8502120B2 (en) 2010-04-09 2013-08-06 Shell Oil Company Insulating blocks and methods for installation in insulated conductor heaters
US8943850B2 (en) 2010-05-25 2015-02-03 7Ac Technologies, Inc. Desalination methods and systems
CA2705643C (en) 2010-05-26 2016-11-01 Imperial Oil Resources Limited Optimization of solvent-dominated recovery
NO338616B1 (en) * 2010-08-04 2016-09-12 Statoil Petroleum As Apparatus and method for storing carbon dioxide in underground geological formations
JP5140121B2 (en) * 2010-08-26 2013-02-06 三菱電機株式会社 Control system
US20120073810A1 (en) * 2010-09-24 2012-03-29 Conocophillips Company Situ hydrocarbon upgrading with fluid generated to provide steam and hydrogen
DE102010043529B4 (en) * 2010-09-27 2013-01-31 Siemens Aktiengesellschaft Apparatus and method for using the apparatus for "in situ" production of bitumen or heavy oil from oil sands deposits
US8943686B2 (en) 2010-10-08 2015-02-03 Shell Oil Company Compaction of electrical insulation for joining insulated conductors
US8857051B2 (en) 2010-10-08 2014-10-14 Shell Oil Company System and method for coupling lead-in conductor to insulated conductor
US8732946B2 (en) 2010-10-08 2014-05-27 Shell Oil Company Mechanical compaction of insulator for insulated conductor splices
US8459121B2 (en) * 2010-10-28 2013-06-11 Covaris, Inc. Method and system for acoustically treating material
AU2010363968B2 (en) * 2010-11-17 2016-08-04 Halliburton Energy Services, Inc. Apparatus and method for drilling a well
US20120139530A1 (en) * 2010-12-07 2012-06-07 Smith International, Inc. Electromagnetic array for subterranean magnetic ranging operations
US9238959B2 (en) * 2010-12-07 2016-01-19 Schlumberger Technology Corporation Methods for improved active ranging and target well magnetization
US8776518B1 (en) 2010-12-11 2014-07-15 Underground Recovery, LLC Method for the elimination of the atmospheric release of carbon dioxide and capture of nitrogen from the production of electricity by in situ combustion of fossil fuels
US20150233224A1 (en) * 2010-12-21 2015-08-20 Chevron U.S.A. Inc. System and method for enhancing oil recovery from a subterranean reservoir
US9033033B2 (en) 2010-12-21 2015-05-19 Chevron U.S.A. Inc. Electrokinetic enhanced hydrocarbon recovery from oil shale
US20120152570A1 (en) * 2010-12-21 2012-06-21 Chevron U.S.A. Inc. System and Method For Enhancing Oil Recovery From A Subterranean Reservoir
US8936089B2 (en) 2010-12-22 2015-01-20 Chevron U.S.A. Inc. In-situ kerogen conversion and recovery
US8443897B2 (en) * 2011-01-06 2013-05-21 Halliburton Energy Services, Inc. Subsea safety system having a protective frangible liner and method of operating same
US8592747B2 (en) * 2011-01-19 2013-11-26 Baker Hughes Incorporated Programmable filters for improving data fidelity in swept-wavelength interferometry-based systems
US20120185123A1 (en) * 2011-01-19 2012-07-19 Adil Ansari System and method for vehicle path determination
WO2012109711A1 (en) * 2011-02-18 2012-08-23 Linc Energy Ltd Igniting an underground coal seam in an underground coal gasification process, ucg
US20130062058A1 (en) * 2011-03-03 2013-03-14 Conocophillips Company In situ combustion following sagd
DK177547B1 (en) 2011-03-04 2013-10-07 Maersk Olie & Gas Process and system for well and reservoir management in open-zone developments as well as process and system for production of crude oil
US8554135B2 (en) * 2011-03-15 2013-10-08 Trimble Navigation Limited Controlling power dissipation in a base station of a navigation satellite system (NSS)
US9016370B2 (en) 2011-04-08 2015-04-28 Shell Oil Company Partial solution mining of hydrocarbon containing layers prior to in situ heat treatment
RU2587459C2 (en) 2011-04-08 2016-06-20 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Systems for joining insulated conductors
US9585202B2 (en) 2011-05-20 2017-02-28 Cooktek Induction Systems, Llc Induction-based food holding/warming system and method
JP5787214B2 (en) * 2011-06-08 2015-09-30 株式会社リコー Method for producing electrophotographic carrier
US9116016B2 (en) * 2011-06-30 2015-08-25 Schlumberger Technology Corporation Indicating system for a downhole apparatus and a method for locating a downhole apparatus
US10956794B2 (en) * 2011-07-05 2021-03-23 Bernard Fryshman Induction heating systems
US9903200B2 (en) * 2011-07-19 2018-02-27 Baker Hughes, A Ge Company, Llc Viscosity measurement in a fluid analyzer sampling tool
US9419430B1 (en) * 2011-08-04 2016-08-16 Dynamic Ratings Pty Ltd System for monitoring and modeling operation of a transformer
AR087584A1 (en) 2011-08-16 2014-04-03 Red Leaf Resources Inc DEVICE FOR THE TRANSFER OF FLUIDS WITH VERTICAL COMPACTION
US8566415B2 (en) * 2011-08-22 2013-10-22 Kollmorgen Corporation Safe torque off over network wiring
NO338637B1 (en) * 2011-08-31 2016-09-26 Reelwell As Pressure control using fluid on top of a piston
JO3139B1 (en) 2011-10-07 2017-09-20 Shell Int Research Forming insulated conductors using a final reduction step after heat treating
WO2013052566A1 (en) 2011-10-07 2013-04-11 Shell Oil Company Using dielectric properties of an insulated conductor in a subsurface formation to assess properties of the insulated conductor
CA2850758A1 (en) * 2011-10-07 2013-04-11 Shell Internationale Research Maatschappij B.V. Forming a tubular around insulated conductors and/or tubulars
US9309755B2 (en) 2011-10-07 2016-04-12 Shell Oil Company Thermal expansion accommodation for circulated fluid systems used to heat subsurface formations
JO3141B1 (en) 2011-10-07 2017-09-20 Shell Int Research Integral splice for insulated conductors
CA2845012A1 (en) 2011-11-04 2013-05-10 Exxonmobil Upstream Research Company Multiple electrical connections to optimize heating for in situ pyrolysis
JP5846875B2 (en) * 2011-11-28 2016-01-20 株式会社Ihi Induction heating device for sluice equipment
JP2013114879A (en) * 2011-11-28 2013-06-10 Ihi Corp Induction heating device
US9181467B2 (en) 2011-12-22 2015-11-10 Uchicago Argonne, Llc Preparation and use of nano-catalysts for in-situ reaction with kerogen
US8701788B2 (en) 2011-12-22 2014-04-22 Chevron U.S.A. Inc. Preconditioning a subsurface shale formation by removing extractible organics
US8851177B2 (en) 2011-12-22 2014-10-07 Chevron U.S.A. Inc. In-situ kerogen conversion and oxidant regeneration
US11174706B2 (en) 2012-01-11 2021-11-16 Halliburton Energy Services, Inc. Pipe in pipe downhole electric heater
CA2898956A1 (en) 2012-01-23 2013-08-01 Genie Ip B.V. Heater pattern for in situ thermal processing of a subsurface hydrocarbon containing formation
AU2012367347A1 (en) 2012-01-23 2014-08-28 Genie Ip B.V. Heater pattern for in situ thermal processing of a subsurface hydrocarbon containing formation
WO2013119778A1 (en) * 2012-02-09 2013-08-15 Marathon Canadian Oil Sands Holding Limited Systems and methods for integrating bitumen extraction with bitumen upgrading
DE102012202105B4 (en) * 2012-02-13 2014-08-07 Maschinenfabrik Reinhausen Gmbh Transformer with tap changer
TWI524461B (en) * 2012-02-14 2016-03-01 愛發科股份有限公司 Ion beam irradiation apparatus
DE102012202578A1 (en) * 2012-02-20 2013-08-22 Robert Bosch Gmbh Multiphase converters
RU2502923C2 (en) * 2012-02-22 2013-12-27 Общество с ограниченной ответственностью "ПАТЕНТ при Тульском государственном университете" Automatic thermal energy production and usage control system
CA2811666C (en) 2012-04-05 2021-06-29 Shell Internationale Research Maatschappij B.V. Compaction of electrical insulation for joining insulated conductors
US8770284B2 (en) 2012-05-04 2014-07-08 Exxonmobil Upstream Research Company Systems and methods of detecting an intersection between a wellbore and a subterranean structure that includes a marker material
US8992771B2 (en) 2012-05-25 2015-03-31 Chevron U.S.A. Inc. Isolating lubricating oils from subsurface shale formations
CN104508417B (en) 2012-06-11 2017-03-29 7Ac技术公司 For the method and system of the corrosion resistant heat exchanger of turbulence type
US8919441B2 (en) 2012-07-03 2014-12-30 Halliburton Energy Services, Inc. Method of intersecting a first well bore by a second well bore
US10076001B2 (en) * 2012-07-05 2018-09-11 Nvent Services Gmbh Mineral insulated cable having reduced sheath temperature
CN103529314B (en) * 2012-07-05 2016-07-06 瀚宇彩晶股份有限公司 Touch-control test system and touch-control test method thereof
US8859063B2 (en) * 2012-07-18 2014-10-14 Honeywell International Inc. Systems and methods for a protective casing
EP2888436B1 (en) 2012-08-27 2019-11-27 Halliburton Energy Services, Inc. Annular safety valve sealing package
US10220930B2 (en) * 2012-09-17 2019-03-05 Anasphere, Inc. Thermal hydrogen generator using a metal hydride and thermite
FR2995986A1 (en) * 2012-09-21 2014-03-28 E T I A Evaluation Technologique Ingenierie Et Applic DEVICE FOR THERMALLY TREATING A PRODUCT
WO2014055851A1 (en) * 2012-10-05 2014-04-10 Structural Group, Inc. System and method for internal pressurized gas drying of concrete
WO2014058777A1 (en) 2012-10-09 2014-04-17 Shell Oil Company Method for heating a subterranean formation penetrated by a wellbore
US9949318B2 (en) * 2012-10-10 2018-04-17 Amante Radiant Supply, Inc. Portable heating arrangement
WO2013163773A1 (en) * 2012-10-22 2013-11-07 Basualto Lira Guillermo Hydraulic foliating of ore bodies exploited by block or panel caving mining methods
US9200533B2 (en) 2012-11-19 2015-12-01 General Electric Company Enthalpy determining apparatus, system and method
RU2521124C1 (en) * 2012-11-20 2014-06-27 Вячеслав Иванович Беляев Liquidising plant for aircraft
US9062808B2 (en) 2012-11-20 2015-06-23 Elwha Llc Underwater oil pipeline heating systems
US20150292309A1 (en) * 2012-11-25 2015-10-15 Harold Vinegar Heater pattern including heaters powered by wind-electricity for in situ thermal processing of a subsurface hydrocarbon-containing formation
US9506697B2 (en) 2012-12-04 2016-11-29 7Ac Technologies, Inc. Methods and systems for cooling buildings with large heat loads using desiccant chillers
US20140167972A1 (en) * 2012-12-13 2014-06-19 General Electric Company Acoustically-responsive optical data acquisition system for sensor data
CN104919136B (en) * 2012-12-21 2018-07-10 哈利伯顿能源服务公司 The system and method for range measurement are performed using the reference of third well
WO2014111816A2 (en) * 2013-01-17 2014-07-24 Octodon Llc Data input systems for handheld devices
US9194221B2 (en) 2013-02-13 2015-11-24 Harris Corporation Apparatus for heating hydrocarbons with RF antenna assembly having segmented dipole elements and related methods
US9689253B2 (en) * 2013-02-21 2017-06-27 Schlumberger Technology Corporation Use of nanotracers for imaging and/or monitoring fluid flow and improved oil recovery
WO2014134473A1 (en) 2013-03-01 2014-09-04 7Ac Technologies, Inc. Desiccant air conditioning methods and systems
MX364645B (en) 2013-03-11 2019-05-03 Halliburton Energy Services Inc Downhole ranging from multiple boreholes.
US9410408B2 (en) 2013-03-12 2016-08-09 Schlumberger Technology Corporation Electrical heating of oil shale and heavy oil formations
US9803458B2 (en) 2013-03-13 2017-10-31 Tronox Alkali Wyoming Corporation Solution mining using subterranean drilling techniques
WO2014152905A1 (en) 2013-03-14 2014-09-25 7Ac Technologies, Inc. Methods and systems for mini-split liquid desiccant air conditioning
CN105121966B (en) 2013-03-14 2018-06-01 7Ac技术公司 For the method and system of liquid drier air handling system transformation
US20160040514A1 (en) * 2013-03-15 2016-02-11 Board Of Regents, The University Of Texas System Reservoir Characterization and Hydraulic Fracture Evaluation
BR112015019236B1 (en) 2013-03-18 2021-06-08 Halliburton Energy Services, Inc system and method for optimizing gradient measurements in range operations, and drilling apparatus for use in range operations
US10316644B2 (en) 2013-04-04 2019-06-11 Shell Oil Company Temperature assessment using dielectric properties of an insulated conductor heater with selected electrical insulation
WO2014172533A1 (en) * 2013-04-18 2014-10-23 Conocophillips Company Acceleration of heavy oil recovery through downhole radio frequency radiation heating
US9433894B2 (en) 2013-05-09 2016-09-06 Tronox Alkali Wyoming Corporation Removal of hydrogen sulfide from gas streams
US10808521B2 (en) 2013-05-31 2020-10-20 Conocophillips Company Hydraulic fracture analysis
KR102302927B1 (en) 2013-06-12 2021-09-17 에머슨 클리메이트 테크놀로지즈 인코퍼레이티드 In-ceiling liquid desiccant air conditioning system
US9382785B2 (en) 2013-06-17 2016-07-05 Baker Hughes Incorporated Shaped memory devices and method for using same in wellbores
WO2014210146A2 (en) * 2013-06-27 2014-12-31 Scientific Drilling International, Inc. Telemetry antenna arrangement
CA2913964A1 (en) * 2013-07-11 2015-01-15 Halliburton Energy Services, Inc. Rotationally-independent wellbore ranging
US9938821B2 (en) 2013-08-29 2018-04-10 Halliburton Energy Services, Inc. Systems and methods for casing detection using resonant structures
US9777562B2 (en) * 2013-09-05 2017-10-03 Saudi Arabian Oil Company Method of using concentrated solar power (CSP) for thermal gas well deliquification
US20150083411A1 (en) * 2013-09-24 2015-03-26 Oborn Environmental Solutions, LLC Automated systems and methods for production of gas from groundwater aquifers
EP2853681A1 (en) * 2013-09-30 2015-04-01 Welltec A/S A thermally expanded annular barrier
RU2558039C2 (en) * 2013-10-22 2015-07-27 Общество с ограниченной ответственностью "БИТАС" System preventing contact between boreholes at cluster drilling of oil and gas wells
CA2923681A1 (en) 2013-10-22 2015-04-30 Exxonmobil Upstream Research Company Systems and methods for regulating an in situ pyrolysis process
US10233742B2 (en) 2013-10-31 2019-03-19 Halliburton Energy Services, Inc. Downhole acoustic ranging utilizing gradiometric data
US9394772B2 (en) * 2013-11-07 2016-07-19 Exxonmobil Upstream Research Company Systems and methods for in situ resistive heating of organic matter in a subterranean formation
US9399907B2 (en) 2013-11-20 2016-07-26 Shell Oil Company Steam-injecting mineral insulated heater design
RU2544196C1 (en) * 2013-12-10 2015-03-10 Алексей Викторович Белов Utilising well
US20190249532A1 (en) * 2013-12-12 2019-08-15 Rustem Latipovich ZLAVDINOV System for locking interior door latches
JP6285167B2 (en) * 2013-12-12 2018-02-28 愛知電機株式会社 Thyristor type high voltage automatic voltage regulator
US20160259079A1 (en) * 2013-12-17 2016-09-08 Halliburton Energy Services Inc. Distributed Acoustic Sensing for Passive Ranging
EP2887075B1 (en) * 2013-12-18 2017-03-22 3M Innovative Properties Company Voltage sensing device
US20150167550A1 (en) * 2013-12-18 2015-06-18 General Electric Company System and method for processing gas streams
CA2837471C (en) * 2013-12-19 2019-12-31 Imperial Oil Resources Limited Method of recovering heavy oil from a reservoir
CA2930531C (en) * 2013-12-27 2019-03-12 Halliburton Energy Services, Inc. Drilling collision avoidance apparatus, methods, and systems
RU2638598C1 (en) * 2013-12-30 2017-12-14 Хэллибертон Энерджи Сервисиз, Инк. Ranging by means of current profiling
CA2875485C (en) * 2014-01-08 2017-08-22 Husky Oil Operations Limited Method of subsurface reservoir fracturing using electromagnetic pulse energy
US9435183B2 (en) 2014-01-13 2016-09-06 Bernard Compton Chung Steam environmentally generated drainage system and method
CA3176275A1 (en) 2014-02-18 2015-08-18 Athabasca Oil Corporation Cable-based well heater
GB2523567B (en) * 2014-02-27 2017-12-06 Statoil Petroleum As Producing hydrocarbons from a subsurface formation
WO2015143332A2 (en) 2014-03-20 2015-09-24 7Ac Technologies, Inc. Rooftop liquid desiccant systems and methods
US20150273586A1 (en) * 2014-03-28 2015-10-01 Baker Hughes Incorporated Additive Manufacturing Process for Tubular with Embedded Electrical Conductors
US9702236B2 (en) * 2014-04-02 2017-07-11 Husky Oil Operations Limited Heat-assisted steam-based hydrocarbon recovery method
RU2686564C2 (en) 2014-04-04 2019-04-29 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Insulated conductors, formed using the stage of final decrease dimension after thermal treatment
US9504984B2 (en) 2014-04-09 2016-11-29 Exxonmobil Upstream Research Company Generating elemental sulfur
GB2526123A (en) * 2014-05-14 2015-11-18 Statoil Petroleum As Producing hydrocarbons from a subsurface formation
US9926102B2 (en) 2014-06-05 2018-03-27 Maxwell Properties, Llc Systems and methods for providing a packaged thermoplastic material
EP2960211A1 (en) * 2014-06-25 2015-12-30 Université d'Aix-Marseille Device for extraction of pollutants by multichannel tubular membrane
GB2527847A (en) * 2014-07-04 2016-01-06 Compactgtl Ltd Catalytic reactors
US9879521B2 (en) 2014-08-11 2018-01-30 Halliburton Energy Services, Inc. Well ranging apparatus, systems, and methods
US9451792B1 (en) * 2014-09-05 2016-09-27 Atmos Nation, LLC Systems and methods for vaporizing assembly
US9449440B2 (en) 2014-09-17 2016-09-20 Honeywell International Inc. Wireless crash survivable memory unit
US9970888B2 (en) 2014-11-07 2018-05-15 Ge Energy Oilfield Technology, Inc. System and method for wellsite core sample analysis
US10001446B2 (en) 2014-11-07 2018-06-19 Ge Energy Oilfield Technology, Inc. Core sample analysis
CA2967325C (en) 2014-11-21 2019-06-18 Exxonmobil Upstream Research Company Method of recovering hydrocarbons within a subsurface formation
EP3221648B1 (en) 2014-11-21 2020-01-08 7AC Technologies, Inc. Liquid desiccant air conditioning system
US10400563B2 (en) 2014-11-25 2019-09-03 Salamander Solutions, LLC Pyrolysis to pressurise oil formations
US9567530B2 (en) 2014-11-26 2017-02-14 Saudi Arabian Oil Company Process for heavy oil upgrading in a double-wall reactor
FI10797U1 (en) * 2014-12-04 2015-03-10 Wicetec Oy A conductor joint for connecting a copper conductor
US10727122B2 (en) 2014-12-08 2020-07-28 International Business Machines Corporation Self-aligned via interconnect structures
JP6435828B2 (en) * 2014-12-10 2018-12-12 株式会社デンソー Heater device
US20160169451A1 (en) * 2014-12-12 2016-06-16 Fccl Partnership Process and system for delivering steam
WO2016108857A1 (en) 2014-12-30 2016-07-07 Halliburton Energy Services, Inc. Locating mutiple wellbores
GB2547598B (en) 2014-12-31 2021-09-08 Halliburton Energy Services Inc Methods and systems employing fiber optic sensors for electromagnetic cross-well telemetry
CA2969321C (en) 2014-12-31 2020-09-08 Halliburton Energy Services, Inc. Methods and systems employing fiber optic sensors for ranging
US9573434B2 (en) 2014-12-31 2017-02-21 Ge Energy Oilfield Technology, Inc. Trailer and chassis design for mobile core scanning system
CA2966608C (en) * 2014-12-31 2021-01-12 Halliburton Energy Services, Inc. A single wire guidance system for ranging using unbalanced magnetic fields
US10261204B2 (en) 2014-12-31 2019-04-16 Ge Energy Oilfield Technology, Inc. Methods and systems for scan analysis of a core sample
US10031148B2 (en) 2014-12-31 2018-07-24 Ge Energy Oilfield Technology, Inc. System for handling a core sample
RU2591860C1 (en) * 2015-02-05 2016-07-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Южно-Уральский государственный университет" (национальный исследовательский университет) (ФГБОУ ВПО "ЮУрГУ" (НИУ)) Method of extracting heavy oil from production reservoir and device for its implementation
JP7085838B2 (en) 2015-02-26 2022-06-17 シーツーシーエヌティー エルエルシー Methods and systems for manufacturing carbon nanofibers
US20160251947A1 (en) * 2015-02-27 2016-09-01 Schlumberger Technology Corporation Methods of Modifying Formation Properties
RU2583051C1 (en) * 2015-03-03 2016-05-10 Общество с ограниченной ответственностью "Эльмаш (УЭТМ)" Transformer-thyristor device for smooth-step voltage control under load
CN107850917B (en) * 2015-06-19 2021-12-07 科诺科菲利浦公司 System and method for event detection using stream signals
US10344571B2 (en) * 2015-08-19 2019-07-09 Halliburton Energy Services, Inc. Optimization of excitation source placement for downhole ranging and telemetry operations
US9598942B2 (en) * 2015-08-19 2017-03-21 G&H Diversified Manufacturing Lp Igniter assembly for a setting tool
US11008836B2 (en) * 2015-08-19 2021-05-18 Halliburton Energy Services, Inc. Optimization of excitation source placement for downhole telemetry operations
US11359338B2 (en) * 2015-09-01 2022-06-14 Exotex, Inc. Construction products and systems for providing geothermal heat
US9556719B1 (en) 2015-09-10 2017-01-31 Don P. Griffin Methods for recovering hydrocarbons from shale using thermally-induced microfractures
US10358296B2 (en) 2015-09-18 2019-07-23 Maxwell Properties, Llc Systems and methods for delivering asphalt concrete
WO2017066295A1 (en) 2015-10-13 2017-04-20 Clarion Energy Llc Methods and systems for carbon nanofiber production
US10920575B2 (en) * 2015-10-29 2021-02-16 Halliburton Energy Services, Inc. Methods and systems employing a rotating magnet and fiber optic sensors for ranging
US11151762B2 (en) 2015-11-03 2021-10-19 Ubiterra Corporation Systems and methods for shared visualization and display of drilling information
US20170122095A1 (en) * 2015-11-03 2017-05-04 Ubiterra Corporation Automated geo-target and geo-hazard notifications for drilling systems
CN105370254B (en) * 2015-11-18 2018-08-14 中国石油天然气股份有限公司 A kind of method and device of heavy crude producing
US10304591B1 (en) * 2015-11-18 2019-05-28 Real Power Licensing Corp. Reel cooling method
BR112018007370A2 (en) * 2015-11-19 2018-10-16 Halliburton Energy Services Inc Real-time estimation method of fluid compositions and properties
US10117042B2 (en) * 2015-12-09 2018-10-30 Saudi Arabian Oil Company Environment-aware cross-layer communication protocol in underground oil reservoirs
