CN100361329C - 高存储容量储氢材料 - Google Patents

高存储容量储氢材料 Download PDF

Info

Publication number
CN100361329C
CN100361329C CNB2003801017601A CN200380101760A CN100361329C CN 100361329 C CN100361329 C CN 100361329C CN B2003801017601 A CNB2003801017601 A CN B2003801017601A CN 200380101760 A CN200380101760 A CN 200380101760A CN 100361329 C CN100361329 C CN 100361329C
Authority
CN
China
Prior art keywords
hydrogen storage
storage material
magnesium
hydrogen
hydride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2003801017601A
Other languages
English (en)
Other versions
CN1706055A (zh
Inventor
M·奥维克
D·比伦
W·C·柯尔
H·A·M·范哈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips Electronics NV filed Critical Koninklijke Philips Electronics NV
Publication of CN1706055A publication Critical patent/CN1706055A/zh
Application granted granted Critical
Publication of CN100361329C publication Critical patent/CN100361329C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/383Hydrogen absorbing alloys
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0026Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof of one single metal or a rare earth metal; Treatment thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0031Intermetallic compounds; Metal alloys; Treatment thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0031Intermetallic compounds; Metal alloys; Treatment thereof
    • C01B3/0047Intermetallic compounds; Metal alloys; Treatment thereof containing a rare earth metal; Treatment thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/242Hydrogen storage electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes
    • H01M8/04216Reactant storage and supply, e.g. means for feeding, pipes characterised by the choice for a specific material, e.g. carbon, hydride, absorbent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S420/00Alloys or metallic compositions
    • Y10S420/90Hydrogen storage

Abstract

本发明公开了一种含氢化镁的储氢材料。所述镁被稳定在荧石结构中。优选镁至少部分被一种元素取代,以至于氢化镁被稳定在荧石结构中。在一个有利的实施方案中,储氢材料还包含一种催化活性材料。此外,本发明还公开了包含上述储氢材料的一种电化学活性材料和一种电化学电池。

