CN100351964C - 具有密封电解封口的双层电容器及其制造方法 - Google Patents

具有密封电解封口的双层电容器及其制造方法 Download PDF

Info

Publication number
CN100351964C
CN100351964C CNB008143544A CN00814354A CN100351964C CN 100351964 C CN100351964 C CN 100351964C CN B008143544 A CNB008143544 A CN B008143544A CN 00814354 A CN00814354 A CN 00814354A CN 100351964 C CN100351964 C CN 100351964C
Authority
CN
China
Prior art keywords
metal
electrode
carbon cloth
double layer
layer capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB008143544A
Other languages
English (en)
Other versions
CN1408121A (zh
Inventor
C·J·法拉曼的
J·M·迪斯燔耐特
E·布兰克
R·W·克罗弗德
C·南琼迪阿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxwell Electronic Components Group Inc
Original Assignee
Maxwell Electronic Components Group Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maxwell Electronic Components Group Inc filed Critical Maxwell Electronic Components Group Inc
Publication of CN1408121A publication Critical patent/CN1408121A/zh
Application granted granted Critical
Publication of CN100351964C publication Critical patent/CN100351964C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/72Current collectors specially adapted for integration in multiple or stacked hybrid or EDL capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • H01G11/80Gaskets; Sealings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

一种长寿命双层电容器(10)以及制造它的方法,它包括:外壳(11)和第一接头(28),以及介于第一接头和外壳之间的电绝缘密封封口。第一集电箔(22)电气耦合到第一接头的内部和具有注入金属侧的第一注入金属碳布电极(12),该注入金属侧相对于第一集电箔并列。然后,多孔分离层(18)相对于第一注入金属的碳布电极并列,并将第一注入金属碳布电极和第二注入金属碳布电极(14)隔开,第二注入金属碳布电极的注入金属侧背向多孔分离层。第二集电箔(24)相对于第二注入金属碳布电极的注入金属侧并列,并电耦合到第二接头(29)。电解溶液(20)浸透第一和第二注入金属碳布电极,并实质上包含在外壳和电绝缘密封封口中,使得外壳和电绝缘密封封口实质上抑制杂质流入电解溶液中。

