CA2810142A1 - Dual activity drilling ship - Google Patents

Dual activity drilling ship Download PDF

Info

Publication number
CA2810142A1
CA2810142A1 CA2810142A CA2810142A CA2810142A1 CA 2810142 A1 CA2810142 A1 CA 2810142A1 CA 2810142 A CA2810142 A CA 2810142A CA 2810142 A CA2810142 A CA 2810142A CA 2810142 A1 CA2810142 A1 CA 2810142A1
Authority
CA
Canada
Prior art keywords
drilling
tubulars
pump
ship
seabed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA2810142A
Other languages
French (fr)
Inventor
Gavin Humphreys
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stena Drilling Ltd
Original Assignee
Stena Drilling Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stena Drilling Ltd filed Critical Stena Drilling Ltd
Publication of CA2810142A1 publication Critical patent/CA2810142A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/12Underwater drilling
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B21/00Methods or apparatus for flushing boreholes, e.g. by use of exhaust air from motor
    • E21B21/001Methods or apparatus for flushing boreholes, e.g. by use of exhaust air from motor specially adapted for underwater drilling
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B21/00Methods or apparatus for flushing boreholes, e.g. by use of exhaust air from motor
    • E21B21/08Controlling or monitoring pressure or flow of drilling fluid, e.g. automatic filling of boreholes, automatic control of bottom pressure
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/02Surface sealing or packing
    • E21B33/03Well heads; Setting-up thereof
    • E21B33/035Well heads; Setting-up thereof specially adapted for underwater installations
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/12Underwater drilling
    • E21B7/128Underwater drilling from floating support with independent underwater anchored guide base

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Mechanical Engineering (AREA)
  • Earth Drilling (AREA)

Abstract

Dual gradient drilling may be performed by anchoring drilling tubulars from a drilling ship on the seabed. The drilling tubulars may include an inline pump for pumping mud through another set of tubulars that actually drill the well. Then dual gradient drilling may be instituted by controlling the pressure by controlling the operation of the pump.

Description

DUAL ACTIVITY DRILLING SHIP
Background [0001] This relates generally to dual activity drilling from a drilling ship.
[0002] Generally, when drilling in deep water environments, drilling mud is forced down from a drilling ship into a subsurface formation. As used herein, the term "drilling ship" encompasses a floating platform capable of propulsion on its own or by being towed, pushed or pulled, and includes semi-submersible and self-propelled vessels.
[0003] When the drilling mud pressure is high, the possibility of fracture and leakage of the formation increases. When the drilling mud pressure is low, the possibility of blowout when the drilling mud pressure is less than the pore pressure arises. Generally, the mud pressure increases with depth. Thus, the deeper the formation, the more prone the formation is to fracture and the more shallower portions of the formation may be more prone to blowout. Thus, the pore pressure is higher the deeper the borehole goes. This means that mud pressure must be increased for well control. In such case, it is necessary to isolate that higher mud pressure from the shallower portions of the formation using casings.
[0004] With depth, the pore pressure in the rock and the fracture pressure in the rock begin to diverge. The physics of the subsurface makes it impossible to drill a hole through this transition zone as increased equivalent circulating density through friction of returning drilling mud and the open hole limits the depth the hole can be drilled before exceeding the fracture pressure of the rock. Casing, therefore, is set and cemented.
[0005] Therefore, in subsurface situations where there are drilling hazards, such as shallow water flow, it is desirable to drill the top holes using the "pump and dump"
drilling method and to set and cement the casing at a depth where drilling can be formed with an equivalent circulating density less than the fracture pressure.
[0006] Often, several strings of casing are necessary, including a 36 inch conductor, a 30 inch casing, and a 24 inch casing, which are set and cemented before the 20 inch casing is set, enabling the subsurface blowout preventer and marine riser to be installed on the wellhead.
[0007] With the pump and dump drilling technology, the drilling mud is water based and environmentally acceptable to dump on the seabed. The drilling mud needs to have the appropriate rheological properties to assure a stable well bore is maintained. In deep water drilling areas, like the Gulf of Mexico, it is not uncommon to use and lose up to 30 to 40 thousand barrels of mud while drilling these top holes.
This may create logistical problems replenishing mud stocks on the rig.

