CN100431805C - 用于多关节型机器人的操作路径的设置方法及设置装置 - Google Patents

用于多关节型机器人的操作路径的设置方法及设置装置 Download PDF

Info

Publication number
CN100431805C
CN100431805C CNB200610084434XA CN200610084434A CN100431805C CN 100431805 C CN100431805 C CN 100431805C CN B200610084434X A CNB200610084434X A CN B200610084434XA CN 200610084434 A CN200610084434 A CN 200610084434A CN 100431805 C CN100431805 C CN 100431805C
Authority
CN
China
Prior art keywords
path
point
articulated robot
workpiece
end effector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB200610084434XA
Other languages
English (en)
Other versions
CN1861331A (zh
Inventor
柴田薰
中岛陵
金子正胜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Publication of CN1861331A publication Critical patent/CN1861331A/zh
Application granted granted Critical
Publication of CN100431805C publication Critical patent/CN100431805C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1656Programme controls characterised by programming, planning systems for manipulators
    • B25J9/1664Programme controls characterised by programming, planning systems for manipulators characterised by motion, path, trajectory planning
    • B25J9/1666Avoiding collision or forbidden zones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/10Spot welding; Stitch welding
    • B23K11/11Spot welding
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/39Robotics, robotics to robotics hand
    • G05B2219/39094Interference checking between robot and fixture
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/45Nc applications
    • G05B2219/45104Lasrobot, welding robot

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Robotics (AREA)
  • Manipulator (AREA)
  • Numerical Control (AREA)

Abstract

通过连接由计算机生成的虚拟空间内的多个焊接点(Tn)来设置一临时操作路径以调查是否能够沿着该临时操作路径操作末端执行器(68)。如果该操作不能被运行,则自动设置一条避免与工件(80)干扰的路径同时提取其中工件(80)存在于被该末端执行器(68)所包围的内部空间内的一个部分以便设置用于把该末端执行器(68)从一焊接点(Tn)收回的窄区域操作路径。接着,为了设置用于在收回点(Ue)之间进行移动的宽区域操作路径,使用一模板操作,其中在指定方向上用指定距离来移动该末端执行器(68)。