Description

具有密封电解封口的双层电容器及其制造方法
技术领域
本发明一般涉及双层电容器,尤其涉及高性能、高可靠性的双层电容器,它带有低阻注入铝的碳布电极和高性能的电解溶液。本发明还具体涉及高性能、高可靠性、长寿命的有机双层电容器,它带有低阻的注入铝的碳布电极和高性能的电解溶液,并被包装在包括密封、电绝缘电通孔的密封外壳中。
背景技术
电子工业中公认需要一种能够提供高功率的高可靠性可充电能量源,能够对它快速进行充电、放电和再充电,并且它具有较高的寿命周期,即较长的寿命。能受益于这种装置的应用包括工业应用、消费应用、和自动应用。
双层电容器,也称为电化电容器,它是能量存储装置,与传统电容器相比,它的单位重量和单位体积中能存储更多的能量。此外,与可充电电池相比,它通常能以较高的额定功率传送存储能量。
双层电容器包括通过多孔分离层与电触点隔离的两个多孔电极。分离层和电极都注入电解溶液。该结构允许离子流通过多孔分离层在电极之间流动,同时多孔分离层阻止电流或电子流短路两个多孔电极。耦合到每个有源电极背面的是集电板。集电板的一个目的是减小双层电容器中的欧姆损耗。如果这些集电板不是多孔的,那么它们还可用作电容器封口的一部分。
双层电容器在极化液层中存储静电能量,在注入电解液的两个电极之间存在电势时形成该极化液层。当在电极两端施加电势时,由于在施加的电场下电荷分离,还由于电极整个表面上电解质分子的偶极取向和排列,通过电解质离子的极化,在电极-电解质界面处形成正负电荷的双电层(因此,称为“双电层”电容器)。
在具有高功率和能量密度的电化电容器中使用碳电极表示该技术的重大进步,因为碳具有较低的密度,碳电极可被制造成非常大的表面积。带有碳电极的双层电容器的制造早已为本领域所知,如美国专利号2,800,616(Becker)和3,648,126(Boos等人)中所论证的。
很多碳电极电容器,包括双层电容器,其主要问题在于因为碳电极的内阻较高电容器的性能经常受到限制。该较高的内阻是由于若干因素造成,这些因素包括较高的内部碳-碳触点的接触电阻,以及电极和电流集电器的接触电阻。
该较高的电阻转变成充电和放电期间电容器中较大的欧姆损耗,该损耗进一步对电容器的特征RC(电阻×电容)时间常数产生不利的影响,并干扰其在短时间内被有效充电和/或放电的能力。因此,在本领域中需要减小双层电容器的内阻,以此减小时间常数。
在近几年中揭示了各种电极制造技术。例如,Yoshida等人的专利(美国专利号5,150,283)揭示了通过在铝基底上沉积碳粉和其它电导率改良剂,将碳电极连接到集电器的方法。
美国专利号4,597,028(Yoshida等人)中揭示了减小碳电极内阻的其它相关方法,其中讲述了通过将金属纤维编织入碳纤维预制件中,可以将诸如铝的材料结合入碳纤维电极中。
美国专利号4,562,511(Nishino等人)讲述了减小碳电极电阻的另一方法,其中将碳纤维浸入水溶液,在碳纤维的孔隙中形成导电的金属氧化物层,较佳的是过渡金属氧化物。Nishino等人还揭示了金属氧化物的形成,如通过汽相沉积形成的氧化锡或氧化铟。
美国专利号5,102,745和5,080,963(Tatarchuk等人)中揭示了获得低阻的又一相关方法。Tatarchuk等人的专利揭示了可以将金属纤维与碳预制件混合,并烧结,以产生能用作电极的结构稳定的导电基体。Tatarchuk等人的专利还讲述了通过减小电流到达金属导体所必须流过的碳-碳触点数目,减小电极中电阻的过程。如果不锈钢或镍纤维可用作金属,那么该方法的效果将比较好。然而,申请人了解到当使用铝纤维时该方法不成功,因为在烧结或加热电极的过程中会形成碳化铝。
在双层电容器的制造中另一关心的领域涉及将集电板连接到电极的方法。这一点非常重要,电极和集电板之间的界面是双层电容器中内阻的另一来源,因而必须尽可能地保持较低的内阻。
美国专利号4,562,511(Nishino等人)建议将熔融金属,如铝,等离子喷射到极化电极的一侧上,以在电极的表面上形成集电层。‘511 Nishino等人的专利中也考虑到了接合和/或形成集电器的另一技术,包括电弧喷射,真空沉积,溅射,非电解电镀以及使用导电涂料。
上述Tatarchuk等人的专利(美国专利号5,102,745、5,304,330和5,080,963)示出了通过将金属箔烧结到电极单元上,接合金属箔集电器与电极。
美国专利号5,142,451(Kurabayashi等人)揭示了通过热处理过程,使得集电器材料进入电极单元的孔隙,将集电器接合到电极表面的方法。
在颁发给Kurabayashi等人的美国专利号5,065,286、5,072,335、5,072,336、5,072,337和5,121,301中可以找到关于制造和粘结集电板的方法的另一相关技术。
近来,开发了使用无水(有机)电解溶液的电化电容器。这些双层电容器具有较高工作电压的优点,但是一般都遭受较高的内阻。尽管如此,工作电压还是大大增加了双层电容器的能量密度。例如,含水双层电容器能以每单元0.67伏特工作,而类似的无水器件将以每个单元2.3伏特工作。该工作电压的差值使能量密度增加了11.8倍。
不幸的是,无水电解质对电解质中诸如水或氧气的杂质更敏感。当双层电容器以较高的电压工作时,任何程度的杂质都将导致双层电容器中的气体产生。由于这一点,无水电解质双层电容器的制造者所注意的是限制制造过程中电解溶液中水和氧气的污染程度,争取达到大约百万分之10到100的污染等级。
为了达到使用无水电解质并以高电压工作的双层电容器的较长寿命,必须注意限制水和氧气流入电解溶液。商业上可提供的无水电解双层电容器用密封技术包装,由于流入了水和氧气,它限制了这些双层电容器的寿命。
任何电子技术接着面临的另一问题是小型化。随着设计的器件越来越小,从而要求部件也越来越小,所以向双层电容器的制造者施加压力要减小器件尺寸,并保持较高程度的电容等级。这不仅要求非常小的内阻,还引起了附加的问题。
该附加的问题在于:至少在无水电解双层电容器中,环境污染造成的例如空气和水漏进电解质中将使得电容大大地减小,并相应地增加电阻,也就是对离子流的电阻。
虽然在传统的双层电容器器件中,应用传统的技术密封电容器,以容纳电解质并防止氧气或水对电解质的污染,但是随着器件越来越小型化,传统的技术不再适用。使该问题更棘手的:,用于密封双层电容器的材料在热性能和化学性能上必须与电解质和电容器外壳相容,并依据封口的位置提供适当的电气特性,也就是导电或绝缘。
对较小的双层电容器器件而言,消费者要求能直接焊接在印刷电路板上的器件,其中问题进一步复杂化。因此,外部接头不仅必须与所采用的密封方法相容,而且必须是使用传统焊接技术和材料可焊接的材料。此外,在传统的自动焊接过程中,双层电容器的外壳和内部部件必须能够经得起暴露于高温中,例如,在高于250℃的温度中暴露超过5分钟。
因此,显而易见的是仍然需要改进双层电容器。这种改进的双层电容器需要在相当短的时段内以非常高的功率输出和额定能量密度传送大量的有用能量,并且需要被制造在较小的、可焊接的、长寿命器件中。这种附加的双层电容器还应该具有相当低的内阻,并能够产生相当高的工作电压。显而易见的还有这些器件的内阻应该较低。
发明内容
本发明通过提供具有多个电极的、高性能、密封双层电容器,解决了以上和其它需要。
本发明提供了一种双层电容器,它包括:外壳;第一接头;电绝缘的密封封口,它介于第一接头和外壳之间;第一集电箔,它电气耦合到第一接头的内部;具有注入金属侧的第一注入金属的碳布电极,第一注入金属碳布电极的注入金属侧相对于第一集电箔并列;多孔分离层,它相对于第一注入金属的碳布电极并列;具有注入金属侧的第二注入金属的碳布电极,第二注入金属碳布电极的相反侧与第二注入金属碳布电极的注入金属侧相反,第二注入金属碳布电极的相反侧相对于多孔分离层并列,其中多孔分离层介于第一注入金属碳布电极和第二注入金属碳布电极之间;第二集电箔,第二集电箔相对于第二注入金属碳布电极的注入金属侧并列;第二接头,它电气耦合到第二集电箔;电解溶液,它浸透第一注入金属碳布电极和第二注入金属碳布电极,其中电解溶液实质上包含在外壳和电绝缘密封封口中,并且外壳和电绝缘密封封口实质上抑制杂质流入电解溶液中。
本发明还提供了一种双层电容器,它包括:密封外壳;多个注入金属的电极,每个都具有注入金属侧;多个集电箔,每一个都相对于多个注入金属电极中一个的所述注入金属侧并列;多孔分离层材料,它配置在多个注入金属电极的各个电极之间;无水电解溶液,它浸透所述多个注入金属的电极,其中形成了多电极、单元件器件,并且密封外壳实质上抑制杂质流入无水电解溶液中。
本发明还提供了一种制造双层电容器的方法,该方法包括以下步骤:将金属注入多个电极中;将多个电极中每一个的注入侧与多个集电箔中的一个并列;将多孔分离层插入多个电极中每一个的另一侧之间;用电解溶液浸透多个电极;将多个电极和多个集电箔密封在外壳内以实质上抑制杂质流入电解溶液中。
本发明还提供了一种制造双层电容器的方法,该方法包括以下步骤:将第一集电箔耦合到第一接头的内部;将第一注入金属电极重叠在集电箔上;相对于第一注入金属电极配置多孔分离层;相对于多孔分离层并列第二注入金属电极;将第二注入金属电极电耦合到外壳;用电解溶液浸透第一注入金属电极和第二注入金属电极;密封外壳,其中电解质实质包含在外壳中,并且实质上抑制杂质流入电解溶液。
本发明提供了一种双层电容器,它包括:外壳;第一接头;电绝缘的密封封口,它介于第一接头和外壳之间;第一集电箔,它电气耦合到第一接头的内部;第一电极,其中所述第一电极包括碳,第一电极的一侧相对于第一集电箔并列;多孔分离层,它相对于第一电极的另一侧并列;第二电极,其中所述第二电极包括碳,第二电极的一侧相对于多孔分离层并列,其中多孔分离层介于第一电极和第二电极之间;第二集电箔,第二集电箔相对于第二电极的另一侧并列;第二接头,它电气耦合到第二集电箔;和电解溶液,它浸透第一电极和第二电极,其中电解溶液实质上包含在外壳和电绝缘密封封口中,并且外壳和电绝缘密封封口实质上抑制杂质流入电解溶液中。
本发明还提供了一种双层电容器,它包括:密封外壳;多个电极,每个都具有第一侧,其中多个电极中的每一个包括碳;多个集电箔,每一个都相对于多个电极中一个的所述第一侧并列;多孔分离层材料,它配置在多个电极的各个电极之间;无水电解溶液,它浸透所述多个电极,其中形成了多电极、单元件器件,并且密封外壳实质上抑制杂质流入无水电解溶液中。
附图说明
从以下详细描述中,通过结合附图和附件,本发明的以上和其它方面、特征和优点将更加明显,附图中:
图1是根据本发明一个实施例制造的单元件、高性能双层电容器的截面图;
图2示意了如图1中双层电容器的基本双层电容器的内部部件;
图3概念性地示意了如可用于图1中双层电容器电极中的单个活性碳纤维的特写画面;
图4A是碳纤维布的截面图,它显示了编织的碳纤维束,并进一步显示了铝浸渍剂层;
图4B是如图4中碳纤维束的截面图,它由如图3所示的多个活性碳纤维组成,并进一步由渗入碳纤维束“纤维间隙”中的铝浸渍剂组成;
图5A显示了扭绞碳纤维束构成的碳布的侧视图,并显示了多个扭绞纤维束如何编织成碳布;
图5B概念性地显示了碳布的三芯扭绞碳纤维束的截面图,并进一步概念性地显示了渗入纤维束纤维间隙中的铝的较佳渗透;
图6显示了图1中基本双层电容器的等效电路图;
图7更详细地显示了图6的等效电路图,特别显示了电极电阻和电解溶液电阻的关系;
图8是当电荷流过图1中双层电容器的集电板、电极、电解质和分离层(以及与之关联的各种通路电阻)时,电荷可以通过的各种电流通路的截面图;
图9是显示内阻在图1电容器中作用的简化等效电路图;
图10和11示意了用铝喷射碳纤维布的系统和技术,因此如图4和5所示使铝注入碳纤维束布的纤维间隙中;
图12是耦合到接头的一个实施例的集电箔的侧视图,该接头密封地接触使用玻璃-金属(密封)封口的端板,该集电箔可用于诸如如图1中电容器的具体实施例;
图13是图11中集电箔接头玻璃-金属(密封)封口和端板的顶视图;
图14是图11中集电箔(用虚线显示)的侧视图,在集电箔上层叠注入铝的碳布电极,使得注入铝的碳布电极的“铝侧”依次与集电箔和接头电接触,该接头密封地连接到端板;
图15是图14中集电箔、注入铝的碳布电极、接头、密封封口和端板的顶视图;
图16是图14中集电箔和注入铝的碳布电极(都用虚线显示)的侧视图,其中带有包围集电箔和注入铝的碳布电极的多孔分离层,以提供包围注入铝电极的电绝缘隔板;
图17是图16中集电箔、注入铝的碳布电极、多孔分离层、接头、密封封口和端板的顶视图;
图18是图16中集电箔和注入铝的碳布电极多孔分离层的顶视截面图,其中具有层叠在多孔分离层两侧上的第二注入铝的碳布电极,和完全层叠第二注入铝碳布电极的一侧上并层叠另一侧一半上的第二集电器;
图19是图18中集电箔、注入铝的碳布电极、多孔分离层、第二注入铝的碳布电极和第二集电箔的顶视截面图,它们层叠在第二集电箔的另一侧上,也就是“半侧”上;
图20是如图19中层叠的集电箔、注入铝的碳布电极、多孔分离层、第二注入铝碳布电极和第二集电箔的侧视图;
图21A是如图19中层叠的集电箔、注入铝的碳布电极、多孔分离层、第二注入铝的碳布电极和第二集电箔的侧视图,这些部件被进一步插入外壳(或壳体)中,在干燥了外壳内部并通过填充孔将电解溶液加入外壳中之后,将端板与外壳焊接,并用焊接球轴承封闭端板上的填充孔;
图21B是图21A中所示电容器组件相反侧的侧视图,其中具有刻在外壳上的褶皱;
图22是图21A和21B中外壳的端视图,它是由端板和球轴承封闭的,并显示了褶皱;
图23和24是根据图12到22的实施例,图1中双层电容器制造中经历步骤的流程图;
图25是显示对于图11到22的实施例(密封的双层电容器)与具有类似尺寸的非密封双层电容器相比,纵轴上水分含量对横轴上时间的曲线图;
图26是显示对于非密封双层电容器的电容和内阻,以及如图11到22实施例中密封双层电容器的电容和内阻,纵轴上百分比变化对横轴上时间的一组曲线图。
在所有附图中,相应的参考字符表示相应的部件。
具体实施方式
实施本发明的最佳模式的以下描述不起限制作用,而仅仅用于描述本发明的一般原理。应该参考权利要求确定本发明的范围。
参考图1,显示的单元件、高性能双层电容器10包括:元件外壳11,一对注入铝的碳布电极12、14,多孔分离层18,电解质20,一对集电板22和24,以及从集电板22、24延伸出穿过外壳11的电引线(或接头),以提供能源和/或电路与注入铝的碳布电极12、14之间的外部电连接。
为了说明的目的,图1中提供了特殊的几何形状。根据本发明,以下图12到22中显示了较佳的几何形状,图2到5概念性地显示了本原理的特定特征;图6到9显示了等效电路,尤其,通过本原理使内阻部件最小化;图10和11显示了注入铝的碳纤维布电极的制造过程方面;图23和24使用流程图显示了本发明的双层电容器的制造过程;图25和26提供了本发明长寿命方面的实验证据。
参考图1,注入铝的碳布电极12、14最好由其中注入熔融金属,如铝、钛或铜,或者汽化熔融金属,如铝、钛或铜,的多孔碳纤维布(碳布预制件)或碳纸预制件构成。
在金属注入碳纤维布期间,精密地控制注入铝的碳布电极12、14的多孔性,以保持较高的表面积对体积的比,使足够多的电解质20可引入双层电容器10中,具体而言渗透过碳纤维布的孔隙,因此使注入铝的碳布电极和电解质之间的界面面积(表面积)最大化。
每个集电板22、24分别电耦合到注入铝的碳布电极12、14中的一个。较佳的是,集电板22、24是铝箔薄层,或类似高电导率材料的薄片。
多孔分离层18位于注入铝的碳布电极12、14之间,并且集电板22、24远离多孔分离层18。多孔分离层18最好由非常多孔的材料制成,它作为注入铝的碳布电极12和14之间的电绝缘体,但是它允许流体传递,尤其是流过多孔分离层18的离子流。多孔分离层18的目的是确保注入铝的碳电极12、14相互从不直接机械接触。电极间的这种接触将导致电极之间短路(也就是电子流,与离子流反向),因此快速耗尽存储在注入铝的碳布电极12、14中的电荷,之后注入铝碳布电极12、14中不能再存储电荷。然而,多孔分离层18的多孔特征允许电解质20中的离子(离子流)在注入铝的碳布电极12、14之间移动,因此,换句话说,即离子流在电极12、14之间的电解质中流动。较佳的多孔分离层18是大约1mil(0.001英寸)厚的、多孔的、基于聚丙烯或基于聚乙烯的薄层。如果要求,在将聚丙烯或聚乙烯分离层插入注入铝的碳布电极12、14之间前,可以先将它浸泡在电解质20中,虽然不需要这种预浸泡。
外壳11可以是任何常用于双层电容器的熟知装置。下文中参考图11到22描述了较佳的包装类型,其中使用焊接端板(包括用于通孔电极的密封玻璃-金属封口,和用于“壳体”电极的焊接电极)的外壳。
为了使双层电容器10的能量密度最大化,有利的是使外壳11的重量最小化。
通常期望封装后双层电容器的重量不要超过未封装双层电容器重量的25%。
接头28、29穿过外壳11从集电板22、24延伸出来,它适用于与电路(未图示)连接。在较佳结构中,如以下所述,一个集电板通过焊接到端板上的相应接头(端板依次焊接到外壳上),电耦合到外壳11。
1997年4月15日公布的,Farahmandi等人的美国专利号5,621,607题为“HIGH PERFORMANCE DOUBLE-LAYER CAPACITORS INCLUDING ALUMINUM CARBONCOMPOSITE ELECTRODES”的申请中,1998年7月7日公布的,Farahmandi等人的美国专利号5,777,428题为“ALUMINUM-CARBON COMPOSITE ELECTRODE ANDMETHOD FOR MAKING SAME”的申请中,1996年7月16日提交的,Farahmandi等人的美国申请序号08/686,580题为“METHOD OF MAKING A HIGH-PERFORMANCEULTRACAPACITOR”的申请中,1999年1月19日公布的,Farahmandi等人的美国专利号5,862,035题为“MULTI-ELECTRODE DOUBLE-LAYER CAPACITOR HAVINGSINGLE ELECTROLYTE SEAL AND ALUMINUM IMPREGNATED CARBON CLOTHELECTRODES”的申请中,以及与本申请同时提交的Farahmandi等人的“MULTI-ELECTRODE DOUBLE-LAYER CAPACITOR HAVING SINGLE ELECTROLYTESEAL AND ALUMINUM-IMPREGNATED CARBON CLOTH ELECTRODES”中显示了使用注入铝的碳布电极制造的双层电容器的实例,所有这些申请都通过引用结合于此。