Brief Description of the Drawings Figure 1 is a schematic cross-sectional view of one embodiment of the present invention;

Figure 2 is a partial, cross-sectional view at an earlier stage to that shown in Figure 1 in accordance with one embodiment;

Figure 3 is a partial, cross-sectional view at a stage subsequent to that shown in Figure 2 in accordance with one embodiment;

Figure 4 is an enlarged, cross-sectional view of a wellbore in accordance with one embodiment of the present invention;

Figure 5 is an enlarged, cross-sectional view at a subsequent stage to that shown in Figure 3 in accordance with one embodiment;

Figure 6 is an enlarged, cross-sectional view of another embodiment of the present invention;

Figure 7 is an enlarged, cross-sectional view at a subsequent stage in accordance with one embodiment of the present invention; and Figure 8 is an enlarged, cross-sectional view at a subsequent stage in accordance with one embodiment of the present invention.

Detailed Description [0008] Rather than using a pump set on the seabed, a submersible pump may be run from a dual activity drilling ship, including a main well center that drives a submersible pump. Then a secondary well center may be used for actually drilling the well.
[0009] Referring to Figure 1, a floating platform or multiple operation drilling ship is shown in position over a formation in a seabed D under the ocean E. The ship 10 may include a single derrick, which may include multiple levels for different operations. In some embodiments, more than one derrick may be utilized. The ship 10 10 may include a secondary well center 14 and a main well center 12.
[0010] The main well center 12 supports a submersible pump 26 located in the ocean E, proximate to the seabed D. The main well center 12 is anchored on the seabed D using an anchor 30 and a heave compensator 28 coupled to the pump 26.

A pump cable 24 extends from the pump 26 through a reel 22. The main well center may be supported by a load ring 20 that hangs off of cornpensators (not shown) on the main well center 12.
[0011] The secondary well center 14 supports the drill pipe 16, which, in one embodiment, may be a 20 inch conductor. The drill pipe 16 may be rotated, as indicated by the arrow A to drill the formation using a drill bit 38. In one embodiment, mud flow is provided from the ship 10 downwardly through the drill pipe 10, as indicated by the arrows B, into the formation.
[0012] The drill pipe 16 is supported within a funnel 34 and a drilling guide base 32 in one embodiment. The drilling guide base and funnel are positioned on the seabed D prior to initiation of the drilling operation. The guide based running foot profile is indicated at 33.
[0013] The drilling mud, after circulating through the drill bit 38 and annulus, passes upwardly between the formation and the drill pipe 16. Then it passes through a fitting and into a flexible hose 40. From the flexible hose 40 it passes out through another fitting and into the pump 26. The pump 26 forces the drilling mud upwardly, as indicated by the arrow C, back to the drilling ship through the casing 18 of the main well center 12. In one embodiment, the casing 18 may be a 9% inch casing.
[0014] The guide base 32 is placed on the seabed with a large hole in the guide base's center. There is a funnel 34 on top of the guide base 32 to guide drilling tools and large casings into the well, to provide a side outlet to connect the well to the submersible pump through the flexible hose, and to provide the ability to view the well with a remotely operated vehicle (ROV) so drilling levels can be regulated at the seabed by speeding up or slowing down the pump 26.
[0015] Below the drill string 16 may be casings (not shown in Figure 1) that are set based on anticipated fracture gradient below the seabed and the hydraulic friction created by the drilling fluids while drilling. So the depth will vary based on local geological and pore pressure knowledge. The gradient in the well is related to the gradient of the drilling fluid in the hole plus the gradient of the sea water from the seabed back to the ship 10.
[0016] Dual gradient drilling may be accomplished using the pump 26. The speed of a pump on the ship and the pump 26 may be synchronized so that fluid volume in and out are equal so that the mud level in the annulus remains constant at the seabed.
[0017] The anchor 30 may be as simple as a probe stuck into the seabed, if the seabed conditions allow, or as sophisticated as a suction pile anchor, to mention two examples. The compensator 28 may be a pressure or scope joint, such as a compensator bumper sub to cater for rig heave, again, to give a couple of examples.
[0018] Referring to Figure 2, the sequence of drilling operations begins when the ship 10 arrives at the drilling site. Upon arriving at the site, the casing 18 is extended down to the seabed floor with the anchor 30 and compensator 28 and pump 26 attached. The structure is then anchored on the seabed floor D, as indicated in Figure 2. Of course, the anchor 30 is set adjacent to the site of the intended well.
The secondary well center may have the drill pipe 16 hung off, but not yet extended to the seabed.
[0019] Next, the guide base 32 and funnel 34 are positioned from the secondary well center 14, as indicated in Figure 3. Then, the flexible pipe 40 is coupled from the funnel 34 to the pump 26 using the fittings as illustrated. This may be done by a remotely operated vehicle (ROV). In one embodiment, the casing 18 may be 9%
inch casing to reduce the total weight carried by the ship 10.
[0020] Then, referring to Figure 4, a well 48 is drilled and set into the seabed D
using the secondary well center 14 and the drill pipe 16. The setting of casing 42 and drilling is done under dual gradient conditions on the secondary well center.
When this drilling operation is completed, the casing 18 and pump 26 may be removed on the main well center 12.
[0021] Then the guide base 32 and funnel 34 are pulled and casing 42 is run and cemented using the secondary well center while picking up a blowout preventer and running riser 44 on the main well center 12, as shown in Figure 5. Then the ship 10 is moved to the left, to position the secondary well center 12 over the well 48 and the blowout preventer 46 is run and landed over the well 48.
[0022] In accordance with another embodiment, shown in Figures 6-8, instead of using two separate well centers, a single well center 12a, with a trolley 60, may be utilized from a ship 10a. The trolley 60 rides on a track 62.
[0023] Initially, the well center 12a is used to run casing 18 with a pump 26 and anchor 30, as indicated in Figure 6. Then the trolley 60 is moved into position to connect to and hang off the casing 18, pump 26, and anchor 30, while they are still anchored in the seabed D. Then the ship 10a may be moved, as indicated by the arrow F in Figure 7, while the core 18 remains stationary. The well center 12a is then positioned to the side of the casing 18, pump 26, and anchor 30, as depicted in Figure 8. Then drill pipe 16 may be run to the seabed D and attached to a base 32.
From the base 32, which may include a funnel (not shown), a hose 40 may be connected to the pump 26, as described previously. Then, drilling may proceed as previously described.
[0024] References throughout this specification to "one embodiment" or "an embodiment" mean that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one implementation encompassed within the present invention. Thus, appearances of the phrase "one embodiment" or "in an embodiment" are not necessarily referring to the same embodiment. Furthermore, the particular features, structures, or characteristics may be instituted in other suitable forms other than the particular embodiment illustrated and all such forms may be encompassed within the claims of the present application.
[0025] While the present invention has been described with respect to a limited number of embodiments, those skilled in the art will appreciate numerous modifications and variations therefrom. It is intended that the appended claims cover all such modifications and variations as fall within the true spirit and scope of this present invention.