Description

高存储容量储氢材料
本发明涉及一种含氢化镁的储氢材料。本发明还涉及一种这种储氢材料的电化学电池。
可再充电电池可以放电然后恢复到其原始状态重复使用。可再充电电池越来越多地应用于便携电子设备如电话、随身听和电脑中。一种已知种类的可再充电电池是所谓的可再充电的金属氢化物电池,它具有相对较高的单体容积存储能量。这种金属氢化物电池的一个例子是包含充当电化学活性材料、更具体地是充当负极的LaNi5的电池。在放电状态下,阴极包含LaNi5,而在充电状态下氢被所述电极吸附,生成LaNi5H6。这种类型电池的一个缺点是相对较低的单位重量存储容量。后者是由金属氢化物约为7g/cm3的高密度引起的。
近来,研究集中在可以充当储氢材料的密度较低的合适金属氢化物上。镁由于可以存储大量的氢,所以理论上非常适用于氢的吸收。镁可以可逆地存储高达7.65wt%的氢,这使它成为一种非常适合在燃料电池应用中储氢的可选材料。但是,镁可以充放电的温度是400℃。在400℃以下由于氢在氢化镁中的扩散很慢所以氢交换的动力学非常低。
镁-镍合金看起来是更好的可被用于电化学电池的可选储氢材料,因为这些合金可以在更低的温度下用于氢的吸收。
在JP-56114801中也公开了用镁-镍氢化物来储氢。根据该公开,所述材料可以在高温下以一种稳定的方式存储氢。尽管镁镍氢化物可以吸收相对较多量的氢,但其本身同样不适合在电化学电池中作电化学活性材料。其原因之一是吸氢和脱氢的相对较慢的动力学。
为了将吸氢和脱氢的动力学提高到足够的水平并限制腐蚀,添加到镁-镍合金中的镍量必须非常高,以至于与已知的LaNi5材料相比只获得了很小的改进。
本发明目标在于提供一种可以应用于电化学电池的含氢化镁的储氢材料,它具有很高的单位重量存储容量。
为此,本发明提供一种如前文所定义的储氢材料,其特征在于氢化镁被稳定在荧石晶体结构中。
本发明基于氢在氢化镁中扩散慢主要是由于氢化镁的结构即金红石结构的认识。氢在所述金红石结构中不能扩散很快,但它在具有荧石结构的氟化钙氢化物中却扩散很快。通过将氢化镁稳定在荧石结构中,可在其中获得较快的氢离子扩散。所述快扩散之所以可能是因为荧石结构中存在大八面体空位,离子可以以很高的迁移率穿过这些空位。由于具有荧石结构的氢化镁中氢的改进的快扩散,所述氢化镁在室温下可以很容易地充放氢。从而,所述氢化镁可以有利地在电化学电池中用作储氢材料。
特别是,镁至少部分被一种元素取代,以至于氢化镁被稳定在荧石结构中。
适合的元素(其氢化物具有荧石结构)可以与含20-80摩尔%镁的氢化镁形成固溶体。
用来取代镁的元素优选包括尺寸与8配位的Mg2+尺寸近似的离子。
在一个优选实施方案中,该元素包括半径在0.090-1.120nm的离子。
特别优选的元素包括选自Se3+、Ti3+、RE3+(稀土元素)、Y3+、Li+、Zn2+、Co2+、Fe2+、Mn2+、In3+、Zr4+和Hf4+的离子。
例如,氢化钪具有荧石结构并与含0-80摩尔%镁的氢化镁形成固溶体。当从这种固溶体中耗放氢时,会观察到向另一结构的相变。XRD模拟表明此结构具有与闪锌矿结构相同的XRD图案。它具有与荧石结构相同的金属离子布置以及八面体空位。
也可以制造具有荧石结构的镁钛氢化物。当Mg50Ti50Pd2.4Hx以10mA/g放电时,共放出630mAh/g的电荷。类似的材料Mg50Sc50Pd2.4Hx以10mA/g放电时共放出770mAh/g电荷。Mg50Ti50Pd2.4Hx的制备方法如下:将3.45g MgH2、6.55g TiH2和0.2g Pd在7bar的氢气氛下于II型Uni球磨机中以500RPM研磨一天。在加入额外的0.47g钯后在同样条件下再继续研磨5天。XRD分析表明最终所得材料主要含晶格常数比荧石结构的TiH2略高(0.4503nm比0.4454nm)的单相立方结构。
为改进氢交换动力学,储氢材料优选包含一定量的催化活性材料。
所述催化活性材料的优选例子包括选自Ir、Ni、Pd、Pt、Rh和Ru的催化剂。
更优选作催化活性材料的是钯和铑。
此外,本发明还涉及一种电化学活性材料,其特征在于该材料中包含一种如上所述的根据本发明的储氢材料。
根据本发明的储氢材料可以有利地用在燃料电池中。
本发明还涉及一种包括一个负极的电化学电池。所述电化学电池的特征在于所述负极包含一种如上所述的储氢材料。
所述电化学电池优选包括可再充电电池。
最后,本发明涉及由至少一个电化学电池驱动的电子设备。所述电子设备的特征在于所述至少一个电化学电池是如上所述的电化学电池。
以下实施例以及附图对本发明作了说明,其中实施例和附图都是示例性的。
实施例1
通过在密封的钼坩埚中熔融称量的镁、钪和必要时的一种催化剂,制备荧石结构的氢化镁,其中部分镁被钪取代。
将坩埚放在位于管式炉内的石英管中。在熔融步骤开始之前,用纯氩气代替石英管中的空气,以避免钼弹氧化。
将试样加热至液态以上约100℃加热一夜。加热之后,将石英管没入水浴中使试样“淬火”。接下来,将试样在450℃退火4天。最后,通过机械碾磨除去钼弹。
根据本发明的材料的能量容量非常可观。例如Mg65Sc35Pd2.4Hx的存储容量为1225mAh/g,Mg80Sc20Pd2.4Hx的存储容量为1450mAh/g。
图1a是脱氢后的闪锌矿结构的示意图,图1b是荧石结构的示意图。在图1a,b中,较小的球体是金属,在此例中为镁和钪。较大的球体是氢阴离子。金属离子的大小为0.102nm,而氢阴离子的大小为0.14nm。图1清楚显示了荧石结构中氢阴离子可以以高迁移率穿过的大八面体空位。由于具有荧石结构的氢化镁中氢的改进的快扩散,所述氢化镁在室温下可以很容易地充放氢。
尽管已经参照一个实施例和一个实施方案对本发明进行了说明,但应当理解其意明显不在于将本发明局限于此实施例和实施方案。相反,本发明意欲涵盖可以包括在如权利要求书所述的本发明的精神和范围之内的所有替换方案和改进方案。

Claims (9)