注入铝的碳布电极12、14是充分多孔的,较佳的是碳布中注入足够多的铝,使得当用于2.3-3.0伏特的电池中时每个电极的等效串联电阻为大约1.5Ωcm2或更小,每个注入铝的碳布(或碳纸)电极12、14的电容为大约29F/g或更大。由于通过使用碳布(或碳纸)获得较大的表面积和电容器层之间非常小的间隔距离,所以可以获得这种较大的电容。
很多本双层电容器的附加优点源自制造注入铝的碳布电极12、14的较佳方法、连接集电板22、24的较佳方法以及使用高性能的电解质。以下将更详细地讨论本发明的每一方面。
如上所述,注入铝(或其它高电导率材料)的碳布电极12、14最好由注入熔融液态或汽化金属的多孔碳布预制件(碳纤维布)或碳纸预制件(碳纤维纸)制成,所述金属最好是铝、钛或铜。除了碳纤维布和碳纤维纸,注入铝的碳布电极12、14可以由任何合适的活性碳纤维材料制成,如碳纤维毡,或其它具有足够孔隙的活性碳纤维基底,以接受熔融的铝(或其它高电导率材料)和最后的电解溶液。
铝在体积上渗入碳纤维布中活性碳纤维各个纤维束的纤维间隙中,以下将详细描述。铝渗入碳纤维束的纤维间隙中的结果是在碳纤维布的活性碳单元和集电板之间产生较低的横向阻抗电流通路。此外,铝减小了活性碳单元之间的阻抗。同时,随着碳纤维布中渗入铝,不仅仅是覆盖,同时也不是浸透或包围,注入铝的碳布电极还保持足够多的孔隙,使得电解溶液,最好是无水的电解溶液彻底地渗入活性碳纤维的孔隙中。
双层电容器10的注入铝的碳布电极12、14的制造过程以制造碳纤维布或碳纤维纸开始。碳纤维布或碳纤维纸通常是大表面积活性碳纤维的人造纸或布预制件。较佳的碳纤维预制件是碳纤维布。碳纤维布最好是市场可获得的碳纤维布,它使用由活性碳纤维组成的编织碳纤维束,编织碳纤维束的表面积不小于100m2/g,通常为大约500到3000m2/g,它的直径为大约8-10μm。碳纤维布的结构稳定性通常优于碳纤维纸。然而,可以设计活性碳纤维的表面积和其它尺寸,以满足应用的需要,而不管是碳纤维布、碳纤维纸或其它。
最好使用电弧喷射(或等离子喷射)技术实现将熔融金属,如铝、钛或铜,注入碳纤维布,以下将详细描述。先前,在双层电容器构造中已经使用了将熔融金属电弧喷射在碳纤维布的表面上,作为在碳纤维布表面形成集电器的手段。根据定义,与将电弧喷射熔融金属注入碳纤维布相反,这包括在碳纤维布表面上沉积较厚的、实质不渗透金属层,前者则将喷射金属大量注入碳纤维布,以减小碳纤维布的活性碳纤维之间以及活性碳纤维和集电板22、24之间的接触电阻,因此形成由碳纤维布(它由活性碳制成)和注入金属组成的阻抗非常低的碳/金属混合电极。
控制电弧喷射技术,以渗透入碳纤维布中,以下将详细描述。通过调节喷射单元的电流和气体喷射强度、熔融铝的温度和压力、等离子喷射单元到碳纤维布的距离、喷射单元的扫描速率以及喷射过程中的周围气流(也就是使排出的气流在离开喷射单元的方向与喷射方向相同地流过碳纤维布),以实现该控制。有利的是,当使用电弧喷射将铝注入碳纤维布中时,碳布的体电阻率大大地减小,就如集电箔22、24和注入铝的碳布电极12、14之间的接触电阻。
参考图2,显示了双层电容器60的示意图。双层电容器60包括被多孔分离层66电分离的注入铝的碳布电极62、64。别处将详细解释,注入铝的碳布电极62、64包括形成碳纤维布的碳纤维束中活性碳纤维的相对密集、但可压缩的织物,其中已经通过使用例如电弧喷射过程,注入熔融的铝。
第一注入铝的碳布电极62与集电板68接触,集电板68依次连接到双层电容器60的第一接头70。同样,另一注入铝的碳布电极64与另一集电板72接触,集电板72连接到电容器60的第二接头74。用高电导率的无水电解溶液76(或电解溶液76)填充注入铝的碳布电极62、64之间的区域,以及注入铝的碳布电极62、64内所有可得到的空间和空隙。电解溶液76的离子能够自由地通过多孔分离层66的孔隙或通孔65;而同时,多孔分离层66阻止第一注入铝的碳布电极62实际接触另一注入铝的碳布电极64,从而引起短路。
较佳的多孔分离层是使用例如聚丙烯制成的。聚丙烯包括直径为大约0.04到0.12μm的孔隙开口。这种尺寸的孔隙能防止碳纤维布中直径为大约8-10μm的活性碳纤维穿过孔隙,而允许离子流流过多孔分离层66。另一合适的多孔分离层是使用聚乙烯制成的。聚乙烯一般具有的孔隙尺寸为大约0.1μm的直径或更小,因此它也能防止最小直径为8μm的活性碳纤维穿过,而仍然允许离子流流过多孔分离层66。
在工作中,当在双层电容器的接头70和74之间,因而在注入铝的碳布电极62、64之间施加电势时,在浸泡在电解溶液76中的每个注入铝的电极62、64处的电解溶液76中形成极化液层。就是这些极化液层存储静电能量,并起双层电容器的作用,也就是起两个串联电容器的作用。尤其,如图2中用“+”和“-”符号(表示浸泡在电解溶液76中每个注入铝的碳布电极的电极-电解质界而处的电荷)概念性描述的那样,当在注入铝的碳布电极62、64之间施加电压时,例如当第一注入铝的碳布电极62相对于另一注入铝的碳布电极64带正电时,由于在施加的电场下电荷分离,还由于注入铝的碳布电极62、64整个表面上电解溶液分子的偶极取向和排列,通过电解溶液离子的极化,形成双电层(图2中用符号表示为两个“+/-”层)。该极化根据以下关系存储电容器60中的能量:
C=keA/d          (1)
以及
E=CV2/2          (2)
其中C是电容,ke是双电层的有效介电常数,d是层之间的分隔距离,A是浸泡在电解溶液中的注入铝的碳布电极64、62的表面积,V是施加在注入铝的碳布电极62、64之间的电压,E是存储在双层电容器60中的能量。
在双层电容器的本实施例中,分隔距离d非常小,使得以埃为单位测量它,而表面积A,也就是每克电极材料的表面积“A”,可以相当大。因此,可以从等式(1)中看出,当d非常小,A非常大时,电容将非常大。
在本实施例中,因为由注入铝的碳布电极62、64组成,所以表面积“A”非常大。每个注入铝的碳布电极62、64包括形成碳纤维布的碳纤维束织物。每个碳纤维束由多根活性碳纤维组成。
参考图3,概念性地示意了一小段单个活性碳纤维76的特写画面。从该图可见,各个活性碳纤维76上有多个凹陷通孔或孔隙80,如图中概念性示意的那样。如上所述,各个活性碳纤维80通常直径为大约8-10μm;而各个活性碳纤维76中凹陷、通孔和孔隙80通常的尺寸为大约40埃。当活性碳纤维76浸在电解溶液76中时,每个凹陷或通孔80大大地增加了暴露于电解溶液76中的活性纤维的表面积。
因为每个纤维束中有多根活性碳纤维78,还因为碳纤维布织物中有多个纤维束,所以三维的注入铝的碳布电极结构使电解溶液可渗入碳纤维布织物、织物纤维束和碳纤维束中各个活性碳纤维的通孔和孔隙中,以接触所有或大部分纤维表面积,从而大大增加了电极的表面积“A”,该电极上形成带电分子的双电层。
作为实例,本领域中所熟知的合适碳布可用于制造本实施例的注入铝的碳布电极62、64(图2)。例如,这种碳布的活性碳纤维,如图3中所示的活性碳纤维76、78,其直径大约为8微米(8×10-6m);而碳纤维布的总厚度为大约0.53毫米(mm)。活性碳纤维中孔隙的平均直径为大约44埃,孔隙/空隙体积为大约0.2ml/g。要注意到孔隙/空隙体积来自布中三种不同类型的空隙或孔隙:(1)各个活性碳纤维中的孔隙或凹陷(如图3中的孔隙80,它覆盖各个活性碳纤维的大部分表面积);(2)形成碳纤维束的活性碳纤维之间的间隔(为了本发明的目的,当从如图5的截面图观察时,该间隔称为碳纤维束的“纤维间隙”);(3)编织成碳纤维布的碳纤维束之间的空隙。这种孔隙/空隙体积使得碳纤维布的总表面积为大约2500m2/g。由于碳纤维布的孔隙/空隙体积,碳纤维布不仅具有较大的表面积,并且还有些柔软,因此可以压缩。布的密度通常为大约0.26g/cm3,所得理论上有效面积/单位体积(也就是空隙体积)为大约650m2/cm3。根据这种面积/单位体积,因此可以获得大约为6F/cm3的电容(见等式(1))。
然而,获得较高的电容只是本实施例优点的一部分。如果这种高电容实际用于电容器中,那么电容器必须能够在相当短的时段内存储并释放能量,也就是它必须能够象电容器一样工作。以下将详细描述,电容器的充电/放电时间由电容器的内阻支配。电阻越低,充电/放电时间越短。
参考图6,图2中所示的本实施例双层电容器60的内阻由若干分量组成,如双层电容器60的等效电路图中所示。如图所示,双层电容器60的内阻包括接触电阻RC,它表示电容器接头70到注入铝的碳布电极62(图2中表示为电容器C1的上板)之间电路中的所有电阻,或电容器接头74和注入铝的碳布电极64(在图2中表示为电容器C2的下板)之间电路中的所有电阻。
进一步看出,双层电容器60的内阻还包括电极电阻REL,它表示注入铝的碳布电极62内的(或注入铝的碳布电极64内的)电阻,该电极位于用于制造注入铝的碳布电极的碳纤维布表面处集电板/碳纤维布界面和用于碳纤维布内的所有独立活性碳纤维之间,也就是REL表示注入铝的碳布电极62中(或另一注入铝的碳布电极64中)活性碳纤维之间的内接触电阻。此外,还存在与电解溶液76相关的电解溶液电阻RES,并且还存在与多孔分离层66相关的分离层电阻RSEP
存储在双层电容器60中的任何能量必须作为流过注入铝的碳布电极62的RC、REL和RES,流过RSEP,并流过另一注入铝的碳布电极64的RES、REL和RES的电流,进入或退出双层电容器60。因此,可以看出为了达到实际充电/放电时间,RC、REL、RES和RSEP的值必须尽可能地保持较低,这些值与C或C1+C2的组合定义双层电容器60的时间常数TC
分离层的电阻RSEP是分离层的孔隙和厚度的函数。较佳的分离层材料是厚度为大约0.001英寸(0.025mm)的聚丙烯。另一分离层材料是聚乙烯,其厚度也为大约0.001英寸(0.025mm)。
基于聚丙烯的分离层内在具有约为20-40%孔隙的较小孔隙规模。基于聚乙烯的分离层具有约为60-80%孔隙的较大孔隙规模,与聚丙烯分离层相比,它还具有较多的弯曲或扭绞的通路供电解质离子从中流过。聚丙烯分离层为片状结构,而聚乙烯分离层具有更薄的结构。
通过所用特定电解溶液的电导率确定电解溶液RES的电阻。在所用电解溶液类型的选择中,必须考虑几个权衡。含水(无机)电解溶液的电导率一般高于无水(有机)溶液(如相差10到100倍)。然而,含水溶液将电容器的工作电压限制在大约0.5伏特到1.0伏特。因为存储在双层电容器60中的能量是电压平方的函数(见等式2),所以高能量的应用最好使用无水电解溶液,它允许电池电压为大约2.0到3.0伏特,即使无水电解质具有较低的电导率。
如上所述,用于这里所述双层电容器的较佳电解溶液是用乙腈(CH3CN)和合适盐类的混合物制成的,该混合物的电导率约为50ohm-1/cm。虽然发明人预期在有些环境中使用无水电解溶液是有利的,但是其它电解溶液也是较佳的。例如,Farahmandi等人1994年7月10日提交的上述美国专利申请序号08/319,493题为“MULTI-ELECTRODE DOUBLE LAYER CAPACITOR HAVING SINGLEELECTROLYTE SEAL AND ALUMINUM-IMPREGNATED CARBON CLOTH ELETRODES”的申请中揭示了几种其它的电解溶液。
然而,使用无水(有机)电解溶液会引起严重的泄漏问题,尤其在容许极小泄漏率的较小器件中,在下文中将指出。具体而言,含水电解溶液设计主要关心电解质漏出电容器外壳,与该设计相反,在无水电解溶液设计中,已知的现有方法尚未解决的重大问题是泄漏入电容器外壳的污染物,即水和空气。随着时间的过去,泄漏入电容器外壳的污染物将使无水电解溶液衰竭,减小电容器的电容并增加内阻。
在较大的器件(电解溶液容量较大的器件)中该泄漏的问题就没那么严重,因为在给定的时刻,对于一个给定的泄漏率,任何给定时刻的污染电解溶液将产生较小的电解溶液总容量百分比。然而,在如参考图12-24描述的较小装置(电解溶液容量较小的器件)中,在给定的时刻,以给定的泄漏率,污染的电解溶液将产生较大的电解溶液总容量百分比。
因此,如下文所述,本实施例提供的重大有利论点是使用密封的外壳(在下文中将其规定为泄漏率在73时小于0.00005g/m2/天,在110时小于0.00009g/m2/天)(见表5),因此发明人首次实现了长寿命、小容量、无水电解溶液的双层电容器设计。获得密封外壳的制造和装配技术是以下进一步讨论的主题。图25和26说明大小相同、带有密封封口和不带有密封封口的双层电容器之间性能特征的差别。
此外,如下文所述,希望使用可焊接的双层电容器接头,例如焊接在印刷电路板上。在这种情况下,包含密封封口的双层电容器外壳将暴露于热源中。因此,可焊接的接头应该包括热膨胀系数与密封封口本身大致相同的材料,否则双层电容器将经历密封封口和可焊接接头之间非蓄意安排的泄漏。参考图12到24中的实施例讨论特殊类型的可焊接接头。
本实施例的另一重大优点是较低的内阻,这对于用实际方法获得非常大电容的双层电容器很重要。一般,接触电阻RC与电极电阻REL的组合(两者以上都已定义)表示双层电容器60的重大内阻来源。至今,较高的电极电阻是开发实际、商业可行、高能量密度、双层电容器的主要阻碍。本实施例的关键特征是提供一种双层电容器,它具有通过非常大的注入铝的碳布电极表面积而获得的较低电极电阻,和较高能量密度。本实施例的主要目的是将RC+REL减小到小于RSEP的值。因此,以下的大部分讨论集中于小尺寸、高能量密度、长寿命、双层电容器中减小电极电阻REL和接触电阻RC的制造和装配技术。
为了进一步说明电极电阻REL在本实施例双层电容器60的工作中起的重要作用,接着参考图7。图7显示了注入铝的碳布电极双层电容器60的等效电路图。与图6中所示的不同,电极电阻REL表示为一系列分离的电阻REL1、REL2、REL3,表示增加的电阻为活性碳纤维(就电方面而言)中距离的函数,电流的特定部分在流入电解质之前通过活性碳纤维传播(作为离子流)。
通常,在流入电解质之前,与通过碳纤维布整个厚度的活性碳纤维传播的电流相比,流入并流出集电器附近活性碳纤维的电流经历较低的电极电阻。
同时,流入集电箔附近电解质的电流(在通过活性碳纤维传播比较小的距离之后)具有较大的通过电解溶液的通路距离,因此与在通过碳布整个厚度传播之后流入电解溶液而具有较小的电解溶液电阻RES的电流相比,具有较大的电解溶液电阻RES。图7通过具有“梯”结构的串联/并联电路示意了REL和RES之间的反比关系,“梯”结构中表面积每个单元的各个电容函数是梯的“级”,串联的各个电极电阻形成梯的一条“臂”,串联的各个电解溶液电阻形成了阶梯的另一条“臂”。接触电阻耦合到一条臂的一端,分离层电阻耦合到另一条臂的另一端,使得通过各个电容传播的电流经历至少一个电极电阻和至少一个电解溶液电阻,电极电阻的数目(也就是电阻量)与电解溶液电阻的数目(也就是电阻)成反比。
图7还显示了第一部分电流,它以通路“A”进入并流出相对接近集电箔/碳纤维布界面的碳纤维布,并通过电解溶液传播相对大的距离,第二部分电流,它以通路“B”进入集电箔/碳纤维布界面处的碳纤维布,并在中间位置处流出,通过电解溶液传播的中间距离,以及第三部分电流,它在通过碳纤维布整个厚度之后以通路“C”进入集电箔/碳纤维布处的碳纤维布,通过电解溶液传播相对短的距离。
发明人了解电阻的这些来源对他们成功地将电阻减小到允许制造商业可行、实际、高电压、低内阻、小尺寸、长寿命、双层电容器的程度很重要。
有利的是,在本实施例中,通过双层电容器的总电流经历的总电阻不大于125mΩ。
参考图8,显示了具有单个集电器802和单个分离层808的单个电极804的示意图。示意图800表示电荷可以作为从分离层808通过电极804和电解溶液到集电器802的流程的多个通路。
电荷可以通过电极804取通路“D”,首先经历RSEP,然后进入电极804,直到它进入碳纤维束806。然后,电荷通过碳纤维束806轴向传播到集电器802。电荷经历来自电极804的电阻REL,和来自电解溶液的电阻RES。然后,电流流过集电箔802,经历RC。如不同通路“D”、“E”和“F”所示,对于每个电荷和所用的通路,电极和溶液电阻的值发生变化。例如与通路“F”中的电荷相比,采用通路“D”的电荷经历较大的溶液电阻(RES)和较小的电极电阻(REL)。每个通路还产生分离的电容。有效电容是分离电容C1到CN之和。
参考图9,显示了简化电路,它说明使用双层电容器作为功率源,将能量传送给负载RL。在图9中,电容器内阻RZ包括图6中所示的所有电容器内阻,包括与两个接头关联的接触电阻2×RC、注入铝的碳布电极电阻2×REL、电解溶液电阻2×RES和分离层电阻RSEP(如果不是小到足以被忽略)。
图7中功率传递电路的总电阻RT
RT=RZ+RL                              (3)
因此,功率传递电路的总时间常数τ为:
τ=RTC                                (4)
而电容器的时间常数τc
τc=RZC                               (5)
负载两端的电压VL
VL=VO(RL/RT)=VO(1-RC/RT)             (6)
传递给负载的功率为
P=IVL=IVO(1-RC/RT)=IVO(1-CRC/CRT)   (7)
或者
P=IVO(1-τC/τ)                       (8)
表达式(1-τC/τ)表示功率传递电路的额定效率评价ε,也就是
ε=(1-τc/τ)                         (9)