Claims (10)

1. A method comprising:
anchoring first tubulars, extending from a drilling ship, in the seabed floor, said first tubulars including a pump;
extending second tubulars from said ship;
drilling in said seabed with said second tubulars; and pumping mud using said pump in said first tubulars down said second tubulars and up said first tubulars.
2. The method of claim 1 including using a ship including two separate drilling stations.
3. The method of claim 1 including using a ship with one drilling station and a trolley.
4. The method of claim 3 including suspending said first tubulars from said trolley while said first tubulars are anchored on said seabed and moving said ship while maintaining said first tubulars stationary.
5. The method of claim 1 including using dual gradient drilling.
6. The method of claim 1 including anchoring said first tubulars on said seabed before drilling.
7. The method of claim 6 including coupling the second tubulars to said pump after anchoring said first tubulars.
8. The method of claim 1 including drilling using a funnel and a guide base with said second tubulars.
9. The method of claim 8 including providing a mud port through said guide base to said pump.
10. The method of claim 1 including heave compensating said anchored first tubulars.
CA2810142A 2010-09-03 2011-09-02 Dual activity drilling ship Abandoned CA2810142A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/875,527 2010-09-03
US12/875,527 US8162063B2 (en) 2010-09-03 2010-09-03 Dual gradient drilling ship
PCT/IB2011/002032 WO2012028949A2 (en) 2010-09-03 2011-09-02 Dual activity drilling ship

Publications (1)

Publication Number Publication Date
CA2810142A1 true CA2810142A1 (en) 2012-03-08

Family

ID=44898066

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2810142A Abandoned CA2810142A1 (en) 2010-09-03 2011-09-02 Dual activity drilling ship

Country Status (6)

