CA2745704C - Reducing volatile phosphorous in hydrocarbon based fracturing fluids - Google Patents

Reducing volatile phosphorous in hydrocarbon based fracturing fluids Download PDF

Info

Publication number
CA2745704C
CA2745704C CA2745704A CA2745704A CA2745704C CA 2745704 C CA2745704 C CA 2745704C CA 2745704 A CA2745704 A CA 2745704A CA 2745704 A CA2745704 A CA 2745704A CA 2745704 C CA2745704 C CA 2745704C
Authority
CA
Canada
Prior art keywords
fluid
breaker
hydrocarbon
delayed
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA2745704A
Other languages
French (fr)
Other versions
CA2745704A1 (en
Inventor
Derek Brown
Samuel Danican
Gregory Kubala
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schlumberger Canada Ltd
Original Assignee
Schlumberger Canada Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schlumberger Canada Ltd filed Critical Schlumberger Canada Ltd
Publication of CA2745704A1 publication Critical patent/CA2745704A1/en
Application granted granted Critical
Publication of CA2745704C publication Critical patent/CA2745704C/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/62Compositions for forming crevices or fractures
    • C09K8/66Compositions based on water or polar solvents
    • C09K8/68Compositions based on water or polar solvents containing organic compounds
    • C09K8/685Compositions based on water or polar solvents containing organic compounds containing cross-linking agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2208/00Aspects relating to compositions of drilling or well treatment fluids
    • C09K2208/26Gel breakers other than bacteria or enzymes

Abstract

A method is provided for reducing the volatile phosphorous content of gelled oil fracturing fluid comprising the steps of: a) providing a hydrocarbon liquid comprising a hydrocarbon and at least one phosphate ester gelling agent, b) providing a particulate delayed breaker to said hydrocarbon liquid to break the phosphate gelling ester, wherein the delayed beaker comprises an at least partially sintered magnesium oxide, c) adding said breaker to said liquid, d) allowing said breaker to destabilize a metal crosslink in said gel, reducing the volatile phosphorous present in the fluid by at least about 25%.

Description

REDUCING VOLATILE PHOSPHOROUS IN HYDROCARBON BASED
FRACTURING FLUIDS

This application is a divisional of Canadian Patent Application No. 2,593,604, filed July 13, 2007.

It will be understood that any reference to "the present invention" or the like may encompass the subject-matter of the divisional and/or its parent.

Field Of The Invention [0001] The present invention relates to the art of treating subterranean formations using gelled hydrocarbons, and more particularly, to a method of using delayed breaker chemicals in gelled hydrocarbon fluids to reduce the presence of volatile phosphorous in downstream processing plants and products.

Background Of The Invention [0002] Gelled liquid hydrocarbon fluids have been utilized in a variety of treatments for subterranean formations penetrated by well bores, including stimulation activities such as fracturing and/or gravel packing. Such hydrocarbon fluids must have a sufficiently high viscosity to generate a fracture of sufficient dimensions and also to carry the proppant particles into the fracture.
Hydrocarbon fluids are frequently gelled by use of phosphate containing gelling agents, particularly phosphate acid ester gelling agents. These agents have been popular because of their effectiveness and comparatively low cost.
[0003] One aspect of well treatment processes is the "cleanup", e.g., returning and removing used fluid from the well after the treatment has been completed.
Returned fluids are also useful to carry and remove waste materials, excess proppant and the like from the well. Techniques for promoting cleanup often involve reducing the viscosity of the treatment fluid as much as practical so that it will more readily flow toward the wellbore. This is called "breaking" the fluid. Breaking agents, or "breakers" are specific to the type of treatment fluid being used. Gel breakers are commonly used for conventional polymer based fluids used in stimulation and other activities since leaving such a high viscosity fluid in the formation would result in a reduction of the formation permeability and, consequently, a decrease in the well production. The most widely used breakers are oxidizers and enzymes. The breakers can be dissolved or suspended in the liquid (aqueous, non-aqueous or emulsion) phase of the treating fluid and exposed to the polymer throughout the treatment (added "internally"), or exposed to the fluid at some time after the treatment (added - la -Attorney Docket Number 56.0980 Inventors Derek Brown et al.
"externally"). Breaking can occur in the wellbore, gravel pack, filter cake, the rock matrix, in a fracture, or in another added or created environment. See, for example, U.S. Patent 4,741,401 (Walles et al.), assigned to Schlumberger Dowell, for a detailed discussion of breaking activities.