因此,功率源(在这种情况下是被充电到电压V0的双层电容器C)能够将功率有效传递到负载RL的程度很大程度上依赖于电容器的特征RC时间常数τc。按照上述定义,电容器的特征RC时间常数又与电容器内阻RZ直接相关。因此,对于使用双层电容器C获得的有效、实际、高速功率传递电路,显而易见的是必须使电容器的内阻RZ最小化,使得能够实现较小的电容器时间常数τc
有利的是,本实施例提供了图9中等效电路所示类型的注入铝的碳布电极双层电容器,当它实质上按下文所述构造时,能够获得较小的内阻,也就是对于图12-24的实施例约为150mΩ或更小。重要的是,根据表1中所示规格工作的双层电容器显示的时间常数τc约为0.2秒。获得的能量密度在2.9-3.5W-hr/kg的范围内,额定功率超过1000w/kg。
                        表1
                  PC-10的性能规格
参数                    值                        单位
电容                    8                         法拉
公差                    ±10                      %
额定电压                2.3                       伏特
额定能量                21                        焦耳
ESR*                    150                       mΩ
@100HZ                  90                        mΩ
(*ESR=电极串联电阻)
额定电流                3                        安培
工作温度                -20到60                  ℃
存储温度                -40到85                  ℃
泄漏电流                0.02                     毫安
(72小时之后)
外壳类型                带有端板的不锈钢壳体
电连接                  连接外壳的两个可焊接的涂覆铂的钼引脚。一个引
                        脚与外壳电绝缘,另一个不绝缘。电连接也可以通
                        过外壳表面接触。
外壳尺寸                24×31×4.5              mm
重量                    6.5                      g
电解质:                有机溶剂(溶剂+盐)
溶剂:乙腈(CH3CN)
盐:四氟硼酸四乙铵(CH3CH2)4N+BF4 -
密封双层电容器,PC 10
在这一点上,将给出对密封双层电容器,也称为PC 10的特定实施例的更详细描述。以下描述参考图10到22的结构描述以及图23和24的过程描述。将金属注入碳纤维布的“纤维间隙”中
首先参考图23的框200,并参考图10和11,制造双层电容器60(图2)的密封实施例所要执行的初始步骤是用熔融的铝94电弧喷射(也称为等离子喷射)碳纤维布92(图10),使得熔融的铝94深深地注入碳纤维束中活性碳纤维的纤维间隙中,该碳纤维束被编织成碳纤维布92。要喷射的碳纤维布92最好是市场上可获得的布。
如图10所示,通常从滚筒96中获得碳纤维布92。滚筒96通常宽约36英寸。在连续的制造过程中,从滚筒96中展开一段碳纤维布92,并固定在一位置,如适当的框架98(图11)中或通过适当的导向器(未示出)。
还显示了具有主线114和次线116的空气压缩机110、电功率源108、x-y控制器102以及铝线106和104,所有这些都连接到电弧喷嘴100。电弧喷嘴具有连接的喷气式喷嘴101。还显示了碳布92、背垫网93、排气扇112和熔融金属喷雾94。
向下电弧喷射到碳布92上,碳布水平地支撑在背垫网93上,以便在金属注入碳纤维布的过程中利用重力。框架98完全是可选择的,因为碳布92一般不需要固定在某一位置。
喷气式喷嘴101实际上是指向碳布92的三个分离喷嘴。空气压缩机110通过主线114将约为50到60ps i的压缩空气发送到电弧喷嘴100;另一线,即次线116将约为40psi的压缩空气传送到喷气式喷嘴101。该次线116增大熔融金属喷雾94对碳布92的强度,因此通过能在较短的时间内喷射较少的铝,并获得与传统线弧喷射技术同样的注入深度,增强了将金属注入碳纤维布中。
使用传统电弧喷射技术的该实施例,称为喷气式喷射技术,与只使用单个电弧喷嘴,而非附加喷气式喷嘴的传统线弧喷射方法相比,实际喷射较少的铝,并允许更有效地将铝注入碳布92中。此外,与传统线弧喷射过程相比,使用喷气式喷嘴101允许以短得多的时间完成注入过程。此外,由于在较短的时间内喷射较少的铝,所以在碳布92表面上形成的所得熔融金属(如铝)层比使用传统线弧喷射技术形成的要薄。
要注意到用于注入碳布的金属不限于铝。熟练的技术人员还可以使用其它合适的金属,如钛或铜。
电弧喷射过程中所用的工作参数如下:电弧电压约为31V时,用于熔化金属的电流为80-90安培。对于图11中的主线114和次线116,将压缩空气的压强分别保持在约为60psi和40psi。喷气式喷嘴101的顶端和碳布之间的距离为4.5到6英寸。在大约1秒的时段内以固定的速率遍历全部喷射图形,而使用传统线弧喷射技术要大约45秒。调节电弧喷嘴100和喷气式喷嘴101,使得熔融的铝流94以最小的重叠尽可能均匀地覆盖碳布92。
框架98或机构将碳纤维布固定在背垫网93之前(图11),处于背垫网93和喷气式喷嘴101之间。如果使用,框架98将碳纤维布92尺寸约为2.3英寸×34.25英寸的“窗口”暴露于熔融铝的电弧喷射94(图11)。X-Y控制器102可以控制电弧喷嘴100和连接的喷气式喷嘴101,以提供碳纤维布92上期望的喷射图形。较佳的是,在注入期间水平地固定碳纤维布92,使得重力进一步地增强将熔融铝注入碳纤维布92的纤维间隙中。
通过将分别来自各铝线滚筒的两根铝线104和106以受控速率放入电弧喷嘴100中形成熔融铝的电弧喷雾94。线材104和106不限于铝线,还可以包括其它合适的材料,如铜或钛。铝线的顶端保持在电弧喷嘴100内,分开特定的距离。电功率源108使电流流过铝线104、106和铝线104、106顶端之间的电弧。电弧使得铝线104、106的顶端熔化并汽化或雾化。当来自铝线104、106顶端的铝熔化并汽化时,喷气式压缩空气从电弧喷嘴100以等离子流的形式喷出铝,该压缩空气由空气压缩机110提供并穿过喷气式喷嘴101。当铝用完并在等离子流94中送走时,量取额外的铝线104、106,放入电弧喷嘴100中,以保持铝线104、106顶端间电弧的期望间隙。用这种方式,连续将铝线104、106量入电弧喷嘴100中,使得汽化或熔融的、雾化铝的恒流能够指向碳纤维布。
在一个实施例中,遵循来回喷射图形,如图11中用框架98内箭头所示,将熔融铝的汽化或雾化流喷射到碳纤维布中。网格开口约为0.25in2的背垫网93使等离子流可连续通过碳纤维布92,以优化将汽化或雾化的熔融铝大量注入碳纤维布92。铝线104、106最好是直径约为1/16英寸的99.5%的纯铝。
在工作中,图10中所示的所有工作设备,如电弧喷嘴100、喷气式喷嘴101、X-Y控制器102、框架98和线材104、106,都位于电弧喷射腔内(以限制熔融并汽化或雾化的铝)。腔内的空气是干燥的。排气扇112保持以远离排气扇喷嘴101方向(较佳的是在下方)通过腔内的恒定气流。在使用时,碳纤维布92被夹在框架98内,执行单个的喷射图形。只电弧喷射碳纤维布92的一面。一旦被喷射,框架98就松开碳纤维布92。然后,根据需要,将一段新的、未喷射的碳纤维布92固定于框架中,用于下一段碳纤维布92的电弧喷射。
使用喷气式喷嘴101在大约1秒的时段内以恒定速率遍历全部的喷射图形。调节喷气式喷嘴101的各个电弧喷嘴,使得熔融并汽化或雾化的铝流以最小的重叠尽可能均匀地覆盖碳纤维布92。
一旦喷气式喷射过程完成后,在碳布92的正面形成一较薄的铝层,并且在碳布的背面上应该可以看出轻微的背垫网93视图。这种图形提供了视觉验证,至少一些铝完全渗入碳布,优化了电弧喷射过程中的大量注入。如上所述,该铝层比使用传统线弧喷射技术形成的层要薄。
图10中引用的所有设备都是常规的。操作这些设备的细节和方式为本领域熟练的技术人员所熟知。
用铝喷射碳纤维布92的目的是减小通过碳纤维布92的横向电阻。表2中总结了在电弧喷射之前和之后获得的并带有各种铝量的、注入铝的碳纤维布电极串联电阻(ESR)的测量数据。
表2
  铝密度(mg/cm3)   电容(F/g)   电容的ESR(Ω-cm2)
  0(未喷射)157209   115>130>140   52.01.5091.299
  250410509   147144>130   1.261.081.308
使用注入铝的碳纤维布电极,它为2500m2/g,切割成直径5.1cm并包含大约0.2g的碳,获得表2中的数据。未喷射碳布中的碳密度为0.26g/cm3
从表2中的数据可以看出,被电弧喷射铝的碳纤维布的电阻最多可以减小到1/50。这种电阻的显著减小是由注入铝的碳纤维布电极结构的体积电阻率的减小引起的,它直接影响了电极电阻REL,因此大大改进了双层电容器显示较小时间常数的能力。
从表2的数据中还可以看出,通过注入铝减小注入铝的碳纤维布电极的电阻是必须优化的过程,为了对于期望数量的铝产生最低的电极电阻。如果铝太少,那电阻将太高。如果铝太多,那么将实质增加注入铝的碳纤维布电极的重量,使能量密度劣化。太多的铝还会妨碍电解质注入碳纤维布织物,以接触活性碳纤维的所有表面积,因此实际上减小了可获得的表面积。
重要的是,指向碳纤维布92(图11)的电弧喷雾94不只用较薄的铝层覆盖碳纤维布的顶端或正面。虽然铝一定覆盖顶面,但是它还深深地渗入碳纤维布中,或在碳纤维布中碳纤维束的间隙中间,因此将铝注入碳纤维布。参考图4A到5B,其中最佳地显示了将铝注入碳纤维布的重要性。
参考图4A,显示了碳纤维布92的侧视截面示意图。从图4A中可以看出,碳纤维布92由多个碳纤维束120组成,编织这些碳纤维束以形成碳纤维布92。为了简化,图4A中只显示了四个这种的碳纤维束120。从图4B中可以看出,每个碳纤维束120由多根活性碳纤维122组成,图4B中概念性地显示了各个碳纤维束120的截面图。
个体活性碳纤维122的轴向电阻非常小,但是通过碳纤维束120的横向电阻相当高。减小该横向电阻,也就是从碳纤维布92一侧的点“A”到碳纤维布92另一侧的点“B”的电阻,以减小电极电阻REL。如图4B所示,用铝电弧喷雾电弧喷射碳纤维布92有利于使铝流入碳纤维束120的纤维间隙126中。这样渗入或注入碳纤维束120的纤维间隙中减小了各活性碳纤维122之间的接触电阻。所得较小的横向接触电阻和活性碳纤维122与原本较小的轴向电阻一同产生了完全通过碳纤维布92宽度的非常低的电阻通路,也就是产生了通过注入铝的碳纤维布电极的非常低的横向电阻。
此外,所用的注入过程不能严重影响碳布92的多孔性。在显微镜等级上保持多孔性,使得充分的电解溶液能进入碳纤维束的孔隙。因此,即使金属浸渍剂占据了碳布的一些空隙体积,但是金属浸渍剂也没有小到足以影响碳布92的孔隙;因此,在注入期间保持了碳布92的多孔性。被喷射碳布92所得的面积/单位体积或被喷射碳布92的空隙体积约为600m2/cm3。另一方面,如果将太多的金属注入碳纤维布中,那么金属会成为电解溶液渗入碳纤维布的障碍。
当电弧喷雾94冲击碳纤维布92时,它不仅如上所述将铝注入碳纤维束120的纤维间隙122,它还在碳纤维布92的顶面上形成铝层124。层124较薄并勾勒出碳布表面的形状。使用图10和11中所示的喷气式喷射技术能提供比传统线弧喷射技术薄得多的铝层124。例如,层124的厚度通常不大于碳纤维束120的1/4厚度。此外,一些铝还填充碳纤维束120之间的一些空隙128。铝层124有助于实现与集电箔68、72较好的电接触(图2),但是不起集电器的作用。也就是说,铝层124用于减小接触电阻RC。碳纤维束120之间空隙128中存在的铝增加了注入铝的电极的重量,因此在获得适当的体积电阻率和较小的特征RC时间常数之后,应该将它最小化。
参考图5A,显示了用三芯扭绞的碳纤维束121制成的碳布92另一实施例的侧视截面图。图5B中显示并进一步描述了三芯扭绞碳纤维束的截面。碳布92完全由三芯扭绞碳纤维束121编织成。
参考图5B,概念性地显示了图5A所示碳布的实施例中三芯扭绞碳纤维束121的截面图。三根碳纤维束123具有各自的纤维,并且显示了每个碳纤维束的纤维间隙,以及金属进入三芯扭绞碳纤维束121的理想注入深度。
将三根碳纤维束123扭绞在一起,以形成三芯扭绞碳纤维束121,它的尺寸和图4A、4B的碳纤维束120大致相同。图5A的碳布由多个三芯扭绞碳纤维束123编织成。当各个碳纤维通过纤维束123长度径向延伸时扭绞使它们旋转;因此,只需要将较少的铝注入三芯扭绞纤维束123的所有各纤维中。这减小了纤维束123中碳到碳触点的数量;因此使用三芯扭绞纤维束与使用图4A中的单个纤维束120相比,减小了碳布92的横向电阻。扭力改变了碳纤维的形状,尤其在碳纤维束123的边缘处,其中碳纤维束123开始有轻微的磨损;因此,允许将更多的铝94注入纤维间隙126中。因此,用图5A的三芯扭绞纤维束改进了图4A中从点“B”到点“A”方向的电流。通过改变碳纤维束121的扭绞和纤维间隙尺寸,可以减小横向电阻;因此,优化碳布92中的横向电流。
铝进入碳纤维束120或三芯扭绞碳纤维束121的纤维间隙126的理想注入深度还未被量化。然而,认为当从截面观看时注入图形类似于图4B和5B所示的,在纤维束暴露于碳布表面处填充可得纤维间隙体积的大约2/3到3/4。这大约穿过整个碳布的1/4,类似的截面图如图4B和5B中的各个碳纤维束所示。
使用喷气式喷射技术,保留在碳布上或碳布内的铝的重量保持在碳布加铝总重量的大约20-30%之间,如25%,或者为包括电解质的总重量的大约15%。与其相比用传统的线弧喷射技术,约为碳布(图4A的碳布或图5A的三芯扭绞碳布)加铝总重量的50%。重量的减小很大程度上归功于沉积在碳布表面上的铝层124的减小。
密封双层电容器的制造
再次参考图23的框图,可以看出在碳纤维布92被喷射并被注入铝之后(框200),形成碳布条(框202)。将碳纤维布切割成用于双层电容器本实施例的具有适当尺寸的碳布条。碳布条可以根据需要切割。
参考图12,显示了端板132、第一接头134、第二接头136、第一接头134和端板132接口处的玻璃-金属封口138(也称为密封封口)、绝缘层140和第一集电箔130。
参考图23,执行形成双层电容器外壳和端板132的预备步骤(框220)。外壳(如图21A到22所示)是包含不锈钢的金属外壳,虽然还可以包含其它金属,如钛或铝。端板132通常由与外壳相同的金属制成。接着,用穿通式接头用的玻璃-金属封口138将电容器接头安装在端板132上(图23中框222)。第一接头134安装在端板132中,使得在第一接头134和端板132之间形成密封封口或玻璃-金属封口138。玻璃-金属封口138隔绝第一接头和端板,并提供一封口,使得实质上减少泄漏到双层电容器中的污染。以下将进一步描述该特征的优点。如图所示,第一接头134是穿通式接头,它穿过端板。第二接头136也安装(焊接)到端板上。带有接头134、136以及玻璃-金属封口138的端板132可以从位于威斯康星州的Teknaseal公司商业获得。在该实施例中,密封封口使第一接头与端板、外壳绝缘。
密封封口或玻璃-金属封口138包含石英(66%)、氧化硼(17%)、氧化铝(8%)、氧化钾(1%),氧化钠(7%)和氧化锂(1%)。表3显示了与玻璃-金属封口138关联的物理特征。重要的是,热膨胀和收缩与端板132匹配,使得玻璃-金属封口138和端板132的膨胀和收缩相同,以实现温度范围内的密封。
                            表3
物理特征
特征                                        单位
热膨胀                56×10-7
热收缩                71×10-7             521-25℃
疲劳pt                479                   ℃
退火pt                521                   ℃
软化pt                710                   ℃
密度                  2.32                  gm/cm3
介电常数              6.7                   25℃,1MHz
损耗因数              4%                   25℃,1MHz
150℃的体积电阻率     11.76                 (log 10)ohm-cm
250℃的体积电阻率     7.1                   (log 10)ohm-cm
350℃的体积电阻率     5.7                   (log 10)ohm-cm
击穿电压              2.1                   KV,304SST
此外,用可焊接的电容器接头是有利的,如焊接到印刷电路板或其它类似的装置。为了使第一接头134和第二接头136可焊接,第一接头134和第二接头136包括覆盖铂的接头或覆盖铂的钼线。使用铂覆盖,使得接头可焊接,使用钼是因为它具有类似于玻璃-金属封口138的热膨胀和收缩系数。铂和钼都具有类似与玻璃-金属封口138的热膨胀和收缩系数。因此,当接头暴露于热源中时,覆盖铂的钼接头将以与玻璃-金属封口138相同的速率膨胀。如果热膨胀和收缩系数不相同,那么接头的膨胀将快于玻璃-金属封口138,并可能挤破玻璃-金属封口138,或者因电解溶液可泄漏而降低玻璃-金属封口138的效力。在非常小的设计中,如图12到24所示的密封电容器,阻止这种泄漏是一个重要特征,因此使用玻璃-金属封口138。因此,对第一接头134的铂化钼的特定选择,由于该接头是穿通接头,所以对电容器的寿命很重要。第二接头136可以覆盖铂,用于焊接,但是不要求它是钼线,因为它不穿过金属板132。