Description

用于多关节型机器人的操作路径的设置方法及设置装置
本申请是申请日为2001年11月22日,申请号为01823054.7,标题为“用于多关节型机器人的操作路径的设置方法及设置装置”的专利申请的分案申请。
技术领域
本发明涉及用于多关节型机器人的操作路径的设置方法及设置装置。具体地,本发明涉及用于在预定操作点之间的多关节型机器人的操作路径的设置方法及设置装置,该设置方法和设置装置用于为操作设在多关节型机器人的前端上的末端执行器设置路径。
背景技术
按惯例,如果直接操作为生产线安装的多关节型机器人以执行操作姿势的示教,那么多关节机器人操作方面的熟练操作人员将在生产线的工作点上执行操作。因此,操作就变得效率低。还将用停止生产线来执行上述操作。所以,生产线的设备动转率降低。
近年来,基于离线程序来执行示教(离线示教)而有效地执行示教操作或保持生产线的设备动转率。在离线示教中,一个包含多关节型机器人,作为操作对象的工件,以及外围结构的模型被建立于计算机上。使用该模型来准备示教数据,并且之后把该示教数据提供给安装在工作点上的多关节型机器人。因此,在示教数据的准备期间不必停止生产线。
出于以下原因,没有必要广泛地使用该传统的离线示教。
自然,多关节型机器人不应与各种外围结构,工件或其它类似的东西相干扰(例如,接触)。当外围结构存在时或是当工件为复杂形状时,难于设置操作路径来避免这类障碍。
更具体地,其中针对多关节型机器人的所有姿势进行干扰调查的循环法是不实用的,因为计算量庞大。在诸如所称的算术编程的优化方法的某些情形中没有解决方案。此外,根据使用随机数的随机技术,解决方案的收敛性不被保证并且计算不具有再现性。
几项技术已被建议用来解决上述问题。
例如,一项技术是已知的,它利用了包含起点与到达点的平板(见日本专利公开No.2875498)。该技术中,在指定板上确定其中障碍物的横截面被适当放大的一个界限外区域。设置一条穿过该界限外区域的顶点的操作路径以避免干扰。然而,该技术中,通过每次检验与该界限外区域的干扰来设置操作路径。由于这个原因,检验操作复杂,并且操作路径是复杂的。即使操作路径正确,从各个顶点的操作范围的视点来看检验多关节型机器人是否能够在该操作路径上准确操作也是不可能的。
另一项技术也是已知的,例如,该技术中障碍物的位置及形状被输入并用生产场所内专用的控制器来指示以设置操作路径(见日本未决专利公开No.9-81228)。然而,该技术中,不能自动设置操作路径,这是由于在当操作生产点上的实际机器时执行示教。
因此,上述离线示教目前依赖于人工操作来设置操作路径以避免障碍物。
然而,人工操作需要长的时间周期来提取其中机器人不与工件以及其它设备相干扰的无干扰区。根据不同的个人,该判断也是不同的。必然会引起对于该提取点的任何误差和/或任何遗漏。
如上所述,当借助于离线示教来确定机器人的姿势时,为此所需的操作未必容易。具体地,在监视器屏幕上,当该工件是复杂的三维形状时,从焊接点难于找回用于折回焊枪装置的路径以使它不会与工件相干扰。它花费了长的时间周期来执行示教。
发明内容
考虑到上述问题,本发明的一个目的是提供用于多关节型机器人的操作路径的设置方法及设置装置,其中自动执行确定路径的步骤,并在用于多关节型机器人的操作路径的把末端执行器从工件上的操作点收回的窄区域操作路径中,当为收回路径执行离线示教以不与工件干扰时,能够在短的时间周期内准备示教数据而不需要任何技能。
本发明的另一目的是提供用于多关节型机器人的操作路径的设置方法及设置装置,其中能够自动有效地设置用于在操作点之间或是收回点之间进行移动的宽区域操作路径而不需执行可能会受到工件和/或障碍物的形状的影响的任何复杂的计算。
本发明的还一个目的是提供用于多关节型机器人的操作路径的设置方法及设置装置,其中能够自动有效地设置窄区域操作路径和宽区域操作路径。
根据本发明,这里提供了一种为含有末端执行器的多关节型机器人设置操作路径的方法,该方法包括内部空间定义步骤,定义被所述末端执行器的臂或焊极部分地围绕的一内部空间;提取步骤,提取要被焊接的工件的一对象工件部分,所述对象工件部分存在于所述内部空间内;以及干扰调查步骤,调查当操作所述多关节型机器人时在所述末端执行器与所述对象工件部分之间是否发生干扰。
因此,自动执行确定路径的步骤,并且在用于把末端执行器从工件上的操作点收回的窄区域操作路径中,当为收回路径执行离线示教以不与工件干扰时,能够在短的一段时间内准备示教数据而不需要任何技能。
在此情形下,该多关节型机器人,末端执行器,工件,以及外围结构是根据由计算机实现的程序处理而被构造成一模型的虚拟物。
工件可以是用多个块近似的一个模型。
内部空间可以是用多个块近似的一个模型。
此外,干扰调查步骤可以包括参考线定义步骤,定义经过该对象工件部分的基本中心部分的参考线;调查结束位置定义步骤,在该参考线上设置对于该末端执行器的调查结束位置;以及第一详细干扰调查步骤,通过从调查开始位置至该调查结束位置操作该末端执行器来调查在该末端执行器与该对象工件部分之间是否发生干扰。
干扰调查步骤可以包括参考线定义步骤,定义经过该对象工件部分的基本中心部分的参考线;重心位置定义步骤,根据该参考线定义该对象工件部分的重心位置;以及第二详细干扰调查步骤,通过从调查开始位置至该重心位置操作该末端执行器来调查在该末端执行器与该对象工件部分之间是否发生干扰。
作为与该对象工件部分的重心位置相比位于靠近开口处的该对象工件部分的一部分被提取作为取代该对象工件部分的新的对象工件部分以执行该重心位置定义步骤以及该第二详细干扰调查步骤。
根据本发明的另一方面,这里提供了一种为含有末端执行器的多关节型机器人设置操作路径的装置,该装置包括:内部空间定义部件,用于定义被该末端执行器的臂或焊极部分地围绕的一内部空间;工件提取部件,用于提取要被焊接的工件的一对象工件部分,该对象工件部分存在于该内部空间内;以及干扰调查部件,用于调查当操作该末端执行器时在该末端执行器与该对象工件部分之间是否发生干扰。
根据本发明的还一方面,这里提供了一种为多关节型机器人设置操作路径的方法,所述多关节型机器人从起点至到达点操作一末端执行器,该方法包括:操作调查步骤,设置用于连接该起点与该到达点的路径以调查是否能够沿着该路径操作该末端执行器;以及折回路径设置步骤,如果在该操作调查步骤中不能沿着该路径操作该末端执行器,则设置一折回路径用于在指定方向上从该起点或该到达点来操作该末端执行器指定距离。
因此,能够自动有效地设置用于在操作点之间或是收回位置之间进行移动的宽区域操作路径而不需执行可能会受到工件或障碍物的形状的影响的任何复杂计算。
该指定方向可以是基于在该起点或该到达点上的该末端执行器的姿势的一个预定方向。
该指定方向可以是连接该起点或该到达点与空间内的建立点的方向。
该建立点可以是该多关节型机器人的原始轴的中心点。
可以把该折回路径的终点定义为新的起点或新的到达点以再次执行操作调查步骤或折回路径设置步骤。
如果该折回路径的终点是多关节型机器人不能到达的点或是其上发生干扰的点,则再次设置该折回路径,其中该指定距离在该折回路径内被校正。
根据本发明的又一方面,这里提供了一种为多关节型机器人设置操作路径的装置,所述多关节型机器人从起点至到达点操作一末端执行器,该装置包括:路径调查部件,用于设置用于连接该起点与该到达点的路径以调查是否能够沿着该路径操作该末端执行器;以及宽区域操作路径设置部件,用于如果该路径调查部件判定不能沿着该路径操作该末端执行器,则设置一折回路径用于在指定方向上从该起点或该到达点来操作该末端执行器指定距离。
根据本发明的再一个方面,这里提供了一种为多关节型机器人设置操作路径用于为工件在操作点之间操作一末端执行器的方法,该方法包括:窄区域操作路径设置步骤,设置窄区域操作路径用于把该末端执行器从该操作点折回到位于靠近该工件的末端处的点而不干涉该工件和另一障碍物,根据该障碍物和靠近该操作点的该工件的形状,该末端执行器被安排在用于该工件的该操作点上;以及宽区域操作路径设置步骤,设置宽区域操作路径用于通过结合预定的指定操作来实现从起点至到达点的操作,假如该起点与该到达点存在于位于靠近该工件的该末端处的预定点内。
因此,有可能自动有效地设置窄区域操作路径和宽区域操作路径。
窄区域操作路径设置步骤可以包括内部空间定义步骤,定义被该末端执行器的臂或焊极部分地围绕的一内部空间;提取步骤,提取存在于该内部空间内的一对象工件部分;以及干扰调查步骤,调查当操作该多关节型机器人时在该末端执行器与该对象工件部分之间是否发生干扰。
宽区域操作路径设置步骤包括:操作调查步骤,设置用于连接该起点与该到达点的路径以调查是否能够沿着该路径操作该末端执行器;以及折回路径设置步骤,如果在该操作调查步骤中不能沿着该路径操作该末端执行器,则设置一折回路径用于在指定方向上从该起点或该到达点用指定距离来操作该末端执行器。
该指定方向可以是根据在起点或到达点上的该末端执行器的姿势而预定的。
该指定方向可以是连接起点或到达点与空间内的一建立点的方向。
根据本发明的还一个方面,这里提供了一种为多关节型机器人设置操作路径用于为工件在操作点之间操作一末端执行器的装置,该装置包括:窄区域操作路径设置部件,用于设置窄区域操作路径以把该末端执行器从该操作点折回到位于靠近该工件的末端处的点而不干涉该工件和另一障碍物,根据该障碍物和靠近该操作点的该工件的形状,该末端执行器被安排在用于该工件的该操作点上;以及宽区域操作路径设置部件,用于设置宽区域操作路径以通过结合预定的指定操作来实现从起点至到达点的操作,假如该起点与该到达点存在于位于靠近该工件的该末端处的预定点内。
当与附图相结合时,从下述说明中本发明的上述及其它目标,特征,以及优点将变得更为明显,在附图中通过说明性的例子示出了本发明的较佳实施例。
附图说明
图1说明用在本发明实施例内的离线示教装置及机器人装置;
图2示出说明该离线示教装置的安排的方框图;
图3说明多关节型机器人的安排;
图4说明一X型焊枪;
图5说明用于工件的焊接点;
图6示出说明根据本发明该实施例的用于多关节型机器人的整个操作路径设置方法的流程图;
图7示出说明根据本发明该实施例的用于多关节型机器人的窄区域操作路径设置方法的流程图(No.1);
图8示出说明根据本发明该实施例的用于多关节型机器人的窄区域操作路径设置方法的流程图(No.2);
图9示出说明根据本发明该实施例的用于多关节型机器人的窄区域操作路径设置方法的流程图(No.3);
图10示出一路径表;
图11A说明从中心点放射状地设置直线的过程;
图11B说明通过在格形构造中画线来提取闭合空间内的相交点的过程;
图12A说明在相交点的中心附近设置固体的过程;
图12B说明提取该固体及工件的重叠部分的过程;
图12C示出被提取的工件模型;
图13A说明各个固体的中心点;
图13B示出确定主分量线的过程;
图14示出确定收回点及收回路径(V1)的过程;
图15示出收回路径(V2);
图16说明一掩模处理;
图17说明从起点至到达点的操作路径;
图18示出说明根据本发明该实施例的用于多关节型机器人的宽区域操作路径设置方法的流程图(N0.1);
图19示出说明根据本发明该实施例的用于多关节型机器人的宽区域操作路径设置方法的流程图(N0.2);
图20示出说明根据本发明该实施例的用于多关节型机器人的宽区域操作路径设置方法的流程图(N0.3);
图21说明第一与第二模板的操作;
具体实施方式
下面将参照图1-21来解释本发明的用于多关节型机器人的操作路径的设置方法及设置装置的说明性实施例。
基本地,在本发明该实施例的用于多关节型机器人的操作路径的设置方法及设置装置中,在当提取其中存在工件以在把设置在该多关节型机器人前端上的末端执行器从该工件上的操作点收回的窄操作期间,调查被焊枪装置包围的内部空间内的干扰的部分时设置操作路径。在用于在收回位置之间进行移动的宽区域操作期间,通过在结合指定方向上的从起点移动指定距离的模板操作时操作来设置操作路径以移到到达点,同时避开障碍物。
如图1所示,用在本发明该实施例内的离线示教装置(操作路径设置装置)10,执行多关节型机器人50的操作的示教。把装置10连接到机器人装置12用于根据所准备的示教数据来执行对于操作对象的期望操作。
机器人装置12包括多关节型机器人50,以及用于根据示教数据来控制多关节型机器人50的操作的机器人控制单元22。