Country Link
US (1) US8162063B2 (en)
CA (1) CA2810142A1 (en)
GB (1) GB2499735B (en)
MY (1) MY163163A (en)
NO (1) NO20130448A1 (en)
WO (1) WO2012028949A2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010020956A2 (en) * 2008-08-19 2010-02-25 Services Petroliers Schlumberger Subsea well intervention lubricator and method for subsea pumping
US20130220600A1 (en) * 2012-02-24 2013-08-29 Halliburton Energy Services, Inc. Well drilling systems and methods with pump drawing fluid from annulus
AU2013331502B2 (en) * 2012-10-15 2016-02-18 National Oilwell Varco, L.P. Dual gradient drilling system
GB2529085B (en) 2013-05-31 2020-01-22 Halliburton Energy Services Inc Well monitoring, sensing, control, and mud logging on dual gradient drilling
US20180073314A1 (en) * 2015-02-26 2018-03-15 Donald G. Reitsma Mud lift drilling system using ejector assembly in mud return line
CA2992882C (en) * 2015-09-02 2020-01-07 Halliburton Energy Services, Inc. Software simulation method for estimating fluid positions and pressures in the wellbore for a dual gradient cementing system
US10794126B2 (en) 2016-08-30 2020-10-06 Nabors Drilling Technologies Usa, Inc. Dual-activity mast
WO2018231729A1 (en) 2017-06-12 2018-12-20 Ameriforge Group Inc. Dual gradient drilling system and method
CN108798608B (en) * 2018-07-26 2023-12-01 四川宏华石油设备有限公司 Natural gas hydrate exploitation system and method
AU2020207342A1 (en) * 2019-01-09 2021-06-17 Kinetic Pressure Control, Ltd. Managed pressure drilling system and method
CN113914802B (en) * 2021-09-07 2022-07-26 广州海洋地质调查局 Offshore casing surge compensation dual-drive three-layer casing drilling coring method

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3981369A (en) * 1974-01-18 1976-09-21 Dolphin International, Inc. Riser pipe stacking system
US4063602A (en) * 1975-08-13 1977-12-20 Exxon Production Research Company Drilling fluid diverter system
US4291772A (en) * 1980-03-25 1981-09-29 Standard Oil Company (Indiana) Drilling fluid bypass for marine riser
US4367796A (en) * 1980-11-21 1983-01-11 Global Marine, Inc. Blowout preventer and guideline handling
FI64919B (en) * 1982-06-15 1983-10-31 Waertsilae Oy Ab FLYTANDE BORRNINGSPLATTFORM
US5199821A (en) * 1990-12-10 1993-04-06 Shell Oil Company Method for conducting offshore well operations
BR9401593A (en) * 1994-04-25 1995-11-21 Petroleo Brasileiro Sa Unique guide base for drilling underwater oil wells
US5615115A (en) 1994-12-15 1997-03-25 Atlantic Richfield Company Method of determining pore pressure and fracture gradient profiles using seismic transit times
US6216799B1 (en) * 1997-09-25 2001-04-17 Shell Offshore Inc. Subsea pumping system and method for deepwater drilling
US6062313A (en) * 1998-03-09 2000-05-16 Moore; Boyd B. Expandable tank for separating particulate material from drilling fluid and storing production fluids, and method
US6102673A (en) * 1998-03-27 2000-08-15 Hydril Company Subsea mud pump with reduced pulsation
NO308043B1 (en) * 1998-05-26 2000-07-10 Agr Subsea As Device for removing drill cuttings and gases in connection with drilling
US6415877B1 (en) * 1998-07-15 2002-07-09 Deep Vision Llc Subsea wellbore drilling system for reducing bottom hole pressure
US6352114B1 (en) * 1998-12-11 2002-03-05 Ocean Drilling Technology, L.L.C. Deep ocean riser positioning system and method of running casing
NO312915B1 (en) * 1999-08-20 2002-07-15 Agr Subsea As Method and device for treating drilling fluid and cuttings
US6457529B2 (en) * 2000-02-17 2002-10-01 Abb Vetco Gray Inc. Apparatus and method for returning drilling fluid from a subsea wellbore
US6536540B2 (en) * 2001-02-15 2003-03-25 De Boer Luc Method and apparatus for varying the density of drilling fluids in deep water oil drilling applications
US6843331B2 (en) * 2001-02-15 2005-01-18 De Boer Luc Method and apparatus for varying the density of drilling fluids in deep water oil drilling applications
CA2461639C (en) * 2001-09-10 2013-08-06 Ocean Riser Systems As Arrangement and method for regulating bottom hole pressures when drilling deepwater offshore wells
GB0124610D0 (en) * 2001-10-12 2001-12-05 Alpha Thames Ltd Early hydrocarbon extraction system
US6966367B2 (en) * 2002-01-08 2005-11-22 Weatherford/Lamb, Inc. Methods and apparatus for drilling with a multiphase pump
US6766860B2 (en) * 2002-02-22 2004-07-27 Globalsantafe Corporation Multi-activity offshore drilling facility having a support for tubular string
AU2003228317B2 (en) * 2002-03-18 2007-08-23 Baker Hughes Incorporated System and method for recovering return fluid from subsea wellbores
US7950463B2 (en) * 2003-03-13 2011-05-31 Ocean Riser Systems As Method and arrangement for removing soils, particles or fluids from the seabed or from great sea depths
NO20035172A (en) * 2003-11-21 2005-05-02 Agr Subsea As Device for removing and filtering drilling fluid during top hole drilling
NO319213B1 (en) * 2003-11-27 2005-06-27 Agr Subsea As Method and apparatus for controlling drilling fluid pressure
ATE430872T1 (en) * 2004-06-02 2009-05-15 Stena Drilling Ltd FACILITY FOR MULTIPLE ACTIVITIES
NO321854B1 (en) * 2004-08-19 2006-07-17 Agr Subsea As System and method for using and returning drilling mud from a well drilled on the seabed
US8925647B2 (en) * 2006-06-30 2015-01-06 Stena Drilling Ltd. Triple activity drilling ship
NO325931B1 (en) * 2006-07-14 2008-08-18 Agr Subsea As Device and method of flow aid in a pipeline
SE530900C2 (en) * 2007-04-02 2008-10-14 Gva Consultants Ab drilling device
US7913764B2 (en) * 2007-08-02 2011-03-29 Agr Subsea, Inc. Return line mounted pump for riserless mud return system
US7938190B2 (en) * 2007-11-02 2011-05-10 Agr Subsea, Inc. Anchored riserless mud return systems
BRPI0803619B1 (en) * 2008-09-19 2018-06-12 Petroleo Brasileiro S.A. - Petrobras SIMULTANEOUS IMPLEMENTATION SYSTEM FOR MARINE PROBE OPERATION AND METHOD