1.一种含氢化镁的储氢材料,其中氢化镁被稳定在荧石晶体结构中,特征在于镁至少部分被一种元素取代,以至于氢化镁被稳定在荧石结构中。
2.权利要求1的储氢材料,特征在于所述元素的离子包括半径为0.090-1.120nm的离子
3.权利要求1的储氢材料,特征在于所述元素的离子包括选自Se3+、Ti3+、RE3+(稀土元素)、Y3+、Li+、Zn2+、Co2+、Fe2+、Mn2+、In3+、Zr4+和Hf4+的离子。
4.权利要求1的储氢材料,特征在于它包含一定量的催化活性材料。
5.权利要求4的储氢材料,特征在于所述催化活性材料包括选自Ir、Ni、Pd、Pt、Rh和Ru的至少一种金属。
6.权利要求4的储氢材料,特征在于所述催化活性材料包括钯或铑。
7.一种电化学活性材料,特征在于该材料中包含一种如权利要求1-6中任一项所述的储氢材料。
8.一种至少包括正极和负极的电化学电池,特征在于所述负极中包含一种如权利要求1-6中任一项所述的储氢材料。
9.由至少一个电化学电池所驱动的电子设备,特征在于所述至少一个电化学电池是如权利要求8所述的电化学电池。
CNB2003801017601A 2002-10-21 2003-10-17 高存储容量储氢材料 Expired - Fee Related CN100361329C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP02079383.2 2002-10-21
EP02079383 2002-10-21

Publications (2)

Publication Number Publication Date
CN1706055A CN1706055A (zh) 2005-12-07
CN100361329C true CN100361329C (zh) 2008-01-09

Family

ID=32103974

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2003801017601A Expired - Fee Related CN100361329C (zh) 2002-10-21 2003-10-17 高存储容量储氢材料

Country Status (6)

Country Link
US (1) US7326495B2 (zh)
EP (1) EP1556914A2 (zh)
JP (1) JP2006503688A (zh)
CN (1) CN100361329C (zh)
AU (1) AU2003269355A1 (zh)
WO (1) WO2004036664A2 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107004843A (zh) * 2014-12-10 2017-08-01 巴斯夫公司 金属氢化物组合物和锂离子电池

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101311469B1 (ko) * 2004-12-07 2013-09-24 하이드렉시아 피티와이 리미티드 수소 저장을 위한 마그네슘 합금
JP2008538798A (ja) * 2005-04-25 2008-11-06 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 水素吸蔵材料およびそのような材料を調製する方法
EP2041827A2 (en) * 2006-07-03 2009-04-01 Koninklijke Philips Electronics N.V. Method for the manufacture of a thin film electrochemical energy source and device
EP2095457A1 (en) * 2006-12-14 2009-09-02 Koninklijke Philips Electronics N.V. Solid-state structure comprising a battery and a variable resistor of which the resistance is controlled by variation of the concentration of active species in electrodes of the battery
CN101049933B (zh) * 2007-05-11 2010-10-06 王华彬 一种镁化物水解法制备金属和非金属纳米颗粒的方法
BR112012020936A2 (pt) 2010-02-24 2017-01-31 Hydrexia Pty Ltd sistema para descarregar hidrogenio a partir de um ou mais recipientes de armazenamento de hidrogênio, sistema para entrega de um abastecimento de hidrogênio em uma linha de abastecimento de hidrogênio e método de abastecimento de hidrogênio a partir de um sistema de entrega de hidrogênio para uma linha de abastecimento de hidrogênio .
JP5206758B2 (ja) * 2010-07-15 2013-06-12 トヨタ自動車株式会社 負極材料、金属二次電池、および負極材料の製造方法
JP5593919B2 (ja) * 2010-07-27 2014-09-24 トヨタ自動車株式会社 二次電池負極およびそれを用いた二次電池
JP5406799B2 (ja) * 2010-07-29 2014-02-05 信越化学工業株式会社 非水電解質二次電池用負極材とその製造方法及びリチウムイオン二次電池
US11141784B2 (en) 2015-07-23 2021-10-12 Hydrexia Pty Ltd. Mg-based alloy for hydrogen storage

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1261466A (zh) * 1997-05-01 2000-07-26 约斡逊马西有限公司 贮氢材料
US20020122981A1 (en) * 2000-11-27 2002-09-05 Martin Ouwerkerk Metal hydride battery material with high storage capacity
US20020141939A1 (en) * 2000-11-07 2002-10-03 Hydro-Quebec Method for rapidly carrying out hydrogenation of a hydrogen storage material