如图2所示,构成离线示教装置10的控制单元14包括作为用于控制整个离线示教装置10的控制装置的CPU(计算机),作为存储部分的ROM 28和RAM 29,用于实现对于硬盘34的数据存取的硬盘驱动器(HDD)39,用于在监视器16的屏幕上实现绘图控制的绘图控制电路30,连接有作为输入装置的键盘18和鼠标20的接口电路32,用于控制外部记录介质36a(例如,软盘或光盘)的记录介质驱动器36,用于准备示教数据的数据准备电路38,以及用于基于该示教数据在监视器16的屏幕上实现模拟的模拟电路40。该模拟电路40基于三维CAD,并且它具有,例如,准备模型以及调查该模型的相互干扰的功能(干扰调查40a)。
硬盘34存储,例如,具有为多关节型机器人50设置操作路径的作用的操作路径设置程序35,作为用于设置该操作路径的条件的条件数据37,以及未举例说明的OS。
操作路径设置程序35包括窄区域操作路径设置部分35a用于例如,根据工件80的形状,设置安排在工件80的一个点上(见图5),例如,在焊点T0上的焊枪装置(末端执行器)68被缩回到位于接近于该工件80的末端的点上同时保持与工件80及其它元件的不干扰状态所沿着的窄区域操作路径,以及宽区域操作路径设置部分35b用于设置通过结合假定起点P1(见图17)和到达点P2存在于该空间内的任意两点的预定指定操作来从起点P1到到达点P2实现该操作所沿着的宽区域操作路径。
操作路径设置程序35具有路径调查部分35c用于调查是否能够在通过连接两个任意点所得到的路径上操作焊枪装置68。
操作路径设置程序35进一步包括内部空间定义部分35d用于在虚拟空间内定义一个预定的内部空间,以及工件提取部分35e用于提取存在一预定空间内的要被焊接的工件80的一个部分。
如图3所示,把第二基座56,第一连杆58,第二连杆60,第三连杆62,第四连杆64,以及焊枪固定部分66按照朝向前端的顺序连接到作为多关节型机器人50的固定台的第一基座54。焊枪装置68连到布置在前端上的焊枪固定部分66。
第二基座56相对于第一基座54围绕作为纵轴的轴J1的中心被可旋转地支撑。第一连杆58的基部端相对于具有作为横轴的轴J2的第二基座56被可倾斜地支撑。第二连杆60的基部端相对于具有作为横轴的轴J3的第一连杆58的前端被可摆动地支撑。第三连杆62连到具有作为用于旋转的公共中心轴的轴J4的第二连杆60的前端侧上。此外,第四连杆64的基部端相对于具有位于相对于轴J4的直角方向上的轴J5的第三连杆62的前端被可摆动地支撑。焊枪固定部分66连到具有作为用于旋转的公共中心轴J6的第四连杆64的前端侧上。
连到焊枪固定部分66上的焊枪装置68是所称的C型焊枪,并且它具有,在拱形臂74的两端,沿着轴J6可打开/可闭合的一对焊极70,72。在闭合状态,焊极70,72与工件80在对于轴J6的焊接操作点(下文称为“TCP(工具中心点)”)相接触。
把TCP指向的并与主体的焊极72的轴向中心一致的方向指定为“向量Zr”。把垂直于向量Zr的并且指向焊枪装置68的外部的方向指定为“向量Xr”。把相互垂直于向量Xr及向量Zr的方向指定为“向量Yr”。
用于轴J1-J6的驱动机构以及用于焊极70,72的打开/闭合机构分别由未例举的传动装置驱动。TCP由轴J1-J6的各个旋转角θ1-θ6的值以及多关节型机器人50的各个部分的大小来决定。
焊枪装置68不限于C型焊枪。例如,图4所示的X型焊枪(装有一对由公共支撑轴可旋转地支撑的打开/闭合焊枪臂的焊枪)68a可被用于焊枪装置68。
把轴J1与轴J2之间的交点定义为作为用于与多关节型机器人50有关的坐标计算及控制的参考点的原点(原始轴的中点)。参照原点O,用高度Z代表垂直向上的方向,用深度Y代表当旋转角θ1满足θ1=0时所得到的轴J2的方向,以及用宽度X代表垂直于高度Z和深度Y的方向。用高度Z,宽度X及深度Y来表示三维正交坐标。
接下来,将参照图5和6解释使用离线示教装置10以及如上所述构成的操作路径设置程序35来为多关节型机器人50设置操作路径的过程。
在下面的描述中,将解释如图5所示的一个例子,其中焊枪装置68在多个焊点(操作点)Tn(n=0,1,2,...)之间连续移动以执行对于工件80的焊接,工件80为一薄板。
用包括执行焊接的空间内的三维正交坐标值(X,Y,Z)以及用于表明焊枪装置68的姿势的三个TCP参数的总共六个值来表示焊点Tn。
此外,已经证实多关节型机器人50的焊枪装置68能够到达焊点Tn,并且当焊点Tn被焊接时焊枪装置68的姿势,即,向量Xr,向量Yr,以及向量Zr的值也被确定。
此外,根据本发明的该实施例,在离线示教装置10内多关节型机器人50,工件80,以及外围结构被作为虚拟模型对待。不过,在下面的描述中,将用与实际装置相同的参考数字来表示这些元件。
工件80被作为由多个块组成的模型来对待以便获得高速处理。
在图6所示的步骤S1中,离线示教装置10的操作人员用预定操作方法启动操作路径设置程序35。并入离线示教装置10内的OS把存储在硬盘34上的操作路径设置程序35装载到RAM 29上以执行操作路径设置程序35。通过该操作路径设置程序35来执行下一步骤S2以及随后的处理。
随后,在步骤S2中,设置通过连接焊点Tn而得到的一条暂时操作路径90(见图5)。操作路径90可以是直线的如图5所示,或者它也可以是轻易地操作多关节型机器人50所沿着的一条任意曲线。稍后所描述的操作路径100,102,104,110,112可以按照与上述相同的方式来设置。
随后,在步骤S3中,调查当将焊枪装置68沿着暂时操作路径90操作时多关节型机器50是否能够设置姿势。此外,调查焊枪装置68是否与操作路径90内的其它结构或元件相干扰。
具体地,设置通过把操作路径90划分成具有微小长度的那些路径而得到的划分点。确定多关节型机器人50的姿势,即,当把焊枪装置68安排在各个划分点上时所提供的旋转角θ1-θ6。至于用于旋转角θ1-θ6的计算方法,可以应用一种众所周知的矩阵计算方法(下文称作为“逆运算”),例如,对于多关节型机器人50的各个部分的大小以及由表示焊枪装置68的姿势的向量Xr,向量Yr,和向量Zr以及划分点的空间位置坐标(X,Y,Z)所定义的总共六个值。
当焊枪装置68的姿势在焊点T0与T1之间不同时,可以用线性内插的方式来在各个划分点上定义向量Xr,向量Yr,以及向量Zr。在该调查中,假设焊极70,72被打开以使它们不会与工件80相干扰。
如果多关节型机器人50的姿势固定在每个划分点上,那么从焊点T0到焊点T1的操作被实际保证。
随后,在步骤S4,判断逆运算的解是否在每个划分点上被正常确定。就是说,判断TCP是否能够到达划分点。如果解未被确定,即使解被确定而如果角度值在轴J1到J6的可旋转范围外,或是如果多关节型机器人50在确定姿势内干扰(例如,与障碍物82,其它工件,以及工厂内的柱子相干扰),那么程序进到步骤S5。如果解被正常确定,解在可旋转范围内,以及没有干扰发生,那么程序进到步骤S7。
通过模拟电路40的作用来自动执行干扰调查。当使用模拟电路40时,有可能可靠地执行由于二维表示而从监视器16的屏幕上来看不清楚的三维调查。
在步骤S5中,通过窄区域操作路径设置部分35a的作用来设置用于从焊点T0到T1收回焊枪装置68的窄区域操作路径。稍后将描述为此的详细方法。
随后,在步骤S6中,把通过窄区域操作路径得到的两个收回位置Ue(见图14)分别设置成起点P1和到达点P2以设置用于把焊枪装置68从起点P1移到到达点P2的宽区域操作路径。通过宽区域操作路径设置部分35b的作用来执行这一设置。稍后将描述为此的详细方法。
在设置窄区域操作路径以及宽区域操作路径之后,程序进到步骤S7。
在步骤S7中,确定是否对在步骤S1内设置的所有操作路径90执行该调查以完成该处理。如果存在未被调查的任一操作路径90,那么程序返回到步骤S3以继续调查。
如上所述,在本发明的该实施例中,通过操作路径90把焊点Tn首先连到另个焊点上。如果操作路径90未被如原样应用,那么设置为了避开,例如,工件80以及障碍物82的任何突出部分的窄区域操作路径。此外,设置宽区域操作路径以便在通过设置窄区域操作路径而得到的收回位置Ue之间进行移动。
当窄区域操作路径被设置时,提取其中存在工件的部分以调查被焊枪装置68部分围绕的内部空间内的干扰。因此,有可能自动设置用于避免与工件的任何干扰的路径。
当宽区域操作路径被设置时,应用其中用指定方向内的指定距离移动焊枪装置68的模板操作。因此,有可能自动设置宽区域操作路径而不需执行可能受到工件80与障碍物82的形状的影响的任何复杂计算。
此外,通过适合于各自处理的不同处理来执行用于从工件80上的焊点Tn收回多关节型机器人50的焊枪装置68的窄区域操作路径的设置,以及用于从起点P1至到达点P2进行移动的宽区域操作路径的设置。因此,有可能有效地设置焊点Tn之间的操作路径。
接下来,将参照图7-16解释用于图6所示步骤S5中的设置窄区域操作路径的方法。
当窄区域操作路径被设置时,主要使用三种方法以便确定用于从工件80的焊接部分收回焊枪装置68的路径。
首先,使用一种方法来从焊接部分到收回点直接进行移动。第二,使用一种方法来从该焊点到工件80的交叉部分上的重心进行移动。第三,使用一种方法来提取仅仅紧挨焊枪装置68的开口布置的工件80的一个部分,以使得通过优先使用该提取出的部分来确定收回路径。
在图7所示的步骤S101中,把多关节型机器人50的焊枪装置68设在工件80的焊点T0被焊接的位置上。
焊点T0给出调整开始位置(Ts),并因此把它记录到用于操作数据的暂时路径表12上以执行初始化(见图10所示的次序1)。
如图10所示,路径表120包括“焊枪装置的方向”的栏120a,“TCP的位置”的栏120b,以及“每个轴的角度”的栏120c。“每个轴的角度”的栏120c包括旋转角θ1-θ6。
随后,在图7所示的步骤S102中,把位于焊点T0的焊枪装置68的TCP设置为调查起点Ts。
随后,在步骤103中,在臂74以及焊极70,72被观察的焊枪装置68的大致中心上确定中心点C(见图11A)。按预定角宽度从中心点C设置放射状的直线1090以确定在臂74以及焊极70,72的内圆周侧上的交点1092。
出于简化解释,在平面上确定交点1092。然而,实际上,同样是通过利用深度方向上的数据来确定三维形状内的交点。因此,稍后将描述的工件模型(目标工件部分)1096以及下面描述的固体(或块)1094将被作为三维形状而不是作为平面形状对待。
随后,在步骤S104中,如图11B所示,用一条线段连接多个交点1092,以设置用于构成封闭间隔1092a的一条环形线1092b。在该封闭间隔1092a内设置具有预定间隔距离的格形线,以提取存在于该格形线的交点的该封闭间隔1092a内的交点1092c。
随后,在步骤S105中,如图12A所示,把正方形固体1094嵌入在所提取的交点1092c的中心周围以使得不形成任何间隙以设置焊枪的内部空间。
通过内部空间定义部分35d的作用来执行步骤S103-S105的处理。
随后,在步骤S106中,如图12B所示,安排工件80以使工件80与相对于焊枪装置68及该焊枪内部空间的相对位置相配。提取其中工件80与固体1094彼此覆盖的一个部分作为工件模型1096(见图12C)。然后,排除掉未被固体1094覆盖的工件80的一部分80a,因为该部分与干扰调查无关。构成工件模型1096的各个固体1094被辨别为工件固体1098。即使移动焊枪装置68,初始位置对于工件模型1096和各个工件固体1098也是固定的。
通过工件提取部分35e的作用来执行步骤S106内的处理。
如上所述,处理被容易地执行,这是因为把工件80作为具有多个块的模型来对待。此外,不执行无用的处理,因为工件80的任何不必要部分(例如,未被覆盖的部分80a)都被自动排除。
随后,在步骤S107中,通过主要组成分析技术来计算工件模型1096的主分量线(或参考线)M1。
将详细解释用于计算该主分量线M1的方法。如图13A所示,确定各个工件固体1098的中心点坐标(Xs,Ys,Zs)。
随后,如图13B所示,使每个中心点坐标1098a与主分量线M1之间的距离的平方和s最小。确定主分量线M1以满足下面的表达式。
∑|s|2=min
具体地,各个中点坐标1098a被用来计算方差和协方差矩阵的本征值及本征向量,以及Xs,Ys,Zs被用来确定作为各个坐标X,Y,Z的平均值的重心位置G1。经过重心位置G1的本征向量即为主分量线M1。