100041 Not all undesirable products are removed with the clean up. Some can remain in the well and be dissolved in or carried by the oil produced by the well. In recent years, problems in downstream processing of crude oil have been encountered, such as plugging of the refinery towers which process the hydrocarbons. These plugging problems can cause build up in the refinery towers and their trays, and removal of such plugging requires shut-down of the affected towers. Upon investigation, the plugging materials have frequently been found to be high phosphorous compounds.
Such compounds have been identified as being associated with the aforementioned phosphoric acid ester gelling agents. The phosphoric acid gelling agents are believed to contain volatile phosphorous compounds and/or their precursors which release volatile phosphorous compounds into the wellbore fluids and produced oil. The volatile phosphorous material present in the crude oil products delivered to refineries.
The phosphorous condenses onto distillation tower trays during refining. This condensation builds up and results in the plugging of those trays. Excess plugging can lead to a shut down of the towers. Further, volatile phosphorous compounds can carry over and contaminate the products produced by the towers.

(00051 Because shut-down of plugged refinery towers causes expense in lost time and cleaning procedures, and because contamination of refined products is highly.
undesirable, it would be advantageous to remove more of the phosphorous compounds with the return treatment fluid, leaving less phosphorous present in the crude oil sent to the refinery.

100061 It has now been found that the addition of certain delayed breaker compounds to a gelled oil crosslinking with phosphorous will break the fluid and that, surprisingly, using certain amounts of such breaking compound will also cause the phosphorous to change from a volatile to a non-volatile form, reducing the amount of free phosphorous carried by the reflow liquid and the well products which can then be responsible for plugging refinery towers. Breakers may be delayed by various means including the use of surface treatments and the like.

Attorney Docket Number 56.0980 Inventors Derek Brown et al.
Summary Of The Invention 100071 The invention provides a method for treating a subterranean formation penetrated by a well bore comprising the steps of.

a) forming a phosphate ester gelled hydrocarbon fracturing fluid comprising a liquid hydrocarbon, and a an alkyl phosphate gelling agent;

b) adding said fluid a delayed gel breaker, c) injecting said fluid down a well, and d) allowing said breaker to break the fracturing fluid gel after an initial delay period and destabilize a metal crosslink in said gel, reducing the volatile phosphorous present in the fluid by at least about 25%.

(00081 In one embodiment of the method, the delayed breaker includes a particulate compound selected from the group consisting of alkali metal oxides, alkali metal hydroxides, alkaline earth metal oxides, alkaline earth metal hydroxides, alkali metal carbonates and alkaline earth metal carbonates 100091 In one embodiment, the method includes the delayed breaker is formed by subjecting a particulate breaker compound to at least one treatment selected from the group consisting of sintering, hardening, encapsulation, or complexing of the particulate breaker to render it less soluble.

100101 In another embodiment, the delayed breaker changes the pH of the hydrocarbon fluid.

100111 In yet another embodiment, the breaker raises the pH of the hydrocarbon fluid.
100121 In one embodiment, the delayed breaker is a magnesium oxide, which has been treated to operate as a delayed breaker, e.g., by being sintered.

(00131 The invention also provides a gelled hydrocarbon fracturing fluid for use in a wellbore comprising a hydrocarbon liquid, a gelled alkyl phosphate gelling agent, and a delayed breaker, wherein the gelled hydrocarbon fluid does not cause or allow undesirable levels of volatile phosphorous compounds to be present in the crude oil, but allows for the removal of such compounds with the return treatment fluid.

[00141 In one embodiment of the fracturing fluid, the delayed breaker is delayed by subjecting the breaker compound to a treatment selected from sintering, burning, hardening or complexing treatments.

[0015] In another embodiment of the gelled hydrocarbon fracturing fluid, the delayed breaker comprises a compound is selected from the group consisting of alkali oxides, hydroxides and carbonates, and alkaline earth metal oxides, hydroxides and carbonates.

[0016] In another embodiment of the method of the invention, the breaker comprises an at least partially sintered magnesium oxide breaker.

According to one aspect of the present invention, there is provided a method for treating a subterranean formation penetrated by a well bore comprising: a) forming a phosphate ester gelled hydrocarbon fracturing fluid comprising a liquid hydrocarbon, an alkyl phosphate gelling agent, and a surfactant; b) adding to said fluid a delayed gel breaker, wherein the delayed breaker is formed by subjecting a particulate breaker compound to at least one treatment of sintering, burning, hardening, or complexing, c) injecting said fluid down a well, and d) allowing said breaker to break the fracturing fluid gel after an initial delay period and destabilize a metal crosslink in said gel, reducing the volatile phosphorous present in the fluid by at least about 25%.