EP3359777B1 (en) 2015-12-18 2021-12-22 Halliburton Energy Services, Inc. Systems and methods to calibrate individual component measurement
US10844705B2 (en) * 2016-01-20 2020-11-24 Halliburton Energy Services, Inc. Surface excited downhole ranging using relative positioning
WO2017127722A1 (en) 2016-01-20 2017-07-27 Lucent Medical Systems, Inc. Low-frequency electromagnetic tracking
US10890058B2 (en) 2016-03-09 2021-01-12 Conocophillips Company Low-frequency DAS SNR improvement
US10458228B2 (en) 2016-03-09 2019-10-29 Conocophillips Company Low frequency distributed acoustic sensing
WO2017177319A1 (en) 2016-04-13 2017-10-19 Acceleware Ltd. Apparatus and methods for electromagnetic heating of hydrocarbon formations
RU2616016C9 (en) * 2016-05-10 2017-07-26 Публичное акционерное общество "Татнефть" им. В.Д.Шашина Recovery method for solid carbonate reservoirs
WO2017205761A1 (en) 2016-05-27 2017-11-30 Board Of Regents, University Of Texas System Downhole induction heater and coupling system for oil and gas wells
US9745843B1 (en) 2016-06-09 2017-08-29 Noralis Limited Method for determining position with improved calibration
US10130016B2 (en) * 2016-08-26 2018-11-13 TECO—Westinghouse Motor Company Modular size multi-megawatt silicon carbide-based medium voltage conversion system
US10356853B2 (en) 2016-08-29 2019-07-16 Cooktek Induction Systems, Llc Infrared temperature sensing in induction cooking systems
US10712880B2 (en) * 2016-08-30 2020-07-14 Tactual Labs Co. Signal infusion to enhance appendage detection and characterization
US10781981B2 (en) * 2016-09-19 2020-09-22 Signify Holding B.V. Lighting device comprising a communication element for wireless communication
US10614378B2 (en) 2016-09-26 2020-04-07 International Business Machines Corporation Cross-well allocation optimization in steam assisted gravity drainage wells
US10577907B2 (en) 2016-09-26 2020-03-03 International Business Machines Corporation Multi-level modeling of steam assisted gravity drainage wells
US10352142B2 (en) 2016-09-26 2019-07-16 International Business Machines Corporation Controlling operation of a stem-assisted gravity drainage oil well system by adjusting multiple time step controls
US10570717B2 (en) 2016-09-26 2020-02-25 International Business Machines Corporation Controlling operation of a steam-assisted gravity drainage oil well system utilizing continuous and discrete control parameters
US10378324B2 (en) 2016-09-26 2019-08-13 International Business Machines Corporation Controlling operation of a steam-assisted gravity drainage oil well system by adjusting controls based on forecast emulsion production
US10267130B2 (en) 2016-09-26 2019-04-23 International Business Machines Corporation Controlling operation of a steam-assisted gravity drainage oil well system by adjusting controls to reduce model uncertainty
JP6861372B2 (en) * 2016-11-07 2021-04-21 パナソニックIpマネジメント株式会社 Radio sensor and lighting equipment
EP3337290B1 (en) * 2016-12-13 2019-11-27 Nexans Subsea direct electric heating system
US20180172266A1 (en) * 2016-12-21 2018-06-21 Electric Horsepower Inc. Electric resistance heater system and light tower
US10458233B2 (en) * 2016-12-29 2019-10-29 Halliburton Energy Services, Inc. Sensors for in-situ formation fluid analysis
JP6624107B2 (en) * 2017-02-10 2019-12-25 株式会社豊田中央研究所 Vehicle heat management control device, heat management control program
US11875371B1 (en) 2017-04-24 2024-01-16 Skyline Products, Inc. Price optimization system
EP3619560B1 (en) 2017-05-05 2022-06-29 ConocoPhillips Company Stimulated rock volume analysis
US11255997B2 (en) 2017-06-14 2022-02-22 Conocophillips Company Stimulated rock volume analysis
US11001511B2 (en) 2017-06-07 2021-05-11 Erix Solutions Corporation Electrochemical ion exchange treatment of fluids
US11320560B2 (en) * 2017-06-08 2022-05-03 Halliburton Energy Services, Inc. Downhole ranging using spatially continuous constraints
WO2018231562A1 (en) 2017-06-12 2018-12-20 Shell Oil Company Electrically heated subsea flowlines
JP6811146B2 (en) * 2017-06-23 2021-01-13 東京エレクトロン株式会社 How to inspect the gas supply system
US10284166B2 (en) 2017-06-27 2019-05-07 Intel Corporation Transmitter matching network using a transformer
US11008841B2 (en) 2017-08-11 2021-05-18 Acceleware Ltd. Self-forming travelling wave antenna module based on single conductor transmission lines for electromagnetic heating of hydrocarbon formations and method of use
RU2679397C1 (en) * 2017-08-22 2019-02-08 Владимир Васильевич Бычков Nuclear power installation (options)
WO2019055670A1 (en) * 2017-09-13 2019-03-21 Chevron Phillips Chemical Company Lp Pvdf pipe and methods of making and using same
US11213792B2 (en) * 2017-09-29 2022-01-04 Sumitomo Chemical Company, Limited Spiral-wound type gas separation membrane element, gas separation membrane module, and gas separation device
EP3676479A4 (en) 2017-10-17 2020-12-09 ConocoPhillips Company Low frequency distributed acoustic sensing hydraulic fracture geometry
EP3704416B1 (en) 2017-11-01 2023-04-12 Emerson Climate Technologies, Inc. Methods and apparatus for uniform distribution of liquid desiccant in membrane modules in liquid desiccant air-conditioning systems
WO2019089967A1 (en) 2017-11-01 2019-05-09 7Ac Technologies, Inc. Tank system for liquid desiccant air conditioning system
CN110306968A (en) * 2018-03-27 2019-10-08 中国石油化工股份有限公司 Irregular well pattern optimization method and its computer readable storage medium
CA3094528A1 (en) 2018-03-28 2019-10-03 Conocophillips Company Low frequency das well interference evaluation
US11021934B2 (en) 2018-05-02 2021-06-01 Conocophillips Company Production logging inversion based on DAS/DTS
US11022330B2 (en) 2018-05-18 2021-06-01 Emerson Climate Technologies, Inc. Three-way heat exchangers for liquid desiccant air-conditioning systems and methods of manufacture
US11555473B2 (en) 2018-05-29 2023-01-17 Kontak LLC Dual bladder fuel tank
US11638331B2 (en) 2018-05-29 2023-04-25 Kontak LLC Multi-frequency controllers for inductive heating and associated systems and methods
US10850314B2 (en) * 2018-06-04 2020-12-01 Daniel W. Chambers Remote gas monitoring and flare control system
US11255777B2 (en) * 2018-06-04 2022-02-22 Daniel W Chambers Automated remote gas monitoring and flare control system
US11065575B2 (en) 2018-07-05 2021-07-20 Molecule Works Inc. Membrane device for water and energy exchange
CN109247920B (en) * 2018-09-06 2021-09-28 上海平脉科技有限公司 High-sensitivity pressure sensor
US11053775B2 (en) * 2018-11-16 2021-07-06 Leonid Kovalev Downhole induction heater
US11762117B2 (en) * 2018-11-19 2023-09-19 ExxonMobil Technology and Engineering Company Downhole tools and methods for detecting a downhole obstruction within a wellbore
US11262743B2 (en) * 2018-11-21 2022-03-01 Sap Se Predicting leading indicators of an event
US11773706B2 (en) 2018-11-29 2023-10-03 Acceleware Ltd. Non-equidistant open transmission lines for electromagnetic heating and method of use
WO2020176982A1 (en) 2019-03-06 2020-09-10 Acceleware Ltd. Multilateral open transmission lines for electromagnetic heating and method of use
AU2020247722B2 (en) 2019-03-25 2024-02-01 Conocophillips Company Machine-learning based fracture-hit detection using low-frequency DAS signal
GB201904677D0 (en) 2019-04-03 2019-05-15 Rolls Royce Plc Oil pipe assembly
TWI723381B (en) * 2019-04-19 2021-04-01 張家歐 Structure and method for detecting position of inertial axis of defective quartz hemispherical shell
RU2721549C1 (en) * 2019-07-19 2020-05-20 Общество с ограниченной ответственностью "Ойл Автоматика" (ООО "Ойл Автоматика") Induction borehole heater
KR102080444B1 (en) * 2019-08-03 2020-02-24 정지창 the unitization apparatus of the multiple electric heater having the heating space of the ring shape connected to the disk branch electrode
KR102082080B1 (en) * 2019-08-03 2020-05-29 정지창 the electric heater having the heating space of the ring shape connected to the disk branch electrode
WO2021026432A1 (en) 2019-08-07 2021-02-11 Saudi Arabian Oil Company Determination of geologic permeability correlative with magnetic permeability measured in-situ
US11108234B2 (en) 2019-08-27 2021-08-31 Halliburton Energy Services, Inc. Grid power for hydrocarbon service applications
EA036676B1 (en) * 2019-09-10 2020-12-07 Научно-Исследовательский И Проектный Институт Нефти И Газа (Нипинг) Method for oil reservoir development
CN110685651B (en) * 2019-10-14 2021-11-30 重庆科技学院 Yield splitting method and system for multilayer commingled production gas well
CN110553934B (en) * 2019-10-16 2021-11-02 浙江科技学院 Round hole linear nail column type double-sided energy-gathering joint cutting and monitoring system
EP4076707A4 (en) * 2019-12-16 2024-01-17 Services Petroliers Schlumberger Membrane module
DE202020101182U1 (en) * 2020-03-04 2020-03-12 Türk & Hillinger GmbH Electric heater
US11434151B2 (en) * 2020-04-13 2022-09-06 Halliburton Energy Services, Inc. Methods of improving compatibility of oilfield produced water from different sources
TWI708457B (en) * 2020-04-22 2020-10-21 均華精密工業股份有限公司 Shaft fixing device
PH12021050221A1 (en) * 2020-05-13 2021-11-22 Greenfire Energy Inc Hydrogen production from geothermal resources using closed-loop systems
CN111905906B (en) * 2020-07-29 2021-07-06 中国石油化工股份有限公司 Centrifugal separation and mechanical crushing type coal dust cleaning system and working method thereof
CN112253076B (en) * 2020-11-26 2021-08-31 福州大学 Chemical mining method of underground pyrite
CN112875991A (en) * 2021-01-23 2021-06-01 河南格恩阳光环境科技有限公司 Integrated modular equipment for sewage treatment
US11749453B2 (en) 2021-04-07 2023-09-05 Weg Transformers Usa Llc Assembly for automatic tap adjustment of a power transformer using load tap changer and a method and support assembly for mounting the same
AU2022310512A1 (en) 2021-07-16 2024-01-25 Conocophillips Company Passive production logging instrument using heat and distributed acoustic sensing
US11879328B2 (en) 2021-08-05 2024-01-23 Saudi Arabian Oil Company Semi-permanent downhole sensor tool
US11860077B2 (en) 2021-12-14 2024-01-02 Saudi Arabian Oil Company Fluid flow sensor using driver and reference electromechanical resonators
US11761057B1 (en) 2022-03-28 2023-09-19 Lyten, Inc. Method for refining one or more critical minerals
CN116163695B (en) * 2022-07-12 2024-03-08 四川大学 Method for cooperatively building dry-hot rock artificial heat storage by microwave radiation and dry ice jet
US11867049B1 (en) 2022-07-19 2024-01-09 Saudi Arabian Oil Company Downhole logging tool
US11913329B1 (en) 2022-09-21 2024-02-27 Saudi Arabian Oil Company Untethered logging devices and related methods of logging a wellbore
CN116698829B (en) * 2023-08-08 2023-10-03 华能新能源股份有限公司山西分公司 Wind-powered electricity generation basis soil freezes degree of depth measuring equipment
CN117365382B (en) * 2023-12-08 2024-02-09 大庆汇景石油机械有限公司 Wax-proof heating and heat-preserving device for oil pipe under oil field well

Family Cites Families (1072)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US48994A (en) * 1865-07-25 Improvement in devices for oil-wells
SE126674C1 (en) 1949-01-01
SE123136C1 (en) 1948-01-01
US2732195A (en) 1956-01-24 Ljungstrom
US345586A (en) 1886-07-13 Oil from wells
CA899987A (en) 1972-05-09 Chisso Corporation Method for controlling heat generation locally in a heat-generating pipe utilizing skin effect current
US1457690A (en) * 1923-06-05 Percival iv brine
SE123138C1 (en) 1948-01-01
US94813A (en) 1869-09-14 Improvement in torpedoes for oil-wells
US326439A (en) * 1885-09-15 Protecting wells
US2734579A (en) 1956-02-14 Production from bituminous sands
US760304A (en) 1903-10-24 1904-05-17 Frank S Gilbert Heater for oil-wells.
US1342741A (en) 1918-01-17 1920-06-08 David T Day Process for extracting oils and hydrocarbon material from shale and similar bituminous rocks
US1269747A (en) 1918-04-06 1918-06-18 Lebbeus H Rogers Method of and apparatus for treating oil-shale.
GB156396A (en) 1919-12-10 1921-01-13 Wilson Woods Hoover An improved method of treating shale and recovering oil therefrom
US1457479A (en) 1920-01-12 1923-06-05 Edson R Wolcott Method of increasing the yield of oil wells
US1477802A (en) * 1921-02-28 1923-12-18 Cutler Hammer Mfg Co Oil-well heater
US1510655A (en) 1922-11-21 1924-10-07 Clark Cornelius Process of subterranean distillation of volatile mineral substances
US1634236A (en) 1925-03-10 1927-06-28 Standard Dev Co Method of and apparatus for recovering oil
US1646599A (en) 1925-04-30 1927-10-25 George A Schaefer Apparatus for removing fluid from wells
US1811560A (en) 1926-04-08 1931-06-23 Standard Oil Dev Co Method of and apparatus for recovering oil
US1666488A (en) * 1927-02-05 1928-04-17 Crawshaw Richard Apparatus for extracting oil from shale
US1681523A (en) 1927-03-26 1928-08-21 Patrick V Downey Apparatus for heating oil wells
US2011710A (en) * 1928-08-18 1935-08-20 Nat Aniline & Chem Co Inc Apparatus for measuring temperature
US1913395A (en) 1929-11-14 1933-06-13 Lewis C Karrick Underground gasification of carbonaceous material-bearing substances
US1998123A (en) * 1932-08-25 1935-04-16 Socony Vacuum Oil Co Inc Process and apparatus for the distillation and conversion of hydrocarbons
US2013838A (en) 1932-12-27 1935-09-10 Rowland O Pickin Roller core drilling bit
US2244255A (en) 1939-01-18 1941-06-03 Electrical Treating Company Well clearing system
US2244256A (en) * 1939-12-16 1941-06-03 Electrical Treating Company Apparatus for clearing wells
US2249926A (en) 1940-05-13 1941-07-22 John A Zublin Nontracking roller bit
US2319702A (en) 1941-04-04 1943-05-18 Socony Vacuum Oil Co Inc Method and apparatus for producing oil wells
US2370507A (en) * 1941-08-22 1945-02-27 Texas Co Production of gasoline hydrocarbons
US2365591A (en) 1942-08-15 1944-12-19 Ranney Leo Method for producing oil from viscous deposits
US2423674A (en) 1942-08-24 1947-07-08 Johnson & Co A Process of catalytic cracking of petroleum hydrocarbons
US2381256A (en) 1942-10-06 1945-08-07 Texas Co Process for treating hydrocarbon fractions
US2390770A (en) 1942-10-10 1945-12-11 Sun Oil Co Method of producing petroleum
US2484063A (en) 1944-08-19 1949-10-11 Thermactor Corp Electric heater for subsurface materials
US2472445A (en) 1945-02-02 1949-06-07 Thermactor Company Apparatus for treating oil and gas bearing strata
US2481051A (en) 1945-12-15 1949-09-06 Texaco Development Corp Process and apparatus for the recovery of volatilizable constituents from underground carbonaceous formations
US2444755A (en) 1946-01-04 1948-07-06 Ralph M Steffen Apparatus for oil sand heating
US2634961A (en) 1946-01-07 1953-04-14 Svensk Skifferolje Aktiebolage Method of electrothermal production of shale oil
US2466945A (en) 1946-02-21 1949-04-12 In Situ Gases Inc Generation of synthesis gas
US2497868A (en) 1946-10-10 1950-02-21 Dalin David Underground exploitation of fuel deposits
US2939689A (en) 1947-06-24 1960-06-07 Svenska Skifferolje Ab Electrical heater for treating oilshale and the like
US2786660A (en) 1948-01-05 1957-03-26 Phillips Petroleum Co Apparatus for gasifying coal
US2548360A (en) 1948-03-29 1951-04-10 Stanley A Germain Electric oil well heater
US2685930A (en) * 1948-08-12 1954-08-10 Union Oil Co Oil well production process
US2630307A (en) 1948-12-09 1953-03-03 Carbonic Products Inc Method of recovering oil from oil shale
US2595979A (en) 1949-01-25 1952-05-06 Texas Co Underground liquefaction of coal
US2642943A (en) 1949-05-20 1953-06-23 Sinclair Oil & Gas Co Oil recovery process
US2593477A (en) 1949-06-10 1952-04-22 Us Interior Process of underground gasification of coal
GB674082A (en) 1949-06-15 1952-06-18 Nat Res Dev Improvements in or relating to the underground gasification of coal
GB676543A (en) 1949-11-14 1952-07-30 Telegraph Constr & Maintenance Improvements in the moulding and jointing of thermoplastic materials for example in the jointing of electric cables
US2670802A (en) 1949-12-16 1954-03-02 Thermactor Company Reviving or increasing the production of clogged or congested oil wells
US2623596A (en) 1950-05-16 1952-12-30 Atlantic Refining Co Method for producing oil by means of carbon dioxide
GB687088A (en) * 1950-11-14 1953-02-04 Glover & Co Ltd W T Improvements in the manufacture of insulated electric conductors
US2714930A (en) 1950-12-08 1955-08-09 Union Oil Co Apparatus for preventing paraffin deposition
US2695163A (en) * 1950-12-09 1954-11-23 Stanolind Oil & Gas Co Method for gasification of subterranean carbonaceous deposits
US2647306A (en) 1951-04-14 1953-08-04 John C Hockery Can opener
US2630306A (en) 1952-01-03 1953-03-03 Socony Vacuum Oil Co Inc Subterranean retorting of shales
US2757739A (en) 1952-01-07 1956-08-07 Parelex Corp Heating apparatus
US2780450A (en) * 1952-03-07 1957-02-05 Svenska Skifferolje Ab Method of recovering oil and gases from non-consolidated bituminous geological formations by a heating treatment in situ
US2777679A (en) * 1952-03-07 1957-01-15 Svenska Skifferolje Ab Recovering sub-surface bituminous deposits by creating a frozen barrier and heating in situ
US2789805A (en) 1952-05-27 1957-04-23 Svenska Skifferolje Ab Device for recovering fuel from subterraneous fuel-carrying deposits by heating in their natural location using a chain heat transfer member
US2761663A (en) 1952-09-05 1956-09-04 Louis F Gerdetz Process of underground gasification of coal
US2780449A (en) 1952-12-26 1957-02-05 Sinclair Oil & Gas Co Thermal process for in-situ decomposition of oil shale
US2825408A (en) 1953-03-09 1958-03-04 Sinclair Oil & Gas Company Oil recovery by subsurface thermal processing
US2771954A (en) * 1953-04-29 1956-11-27 Exxon Research Engineering Co Treatment of petroleum production wells
US2703621A (en) 1953-05-04 1955-03-08 George W Ford Oil well bottom hole flow increasing unit
US2743906A (en) 1953-05-08 1956-05-01 William E Coyle Hydraulic underreamer
US2803305A (en) 1953-05-14 1957-08-20 Pan American Petroleum Corp Oil recovery by underground combustion
US2914309A (en) 1953-05-25 1959-11-24 Svenska Skifferolje Ab Oil and gas recovery from tar sands
US2847306A (en) * 1953-07-01 1958-08-12 Exxon Research Engineering Co Process for recovery of oil from shale
US2902270A (en) 1953-07-17 1959-09-01 Svenska Skifferolje Ab Method of and means in heating of subsurface fuel-containing deposits "in situ"
US2890754A (en) * 1953-10-30 1959-06-16 Svenska Skifferolje Ab Apparatus for recovering combustible substances from subterraneous deposits in situ
US2882218A (en) * 1953-12-09 1959-04-14 Kellogg M W Co Hydrocarbon conversion process
US2890755A (en) * 1953-12-19 1959-06-16 Svenska Skifferolje Ab Apparatus for recovering combustible substances from subterraneous deposits in situ
US2841375A (en) 1954-03-03 1958-07-01 Svenska Skifferolje Ab Method for in-situ utilization of fuels by combustion
US2794504A (en) 1954-05-10 1957-06-04 Union Oil Co Well heater
US2793696A (en) 1954-07-22 1957-05-28 Pan American Petroleum Corp Oil recovery by underground combustion
US2781851A (en) * 1954-10-11 1957-02-19 Shell Dev Well tubing heater system
US2923535A (en) 1955-02-11 1960-02-02 Svenska Skifferolje Ab Situ recovery from carbonaceous deposits
US2799341A (en) 1955-03-04 1957-07-16 Union Oil Co Selective plugging in oil wells
US2801089A (en) 1955-03-14 1957-07-30 California Research Corp Underground shale retorting process
US2862558A (en) 1955-12-28 1958-12-02 Phillips Petroleum Co Recovering oils from formations
US2819761A (en) 1956-01-19 1958-01-14 Continental Oil Co Process of removing viscous oil from a well bore
US2857002A (en) 1956-03-19 1958-10-21 Texas Co Recovery of viscous crude oil
US2906340A (en) 1956-04-05 1959-09-29 Texaco Inc Method of treating a petroleum producing formation
US2991046A (en) 1956-04-16 1961-07-04 Parsons Lional Ashley Combined winch and bollard device
US2889882A (en) 1956-06-06 1959-06-09 Phillips Petroleum Co Oil recovery by in situ combustion
US3120264A (en) 1956-07-09 1964-02-04 Texaco Development Corp Recovery of oil by in situ combustion
US3016053A (en) 1956-08-02 1962-01-09 George J Medovick Underwater breathing apparatus
US2997105A (en) 1956-10-08 1961-08-22 Pan American Petroleum Corp Burner apparatus
US2932352A (en) 1956-10-25 1960-04-12 Union Oil Co Liquid filled well heater
US2804149A (en) 1956-12-12 1957-08-27 John R Donaldson Oil well heater and reviver
US2952449A (en) 1957-02-01 1960-09-13 Fmc Corp Method of forming underground communication between boreholes
US3127936A (en) 1957-07-26 1964-04-07 Svenska Skifferolje Ab Method of in situ heating of subsurface preferably fuel containing deposits
US2942223A (en) 1957-08-09 1960-06-21 Gen Electric Electrical resistance heater
US2906337A (en) 1957-08-16 1959-09-29 Pure Oil Co Method of recovering bitumen
US3007521A (en) * 1957-10-28 1961-11-07 Phillips Petroleum Co Recovery of oil by in situ combustion
US3010516A (en) 1957-11-18 1961-11-28 Phillips Petroleum Co Burner and process for in situ combustion
US2954826A (en) 1957-12-02 1960-10-04 William E Sievers Heated well production string
US2994376A (en) 1957-12-27 1961-08-01 Phillips Petroleum Co In situ combustion process
US3061009A (en) * 1958-01-17 1962-10-30 Svenska Skifferolje Ab Method of recovery from fossil fuel bearing strata
US3062282A (en) * 1958-01-24 1962-11-06 Phillips Petroleum Co Initiation of in situ combustion in a carbonaceous stratum
US3051235A (en) 1958-02-24 1962-08-28 Jersey Prod Res Co Recovery of petroleum crude oil, by in situ combustion and in situ hydrogenation
US3004603A (en) 1958-03-07 1961-10-17 Phillips Petroleum Co Heater