在下面的步骤S108-S112中,如图14所示,调查当从调查起点Ts至收回位置Ue线性地执行操作时是否引起任何干扰。
具体地,在步骤S108中,确定收回位置Ue。如图14所示,该收回位置Ue存在于主分量线M1上的位置。移动基于焊枪装置68的TCP的向量Xr同时保持与该主分量线M1一致。把焊枪装置68与焊极70,72不干扰的地方设置成收回位置Ue。
随后,在步骤S109中,根据由收回位置Ue指定的焊枪装置68的位置以及姿势来确定多关节型机器人的姿势,即,旋转角θ1-θ6。在该计算方法中,可以通过逆运算从用收回位置Ue的空间内的位置坐标(X,Y,Z)以及用于表示焊枪装置68的姿势的向量Xr,Yr,以及Zr所指定的总共六个值中做出该确定。
随后,在用于分支判断的步骤S110中,判断在步骤S109的逆运算中是否正常地确定了解。就是说,判断TCP是否能够到达收回位置Ue。如果解未被确定,即使确定了解而如果角度值在轴J1至J6的可旋转范围外,或者如果多关节型机器人50在该确定姿势内与其它结构干扰,那么程序进到步骤S111。如果解被正常确定,那么程序进到步骤S112。
在对于干扰的调查中,尤其是当把X型焊枪68a用作为焊枪装置时,对焊枪装置的打开状态及闭合状态二者都要进行调查。
如果解未被正常确定,那么在步骤S111执行旋转操作以围绕向量Yr的中心旋转α°。旋转操作意指在不引起与工件模型1096干扰的范围内围绕收回位置Ue的中心旋转焊枪装置68的事实,如图14所示用双点划线表示的。在该状态内确定向量Xr,向量Yr,以及向量Zr后,程序返回到步骤S109。可以假定角α°具有在正方向与反方向二者上的角度值来执行该调查。
如果由步骤S109-S111构成的循环被连续执行预定的次数,那么在主分量线M1上更远的并且在其上保持该多关节型机器人50的姿势的适当位置上再次设置收回位置Ue。接着,程序进到下个步骤S112。
用于进行旋转α°的处理不限于基于向量Yr的中心的处理。该处理可以存在于围绕轴,例如,向量Xr或向量Zr的旋转中。可以在下面的处理中采用这一处理来按照与上述相同的方式旋转。
接着,程序进到图8所示的处理。在步骤S112中,由于被用图14所示的路径V1来表示,因此焊枪装置68从调查起点Ts至收回位置Ue线性操作,以调查在臂74及焊极70,72与工件模型1096之间是否发生任何干扰。
在用于分支判断的步骤S113中,如果根据步骤S112中的调查判定发生了任何干扰,那么程序进到步骤S114。如果判定未发生干扰,那么程序进到作为终止处理的步骤S131,因为能够用一次操作来执行收回操作。
如上所述,如果工件80的形状简单,那么就有可能缩短处理时间,这是因为能够用一次操作来确定操作路径。
在图14所示的例子中,在沿着路径V1的移动期间,焊极70明显地干扰工件模型1096的突出部分1096a。在此情形下,程序进到步骤S114。
在下面的步骤S114-S118中,调查当从调查起点Ts到工件模型1096的重心G1线性地执行操作时是否会出现干扰。
具体地,在步骤S114中,如图15所示,定义连接调查起点Ts到重心位置G1的路径V2。焊枪装置68的姿势被假设,其中向量Xr与基于重心位置G1的路径V2一致。
在步骤S115中,通过上述逆运算用该假设的姿势来确定多关节型机器50的姿势。
随后,在用于分支判断的步骤S116中,调查是否按照与步骤S110相同的方式正常确定了该逆运算中的解。然后,除了该逆运算处理外,最好还调查焊枪装置68是否干扰工件模型1096。
如果解未被正常地确定,那么执行旋转操作以按照与步骤S111中相同的方式围绕向量Yr的中心旋转α°(步骤S117)。在该状态内确定了向量Xr,向量Yr,以及向量Zr之后,程序进到步骤S115。
如果解被确定,那么在步骤S118中按照与步骤S112中相同的方式通过沿着路径V2从调查起点Ts到重心位置G1线性地操作焊枪装置68来调查干扰。
如果由步骤S115-S117构成的循环被连续执行预定次数,那么判定焊枪装置68不能被安排在重心位置G1上。在完成该处理后,程序进到作为掩模处理的步骤S124。
如果通过在上述步骤S118中执行的调查以及稍后描述的步骤S130判定发生了任何干扰,那么程序经由步骤S119进到步骤S124用于分支判断。如果判定未发生任何干扰,那么程序进到下个步骤S120,假定该操作被成功地执行直到重心位置。
在步骤S120中,把那一时刻上的多关节型机器人50的姿势另外记录在路径表120上。
随后,在步骤S121中,按照与步骤S112相同的方式从那一时刻的焊枪装置68的位置到收回位置Ue线性地进行操作以调查是否发生干扰。在图15所示的例子中,沿着主分量线M1进行调查。
在用于分支判断的步骤S122中,如果通过步骤S121中的调查判定出现了任何干扰,那么程序进到步骤S123。如果判定未出现任何干扰,那么程序进到作为终止处理的步骤S131,这是因为能够用该操作来执行收回操作。
如果存在任何干扰,那么把那一时刻的焊枪装置68的位置用作为步骤S123中的新的调查开始位置以执行对于先前的调查开始位置Ts的更换的更新处理。即,在图15所示的例子中,判定焊枪内部空间外的部分不必再被考虑,因为焊枪装置68被成功地收回到重心位置G1。因此,调查开始位置Ts同样被更新以便再次在那一时刻设置工件模型1096。
按照与上述步骤S106中相同的方式来提取和更新工件固体1096。按照与上述步骤S107中相同的方式来确定新的主分量线M1以及新的重心位置G1以分别更新它们,并且之后程序返回到步骤S114。在程序返回到步骤S114后,继续对于在步骤S123中所确定的新的工件固体1096,主分量线M1,以及重心位置G1的处理。
如上所述,未被包含在焊枪内部空间内的部分被从处理对象中成功地排除掉。因此,同样有可能为具有任何复杂形状的工件80确定用于收回焊枪装置68的路径。
不过,如果由步骤S114-S123构成的循环被执行少于预定的次数,那么判定出非常难以为工件80收回焊枪装置68。因此,结束处理以再制定计划。
接下来,解释作为如果在步骤S119中判定沿着路径Vn(n=1,2,3,...)操作应有的出现的任何干扰时所执行的处理的步骤S124-S130。在此情形下,仅仅位于接近于焊枪装置68的开口的工件模型1096的那个部分被提取(或是服从掩模处理)以优先使用该提取出的部分而确定收回路径。
在图9所示的步骤S124中,如图16所示,基于重心位置G1把位于焊枪装置68的开口侧上的工件模型1096的一部分指定为新的对象工件部分1096b,并把该部分与位于该开口相反一侧上的一部分1096c区别开来。在辨别处理中,该处理被考虑以便仅仅为靠近开口布置的那一部分而收回焊枪装置68。该处理专供位于该开口相反一侧上的那一部分1096c之用以提取该开口一侧的新的对象工件部分1096b。用直到作为下游处理的步骤S125-S130的要被处理的该新的对象工件部分1096b来取代工件模型1096。
随后,在步骤S125中,按照与上述步骤S107中的处理相同的方式确定与该新的对象工件部分1096b有关的主分量线M2以及重心位置G2。
在步骤S126中,按照与上述步骤S114中相同的方式来定义用于连接调查开始位置Ts与重心位置G2的路径V3来假设其中向量Xr被允许与基于重心位置G2的路径V3一致的焊枪装置68的姿势。
随后,在步骤S127中,按照与上述步骤S115中相同的方式通过逆预算用所假设的姿势来确定多关节型机器人50的姿势。
随后,在用于分支判断的步骤S128中,按照与上述步骤S116中相同的方式来调查该逆运算的解是否被正常地确定。
如果解未被正常确定,那么执行旋转操作以按照与上述步骤S117中相同的方式围绕向量Yr的中心旋转α°(步骤S129)。程序返回到步骤S127。
如果解被确定,在步骤S130中,那么沿着从调查开始位置Ts到重心位置G2的路径V3线性地操作焊枪装置68以按照与上述步骤S118中相同的方式调查干扰。程序返回到步骤S119以判断该干扰调查。
如上所述,即使在为了整个工件模型1096的目的而提取路径时没有找到适当的路径,那么通过把掩模处理应用于该工件模型1096,只有紧靠焊枪装置68的开口设置的新的对象工件部分1096b能够被优先使用来确定收回路径。此外,在下游处理中,通过在上述步骤S123中结合对于工件模型1096的更新处理而把工件模型1096连续地变换成具有简单形状的一个模型,使得容易确定收回路径。
如果由步骤S127-S129构成的循环被连续执行预定次数,那么判定不能够把焊枪装置68安排在重心位置G2上。程序返回到步骤S124以便执行进一步的掩模处理。然而,如果掩模处理被执行不少于预定的次数,那么就判定该掩模处理对于工件80的形状无效。程序返回到不带掩模处理使用的收回处理步骤S120以再次计算收回路径。
在作为终止处理的步骤S131中,例如,把作为调查结束位置的收回位置Ue的坐标以及向量数据作为操作数据加到路径表120中(见图10)。在它们之中,Un作为操作数据被插到路径表120内的各个焊接点Tn之间。接着,程序返回到图6所示的处理。
如上所述,即使在为了整个工件模型1096的目的而提取路径时没有找到适当的路径,那么通过把掩模处理应用于该工件模型1096,只有紧靠焊枪装置68的开口设置的那一部分能够被优先使用来确定收回路径。此外,在下游处理中,通过在上述步骤S123中结合对于工件模型1096的更新处理而把工件模型1096连续地变换成具有简单形状的一个模型,使得容易确定收回路径。
在上述解释中,已经描述了用于确定路径来把焊枪装置68从工件80的焊点收回的技术。至于使焊枪装置68推进到焊点的路径,可以通过颠倒路径表120内的顺序来获得该推进路径。
已经把主分量线用作为用于工件模型1096的参考线。如果工件模型1096的形状被用直线或曲线来表示,则可以使用另外的参考线诸如基于最小正方形方法的直线或是具有任意顺序的曲线。
接下来,将参照图17-21解释用于在图6所示的步骤S6中设置宽区域操作路径的方法。
在下面的描述中,如图17所示,将对其中从安放了作为薄板的工件80的起点P1至到达点P2操作焊枪装置68的例子进行解释。假设障碍物82存在于该起点P1与到达点P2之间。把在如上所述设置窄区域操作路径中所确定的收回位置Ue作为起点P1与到达点P2对待。
在图18所示的步骤S201中,由离线示教装置10的操作人员通过预定的操作方法来执行操作路径设置程序35的宽区域操作路径设置部分35b。可以在设置窄区域操作路径后连续执行该处理。
在步骤S202中,宽区域操作路径设置部分35b从硬盘34读取作为用于设置操作路径的条件的条件数据37,并且该数据被存入RAM 29。进一步地,从该条件数据37中识别出用于设置操作路径的起点P1和到达点P2,以及工件80的形状和障碍物82的位置或诸如此类。
随后,在步骤S203中,设置连接起点P1与到达点P2的操作路径(路径)100以调查在沿着操作路径100操作焊枪装置68时对姿势建立的接受或拒绝以及任何干扰的出现。
具体地,通过路径调查部分35c的作用来设置通过把操作路径100划分成具有微小长度的那些路径而得到的划分点。借助于逆运算来确定在把焊枪装置68安排在各个划分点上时所得到的多关节型机器人50的姿势,即,旋转角θ1-θ6。
当焊枪装置68的姿势在起点P1与到达点P2之间不同时,可以按照线性内插的方式来在各个划分点上定义用于表示焊枪装置68的姿势的向量Xr,向量Yr,以及向量Zr。在该调查中,假定焊极70,72被打开以使它们不会干扰工件80。
如果多关节型机器人50的姿势固定在每个划分点上,那么实际保证了从起点P1到到达点P2的操作。
稍后描述的步骤S206,S212,S215,S218,S224,以及S227也通过路径调查部分35c的作用来执行。
在步骤S204中,判断该逆运算的解是否在各个划分点上被正常确定。具体地,判断TCP是否能够到达划分点。如果解未被确定,即使解被确定而如果角度值在轴J1-J6的可旋转范围外,或是如果多关节型机器人50在该确定姿势内干扰障碍物82或类似物,那么程序进到步骤S205。如果解被正常确定,那么在步骤S229中执行用于宽区域操作路径的设置的终止处理。
模拟电路40的干扰功能可以用于干扰的发生。
在图19所示的步骤S205中,为了避免障碍物82或建立姿势,从起点P1对焊枪装置68应用模板操作以设置一第一接合点Q1。在此情形中,该模板代表将由多关节型机器人50执行的指定操作。
假定把第一模板应用于起点P1与到达点P2。