According to another aspect of the present invention, there is provided a method for reducing the volatile phosphorous content of gelled oil fracturing fluid comprising the steps of: a) providing a hydrocarbon liquid comprising a hydrocarbon and at least one phosphate ester gelling agent, b) providing a particulate delayed breaker to said hydrocarbon liquid to break the phosphate gelling ester, wherein the delayed beaker comprises an at least partially sintered magnesium oxide, c) adding said breaker to said liquid, d) allowing said breaker to destabilize a metal crosslink in said gel, reducing the volatile phosphorous present in the fluid by at least about 25%.
According to still another aspect of the present invention, there is provided a method for treating a subterranean formation penetrated by a well bore comprising: a) forming a phosphate ester gelled hydrocarbon fracturing fluid comprising a liquid hydrocarbon and an alkyl phosphate gelling agent; b) adding to said fluid a delayed gel breaker, wherein the delayed breaker comprises magnesium oxide which is at least partially sintered, c) injecting said fluid down a well, and d) allowing said breaker to break the fracturing fluid gel after an initial delay period and destabilize a metal crosslink in said gel, reducing the volatile phosphorous present in the fluid by at least about 25%.

4a Brief Description Of The Drawings loot-71 Figure 1 shows the viscosity of a fluid at 225 F plotted over time with no additives and with the delayed magnesium breaker of the invention added in two differing amts.

(00181 Figure 2 shows the concentration of magnesium oxide breaker plotted against the concentration of volatile phosphorous.

Detailed Description Of The Invention (00(91 The gelled hydrocarbon fluid comprises any known hydrocarbon liquid such as crude oil, refined or partially refined oil, fuel oil, liquefied gas, alkanes, alpha-olefins, internal olefins,. diesel oil, condensates and combinations of hydrocarbons.
(00201 The gelled hydrocarbon fluid also includes alkyl phosphate ester gelling agents. Such gelling agents are typically formed from a. mixture of primary mono-hydric alcohols having carbon chains of from about 3 to about 18 carbon atoms.
The alcohols are reacted with phosphates such as phosphorous pentoxide and/or trimethyl phosphate to produce mono-alkyl, di-alkyl, and/or tri-alkyl esters.

100211 The fluid may also contain gel stabilizers, including but not limited to a source of basic aluminum such as sodium aluininate, aluminum alkoxides or aluminum acetate to assist in formation of the gel structure.

100221 The gel also typically contains proppants. Any desired proppant can be used in the fluid, including plain sand, various other types of silica, resin coated particles 4b Attorney Docket Number 56.0980 Inventors Derek Brown et al.
(RCPs), microcapsules, bauxite and other granules. The selection of a proppant involves many compromises imposed by economical and practical considerations.
Criteria for selecting the proppant type, size, and concentration is based on the needed dimensionless conductivity, and can be selected by a skilled artisan.

100231 The fluid may also contain other enhancers or additives. Optional additives include pH control agents, p 100241 For a delayed release of the additive, the breaker may be subjected to a surface treatment such as complexing, hardening or sintering. The breaker may also be encapsulated; if enclosed or encapsulated, the enclosure or capsule may be formed of any suitable coating applied by a process that provides a substantially uniform coating or encapsulation of individual particulate materials between 100 mesh to 5 mesh. By varying the coating thickness, the release characteristics can be varied to a large extent. A shorter release time will be obtained by a thinner coating.

100251 Methods of use of the fluids of the invention include use in a wellbore for fracturing operations, where the gelled hydrocarbon suspension is pumped in from the mixing tanks and into the well bore at a desired fracturing pressure. The fluid is pumped into the formation fractures, and once the fracturing operation is completed, the pressure is released. The hydrocarbon liquid degrades, due to the break, and volatile phosphorous created by the gelling agent is then pumped out with the fracture cuttings and with the crude following the fluid expulsion.

100261 The invention will be further described in the following non-limiting examples.

Example 100271 A gelled oil fluid system comprising kerosene, 10 apt phosphate alcohol aluminum gelling agent and 4 gpt 17.5wt% potassium hydroxide granules was prepared with different concentrations of magnesium oxide coming from 2 different types of samples (66.8 wt% magnesium oxide; partially burnt/sintered MgO) and magnesium oxide (100 wt% MgO) from MI. The different fluids were conditioned at 225 F for 3 hours using Fann 50 viscometers before being sent to an analytical lab for distillation and volatile phosphorus content measurement.

