CA2805536C - Communication between sensor units and a recorder - Google Patents

Communication between sensor units and a recorder Download PDF

Info

Publication number
CA2805536C
CA2805536C CA2805536A CA2805536A CA2805536C CA 2805536 C CA2805536 C CA 2805536C CA 2805536 A CA2805536 A CA 2805536A CA 2805536 A CA2805536 A CA 2805536A CA 2805536 C CA2805536 C CA 2805536C
Authority
CA
Canada
Prior art keywords
seismic
recorder
sensor unit
seismic data
communication path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA2805536A
Other languages
French (fr)
Other versions
CA2805536A1 (en
Inventor
Thorleiv Knutsen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Westerngeco Canada Ltd
Original Assignee
Westerngeco Canada Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Westerngeco Canada Ltd filed Critical Westerngeco Canada Ltd
Publication of CA2805536A1 publication Critical patent/CA2805536A1/en
Application granted granted Critical
Publication of CA2805536C publication Critical patent/CA2805536C/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/22Transmitting seismic signals to recording or processing apparatus

Abstract

A seismic acquisition system. In one implementation, the seismic acquisition system includes a recorder having a memory having a communication protocol application stored therein and one or more sensor units in communication with the recorder through a communications network. Each sensor unit may include a memory having the communication protocol application stored therein.

Description

COMMUNICATION BETWEEN SENSOR UNITS AND A RECORDER
This is a divisional of Canadian Patent Application Serial No. 2,580,200 filed on March 1, 2007.
BACKGROUND
Field of the Invention [0001] Implementations of various technologies described herein generally relate to seismic acquisition.
Description of the Related Art
[0002] The following descriptions and examples are not admitted to be prior art by virtue of their inclusion within this section.
[0003] A seismic survey typically includes an acquisition system consisting of a plurality of seismic sources that exert energy on the earth, a recorder and a plurality of sensor units configured to record signals containing the reflected energy exerted by the seismic sources, which may commonly be referred to as seismic data. Typically, the seismic data may be forwarded to the recorder through a set of transport network nodes that run applications configured to gather the seismic data from the sensor units by a polling technique and push the seismic data to the recorder.
SUMMARY
[0004] Described herein are implementations of various technologies for a seismic acquisition system. In one implementation, the seismic acquisition system includes a recorder having a memory having a communication protocol application stored therein and one or more sensor units in communication with the recorder through a communications network. Each sensor unit may include a memory having the communication protocol application stored therein.
[0005] Described herein are also implementations of various technologies for sending seismic data to a recorder by a sensor unit. In one implementation, the method includes sampling seismic data from a sensor of the sensor unit, sending the seismic data to the recorder using a communication protocol and receiving a signal acknowledging receipt of the seismic data by the recorder.
[0006] Described herein are also implementations of various technologies for a sensor unit for a seismic acquisition system. In one implementation, the sensor unit includes a sensor, a processor and a memory comprising program instructions executable by the processor to sample seismic data from the sensor and send the seismic data using a communication protocol.
[0007] The claimed subject matter is not limited to implementations that solve any or all of the noted disadvantages. Further, the summary section is provided to introduce a selection of concepts in a simplified form that are further described below in the detailed description section. The summary section is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter.
[0007a] According to one aspect of the present invention, there is provided a seismic acquisition system, comprising: a seismic recorder for recording seismic data;
and a plurality of sensor units in communication with the seismic recorder through a communications network, wherein at least one of the sensor units is configured to: send the seismic data to the seismic recorder via a first communication path; receive an acknowledgement signal from the seismic recorder to indicate that the seismic recorder received the seismic data; and send the seismic data again to the seismic recorder via a second communication path if an acknowledgment signal is not received by the at least one sensor unit, wherein the first communication path is different from the second communication path.
[0007b] According to another aspect of the present invention, there is provided a sensor unit for a seismic acquisition system, comprising: a sensor; a processor; and a memory comprising program instructions executable by the processor to: send seismic data via a first communication path; receive an acknowledgement signal from the seismic recorder to indicate that the seismic recorder received the seismic data; and send the seismic data again via a second communication path if an acknowledgment signal is not received by the sensor unit, wherein the first communication path is different from the second communication path.