可以用本领域中所熟知的各种方法,将铂包层施加于钼线上,如浸渍或扩散结合。覆盖铂的钼穿过端板,然后在覆盖铂的钼和端板之间形成玻璃-金属封口138。铂包层的厚度为大约100微英寸。除了钼之外,还可以使用其它材料,如钛;然而,钛的电阻比钼大。
再次参考图23,在准备碳纤维布条并行的路径中,准备集电箔。准备集电箔的第一步是将铝箔预切割成接近期望的尺寸(框208),然后将铝箔冲切成精确的尺寸(框210)。用于集电器的较佳铝箔的厚度为大约0.002英寸。对于该实施例,形成两个集电箔。第一集电箔130(具有正极性)长大约44mm,宽大约25mm。第二集电箔(具有负极性)约为62mm×25mm。
第一集电箔130的一个边缘接合或焊接到第一接头134的内部(图23中框212),该第一接头134在玻璃-金属封口138处穿过端板132;因此提供了第一接头134暴露(或外部)部分和第一集电箔(130)的电连接,同时使第一集电箔,第一接头134与端板132绝缘。可以将绝缘层140插入端板132和集电箔130的上边缘之间,以进一步确保第一集电箔130与端板绝缘。将第二接头136焊接到端板112上,使得第二接头136不穿过端板112。第二接头136与端板电接触。
参考图13,显示了端板132、第一接头134、第二接头136、填充孔142、玻璃-金属封口138和焊接到第一接头134内部的第一集电箔130的顶视图。
参考图23的框218,形成电极子组件。图14到20说明了该过程。
参考图14,注入铝的第一碳纤维布144重叠在第一接头134的内部上,碳纤维布144的铝层安排成抵靠第一集电箔130,使得在第一碳纤维布144和第一集电箔130之间产生较小接触电阻的电连接,从而又使第一碳纤维布144和第一接头134之间产生较小接触电阻的电连接。第一碳纤维布144形成双层电容器的第一电极146。
参考图15,显示了包括碳布的第一电极146的顶视图,注入铝的第一碳纤维布144重叠在第一接头134和集电箔130的内部上,第一碳纤维布144的铝层安排成与集电箔130电接触,使得在第一碳纤维布144与第一集电箔130、第一接头134之间产生较小接触电阻的电连接。还显示了端板132和填充孔142。
再次参考图23,可以看出除了准备注入的碳纤维布(框200-202),准备集电铝箔130(框208-210)之外,还必须通过预切割分离层材料条形成多孔分离层66(图2),该材料如聚丙烯或聚乙烯。合适的基于聚丙烯的分离层材料在市场上可获得。所用典型的基于聚丙烯的材料大约0.001英寸厚,其平均孔隙尺寸为大约0.04×0.12μm。
然而,当期望使用可焊接的电容器接头,也就是上述覆盖铂的钼接头时,必须注意所选的内部成分,因为在焊接过程中电容器外壳可能暴露于热环境中。例如,在自动焊接过程中,估计电容器外壳将暴露于高达250℃的焊接炉中长达5分钟。因此,内部成分必须要能够承受热量。分离层材料是最脆弱的,因为在高热量的情况下它将熔化。这种熔化将导致电容器内的短路。在测试过程中,当暴露于这种热量中时,通常用于双层电容器设计的基于聚丙烯的分离层与乙腈(溶剂)中包含四氟硼酸四乙铵(盐)的电解溶液的组合将失效(也就是分离层熔化)。即使当暴露于同样的热量中大约10秒钟时,一些测试电容器也会失效,而它们不产生较大的并联电导。
因此,在可焊接接头的实施例中,使用基于聚四氟乙烯的多孔分离层,它可以从位于马里兰Elkton的W.L.Gore and Co.获得。关于电容和电阻,基于聚四氟乙烯的分离层基本上与上述基于聚丙烯和基于聚乙烯的分离层等效。基于聚四氟乙烯的分离层,结合四氟硼酸四乙铵(盐)和乙腈(溶剂),以及四氟硼酸四乙铵(盐)和碳酸丙烯(溶剂)的电解溶液,能够在传统的焊接炉中承受250℃的热源长达5分钟,而基于聚丙烯和基于聚乙烯的分离层都会失效(也就是熔化)。以下所示的表4说明了在暴露于250℃的热源中5分钟之前和之后电阻和电容的结果。电容的变化可以忽略,而只观察到在用碳酸丙烯和乙腈作溶剂的电解溶液中电阻有稍微增加。因此,乙腈是较佳的溶剂。聚丙烯分离层在暴露中再次失效(熔化)。
                                      表4
  电解质        电容(F)           电阻(ohms)
  (之前)   (之后)   (之前)   (之后)
  聚四氟乙烯(四氟硼酸四乙铵和乙腈)   10.5   10.23   0.129   0.200
  聚四氟乙烯(四氟硼酸四乙铵和碳酸丙烯)   10.02   9.94   0.376   0.394
参考图16,多孔分离层148(如上所述基于聚丙烯或基于聚四氟乙烯)重叠在第一碳布电极146(表示为虚线)上,并使用多个已知热封闭或焊接技术中的任何一个,密封其边缘。这样,多孔分离层就包覆了第一碳布、第一集电箔和第一接头134的内部。
参考图17,显示了图16的顶视图,使得当多孔分离层包覆第一碳布144、第一集电箔130和第一接头内部时,多孔分离层148的密封边缘尤其明显。
参考图18,第二碳纤维布150沿第一接头134的内部重叠在多孔分离层148上,这时铝层背对第一集电箔130且背对多孔分离层148。该第二碳纤维布150形成了双层电容器的第二电极。
接着,仍然参考图18,显示第二集电箔152沿第一接头134的内部重叠在第二碳布150上。第二集电箔152在第二碳纤维布150铝层的一半上完全延伸,在第二碳纤维布150铝层的另一半上延伸一半,使第二碳纤维布150铝层中一侧的一半暴露在外。
参考图19,显示了折叠电极组件151,其中将第二碳纤维布150一侧暴露的一半朝向在第二碳纤维布150另一侧一半上延伸的第二集电箔152部分折叠;因此,使暴露的一半接触第二集电箔152,并在第二碳纤维布150和第二集电箔152之间沿第二碳纤维布150的整个铝层产生较小接触电阻的电接触。
参考图20,显示了以上所述那样装配的端板132、第一接头134、第二接头136、第一集电箔、第一碳纤维布、多孔分离层、第二碳纤维布和第二集电箔的侧视图。这些零件统称为电容器子组件。
接着,在机械压力下将第一和第二碳纤维布、多孔分离层,以及第一和第二集电箔压制在一起,从而要受到约为1600psi的压力(图23中框223)。碳纤维布是有些弹性的,所以施加该压力能压缩碳纤维束的织物,使碳纤维布变薄15-20%。该碳纤维布厚度的减小直接转换成注入铝的碳纤维布电极厚度的减小,当装配时,转换成注入铝的碳纤维布电极的电极电阻REL的减小。此外,更重要的是,施加压力使碳纤维布92的顶面光滑(消除了凹陷和凸起),所以第一碳布144和第二碳布150上更多喷射铝层124(图4)的表面积能够分别接触到第一集电器130和第二集电箔152,以减小双层电容器的接触电阻RC
接着,将电容器子组件154仔细地插入外壳或壳体156中(图23中框224),使得暴露于电容器子组件154外部的第二集电箔与外壳156的内部电接触,使外壳156的边缘与端板132的边缘接触。接着,通过焊接将端板132适当固定,因此使外壳密封(框224),并使端板132与外壳和第二集电箔152电接触。焊接到端板132上的第二接头136与外壳和第二集电箔152电接触,如第二接头136与第二电极电接触极,第一接头134与第一电极电接触。
参考图21A到22,显示了被插入外壳156中的电容器子组件154,端板132的边缘焊接到外壳156的边缘。还显示了焊接到填充孔142的球轴承161。直到图24的框248,球轴承161才焊接到该位置。该结构组合在此称为电容器组件160。
参考图21B和22,显示了施加在电容器组件160一侧的褶皱162。通过用起皱工具压印电容器组件160的一侧,形成褶皱162(框226)。如图21A所示,在电容器组件的相反侧上显示了褶皱162。褶皱162的目的是向折叠的第一和第二电极施加适度、恒定的压力。褶皱162使第一碳布144、第二碳布150、多孔分离层148、第一集电箔130、第二集电箔152和外壳紧密地物理接触,并提供较佳的电接触(低电阻)。褶皱有助于减小部件之间的电阻,并轻微地压缩了注入型碳布,有效地减小了碳布的内阻。适度、恒定的压力部分能使双层电容器达到较高的电容。褶皱162还起到增加电容器组件结构完整性的作用。
密封电容器或电容器组件160的另一特征是第一接头134和第二接头136,它们可以装配或直接焊接在印刷电路板上。电容器组件160和接头的尺寸被最小化。玻璃-金属封口使第一接头与外壳156绝缘,第二接头与外壳导通。或者,两个接头都是穿通接头,并都与外壳156绝缘。然而,这样将产生污染可以进入的另一位置(在第二接头处)。由于组件160的尺寸较小,所以较佳的是只有一个用玻璃-金属密封的接头,另一个只焊接到端板上。
再次参考图23,一旦封闭并褶皱外壳(框226),就测试电短路(框228)。仅仅通过测量电容器接头之间的电阻,执行该测试。在理想的双层电容器中,该电阻(对于“干”组件-电解质还未注入封闭的外壳)应该是无穷大。封闭的干组件接头之间的较低电阻测量值,如只有几欧姆,表示组件内部发生电短路。实际上,至少20MΩ的干电阻可接受该电短路测试合格。
参考图21A和图24,在该点处,通过长时间,如48小时排空外壳,以干燥电容器组件的内容。排空外壳,完全干燥内部部件(框230)。这种干燥过程通常进行2或3天,包括通过填充孔将真空泵连接到封闭的组件,并保持约为10-6Torr的恒定负压一段指定时间,如48到72小时。一旦干燥后,测试组件的泄漏(框232)。可以使用本领域中熟知的任何适当技术,执行这种泄漏测试。较佳的泄漏测试包括当封闭外壳仍然连接到真空泵时,并且当其中保持负压时,在封闭外壳上或周围喷射惰性气体,如氦(He)。如果有泄漏,那么外壳内的负压将通过泄漏吸入氦气,然后在真空泵的输出流中可以检测到氦气。
如果成功地通过泄漏测试,那么准备通过填充孔将指定量的特定电解溶液注入外壳(框246)。通过使用受控环境中的真空渗透过程,将电解溶液引入电容器组件中,使得污染最小化。
通过将选择的盐溶解在指定的溶剂中,以混合电解溶液。因此,为了制备该溶液,要制备溶剂(框234)并获得指定的盐(框236)。如上所述,较佳的溶剂是有机溶剂乙腈(CH3CN)。较佳的盐是四氟硼酸四乙铵或(CH3CH2)4N+BF4 -。要注意到对于可以焊接的实施例,较佳的盐仍然是四氟硼酸四乙铵,较佳的溶剂仍然是乙腈。此外,另一较佳的盐是四氟硼酸三乙基甲基铵,或(CH3CH2)3CH3N+BF4 -,它比四氟硼酸四乙铵稍微更易溶解。通过首先将盐干燥12个小时,然后将干燥的盐溶解在溶剂中,以混合电解溶液(框238)。盐与溶剂的比值为303.8g/升,即1.4摩尔/升。
一旦混合后,就测试电解溶液的杂质(框240)。重要的是,可以将电解质中水的含量减小到小于20ppm(百万分之20),较佳的是小于15ppm。如果电解质中杂质,如水,的等级起过了20ppm,那么双层电容器的工作寿命将受到不利的影响。重要的是在将电解质注入双层电容器的外壳之前,从电解质中去除杂质,尤其是水。(要注意到可以将一些添加剂加入电解质中,例如,以增强其性能或改进电容器的工作寿命;但是在本实施例中要避免水。)
使用本领域中熟知的电量滴定器,测量溶液中的水含量。可用于该目的的典型滴定器是可以从EM Science Aquastar获得的LC3000滴定器。
不幸的是,一些水已经存在于封闭外壳组件的内部,尽管试图彻底地干燥组件的内部。例如,水可以储存碳纤维布中碳纤维束的活性碳纤维中。当将无杂质的电解质注入外壳中时,这样储存的水会释放到电解质中,因此成为电解质中的杂质。为了从碳中去除这种水(或类似的杂质),考虑在用电解质填充外壳之前,用适当的溶剂,如乙腈,电解溶液或其它水净化材料冲洗封闭的组件。还考虑在注入铝之前和/或注入铝之后,但在被装配成注入铝的碳布电极之前,也可以用所选的适当材料(如水净化剂或能够搜索出并去除水的添加剂)冲洗或清洁碳纤维布,以去除杂质,尤其是水。
如果电解溶液成功地通过了杂质测试(框240),那它还要进行电导率测试。使用以AC信号测量电导的传统电导测量计,执行电导率测试。22℃时,溶液的电导应该至少是55-58mmho/cm。
一旦混合了电解溶液,并测试了杂质和电导率之后,将电解溶液注入外壳中(图24,框246)。
在将指定量的电解溶液注入外壳中之后,将球轴承焊接到端板中填充孔上的位置,以封闭电容器组件的填充孔(框248),并包含电解溶液。
然后,执行双层电容器最后的电测试(框250),以测试双层电容器是否符合其指定的性能标准。
一般,最后的验收测试包括用六个小时将双层电容器充电到其指定的工作电压Vw,然后允许双层电容器在14个小时内自放电。在这14个小时的自放电周期内发生的电压下降提供了双层电容器等效并联电阻的测量值,它应该至少为40,000ohms。
执行的附加验收测试还包括使双层电容器遭遇恒流循环测试,以确定循环电容和稳态串联电阻。通过将两相300毫安和/或1安培的电流施加于双层电容器,以执行该测试。测量施加该电流所得的电压波形。从包括时间测量值的电流和电压波形中,确定多个参数,以表征电容器。这种参数包括充电容量Cup、放电容量Cdown、半放电容量C12和稳态电阻R-。为了符合目前所用的期望性能标准,这些值应该为Cdown>10法拉,R-<125毫欧姆,Cup/Cdown>0.98,Cdown/Cup<1.05。
最后的验收测试还包括AC阻抗测试。要测试的关键参数是初始电阻R0。该电阻影响双层电容器可以传递的峰值功率。可以使用Solatron 1250频率响应分析器和PARC 273 Poteniostat以1000Hz测量它。R0应该为R-值的大约一半,或者为大约65mΩ。
如上所述,可以看出本实施例显示了双层电容器领域的重大进步。使用重叠在集电箔板周围的注入铝的碳纤维布形成了提供较低电极电阻的有效电极结构。按照上文所述和所示,实现的双层电容器显示出在约为2.3伏特的正常工作电压下电容值超过10法拉,电极电阻为大约1.25mΩ,时间常数为大约1.2秒,能量密度在2.9-3.5W-hr/kg的范围内,额定功率超过1000W/kg。有利的是,当双层电容器在更高的电压,如2.7伏特,甚至是3.0伏特,下工作(一旦从电解溶液中去除了所有杂质就可以容易地实现该电压),并减小了外壳重量时,可以进一步改进这些工作参数。例如,工作电压为3.0伏特时,能量密度上升到5.0W-hr/kg。此外,提供使用聚乙烯分离层材料,而非聚丙烯分离层,有效的电极电阻可以进一步减小,并允许双层电容器的时间常数减小到大约1.0秒。
玻璃-金属封口(密封封口)
参考图25和26,以及表5,讨论了双层电容器中所用密封封口的优点。如果在电容器中使用密封封口,那么可以延长使用无水电解溶液的电化电容器的寿命。密封封口限制氧气和水流入单元中。在小尺寸电容器中密封封口很重要,因为电解质体积与电容器封口面积的比值非常小;因此与具有较大电解质体积与电容器封口面积比值的较大电容器相比,湿气流入具有更严重的影响。表5(见后文)显示了水汽通过不同类型聚合物和玻璃的传导速率。可以看出聚合物中传导速率的数量级要高于玻璃中的。还可以看出当温度从75增加到110时,传导速率至少增加一个数量级。图25显示了增加传导速率对水污染等级的影响。图12到24中的电容器设计(也就是PC 10)可用于与不带有密封封口的类似尺寸电容器(非密封电容器)比较。所用电容器的外壳为25mm×44.5mm。为了该测试,去除电容器的内部部件。用大约1.5ml的电解溶液填充外壳,其中水的污染等级为30ppm。将单元加热到60℃,并周期性地移开以检测水污染。图25中显示了这些测试结果。具有密封外壳的类似测试显示了用改进的封口可以实质地去除水污染的增加。
通过比较两种UC20和PC 10电容器设计的寿命特性,证实使用有机电解质和密封封口的电容器寿命增加。PC 10是8法拉的电容器,它使用玻璃-金属密封封口。参考图12-24,显示了电容器和封口设计的细节。非密封UC20的设计由用烯烃离聚物热塑密封的两片铝箔构成。电容器具有约为20cm2的有效面积。见图26,它显示了对于两种电容器设计,电容和电阻随时间变化。
                          表5
                     水汽传导速率
  密封材料 73时的73%相对湿度(g/m2/天)   110时的80%相对湿度(g/m2/天)
  硅 0.35   8.2
  氟化硅 0.24   6.5
  腈 0.10   3.8
  乙烯丙烯 0.01   0.41
  丁基 <0.005   0.14
  烯烃离聚物/金属混合物膜   0.14(100,90%相对湿度)
  玻璃 <0.00005   <0.00009
参考图25,显示了对于非密封的双层电容器(如UC20)纵轴的水分含量对横轴的时间的曲线图。将图25所示的电容器用烯烃离聚物/金属混合物封口封装。可以看出在仅仅200小时的工作中非密封双层电容器的水分含量从30ppm上升到190ppm以上,而密封双层电容器(也就是PC 10)的水分含量在超过700小时中的变化可以忽略。可以看出使用密封封口大大减少了水分流入电容器外壳;因此,使用根据所述实施例的以上设计,在长时间内可以成功地控制水分含量。然而,预期进一步开发干燥处理、电解质的制备、玻璃-金属封口、端板与外壳的焊接以及球轴承与端板的焊接将实质地增加密封等级,因此增强双层电容器的寿命。参考图26,显示了对于非密封双层电容器的电容和内阻,以及密封双层电容器(也就是PC 10)的电容和内阻,纵轴的百分比变化对横轴的时间的一组曲线。在图26中,可以看出,与非密封双层电容器相比,在制造了所述具有密封封口的双层电容器之后的一段长时间内,它内阻保持得较低,电容保持得较高。
虽然用特殊的实施例及其应用描述了上述的本发明,但是本领域熟练的技术人员不脱离权利要求书所述本发明的范围可以进行各种改变和变化。