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56114801A (en) 1980-02-16 1981-09-09 Seijiro Suda Storage of hydrogen
DE19526434A1 (de) 1995-07-19 1997-01-23 Studiengesellschaft Kohle Mbh Verfahren zur reversilben Speicherung von Wasserstoff
JP3822306B2 (ja) * 1997-03-14 2006-09-20 株式会社東芝 水素吸蔵合金、電池用負極およびアルカリ二次電池
CA2217095A1 (fr) 1997-10-22 1999-04-22 Hydro-Quebec Nanocomposites a interfaces activees prepares par broyage mecanique d'hydrures de magnesium et usage de ceux-ci pour le stockage d'hydrogene
US6328821B1 (en) 1999-11-22 2001-12-11 Energy Conversion Devices, Inc. Modified magnesium based hydrogen storage alloys
JP3677220B2 (ja) * 2001-04-26 2005-07-27 日本重化学工業株式会社 マグネシウム系水素吸蔵合金

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1261466A (zh) * 1997-05-01 2000-07-26 约斡逊马西有限公司 贮氢材料
US20020141939A1 (en) * 2000-11-07 2002-10-03 Hydro-Quebec Method for rapidly carrying out hydrogenation of a hydrogen storage material
US20020122981A1 (en) * 2000-11-27 2002-09-05 Martin Ouwerkerk Metal hydride battery material with high storage capacity

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107004843A (zh) * 2014-12-10 2017-08-01 巴斯夫公司 金属氢化物组合物和锂离子电池

Also Published As

Publication number Publication date
WO2004036664A3 (en) 2004-12-29
CN1706055A (zh) 2005-12-07
US20060051656A1 (en) 2006-03-09
AU2003269355A1 (en) 2004-05-04
JP2006503688A (ja) 2006-02-02
WO2004036664A2 (en) 2004-04-29
EP1556914A2 (en) 2005-07-27
US7326495B2 (en) 2008-02-05
AU2003269355A8 (en) 2004-05-04

Similar Documents

Publication Publication Date Title
US4551400A (en) Hydrogen storage materials and methods of sizing and preparing the same for electrochemical applications
Cuevas et al. Intermetallic compounds as negative electrodes of Ni/MH batteries
US4849205A (en) Hydrogen storage hydride electrode materials
US5006328A (en) Method for preparing materials for hydrogen storage and for hydride electrode applications
US20050255382A1 (en) Hydrogen storage alloys having improved cycle life and low temperature operating characteristics
Miao et al. Influences of Co substitution and annealing treatment on the structure and electrochemical properties of hydrogen storage alloys La0. 7Mg0. 3Ni2. 45-xCo0. 75+ xMn0. 1Al0. 2 (x= 0.00, 0.15, 0.30)
CN100361329C (zh) 高存储容量储氢材料
Joubert et al. Metallic hydrides II: Materials for electrochemical storage
WO2016064985A1 (en) Bcc metal hydride alloys for electrochemical applications
Wang et al. A promising anode candidate for rechargeable nickel metal hydride power battery: An A5B19-type La–Sm–Nd–Mg–Ni–Al-based hydrogen storage alloy
US20070054158A1 (en) Combination of photovoltaic devices and batteries which utilize a solid polymeric electrolyte
US6821676B2 (en) Metal hydride battery material with high storage capacity
USRE34588E (en) Hydrogen storage hydride electrode materials
Zang et al. Hydrogen storage performances of RCaMgNi9 (R= Nd, Gd and Er) compounds
Kaabi et al. Effect of temperature on behavior of perovskite‐type oxide LaGaO3 used as a novel anode material for Ni‐MH secondary batteries
WEI et al. Phase structure and electrochemical properties of La1. 7+ xMg1. 3− x (NiCoMn) 9.3 (x= 0–0.4) hydrogen storage alloys
Willems Investigation of a new type of rechargeable battery, the nickel-hydride cell
JPH11217643A (ja) 新規な水素吸蔵合金及びその合金を用いた水素電極
Petrii et al. Hydrogen-accumulating materials in electrochemical systems
Lu et al. The Phase Structure and Electrochemical Properties of La4MgNi19-xCox (x= 0~ 2) Hydrogen Storage Alloys
US20020041994A1 (en) Metal-containing electrode material at least for secondary elements and method for producing the same
JP3533766B2 (ja) 水素吸蔵合金電極およびその製造法
JP2001303160A (ja) 水素吸蔵合金
JP3552177B2 (ja) 水素吸蔵合金負極粒子の製造方法
JP3043128B2 (ja) 金属−水素アルカリ蓄電池

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20080109

Termination date: 20101017