BRIEF DECRIPTION OF THE DRAWINGS
[0008] Figure 1 illustrates a seismic acquisition system in accordance with implementations of various technologies described herein.
[0009] Figure 2 illustrates a schematic diagram of a sensor unit in accordance with implementations of various technologies described herein.
[0010] Figure 3 illustrates a schematic diagram of a recorder in accordance with implementations of various technologies described herein.
[0011] Figure 4 illustrates a flow diagram of a method for sending seismic data in accordance with various technologies described herein.
DETAILED DESCRIPTION
[0012] Figure 1 illustrates a seismic acquisition system 100 in accordance with implementations of various technologies described herein. In one implementation, the seismic acquisition system 100 is used on land. However, it should be understood that in some implementations, the seismic acquisition system 100 may be used in other settings, such as a marine setting. The seismic acquisition system 100 may include sensor units 110, 120 and 130 in communication with a communications network 140. Although only three 2a sensor units are shown, it should be understood that, in some implementations, more or less than three sensor units may be used in the seismic acquisition system 100.
Each sensor unit will be described in more detail with reference to Figure 2.
[0013] The seismic acquisition system 100 further includes a recorder 150 in communication with the communications network 140. In this mariner, the sensor units may communicate with the recorder 150 through the communications network 140, which may be any type of communications network, including hardwired cables, wireless links, fiber optic, Ethernet network and the like. In one implementation, the communications network 140 provides each sensor unit with two or more communication paths to the recorder 150, which may be configured to receive seismic data and store them into records. The recorder 150 will be described in more detail in the paragraphs below with reference to Figure 3.
[0014] Figure 2 illustrates a schematic diagram of a sensor unit 200 in accordance with implementations of various technologies described herein. In one implementation, the sensor unit 200 may include a digital signal processor 210, a system memory 220, a system bus 230 that couples the digital signal processor 210 with the system memory 220. The system memory 220 may include a random access memory (RAM) 225 and a read-only memory (ROM) 228. The digital signal processor 210 may include a microprocessor. A
basic input/output system containing the basic routines that help to transfer information between = components within the computer, such as during startup, may be stored in the ROM 228.
[0015] The sensor unit 200 may further include a sensor 250, which is configured to detect seismic energy in the form of ground motion or a pressure wave in fluid and transform it to an electrical impulse. The sensor 250 may also be commonly referred to in the seismic acquisition industry as a receiver. In one implementation, the sensor 250 may be an accelerometer, which may be configured to measure the acceleration of a ship or aircraft, or to detect ground acceleration in boreholes or on the earth's surface produced by acoustic vibrations. Those skilled in the art will appreciate that various types of sensors may be practiced in implementations of various technologies described herein.
Further, although the sensor unit 200 is described as having one sensor, it should be understood that, in some implementations, the sensor unit 200 may have more than one sensor.
[0016] The sensor unit 200 may further include a storage device 240 for storing an operating system 245, a Transmission Control ProtocoUInternet Protocol (TCP/IP) protocol application 246, a seismic acquisition application 248 and other program modules executable by the digital signal processor 210. The operating system 245 may be configured to control the operation of the sensor unit 200. The operating system 245 may be Windows XP, Mac OS X, Unix-variants, like Linux and BSDO, and the like.
[0017] The TCP/IP protocol application 245 may be defined as a layered software architecture that allows the sensor units to communicate with the recorder 150 across the communications network 140. TCP/IP protocol may also be commonly known as the basic communication language or protocol of the Internet. As such, the sensor units may use the TCP/IP protocol application 245 to transfer seismic data to the recorder 150.
Although the above referenced implementations are described with reference to a TCP/IP
protocol, it should be understood that some implementations may use other types of communication protocols, such as connection-oriented end-to-end protocols, Open Systems Interconnection (OSI), asynchronous transfer mode (ATM) and the like.
[0018] The seismic acquisition application 248 may be configured to sample seismic data from the sensor 250 and send the seismic data to the recorder 150 using the TCP/IP protocol application 246. The manner in which seismic data are transferred between the sensor units and the recorder will be described in more detail in the following paragraphs with reference to Figure 4.
[0019] The storage device 240 may be connected to the digital signal processor 210 through the system bus 230 and a mass storage controller (not shown). The storage device 240 and its associated computer-readable media may be configured to provide non-volatile storage for the sensor unit 200. Those skilled in the art will appreciate that computer-readable media may refer to any available media that can be accessed by the sensor unit 200.