100281 As Figure 1 reveals, the magnesium oxide is a good breaker for gelled oil fluids. At 225 F, the break occurs in a few minutes when magnesium oxide is added to the fluid at 13.4 ppt and 40.1 ppt. Figure 2 demonstrates that magnesium hydroxide not only breaks the gelled hydrocarbon but also significantly contributes to the reduction of the phosphorus content of the gelled oil volatile fraction obtained by distillation of the frac fluid between ambient and 250 C.

[0029] As shown by Figure 2, the volatile phosphorus content of the fluid described above dropped by more than 10 fold when 20 ppt of MgO from MI was used. The diamond shaped points do not contain the MgO in Figure 2, and the square shaped points do contain the MgO.

[0030] The present invention may be embodied in other specific forms. The described embodiments are to be considered in all respects only as illustrative and not restrictive. The scope of the invention is, therefore, indicated by the appended claims rather than by the foregoing description. All changes which come within the meaning and range of equivalency of the claims are to be embraced within their scope. Reference throughout this specification to features, advantages, or similar language does not imply that all of the features and advantages that may be realized with the present invention should be or are in any single embodiment of the invention.
Rather, language referring to the features and advantages is understood to mean that a specific feature, advantage, or characteristic described in connection with an embodiment is included in at least one embodiment of the present invention.

Claims (11)

1. A method for reducing the volatile phosphorous content of gelled oil fracturing fluid comprising the steps of:

a) providing a hydrocarbon liquid comprising a hydrocarbon and at least one phosphate ester gelling agent, b) providing a particulate delayed breaker to said hydrocarbon liquid to break the phosphate gelling ester, wherein the delayed beaker comprises an at least partially sintered magnesium oxide, c) adding said breaker to said liquid, d) allowing said breaker to destabilize a metal crosslink in said gel, reducing the volatile phosphorous present in the fluid by at least about 25%.
2. The method of claim 1 further comprising injecting said liquid down a well in a fracturing treatment, wherein the metal crosslink is destabilized downhole after an initial delay period.
3. The method of claim 1 or 2, comprising from about 10 parts of the partially sintered magnesium oxide per thousand parts by weight of the fluid to about 80 parts of the partially sintered magnesium oxide per thousand parts by weight of the fluid.
4. A method for treating a subterranean formation penetrated by a well bore comprising:

a) forming a phosphate ester gelled hydrocarbon fracturing fluid comprising a liquid hydrocarbon and an alkyl phosphate gelling agent;

b) adding to said fluid a delayed gel breaker, wherein the delayed breaker comprises magnesium oxide which is at least partially sintered, c) injecting said fluid down a well, and d) allowing said breaker to break the fracturing fluid gel after an initial delay period and destabilize a metal crosslink in said gel, reducing the volatile phosphorous present in the fluid by at least about 25%.
5. The method of claim 4 comprising from about 10 parts of the delayed breaker per thousand parts by weight of the fluid to about 80 parts of the delayed breaker per thousand parts by weight of the fluid.
6. The method of claim 4 or 5, wherein the amount of volatile phosphorous in the hydrocarbon fracturing fluid is reduced by at least 50%.
7. The method of claim 4 or 5, wherein the amount of volatile phosphorous in the hydrocarbon fracturing fluid is reduced by at least 90%.
8. The method according to any one of claims 4 to 7, wherein said initial delay period is from about 2 minutes to about 20 minutes.
9. The method according to any one of claims 4 to 8, wherein the breaker causes a change in the pH of the fracturing fluid over a period of time and concurrently destabilizes a metal crosslink in said phosphate ester.
10. The method according to any one of claims 4 to 9, wherein said hydrocarbon liquid is crude oil, refined oil, diesel oil, fuel oil, condensates, alkanes, liquid petroleum gas, or a mixture thereof.
11. The method according to any one of claims 4 to 10, wherein the amount of volatile phosphorous in the hydrocarbon fracturing fluid after breaking is complete is reduced by at least 25%.
CA2745704A 2007-05-29 2007-07-13 Reducing volatile phosphorous in hydrocarbon based fracturing fluids Expired - Fee Related CA2745704C (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11/754,427 US7584793B2 (en) 2007-05-29 2007-05-29 Method for treating subterranean formation
US11/754,427 2007-05-29
CA2593604A CA2593604C (en) 2007-05-29 2007-07-13 Reducing volatile phosphorous in hydrocarbon based fracturing fluids