如图21所示,第一模板存在于其中通过根据焊枪装置68的TCP而设置指定距离在指定方向上操作来获得该第一接合点Q1的操作中,并沿着操作路径(折回路径)102(见图17)移动焊枪装置68来连接起点P1与第一接合点Q1。通过移动起点P1的位置来得到第一接合点Q1。假设该起点P1所占有的焊枪装置68的方向,即TCP的方向未被改变。
一般地,为了正确地执行焊接操作,把向量Zr设置成与工件80垂直。因此最好该指定方向为用于焊枪装置68的收回方向,即与向量Xr相反的方向。可以根据焊枪装置68的大小来预先指定用于该指定距离的一个距离,能够用该距离足以使焊枪装置68脱离开工件80。在普通大小的焊枪装置中,该指定距离最好为100mm。
第一模板提供用于薄板的有效收回方法,该薄板为普通的工件。有可能根据预定的简便收回方法来设置操作路径而不受工件形状的影响。
随后,在步骤S206中,按照与步骤S203中相同的方式来调查在第一接合点Q1上多关节型机器人50的姿势建立的接受或拒绝以及与周边障碍物相干扰的发生。
随后,在步骤S207中,作为步骤S206的调查结果如果判定多关节型机器人50的姿势固定在第一接合点Q1并且不存在干扰,那么程序进到步骤S212。否则,程序进到步骤S208。
在步骤S208中,为了得到在第一接合点Q1上的适当姿势,设置姿势,其中用预定角度围绕向量Xr,Yr,或Zr的中心旋转焊枪装置68。该旋转处理与步骤S209一起执行作为下一个判断处理以对所有向量Yr,Zr,以及Xr进行连续旋转。
随后,在步骤S209中,确认用一个接一个的预定角度加起来的旋转角度是否到达360°。如果所加起来的角度少于360°,则程序进到步骤S206以判断多关节型机器人50的姿势。
如果即使对向量Xr,向量Yr,以及向量Zr中的每一个执行360°的旋转也未在第一接合点Q1上获得适当的姿势,则在步骤S210中在朝向起点P1的方向上的用预定距离所返回的位置处再次设置第一接合点Q1。就是说,如果在距起点P1100mm距离处设置第一接合点Q1,则在朝向起点P1的方向上该点被返回10mm以在90mm位置处再次设置该点。
随后,在步骤S211中,第一接合点Q1的返回距离的总和值被确认。如果把该点返回到作为原点的起点P1,那么处理停止,并且再次作出计划。如果该点未被返回到起点P1,即,如果给定10-90mm的范围,则程序进到步骤S206以判断多关节型机器人50的姿势。
在步骤S212中(如果在上述步骤S207的判断中判定多关节型机器人50的姿势固定并且未引起干扰),当沿着操作路径102操作焊枪装置68时用与步骤S203中同样的处理来执行对于姿势建立的接受或拒绝以及发生干扰的调查。
随后,在步骤S213中,按照与步骤S204中相同的方式来进行判断。如果判定多关节型机器人50的姿势固定在操作路径102的划分点上并且能够沿着操作路径102执行操作,则程序进到下一步骤S214。如果判定不能执行操作,则程序返回到步骤S210以进一步改变第一接合点Q1的位置。
在步骤S214中,确认第一接合点Q1与第一接合点Q2中的两个被设置用于起点P1及到达点P2。程序进到下一步骤S215。如果对应于到达点P2的第一接合点Q2未被设置,则程序返回到图19所示的步骤S205。
随后,在步骤S215中,当沿着操作路径104操作焊枪装置68时设置用于连接两个第一接合点Q1与Q2的操作路径104以调查对姿势建立的接受或拒绝以及干扰的反生。
具体地,执行该处理同时指定第一接合点Q1为新的起点以及第一接合点Q2为新的到达点。按照与上述步骤S203中调查起点P1与到达点P2之间的路径的相同方式来对操作路径104进行调查。
随后,在步骤S216中,按照与步骤S204中相同的方式进行判断。如果判定多关节型机器人50的姿势固定在操作路径104的划分点上并且能够沿着操作路径104执行操作,则在图18所示的步骤S229中执行对于宽区域操作路径的设置的终止处理。如果判定不能执行操作,则程序进到下一步骤S217。
在图20所示的步骤S217中,为了避免障碍物82,从第一接合点Q1对焊枪装置68应用模板操作以设置一第二接合点R1。
假定把第二模板应用于第一接合点Q1(及Q2)。
如图21所示,使用第二模板以设置用于连接第一接合点Q1与预定建立点106之间的直线108,并把第二接合点R1定义成通过从该直线108上的第一接合点Q1移动预定距离而得到的点。
通过对第一接合点Q1仅仅移动该空间位置来得到第二接合点R1。假定第一接合点Q1所占有的焊枪装置68的方向,即,TCP的方向未被改变。
为已经脱离开工件80的焊枪装置68提供该第二模板以便在不存在干扰障碍物82的方向上操作。在朝向原点O的具有较低的存在障碍物82的可能性的自由空间的方向上进行移动。即,一般地,障碍物82往往是在靠近原点O的地方不存在以使多关节型机器人50的操作不被阻止。当在该方向上进行操作时,避免障碍物82的可能性被更好地增大。此外,对于普通大小的多关节型机器人,该指定距离最好为100mm。
除了原点O外的那些点也可被用作为建立点106。如果存在其上不存在障碍物82的任何地方或是如果存在在其上容易执行操作的任何地方,那么可以把这样的地方用来做建立点106。例如,当把多关节型机器50的操作范围表示在该空间内时,设想操作自由度在中心位置上最大。因此,这一位置可以被用来做建立点106。
随后,在步骤S218中,按照与步骤S203中相同的方式来调查对在第二接合点R1上多关节型机器人50的姿势建立的接受或拒绝以及与周边障碍物的任何干扰的发生。
随后,在步骤S219中,作为步骤S218中的调查结果如果判定多关节型机器人50的姿势固定在该第二接合点R1上并且不存在干扰,则程序进到步骤S220。
在步骤S220中,为了获得在第二接合点R1上的适当姿势,设置姿势,其中按照与步骤S208中相同的方式用预定角度围绕向量Xr,Yr,或Zr的中心旋转焊枪装置68。
随后,在步骤S221中,确认用一个接一个的预定角度加起来的旋转角度是否到达360°。如果所加起来的角度少于360°,则程序进到步骤S218以判断多关节型机器人50的姿势。
如果即使对向量Xr,向量Yr,以及向量Zr中的每一个执行360°的旋转也未在第二接合点R1上获得适当的姿势,则在步骤S222中在朝向建立点106的方向上的通过移动预定距离而得到的位置处再次设置第二接合点R1。就是说,如果在距第一接合点Q1100mm距离处设置第二接合点R1,则在朝向建立点106的方向上该点被进一步移动100mm以在200mm位置处再次设置该点。
随后,在步骤S223中,确认第二接合点R1的移动距离的总和值。如果该点到达建立点106,则处理停止,并且再次作出计划。如果该点未到达建立点106,则程序进到步骤S218以判断多关节型机器50的姿势。
在步骤S224中(如果在上述步骤S219的判断中判定多关节型机器人50的姿势固定并且未引起干扰),设置用于连接第一接合点Q1与第二接合点R1的操作路径(折回路径)110。沿着操作路径110操作焊枪装置68时通过与步骤S203中相同的处理来执行对于姿势建立的接受或拒绝以及发生干扰的调查。
随后,在步骤S225中,按照与步骤S204中相同的方式来进行判断。如果判定多关节型机器人50的姿势固定在操作路径110的划分点上并且能够沿着操作路径110执行操作,则程序进到下一步骤S226。如果判定不能执行操作,则程序返回到步骤S222以进一步改变第一接合点Q1的位置。
在步骤S226中,确认第二接合点R1及R2中的两个被设置用于第一接合点Q1及Q2。程序进到下一步骤S227。如果对应于第一接合点Q2的第二接合点R2未被设置,则程序返回到步骤S217。
随后,在步骤S227中,设置用于连接两个第二接合点R1与R2的操作路径112以按照与步骤S203中相同的方式来执行对操作路径112上的操作的调查。
随后,在步骤S228中,按照与步骤S204中相同的方式进行判断。如果判定多关节型机器人50的姿势固定在操作路径112的划分点上并且能够沿着操作路径112执行操作,则执行用于宽区域操作路径的设置的终止处理。如果判定由于干扰障碍物或类似物而不能执行操作,则程序返回到步骤S222,并进一步移动两个第二接合点R1,R2以重复处理直到操作路径固定。
在完成从起点P1至到达点P2的操作路径的设置后,在图18所示步骤S229中执行用于宽区域操作路径的设置的终止处理。该终止处理包括,例如,把设置的宽区域操作路径记录到路径表120上(见图10)。被包含在该设置的操作路径内的起点P1,第一接合点Q1,第二接合点R1,第二接合点R2,第一接合点Q2,以及到达点P2被记录到路径表120上的操作次序内。特别地,记录围绕多关节型机器人50的各个坐标轴的旋转角θ1-θ6的值以及表示TCP和各个点上的位置坐标(X,Y,Z)的向量Xr,向量Yr,以及向量Zr的值。
记录在路径表120上的操作路径由数据准备电路38转换成用于操作实际多关节型机器人50的程序数据,并且把该数据传送给机器人控制单元22。
把路径表120记录在RAM 29及硬盘34内。不过,如果需要的话,可以打印或是在监视器16的屏幕上显示路径表120。
在前面的描述中,操作路径104是一条用于连接第一接合点Q1与Q2的路径。另一方面,可以把第一模板仅仅应用于起点P1一侧上以确定第一接合点Q1,并且可以照原样对到达点P2安排该应用以设置用于连接第一接合点Q1与到达点P2的路径。
至于操作路径112,例如,可以按照与上述相同的方式来设置连接第二接合点与第一接合点Q2的路径。
当对除了到达点P2之外的另一点进行操作时,也可以使用作为用于从起点P1进行折回的折回路径的操作路径102,110。
被首先应用于第一模板的指定距离为100mm。另一方面,从10mm开始,可以把距离延长到20mm和30mm。
可以根据关于,例如,工件80以及障碍物82的状况而颠倒第一与第二模板的应用顺序。
所设置的操作路径120表示从起点P1到到达点P2的宽区域操作路径或是用于代表从焊点Tn的收回操作的窄区域操作路径。不过,操作路径是可逆的,并且可以依据从到达点P2到起点P1的操作而使用它们。此外,可以利用该路径最多到一中间位置而不需使用整个操作路径。
此外,本发明的该实施例可适用于,例如,除焊接机器人之外的装配机器人以及涂敷(applying)机器人。多关节型机器人50可以具有一七轴结构或者是具有,例如,连接机构或扩展/收缩机构的结构。
如上所述,根据本发明的该实施例,首先设置用于连接起点P1与到达点P2的操作路径100以调查是否能够沿着该操作路径100来操作焊枪装置68。因此,如果能够沿着该操作路径100来操作焊枪装置68,则能够非常方便地设置操作路径而不需提供任何用于操作的接合点或类似物。即使不能执行操作路径100上的操作,也可以通过在作为从起点P1或到达点P2的规定方向的向量Xr的相反方向上的规定距离而把第一模板应用于操作。因此,能够自动和有效地设置第一接合点Q1与Q2而不需执行任何复杂的计算并且无需受工件80的形状的影响。
根据在被设想为对于工件80最容易折回焊枪装置68的方向上所设置的规定方向上的焊枪装置68的大小,通过规定距离而把第一模板用于操作,用该规定距离足以能使焊枪装置68从工件80折回。因此,尽管该方法是方便的,但是成功的可能性以及从工件80的安全折回是高的。此外,例如,在步骤S206中,该安全性被验证。因此,当实际操作多关节型机器人50时,不担心干扰或诸如此类的事物。
根据本发明的该实施例,如果被设置在折回路径上的第一接合点Q1,Q2或第二接合点R1,R2是多关节型机器人50不能够到达的或是其上发生了任何干扰的点,则修正第一与第二模板的规定距离以再次设置第一接合点Q1,Q2或第二接合点R1,R2的位置。因此,有可能设置更好的折回位置。
至于第二模板,该规定方向为朝向原点O的用于多关节型机器人的坐标计算的方向。因此,与障碍物82干扰的可能性低。
此外,根据本发明的该实施例,把第一模板与第二模板结合应用。焊枪装置68被首先用第一模板从工件80折回,并且之后焊枪装置68被用第二模板从另一障碍物82或类似物折回从而验证安全性。因此,有可能自动有效地设置折回路径以及宽区域操作路径而不需执行任何复杂的计算。因而,当然有可能改进离线示教数据的质量而不需依赖于操作人员的技能。
当然重要的是本发明的用于多关节型机器人的操作路径的设置方法及设置装置不限于上述说明性的实施例,其可以用其它各种形式来体现而不背离本发明的要点或是本质特性。