For example, computer-readable media may include computer storage media and communication media. -Computer storage media includes volatile and non-volatile, and removable and non-removable media implemented in any method or technology for storage of information such as computer-readable instructions, data structures, program modules or other data. Computer storage media further includes, but is not limited to, RAM, ROM, erasable programmable read-only memory (EPROM), electrically erasable programmable read-only memory (EEPROM), flash memory or other solid state memory technology, CD-ROM, digital versatile disks (DVD), or other optical storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to store the desired information and which can be accessed by the sensor unit 200.
[0020] The sensor unit 200 may connect to the communications network 140 through a network interface unit 260 connected to the system bus 230. It should be appreciated that the network interface unit 260 may also be used to connect to other types of networks and remote computer systems.
[0021] Figure 3 illustrates a schematic diagram of a recorder 300 in accordance With implementations of various technologies described herein. In one implementation, the recorder 300 may include a CPU 310, a system memory 320, a storage device 340, a system bus 330 that couples the CPU 310 with the system memory 320 and the storage device 340.
The CPU 310 may be configured to process various program modules stored inside the storage device 340, some of which will be discussed in more detail in the following paragraphs.
[0022] The system memory 320 may include a random access memory (RAM) 325 and a read-only memory (ROM) 328. A basic input/output system containing the basic routines that help to transfer information between components within the computer, such as during startup, may be stored in the ROM 328.
[0023] The storage device 340 may include an operating system 345, a TCP/IP protocol application 346, a receipt and acknowledgement application 348 and other program modules executable by the CPU 310. The operating system 345 may be configured to control the operation of the recorder 300. The operating system 345 may be Windows XP, Mac OS
X, Unix-variants, like Linux and BSDO, and the like. The TCP/IP protocol application 346 may enable the recorder 300 to communicate with the sensor unit 200 through the communications network 140. As mentioned above, it should be understood that in some implementations other communication protocols, such as ATM, OSI and the like, may be used to facilitate communications between the sensor unit 200 and the recorder 300. The receipt-and-acknowledgement application 348 may be configured to receive seismic data from the sensor unit 200 and send an acknowledgement signal back to the sensor unit 200 using the TCP/IP protocol application 346.
[0024] The storage device 340 and its associated computer-readable media may be configured to provide non-volatile storage for the recorder 300. Those skilled in the art will appreciate that computer-readable media may refer to any available media that can be accessed by the recorder 300. For example, computer-readable media may include computer storage media and communication media. Computer storage media includes volatile and non-volatile, and removable and non-removable media implemented in any method or technology for storage of information such as computer-readable instructions, data structures, program modules or other data. Computer storage media further includes, but is not limited to, RAM, ROM, erasable programmable read-only memory (EPROM), electrically erasable programmable read-only memory (EEPROM), flash memory or other solid state memory technology, CD-ROM, digital versatile disks (DVD), or other optical storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to store the desired information and which can be accessed by the recorder 300.
[0025] The recorder 300 may connect to the communications network 140 through a network interface unit 360 connected to the system bus 330. It should be appreciated that the network interface unit 360 may also be used to connect to other types of networks and remote computer systems.
[0026] Figure 4 illustrates a flow diagram of a method 400 for sending seismic data to a recorder in accordance with various technologies described herein. At step 410, a command for sending seismic data to an IP address is received by the sensor unit 200.
In one implementation, the IP address is the IP address of the recorder 300. In response to receiving the command from the recorder 300, the sensor unit 200 samples the seismic data and sends the seismic data through the communications network 140 using the TCP/IP
protocol application 246 to the recorder 300 (step 420). In one implementation, the sensor unit 200 performs step 420 without having to receive the request command from the recorder 300. In another implementation, the seismic data may be sent to the recorder 300 using another communication protocol, such as OSI and the like At step 430, an acknowledgement signal from the recorder 300 is received by the sensor unit 200. The sensor unit 200 may continue =
to sample and send seismic data to the recorder 300 until the seismic acquisition process is completed.
[0027] In one implementation, if no acknowledgement signal from the recorder is received, then the sensor unit 200 may resend the seismic data through a different path in the communications network 140. In this manner, the sensor unit 200 may simply resend a package of seismic data through a different path in the event that the package of seismic data is lost during the earlier transmission, without having to analyze whether the communication breakdown occurred between the sensor unit 200 and the communications network 140 or between the communications network 140 and the recorder 300.
[0028] Although the subject matter has been described in language specific to structural features and/or methodological acts, it is to be understood that the subject matter defined in the appended claims is not necessarily limited to the specific features or acts described above. Rather, the specific features and acts described above are disclosed as example forms of implementing the claims.