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CA2593604A Division CA2593604C (en) 2007-05-29 2007-07-13 Reducing volatile phosphorous in hydrocarbon based fracturing fluids

Publications (2)

Publication Number Publication Date
CA2745704A1 CA2745704A1 (en) 2008-11-29
CA2745704C true CA2745704C (en) 2012-12-04

Family

ID=40074410

Family Applications (2)

Application Number Title Priority Date Filing Date
CA2745704A Expired - Fee Related CA2745704C (en) 2007-05-29 2007-07-13 Reducing volatile phosphorous in hydrocarbon based fracturing fluids
CA2593604A Expired - Fee Related CA2593604C (en) 2007-05-29 2007-07-13 Reducing volatile phosphorous in hydrocarbon based fracturing fluids

Family Applications After (1)

Application Number Title Priority Date Filing Date
CA2593604A Expired - Fee Related CA2593604C (en) 2007-05-29 2007-07-13 Reducing volatile phosphorous in hydrocarbon based fracturing fluids

Country Status (2)

Country Link
US (1) US7584793B2 (en)
CA (2) CA2745704C (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8728990B2 (en) 2009-12-04 2014-05-20 Elementis Specialties, Inc. Phosphate ester oil gellant
WO2011163529A1 (en) 2010-06-23 2011-12-29 Ecopuro, Llc Hydraulic fracturing
US10822935B2 (en) 2013-03-04 2020-11-03 Baker Hughes, A Ge Company, Llc Method of treating a subterranean formation with natural gas
CA2901405C (en) * 2013-03-04 2018-12-04 Baker Hughes Incorporated Method of fracturing with liquefied natural gas

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4877894A (en) 1988-01-11 1989-10-31 Nalco Chemical Company Hydrocarbon geller and method for making the same
US5846915A (en) * 1995-10-26 1998-12-08 Clearwater, Inc. Delayed breaking of gelled hydrocarbon fracturing fluid
US5948735A (en) 1997-04-14 1999-09-07 Nalco/Exxon Energy Chemicals, L.P. Use of breaker chemicals in gelled hydrocarbons
CA2222087C (en) 1997-11-25 2003-09-02 Canadian Fracmaster Ltd. Encapsulated breaker for oil gel system
US6187720B1 (en) * 1999-11-01 2001-02-13 David B. Acker Delayed release breakers in gelled hydrocarbons
US7066262B2 (en) 2004-08-18 2006-06-27 Halliburton Energy Services, Inc. Gelled liquid hydrocarbon treatment fluids having reduced phosphorus volatility and their associated methods of use and preparation

Also Published As

Publication number Publication date
CA2593604A1 (en) 2008-11-29
US20080296022A1 (en) 2008-12-04
CA2745704A1 (en) 2008-11-29
US7584793B2 (en) 2009-09-08
CA2593604C (en) 2011-09-27

Similar Documents

Publication Publication Date Title
US8507412B2 (en) Methods for using non-volatile phosphorus hydrocarbon gelling agents
CA2514140C (en) Gelled liquid hydrocarbon treatment fluids having reduced phosphorus volatility and their associated methods of use and preparation
US5439059A (en) Aqueous gel fluids and methods of treating subterranean formations
AU2011324985B2 (en) Additives to suppress silica scale build-up and methods of use thereof
US6887834B2 (en) Methods and compositions for consolidating proppant in subterranean fractures
CA2701650C (en) Drilling and fracturing fluid
US7968501B2 (en) Crosslinker suspension compositions and uses thereof
US9803130B2 (en) Methods of activating enzyme breakers
US20150141302A1 (en) Composition Containing An Emulsified Chelating Agent And Process To Treat A Subterreanean Formation
CN1969108A (en) System stabilizers and performance enhancers for aqueous fluids gelled with viscoelastic surfactants
US6706769B2 (en) Aminocarboxylic acid breaker compositions for fracturing fluids
US20090062153A1 (en) Enzyme enhanced oil/gas recovery (EEOR/EEGR) using non-gel hydraulic fracturing in hydrocarbon producing wells
CA2745704C (en) Reducing volatile phosphorous in hydrocarbon based fracturing fluids
US11820934B2 (en) Microsphere compositions and methods for production in oil-based drilling fluids
AU2017282061A1 (en) Shale treatment

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed

Effective date: 20180713