US3032102A (en) 1958-03-17 1962-05-01 Phillips Petroleum Co In situ combustion method
US3004596A (en) 1958-03-28 1961-10-17 Phillips Petroleum Co Process for recovery of hydrocarbons by in situ combustion
US3004601A (en) 1958-05-09 1961-10-17 Albert G Bodine Method and apparatus for augmenting oil recovery from wells by refrigeration
US3048221A (en) 1958-05-12 1962-08-07 Phillips Petroleum Co Hydrocarbon recovery by thermal drive
US3026940A (en) 1958-05-19 1962-03-27 Electronic Oil Well Heater Inc Oil well temperature indicator and control
US3010513A (en) 1958-06-12 1961-11-28 Phillips Petroleum Co Initiation of in situ combustion in carbonaceous stratum
US2958519A (en) 1958-06-23 1960-11-01 Phillips Petroleum Co In situ combustion process
US3044545A (en) 1958-10-02 1962-07-17 Phillips Petroleum Co In situ combustion process
US3050123A (en) 1958-10-07 1962-08-21 Cities Service Res & Dev Co Gas fired oil-well burner
US2974937A (en) 1958-11-03 1961-03-14 Jersey Prod Res Co Petroleum recovery from carbonaceous formations
US2998457A (en) * 1958-11-19 1961-08-29 Ashland Oil Inc Production of phenols
US2970826A (en) 1958-11-21 1961-02-07 Texaco Inc Recovery of oil from oil shale
US3036632A (en) 1958-12-24 1962-05-29 Socony Mobil Oil Co Inc Recovery of hydrocarbon materials from earth formations by application of heat
US3097690A (en) 1958-12-24 1963-07-16 Gulf Research Development Co Process for heating a subsurface formation
US2969226A (en) 1959-01-19 1961-01-24 Pyrochem Corp Pendant parting petro pyrolysis process
US3017168A (en) 1959-01-26 1962-01-16 Phillips Petroleum Co In situ retorting of oil shale
US3175148A (en) * 1959-01-30 1965-03-23 Mc Graw Edison Co Stationary induction apparatus unit
US3110345A (en) 1959-02-26 1963-11-12 Gulf Research Development Co Low temperature reverse combustion process
US3113619A (en) * 1959-03-30 1963-12-10 Phillips Petroleum Co Line drive counterflow in situ combustion process
US3113620A (en) 1959-07-06 1963-12-10 Exxon Research Engineering Co Process for producing viscous oil
US3113623A (en) 1959-07-20 1963-12-10 Union Oil Co Apparatus for underground retorting
US3181613A (en) 1959-07-20 1965-05-04 Union Oil Co Method and apparatus for subterranean heating
US3116792A (en) 1959-07-27 1964-01-07 Phillips Petroleum Co In situ combustion process
US3132692A (en) 1959-07-27 1964-05-12 Phillips Petroleum Co Use of formation heat from in situ combustion
US3150715A (en) 1959-09-30 1964-09-29 Shell Oil Co Oil recovery by in situ combustion with water injection
US3095031A (en) 1959-12-09 1963-06-25 Eurenius Malte Oscar Burners for use in bore holes in the ground
US3004911A (en) * 1959-12-11 1961-10-17 Phillips Petroleum Co Catalytic cracking process and two unit system
US3131763A (en) 1959-12-30 1964-05-05 Texaco Inc Electrical borehole heater
US3163745A (en) * 1960-02-29 1964-12-29 Socony Mobil Oil Co Inc Heating of an earth formation penetrated by a well borehole
US3127935A (en) 1960-04-08 1964-04-07 Marathon Oil Co In situ combustion for oil recovery in tar sands, oil shales and conventional petroleum reservoirs
US3137347A (en) 1960-05-09 1964-06-16 Phillips Petroleum Co In situ electrolinking of oil shale
US3139928A (en) 1960-05-24 1964-07-07 Shell Oil Co Thermal process for in situ decomposition of oil shale
US3058730A (en) 1960-06-03 1962-10-16 Fmc Corp Method of forming underground communication between boreholes
US3106244A (en) 1960-06-20 1963-10-08 Phillips Petroleum Co Process for producing oil shale in situ by electrocarbonization
US3142336A (en) 1960-07-18 1964-07-28 Shell Oil Co Method and apparatus for injecting steam into subsurface formations
US3105545A (en) 1960-11-21 1963-10-01 Shell Oil Co Method of heating underground formations
US3164207A (en) * 1961-01-17 1965-01-05 Wayne H Thessen Method for recovering oil
US3138203A (en) 1961-03-06 1964-06-23 Jersey Prod Res Co Method of underground burning
US3191679A (en) 1961-04-13 1965-06-29 Wendell S Miller Melting process for recovering bitumens from the earth
US3207220A (en) 1961-06-26 1965-09-21 Chester I Williams Electric well heater
US3114417A (en) * 1961-08-14 1963-12-17 Ernest T Saftig Electric oil well heater apparatus
US3246695A (en) 1961-08-21 1966-04-19 Charles L Robinson Method for heating minerals in situ with radioactive materials
US3057404A (en) 1961-09-29 1962-10-09 Socony Mobil Oil Co Inc Method and system for producing oil tenaciously held in porous formations
US3183675A (en) 1961-11-02 1965-05-18 Conch Int Methane Ltd Method of freezing an earth formation
US3170842A (en) 1961-11-06 1965-02-23 Phillips Petroleum Co Subcritical borehole nuclear reactor and process
US3254291A (en) * 1962-01-15 1966-05-31 Bendix Corp Multiple independently variable d.c. power supply
US3209825A (en) 1962-02-14 1965-10-05 Continental Oil Co Low temperature in-situ combustion
US3205946A (en) 1962-03-12 1965-09-14 Shell Oil Co Consolidation by silica coalescence
US3141924A (en) * 1962-03-16 1964-07-21 Amp Inc Coaxial cable shield braid terminators
US3165154A (en) 1962-03-23 1965-01-12 Phillips Petroleum Co Oil recovery by in situ combustion
US3149670A (en) * 1962-03-27 1964-09-22 Smclair Res Inc In-situ heating process
US3214890A (en) 1962-04-19 1965-11-02 Marathon Oil Co Method of separation of hydrocarbons by a single absorption oil
US3149672A (en) 1962-05-04 1964-09-22 Jersey Prod Res Co Method and apparatus for electrical heating of oil-bearing formations
US3208531A (en) 1962-08-21 1965-09-28 Otis Eng Co Inserting tool for locating and anchoring a device in tubing
US3182721A (en) 1962-11-02 1965-05-11 Sun Oil Co Method of petroleum production by forward in situ combustion
US3288648A (en) 1963-02-04 1966-11-29 Pan American Petroleum Corp Process for producing electrical energy from geological liquid hydrocarbon formation
US3205942A (en) 1963-02-07 1965-09-14 Socony Mobil Oil Co Inc Method for recovery of hydrocarbons by in situ heating of oil shale
US3258069A (en) 1963-02-07 1966-06-28 Shell Oil Co Method for producing a source of energy from an overpressured formation
US3254295A (en) * 1963-02-18 1966-05-31 Westinghouse Electric Corp Buck boost transformer voltage controller with tap changing transformer system
US3221505A (en) 1963-02-20 1965-12-07 Gulf Research Development Co Grouting method
US3221811A (en) 1963-03-11 1965-12-07 Shell Oil Co Mobile in-situ heating of formations
US3250327A (en) 1963-04-02 1966-05-10 Socony Mobil Oil Co Inc Recovering nonflowing hydrocarbons
US3241611A (en) 1963-04-10 1966-03-22 Equity Oil Company Recovery of petroleum products from oil shale
GB959945A (en) 1963-04-18 1964-06-03 Conch Int Methane Ltd Constructing a frozen wall within the ground
US3237689A (en) 1963-04-29 1966-03-01 Clarence I Justheim Distillation of underground deposits of solid carbonaceous materials in situ
US3205944A (en) * 1963-06-14 1965-09-14 Socony Mobil Oil Co Inc Recovery of hydrocarbons from a subterranean reservoir by heating
US3233668A (en) * 1963-11-15 1966-02-08 Exxon Production Research Co Recovery of shale oil
US3285335A (en) 1963-12-11 1966-11-15 Exxon Research Engineering Co In situ pyrolysis of oil shale formations
US3273640A (en) 1963-12-13 1966-09-20 Pyrochem Corp Pressure pulsing perpendicular permeability process for winning stabilized primary volatiles from oil shale in situ
US3272261A (en) 1963-12-13 1966-09-13 Gulf Research Development Co Process for recovery of oil
US3303883A (en) 1964-01-06 1967-02-14 Mobil Oil Corp Thermal notching technique
US3275076A (en) 1964-01-13 1966-09-27 Mobil Oil Corp Recovery of asphaltic-type petroleum from a subterranean reservoir
US3342258A (en) 1964-03-06 1967-09-19 Shell Oil Co Underground oil recovery from solid oil-bearing deposits
US3294167A (en) 1964-04-13 1966-12-27 Shell Oil Co Thermal oil recovery
US3239749A (en) * 1964-07-06 1966-03-08 Gen Electric Transformer system
US3284281A (en) 1964-08-31 1966-11-08 Phillips Petroleum Co Production of oil from oil shale through fractures
US3302707A (en) 1964-09-30 1967-02-07 Mobil Oil Corp Method for improving fluid recoveries from earthen formations
US3310109A (en) 1964-11-06 1967-03-21 Phillips Petroleum Co Process and apparatus for combination upgrading of oil in situ and refining thereof
US3380913A (en) 1964-12-28 1968-04-30 Phillips Petroleum Co Refining of effluent from in situ combustion operation
US3332480A (en) 1965-03-04 1967-07-25 Pan American Petroleum Corp Recovery of hydrocarbons by thermal methods
US3338306A (en) 1965-03-09 1967-08-29 Mobil Oil Corp Recovery of heavy oil from oil sands
US3358756A (en) 1965-03-12 1967-12-19 Shell Oil Co Method for in situ recovery of solid or semi-solid petroleum deposits
US3262741A (en) 1965-04-01 1966-07-26 Pittsburgh Plate Glass Co Solution mining of potassium chloride
US3299202A (en) 1965-04-02 1967-01-17 Okonite Co Oil well cable
DE1242535B (en) 1965-04-13 1967-06-22 Deutsche Erdoel Ag Process for the removal of residual oil from oil deposits
US3316344A (en) 1965-04-26 1967-04-25 Central Electr Generat Board Prevention of icing of electrical conductors
US3342267A (en) 1965-04-29 1967-09-19 Gerald S Cotter Turbo-generator heater for oil and gas wells and pipe lines
US3278234A (en) 1965-05-17 1966-10-11 Pittsburgh Plate Glass Co Solution mining of potassium chloride
US3352355A (en) 1965-06-23 1967-11-14 Dow Chemical Co Method of recovery of hydrocarbons from solid hydrocarbonaceous formations
US3346044A (en) 1965-09-08 1967-10-10 Mobil Oil Corp Method and structure for retorting oil shale in situ by cycling fluid flows
US3349845A (en) 1965-10-22 1967-10-31 Sinclair Oil & Gas Company Method of establishing communication between wells
US3379248A (en) 1965-12-10 1968-04-23 Mobil Oil Corp In situ combustion process utilizing waste heat
US3386508A (en) 1966-02-21 1968-06-04 Exxon Production Research Co Process and system for the recovery of viscous oil
US3362751A (en) 1966-02-28 1968-01-09 Tinlin William Method and system for recovering shale oil and gas
US3595082A (en) 1966-03-04 1971-07-27 Gulf Oil Corp Temperature measuring apparatus
US3410977A (en) 1966-03-28 1968-11-12 Ando Masao Method of and apparatus for heating the surface part of various construction materials
DE1615192B1 (en) 1966-04-01 1970-08-20 Chisso Corp Inductively heated heating pipe
US3513913A (en) 1966-04-19 1970-05-26 Shell Oil Co Oil recovery from oil shales by transverse combustion
US3372754A (en) 1966-05-31 1968-03-12 Mobil Oil Corp Well assembly for heating a subterranean formation
US3399623A (en) 1966-07-14 1968-09-03 James R. Creed Apparatus for and method of producing viscid oil
US3412011A (en) 1966-09-02 1968-11-19 Phillips Petroleum Co Catalytic cracking and in situ combustion process for producing hydrocarbons
NL153755C (en) 1966-10-20 1977-11-15 Stichting Reactor Centrum METHOD FOR MANUFACTURING AN ELECTRIC HEATING ELEMENT, AS WELL AS HEATING ELEMENT MANUFACTURED USING THIS METHOD.
US3465819A (en) 1967-02-13 1969-09-09 American Oil Shale Corp Use of nuclear detonations in producing hydrocarbons from an underground formation
US3389975A (en) 1967-03-10 1968-06-25 Sinclair Research Inc Process for the recovery of aluminum values from retorted shale and conversion of sodium aluminate to sodium aluminum carbonate hydroxide
NL6803827A (en) 1967-03-22 1968-09-23
US3438439A (en) 1967-05-29 1969-04-15 Pan American Petroleum Corp Method for plugging formations by production of sulfur therein
US3454866A (en) * 1967-06-20 1969-07-08 Westinghouse Electric Corp Regulating transformer arrangement with tap changing means
US3528501A (en) 1967-08-04 1970-09-15 Phillips Petroleum Co Recovery of oil from oil shale
US3480082A (en) 1967-09-25 1969-11-25 Continental Oil Co In situ retorting of oil shale using co2 as heat carrier
US3434541A (en) 1967-10-11 1969-03-25 Mobil Oil Corp In situ combustion process
US3456721A (en) 1967-12-19 1969-07-22 Phillips Petroleum Co Downhole-burner apparatus
US3485300A (en) 1967-12-20 1969-12-23 Phillips Petroleum Co Method and apparatus for defoaming crude oil down hole
US3477058A (en) 1968-02-01 1969-11-04 Gen Electric Magnesia insulated heating elements and methods of production
US3580987A (en) 1968-03-26 1971-05-25 Pirelli Electric cable
US3487753A (en) 1968-04-10 1970-01-06 Dresser Ind Well swab cup
US3455383A (en) 1968-04-24 1969-07-15 Shell Oil Co Method of producing fluidized material from a subterranean formation
US3578080A (en) 1968-06-10 1971-05-11 Shell Oil Co Method of producing shale oil from an oil shale formation
US3513380A (en) * 1968-06-19 1970-05-19 Westinghouse Electric Corp Load tap changing transformer arrangement with constant impedance
US3529682A (en) 1968-10-03 1970-09-22 Bell Telephone Labor Inc Location detection and guidance systems for burrowing device
US3537528A (en) 1968-10-14 1970-11-03 Shell Oil Co Method for producing shale oil from an exfoliated oil shale formation
US3593789A (en) 1968-10-18 1971-07-20 Shell Oil Co Method for producing shale oil from an oil shale formation
US3565171A (en) 1968-10-23 1971-02-23 Shell Oil Co Method for producing shale oil from a subterranean oil shale formation
US3502372A (en) 1968-10-23 1970-03-24 Shell Oil Co Process of recovering oil and dawsonite from oil shale
US3554285A (en) 1968-10-24 1971-01-12 Phillips Petroleum Co Production and upgrading of heavy viscous oils
US3629551A (en) 1968-10-29 1971-12-21 Chisso Corp Controlling heat generation locally in a heat-generating pipe utilizing skin-effect current
US3501201A (en) * 1968-10-30 1970-03-17 Shell Oil Co Method of producing shale oil from a subterranean oil shale formation
US3617471A (en) 1968-12-26 1971-11-02 Texaco Inc Hydrotorting of shale to produce shale oil
US3562401A (en) 1969-03-03 1971-02-09 Union Carbide Corp Low temperature electric transmission systems
US3614986A (en) 1969-03-03 1971-10-26 Electrothermic Co Method for injecting heated fluids into mineral bearing formations
US3542131A (en) 1969-04-01 1970-11-24 Mobil Oil Corp Method of recovering hydrocarbons from oil shale
US3547192A (en) 1969-04-04 1970-12-15 Shell Oil Co Method of metal coating and electrically heating a subterranean earth formation
US3618663A (en) 1969-05-01 1971-11-09 Phillips Petroleum Co Shale oil production
US3605890A (en) 1969-06-04 1971-09-20 Chevron Res Hydrogen production from a kerogen-depleted shale formation
US3526095A (en) 1969-07-24 1970-09-01 Ralph E Peck Liquid gas storage system
DE1939402B2 (en) 1969-08-02 1970-12-03 Felten & Guilleaume Kabelwerk Method and device for corrugating pipe walls
US3599714A (en) 1969-09-08 1971-08-17 Roger L Messman Method of recovering hydrocarbons by in situ combustion
US3614387A (en) 1969-09-22 1971-10-19 Watlow Electric Mfg Co Electrical heater with an internal thermocouple
US3547193A (en) 1969-10-08 1970-12-15 Electrothermic Co Method and apparatus for recovery of minerals from sub-surface formations using electricity
US3702886A (en) 1969-10-10 1972-11-14 Mobil Oil Corp Crystalline zeolite zsm-5 and method of preparing the same
US3679264A (en) 1969-10-22 1972-07-25 Allen T Van Huisen Geothermal in situ mining and retorting system
US3661423A (en) 1970-02-12 1972-05-09 Occidental Petroleum Corp In situ process for recovery of carbonaceous materials from subterranean deposits
US3798349A (en) 1970-02-19 1974-03-19 G Gillemot Molded plastic splice casing with combination cable anchorage and cable shielding grounding facility
US3943160A (en) 1970-03-09 1976-03-09 Shell Oil Company Heat-stable calcium-compatible waterflood surfactant
US3676078A (en) 1970-03-19 1972-07-11 Int Salt Co Salt solution mining and geothermal heat utilization system
US3858397A (en) 1970-03-19 1975-01-07 Int Salt Co Carrying out heat-promotable chemical reactions in sodium chloride formation cavern
US3685148A (en) 1970-03-20 1972-08-22 Jack Garfinkel Method for making a wire splice
US3709979A (en) 1970-04-23 1973-01-09 Mobil Oil Corp Crystalline zeolite zsm-11
US3657520A (en) 1970-08-20 1972-04-18 Michel A Ragault Heating cable with cold outlets
US3759574A (en) 1970-09-24 1973-09-18 Shell Oil Co Method of producing hydrocarbons from an oil shale formation
US3661424A (en) 1970-10-20 1972-05-09 Int Salt Co Geothermal energy recovery from deep caverns in salt deposits by means of air flow
US4305463A (en) 1979-10-31 1981-12-15 Oil Trieval Corporation Oil recovery method and apparatus
US3679812A (en) 1970-11-13 1972-07-25 Schlumberger Technology Corp Electrical suspension cable for well tools
US3765477A (en) 1970-12-21 1973-10-16 Huisen A Van Geothermal-nuclear energy release and recovery system
US3680633A (en) 1970-12-28 1972-08-01 Sun Oil Co Delaware Situ combustion initiation process
US3675715A (en) 1970-12-30 1972-07-11 Forrester A Clark Processes for secondarily recovering oil
US3770614A (en) 1971-01-15 1973-11-06 Mobil Oil Corp Split feed reforming and n-paraffin elimination from low boiling reformate
US3832449A (en) 1971-03-18 1974-08-27 Mobil Oil Corp Crystalline zeolite zsm{14 12
US3748251A (en) 1971-04-20 1973-07-24 Mobil Oil Corp Dual riser fluid catalytic cracking with zsm-5 zeolite
US3700280A (en) 1971-04-28 1972-10-24 Shell Oil Co Method of producing oil from an oil shale formation containing nahcolite and dawsonite
US3770398A (en) 1971-09-17 1973-11-06 Cities Service Oil Co In situ coal gasification process
US3743854A (en) * 1971-09-29 1973-07-03 Gen Electric System and apparatus for dual transmission of petrochemical fluids and unidirectional electric current
US3812913A (en) 1971-10-18 1974-05-28 Sun Oil Co Method of formation consolidation
US3893918A (en) 1971-11-22 1975-07-08 Engineering Specialties Inc Method for separating material leaving a well
US3844352A (en) 1971-12-17 1974-10-29 Brown Oil Tools Method for modifying a well to provide gas lift production
US3766982A (en) 1971-12-27 1973-10-23 Justheim Petrol Co Method for the in-situ treatment of hydrocarbonaceous materials
US3759328A (en) 1972-05-11 1973-09-18 Shell Oil Co Laterally expanding oil shale permeabilization
US3794116A (en) 1972-05-30 1974-02-26 Atomic Energy Commission Situ coal bed gasification
US3779602A (en) 1972-08-07 1973-12-18 Shell Oil Co Process for solution mining nahcolite
US3757860A (en) 1972-08-07 1973-09-11 Atlantic Richfield Co Well heating
US3761599A (en) 1972-09-05 1973-09-25 Gen Electric Means for reducing eddy current heating of a tank in electric apparatus
US3809159A (en) 1972-10-02 1974-05-07 Continental Oil Co Process for simultaneously increasing recovery and upgrading oil in a reservoir
US3804172A (en) 1972-10-11 1974-04-16 Shell Oil Co Method for the recovery of oil from oil shale
US3794113A (en) 1972-11-13 1974-02-26 Mobil Oil Corp Combination in situ combustion displacement and steam stimulation of producing wells
US3804169A (en) 1973-02-07 1974-04-16 Shell Oil Co Spreading-fluid recovery of subterranean oil
US3896260A (en) * 1973-04-03 1975-07-22 Walter A Plummer Powder filled cable splice assembly
US3895180A (en) 1973-04-03 1975-07-15 Walter A Plummer Grease filled cable splice assembly
US3947683A (en) 1973-06-05 1976-03-30 Texaco Inc. Combination of epithermal and inelastic neutron scattering methods to locate coal and oil shale zones
US3859503A (en) 1973-06-12 1975-01-07 Richard D Palone Electric heated sucker rod
US4076761A (en) 1973-08-09 1978-02-28 Mobil Oil Corporation Process for the manufacture of gasoline
US4016245A (en) 1973-09-04 1977-04-05 Mobil Oil Corporation Crystalline zeolite and method of preparing same
US3881551A (en) 1973-10-12 1975-05-06 Ruel C Terry Method of extracting immobile hydrocarbons
US3907045A (en) 1973-11-30 1975-09-23 Continental Oil Co Guidance system for a horizontal drilling apparatus
US3853185A (en) 1973-11-30 1974-12-10 Continental Oil Co Guidance system for a horizontal drilling apparatus
US3882941A (en) 1973-12-17 1975-05-13 Cities Service Res & Dev Co In situ production of bitumen from oil shale
US3946812A (en) 1974-01-02 1976-03-30 Exxon Production Research Company Use of materials as waterflood additives
US3893961A (en) 1974-01-07 1975-07-08 Basil Vivian Edwin Walton Telephone cable splice closure filling composition
US4199025A (en) 1974-04-19 1980-04-22 Electroflood Company Method and apparatus for tertiary recovery of oil
US4037655A (en) 1974-04-19 1977-07-26 Electroflood Company Method for secondary recovery of oil
US3922148A (en) 1974-05-16 1975-11-25 Texaco Development Corp Production of methane-rich gas
ZA753184B (en) 1974-05-31 1976-04-28 Standard Oil Co Process for recovering upgraded hydrocarbon products
US3948755A (en) 1974-05-31 1976-04-06 Standard Oil Company Process for recovering and upgrading hydrocarbons from oil shale and tar sands
US3892270A (en) 1974-06-06 1975-07-01 Chevron Res Production of hydrocarbons from underground formations
US3894769A (en) 1974-06-06 1975-07-15 Shell Oil Co Recovering oil from a subterranean carbonaceous formation
US3948758A (en) 1974-06-17 1976-04-06 Mobil Oil Corporation Production of alkyl aromatic hydrocarbons
US4006778A (en) * 1974-06-21 1977-02-08 Texaco Exploration Canada Ltd. Thermal recovery of hydrocarbon from tar sands
US4026357A (en) 1974-06-26 1977-05-31 Texaco Exploration Canada Ltd. In situ gasification of solid hydrocarbon materials in a subterranean formation
US3935911A (en) 1974-06-28 1976-02-03 Dresser Industries, Inc. Earth boring bit with means for conducting heat from the bit's bearings
US4014575A (en) 1974-07-26 1977-03-29 Occidental Petroleum Corporation System for fuel and products of oil shale retort
US4029360A (en) 1974-07-26 1977-06-14 Occidental Oil Shale, Inc. Method of recovering oil and water from in situ oil shale retort flue gas