Claims (20)

CLAIMS:
1. A seismic acquisition system, comprising:
a seismic recorder for recording seismic data; and a plurality of sensor units in communication with the seismic recorder through a communications network, wherein at least one of the sensor units is configured to:
send the seismic data to the seismic recorder via a first communication path;
receive an acknowledgement signal from the seismic recorder to indicate that the seismic recorder received the seismic data;
and send the seismic data again to the seismic recorder via a second communication path if an acknowledgment signal is not received by the at least one sensor unit, wherein the first communication path is different from the second communication path.
2. The seismic acquisition system of claim 1, wherein the at least one of the sensor units comprises one or more sensors.
3. The seismic acquisition system of claim 2, wherein the sensors are accelerometers for measuring ground acceleration on the earth's surface produced by acoustic vibrations.
4. The seismic acquisition system of claim 2, wherein the at least one of the sensor units is further configured to sample the seismic data from the sensors.
5. The seismic acquisition system of claim 1, wherein the first communication path and the second communication path are part of a communications protocol.
6. The seismic acquisition system of claim 1, wherein the seismic recorder is configured to send the acknowledgement signal to the sensor units upon receipt of the seismic data from the sensor units.
7. The seismic acquisition system of claim 1, wherein the communications network is a wireless network.
8. The seismic acquisition system of claim 1, wherein the acknowledgement signal indicates that the seismic recorder received the seismic data.
9. The seismic acquisition system of claim 1, wherein the seismic data are sent again without analyzing the communications network.
10. A sensor unit for a seismic acquisition system, comprising:
a sensor;
a processor; and a memory comprising program instructions executable by the processor to:
send seismic data via a first communication path;
receive an acknowledgement signal from the seismic recorder to indicate that the seismic recorder received the seismic data;
and send the seismic data again via a second communication path if an acknowledgment signal is not received by the sensor unit, wherein the first communication path is different from the second communication path.
11. The sensor unit of claim 10, wherein the memory further comprises program instructions executable by the processor to sample the seismic data from the sensor.
12. The sensor unit of claim 10, wherein the first communication path and the second communication path are part of a communication protocol.
13. The sensor unit of claim 10, wherein the seismic data is sent via a TCP/IP or an asynchronous transfer mode (ATM) protocol.
14. The sensor unit of claim 10, wherein the seismic data are sent to a seismic recorder.
15. The sensor unit of claim 14, wherein the acknowledgement signal indicates that the seismic recorder received the seismic data.
16. The sensor unit of claim 10, wherein the seismic data are acquired during a land seismic survey or a marine seismic survey.
17. The sensor unit of claim 10, wherein the memory further comprises program instructions executable by the processor to receive a command to start sending seismic data to a seismic recorder.
18. The sensor unit of claim 10, wherein the first communication path and the second communication path are part of a communications network and the seismic data are sent again without analyzing the communications network.
19. The sensor unit of claim 10, further comprising a network interface unit configured to communicate with a wireless communications network.
20. The sensor unit of claim 10, wherein the sensor is an accelerometer for measuring ground acceleration on the earth's surface produced by acoustic vibrations.
CA2805536A 2006-03-21 2007-03-01 Communication between sensor units and a recorder Expired - Fee Related CA2805536C (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11/385,439 US8170802B2 (en) 2006-03-21 2006-03-21 Communication between sensor units and a recorder
US11/385,439 2006-03-21
CA2580200A CA2580200C (en) 2006-03-21 2007-03-01 Communication between sensor units and a recorder