Claims (65)

1.一种双层电容器,其特征在于,它包括:
外壳;
第一接头;
电绝缘的密封封口,它介于第一接头和外壳之间;
第一集电箔,它电气耦合到第一接头的内部;
具有注入金属侧的第一注入金属的碳布电极,第一注入金属碳布电极的注入金属侧相对于第一集电箔并列;
多孔分离层,它相对于第一注入金属的碳布电极并列;
具有注入金属侧的第二注入金属的碳布电极,第二注入金属碳布电极的相反侧与第二注入金属碳布电极的注入金属侧相反,第二注入金属碳布电极的相反侧相对于多孔分离层并列,其中多孔分离层介于第一注入金属碳布电极和第二注入金属碳布电极之间;
第二集电箔,第二集电箔相对于第二注入金属碳布电极的注入金属侧并列;
第二接头,它电气耦合到第二集电箔;
电解溶液,它浸透第一注入金属碳布电极和第二注入金属碳布电极,其中电解溶液实质上包含在外壳和电绝缘密封封口中,并且外壳和电绝缘密封封口实质上抑制杂质流入电解溶液中,其中泄漏率在73时小于0.00005g/m2/天,在110时小于0.00009g/m2/天。
2.如权利要求1所述的双层电容器,其特征在于,所述电绝缘的密封封口包括玻璃。
3.如权利要求2所述的双层电容器,其特征在于,所述第一接头包括钼。
4.如权利要求2所述的双层电容器,其特征在于,所述第一接头包括覆盖铂的钼。
5.如权利要求2所述的双层电容器,其特征在于,所述外壳包括:
端板,其中电绝缘封口介于第一接头和端板之间;
壳体,其中将端板与壳体焊接。
6.如权利要求2所述的双层电容器,其特征在于,所述电绝缘密封封口包括氧化硅、氧化硼、氧化铝、氧化钾、氧化钠和氧化锂中的一种或多种。
7.如权利要求1所述的双层电容器,其特征在于,所述外壳包括导电外壳。
8.如权利要求7所述的双层电容器,其特征在于,所述导电外壳包括不锈钢。
9.如权利要求1所述的双层电容器,其特征在于,所述第一注入金属的电极包括:
第一碳布电极;
注入碳纤维布纤维间隙中的金属。
10.如权利要求9所述的双层电容器,其特征在于,所述金属选自铝、铜和钛的组。
11.如权利要求1所述的双层电容器,其特征在于,所述多孔分离层能够承受暴露于高达250℃的温度中长达5分钟。
12.如权利要求11所述的双层电容器,其特征在于,所述多孔分离层材料包括聚四氟乙烯。
13.如权利要求1所述的双层电容器,其特征在于,所述外壳可以承受暴露于高达250℃的温度中长达5分钟。
14.如权利要求1所述的双层电容器,其特征在于,电解溶液包括溶剂和盐。
15.如权利要求14所述的双层电容器,其特征在于,所述溶剂包括乙腈或碳酸丙烯。
16.如权利要求14所述的双层电容器,其特征在于,所述盐包括四氟硼酸四乙铵或四氟硼酸三乙基甲基铵。
17.如权利要求1所述的双层电容器,其特征在于,电绝缘密封封口可以承受暴露于高达250℃的温度中长达5分钟。
18.如权利要求1所述的双层电容器,其特征在于,还包括在所述外壳中形成的一个或多个褶皱,用于向所述外壳内的电极组件施加恒定的压力。
19.一种双层电容器,其特征在于,它包括:
密封外壳;
多个注入金属的电极,每个都具有注入金属侧;
多个集电箔,每一个都相对于多个注入金属电极中一个的所述注入金属侧并列;
多孔分离层材料,它配置在多个注入金属电极的各个电极之间;
无水电解溶液,它浸透所述多个注入金属的电极,其中形成了多电极、单元件器件,并且密封外壳实质上抑制杂质流入无水电解溶液中,其中泄漏率在73时小于0.00005g/m2/天,在110时小于0.00009g/m2/天。
20.如权利要求19所述的双层电容器,其特征在于,所述密封外壳包括玻璃-金属封口。
21.如权利要求20所述的双层电容器,其特征在于,所述玻璃-金属封口可以承受暴露于高达250℃的温度中长达5分钟。
22.如权利要求20所述的双层电容器,其特征在于,第一接头穿过所述玻璃-金属封口并耦合到所述多个注入金属电极中的至少一个。
23.如权利要求22所述的双层电容器,其特征在于,所述第一接头包括钼。
24.如权利要求23所述的双层电容器,其特征在于,还包括:
第二接头,其中所述第二接头电耦合到所述外壳。
25.如权利要求23所述的双层电容器,其特征在于,所述第一接头还包括铂。
26.如权利要求23所述的双层电容器,其特征在于,所述第一接头包括覆盖铂的钼线。
27.如权利要求19所述的双层电容器,其特征在于,所述第一注入金属的电极包括:
第一碳纤维布;
注入第一碳纤维布纤维间隙中的金属。
28.如权利要求27所述的双层电容器,其特征在于,所述第二注入金属电极包括:
第二碳纤维布;
注入第二碳纤维布纤维间隙中的金属。
29.如权利要求28所述的双层电容器,其特征在于,所述注入第一碳纤维布纤维间隙中的金属和所述注入第二碳纤维布纤维间隙中的金属选自包含铝、铜和钛的组。
30.如权利要求19所述的双层电容器,其特征在于,所述电解溶液包括溶剂和盐。
31.如权利要求30所述的双层电容器,其特征在于,所述溶剂包括乙腈或碳酸丙烯。
32.如权利要求31所述的双层电容器,其特征在于,所述盐包括四氟硼酸四乙铵或四氟硼酸三乙基甲基铵。
33.如权利要求19所述的双层电容器,其特征在于,所述密封外壳可以承受暴露于高达250℃的温度中长达5分钟。
34.如权利要求19所述的双层电容器,其特征在于,所述多孔分离层材料可以承受暴露于高达250℃的温度中长达5分钟。
35.如权利要求34所述的双层电容器,其特征在于,所述多孔分离层材料包括聚四氟乙烯。
36.如权利要求19所述的双层电容器,其特征在于,所述双层电容器可以承受暴露于高达250℃的温度中长达5分钟。
37.如权利要求19所述的双层电容器,其特征在于,还包括在所述密封外壳上形成的一个或多个褶皱,用于向所述密封外壳中的所述多个注入金属电极、所述多个集电箔和所述多孔分离层材料施加恒定的压力。
38.一种制造双层电容器的方法,该方法包括以下步骤:
将金属注入多个电极中;
将多个电极中每一个的注入侧与多个集电箔中的一个并列;
将多孔分离层插入多个电极中每一个的另一侧之间;
用电解溶液浸透多个电极;
将多个电极和多个集电箔密封在外壳内以实质上抑制杂质流入电解溶液中,其中泄漏率在73时小于0.00005g/m2/天,在110时小于0.00009g/m2/天。
39.如权利要求38所述的方法,其特征在于,所述密封步骤包括:
将玻璃-金属封口插入所述外壳的开口与第一接头之间;
将第一接头电耦合到所述多个集电箔中的一个。
40.如权利要求39所述的方法,其特征在于,所述玻璃-金属封口可以承受暴露于高达250℃的温度中长达5分钟。
41.如权利要求38所述的方法,其特征在于,所述注入步骤包括将所述金属注入碳纤维布中。
42.如权利要求41所述的方法,其特征在于,所述注入步骤包括用所述金属电弧喷射碳纤维布。
43.如权利要求42所述的方法,其特征在于,所述注入步骤包括将所述金属注入碳纤维布的纤维间隙。
44.如权利要求43所述的方法,其特征在于,所述金属选自包含铝、铜和钛的组。
45.如权利要求43所述的方法,其特征在于,所述注入步骤还包括用喷气式电弧喷嘴将所述金属电弧喷射入碳纤维布中。
46.如权利要求38所述的方法,其特征在于,所述插入步骤包括插入所述多孔分离层,其中所述多孔分离层可以承受暴露于高达250℃的温度中长达5分钟。
47.如权利要求46所述的方法,其特征在于,所述多孔分离层包括聚四氟乙烯。
48.一种制造双层电容器的方法,其特征在于,该方法包括以下步骤:
将第一集电箔耦合到第一接头的内部;
将第一注入金属电极重叠在集电箔上;
相对于第一注入金属电极配置多孔分离层;
相对于多孔分离层并列第二注入金属电极;
将第二注入金属电极电耦合到外壳;
用电解溶液浸透第一注入金属电极和第二注入金属电极;
密封外壳,其中电解质实质包含在外壳中,并且实质上抑制杂质流入电解溶液,其中泄漏率在73时小于0.00005g/m2/天,在110时小于0.00009g/m2/天。
49.如权利要求48所述的方法,其特征在于,所述配置所述多孔分离层的步骤包括用所述多孔分离层包覆所述第一注入金属电极。
50.如权利要求49所述的方法,其特征在于,所述并列步骤包括将所述第二注入金属电极并列在所述多孔分离层上。
51.如权利要求50所述的方法,其特征在于,所述电耦合步骤包括:
将第二集电箔并列在第二注入金属电极上;
使外壳接触第二集电箔。
52.如权利要求48所述的方法,其特征在于,还包括:
将金属注入所述第一注入金属电极和所述第二注入金属电极。
53.如权利要求52所述的方法,其特征在于,所述注入步骤还包括将所述金属注入第一碳纤维布和第二碳纤维布,其中所述金属渗透到第一碳纤维布和第二碳纤维布的纤维间隙中。
54.如权利要求52所述的方法,其特征在于,所述金属选自包含铝、钛和铜的组。
55.如权利要求48所述的方法,其特征在于,所述密封步骤包括:
在所述第一接头的外部和所述外壳之间形成玻璃-金属封口。
56.如权利要求55所述的方法,其特征在于,所述密封步骤还包括:
将端板焊接到壳体,其中端板包括玻璃-金属封口。
57.如权利要求55所述的方法,其特征在于,还包括:
选择所述第一接头的材料,使它的热膨胀系数与玻璃的热膨胀系数基本相似。
58.如权利要求57所述的方法,其特征在于,所述选择步骤包括选择钼。
59.如权利要求57所述的方法,其特征在于,所述选择步骤包括选择镀铂的钼。
60.如权利要求57所述的方法,其特征在于,所述选择步骤包括选择所述第一接头的可焊镀敷材料。
61.如权利要求48所述的方法,其特征在于,还包括选择所述多孔分离层的材料,使它能够承受暴露于高达250℃的温度中长达5分钟。
62.如权利要求61所述的方法,其特征在于,选择所述多孔分离层的所述材料的步骤包括选择包含聚四氟乙烯的所述材料。
63.如权利要求48所述的方法,其特征在于,还包括选择材料,使得所述双层电容器能够承受暴露于高达250℃的温度中长达5分钟。
64.如权利要求48所述的方法,其特征在于,还包括在所述第一和第二注入金属电极、所述第一和第二集电箔以及所述多孔分离层上配置恒定的压力。
65.如权利要求64所述的方法,其特征在于,所述配置所述恒定的压力的步骤包括在所述外壳上形成褶皱。
CNB008143544A 1999-08-18 2000-07-27 具有密封电解封口的双层电容器及其制造方法 Expired - Fee Related CN100351964C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/377,328 US6449139B1 (en) 1999-08-18 1999-08-18 Multi-electrode double layer capacitor having hermetic electrolyte seal
US09/377,328 1999-08-18