US4005752A (en) * 1974-07-26 1977-02-01 Occidental Petroleum Corporation Method of igniting in situ oil shale retort with fuel rich flue gas
US3941421A (en) 1974-08-13 1976-03-02 Occidental Petroleum Corporation Apparatus for obtaining uniform gas flow through an in situ oil shale retort
GB1454324A (en) 1974-08-14 1976-11-03 Iniex Recovering combustible gases from underground deposits of coal or bituminous shale
US3948319A (en) 1974-10-16 1976-04-06 Atlantic Richfield Company Method and apparatus for producing fluid by varying current flow through subterranean source formation
AR205595A1 (en) 1974-11-06 1976-05-14 Haldor Topsoe As PROCEDURE FOR PREPARING GASES RICH IN METHANE
US3933447A (en) 1974-11-08 1976-01-20 The United States Of America As Represented By The United States Energy Research And Development Administration Underground gasification of coal
US4138442A (en) 1974-12-05 1979-02-06 Mobil Oil Corporation Process for the manufacture of gasoline
US3952802A (en) 1974-12-11 1976-04-27 In Situ Technology, Inc. Method and apparatus for in situ gasification of coal and the commercial products derived therefrom
US3982591A (en) 1974-12-20 1976-09-28 World Energy Systems Downhole recovery system
US3986556A (en) 1975-01-06 1976-10-19 Haynes Charles A Hydrocarbon recovery from earth strata
US4042026A (en) 1975-02-08 1977-08-16 Deutsche Texaco Aktiengesellschaft Method for initiating an in-situ recovery process by the introduction of oxygen
US4096163A (en) 1975-04-08 1978-06-20 Mobil Oil Corporation Conversion of synthesis gas to hydrocarbon mixtures
US3924680A (en) 1975-04-23 1975-12-09 In Situ Technology Inc Method of pyrolysis of coal in situ
US3973628A (en) 1975-04-30 1976-08-10 New Mexico Tech Research Foundation In situ solution mining of coal
US4016239A (en) 1975-05-22 1977-04-05 Union Oil Company Of California Recarbonation of spent oil shale
US3987851A (en) 1975-06-02 1976-10-26 Shell Oil Company Serially burning and pyrolyzing to produce shale oil from a subterranean oil shale
US3986557A (en) 1975-06-06 1976-10-19 Atlantic Richfield Company Production of bitumen from tar sands
CA1064890A (en) 1975-06-10 1979-10-23 Mae K. Rubin Crystalline zeolite, synthesis and use thereof
US3950029A (en) 1975-06-12 1976-04-13 Mobil Oil Corporation In situ retorting of oil shale
US3993132A (en) 1975-06-18 1976-11-23 Texaco Exploration Canada Ltd. Thermal recovery of hydrocarbons from tar sands
US4069868A (en) 1975-07-14 1978-01-24 In Situ Technology, Inc. Methods of fluidized production of coal in situ
US4199024A (en) 1975-08-07 1980-04-22 World Energy Systems Multistage gas generator
US3954140A (en) 1975-08-13 1976-05-04 Hendrick Robert P Recovery of hydrocarbons by in situ thermal extraction
US3986349A (en) 1975-09-15 1976-10-19 Chevron Research Company Method of power generation via coal gasification and liquid hydrocarbon synthesis
US3994341A (en) 1975-10-30 1976-11-30 Chevron Research Company Recovering viscous petroleum from thick tar sand
US4037658A (en) 1975-10-30 1977-07-26 Chevron Research Company Method of recovering viscous petroleum from an underground formation
US3994340A (en) 1975-10-30 1976-11-30 Chevron Research Company Method of recovering viscous petroleum from tar sand
US4087130A (en) 1975-11-03 1978-05-02 Occidental Petroleum Corporation Process for the gasification of coal in situ
US4018279A (en) 1975-11-12 1977-04-19 Reynolds Merrill J In situ coal combustion heat recovery method
US4078608A (en) 1975-11-26 1978-03-14 Texaco Inc. Thermal oil recovery method
US4018280A (en) 1975-12-10 1977-04-19 Mobil Oil Corporation Process for in situ retorting of oil shale
US3992474A (en) 1975-12-15 1976-11-16 Uop Inc. Motor fuel production with fluid catalytic cracking of high-boiling alkylate
US4019575A (en) 1975-12-22 1977-04-26 Chevron Research Company System for recovering viscous petroleum from thick tar sand
US3999607A (en) 1976-01-22 1976-12-28 Exxon Research And Engineering Company Recovery of hydrocarbons from coal
US4031956A (en) 1976-02-12 1977-06-28 In Situ Technology, Inc. Method of recovering energy from subsurface petroleum reservoirs
US4008762A (en) 1976-02-26 1977-02-22 Fisher Sidney T Extraction of hydrocarbons in situ from underground hydrocarbon deposits
US4010800A (en) 1976-03-08 1977-03-08 In Situ Technology, Inc. Producing thin seams of coal in situ
US4048637A (en) 1976-03-23 1977-09-13 Westinghouse Electric Corporation Radar system for detecting slowly moving targets
DE2615874B2 (en) 1976-04-10 1978-10-19 Deutsche Texaco Ag, 2000 Hamburg Application of a method for extracting crude oil and bitumen from underground deposits by means of a combustion front in deposits of any content of intermediate hydrocarbons in the crude oil or bitumen
GB1544245A (en) 1976-05-21 1979-04-19 British Gas Corp Production of substitute natural gas
US4049053A (en) 1976-06-10 1977-09-20 Fisher Sidney T Recovery of hydrocarbons from partially exhausted oil wells by mechanical wave heating
US4487257A (en) 1976-06-17 1984-12-11 Raytheon Company Apparatus and method for production of organic products from kerogen
US4193451A (en) 1976-06-17 1980-03-18 The Badger Company, Inc. Method for production of organic products from kerogen
US4067390A (en) 1976-07-06 1978-01-10 Technology Application Services Corporation Apparatus and method for the recovery of fuel products from subterranean deposits of carbonaceous matter using a plasma arc
US4057293A (en) 1976-07-12 1977-11-08 Garrett Donald E Process for in situ conversion of coal or the like into oil and gas
US4043393A (en) 1976-07-29 1977-08-23 Fisher Sidney T Extraction from underground coal deposits
US4091869A (en) 1976-09-07 1978-05-30 Exxon Production Research Company In situ process for recovery of carbonaceous materials from subterranean deposits
US4140184A (en) 1976-11-15 1979-02-20 Bechtold Ira C Method for producing hydrocarbons from igneous sources
US4059308A (en) 1976-11-15 1977-11-22 Trw Inc. Pressure swing recovery system for oil shale deposits
US4065183A (en) 1976-11-15 1977-12-27 Trw Inc. Recovery system for oil shale deposits
US4083604A (en) 1976-11-15 1978-04-11 Trw Inc. Thermomechanical fracture for recovery system in oil shale deposits
US4077471A (en) 1976-12-01 1978-03-07 Texaco Inc. Surfactant oil recovery process usable in high temperature, high salinity formations
US4064943A (en) 1976-12-06 1977-12-27 Shell Oil Co Plugging permeable earth formation with wax
US4089374A (en) 1976-12-16 1978-05-16 In Situ Technology, Inc. Producing methane from coal in situ
US4084637A (en) 1976-12-16 1978-04-18 Petro Canada Exploration Inc. Method of producing viscous materials from subterranean formations
US4379591A (en) * 1976-12-21 1983-04-12 Occidental Oil Shale, Inc. Two-stage oil shale retorting process and disposal of spent oil shale
US4093026A (en) 1977-01-17 1978-06-06 Occidental Oil Shale, Inc. Removal of sulfur dioxide from process gas using treated oil shale and water
US4102418A (en) 1977-01-24 1978-07-25 Bakerdrill Inc. Borehole drilling apparatus
US4277416A (en) 1977-02-17 1981-07-07 Aminoil, Usa, Inc. Process for producing methanol
US4085803A (en) 1977-03-14 1978-04-25 Exxon Production Research Company Method for oil recovery using a horizontal well with indirect heating
US4137720A (en) 1977-03-17 1979-02-06 Rex Robert W Use of calcium halide-water as a heat extraction medium for energy recovery from hot rock systems
US4151877A (en) 1977-05-13 1979-05-01 Occidental Oil Shale, Inc. Determining the locus of a processing zone in a retort through channels
US4099567A (en) 1977-05-27 1978-07-11 In Situ Technology, Inc. Generating medium BTU gas from coal in situ
US4169506A (en) 1977-07-15 1979-10-02 Standard Oil Company (Indiana) In situ retorting of oil shale and energy recovery
US4140180A (en) 1977-08-29 1979-02-20 Iit Research Institute Method for in situ heat processing of hydrocarbonaceous formations
US4144935A (en) 1977-08-29 1979-03-20 Iit Research Institute Apparatus and method for in situ heat processing of hydrocarbonaceous formations
NL181941C (en) 1977-09-16 1987-12-01 Ir Arnold Willem Josephus Grup METHOD FOR UNDERGROUND GASULATION OF COAL OR BROWN.
US4125159A (en) 1977-10-17 1978-11-14 Vann Roy Randell Method and apparatus for isolating and treating subsurface stratas
SU915451A1 (en) 1977-10-21 1988-08-23 Vnii Ispolzovania Method of underground gasification of fuel
US4119349A (en) 1977-10-25 1978-10-10 Gulf Oil Corporation Method and apparatus for recovery of fluids produced in in-situ retorting of oil shale
US4114688A (en) 1977-12-05 1978-09-19 In Situ Technology Inc. Minimizing environmental effects in production and use of coal
US4156174A (en) * 1977-12-30 1979-05-22 Westinghouse Electric Corp. Phase-angle regulator
US4158467A (en) 1977-12-30 1979-06-19 Gulf Oil Corporation Process for recovering shale oil
US4196914A (en) 1978-01-13 1980-04-08 Dresser Industries, Inc. Chuck for an earth boring machine
US4148359A (en) 1978-01-30 1979-04-10 Shell Oil Company Pressure-balanced oil recovery process for water productive oil shale
US4354053A (en) 1978-02-01 1982-10-12 Gold Marvin H Spliced high voltage cable
DE2812490A1 (en) 1978-03-22 1979-09-27 Texaco Ag PROCEDURE FOR DETERMINING THE SPATIAL EXTENSION OF SUBSEQUENT REACTIONS
US4162707A (en) 1978-04-20 1979-07-31 Mobil Oil Corporation Method of treating formation to remove ammonium ions
US4160479A (en) 1978-04-24 1979-07-10 Richardson Reginald D Heavy oil recovery process
US4197911A (en) 1978-05-09 1980-04-15 Ramcor, Inc. Process for in situ coal gasification
US4273189A (en) * 1978-06-12 1981-06-16 Carpenter Neil L Method and apparatus for recovering natural gas from geopressured salt water
US4228853A (en) 1978-06-21 1980-10-21 Harvey A Herbert Petroleum production method
US4186801A (en) 1978-12-18 1980-02-05 Gulf Research And Development Company In situ combustion process for the recovery of liquid carbonaceous fuels from subterranean formations
US4185692A (en) 1978-07-14 1980-01-29 In Situ Technology, Inc. Underground linkage of wells for production of coal in situ
US4184548A (en) 1978-07-17 1980-01-22 Standard Oil Company (Indiana) Method for determining the position and inclination of a flame front during in situ combustion of an oil shale retort
US4257650A (en) 1978-09-07 1981-03-24 Barber Heavy Oil Process, Inc. Method for recovering subsurface earth substances
US4183405A (en) 1978-10-02 1980-01-15 Magnie Robert L Enhanced recoveries of petroleum and hydrogen from underground reservoirs
US4446917A (en) 1978-10-04 1984-05-08 Todd John C Method and apparatus for producing viscous or waxy crude oils
ES474736A1 (en) 1978-10-31 1979-04-01 Empresa Nacional Aluminio System for generating and autocontrolling the voltage or current wave form applicable to processes for the electrolytic coloring of anodized aluminium
US4311340A (en) 1978-11-27 1982-01-19 Lyons William C Uranium leeching process and insitu mining
NL7811732A (en) 1978-11-30 1980-06-03 Stamicarbon METHOD FOR CONVERSION OF DIMETHYL ETHER
JPS5576586A (en) 1978-12-01 1980-06-09 Tokyo Shibaura Electric Co Heater
US4457365A (en) 1978-12-07 1984-07-03 Raytheon Company In situ radio frequency selective heating system
US4299086A (en) 1978-12-07 1981-11-10 Gulf Research & Development Company Utilization of energy obtained by substoichiometric combustion of low heating value gases
US4265307A (en) 1978-12-20 1981-05-05 Standard Oil Company Shale oil recovery
US4194562A (en) 1978-12-21 1980-03-25 Texaco Inc. Method for preconditioning a subterranean oil-bearing formation prior to in-situ combustion
US4258955A (en) 1978-12-26 1981-03-31 Mobil Oil Corporation Process for in-situ leaching of uranium
US4274487A (en) 1979-01-11 1981-06-23 Standard Oil Company (Indiana) Indirect thermal stimulation of production wells
US4232902A (en) 1979-02-09 1980-11-11 Ppg Industries, Inc. Solution mining water soluble salts at high temperatures
US4260192A (en) 1979-02-21 1981-04-07 Occidental Research Corporation Recovery of magnesia from oil shale
US4324292A (en) 1979-02-21 1982-04-13 University Of Utah Process for recovering products from oil shale
US4289354A (en) 1979-02-23 1981-09-15 Edwin G. Higgins, Jr. Borehole mining of solid mineral resources
US4243511A (en) 1979-03-26 1981-01-06 Marathon Oil Company Process for suppressing carbonate decomposition in vapor phase water retorting
US4248306A (en) 1979-04-02 1981-02-03 Huisen Allan T Van Geothermal petroleum refining
US4241953A (en) 1979-04-23 1980-12-30 Freeport Minerals Company Sulfur mine bleedwater reuse system
US4282587A (en) 1979-05-21 1981-08-04 Daniel Silverman Method for monitoring the recovery of minerals from shallow geological formations
US4216079A (en) 1979-07-09 1980-08-05 Cities Service Company Emulsion breaking with surfactant recovery
US4234230A (en) 1979-07-11 1980-11-18 The Superior Oil Company In situ processing of mined oil shale
US4290650A (en) 1979-08-03 1981-09-22 Ppg Industries Canada Ltd. Subterranean cavity chimney development for connecting solution mined cavities
US4228854A (en) 1979-08-13 1980-10-21 Alberta Research Council Enhanced oil recovery using electrical means
US4256945A (en) 1979-08-31 1981-03-17 Iris Associates Alternating current electrically resistive heating element having intrinsic temperature control
US4701587A (en) 1979-08-31 1987-10-20 Metcal, Inc. Shielded heating element having intrinsic temperature control
US4327805A (en) 1979-09-18 1982-05-04 Carmel Energy, Inc. Method for producing viscous hydrocarbons
US4549396A (en) 1979-10-01 1985-10-29 Mobil Oil Corporation Conversion of coal to electricity
US4370518A (en) 1979-12-03 1983-01-25 Hughes Tool Company Splice for lead-coated and insulated conductors
US4368114A (en) 1979-12-05 1983-01-11 Mobil Oil Corporation Octane and total yield improvement in catalytic cracking
US4250230A (en) 1979-12-10 1981-02-10 In Situ Technology, Inc. Generating electricity from coal in situ
US4250962A (en) 1979-12-14 1981-02-17 Gulf Research & Development Company In situ combustion process for the recovery of liquid carbonaceous fuels from subterranean formations
US4317003A (en) 1980-01-17 1982-02-23 Gray Stanley J High tensile multiple sheath cable
US4359687A (en) 1980-01-25 1982-11-16 Shell Oil Company Method and apparatus for determining shaliness and oil saturations in earth formations using induced polarization in the frequency domain
US4398151A (en) 1980-01-25 1983-08-09 Shell Oil Company Method for correcting an electrical log for the presence of shale in a formation
US4285547A (en) 1980-02-01 1981-08-25 Multi Mineral Corporation Integrated in situ shale oil and mineral recovery process
USRE30738E (en) 1980-02-06 1981-09-08 Iit Research Institute Apparatus and method for in situ heat processing of hydrocarbonaceous formations
US4269697A (en) 1980-02-27 1981-05-26 Mobil Oil Corporation Low pour point heavy oils
US4303126A (en) 1980-02-27 1981-12-01 Chevron Research Company Arrangement of wells for producing subsurface viscous petroleum
US4319635A (en) 1980-02-29 1982-03-16 P. H. Jones Hydrogeology, Inc. Method for enhanced oil recovery by geopressured waterflood
US4375302A (en) 1980-03-03 1983-03-01 Nicholas Kalmar Process for the in situ recovery of both petroleum and inorganic mineral content of an oil shale deposit
US4445574A (en) 1980-03-24 1984-05-01 Geo Vann, Inc. Continuous borehole formed horizontally through a hydrocarbon producing formation
US4417782A (en) 1980-03-31 1983-11-29 Raychem Corporation Fiber optic temperature sensing
CA1168283A (en) 1980-04-14 1984-05-29 Hiroshi Teratani Electrode device for electrically heating underground deposits of hydrocarbons
US4273188A (en) 1980-04-30 1981-06-16 Gulf Research & Development Company In situ combustion process for the recovery of liquid carbonaceous fuels from subterranean formations
US4306621A (en) 1980-05-23 1981-12-22 Boyd R Michael Method for in situ coal gasification operations
US4409090A (en) 1980-06-02 1983-10-11 University Of Utah Process for recovering products from tar sand
CA1165361A (en) 1980-06-03 1984-04-10 Toshiyuki Kobayashi Electrode unit for electrically heating underground hydrocarbon deposits
US4381641A (en) 1980-06-23 1983-05-03 Gulf Research & Development Company Substoichiometric combustion of low heating value gases
CA1183909A (en) * 1980-06-30 1985-03-12 Vernon L. Heeren Rf applicator for in situ heating
US4310440A (en) * 1980-07-07 1982-01-12 Union Carbide Corporation Crystalline metallophosphate compositions
US4401099A (en) 1980-07-11 1983-08-30 W.B. Combustion, Inc. Single-ended recuperative radiant tube assembly and method
US4299285A (en) 1980-07-21 1981-11-10 Gulf Research & Development Company Underground gasification of bituminous coal
US4396062A (en) 1980-10-06 1983-08-02 University Of Utah Research Foundation Apparatus and method for time-domain tracking of high-speed chemical reactions
US4353418A (en) 1980-10-20 1982-10-12 Standard Oil Company (Indiana) In situ retorting of oil shale
US4384613A (en) 1980-10-24 1983-05-24 Terra Tek, Inc. Method of in-situ retorting of carbonaceous material for recovery of organic liquids and gases
US4366864A (en) 1980-11-24 1983-01-04 Exxon Research And Engineering Co. Method for recovery of hydrocarbons from oil-bearing limestone or dolomite
US4401163A (en) 1980-12-29 1983-08-30 The Standard Oil Company Modified in situ retorting of oil shale
US4385661A (en) 1981-01-07 1983-05-31 The United States Of America As Represented By The United States Department Of Energy Downhole steam generator with improved preheating, combustion and protection features
US4448251A (en) 1981-01-08 1984-05-15 Uop Inc. In situ conversion of hydrocarbonaceous oil
US4423311A (en) 1981-01-19 1983-12-27 Varney Sr Paul Electric heating apparatus for de-icing pipes
US4333764A (en) 1981-01-21 1982-06-08 Shell Oil Company Nitrogen-gas-stabilized cement and a process for making and using it
US4336490A (en) * 1981-01-28 1982-06-22 Mcgraw-Edison Company Voltage sensing apparatus for a voltage regulating transformer
US4366668A (en) 1981-02-25 1983-01-04 Gulf Research & Development Company Substoichiometric combustion of low heating value gases
US4382469A (en) 1981-03-10 1983-05-10 Electro-Petroleum, Inc. Method of in situ gasification
US4363361A (en) 1981-03-19 1982-12-14 Gulf Research & Development Company Substoichiometric combustion of low heating value gases
US4390067A (en) 1981-04-06 1983-06-28 Exxon Production Research Co. Method of treating reservoirs containing very viscous crude oil or bitumen
US4399866A (en) 1981-04-10 1983-08-23 Atlantic Richfield Company Method for controlling the flow of subterranean water into a selected zone in a permeable subterranean carbonaceous deposit
US4444255A (en) 1981-04-20 1984-04-24 Lloyd Geoffrey Apparatus and process for the recovery of oil
US4380930A (en) 1981-05-01 1983-04-26 Mobil Oil Corporation System for transmitting ultrasonic energy through core samples
US4384247A (en) * 1981-05-08 1983-05-17 Trw Inc. Under-load switching device particularly adapted for voltage regulation and balance
US4429745A (en) 1981-05-08 1984-02-07 Mobil Oil Corporation Oil recovery method
US4378048A (en) 1981-05-08 1983-03-29 Gulf Research & Development Company Substoichiometric combustion of low heating value gases using different platinum catalysts
US4384614A (en) 1981-05-11 1983-05-24 Justheim Pertroleum Company Method of retorting oil shale by velocity flow of super-heated air
US4437519A (en) 1981-06-03 1984-03-20 Occidental Oil Shale, Inc. Reduction of shale oil pour point
US4368452A (en) 1981-06-22 1983-01-11 Kerr Jr Robert L Thermal protection of aluminum conductor junctions
US4428700A (en) 1981-08-03 1984-01-31 E. R. Johnson Associates, Inc. Method for disposing of waste materials
US4456065A (en) 1981-08-20 1984-06-26 Elektra Energie A.G. Heavy oil recovering
US4344483A (en) 1981-09-08 1982-08-17 Fisher Charles B Multiple-site underground magnetic heating of hydrocarbons
US4452491A (en) 1981-09-25 1984-06-05 Intercontinental Econergy Associates, Inc. Recovery of hydrocarbons from deep underground deposits of tar sands
US4425967A (en) * 1981-10-07 1984-01-17 Standard Oil Company (Indiana) Ignition procedure and process for in situ retorting of oil shale
US4401162A (en) 1981-10-13 1983-08-30 Synfuel (An Indiana Limited Partnership) In situ oil shale process
US4605680A (en) 1981-10-13 1986-08-12 Chevron Research Company Conversion of synthesis gas to diesel fuel and gasoline
US4410042A (en) 1981-11-02 1983-10-18 Mobil Oil Corporation In-situ combustion method for recovery of heavy oil utilizing oxygen and carbon dioxide as initial oxidant
US4549073A (en) 1981-11-06 1985-10-22 Oximetrix, Inc. Current controller for resistive heating element
US4444258A (en) 1981-11-10 1984-04-24 Nicholas Kalmar In situ recovery of oil from oil shale
US4388176A (en) 1981-11-19 1983-06-14 Texaco Inc. Hydrocarbon conversion process
US4407366A (en) 1981-12-07 1983-10-04 Union Oil Company Of California Method for gas capping of idle geothermal steam wells
US4418752A (en) 1982-01-07 1983-12-06 Conoco Inc. Thermal oil recovery with solvent recirculation
FR2519688A1 (en) 1982-01-08 1983-07-18 Elf Aquitaine SEALING SYSTEM FOR DRILLING WELLS IN WHICH CIRCULATES A HOT FLUID
DE3202492C2 (en) 1982-01-27 1983-12-01 Veba Oel Entwicklungsgesellschaft mbH, 4660 Gelsenkirchen-Buer Process for increasing the yield of hydrocarbons from a subterranean formation
US4397732A (en) 1982-02-11 1983-08-09 International Coal Refining Company Process for coal liquefaction employing selective coal feed