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CA2580200A Division CA2580200C (en) 2006-03-21 2007-03-01 Communication between sensor units and a recorder

Publications (2)

Publication Number Publication Date
CA2805536A1 CA2805536A1 (en) 2007-09-21
CA2805536C true CA2805536C (en) 2016-05-17

Family

ID=38481086

Family Applications (2)

Application Number Title Priority Date Filing Date
CA2580200A Expired - Fee Related CA2580200C (en) 2006-03-21 2007-03-01 Communication between sensor units and a recorder
CA2805536A Expired - Fee Related CA2805536C (en) 2006-03-21 2007-03-01 Communication between sensor units and a recorder

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CA2580200A Expired - Fee Related CA2580200C (en) 2006-03-21 2007-03-01 Communication between sensor units and a recorder

Country Status (6)

Country Link
US (2) US8170802B2 (en)
CN (2) CN102681010A (en)
CA (2) CA2580200C (en)
FR (1) FR2898989A1 (en)
MX (1) MX2007003340A (en)
RU (2) RU2007110226A (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7398186B2 (en) * 2005-08-17 2008-07-08 Xtek, Inc. Data acquisition system for system monitoring
US8174403B2 (en) * 2007-11-30 2012-05-08 Schlumberger Technology Corporation Methods and apparatus for telemetry and power delivery
US8296067B2 (en) * 2008-03-17 2012-10-23 Bp Corporation North America Inc. Satellite communications with cableless seismographs
US8055730B2 (en) * 2008-07-16 2011-11-08 Westerngeco L. L. C. System having a network connected to multiple different types of survey sensors
US8077542B2 (en) * 2009-01-07 2011-12-13 Westerngeco L.L.C. Determining the inline relationship of network nodes in a subterranean survey data acquistion network
US20120136631A1 (en) * 2010-01-29 2012-05-31 Alexandre Bratkovski Subordinate and master sensor nodes
CN102628957B (en) * 2011-06-22 2014-05-07 中国科学院地质与地球物理研究所 Computer network-based novel digital seismograph with mega-channel level
US9651707B2 (en) 2013-06-28 2017-05-16 Cgg Services Sas Methods and systems for joint seismic and electromagnetic data recording
GB201411409D0 (en) * 2014-06-26 2014-08-13 Ind Interface Ltd Vibration monitoring system and method
US9798024B2 (en) * 2014-10-20 2017-10-24 Sercel Seismic detection line having identified element and method
WO2018011064A1 (en) * 2016-07-12 2018-01-18 Bp Exploration Operating Company Limited System and method for seismic sensor response correction
US11375404B2 (en) 2018-07-16 2022-06-28 Revokind, Inc. Decentralized infrastructure methods and systems
CN114463962A (en) * 2020-10-21 2022-05-10 中国石油化工股份有限公司 Intelligent node data acquisition method, electronic device and storage medium