Publications (2)

Publication Number Publication Date
CN1408121A CN1408121A (zh) 2003-04-02
CN100351964C true CN100351964C (zh) 2007-11-28

Family

ID=23488664

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB008143544A Expired - Fee Related CN100351964C (zh) 1999-08-18 2000-07-27 具有密封电解封口的双层电容器及其制造方法

Country Status (11)

Country Link
US (5) US6449139B1 (zh)
EP (1) EP1212763A4 (zh)
JP (1) JP2003525522A (zh)
KR (1) KR100750760B1 (zh)
CN (1) CN100351964C (zh)
AU (1) AU6382300A (zh)
BR (1) BR0013420A (zh)
CA (1) CA2381768A1 (zh)
IL (1) IL148177A0 (zh)
MX (1) MXPA02001655A (zh)
WO (1) WO2001013388A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105247704A (zh) * 2011-11-22 2016-01-13 国际商业机器公司 高能量密度锂离子电池的复合阳极结构

Families Citing this family (98)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8758488B1 (en) * 1997-09-29 2014-06-24 Nuclear Filter Technology, Inc. Method of fabricating and devices employing vents
AU1762200A (en) * 1998-12-05 2000-06-26 Energy Storage Systems Pty Ltd A charge storage device
US6449139B1 (en) * 1999-08-18 2002-09-10 Maxwell Electronic Components Group, Inc. Multi-electrode double layer capacitor having hermetic electrolyte seal
US7456077B2 (en) * 2000-11-03 2008-11-25 Cardiac Pacemakers, Inc. Method for interconnecting anodes and cathodes in a flat capacitor
US6699265B1 (en) * 2000-11-03 2004-03-02 Cardiac Pacemakers, Inc. Flat capacitor for an implantable medical device
US6687118B1 (en) * 2000-11-03 2004-02-03 Cardiac Pacemakers, Inc. Flat capacitor having staked foils and edge-connected connection members
US6509588B1 (en) * 2000-11-03 2003-01-21 Cardiac Pacemakers, Inc. Method for interconnecting anodes and cathodes in a flat capacitor
TW200419606A (en) * 2003-03-24 2004-10-01 Luxon Energy Devices Corp Supercapacitor and a module of the same
US7846506B1 (en) 2003-06-13 2010-12-07 The United States Of America As Represented By The Secretary Of The Air Force Metal coatings for reduced friction in composites
US7791860B2 (en) 2003-07-09 2010-09-07 Maxwell Technologies, Inc. Particle based electrodes and methods of making same
US7352558B2 (en) 2003-07-09 2008-04-01 Maxwell Technologies, Inc. Dry particle based capacitor and methods of making same
US7920371B2 (en) 2003-09-12 2011-04-05 Maxwell Technologies, Inc. Electrical energy storage devices with separator between electrodes and methods for fabricating the devices
EP1522521B1 (en) * 2003-10-10 2015-12-09 Infineon Technologies AG Capacitive sensor
DE10347568A1 (de) 2003-10-14 2005-05-12 Degussa Kondensator mit keramischer Separationsschicht
CN1886814B (zh) * 2003-12-03 2010-04-07 松下电器产业株式会社 硬币形蓄电部件
US7090946B2 (en) 2004-02-19 2006-08-15 Maxwell Technologies, Inc. Composite electrode and method for fabricating same
JP2005276885A (ja) * 2004-03-23 2005-10-06 Sanyo Electric Co Ltd 電気二重層キャパシタ及び電解質電池、これらの製造方法
US7419745B2 (en) * 2004-03-31 2008-09-02 Sanjay Chaturvedi Method of forming an electrode structure useful in energy storage devices
JP5069464B2 (ja) * 2004-06-22 2012-11-07 日本ゼオン株式会社 電気二重層キャパシタ用電極材料およびその製造方法
US7224575B2 (en) * 2004-07-16 2007-05-29 Cardiac Pacemakers, Inc. Method and apparatus for high voltage aluminum capacitor design
US7120008B2 (en) * 2004-07-16 2006-10-10 Cardiac Pacemakers, Inc. Method and apparatus for capacitor interconnection using a metal spray
JP4671651B2 (ja) * 2004-08-26 2011-04-20 京セラ株式会社 電池用ケースおよび電池ならびに電気二重層キャパシタ用ケースおよび電気二重層キャパシタ
US7419873B2 (en) * 2004-11-24 2008-09-02 Cardiac Pacemakers, Inc. Method and apparatus for providing flexible partially etched capacitor electrode interconnect
US7440258B2 (en) 2005-03-14 2008-10-21 Maxwell Technologies, Inc. Thermal interconnects for coupling energy storage devices
US7327552B2 (en) * 2005-05-09 2008-02-05 Cardiac Pacemakers, Inc. Method and apparatus for electrically connecting capacitor electrodes using a spray
EP1894215A1 (en) * 2005-06-24 2008-03-05 Universal Supercapacitors Llc. Current collector for double electric layer electrochemical capacitors and method of manufacture thereof
JP2008544543A (ja) * 2005-06-24 2008-12-04 ユニバーサル・スーパーキャパシターズ・エルエルシー ヘテロジーナス型電気化学スーパーキャパシタ及びその製造方法
RU2381586C2 (ru) * 2005-06-24 2010-02-10 ЮНИВЕРСАЛ СУПЕРКАПАСИТОРЗ ЭлЭлСи Электрод и коллектор тока для электрохимического конденсатора с двойным электрическим слоем и формируемый с ними электрохимический конденсатор с двойным электрическим слоем
US7599191B2 (en) * 2005-11-01 2009-10-06 Avx Corporation Electrochemical low ESR capacitor with connector
JP4765604B2 (ja) * 2005-12-15 2011-09-07 Tdk株式会社 電気化学デバイス
US7580244B2 (en) * 2005-12-26 2009-08-25 Tdk Corporation Electrochemical device and method for manufacturing same, and jig for manufacturing electrochemical device
US7692411B2 (en) * 2006-01-05 2010-04-06 Tpl, Inc. System for energy harvesting and/or generation, storage, and delivery
JP4878881B2 (ja) * 2006-03-17 2012-02-15 日本ゴア株式会社 電気二重層キャパシタ用電極および電気二重層キャパシタ
US7864507B2 (en) 2006-09-06 2011-01-04 Tpl, Inc. Capacitors with low equivalent series resistance
US7919014B2 (en) 2006-11-27 2011-04-05 Universal Supercapacitors Llc Electrode for use with double electric layer electrochemical capacitors having high specific parameters
JP5157216B2 (ja) * 2007-03-29 2013-03-06 Tdk株式会社 活物質の製造方法及び活物質
JP5211526B2 (ja) 2007-03-29 2013-06-12 Tdk株式会社 全固体リチウムイオン二次電池及びその製造方法
JP5211527B2 (ja) * 2007-03-29 2013-06-12 Tdk株式会社 全固体リチウムイオン二次電池及びその製造方法
US7588179B2 (en) * 2007-03-30 2009-09-15 Honeywell International Inc. Bonding of carbon fibers to metal inserts for use in composites
TWI363361B (en) * 2007-12-31 2012-05-01 Taiwan Textile Res Inst Electrode of supercapacitor and the manufacturing method thereof
WO2010028434A1 (en) * 2008-09-09 2010-03-18 Cap-Xx Limited A package for an electrical device
JP2010109355A (ja) * 2008-09-30 2010-05-13 Nippon Chemicon Corp 電気二重層キャパシタ
DE102008062765A1 (de) 2008-12-18 2010-07-01 Vb Autobatterie Gmbh & Co. Kgaa Textiles flächiges Material für eine Batterieelektrode
EP2401782B1 (en) 2009-02-26 2020-06-03 CPS Technology Holdings LLC Battery electrode and method for manufacturing same
ES2720739T3 (es) * 2009-03-27 2019-07-24 Mitsubishi Electric Corp Acondicionador de aire que comprende un aparato atomizador electrostático
KR101046098B1 (ko) * 2009-07-17 2011-07-01 삼성전기주식회사 커패시터용 분극성 전극 및 이를 포함하는 전기 이중층 커패시터
TW201117245A (en) 2009-11-11 2011-05-16 Taiwan Textile Res Inst Water-based electrolyte for electric double layer capacitor and electric double layer capacitor having the same
US8730649B2 (en) 2010-03-12 2014-05-20 Taiwan Textile Research Institute Aqueous electrolyte solution for electric double-layer capacitor and electric double-layer capacitor having the same
US9975625B2 (en) * 2010-04-19 2018-05-22 The Boeing Company Laminated plasma actuator
US8358109B2 (en) 2010-04-21 2013-01-22 Seagate Technology Llc Reliable extended use of a capacitor for backup power
US8331076B2 (en) 2010-07-16 2012-12-11 Ut-Battelle, Llc Clad fiber capacitor and method of making same
EE05629B1 (et) * 2010-09-06 2013-02-15 O� Skeleton Technologies Meetod suure eriv?imsuse ja energiatihendusega superkondensaatori elektrokeemilise süsteemi valmistamiseks, sellele vastav superkondensaator ja meetod selle valmistamiseks
US8274781B2 (en) * 2010-11-03 2012-09-25 Optixtal, Inc. Form factored and flexible ultracapacitors
CN102568864B (zh) * 2010-12-20 2014-06-25 镕钽科技有限公司 电容结构及其制造方法
US9214709B2 (en) 2010-12-21 2015-12-15 CastCAP Systems Corporation Battery-capacitor hybrid energy storage system for high temperature applications
US8760851B2 (en) 2010-12-21 2014-06-24 Fastcap Systems Corporation Electrochemical double-layer capacitor for high temperature applications
US9001495B2 (en) 2011-02-23 2015-04-07 Fastcap Systems Corporation High power and high energy electrodes using carbon nanotubes
US9012092B2 (en) * 2011-04-04 2015-04-21 Laor Consulting Llc Fiber felt capacitors and batteries
CN104271880A (zh) 2011-05-24 2015-01-07 快帽系统公司 用于高温应用的具有可再充电能量存储器的电力系统
US8623555B2 (en) * 2011-05-27 2014-01-07 Vanderbilt University Electrode useable in electrochemical cell and method of making same
US9218917B2 (en) 2011-06-07 2015-12-22 FastCAP Sysems Corporation Energy storage media for ultracapacitors
US10714271B2 (en) * 2011-07-08 2020-07-14 Fastcap Systems Corporation High temperature energy storage device
US9558894B2 (en) * 2011-07-08 2017-01-31 Fastcap Systems Corporation Advanced electrolyte systems and their use in energy storage devices
CA2843137A1 (en) * 2011-07-27 2013-01-31 Fastcap Systems Corporation Power supply for downhole instruments
EP3783192A1 (en) 2011-11-03 2021-02-24 FastCAP SYSTEMS Corporation Production logging instrument
US9209434B2 (en) 2011-11-17 2015-12-08 Fastcap Systems Corporation Mechanical hermetic seal
EP2817810A4 (en) * 2012-02-24 2015-10-21 Fastcap Systems Corp ADVANCED ELECTROLYTE SYSTEMS AND THEIR USE IN ENERGY STORAGE DEVICES
US9330855B2 (en) 2012-03-18 2016-05-03 Elbit Systems Land And C4I Ltd Aqueous-based electric double-layer capacitor
IL218691A (en) * 2012-03-18 2014-01-30 Elbit Systems Ltd Get a two-layer electric water-based and method for making it
CN103117526B (zh) * 2012-11-22 2017-05-17 武陟县电业总公司 一种高压电缆接线装置
KR102037266B1 (ko) * 2012-12-14 2019-10-29 삼성전기주식회사 전극 구조물 및 이를 구비하는 에너지 저장 장치
JP2014143226A (ja) * 2013-01-22 2014-08-07 Murata Mfg Co Ltd フラッシュssd
US9025315B2 (en) 2013-03-06 2015-05-05 Cooper Technologies Company Electrochemical energy storage device with flexible metal current collector
US9053863B2 (en) 2013-03-06 2015-06-09 Cooper Technologies Company Electrochemical energy storage device with coincident electrical terminal and electrolyte fill hole
WO2014201279A1 (en) * 2013-06-14 2014-12-18 Maxwell Technologies, Inc. Energy storage device with enhanced energy density
US10872737B2 (en) 2013-10-09 2020-12-22 Fastcap Systems Corporation Advanced electrolytes for high temperature energy storage device
US9293268B2 (en) * 2013-11-22 2016-03-22 Corning Incorporated Ultracapacitor vacuum assembly
EP3084481B8 (en) 2013-12-20 2024-01-03 Fastcap Systems Corporation Electromagnetic telemetry device
US11270850B2 (en) 2013-12-20 2022-03-08 Fastcap Systems Corporation Ultracapacitors with high frequency response
US10312028B2 (en) 2014-06-30 2019-06-04 Avx Corporation Electrochemical energy storage devices and manufacturing methods
CN113539696A (zh) 2014-10-09 2021-10-22 快帽系统公司 用于储能装置的纳米结构化电极
CN116092839A (zh) 2015-01-27 2023-05-09 快帽系统公司 宽温度范围超级电容器
US10181617B2 (en) 2015-12-14 2019-01-15 Johnson Controls Technology Company Patterned crimp for battery collector attachment
KR102635455B1 (ko) 2016-05-20 2024-02-13 교세라 에이브이엑스 컴포넌츠 코포레이션 고온용 울트라커패시터
WO2017201167A1 (en) 2016-05-20 2017-11-23 Avx Corporation Electrode configuration for an ultracapacitor
MY195773A (en) 2016-05-20 2023-02-11 Kyocera Avx Components Corp Multi-Cell Ultracapacitor
WO2017201173A1 (en) 2016-05-20 2017-11-23 Avx Corporation Nonaqueous electrolyte for an ultracapacitor
JP2020501367A (ja) 2016-12-02 2020-01-16 ファーストキャップ・システムズ・コーポレイションFastCAP SYSTEMS Corporation 複合電極
JP2020502813A (ja) * 2016-12-22 2020-01-23 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア マクロ多孔性電極を用いた活性炭スーパーキャパシタのための方法、装置及びシステム
KR20200040306A (ko) * 2017-09-07 2020-04-17 에이브이엑스 코포레이션 매칭되는 슈퍼캐패시터들을 갖는 슈퍼캐패시터 모듈
US11189434B2 (en) 2017-09-08 2021-11-30 Clearwater Holdings, Ltd. Systems and methods for enhancing electrical energy storage
CN107546035A (zh) * 2017-09-11 2018-01-05 北京三雄科技公司 高精度真空印刷电容器及其应用
CN116436188A (zh) 2017-10-29 2023-07-14 清水控股有限公司 模块化电磁机器及其使用和制造方法
US11501917B2 (en) * 2018-03-02 2022-11-15 Capacitor Foundry Llc Capacitors employing dielectric material outside volume enclosed by electrodes
KR102121580B1 (ko) * 2018-10-02 2020-06-10 삼성전기주식회사 적층 세라믹 커패시터
TWI696331B (zh) * 2019-04-10 2020-06-11 唐光輝 充電裝置
US11557765B2 (en) 2019-07-05 2023-01-17 Fastcap Systems Corporation Electrodes for energy storage devices
GB201914014D0 (en) * 2019-09-27 2019-11-13 E Chem Tech Ltd Protected Reinforced Concrete Structure