US4551226A (en) 1982-02-26 1985-11-05 Chevron Research Company Heat exchanger antifoulant
GB2117030B (en) 1982-03-17 1985-09-11 Cameron Iron Works Inc Method and apparatus for remote installations of dual tubing strings in a subsea well
US4530401A (en) 1982-04-05 1985-07-23 Mobil Oil Corporation Method for maximum in-situ visbreaking of heavy oil
CA1196594A (en) 1982-04-08 1985-11-12 Guy Savard Recovery of oil from tar sands
US4537252A (en) 1982-04-23 1985-08-27 Standard Oil Company (Indiana) Method of underground conversion of coal
US4491179A (en) 1982-04-26 1985-01-01 Pirson Sylvain J Method for oil recovery by in situ exfoliation drive
US4455215A (en) 1982-04-29 1984-06-19 Jarrott David M Process for the geoconversion of coal into oil
US4412585A (en) 1982-05-03 1983-11-01 Cities Service Company Electrothermal process for recovering hydrocarbons
US4415034A (en) 1982-05-03 1983-11-15 Cities Service Company Electrode well completion
US4524826A (en) 1982-06-14 1985-06-25 Texaco Inc. Method of heating an oil shale formation
US4457374A (en) 1982-06-29 1984-07-03 Standard Oil Company Transient response process for detecting in situ retorting conditions
US4442896A (en) 1982-07-21 1984-04-17 Reale Lucio V Treatment of underground beds
US4440871A (en) 1982-07-26 1984-04-03 Union Carbide Corporation Crystalline silicoaluminophosphates
US4407973A (en) 1982-07-28 1983-10-04 The M. W. Kellogg Company Methanol from coal and natural gas
US4449594A (en) 1982-07-30 1984-05-22 Allied Corporation Method for obtaining pressurized core samples from underpressurized reservoirs
US4479541A (en) 1982-08-23 1984-10-30 Wang Fun Den Method and apparatus for recovery of oil, gas and mineral deposits by panel opening
US4460044A (en) 1982-08-31 1984-07-17 Chevron Research Company Advancing heated annulus steam drive
US4544478A (en) 1982-09-03 1985-10-01 Chevron Research Company Process for pyrolyzing hydrocarbonaceous solids to recover volatile hydrocarbons
US4458767A (en) 1982-09-28 1984-07-10 Mobil Oil Corporation Method for directionally drilling a first well to intersect a second well
US4485868A (en) 1982-09-29 1984-12-04 Iit Research Institute Method for recovery of viscous hydrocarbons by electromagnetic heating in situ
US4695713A (en) 1982-09-30 1987-09-22 Metcal, Inc. Autoregulating, electrically shielded heater
US4927857A (en) 1982-09-30 1990-05-22 Engelhard Corporation Method of methanol production
US4498531A (en) 1982-10-01 1985-02-12 Rockwell International Corporation Emission controller for indirect fired downhole steam generators
US4485869A (en) 1982-10-22 1984-12-04 Iit Research Institute Recovery of liquid hydrocarbons from oil shale by electromagnetic heating in situ
DE3365337D1 (en) 1982-11-22 1986-09-18 Shell Int Research Process for the preparation of a fischer-tropsch catalyst, a catalyst so prepared and use of this catalyst in the preparation of hydrocarbons
US4498535A (en) 1982-11-30 1985-02-12 Iit Research Institute Apparatus and method for in situ controlled heat processing of hydrocarbonaceous formations with a controlled parameter line
US4474238A (en) 1982-11-30 1984-10-02 Phillips Petroleum Company Method and apparatus for treatment of subsurface formations
US4752673A (en) 1982-12-01 1988-06-21 Metcal, Inc. Autoregulating heater
US4436613A (en) 1982-12-03 1984-03-13 Texaco Inc. Two stage catalytic cracking process
US4520229A (en) * 1983-01-03 1985-05-28 Amerace Corporation Splice connector housing and assembly of cables employing same
US4483398A (en) 1983-01-14 1984-11-20 Exxon Production Research Co. In-situ retorting of oil shale
US4501326A (en) 1983-01-17 1985-02-26 Gulf Canada Limited In-situ recovery of viscous hydrocarbonaceous crude oil
US4609041A (en) 1983-02-10 1986-09-02 Magda Richard M Well hot oil system
US4886118A (en) 1983-03-21 1989-12-12 Shell Oil Company Conductively heating a subterranean oil shale to create permeability and subsequently produce oil
US4640352A (en) 1983-03-21 1987-02-03 Shell Oil Company In-situ steam drive oil recovery process
US4500651A (en) * 1983-03-31 1985-02-19 Union Carbide Corporation Titanium-containing molecular sieves
US4458757A (en) 1983-04-25 1984-07-10 Exxon Research And Engineering Co. In situ shale-oil recovery process
US4524827A (en) 1983-04-29 1985-06-25 Iit Research Institute Single well stimulation for the recovery of liquid hydrocarbons from subsurface formations
US4545435A (en) 1983-04-29 1985-10-08 Iit Research Institute Conduction heating of hydrocarbonaceous formations
US4518548A (en) 1983-05-02 1985-05-21 Sulcon, Inc. Method of overlaying sulphur concrete on horizontal and vertical surfaces
US4470459A (en) 1983-05-09 1984-09-11 Halliburton Company Apparatus and method for controlled temperature heating of volumes of hydrocarbonaceous materials in earth formations
US5073625A (en) 1983-05-26 1991-12-17 Metcal, Inc. Self-regulating porous heating device
US4794226A (en) 1983-05-26 1988-12-27 Metcal, Inc. Self-regulating porous heater device
DE3319732A1 (en) 1983-05-31 1984-12-06 Kraftwerk Union AG, 4330 Mülheim MEDIUM-POWER PLANT WITH INTEGRATED COAL GASIFICATION SYSTEM FOR GENERATING ELECTRICITY AND METHANOL
US4583046A (en) 1983-06-20 1986-04-15 Shell Oil Company Apparatus for focused electrode induced polarization logging
US4658215A (en) 1983-06-20 1987-04-14 Shell Oil Company Method for induced polarization logging
US4717814A (en) * 1983-06-27 1988-01-05 Metcal, Inc. Slotted autoregulating heater
US4439307A (en) 1983-07-01 1984-03-27 Dravo Corporation Heating process gas for indirect shale oil retorting through the combustion of residual carbon in oil depleted shale
JPS6016697A (en) * 1983-07-06 1985-01-28 三菱電機株式会社 Electric heating electrode apparatus of underground hydrocarbon resources
US5209987A (en) 1983-07-08 1993-05-11 Raychem Limited Wire and cable
US4985313A (en) 1985-01-14 1991-01-15 Raychem Limited Wire and cable
US4598392A (en) 1983-07-26 1986-07-01 Mobil Oil Corporation Vibratory signal sweep seismic prospecting method and apparatus
US4501445A (en) 1983-08-01 1985-02-26 Cities Service Company Method of in-situ hydrogenation of carbonaceous material
US4538682A (en) 1983-09-08 1985-09-03 Mcmanus James W Method and apparatus for removing oil well paraffin
US4573530A (en) 1983-11-07 1986-03-04 Mobil Oil Corporation In-situ gasification of tar sands utilizing a combustible gas
US4698149A (en) 1983-11-07 1987-10-06 Mobil Oil Corporation Enhanced recovery of hydrocarbonaceous fluids oil shale
US4489782A (en) 1983-12-12 1984-12-25 Atlantic Richfield Company Viscous oil production using electrical current heating and lateral drain holes
US4598772A (en) 1983-12-28 1986-07-08 Mobil Oil Corporation Method for operating a production well in an oxygen driven in-situ combustion oil recovery process
US4583242A (en) 1983-12-29 1986-04-15 Shell Oil Company Apparatus for positioning a sample in a computerized axial tomographic scanner
US4540882A (en) 1983-12-29 1985-09-10 Shell Oil Company Method of determining drilling fluid invasion
US4571491A (en) 1983-12-29 1986-02-18 Shell Oil Company Method of imaging the atomic number of a sample
US4542648A (en) 1983-12-29 1985-09-24 Shell Oil Company Method of correlating a core sample with its original position in a borehole
US4613754A (en) * 1983-12-29 1986-09-23 Shell Oil Company Tomographic calibration apparatus
US4635197A (en) * 1983-12-29 1987-01-06 Shell Oil Company High resolution tomographic imaging method
US4662439A (en) * 1984-01-20 1987-05-05 Amoco Corporation Method of underground conversion of coal
US4837409A (en) 1984-03-02 1989-06-06 Homac Mfg. Company Submerisible insulated splice assemblies
US4623401A (en) 1984-03-06 1986-11-18 Metcal, Inc. Heat treatment with an autoregulating heater
US4644283A (en) 1984-03-19 1987-02-17 Shell Oil Company In-situ method for determining pore size distribution, capillary pressure and permeability
US4637464A (en) * 1984-03-22 1987-01-20 Amoco Corporation In situ retorting of oil shale with pulsed water purge
US4552214A (en) 1984-03-22 1985-11-12 Standard Oil Company (Indiana) Pulsed in situ retorting in an array of oil shale retorts
US4570715A (en) 1984-04-06 1986-02-18 Shell Oil Company Formation-tailored method and apparatus for uniformly heating long subterranean intervals at high temperature
US4577690A (en) 1984-04-18 1986-03-25 Mobil Oil Corporation Method of using seismic data to monitor firefloods
US4592423A (en) 1984-05-14 1986-06-03 Texaco Inc. Hydrocarbon stratum retorting means and method
US4496795A (en) 1984-05-16 1985-01-29 Harvey Hubbell Incorporated Electrical cable splicing system
US4597441A (en) 1984-05-25 1986-07-01 World Energy Systems, Inc. Recovery of oil by in situ hydrogenation
US4663711A (en) 1984-06-22 1987-05-05 Shell Oil Company Method of analyzing fluid saturation using computerized axial tomography
US4577503A (en) 1984-09-04 1986-03-25 International Business Machines Corporation Method and device for detecting a specific acoustic spectral feature
US4577691A (en) 1984-09-10 1986-03-25 Texaco Inc. Method and apparatus for producing viscous hydrocarbons from a subterranean formation
US4576231A (en) 1984-09-13 1986-03-18 Texaco Inc. Method and apparatus for combating encroachment by in situ treated formations
US4597444A (en) 1984-09-21 1986-07-01 Atlantic Richfield Company Method for excavating a large diameter shaft into the earth and at least partially through an oil-bearing formation
US4691771A (en) 1984-09-25 1987-09-08 Worldenergy Systems, Inc. Recovery of oil by in-situ combustion followed by in-situ hydrogenation
US4616705A (en) 1984-10-05 1986-10-14 Shell Oil Company Mini-well temperature profiling process
US4598770A (en) 1984-10-25 1986-07-08 Mobil Oil Corporation Thermal recovery method for viscous oil
JPS61104582A (en) 1984-10-25 1986-05-22 株式会社デンソー Sheathed heater
US4572299A (en) 1984-10-30 1986-02-25 Shell Oil Company Heater cable installation
US4593770A (en) * 1984-11-06 1986-06-10 Mobil Oil Corporation Method for preventing the drilling of a new well into one of a plurality of production wells
US4634187A (en) 1984-11-21 1987-01-06 Isl Ventures, Inc. Method of in-situ leaching of ores
US4669542A (en) 1984-11-21 1987-06-02 Mobil Oil Corporation Simultaneous recovery of crude from multiple zones in a reservoir
US4585066A (en) 1984-11-30 1986-04-29 Shell Oil Company Well treating process for installing a cable bundle containing strands of changing diameter
US4704514A (en) 1985-01-11 1987-11-03 Egmond Cor F Van Heating rate variant elongated electrical resistance heater
US4645906A (en) 1985-03-04 1987-02-24 Thermon Manufacturing Company Reduced resistance skin effect heat generating system
US4643256A (en) 1985-03-18 1987-02-17 Shell Oil Company Steam-foaming surfactant mixtures which are tolerant of divalent ions
US4785163A (en) 1985-03-26 1988-11-15 Raychem Corporation Method for monitoring a heater
US4698583A (en) 1985-03-26 1987-10-06 Raychem Corporation Method of monitoring a heater for faults
NO861531L (en) 1985-04-19 1986-10-20 Raychem Gmbh HOT BODY.
US4671102A (en) * 1985-06-18 1987-06-09 Shell Oil Company Method and apparatus for determining distribution of fluids
US4626665A (en) 1985-06-24 1986-12-02 Shell Oil Company Metal oversheathed electrical resistance heater
US4605489A (en) 1985-06-27 1986-08-12 Occidental Oil Shale, Inc. Upgrading shale oil by a combination process
US4623444A (en) 1985-06-27 1986-11-18 Occidental Oil Shale, Inc. Upgrading shale oil by a combination process
US4662438A (en) 1985-07-19 1987-05-05 Uentech Corporation Method and apparatus for enhancing liquid hydrocarbon production from a single borehole in a slowly producing formation by non-uniform heating through optimized electrode arrays surrounding the borehole
US4728892A (en) 1985-08-13 1988-03-01 Shell Oil Company NMR imaging of materials
US4719423A (en) 1985-08-13 1988-01-12 Shell Oil Company NMR imaging of materials for transport properties
US4778586A (en) 1985-08-30 1988-10-18 Resource Technology Associates Viscosity reduction processing at elevated pressure
US4662437A (en) 1985-11-14 1987-05-05 Atlantic Richfield Company Electrically stimulated well production system with flexible tubing conductor
CA1253555A (en) 1985-11-21 1989-05-02 Cornelis F.H. Van Egmond Heating rate variant elongated electrical resistance heater
US4662443A (en) 1985-12-05 1987-05-05 Amoco Corporation Combination air-blown and oxygen-blown underground coal gasification process
US4686029A (en) 1985-12-06 1987-08-11 Union Carbide Corporation Dewaxing catalysts and processes employing titanoaluminosilicate molecular sieves
US4849611A (en) 1985-12-16 1989-07-18 Raychem Corporation Self-regulating heater employing reactive components
US4730162A (en) 1985-12-31 1988-03-08 Shell Oil Company Time-domain induced polarization logging method and apparatus with gated amplification level
US4706751A (en) 1986-01-31 1987-11-17 S-Cal Research Corp. Heavy oil recovery process
US4694907A (en) 1986-02-21 1987-09-22 Carbotek, Inc. Thermally-enhanced oil recovery method and apparatus
US4640353A (en) 1986-03-21 1987-02-03 Atlantic Richfield Company Electrode well and method of completion
US4734115A (en) 1986-03-24 1988-03-29 Air Products And Chemicals, Inc. Low pressure process for C3+ liquids recovery from process product gas
US4651825A (en) 1986-05-09 1987-03-24 Atlantic Richfield Company Enhanced well production
US4814587A (en) 1986-06-10 1989-03-21 Metcal, Inc. High power self-regulating heater
US4783585A (en) * 1986-06-26 1988-11-08 Meshekow Oil Recovery Corp. Downhole electric steam or hot water generator for oil wells
US4682652A (en) 1986-06-30 1987-07-28 Texaco Inc. Producing hydrocarbons through successively perforated intervals of a horizontal well between two vertical wells
US4769602A (en) 1986-07-02 1988-09-06 Shell Oil Company Determining multiphase saturations by NMR imaging of multiple nuclides
US4893504A (en) 1986-07-02 1990-01-16 Shell Oil Company Method for determining capillary pressure and relative permeability by imaging
US4716960A (en) 1986-07-14 1988-01-05 Production Technologies International, Inc. Method and system for introducing electric current into a well
US4818370A (en) * 1986-07-23 1989-04-04 Cities Service Oil And Gas Corporation Process for converting heavy crudes, tars, and bitumens to lighter products in the presence of brine at supercritical conditions
US4979296A (en) 1986-07-25 1990-12-25 Shell Oil Company Method for fabricating helical flowline bundles
US4772634A (en) 1986-07-31 1988-09-20 Energy Research Corporation Apparatus and method for methanol production using a fuel cell to regulate the gas composition entering the methanol synthesizer
US4744245A (en) 1986-08-12 1988-05-17 Atlantic Richfield Company Acoustic measurements in rock formations for determining fracture orientation
US4696345A (en) 1986-08-21 1987-09-29 Chevron Research Company Hasdrive with multiple offset producers
US4863585A (en) 1986-09-03 1989-09-05 Mobil Oil Corporation Fluidized catalytic cracking process utilizing a C3-C4 paraffin-rich Co-feed and mixed catalyst system with selective reactivation of the medium pore silicate zeolite component thereofo
US4769606A (en) 1986-09-30 1988-09-06 Shell Oil Company Induced polarization method and apparatus for distinguishing dispersed and laminated clay in earth formations
US5316664A (en) 1986-11-24 1994-05-31 Canadian Occidental Petroleum, Ltd. Process for recovery of hydrocarbons and rejection of sand
US4983319A (en) 1986-11-24 1991-01-08 Canadian Occidental Petroleum Ltd. Preparation of low-viscosity improved stable crude oil transport emulsions
US5340467A (en) 1986-11-24 1994-08-23 Canadian Occidental Petroleum Ltd. Process for recovery of hydrocarbons and rejection of sand
CA1288043C (en) 1986-12-15 1991-08-27 Peter Van Meurs Conductively heating a subterranean oil shale to create permeabilityand subsequently produce oil
US4766958A (en) 1987-01-12 1988-08-30 Mobil Oil Corporation Method of recovering viscous oil from reservoirs with multiple horizontal zones
US4756367A (en) 1987-04-28 1988-07-12 Amoco Corporation Method for producing natural gas from a coal seam
US4817711A (en) 1987-05-27 1989-04-04 Jeambey Calhoun G System for recovery of petroleum from petroleum impregnated media
US4818371A (en) 1987-06-05 1989-04-04 Resource Technology Associates Viscosity reduction by direct oxidative heating
US4787452A (en) 1987-06-08 1988-11-29 Mobil Oil Corporation Disposal of produced formation fines during oil recovery
US4821798A (en) 1987-06-09 1989-04-18 Ors Development Corporation Heating system for rathole oil well
US4793409A (en) 1987-06-18 1988-12-27 Ors Development Corporation Method and apparatus for forming an insulated oil well casing
US4884455A (en) 1987-06-25 1989-12-05 Shell Oil Company Method for analysis of failure of material employing imaging
US4856341A (en) 1987-06-25 1989-08-15 Shell Oil Company Apparatus for analysis of failure of material
US4827761A (en) 1987-06-25 1989-05-09 Shell Oil Company Sample holder
US4776638A (en) 1987-07-13 1988-10-11 University Of Kentucky Research Foundation Method and apparatus for conversion of coal in situ
US4848924A (en) 1987-08-19 1989-07-18 The Babcock & Wilcox Company Acoustic pyrometer
US4828031A (en) 1987-10-13 1989-05-09 Chevron Research Company In situ chemical stimulation of diatomite formations
US4762425A (en) 1987-10-15 1988-08-09 Parthasarathy Shakkottai System for temperature profile measurement in large furnances and kilns and method therefor
US4815791A (en) 1987-10-22 1989-03-28 The United States Of America As Represented By The Secretary Of The Interior Bedded mineral extraction process
US5306640A (en) 1987-10-28 1994-04-26 Shell Oil Company Method for determining preselected properties of a crude oil
US4983278A (en) 1987-11-03 1991-01-08 Western Research Institute & Ilr Services Inc. Pyrolysis methods with product oil recycling
US4987368A (en) 1987-11-05 1991-01-22 Shell Oil Company Nuclear magnetism logging tool using high-temperature superconducting squid detectors
US4842448A (en) 1987-11-12 1989-06-27 Drexel University Method of removing contaminants from contaminated soil in situ
US4808925A (en) 1987-11-19 1989-02-28 Halliburton Company Three magnet casing collar locator
US4852648A (en) 1987-12-04 1989-08-01 Ava International Corporation Well installation in which electrical current is supplied for a source at the wellhead to an electrically responsive device located a substantial distance below the wellhead
GB8729303D0 (en) 1987-12-16 1988-01-27 Crompton G Materials for & manufacture of fire & heat resistant components
US4823890A (en) 1988-02-23 1989-04-25 Longyear Company Reverse circulation bit apparatus
US4883582A (en) 1988-03-07 1989-11-28 Mccants Malcolm T Vis-breaking heavy crude oils for pumpability
US4866983A (en) 1988-04-14 1989-09-19 Shell Oil Company Analytical methods and apparatus for measuring the oil content of sponge core
US4815790A (en) 1988-05-13 1989-03-28 Natec, Ltd. Nahcolite solution mining process
US4885080A (en) 1988-05-25 1989-12-05 Phillips Petroleum Company Process for demetallizing and desulfurizing heavy crude oil
US5046560A (en) 1988-06-10 1991-09-10 Exxon Production Research Company Oil recovery process using arkyl aryl polyalkoxyol sulfonate surfactants as mobility control agents
US4840720A (en) 1988-09-02 1989-06-20 Betz Laboratories, Inc. Process for minimizing fouling of processing equipment
US4928765A (en) * 1988-09-27 1990-05-29 Ramex Syn-Fuels International Method and apparatus for shale gas recovery
US4856587A (en) 1988-10-27 1989-08-15 Nielson Jay P Recovery of oil from oil-bearing formation by continually flowing pressurized heated gas through channel alongside matrix
US5064006A (en) 1988-10-28 1991-11-12 Magrange, Inc Downhole combination tool
US4848460A (en) 1988-11-04 1989-07-18 Western Research Institute Contained recovery of oily waste
US5065501A (en) 1988-11-29 1991-11-19 Amp Incorporated Generating electromagnetic fields in a self regulating temperature heater by positioning of a current return bus
US4859200A (en) 1988-12-05 1989-08-22 Baker Hughes Incorporated Downhole electrical connector for submersible pump
US4974425A (en) 1988-12-08 1990-12-04 Concept Rkk, Limited Closed cryogenic barrier for containment of hazardous material migration in the earth
US4860544A (en) 1988-12-08 1989-08-29 Concept R.K.K. Limited Closed cryogenic barrier for containment of hazardous material migration in the earth
US4933640A (en) * 1988-12-30 1990-06-12 Vector Magnetics Apparatus for locating an elongated conductive body by electromagnetic measurement while drilling
US4940095A (en) 1989-01-27 1990-07-10 Dowell Schlumberger Incorporated Deployment/retrieval method and apparatus for well tools used with coiled tubing
US5103920A (en) 1989-03-01 1992-04-14 Patton Consulting Inc. Surveying system and method for locating target subterranean bodies
CA2015318C (en) 1990-04-24 1994-02-08 Jack E. Bridges Power sources for downhole electrical heating
US4895206A (en) 1989-03-16 1990-01-23 Price Ernest H Pulsed in situ exothermic shock wave and retorting process for hydrocarbon recovery and detoxification of selected wastes
US4913065A (en) 1989-03-27 1990-04-03 Indugas, Inc. In situ thermal waste disposal system
US4947672A (en) 1989-04-03 1990-08-14 Burndy Corporation Hydraulic compression tool having an improved relief and release valve
JP2561729B2 (en) * 1989-04-21 1996-12-11 日本電子株式会社 Tap switching AC power stabilization device
NL8901138A (en) 1989-05-03 1990-12-03 Nkf Kabel Bv PLUG-IN CONNECTION FOR HIGH-VOLTAGE PLASTIC CABLES.