Claims (7)

1.一种为多关节型机器人(50)设置操作路径的方法,所述多关节型机器人从起点(P1,Q1)至到达点(P2,Q2)操作一末端执行器(68),所述方法包括:
操作调查步骤,设置用于连接所述起点(P1,Q1)与所述到达点(P2,Q2)的路径(100,104)以调查是否能够沿着所述路径(100,104)操作所述末端执行器(68);以及
折回路径设置步骤,如果在所述操作调查步骤中不能沿着所述路径(100,104)操作所述末端执行器(68),则设置一折回路径用于在指定方向上从所述起点(P1,Q1)或所述到达点(P2,Q2)来操作所述末端执行器(68)指定距离。
2.根据权利要求1的为所述多关节型机器人(50)设置操作路径的方法,其中所述指定方向是基于在所述起点(P1,Q1)或所述到达点(P2,Q2)上的所述末端执行器(68)的姿势所预定的。
3.根据权利要求1的为所述多关节型机器人(50)设置操作路径的方法,其中所述指定方向是连接所述起点(P1,Q1)或所述到达点(P2,Q2)与空间内的建立点(106)的方向。
4.根据权利要求3的为所述多关节型机器人(50)设置操作路径的方法,其中所述建立点是所述多关节型机器人(50)的原始轴的中心点(0)。
5.根据权利要求1的为所述多关节型机器人(50)设置操作路径的方法,其中把所述折回路径(102,110)的终点定义为新的起点或新的到达点以再次执行所述操作调查步骤或所述折回路径设置步骤。
6.根据权利要求1的为所述多关节型机器人(50)设置操作路径的方法,其中如果所述折回路径(102,110)的终点是所述多关节型机器人(50)不能到达的点或是其上发生干扰的点,则再次设置所述折回路径(102,110),所述指定距离在所述折回路径(102,110)内被校正。
7.一种为多关节型机器人(50)设置操作路径的装置,所述多关节型机器人从起点(P1,Q1)至到达点(P2,Q2)操作一末端执行器(68),所述装置包括:
路径调查部件(35c),用于设置用于连接所述起点(P1,Q1)与所述到达点(P2,Q2)的路径(100,104)以调查是否能够沿着所述路径(100,104)操作所述末端执行器(68);以及
宽区域操作路径设置部件(35b),用于如果所述路径调查部件(35c)判定不能沿着所述路径(100,104)操作所述末端执行器(68),则设置一折回路径用于在指定方向上从所述起点(P1,Q1)或所述到达点(P2,Q2)来操作所述末端执行器(68)指定距离。
CNB200610084434XA 2001-02-19 2001-11-22 用于多关节型机器人的操作路径的设置方法及设置装置 Expired - Fee Related CN100431805C (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-42500 2001-02-19
JP2001042500A JP3715537B2 (ja) 2001-02-19 2001-02-19 多関節ロボットの干渉回避方法およびプログラム
JP200142500 2001-02-19