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4683516A (en) * 1986-08-08 1987-07-28 Kennecott Corporation Extended life capacitor and method
US5862035A (en) * 1994-10-07 1999-01-19 Maxwell Energy Products, Inc. Multi-electrode double layer capacitor having single electrolyte seal and aluminum-impregnated carbon cloth electrodes

Family Cites Families (87)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US266917A (en) * 1882-10-31 Water closet cisterns
US594114A (en) * 1897-11-23 Pencil-sharpener
US256805A (en) * 1882-04-18 Back band buckle
US134706A (en) * 1873-01-07 Improvement in apparatus for mixing soap and other materials
US207167A (en) * 1878-08-20 Improvement in wire-stretchers
US153524A (en) * 1874-07-28 Improvement in bench-hooks
US465814A (en) * 1891-12-22 Coin-controlled pocket receptacle
US680061A (en) * 1901-05-24 1901-08-06 Mcsherry Mfg Company Bearing for disk drills.
US1201908A (en) * 1916-01-18 1916-10-17 Charles Hammond Saw-set.
US1298712A (en) * 1917-03-02 1919-04-01 Westinghouse Electric & Mfg Co Control system.
US2248025A (en) * 1936-02-08 1941-07-01 Wingfoot Corp Pigmented rubber hydrohalides
US2297915A (en) * 1938-07-19 1942-10-06 Remington Rand Inc Electric razor
US2177525A (en) * 1938-07-20 1939-10-24 William P Witherow Material handling apparatus
US2800616A (en) 1954-04-14 1957-07-23 Gen Electric Low voltage electrolytic capacitor
US3038815A (en) * 1957-10-17 1962-06-12 Hoechst Ag Amidation products of crude paraffin oxidation material
US3141629A (en) * 1959-06-09 1964-07-21 Rouanet Michel Spinning reel with friction brake
US3105178A (en) 1960-01-20 1963-09-24 Meyers Joseph Electron storage and power cell
US3536963A (en) 1968-05-29 1970-10-27 Standard Oil Co Electrolytic capacitor having carbon paste electrodes
US3652902A (en) 1969-06-30 1972-03-28 Ibm Electrochemical double layer capacitor
US3648126A (en) 1970-12-28 1972-03-07 Standard Oil Co Ohio Electrical capacitor employing paste electrodes
US3700975A (en) 1971-11-12 1972-10-24 Bell Telephone Labor Inc Double layer capacitor with liquid electrolyte
US4313084A (en) 1978-03-27 1982-01-26 Nippon Electric Co., Ltd. Laminated structure of double-layer capacitor
US4206914A (en) * 1978-04-03 1980-06-10 The Perfection Manufacturing Company Work control apparatus in an exerciser
US4206916A (en) * 1978-05-25 1980-06-10 Epply William R Tensioned net
JPS6015138B2 (ja) 1979-01-25 1985-04-17 松下電器産業株式会社 電気二重層キャパシタ−
FR2527602A1 (fr) 1982-06-01 1983-12-02 Anvar Bis perhalogenoacyl- ou sulfonyl- imidures de metaux alcalins, leurs solutions solides avec des matieres plastiques et leur application a la constitution d'elements conducteurs pour des generateurs electrochimiques
WO1984000246A1 (en) 1982-06-30 1984-01-19 Matsushita Electric Ind Co Ltd Double electric layer capacitor
JPS594114A (ja) 1982-06-30 1984-01-10 松下電器産業株式会社 電気二重層キヤパシタ
US4438481A (en) 1982-09-30 1984-03-20 United Chemi-Con, Inc. Double layer capacitor
JPS59105312A (ja) 1982-12-09 1984-06-18 東洋紡績株式会社 湿式電気二重層キヤパシタ
EP0134706B1 (en) 1983-08-08 1991-07-17 Matsushita Electric Industrial Co., Ltd. Electric double layer capacitor and method for producing the same
US4597028A (en) 1983-08-08 1986-06-24 Matsushita Electric Industrial Co., Ltd. Electric double layer capacitor and method for producing the same
JPH0658864B2 (ja) 1984-12-25 1994-08-03 松下電器産業株式会社 電気二重層コンデンサ
US4622611A (en) 1985-04-02 1986-11-11 The Standard Oil Company Double layer capacitors
DE3514499A1 (de) 1985-04-22 1986-10-23 Daimler-Benz Ag, 7000 Stuttgart Im schmieroelvorratsbehaelter eines aggregates von fahrzeugen eingesetztes sauggehaeuse einer schmieroelpumpe
EP0230907A3 (en) 1986-01-17 1989-05-31 Asahi Glass Company Ltd. Electric double layer capacitor having high capacity
US4725927A (en) 1986-04-08 1988-02-16 Asahi Glass Company Ltd. Electric double layer capacitor
JPS63261817A (ja) 1987-04-20 1988-10-28 松下電器産業株式会社 電気二重層コンデンサ
JPH0821525B2 (ja) 1987-06-24 1996-03-04 松下電器産業株式会社 分極性電極およびその製造方法
JPS641222A (en) 1987-06-24 1989-01-05 Matsushita Electric Ind Co Ltd Manufacture of energy storage device
JP2548222B2 (ja) 1987-08-25 1996-10-30 松下電器産業株式会社 電気二重層キャパシタ
JP2674057B2 (ja) 1988-02-05 1997-11-05 松下電器産業株式会社 分極性電極の製造法
US4987518A (en) * 1988-04-11 1991-01-22 Sprague Electric Company Metal-cased electrolytic capacitor
JPH01298712A (ja) 1988-05-27 1989-12-01 Ube Ind Ltd 分極性電極体の製造方法
JPH0266917A (ja) 1988-09-01 1990-03-07 Matsushita Electric Ind Co Ltd 電気二重層キャパシタ
JPH02177525A (ja) 1988-12-28 1990-07-10 Matsushita Electric Ind Co Ltd 電気二重層コンデンサ
JPH02248025A (ja) 1989-03-22 1990-10-03 Matsushita Electric Ind Co Ltd 電気二重層キャパシタ
US4942610A (en) * 1989-03-31 1990-07-17 Rayburn Charles C Capacitive structure
JPH02297915A (ja) 1989-05-11 1990-12-10 Mitsui Petrochem Ind Ltd 電気二重層コンデンサ
JPH03141629A (ja) 1989-05-11 1991-06-17 Mitsui Petrochem Ind Ltd 電気二重層コンデンサ
US5080963A (en) 1989-05-24 1992-01-14 Auburn University Mixed fiber composite structures high surface area-high conductivity mixtures
US5102745A (en) 1989-11-13 1992-04-07 Auburn University Mixed fiber composite structures
CN1048892A (zh) 1989-05-24 1991-01-30 奥本大学 混合纤维复合材料结构及其制法和用途
JPH0338815A (ja) 1989-07-06 1991-02-19 Murata Mfg Co Ltd 電気二重層コンデンサ
AU635043B2 (en) * 1989-07-12 1993-03-11 Medtronic, Inc. Lithium thionyl chloride resistant feedthrough
JP2620596B2 (ja) 1989-08-22 1997-06-18 いすゞ自動車 株式会社 電気二重層コンデンサ及びその分極性電極の製造方法
JPH0748453B2 (ja) 1989-08-23 1995-05-24 いすゞ自動車株式会社 電気二重層コンデンサ
JPH065657B2 (ja) 1989-08-23 1994-01-19 いすゞ自動車株式会社 電気二重層コンデンサ
JPH0666229B2 (ja) 1989-08-30 1994-08-24 いすゞ自動車株式会社 電気二重層コンデンサ
CA2023551C (en) 1989-09-07 1994-05-10 Ken Kurabayashi Electric double layer capacitor
JPH0748464B2 (ja) 1989-09-12 1995-05-24 いすゞ自動車株式会社 電気二重層コンデンサ
JPH067539B2 (ja) 1989-09-14 1994-01-26 いすゞ自動車株式会社 電気二重層コンデンサ
JPH0666230B2 (ja) 1990-01-30 1994-08-24 いすゞ自動車株式会社 電気二重層コンデンサ
JP2840780B2 (ja) 1990-02-20 1998-12-24 富士電気化学株式会社 電気二重層コンデンサ
DE69128805T2 (de) 1990-03-29 1998-05-14 Matsushita Electric Ind Co Ltd Elektrolytischer Doppelschichtkondensator und Verfahren zu seiner Herstellung
JP2738135B2 (ja) 1990-07-06 1998-04-08 松下電器産業株式会社 電気二重層キャパシタの製造方法
US5096663A (en) 1990-05-29 1992-03-17 Auburn University Method of optimizing composite preparation for electrical properties: maximum capacitance electrodes
JP3038815B2 (ja) 1990-06-28 2000-05-08 ソニー株式会社 偏向コイル
JP2949823B2 (ja) * 1990-10-12 1999-09-20 株式会社村田製作所 扁平型電気化学装置の製造方法
JPH04206916A (ja) 1990-11-30 1992-07-28 Mitsui Petrochem Ind Ltd 電気二重層キャパシタ
JP3023379B2 (ja) 1990-11-30 2000-03-21 三井化学株式会社 電気二重層キャパシタおよび電極
US5299295A (en) * 1991-03-12 1994-03-29 Balenz, Inc. Method and apparatus for electronically viewing, printing, and registering checks
JPH05299295A (ja) 1992-04-16 1993-11-12 Nec Corp 電気二重層コンデンサ
JPH06275469A (ja) 1993-03-23 1994-09-30 Yoshiharu Matsuda 高分子固体電解質電気二重層コンデンサー
DE4313474C2 (de) * 1993-04-24 1997-02-13 Dornier Gmbh Doppelschichtkondensator, der aus Doppelschichtkondensatoreinheiten zusammengesetzt ist und seine Verwendung als elektrochemischer Energiespeicher
US5450279A (en) 1993-05-19 1995-09-12 Matsushita Electric Industrial Co., Ltd. Electric double layer capacitor
JP3141629B2 (ja) 1993-06-22 2001-03-05 松下電器産業株式会社 映像信号の記録および再生装置
EP0680061A1 (en) 1994-03-09 1995-11-02 TDK Corporation Electric double-layer capacitor
US5621607A (en) 1994-10-07 1997-04-15 Maxwell Laboratories, Inc. High performance double layer capacitors including aluminum carbon composite electrodes
JP3824354B2 (ja) * 1996-08-22 2006-09-20 エルナー株式会社 電気二重層キャパシタの製造方法
US5850331A (en) * 1996-08-30 1998-12-15 Honda Giken Kogyo Kabushiki Kaisha Electric double-layer capacitor and capacitor device
JPH1131523A (ja) * 1997-02-19 1999-02-02 Sony Corp 非水電解液二次電池とその製造方法
US5973913A (en) * 1997-08-12 1999-10-26 Covalent Associates, Inc. Nonaqueous electrical storage device
US6212061B1 (en) * 1998-09-29 2001-04-03 General Electric Company Sealing an ultracapacitor
US6152970A (en) * 1998-09-29 2000-11-28 General Electric Company Drying an ultracapacitor
US6449139B1 (en) * 1999-08-18 2002-09-10 Maxwell Electronic Components Group, Inc. Multi-electrode double layer capacitor having hermetic electrolyte seal
US6621686B1 (en) * 2000-06-30 2003-09-16 Medtronic, Inc. Implantable medical device having flat electrolytic capacitor formed with partially through-etched and through-hole punctured anode sheets

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4683516A (en) * 1986-08-08 1987-07-28 Kennecott Corporation Extended life capacitor and method
US5862035A (en) * 1994-10-07 1999-01-19 Maxwell Energy Products, Inc. Multi-electrode double layer capacitor having single electrolyte seal and aluminum-impregnated carbon cloth electrodes

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105247704A (zh) * 2011-11-22 2016-01-13 国际商业机器公司 高能量密度锂离子电池的复合阳极结构

Also Published As

Publication number Publication date
US6842330B2 (en) 2005-01-11
US7090706B2 (en) 2006-08-15
WO2001013388A9 (en) 2002-07-18
CN1408121A (zh) 2003-04-02
JP2003525522A (ja) 2003-08-26
US6449139B1 (en) 2002-09-10
EP1212763A4 (en) 2007-08-01
KR20020038729A (ko) 2002-05-23
EP1212763A1 (en) 2002-06-12
US7116545B2 (en) 2006-10-03
US20030030969A1 (en) 2003-02-13
US20070015336A1 (en) 2007-01-18
AU6382300A (en) 2001-03-13
BR0013420A (pt) 2002-04-30
WO2001013388A1 (en) 2001-02-22
US7407520B2 (en) 2008-08-05
US20050152096A1 (en) 2005-07-14
US20040252443A1 (en) 2004-12-16
IL148177A0 (en) 2002-09-12
CA2381768A1 (en) 2001-02-22
KR100750760B1 (ko) 2007-08-20
MXPA02001655A (es) 2003-07-14

Similar Documents

Publication Publication Date Title
CN100351964C (zh) 具有密封电解封口的双层电容器及其制造方法
CN1306531C (zh) 多电极双层电容器
CN1860568A (zh) 有机电解质电容器
CN1160455A (zh) 包含铝碳复合电极的高性能双层电容器
CN1238923C (zh) 含有电解质的电化学元件
CN1205687C (zh) 锂二次电池
CN1280942C (zh) 用于二次电池的电解液及使用该电解液的二次电池
CN1139142C (zh) 无水二次电池及其制造方法
CN1264244C (zh) 双极电池及其制造方法
CN1063871C (zh) 一种离子导电聚合物电解质
CN1864298A (zh) 电池结构、自组织结构及相关方法
CN1768404A (zh) 有机电解质电容器
CN1522453A (zh) 有机电解质电容器
CN101030661A (zh) 非水电解液二次电池
CN1288594A (zh) 非水二次电解质电池
WO2005069321A1 (ja) 電気二重層キャパシタ及びその製造方法とこれを用いた電子機器
US20140356701A1 (en) Sealing assembly, method for preparing sealing assembly, and battery comprising the sealing assembly
CN1941238A (zh) 双电层电容器
CN1143839A (zh) 可充电电池电极,其生产方法,及具有这样电极的电池
CN1735949A (zh) 蓄电装置及蓄电装置的制造方法
CN101076915A (zh) 双极性电池
CN1292579A (zh) 碱性可充电电池和所述可充电电池的制造方法
CN1411092A (zh) 锂二次电池
CN103378321A (zh) 一种盖板组件及含有该盖板组件的电池
CN1674321A (zh) 电极用复合粒子及制法、电极及制法和电化学元件及制法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20071128

Termination date: 20120727