Family Cites Families (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES416858A1 (en) 1972-08-21 1976-06-01 Texas Instruments Inc Seismic recording method using separate recording units for each group
US3886494A (en) * 1972-11-13 1975-05-27 Exxon Production Research Co System for gathering and recording seismic signals
US3990036A (en) 1974-02-28 1976-11-02 Western Geophysical Co. Multiplexing method and apparatus for telemetry of seismic data
US4001769A (en) 1975-03-28 1977-01-04 Geophysical Systems Corporation Data array network system
US4092629A (en) 1976-03-08 1978-05-30 Western Geophysical Co. Of America Decentralized seismic data processing system
US4072923A (en) 1976-03-08 1978-02-07 Western Geophysical Co. Of America Multichannel seismic telemeter system and array former
US4117448A (en) 1977-04-13 1978-09-26 Western Geophysical Company Of America Seismic telemetric system for land operations
US4739325A (en) 1982-09-30 1988-04-19 Macleod Laboratories, Inc. Apparatus and method for down-hole EM telemetry while drilling
US4725992A (en) * 1985-12-03 1988-02-16 Amoco Corporation Adaptive seismometer group recorder having enhanced operating capabilities
FR2599533B1 (en) * 1986-05-30 1988-11-04 Inst Francais Du Petrole SEISMIC SIGNAL TRANSMISSION SYSTEM USING RADIO RELAYS
FR2608780B1 (en) 1986-12-23 1989-05-19 Inst Francais Du Petrole METHOD OF TRANSMISSION TO A CENTRAL DEVICE FOR RECORDING SEISMIC DATA COLLECTED BY ACQUISITION DEVICES DISTRIBUTED ON THE GROUND AND DEVICE FOR IMPLEMENTING IT
US5283768A (en) 1991-06-14 1994-02-01 Baker Hughes Incorporated Borehole liquid acoustic wave transducer
US5650981A (en) 1993-01-06 1997-07-22 Precision Seismic, Inc. Multi-vessel timing synchronization method and device
FR2720518B1 (en) * 1994-05-26 1996-07-12 Inst Francais Du Petrole Seismic acquisition and transmission system with decentralization of functions.
US6191587B1 (en) * 1996-04-26 2001-02-20 Anthony Charles Leonid Fox Satellite synchronized 3-D magnetotelluric system
GB2323668A (en) 1997-03-25 1998-09-30 Geco As Remote display of seismic surveying data
US6249530B1 (en) * 1997-12-22 2001-06-19 Sun Microsystems, Inc. Network bandwidth control
US6002339A (en) * 1998-01-30 1999-12-14 Western Atlas International, Inc. Seismic synchronization system
US6188962B1 (en) * 1998-06-25 2001-02-13 Western Atlas International, Inc. Continuous data seismic system
US6505253B1 (en) * 1998-06-30 2003-01-07 Sun Microsystems Multiple ACK windows providing congestion control in reliable multicast protocol
US7218890B1 (en) * 1998-08-07 2007-05-15 Input/Output, Inc. Seismic telemetry system
US6560565B2 (en) * 1999-04-30 2003-05-06 Veritas Dgc Inc. Satellite-based seismic mobile information and control system
US6553336B1 (en) * 1999-06-25 2003-04-22 Telemonitor, Inc. Smart remote monitoring system and method
US6735630B1 (en) * 1999-10-06 2004-05-11 Sensoria Corporation Method for collecting data using compact internetworked wireless integrated network sensors (WINS)
US6832251B1 (en) * 1999-10-06 2004-12-14 Sensoria Corporation Method and apparatus for distributed signal processing among internetworked wireless integrated network sensors (WINS)
US6859831B1 (en) * 1999-10-06 2005-02-22 Sensoria Corporation Method and apparatus for internetworked wireless integrated network sensor (WINS) nodes
US6940807B1 (en) * 1999-10-26 2005-09-06 Velocity Communication, Inc. Method and apparatus for a X-DSL communication processor
WO2001042815A1 (en) 1999-12-10 2001-06-14 Board Of Trustees Operating Michigan State University Seismic sensor array
US6915216B2 (en) * 2002-10-11 2005-07-05 Troxler Electronic Laboratories, Inc. Measurement device incorporating a locating device and a portable handheld computer device and associated apparatus, system and method
US6747569B2 (en) 2001-02-02 2004-06-08 Dbi Corporation Downhole telemetry and control system
US6977867B2 (en) 2001-06-05 2005-12-20 Geo-X Systems, Ltd. Seismic data acquisition system
EP1405106B1 (en) 2001-06-11 2016-01-20 INOVA Ltd. Apparatus and method for distributed control of seismic data acquisition
CA2459897C (en) 2001-09-07 2013-10-29 Input/Output, Inc. Seismic data acquisition apparatus and method
WO2003032010A2 (en) * 2001-10-10 2003-04-17 The Johns Hopkins University Digital geophone system
EP1495588A4 (en) * 2002-04-18 2005-05-25 Sarnoff Corp Methods and apparatus for providing ad-hoc networked sensors and protocols
US6934219B2 (en) * 2002-04-24 2005-08-23 Ascend Geo, Llc Methods and systems for acquiring seismic data
US7078619B2 (en) 2002-05-25 2006-07-18 Geo-X Systems, Ltd. Universal seismic data acquisition module
AU2003279869A1 (en) * 2002-10-04 2004-05-04 Input/Output, Inc. Wireless communication method, system and apparatus
US7701858B2 (en) * 2003-07-17 2010-04-20 Sensicast Systems Method and apparatus for wireless communication in a mesh network
US7436789B2 (en) * 2003-10-09 2008-10-14 Sarnoff Corporation Ad Hoc wireless node and network
US7124028B2 (en) 2003-11-21 2006-10-17 Fairfield Industries, Inc. Method and system for transmission of seismic data
JP4500123B2 (en) * 2004-07-21 2010-07-14 株式会社日立製作所 Wireless communication method, base station, wireless terminal device, and wireless communication system
US7225662B2 (en) 2004-08-27 2007-06-05 Schlumberger Technology Corporation Geophone calibration technique
US20060083109A1 (en) * 2004-10-14 2006-04-20 Tsunehisa Kimura Seismic source controller and display system