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CNB018230547A Division CN1322383C (zh) 2001-02-19 2001-11-22 用于多关节型机器人的操作路径的设置方法及设置装置

Publications (2)

Publication Number Publication Date
CN1861331A CN1861331A (zh) 2006-11-15
CN100431805C true CN100431805C (zh) 2008-11-12

Family

ID=18904786

Family Applications (2)

Application Number Title Priority Date Filing Date
CNB200610084434XA Expired - Fee Related CN100431805C (zh) 2001-02-19 2001-11-22 用于多关节型机器人的操作路径的设置方法及设置装置
CNB018230547A Expired - Fee Related CN1322383C (zh) 2001-02-19 2001-11-22 用于多关节型机器人的操作路径的设置方法及设置装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
CNB018230547A Expired - Fee Related CN1322383C (zh) 2001-02-19 2001-11-22 用于多关节型机器人的操作路径的设置方法及设置装置

Country Status (6)

Country Link
US (1) US7110859B2 (zh)
JP (1) JP3715537B2 (zh)
CN (2) CN100431805C (zh)
CA (1) CA2437973C (zh)
GB (1) GB2388926B (zh)
WO (1) WO2002066209A2 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104603860A (zh) * 2012-07-06 2015-05-06 林肯环球股份有限公司 用于表征人工焊接操作的系统
CN105382836A (zh) * 2014-08-29 2016-03-09 株式会社安川电机 示教系统、机器人系统以及示教方法

Families Citing this family (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7248012B2 (en) 2003-06-02 2007-07-24 Honda Motor Co., Ltd. Teaching data preparing method for articulated robot
JP2005003455A (ja) * 2003-06-10 2005-01-06 Toyobo Co Ltd 実験シミュレーション装置及び実験シミュレーションプログラム
DE10351670A1 (de) * 2003-11-05 2005-06-30 Kuka Roboter Gmbh Verfahren und Vorrichtung zum Steuern von Robotern
JP4168002B2 (ja) * 2004-04-07 2008-10-22 ファナック株式会社 オフラインプログラミング装置
JP4438552B2 (ja) * 2004-07-29 2010-03-24 株式会社ジェイテクト 安全plc、シーケンスプログラム作成支援ソフトウェア及びシーケンスプログラムの判定方法
US8000837B2 (en) 2004-10-05 2011-08-16 J&L Group International, Llc Programmable load forming system, components thereof, and methods of use
JP4087841B2 (ja) * 2004-12-21 2008-05-21 ファナック株式会社 ロボット制御装置
US7971504B2 (en) * 2005-09-27 2011-07-05 Kabushiki Kaisha Yaskawa Denki Articulated manipulator
JP2007334678A (ja) * 2006-06-15 2007-12-27 Fanuc Ltd ロボットシミュレーション装置
JP4226623B2 (ja) * 2006-09-29 2009-02-18 ファナック株式会社 ワーク取り出し装置
JP4941068B2 (ja) * 2007-04-16 2012-05-30 トヨタ自動車株式会社 経路作成方法及び経路作成装置
JP4347386B2 (ja) * 2008-01-23 2009-10-21 ファナック株式会社 加工用ロボットプラグラムの作成装置
ES2338622B1 (es) * 2008-07-23 2011-07-01 Estudios De Ingenieria Adaptada, S.L. Cabezal posicionador de herramienta sobre superficies irregulares.
US8657605B2 (en) * 2009-07-10 2014-02-25 Lincoln Global, Inc. Virtual testing and inspection of a virtual weldment
US9196169B2 (en) 2008-08-21 2015-11-24 Lincoln Global, Inc. Importing and analyzing external data using a virtual reality welding system
JP4730440B2 (ja) * 2009-01-01 2011-07-20 ソニー株式会社 軌道計画装置及び軌道計画方法、並びにコンピューター・プログラム
US8204623B1 (en) * 2009-02-13 2012-06-19 Hrl Laboratories, Llc Planning approach for obstacle avoidance in complex environment using articulated redundant robot arm
CN101870104B (zh) * 2009-04-25 2012-09-19 鸿富锦精密工业(深圳)有限公司 机械手臂反向运动方法
US9773429B2 (en) 2009-07-08 2017-09-26 Lincoln Global, Inc. System and method for manual welder training
US9221117B2 (en) 2009-07-08 2015-12-29 Lincoln Global, Inc. System for characterizing manual welding operations
US8600552B2 (en) 2009-10-30 2013-12-03 Honda Motor Co., Ltd. Information processing method, apparatus, and computer readable medium
JP4951722B2 (ja) 2010-07-27 2012-06-13 パナソニック株式会社 移動経路探索装置および移動経路探索方法
DE102010047641B4 (de) * 2010-10-06 2022-06-15 Kuka Roboter Gmbh Steuerung eines Roboters
EP2652726B1 (en) 2010-12-13 2019-11-20 Lincoln Global, Inc. Welding training system
JP5459255B2 (ja) * 2011-04-08 2014-04-02 株式会社安川電機 ロボットシステム
CN103492133B (zh) * 2011-04-19 2016-04-13 Abb研究有限公司 具有运动冗余臂的工业机器人和用于控制该机器人的方法
JP5852364B2 (ja) * 2011-08-26 2016-02-03 キヤノン株式会社 情報処理装置、情報処理装置の制御方法、およびプログラム
JP2013099815A (ja) * 2011-11-08 2013-05-23 Fanuc Ltd ロボットプログラミング装置
US20160093233A1 (en) 2012-07-06 2016-03-31 Lincoln Global, Inc. System for characterizing manual welding operations on pipe and other curved structures
CN104470687A (zh) * 2012-07-20 2015-03-25 株式会社安川电机 机器人模拟器、机器人示教装置以及机器人示教方法
JP2014024162A (ja) * 2012-07-27 2014-02-06 Seiko Epson Corp ロボットシステム、ロボット制御装置、ロボット制御方法及びロボット制御プログラム
US20150072323A1 (en) 2013-09-11 2015-03-12 Lincoln Global, Inc. Learning management system for a real-time simulated virtual reality welding training environment
US10083627B2 (en) 2013-11-05 2018-09-25 Lincoln Global, Inc. Virtual reality and real welding training system and method
JP6486005B2 (ja) * 2014-01-17 2019-03-20 蛇の目ミシン工業株式会社 ロボット、ロボットの制御方法、及びロボットの制御プログラム
US9836987B2 (en) 2014-02-14 2017-12-05 Lincoln Global, Inc. Virtual reality pipe welding simulator and setup
WO2015185972A1 (en) 2014-06-02 2015-12-10 Lincoln Global, Inc. System and method for manual welder training
US10279470B2 (en) * 2014-06-12 2019-05-07 Play-i, Inc. System and method for facilitating program sharing
JP5829313B1 (ja) * 2014-06-25 2015-12-09 ファナック株式会社 シミュレーションを用いたオフライン教示装置
GB201413991D0 (en) * 2014-08-07 2014-09-24 Ubisense Ltd Tool tracking
JP5980867B2 (ja) * 2014-10-07 2016-08-31 ファナック株式会社 ロボットをオフラインで教示するロボット教示装置
US10114618B2 (en) 2015-06-08 2018-10-30 Cisco Technology, Inc. Autonomous mobile sensor movement path simulation with an integrated developer environment
DE102015008188B3 (de) * 2015-06-25 2016-06-16 Kuka Roboter Gmbh Abfahren einer vorgegebenen Bahn mit einem Roboter
CN105415372B (zh) * 2015-12-09 2017-04-12 常州汉迪机器人科技有限公司 一种安全空间约束下的多关节机器人轨迹规划方法
CN106003066B (zh) * 2015-12-23 2018-07-03 北京聚能鼎力科技股份有限公司 一种机器人程序控制系统
CN105415376B (zh) * 2016-01-10 2017-03-29 宁波市智能制造产业研究院 一种离线编程装置
CN105500372A (zh) * 2016-01-14 2016-04-20 南京熊猫电子股份有限公司 基于can环网的模块化焊接机器人控制系统及其控制方法
CN105835058B (zh) * 2016-04-23 2017-10-27 福州环亚众志计算机有限公司 一种程序生成系统
CN105690395B (zh) * 2016-04-23 2017-09-19 宁波市智能制造产业研究院 工业机器人及其控制方法
EP3319066A1 (en) 2016-11-04 2018-05-09 Lincoln Global, Inc. Magnetic frequency selection for electromagnetic position tracking
JP6469159B2 (ja) * 2017-04-10 2019-02-13 ファナック株式会社 接触センサによるワーク位置検出プログラム生成機能を備えたオフラインプログラミング装置及び方法
JP7199073B2 (ja) * 2017-10-20 2023-01-05 株式会社キーレックス 垂直多関節ロボットの教示データ作成システム
JP6895082B2 (ja) * 2017-11-09 2021-06-30 オムロン株式会社 干渉判定方法、干渉判定システム及びコンピュータプログラム
CN109955245A (zh) * 2017-12-26 2019-07-02 深圳市优必选科技有限公司 一种机器人的避障方法、系统及机器人
US11557223B2 (en) 2018-04-19 2023-01-17 Lincoln Global, Inc. Modular and reconfigurable chassis for simulated welding training
US11475792B2 (en) 2018-04-19 2022-10-18 Lincoln Global, Inc. Welding simulator with dual-user configuration
DE102018209870B3 (de) * 2018-06-19 2019-07-04 Kuka Deutschland Gmbh Verfahren und System zum Überführen eines Endeffektors eines Roboters zwischen einer Endeffektorpose und einer weiteren Endeffektorpose
CN109048910B (zh) * 2018-08-29 2020-08-14 广州市君望机器人自动化有限公司 机器人避让预判方法及装置
USD965656S1 (en) 2019-10-14 2022-10-04 Omron Corporation Mobile robot
WO2021149364A1 (ja) * 2020-01-21 2021-07-29 本田技研工業株式会社 溶接設備の干渉回避方法及び溶接設備の制御装置
KR102566417B1 (ko) * 2023-01-30 2023-08-11 주식회사 마키나락스 작업 수행 로봇의 작업 경로의 길이를 계산하는 방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5056031A (en) * 1988-11-12 1991-10-08 Kabushiki Kaisha Toyota Chuo Kenyusho Apparatus for detecting the collision of moving objects
US5530791A (en) * 1991-11-08 1996-06-25 Fujitsu Limited Automatic manipulator-head trajectory producing system
US5887122A (en) * 1994-12-14 1999-03-23 Fanuc Ltd. Tracking control method for robot with weaving action