US5150118A (en) 1989-05-08 1992-09-22 Hewlett-Packard Company Interchangeable coded key pad assemblies alternately attachable to a user definable keyboard to enable programmable keyboard functions
DE3918265A1 (en) 1989-06-05 1991-01-03 Henkel Kgaa PROCESS FOR THE PREPARATION OF ETHANE SULPHONATE BASE TENSID MIXTURES AND THEIR USE
US5059303A (en) 1989-06-16 1991-10-22 Amoco Corporation Oil stabilization
US5041210A (en) 1989-06-30 1991-08-20 Marathon Oil Company Oil shale retorting with steam and produced gas
DE3922612C2 (en) * 1989-07-10 1998-07-02 Krupp Koppers Gmbh Process for the production of methanol synthesis gas
US4982786A (en) * 1989-07-14 1991-01-08 Mobil Oil Corporation Use of CO2 /steam to enhance floods in horizontal wellbores
US5050386A (en) 1989-08-16 1991-09-24 Rkk, Limited Method and apparatus for containment of hazardous material migration in the earth
US5097903A (en) 1989-09-22 1992-03-24 Jack C. Sloan Method for recovering intractable petroleum from subterranean formations
US5305239A (en) 1989-10-04 1994-04-19 The Texas A&M University System Ultrasonic non-destructive evaluation of thin specimens
US4926941A (en) 1989-10-10 1990-05-22 Shell Oil Company Method of producing tar sand deposits containing conductive layers
US5656239A (en) 1989-10-27 1997-08-12 Shell Oil Company Method for recovering contaminants from soil utilizing electrical heating
US4984594A (en) * 1989-10-27 1991-01-15 Shell Oil Company Vacuum method for removing soil contamination utilizing surface electrical heating
US4986375A (en) 1989-12-04 1991-01-22 Maher Thomas P Device for facilitating drill bit retrieval
US5082055A (en) 1990-01-24 1992-01-21 Indugas, Inc. Gas fired radiant tube heater
US5020596A (en) 1990-01-24 1991-06-04 Indugas, Inc. Enhanced oil recovery system with a radiant tube heater
US5011329A (en) 1990-02-05 1991-04-30 Hrubetz Exploration Company In situ soil decontamination method and apparatus
CA2009782A1 (en) 1990-02-12 1991-08-12 Anoosh I. Kiamanesh In-situ tuned microwave oil extraction process
US5152341A (en) 1990-03-09 1992-10-06 Raymond S. Kasevich Electromagnetic method and apparatus for the decontamination of hazardous material-containing volumes
US5027896A (en) 1990-03-21 1991-07-02 Anderson Leonard M Method for in-situ recovery of energy raw material by the introduction of a water/oxygen slurry
GB9007147D0 (en) * 1990-03-30 1990-05-30 Framo Dev Ltd Thermal mineral extraction system
CA2015460C (en) 1990-04-26 1993-12-14 Kenneth Edwin Kisman Process for confining steam injected into a heavy oil reservoir
US5126037A (en) 1990-05-04 1992-06-30 Union Oil Company Of California Geopreater heating method and apparatus
US5080776A (en) 1990-06-14 1992-01-14 Mobil Oil Corporation Hydrogen-balanced conversion of diamondoid-containing wash oils to gasoline
US5040601A (en) * 1990-06-21 1991-08-20 Baker Hughes Incorporated Horizontal well bore system
US5032042A (en) 1990-06-26 1991-07-16 New Jersey Institute Of Technology Method and apparatus for eliminating non-naturally occurring subsurface, liquid toxic contaminants from soil
US5201219A (en) 1990-06-29 1993-04-13 Amoco Corporation Method and apparatus for measuring free hydrocarbons and hydrocarbons potential from whole core
US5054551A (en) 1990-08-03 1991-10-08 Chevron Research And Technology Company In-situ heated annulus refining process
US5109928A (en) 1990-08-17 1992-05-05 Mccants Malcolm T Method for production of hydrocarbon diluent from heavy crude oil
US5046559A (en) 1990-08-23 1991-09-10 Shell Oil Company Method and apparatus for producing hydrocarbon bearing deposits in formations having shale layers
US5042579A (en) 1990-08-23 1991-08-27 Shell Oil Company Method and apparatus for producing tar sand deposits containing conductive layers
US5060726A (en) 1990-08-23 1991-10-29 Shell Oil Company Method and apparatus for producing tar sand deposits containing conductive layers having little or no vertical communication
BR9004240A (en) 1990-08-28 1992-03-24 Petroleo Brasileiro Sa ELECTRIC PIPE HEATING PROCESS
US5085276A (en) 1990-08-29 1992-02-04 Chevron Research And Technology Company Production of oil from low permeability formations by sequential steam fracturing
US5245161A (en) 1990-08-31 1993-09-14 Tokyo Kogyo Boyeki Shokai, Ltd. Electric heater
US5066852A (en) 1990-09-17 1991-11-19 Teledyne Ind. Inc. Thermoplastic end seal for electric heating elements
US5207273A (en) 1990-09-17 1993-05-04 Production Technologies International Inc. Method and apparatus for pumping wells
JPH04272680A (en) 1990-09-20 1992-09-29 Thermon Mfg Co Switch-controlled-zone type heating cable and assembling method thereof
US5182427A (en) 1990-09-20 1993-01-26 Metcal, Inc. Self-regulating heater utilizing ferrite-type body
SU1760655A1 (en) * 1990-09-25 1992-09-07 Научное Проектно-Производственное Предприятие "Магнитрон" Device for induction heating of liquid medium
US5517593A (en) 1990-10-01 1996-05-14 John Nenniger Control system for well stimulation apparatus with response time temperature rise used in determining heater control temperature setpoint
US5400430A (en) 1990-10-01 1995-03-21 Nenniger; John E. Method for injection well stimulation
US5408047A (en) 1990-10-25 1995-04-18 Minnesota Mining And Manufacturing Company Transition joint for oil-filled cables
US5070533A (en) 1990-11-07 1991-12-03 Uentech Corporation Robust electrical heating systems for mineral wells
FR2669077B2 (en) 1990-11-09 1995-02-03 Institut Francais Petrole METHOD AND DEVICE FOR PERFORMING INTERVENTIONS IN WELLS OR HIGH TEMPERATURES.
US5217076A (en) 1990-12-04 1993-06-08 Masek John A Method and apparatus for improved recovery of oil from porous, subsurface deposits (targevcir oricess)
US5065818A (en) 1991-01-07 1991-11-19 Shell Oil Company Subterranean heaters
US5060287A (en) 1990-12-04 1991-10-22 Shell Oil Company Heater utilizing copper-nickel alloy core
US5190405A (en) 1990-12-14 1993-03-02 Shell Oil Company Vacuum method for removing soil contaminants utilizing thermal conduction heating
GB9027638D0 (en) 1990-12-20 1991-02-13 Raychem Ltd Cable-sealing mastic material
SU1836876A3 (en) 1990-12-29 1994-12-30 Смешанное научно-техническое товарищество по разработке техники и технологии для подземной электроэнергетики Process of development of coal seams and complex of equipment for its implementation
US5626190A (en) 1991-02-06 1997-05-06 Moore; Boyd B. Apparatus for protecting electrical connection from moisture in a hazardous area adjacent a wellhead barrier for an underground well
US5667008A (en) * 1991-02-06 1997-09-16 Quick Connectors, Inc. Seal electrical conductor arrangement for use with a well bore in hazardous areas
US5289882A (en) 1991-02-06 1994-03-01 Boyd B. Moore Sealed electrical conductor method and arrangement for use with a well bore in hazardous areas
US5103909A (en) 1991-02-19 1992-04-14 Shell Oil Company Profile control in enhanced oil recovery
US5261490A (en) 1991-03-18 1993-11-16 Nkk Corporation Method for dumping and disposing of carbon dioxide gas and apparatus therefor
US5093002A (en) 1991-04-29 1992-03-03 Texaco Inc. Membrane process for treating a mixture containing dewaxed oil and dewaxing solvent
US5102551A (en) 1991-04-29 1992-04-07 Texaco Inc. Membrane process for treating a mixture containing dewaxed oil and dewaxing solvent
US5204270A (en) 1991-04-29 1993-04-20 Lacount Robert B Multiple sample characterization of coals and other substances by controlled-atmosphere programmed temperature oxidation
US5246273A (en) 1991-05-13 1993-09-21 Rosar Edward C Method and apparatus for solution mining
ATE147135T1 (en) 1991-06-17 1997-01-15 Electric Power Res Inst ENERGY SYSTEM WITH COMPRESSED AIR STORAGE
DK0519573T3 (en) 1991-06-21 1995-07-03 Shell Int Research Hydrogenation catalyst and process
IT1248535B (en) 1991-06-24 1995-01-19 Cise Spa SYSTEM TO MEASURE THE TRANSFER TIME OF A SOUND WAVE
US5133406A (en) 1991-07-05 1992-07-28 Amoco Corporation Generating oxygen-depleted air useful for increasing methane production
US5215954A (en) 1991-07-30 1993-06-01 Cri International, Inc. Method of presulfurizing a hydrotreating, hydrocracking or tail gas treating catalyst
US5189283A (en) 1991-08-28 1993-02-23 Shell Oil Company Current to power crossover heater control
US5168927A (en) 1991-09-10 1992-12-08 Shell Oil Company Method utilizing spot tracer injection and production induced transport for measurement of residual oil saturation
US5193618A (en) 1991-09-12 1993-03-16 Chevron Research And Technology Company Multivalent ion tolerant steam-foaming surfactant composition for use in enhanced oil recovery operations
US5173213A (en) 1991-11-08 1992-12-22 Baker Hughes Incorporated Corrosion and anti-foulant composition and method of use
US5347070A (en) 1991-11-13 1994-09-13 Battelle Pacific Northwest Labs Treating of solid earthen material and a method for measuring moisture content and resistivity of solid earthen material
US5349859A (en) 1991-11-15 1994-09-27 Scientific Engineering Instruments, Inc. Method and apparatus for measuring acoustic wave velocity using impulse response
US5199490A (en) 1991-11-18 1993-04-06 Texaco Inc. Formation treating
DE69209466T2 (en) 1991-12-16 1996-08-14 Inst Francais Du Petrole Active or passive monitoring arrangement for underground deposit by means of fixed stations
CA2058255C (en) 1991-12-20 1997-02-11 Roland P. Leaute Recovery and upgrading of hydrocarbons utilizing in situ combustion and horizontal wells
US5246071A (en) 1992-01-31 1993-09-21 Texaco Inc. Steamflooding with alternating injection and production cycles
US5420402A (en) 1992-02-05 1995-05-30 Iit Research Institute Methods and apparatus to confine earth currents for recovery of subsurface volatiles and semi-volatiles
US5211230A (en) 1992-02-21 1993-05-18 Mobil Oil Corporation Method for enhanced oil recovery through a horizontal production well in a subsurface formation by in-situ combustion
FI92441C (en) * 1992-04-01 1994-11-10 Vaisala Oy Electric impedance sensor for measurement of physical quantity, especially temperature and method for manufacture of the sensor in question
GB9207174D0 (en) 1992-04-01 1992-05-13 Raychem Sa Nv Method of forming an electrical connection
US5255740A (en) 1992-04-13 1993-10-26 Rrkt Company Secondary recovery process
US5332036A (en) 1992-05-15 1994-07-26 The Boc Group, Inc. Method of recovery of natural gases from underground coal formations
MY108830A (en) 1992-06-09 1996-11-30 Shell Int Research Method of completing an uncased section of a borehole
US5226961A (en) 1992-06-12 1993-07-13 Shell Oil Company High temperature wellbore cement slurry
US5255742A (en) 1992-06-12 1993-10-26 Shell Oil Company Heat injection process
US5392854A (en) 1992-06-12 1995-02-28 Shell Oil Company Oil recovery process
US5297626A (en) 1992-06-12 1994-03-29 Shell Oil Company Oil recovery process
US5236039A (en) 1992-06-17 1993-08-17 General Electric Company Balanced-line RF electrode system for use in RF ground heating to recover oil from oil shale
US5295763A (en) 1992-06-30 1994-03-22 Chambers Development Co., Inc. Method for controlling gas migration from a landfill
US5275726A (en) 1992-07-29 1994-01-04 Exxon Research & Engineering Co. Spiral wound element for separation
US5282957A (en) 1992-08-19 1994-02-01 Betz Laboratories, Inc. Methods for inhibiting polymerization of hydrocarbons utilizing a hydroxyalkylhydroxylamine
US5315065A (en) 1992-08-21 1994-05-24 Donovan James P O Versatile electrically insulating waterproof connectors
US5305829A (en) 1992-09-25 1994-04-26 Chevron Research And Technology Company Oil production from diatomite formations by fracture steamdrive
US5229583A (en) 1992-09-28 1993-07-20 Shell Oil Company Surface heating blanket for soil remediation
US5339904A (en) 1992-12-10 1994-08-23 Mobil Oil Corporation Oil recovery optimization using a well having both horizontal and vertical sections
US5358045A (en) 1993-02-12 1994-10-25 Chevron Research And Technology Company, A Division Of Chevron U.S.A. Inc. Enhanced oil recovery method employing a high temperature brine tolerant foam-forming composition
CA2096034C (en) 1993-05-07 1996-07-02 Kenneth Edwin Kisman Horizontal well gravity drainage combustion process for oil recovery
US5360067A (en) 1993-05-17 1994-11-01 Meo Iii Dominic Vapor-extraction system for removing hydrocarbons from soil
SE503278C2 (en) 1993-06-07 1996-05-13 Kabeldon Ab Method of jointing two cable parts, as well as joint body and mounting tool for use in the process
US5325918A (en) 1993-08-02 1994-07-05 The United States Of America As Represented By The United States Department Of Energy Optimal joule heating of the subsurface
US5377756A (en) 1993-10-28 1995-01-03 Mobil Oil Corporation Method for producing low permeability reservoirs using a single well
US5388643A (en) 1993-11-03 1995-02-14 Amoco Corporation Coalbed methane recovery using pressure swing adsorption separation
US5388640A (en) 1993-11-03 1995-02-14 Amoco Corporation Method for producing methane-containing gaseous mixtures
US5388645A (en) 1993-11-03 1995-02-14 Amoco Corporation Method for producing methane-containing gaseous mixtures
US5388642A (en) 1993-11-03 1995-02-14 Amoco Corporation Coalbed methane recovery using membrane separation of oxygen from air
US5566755A (en) 1993-11-03 1996-10-22 Amoco Corporation Method for recovering methane from a solid carbonaceous subterranean formation
US5388641A (en) 1993-11-03 1995-02-14 Amoco Corporation Method for reducing the inert gas fraction in methane-containing gaseous mixtures obtained from underground formations
US5589775A (en) 1993-11-22 1996-12-31 Vector Magnetics, Inc. Rotating magnet for distance and direction measurements from a first borehole to a second borehole
US5411086A (en) 1993-12-09 1995-05-02 Mobil Oil Corporation Oil recovery by enhanced imbitition in low permeability reservoirs
US5435666A (en) 1993-12-14 1995-07-25 Environmental Resources Management, Inc. Methods for isolating a water table and for soil remediation
US5433271A (en) 1993-12-20 1995-07-18 Shell Oil Company Heat injection process
US5411089A (en) 1993-12-20 1995-05-02 Shell Oil Company Heat injection process
US5404952A (en) 1993-12-20 1995-04-11 Shell Oil Company Heat injection process and apparatus
US5634984A (en) 1993-12-22 1997-06-03 Union Oil Company Of California Method for cleaning an oil-coated substrate
FR2715692B1 (en) * 1993-12-23 1996-04-05 Inst Francais Du Petrole Process for the pretreatment of a natural gas containing hydrogen sulfide.