Also Published As

Publication number Publication date
US8170802B2 (en) 2012-05-01
RU2578727C2 (en) 2016-03-27
CA2580200C (en) 2013-04-30
CA2805536A1 (en) 2007-09-21
US20070225944A1 (en) 2007-09-27
CN101042793A (en) 2007-09-26
RU2011140527A (en) 2013-04-10
CA2580200A1 (en) 2007-09-21
US20120053840A1 (en) 2012-03-01
FR2898989A1 (en) 2007-09-28
RU2007110226A (en) 2008-09-27
MX2007003340A (en) 2008-11-18
CN102681010A (en) 2012-09-19

Similar Documents

Publication Publication Date Title
CA2805536C (en) Communication between sensor units and a recorder
JP2610149B2 (en) Method and apparatus for transmitting seismic data collected by distributed data capture devices to a central control recorder
CN103547899B (en) Vibration monitoring system
US9237164B2 (en) Systems and methods for capturing, replaying, or analyzing time-series data
Chintalapudi et al. Structural damage detection and localization using NETSHM
US7012853B2 (en) Seismic data acquisition apparatus and method
MXPA04006146A (en) Intelligent seismic profiling system.
FR2671197A1 (en) METHOD AND DEVICE FOR SIMPLIFYING THE LOCATION OF AN UNDERGROUND AREA IN THE CONTEXT OF A SEISMIC EXPLORATION.
EP2108130A2 (en) Apparatus and method for compressing seismic data
EP1306689B1 (en) Method and system for recording and synchronized reading of data coming from a plurality of terminals
FR3067326A1 (en) METHOD AND SYSTEM FOR PERMITTING COMPONENT CONTROL REDUNDANCY IN A DIGITAL NETWORK OF INTELLIGENT DETECTION DEVICES
US9249793B2 (en) Pump noise reduction and cancellation
EP1995609B1 (en) Seismic data acquisition
Bocca et al. A reconfigurable wireless sensor network for structural health monitoring
Yamaguchi et al. iSCSI analysis system and performance improvement of sequential access in a long‐latency environment
US8880758B2 (en) Harmonic decimation of real time data for unique word (or sync cell) acquisition in a limited processing environment
CN103179162A (en) Method and system for outputting log
CN112689963B (en) Data processing method and device
CA2278277A1 (en) Gimbal lock system for seismic sensors
US20100050028A1 (en) Network device and method for simultaneously calculating network throughput and packet error rate
CN112352266A (en) System for exchanging data in an aircraft
JP3009020B2 (en) Security terminal
KR101841080B1 (en) Method and system for data packet bypass transmission
KR101045956B1 (en) System and method for diagnosing data transmission performance and recording medium having recorded thereon a program for executing the method
CN116774148A (en) Sound source detection system

Legal Events

Date Code Title Description
EEER Examination request

Effective date: 20130207

MKLA Lapsed

Effective date: 20180301