Also Published As

Publication number Publication date
GB201304018D0 (en) 2013-04-17
US8162063B2 (en) 2012-04-24
US20120055678A1 (en) 2012-03-08
WO2012028949A3 (en) 2013-05-23
GB2499735B (en) 2016-06-15
NO20130448A1 (en) 2013-04-03
WO2012028949A2 (en) 2012-03-08
MY163163A (en) 2017-08-15
GB2499735A (en) 2013-08-28

Similar Documents

Publication Publication Date Title
US8162063B2 (en) Dual gradient drilling ship
US8342249B2 (en) Offshore drilling system
US5184686A (en) Method for offshore drilling utilizing a two-riser system
US20170145764A1 (en) Managed pressure drilling system having well control mode
US7938190B2 (en) Anchored riserless mud return systems
US20070235223A1 (en) Systems and methods for managing downhole pressure
WO2003076762A1 (en) Method and device for liner system
US20140190701A1 (en) Apparatus and method for subsea well drilling and control
US9133670B2 (en) System for conveying fluid from an offshore well
US6367554B1 (en) Riser method and apparatus
US9163465B2 (en) System and method for drilling a well that extends for a large horizontal distance
BR112014005662B1 (en) method for relocating a subsea manifoldriser system and relocatable subsea manifold riser system
EP0952301B1 (en) Method and apparatus for drilling an offshore underwater well
US7451822B2 (en) Method for retrieving riser for storm evacuation
US20180171728A1 (en) Combination well control/string release tool
US20090283273A1 (en) Well construction and completion
Juiniti Roncador Field Development with Subsea Completions
Sangesland et al. Riserless Casing While Drilling Using a Dual Gradient Mud System
KR20160022564A (en) A Riser
Theiss Slenderwell Wellhead Benefits and Opportunities of Selected 13" Option
Denney Parque das Conchas (BC-10)-Delivering Deepwater Extended-Reach Wells in a Low-Fracture-Gradient Setting

Legal Events

Date Code Title Description
EEER Examination request

Effective date: 20160713

FZDE Discontinued

Effective date: 20180905