MY112792A (en) 1994-01-13 2001-09-29 Shell Int Research Method of creating a borehole in an earth formation
US5453599A (en) * 1994-02-14 1995-09-26 Hoskins Manufacturing Company Tubular heating element with insulating core
US5411104A (en) 1994-02-16 1995-05-02 Conoco Inc. Coalbed methane drilling
RU2074434C1 (en) * 1994-03-03 1997-02-27 Григорий Григорьевич Маркаров Controlled transformer
CA2144597C (en) 1994-03-18 1999-08-10 Paul J. Latimer Improved emat probe and technique for weld inspection
US5415231A (en) 1994-03-21 1995-05-16 Mobil Oil Corporation Method for producing low permeability reservoirs using steam
US5439054A (en) 1994-04-01 1995-08-08 Amoco Corporation Method for treating a mixture of gaseous fluids within a solid carbonaceous subterranean formation
US5553478A (en) 1994-04-08 1996-09-10 Burndy Corporation Hand-held compression tool
US5431224A (en) 1994-04-19 1995-07-11 Mobil Oil Corporation Method of thermal stimulation for recovery of hydrocarbons
US5484020A (en) 1994-04-25 1996-01-16 Shell Oil Company Remedial wellbore sealing with unsaturated monomer system
US5429194A (en) 1994-04-29 1995-07-04 Western Atlas International, Inc. Method for inserting a wireline inside coiled tubing
US5409071A (en) 1994-05-23 1995-04-25 Shell Oil Company Method to cement a wellbore
ZA954204B (en) 1994-06-01 1996-01-22 Ashland Chemical Inc A process for improving the effectiveness of a process catalyst
AU2241695A (en) 1994-07-18 1996-02-16 Babcock & Wilcox Co., The Sensor transport system for flash butt welder
US5458774A (en) 1994-07-25 1995-10-17 Mannapperuma; Jatal D. Corrugated spiral membrane module
US5632336A (en) 1994-07-28 1997-05-27 Texaco Inc. Method for improving injectivity of fluids in oil reservoirs
US5525322A (en) 1994-10-12 1996-06-11 The Regents Of The University Of California Method for simultaneous recovery of hydrogen from water and from hydrocarbons
US5433276A (en) * 1994-10-17 1995-07-18 Western Atlas International, Inc. Method and system for inserting logging tools into highly inclined or horizontal boreholes
US5553189A (en) 1994-10-18 1996-09-03 Shell Oil Company Radiant plate heater for treatment of contaminated surfaces
US5498960A (en) 1994-10-20 1996-03-12 Shell Oil Company NMR logging of natural gas in reservoirs
US5497087A (en) 1994-10-20 1996-03-05 Shell Oil Company NMR logging of natural gas reservoirs
US5624188A (en) 1994-10-20 1997-04-29 West; David A. Acoustic thermometer
US5559263A (en) 1994-11-16 1996-09-24 Tiorco, Inc. Aluminum citrate preparations and methods
US5554453A (en) 1995-01-04 1996-09-10 Energy Research Corporation Carbonate fuel cell system with thermally integrated gasification
WO1996021871A1 (en) 1995-01-12 1996-07-18 Baker Hughes Incorporated A measurement-while-drilling acoustic system employing multiple, segmented transmitters and receivers
US6088294A (en) 1995-01-12 2000-07-11 Baker Hughes Incorporated Drilling system with an acoustic measurement-while-driving system for determining parameters of interest and controlling the drilling direction
US6065538A (en) 1995-02-09 2000-05-23 Baker Hughes Corporation Method of obtaining improved geophysical information about earth formations
DE19505517A1 (en) 1995-02-10 1996-08-14 Siegfried Schwert Procedure for extracting a pipe laid in the ground
CA2152521C (en) 1995-03-01 2000-06-20 Jack E. Bridges Low flux leakage cables and cable terminations for a.c. electrical heating of oil deposits
US5621844A (en) 1995-03-01 1997-04-15 Uentech Corporation Electrical heating of mineral well deposits using downhole impedance transformation networks
JPH08255026A (en) * 1995-03-17 1996-10-01 Kawamura Electric Inc Power saving device
US5935421A (en) 1995-05-02 1999-08-10 Exxon Research And Engineering Company Continuous in-situ combination process for upgrading heavy oil
US5911898A (en) 1995-05-25 1999-06-15 Electric Power Research Institute Method and apparatus for providing multiple autoregulated temperatures
US5571403A (en) 1995-06-06 1996-11-05 Texaco Inc. Process for extracting hydrocarbons from diatomite
WO1996040604A1 (en) * 1995-06-07 1996-12-19 Elcor Corporation Hydrocarbon gas processing
US6015015A (en) 1995-06-20 2000-01-18 Bj Services Company U.S.A. Insulated and/or concentric coiled tubing
US5619121A (en) * 1995-06-29 1997-04-08 Siemens Energy & Automation, Inc. Load voltage based tap changer monitoring system
AUPN469395A0 (en) 1995-08-08 1995-08-31 Gearhart United Pty Ltd Borehole drill bit stabiliser
US5669275A (en) 1995-08-18 1997-09-23 Mills; Edward Otis Conductor insulation remover
US5801332A (en) * 1995-08-31 1998-09-01 Minnesota Mining And Manufacturing Company Elastically recoverable silicone splice cover
US5899958A (en) 1995-09-11 1999-05-04 Halliburton Energy Services, Inc. Logging while drilling borehole imaging and dipmeter device
US5700161A (en) 1995-10-13 1997-12-23 Baker Hughes Incorporated Two-piece lead seal pothead connector
US5759022A (en) 1995-10-16 1998-06-02 Gas Research Institute Method and system for reducing NOx and fuel emissions in a furnace
GB9521944D0 (en) 1995-10-26 1996-01-03 Camco Drilling Group Ltd A drilling assembly for use in drilling holes in subsurface formations
US5738178A (en) 1995-11-17 1998-04-14 Baker Hughes Incorporated Method and apparatus for navigational drilling with a downhole motor employing independent drill string and bottomhole assembly rotary orientation and rotation
US5890840A (en) 1995-12-08 1999-04-06 Carter, Jr.; Ernest E. In situ construction of containment vault under a radioactive or hazardous waste site
US5619611A (en) 1995-12-12 1997-04-08 Tub Tauch-Und Baggertechnik Gmbh Device for removing downhole deposits utilizing tubular housing and passing electric current through fluid heating medium contained therein
PT870100E (en) 1995-12-27 2000-09-29 Shell Int Research CHAMBER OF COMBUSTION WITHOUT FLAME AND RESPECTIVE IGNITION PROCESS
JPH09190935A (en) * 1996-01-09 1997-07-22 Toshiba Corp Tap change control circuit for tap change transformer during loading
IE960011A1 (en) 1996-01-10 1997-07-16 Padraig Mcalister Structural ice composites, processes for their construction¹and their use as artificial islands and other fixed and¹floating structures
US5685362A (en) 1996-01-22 1997-11-11 The Regents Of The University Of California Storage capacity in hot dry rock reservoirs
US5784530A (en) 1996-02-13 1998-07-21 Eor International, Inc. Iterated electrodes for oil wells
US5751895A (en) 1996-02-13 1998-05-12 Eor International, Inc. Selective excitation of heating electrodes for oil wells
US5676212A (en) * 1996-04-17 1997-10-14 Vector Magnetics, Inc. Downhole electrode for well guidance system
US5826655A (en) 1996-04-25 1998-10-27 Texaco Inc Method for enhanced recovery of viscous oil deposits
US5652389A (en) 1996-05-22 1997-07-29 The United States Of America As Represented By The Secretary Of Commerce Non-contact method and apparatus for inspection of inertia welds
US6022834A (en) 1996-05-24 2000-02-08 Oil Chem Technologies, Inc. Alkaline surfactant polymer flooding composition and process
CA2177726C (en) 1996-05-29 2000-06-27 Theodore Wildi Low-voltage and low flux density heating system
US5769569A (en) 1996-06-18 1998-06-23 Southern California Gas Company In-situ thermal desorption of heavy hydrocarbons in vadose zone
US5828797A (en) 1996-06-19 1998-10-27 Meggitt Avionics, Inc. Fiber optic linked flame sensor
WO1997048639A1 (en) 1996-06-21 1997-12-24 Syntroleum Corporation Synthesis gas production system and method
US5788376A (en) 1996-07-01 1998-08-04 General Motors Corporation Temperature sensor
PE17599A1 (en) 1996-07-09 1999-02-22 Syntroleum Corp PROCEDURE TO CONVERT GASES TO LIQUIDS
US5826653A (en) 1996-08-02 1998-10-27 Scientific Applications & Research Associates, Inc. Phased array approach to retrieve gases, liquids, or solids from subaqueous geologic or man-made formations
US6116357A (en) 1996-09-09 2000-09-12 Smith International, Inc. Rock drill bit with back-reaming protection
SE507262C2 (en) 1996-10-03 1998-05-04 Per Karlsson Strain relief and tools for application thereof
US5782301A (en) 1996-10-09 1998-07-21 Baker Hughes Incorporated Oil well heater cable
US5875283A (en) * 1996-10-11 1999-02-23 Lufran Incorporated Purged grounded immersion heater
US6056057A (en) 1996-10-15 2000-05-02 Shell Oil Company Heater well method and apparatus
US6079499A (en) 1996-10-15 2000-06-27 Shell Oil Company Heater well method and apparatus
US5861137A (en) 1996-10-30 1999-01-19 Edlund; David J. Steam reformer with internal hydrogen purification
US5862858A (en) 1996-12-26 1999-01-26 Shell Oil Company Flameless combustor
US6427124B1 (en) 1997-01-24 2002-07-30 Baker Hughes Incorporated Semblance processing for an acoustic measurement-while-drilling system for imaging of formation boundaries
SE510452C2 (en) * 1997-02-03 1999-05-25 Asea Brown Boveri Transformer with voltage regulator
US5821414A (en) 1997-02-07 1998-10-13 Noy; Koen Survey apparatus and methods for directional wellbore wireline surveying
US6039121A (en) 1997-02-20 2000-03-21 Rangewest Technologies Ltd. Enhanced lift method and apparatus for the production of hydrocarbons
GB9704181D0 (en) * 1997-02-28 1997-04-16 Thompson James Apparatus and method for installation of ducts
US5744025A (en) 1997-02-28 1998-04-28 Shell Oil Company Process for hydrotreating metal-contaminated hydrocarbonaceous feedstock
US5923170A (en) 1997-04-04 1999-07-13 Vector Magnetics, Inc. Method for near field electromagnetic proximity determination for guidance of a borehole drill
US5926437A (en) 1997-04-08 1999-07-20 Halliburton Energy Services, Inc. Method and apparatus for seismic exploration
US5984578A (en) 1997-04-11 1999-11-16 New Jersey Institute Of Technology Apparatus and method for in situ removal of contaminants using sonic energy
GB2364381B (en) 1997-05-02 2002-03-06 Baker Hughes Inc Downhole injection evaluation system
US5802870A (en) 1997-05-02 1998-09-08 Uop Llc Sorption cooling process and system
WO1998050179A1 (en) 1997-05-07 1998-11-12 Shell Internationale Research Maatschappij B.V. Remediation method
US6023554A (en) 1997-05-20 2000-02-08 Shell Oil Company Electrical heater
AU720947B2 (en) 1997-06-05 2000-06-15 Shell Internationale Research Maatschappij B.V. Remediation method
US6102122A (en) 1997-06-11 2000-08-15 Shell Oil Company Control of heat injection based on temperature and in-situ stress measurement
US6050348A (en) 1997-06-17 2000-04-18 Canrig Drilling Technology Ltd. Drilling method and apparatus
US6112808A (en) * 1997-09-19 2000-09-05 Isted; Robert Edward Method and apparatus for subterranean thermal conditioning
US5984010A (en) 1997-06-23 1999-11-16 Elias; Ramon Hydrocarbon recovery systems and methods
CA2208767A1 (en) 1997-06-26 1998-12-26 Reginald D. Humphreys Tar sands extraction process
US6321862B1 (en) 1997-09-08 2001-11-27 Baker Hughes Incorporated Rotary drill bits for directional drilling employing tandem gage pad arrangement with cutting elements and up-drill capability
US5868202A (en) 1997-09-22 1999-02-09 Tarim Associates For Scientific Mineral And Oil Exploration Ag Hydrologic cells for recovery of hydrocarbons or thermal energy from coal, oil-shale, tar-sands and oil-bearing formations
US6149344A (en) 1997-10-04 2000-11-21 Master Corporation Acid gas disposal
US6923273B2 (en) 1997-10-27 2005-08-02 Halliburton Energy Services, Inc. Well system
US6354373B1 (en) 1997-11-26 2002-03-12 Schlumberger Technology Corporation Expandable tubing for a well bore hole and method of expanding
FR2772137B1 (en) 1997-12-08 1999-12-31 Inst Francais Du Petrole SEISMIC MONITORING METHOD OF AN UNDERGROUND ZONE DURING OPERATION ALLOWING BETTER IDENTIFICATION OF SIGNIFICANT EVENTS
ATE236343T1 (en) * 1997-12-11 2003-04-15 Alberta Res Council PETROLEUM PROCESSING PROCESS IN SITU
US6152987A (en) 1997-12-15 2000-11-28 Worcester Polytechnic Institute Hydrogen gas-extraction module and method of fabrication
US6094048A (en) 1997-12-18 2000-07-25 Shell Oil Company NMR logging of natural gas reservoirs
NO305720B1 (en) 1997-12-22 1999-07-12 Eureka Oil Asa Procedure for increasing oil production from an oil reservoir
RU9114U1 (en) * 1997-12-23 1999-01-16 Комсомольский-на-Амуре государственный технический университет ELECTRIC HEATER
US6026914A (en) 1998-01-28 2000-02-22 Alberta Oil Sands Technology And Research Authority Wellbore profiling system
US6247542B1 (en) 1998-03-06 2001-06-19 Baker Hughes Incorporated Non-rotating sensor assembly for measurement-while-drilling applications
US6540018B1 (en) 1998-03-06 2003-04-01 Shell Oil Company Method and apparatus for heating a wellbore
MA24902A1 (en) 1998-03-06 2000-04-01 Shell Int Research ELECTRIC HEATER
CA2327744C (en) 1998-04-06 2004-07-13 Da Qing Petroleum Administration Bureau A foam drive method
US6035701A (en) 1998-04-15 2000-03-14 Lowry; William E. Method and system to locate leaks in subsurface containment structures using tracer gases
AU3978399A (en) 1998-05-12 1999-11-29 Lockheed Martin Corporation System and process for secondary hydrocarbon recovery
US5974911A (en) 1998-06-16 1999-11-02 Fiatavio S.P.A. Face-gear transmission assembly with floating balance pinions
US6016868A (en) 1998-06-24 2000-01-25 World Energy Systems, Incorporated Production of synthetic crude oil from heavy hydrocarbons recovered by in situ hydrovisbreaking
US6016867A (en) 1998-06-24 2000-01-25 World Energy Systems, Incorporated Upgrading and recovery of heavy crude oils and natural bitumens by in situ hydrovisbreaking
US5958365A (en) 1998-06-25 1999-09-28 Atlantic Richfield Company Method of producing hydrogen from heavy crude oil using solvent deasphalting and partial oxidation methods
US6130398A (en) 1998-07-09 2000-10-10 Illinois Tool Works Inc. Plasma cutter for auxiliary power output of a power source
US6087738A (en) * 1998-08-20 2000-07-11 Robicon Corporation Variable output three-phase transformer
NO984235L (en) 1998-09-14 2000-03-15 Cit Alcatel Heating system for metal pipes for crude oil transport
US6388947B1 (en) 1998-09-14 2002-05-14 Tomoseis, Inc. Multi-crosswell profile 3D imaging and method
US6591916B1 (en) 1998-10-14 2003-07-15 Coupler Developments Limited Drilling method
US6192748B1 (en) 1998-10-30 2001-02-27 Computalog Limited Dynamic orienting reference system for directional drilling
US5968349A (en) 1998-11-16 1999-10-19 Bhp Minerals International Inc. Extraction of bitumen from bitumen froth and biotreatment of bitumen froth tailings generated from tar sands
US20040035582A1 (en) 2002-08-22 2004-02-26 Zupanick Joseph A. System and method for subterranean access
US6269881B1 (en) 1998-12-22 2001-08-07 Chevron U.S.A. Inc Oil recovery method for waxy crude oil using alkylaryl sulfonate surfactants derived from alpha-olefins and the alpha-olefin compositions
US6123830A (en) 1998-12-30 2000-09-26 Exxon Research And Engineering Co. Integrated staged catalytic cracking and staged hydroprocessing process
US6609761B1 (en) 1999-01-08 2003-08-26 American Soda, Llp Sodium carbonate and sodium bicarbonate production from nahcolitic oil shale
US6078868A (en) 1999-01-21 2000-06-20 Baker Hughes Incorporated Reference signal encoding for seismic while drilling measurement
US6739409B2 (en) 1999-02-09 2004-05-25 Baker Hughes Incorporated Method and apparatus for a downhole NMR MWD tool configuration
US6218333B1 (en) 1999-02-15 2001-04-17 Shell Oil Company Preparation of a hydrotreating catalyst
US6429784B1 (en) 1999-02-19 2002-08-06 Dresser Industries, Inc. Casing mounted sensors, actuators and generators
US6283230B1 (en) 1999-03-01 2001-09-04 Jasper N. Peters Method and apparatus for lateral well drilling utilizing a rotating nozzle
US6155117A (en) 1999-03-18 2000-12-05 Mcdermott Technology, Inc. Edge detection and seam tracking with EMATs
US6561269B1 (en) 1999-04-30 2003-05-13 The Regents Of The University Of California Canister, sealing method and composition for sealing a borehole
US6110358A (en) 1999-05-21 2000-08-29 Exxon Research And Engineering Company Process for manufacturing improved process oils using extraction of hydrotreated distillates
JP2000340350A (en) 1999-05-28 2000-12-08 Kyocera Corp Silicon nitride ceramic heater and its manufacture
US6668943B1 (en) 1999-06-03 2003-12-30 Exxonmobil Upstream Research Company Method and apparatus for controlling pressure and detecting well control problems during drilling of an offshore well using a gas-lifted riser
US6257334B1 (en) 1999-07-22 2001-07-10 Alberta Oil Sands Technology And Research Authority Steam-assisted gravity drainage heavy oil recovery process
US6269310B1 (en) 1999-08-25 2001-07-31 Tomoseis Corporation System for eliminating headwaves in a tomographic process
US6196350B1 (en) 1999-10-06 2001-03-06 Tomoseis Corporation Apparatus and method for attenuating tube waves in a borehole
US6193010B1 (en) 1999-10-06 2001-02-27 Tomoseis Corporation System for generating a seismic signal in a borehole
DE19948819C2 (en) 1999-10-09 2002-01-24 Airbus Gmbh Heating conductor with a connection element and / or a termination element and a method for producing the same
US6288372B1 (en) 1999-11-03 2001-09-11 Tyco Electronics Corporation Electric cable having braidless polymeric ground plane providing fault detection
US6353706B1 (en) 1999-11-18 2002-03-05 Uentech International Corporation Optimum oil-well casing heating
US6417268B1 (en) 1999-12-06 2002-07-09 Hercules Incorporated Method for making hydrophobically associative polymers, methods of use and compositions
US6318468B1 (en) 1999-12-16 2001-11-20 Consolidated Seven Rocks Mining, Ltd. Recovery and reforming of crudes at the heads of multifunctional wells and oil mining system with flue gas stimulation
US6422318B1 (en) 1999-12-17 2002-07-23 Scioto County Regional Water District #1 Horizontal well system
US6452105B2 (en) 2000-01-12 2002-09-17 Meggitt Safety Systems, Inc. Coaxial cable assembly with a discontinuous outer jacket
US6427783B2 (en) 2000-01-12 2002-08-06 Baker Hughes Incorporated Steerable modular drilling assembly
US7259688B2 (en) 2000-01-24 2007-08-21 Shell Oil Company Wireless reservoir production control
US6633236B2 (en) 2000-01-24 2003-10-14 Shell Oil Company Permanent downhole, wireless, two-way telemetry backbone using redundant repeaters
US20020036085A1 (en) 2000-01-24 2002-03-28 Bass Ronald Marshall Toroidal choke inductor for wireless communication and control
US6715550B2 (en) 2000-01-24 2004-04-06 Shell Oil Company Controllable gas-lift well and valve
US6679332B2 (en) * 2000-01-24 2004-01-20 Shell Oil Company Petroleum well having downhole sensors, communication and power
AU4777000A (en) 2000-02-16 2001-08-27 Indian Oil Corporation Limited A multi stage selective catalytic cracking process and a system for producing high yield of middle distillate products from heavy hydrocarbon feedstocks
US7170424B2 (en) 2000-03-02 2007-01-30 Shell Oil Company Oil well casting electrical power pick-off points
AU4341301A (en) 2000-03-02 2001-09-12 Shell Oil Co Controlled downhole chemical injection
MY128294A (en) 2000-03-02 2007-01-31 Shell Int Research Use of downhole high pressure gas in a gas-lift well
SE0000688L (en) 2000-03-02 2001-05-21 Sandvik Ab Rock drill bit and process for its manufacture
US6357526B1 (en) 2000-03-16 2002-03-19 Kellogg Brown & Root, Inc. Field upgrading of heavy oil and bitumen
US6485232B1 (en) 2000-04-14 2002-11-26 Board Of Regents, The University Of Texas System Low cost, self regulating heater for use in an in situ thermal desorption soil remediation system
US6918444B2 (en) 2000-04-19 2005-07-19 Exxonmobil Upstream Research Company Method for production of hydrocarbons from organic-rich rock
GB0009662D0 (en) 2000-04-20 2000-06-07 Scotoil Group Plc Gas and oil production
US20030085034A1 (en) 2000-04-24 2003-05-08 Wellington Scott Lee In situ thermal processing of a coal formation to produce pyrolsis products
US20030066642A1 (en) 2000-04-24 2003-04-10 Wellington Scott Lee In situ thermal processing of a coal formation producing a mixture with oxygenated hydrocarbons
US6715548B2 (en) 2000-04-24 2004-04-06 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to produce nitrogen containing formation fluids
WO2001081239A2 (en) 2000-04-24 2001-11-01 Shell Internationale Research Maatschappij B.V. In situ recovery from a hydrocarbon containing formation
AU6024301A (en) * 2000-04-24 2001-11-12 Shell Int Research Electrical well heating system and method
US7011154B2 (en) 2000-04-24 2006-03-14 Shell Oil Company In situ recovery from a kerogen and liquid hydrocarbon containing formation
US6698515B2 (en) 2000-04-24 2004-03-02 Shell Oil Company In situ thermal processing of a coal formation using a relatively slow heating rate
US6715546B2 (en) 2000-04-24 2004-04-06 Shell Oil Company In situ production of synthesis gas from a hydrocarbon containing formation through a heat source wellbore
US7096953B2 (en) 2000-04-24 2006-08-29 Shell Oil Company In situ thermal processing of a coal formation using a movable heating element
US6588504B2 (en) 2000-04-24 2003-07-08 Shell Oil Company In situ thermal processing of a coal formation to produce nitrogen and/or sulfur containing formation fluids
US6859800B1 (en) 2000-04-26 2005-02-22 Global Information Research And Technologies Llc System for fulfilling an information need
US6584406B1 (en) 2000-06-15 2003-06-24 Geo-X Systems, Ltd. Downhole process control method utilizing seismic communication
GB2383633A (en) 2000-06-29 2003-07-02 Paulo S Tubel Method and system for monitoring smart structures utilizing distributed optical sensors
US6472851B2 (en) * 2000-07-05 2002-10-29 Robicon Corporation Hybrid tap-changing transformer with full range of control and high resolution
FR2813209B1 (en) 2000-08-23 2002-11-29 Inst Francais Du Petrole SUPPORTED TWO-METAL CATALYST HAVING STRONG INTERACTION BETWEEN GROUP VIII METAL AND TIN AND USE THEREOF IN A CATALYTIC REFORMING PROCESS
US6585046B2 (en) 2000-08-28 2003-07-01 Baker Hughes Incorporated Live well heater cable
US6412559B1 (en) 2000-11-24 2002-07-02 Alberta Research Council Inc. Process for recovering methane and/or sequestering fluids
US20020110476A1 (en) 2000-12-14 2002-08-15 Maziasz Philip J. Heat and corrosion resistant cast stainless steels with improved high temperature strength and ductility
US20020112987A1 (en) 2000-12-15 2002-08-22 Zhiguo Hou Slurry hydroprocessing for heavy oil upgrading using supported slurry catalysts
US20020112890A1 (en) 2001-01-22 2002-08-22 Wentworth Steven W. Conduit pulling apparatus and method for use in horizontal drilling
US6516891B1 (en) 2001-02-08 2003-02-11 L. Murray Dallas Dual string coil tubing injector assembly
US6821501B2 (en) 2001-03-05 2004-11-23 Shell Oil Company Integrated flameless distributed combustion/steam reforming membrane reactor for hydrogen production and use thereof in zero emissions hybrid power system
US20020153141A1 (en) 2001-04-19 2002-10-24 Hartman Michael G. Method for pumping fluids
US7040400B2 (en) 2001-04-24 2006-05-09 Shell Oil Company In situ thermal processing of a relatively impermeable formation using an open wellbore
CA2668387C (en) 2001-04-24 2012-05-22 Shell Canada Limited In situ recovery from a tar sands formation
US6948562B2 (en) 2001-04-24 2005-09-27 Shell Oil Company Production of a blending agent using an in situ thermal process in a relatively permeable formation
AU2002257221B2 (en) 2001-04-24 2008-12-18 Shell Internationale Research Maatschappij B.V. In situ recovery from a oil shale formation
US6571888B2 (en) 2001-05-14 2003-06-03 Precision Drilling Technology Services Group, Inc. Apparatus and method for directional drilling with coiled tubing
US6577946B2 (en) * 2001-07-10 2003-06-10 Makor Issues And Rights Ltd. Traffic information gathering via cellular phone networks for intelligent transportation systems
US6766817B2 (en) 2001-07-25 2004-07-27 Tubarc Technologies, Llc Fluid conduction utilizing a reversible unsaturated siphon with tubarc porosity action
US20030029617A1 (en) 2001-08-09 2003-02-13 Anadarko Petroleum Company Apparatus, method and system for single well solution-mining
US6695062B2 (en) 2001-08-27 2004-02-24 Baker Hughes Incorporated Heater cable and method for manufacturing
US6755251B2 (en) 2001-09-07 2004-06-29 Exxonmobil Upstream Research Company Downhole gas separation method and system
MY129091A (en) 2001-09-07 2007-03-30 Exxonmobil Upstream Res Co Acid gas disposal method
US6470977B1 (en) 2001-09-18 2002-10-29 Halliburton Energy Services, Inc. Steerable underreaming bottom hole assembly and method
US6886638B2 (en) 2001-10-03 2005-05-03 Schlumbergr Technology Corporation Field weldable connections
US7069993B2 (en) * 2001-10-22 2006-07-04 Hill William L Down hole oil and gas well heating system and method for down hole heating of oil and gas wells
US7077199B2 (en) 2001-10-24 2006-07-18 Shell Oil Company In situ thermal processing of an oil reservoir formation
NZ532089A (en) 2001-10-24 2005-09-30 Shell Int Research Installation and use of removable heaters in a hydrocarbon containing formation
US6969123B2 (en) 2001-10-24 2005-11-29 Shell Oil Company Upgrading and mining of coal
US7165615B2 (en) * 2001-10-24 2007-01-23 Shell Oil Company In situ recovery from a hydrocarbon containing formation using conductor-in-conduit heat sources with an electrically conductive material in the overburden
US7104319B2 (en) 2001-10-24 2006-09-12 Shell Oil Company In situ thermal processing of a heavy oil diatomite formation
BR0213513B8 (en) 2001-10-24 2013-02-19 Method for soil contamination remediation, and soil remediation system.
US7090013B2 (en) 2001-10-24 2006-08-15 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to produce heated fluids
RU2323332C2 (en) * 2001-10-24 2008-04-27 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Thermal treatment of in-situ hydrocarbon-containing reservoir with the use of naturally-distributed combustion chambers
US6736222B2 (en) * 2001-11-05 2004-05-18 Vector Magnetics, Llc Relative drill bit direction measurement
US6927741B2 (en) * 2001-11-15 2005-08-09 Merlin Technology, Inc. Locating technique and apparatus using an approximated dipole signal
US6759364B2 (en) 2001-12-17 2004-07-06 Shell Oil Company Arsenic removal catalyst and method for making same
US6583351B1 (en) 2002-01-11 2003-06-24 Bwx Technologies, Inc. Superconducting cable-in-conduit low resistance splice
US6679326B2 (en) 2002-01-15 2004-01-20 Bohdan Zakiewicz Pro-ecological mining system
US6684948B1 (en) 2002-01-15 2004-02-03 Marshall T. Savage Apparatus and method for heating subterranean formations using fuel cells
US7032809B1 (en) 2002-01-18 2006-04-25 Steel Ventures, L.L.C. Seam-welded metal pipe and method of making the same without seam anneal
CA2473372C (en) 2002-01-22 2012-11-20 Presssol Ltd. Two string drilling system using coil tubing
US7513318B2 (en) 2002-02-19 2009-04-07 Smith International, Inc. Steerable underreamer/stabilizer assembly and method
US6958195B2 (en) 2002-02-19 2005-10-25 Utc Fuel Cells, Llc Steam generator for a PEM fuel cell power plant
US7093370B2 (en) 2002-08-01 2006-08-22 The Charles Stark Draper Laboratory, Inc. Multi-gimbaled borehole navigation system
US6942037B1 (en) 2002-08-15 2005-09-13 Clariant Finance (Bvi) Limited Process for mitigation of wellbore contaminants
AU2003260210A1 (en) 2002-08-21 2004-03-11 Presssol Ltd. Reverse circulation directional and horizontal drilling using concentric coil tubing
US8224163B2 (en) 2002-10-24 2012-07-17 Shell Oil Company Variable frequency temperature limited heaters
US6942032B2 (en) * 2002-11-06 2005-09-13 Thomas A. La Rovere Resistive down hole heating tool
AR041930A1 (en) 2002-11-13 2005-06-01 Shell Int Research DIESEL FUEL COMPOSITIONS
JP2004235587A (en) * 2003-01-31 2004-08-19 Toshiba Corp Controller for on-load tap changing transformer and control method thereof
US7048051B2 (en) 2003-02-03 2006-05-23 Gen Syn Fuels Recovery of products from oil shale
US7055602B2 (en) 2003-03-11 2006-06-06 Shell Oil Company Method and composition for enhanced hydrocarbons recovery
US7258752B2 (en) 2003-03-26 2007-08-21 Ut-Battelle Llc Wrought stainless steel compositions having engineered microstructures for improved heat resistance
FR2853904B1 (en) 2003-04-15 2007-11-16 Air Liquide PROCESS FOR THE PRODUCTION OF HYDROCARBON LIQUIDS USING A FISCHER-TROPSCH PROCESS
NZ567052A (en) 2003-04-24 2009-11-27 Shell Int Research Thermal process for subsurface formations
US6951250B2 (en) 2003-05-13 2005-10-04 Halliburton Energy Services, Inc. Sealant compositions and methods of using the same to isolate a subterranean zone from a disposal well
US7049795B2 (en) * 2003-06-13 2006-05-23 Beckwith Robert W Underload tapchanging voltage regulators for ease of field replacement and for improved operator safety
WO2005010320A1 (en) 2003-06-24 2005-02-03 Exxonmobil Upstream Research Company Methods of treating a subterranean formation to convert organic matter into producible hydrocarbons
US6881897B2 (en) * 2003-07-10 2005-04-19 Yazaki Corporation Shielding structure of shielding electric wire
US7208647B2 (en) 2003-09-23 2007-04-24 Synfuels International, Inc. Process for the conversion of natural gas to reactive gaseous products comprising ethylene
US7114880B2 (en) 2003-09-26 2006-10-03 Carter Jr Ernest E Process for the excavation of buried waste
US7147057B2 (en) 2003-10-06 2006-12-12 Halliburton Energy Services, Inc. Loop systems and methods of using the same for conveying and distributing thermal energy into a wellbore
AU2004288130B2 (en) 2003-11-03 2009-12-17 Exxonmobil Upstream Research Company Hydrocarbon recovery from impermeable oil shales
US7282138B2 (en) 2003-11-05 2007-10-16 Exxonmobil Research And Engineering Company Multistage removal of heteroatoms and wax from distillate fuel
US20070000810A1 (en) 2003-12-19 2007-01-04 Bhan Opinder K Method for producing a crude product with reduced tan
US20060289340A1 (en) 2003-12-19 2006-12-28 Brownscombe Thomas F Methods for producing a total product in the presence of sulfur
US7416653B2 (en) 2003-12-19 2008-08-26 Shell Oil Company Systems and methods of producing a crude product
US20050167331A1 (en) 2003-12-19 2005-08-04 Bhan Opinder K. Systems, methods, and catalysts for producing a crude product
US7354507B2 (en) 2004-03-17 2008-04-08 Conocophillips Company Hydroprocessing methods and apparatus for use in the preparation of liquid hydrocarbons
US7337841B2 (en) 2004-03-24 2008-03-04 Halliburton Energy Services, Inc. Casing comprising stress-absorbing materials and associated methods of use
US7320364B2 (en) 2004-04-23 2008-01-22 Shell Oil Company Inhibiting reflux in a heated well of an in situ conversion system
US7582203B2 (en) 2004-08-10 2009-09-01 Shell Oil Company Hydrocarbon cracking process for converting gas oil preferentially to middle distillate and lower olefins
RU2399648C2 (en) 2004-08-10 2010-09-20 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Method for obtaining middle-distillate product and low molecular weight olefins from hydrocarbon raw material and device for its implementation
CA2804060C (en) * 2004-09-03 2015-08-25 Watlow Electric Manufacturing Company Power control system
JP2006114283A (en) * 2004-10-13 2006-04-27 Canon Inc Heating device, control method of heating device, and image forming device
US7398823B2 (en) 2005-01-10 2008-07-15 Conocophillips Company Selective electromagnetic production tool
EP1874897A1 (en) 2005-04-11 2008-01-09 Shell Internationale Research Maatschappij B.V. Method and catalyst for producing a crude product having a reduced mcr content
US7426959B2 (en) 2005-04-21 2008-09-23 Shell Oil Company Systems and methods for producing oil and/or gas
US8224165B2 (en) 2005-04-22 2012-07-17 Shell Oil Company Temperature limited heater utilizing non-ferromagnetic conductor
AU2006239999B2 (en) * 2005-04-22 2010-06-17 Shell Internationale Research Maatschappij B.V. In situ conversion process systems utilizing wellbores in at least two regions of a formation
US7600585B2 (en) 2005-05-19 2009-10-13 Schlumberger Technology Corporation Coiled tubing drilling rig
US20070044957A1 (en) 2005-05-27 2007-03-01 Oil Sands Underground Mining, Inc. Method for underground recovery of hydrocarbons
US7849934B2 (en) 2005-06-07 2010-12-14 Baker Hughes Incorporated Method and apparatus for collecting drill bit performance data
WO2007002111A1 (en) 2005-06-20 2007-01-04 Ksn Energies, Llc Method and apparatus for in-situ radiofrequency assisted gravity drainage of oil (ragd)
US7303007B2 (en) 2005-10-07 2007-12-04 Weatherford Canada Partnership Method and apparatus for transmitting sensor response data and power through a mud motor
EP1941003B1 (en) 2005-10-24 2011-02-23 Shell Internationale Research Maatschappij B.V. Methods of filtering a liquid stream produced from an in situ heat treatment process
US7124584B1 (en) 2005-10-31 2006-10-24 General Electric Company System and method for heat recovery from geothermal source of heat
JP4963930B2 (en) * 2005-11-18 2012-06-27 株式会社リコー Heating apparatus and image forming apparatus
US7743826B2 (en) 2006-01-20 2010-06-29 American Shale Oil, Llc In situ method and system for extraction of oil from shale
JP4298709B2 (en) 2006-01-26 2009-07-22 矢崎総業株式会社 Terminal processing method and terminal processing apparatus for shielded wire
RU2418158C2 (en) 2006-02-16 2011-05-10 ШЕВРОН Ю. Эс. Эй. ИНК. Extraction method of kerogenes from underground shale formation and explosion method of underground shale formation
US7654320B2 (en) 2006-04-07 2010-02-02 Occidental Energy Ventures Corp. System and method for processing a mixture of hydrocarbon and CO2 gas produced from a hydrocarbon reservoir
US8127865B2 (en) * 2006-04-21 2012-03-06 Osum Oil Sands Corp. Method of drilling from a shaft for underground recovery of hydrocarbons
US7533719B2 (en) 2006-04-21 2009-05-19 Shell Oil Company Wellhead with non-ferromagnetic materials
US7644993B2 (en) 2006-04-21 2010-01-12 Exxonmobil Upstream Research Company In situ co-development of oil shale with mineral recovery
US7503452B2 (en) 2006-06-08 2009-03-17 Hinson Michael D Return roller assembly
ITMI20061648A1 (en) 2006-08-29 2008-02-29 Star Progetti Tecnologie Applicate Spa HEAT IRRADIATION DEVICE THROUGH INFRARED
US8528636B2 (en) 2006-09-13 2013-09-10 Baker Hughes Incorporated Instantaneous measurement of drillstring orientation
CA2870889C (en) 2006-09-14 2016-11-01 Ernest E. Carter, Jr. Method of forming subterranean barriers with molten wax
US7622677B2 (en) 2006-09-26 2009-11-24 Accutru International Corporation Mineral insulated metal sheathed cable connector and method of forming the connector
US20080078552A1 (en) 2006-09-29 2008-04-03 Osum Oil Sands Corp. Method of heating hydrocarbons
US7665524B2 (en) 2006-09-29 2010-02-23 Ut-Battelle, Llc Liquid metal heat exchanger for efficient heating of soils and geologic formations
AU2007313388B2 (en) 2006-10-13 2013-01-31 Exxonmobil Upstream Research Company Heating an organic-rich rock formation in situ to produce products with improved properties
WO2008048456A2 (en) 2006-10-13 2008-04-24 Exxonmobil Upstream Research Company Optimized well spacing for in situ shale oil development
CA2663650A1 (en) 2006-10-13 2008-04-24 Exxonmobil Upstream Research Company Improved method of developing a subsurface freeze zone using formation fractures
US7405358B2 (en) 2006-10-17 2008-07-29 Quick Connectors, Inc Splice for down hole electrical submersible pump cable
GB2455947B (en) 2006-10-20 2011-05-11 Shell Int Research Heating hydrocarbon containing formations in a checkerboard pattern staged process
US7823655B2 (en) 2007-09-21 2010-11-02 Canrig Drilling Technology Ltd. Directional drilling control
US20100018248A1 (en) * 2007-01-19 2010-01-28 Eleanor R Fieler Controlled Freeze Zone Tower
US7730936B2 (en) 2007-02-07 2010-06-08 Schlumberger Technology Corporation Active cable for wellbore heating and distributed temperature sensing
GB2460980B (en) * 2007-04-20 2011-11-02 Shell Int Research Controlling and assessing pressure conditions during treatment of tar sands formations
BRPI0810752A2 (en) 2007-05-15 2014-10-21 Exxonmobil Upstream Res Co METHODS FOR IN SITU HEATING OF A RICH ROCK FORMATION IN ORGANIC COMPOUND, IN SITU HEATING OF A TARGETED XISTO TRAINING AND TO PRODUCE A FLUID OF HYDROCARBON, SQUARE FOR A RACHOSETUS ORGANIC BUILDING , AND FIELD TO PRODUCE A HYDROCARBON FLUID FROM A TRAINING RICH IN A TARGET ORGANIC COMPOUND.
CA2687387C (en) 2007-05-31 2012-08-28 Ernest. E. Carter, Jr. Method for construction of subterranean barriers
CN101796156B (en) 2007-07-19 2014-06-25 国际壳牌研究有限公司 Methods for producing oil and/or gas
US8146661B2 (en) 2007-10-19 2012-04-03 Shell Oil Company Cryogenic treatment of gas
CA2705198A1 (en) 2007-11-19 2009-05-28 Shell Internationale Research Maatschappij B.V. Systems and methods for producing oil and/or gas
US20090139716A1 (en) 2007-12-03 2009-06-04 Osum Oil Sands Corp. Method of recovering bitumen from a tunnel or shaft with heating elements and recovery wells
US7888933B2 (en) 2008-02-15 2011-02-15 Schlumberger Technology Corporation Method for estimating formation hydrocarbon saturation using nuclear magnetic resonance measurements
US20090207041A1 (en) 2008-02-19 2009-08-20 Baker Hughes Incorporated Downhole measurement while drilling system and method
WO2009129143A1 (en) 2008-04-18 2009-10-22 Shell Oil Company Systems, methods, and processes utilized for treating hydrocarbon containing subsurface formations
US8525033B2 (en) 2008-08-15 2013-09-03 3M Innovative Properties Company Stranded composite cable and method of making and using
WO2010045115A2 (en) 2008-10-13 2010-04-22 Shell Oil Company Treating subsurface hydrocarbon containing formations and the systems, methods, and processes utilized
CA2758192A1 (en) 2009-04-10 2010-10-14 Shell Internationale Research Maatschappij B.V. Treatment methodologies for subsurface hydrocarbon containing formations
WO2010132704A2 (en) 2009-05-15 2010-11-18 American Shale Oil, Llc In situ method and system for extraction of oil from shale
US8816203B2 (en) 2009-10-09 2014-08-26 Shell Oil Company Compacted coupling joint for coupling insulated conductors
US8502120B2 (en) 2010-04-09 2013-08-06 Shell Oil Company Insulating blocks and methods for installation in insulated conductor heaters

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011127262A1 (en) * 2010-04-09 2011-10-13 Shell Oil Company Low temperature inductive heating of subsurface formations

Also Published As

Publication number Publication date
AU2008312713A1 (en) 2009-04-23
US8113272B2 (en) 2012-02-14
CA2698564C (en) 2014-08-12
WO2009052054A1 (en) 2009-04-23
RU2010119952A (en) 2011-11-27
CA2700735C (en) 2017-05-09
CA2700998C (en) 2014-09-02
MA31852B1 (en) 2010-11-01
RU2477368C2 (en) 2013-03-10
EP2198122A1 (en) 2010-06-23
RU2465624C2 (en) 2012-10-27
US20090194287A1 (en) 2009-08-06
US8276661B2 (en) 2012-10-02
GB2464906B (en) 2013-02-20
IL204535A0 (en) 2010-11-30
CN101827999A (en) 2010-09-08
US20090200025A1 (en) 2009-08-13
US20090194286A1 (en) 2009-08-06
US20090200023A1 (en) 2009-08-13
GB2465911A (en) 2010-06-09
US8240774B2 (en) 2012-08-14
GB201004435D0 (en) 2010-05-05
EP2201819A4 (en) 2017-03-29
GB2467655B (en) 2012-05-16
EP2201433A1 (en) 2010-06-30
US20090200290A1 (en) 2009-08-13
RU2477786C2 (en) 2013-03-20
US8162059B2 (en) 2012-04-24
US8272455B2 (en) 2012-09-25
US20090200031A1 (en) 2009-08-13
JP2011501003A (en) 2011-01-06
IL204534A0 (en) 2010-11-30
US20090194524A1 (en) 2009-08-06
US20090194282A1 (en) 2009-08-06
EP2198118A1 (en) 2010-06-23
GB201004134D0 (en) 2010-04-28
WO2009052045A1 (en) 2009-04-23
IL204535A (en) 2014-11-30
US7866386B2 (en) 2011-01-11
MA31851B1 (en) 2010-11-01
RU2010119954A (en) 2011-11-27
CA2698564A1 (en) 2009-04-23
MA31859B1 (en) 2010-11-01
RU2487236C2 (en) 2013-07-10
US8146669B2 (en) 2012-04-03
US8196658B2 (en) 2012-06-12
CA2700998A1 (en) 2009-04-23
JP2011501300A (en) 2011-01-06
US20090200022A1 (en) 2009-08-13
JP5379805B2 (en) 2013-12-25
WO2009052047A1 (en) 2009-04-23
US20090189617A1 (en) 2009-07-30
RU2010119955A (en) 2011-11-27
CA2700732A1 (en) 2009-04-23
US8011451B2 (en) 2011-09-06
RU2010119956A (en) 2011-11-27
ZA201001711B (en) 2013-08-28
WO2009052043A1 (en) 2009-04-23
US8536497B2 (en) 2013-09-17
EP2201433A4 (en) 2013-12-04
RU2010119951A (en) 2011-11-27
RU2510601C2 (en) 2014-03-27
WO2009052044A1 (en) 2009-04-23
JP5551600B2 (en) 2014-07-16
GB201003951D0 (en) 2010-04-21
IL204374A (en) 2014-03-31
MA31856B1 (en) 2010-11-01
RU2496067C2 (en) 2013-10-20
US20090194329A1 (en) 2009-08-06
AU2008312713B2 (en) 2012-06-14
WO2009052042A1 (en) 2009-04-23
KR20100087717A (en) 2010-08-05
JP5379804B2 (en) 2013-12-25
CA2700737A1 (en) 2009-04-23
CA2701166C (en) 2017-09-05
JP2011501863A (en) 2011-01-13
GB2464906A (en) 2010-05-05
MA31853B1 (en) 2010-11-01
CA2701166A1 (en) 2009-04-23
CN101827999B (en) 2014-09-17
US8146661B2 (en) 2012-04-03
US20090200854A1 (en) 2009-08-13
GB2467655A (en) 2010-08-11
IL204375A (en) 2015-06-30
CA2701169A1 (en) 2009-04-23
IL204534A (en) 2014-03-31
US20090194269A1 (en) 2009-08-06
JP2011501004A (en) 2011-01-06
JP5534345B2 (en) 2014-06-25
RU2010119957A (en) 2011-11-27
EP2201819A1 (en) 2010-06-30
US20090194333A1 (en) 2009-08-06
WO2009052041A1 (en) 2009-04-23
US7866388B2 (en) 2011-01-11

Similar Documents

Publication Publication Date Title
CA2700735C (en) Induction heaters used to heat subsurface formations
AU2008242796B2 (en) Electrically isolating insulated conductor heater
EP1871978B1 (en) Insulated conductor temperature limited heater for subsurface heating coupled in a three-phase wye configuration
US20110247807A1 (en) Electrodes for electrical current flow heating of subsurface formations with tapered copper thickness
US20120085535A1 (en) Methods of heating a subsurface formation using electrically conductive particles
CA2850758A1 (en) Forming a tubular around insulated conductors and/or tubulars
EP2791460A1 (en) Forming insulated conductors using a final reduction step after heat treating
WO2011127262A1 (en) Low temperature inductive heating of subsurface formations

Legal Events

Date Code Title Description
EEER Examination request

Effective date: 20131004