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4278920A (en) * 1976-07-26 1981-07-14 The Bendix Corporation Method and apparatus for generating position or path control programs using force feedback
US4538233A (en) * 1982-10-19 1985-08-27 Cincinnati Milacron Inc. Apparatus and method for oscillatory motion control
IT1174831B (it) * 1983-11-30 1987-07-01 Armco Spa Macchina elettrosaldatrice automatica
US4922430A (en) * 1987-10-30 1990-05-01 U.S. Philips Corporation Method and apparatus for controlling the movement of a guided object
US4965499A (en) * 1987-12-31 1990-10-23 Westinghouse Electric Corp Parametric path modeling for an optical automatic seam tracker and real time robotic control system
US4843287A (en) * 1987-12-31 1989-06-27 Westinghouse Electric Corp. Path contriving system for look-ahead sensor in a robotic control system
US4952772A (en) * 1988-11-16 1990-08-28 Westinghouse Electric Corp. Automatic seam tracker and real time error cumulative control system for an industrial robot
US5325468A (en) * 1990-10-31 1994-06-28 Sanyo Electric Co., Ltd. Operation planning system for robot
US5073692A (en) * 1990-11-13 1991-12-17 Jackson Donald T Automatic welding electrode cap changer
DE4291619C2 (de) * 1991-06-04 2001-06-28 Anca Pty Ltd Verfahren zum Betreiben einer mehrachsigen computernumerisch gesteuerten Werkzeugmaschine
JPH07121221A (ja) 1993-10-21 1995-05-12 Mazda Motor Corp 加工機における工具送り制御方法
JP3083706B2 (ja) 1994-05-30 2000-09-04 本田技研工業株式会社 オフラインティーチングデータの誤差検出方法
JPH08108383A (ja) 1994-10-05 1996-04-30 Fujitsu Ltd マニピュレータ制御装置
US5835684A (en) * 1994-11-09 1998-11-10 Amada Company, Ltd. Method for planning/controlling robot motion
JP2875498B2 (ja) 1995-07-18 1999-03-31 株式会社神戸製鋼所 ロボットマニピュレータの移動経路の自動生成方法
JPH0981228A (ja) * 1995-09-19 1997-03-28 Fanuc Ltd ロボット教示操作盤およびロボットプログラムの更新方法
CN1055772C (zh) * 1995-12-01 2000-08-23 三星电子株式会社 机器人的环境识别装置及其控制方法
JPH09212225A (ja) 1996-01-30 1997-08-15 Komatsu Ltd ロボットの教示装置
JPH1034334A (ja) * 1996-07-19 1998-02-10 Fanuc Ltd 溶接ロボット制御システム
US6374158B1 (en) * 2000-02-15 2002-04-16 General Electric Company Robotic laser pointer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5056031A (en) * 1988-11-12 1991-10-08 Kabushiki Kaisha Toyota Chuo Kenyusho Apparatus for detecting the collision of moving objects
US5530791A (en) * 1991-11-08 1996-06-25 Fujitsu Limited Automatic manipulator-head trajectory producing system
US5887122A (en) * 1994-12-14 1999-03-23 Fanuc Ltd. Tracking control method for robot with weaving action

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104603860A (zh) * 2012-07-06 2015-05-06 林肯环球股份有限公司 用于表征人工焊接操作的系统
CN104603860B (zh) * 2012-07-06 2017-10-20 林肯环球股份有限公司 用于表征人工焊接操作的系统
CN105382836A (zh) * 2014-08-29 2016-03-09 株式会社安川电机 示教系统、机器人系统以及示教方法
CN105382836B (zh) * 2014-08-29 2017-08-22 株式会社安川电机 示教系统、机器人系统以及示教方法

Also Published As

Publication number Publication date
WO2002066209A2 (en) 2002-08-29
JP2002239955A (ja) 2002-08-28
WO2002066209A3 (en) 2003-08-21
CN1861331A (zh) 2006-11-15
US20040138779A1 (en) 2004-07-15
CN1322383C (zh) 2007-06-20
CN1507384A (zh) 2004-06-23
CA2437973C (en) 2008-01-15
GB2388926A (en) 2003-11-26
JP3715537B2 (ja) 2005-11-09
US7110859B2 (en) 2006-09-19
CA2437973A1 (en) 2002-08-29
GB0318714D0 (en) 2003-09-10
GB2388926B (en) 2005-06-15

Similar Documents

Publication Publication Date Title
CN100431805C (zh) 用于多关节型机器人的操作路径的设置方法及设置装置
US9390203B2 (en) Method and system for off-line programming of multiple interacting robots
US9104197B2 (en) Method and system for off-line programming of multiple interacting robots
Neto et al. High‐level robot programming based on CAD: dealing with unpredictable environments
CN107081756B (zh) 进行机器人程序的示教的机器人编程装置
CN103753533A (zh) 用于控制冗余机器人臂的方法
CN106994684A (zh) 控制机器人工具的方法
JP2014104581A5 (zh)
CN108137260B (zh) 机器人包胶带系统和包胶带的方法
CN108687767B (zh) 离线编程装置以及离线编程方法
JP2003114706A (ja) 多関節汎用ロボットモデルの表示システム
JPH08328632A (ja) ロボット動作のシミュレーション方法
JP3639873B2 (ja) ロボット制御方法およびロボット制御システム
JP2020082285A (ja) 複数のロボットの干渉確認方法、ロボットシステム
Carvalho et al. Off-line programming of flexible welding manufacturing cells
JP2000094131A (ja) 溶接姿勢教示方法及びその装置
JP3647404B2 (ja) 多関節ロボットの動作経路設定方法および設定装置
Vosniakos et al. Development of robotic welding stations for pressure vessels: interactive digital manufacturing approaches
JP2002239956A (ja) 多関節ロボットのティーチングデータ作成方法
CA2556867C (en) Setting method and setting apparatus for operation path for articulated robot
JP2002239957A (ja) 多関節ロボットの姿勢決定方法およびプログラム
Baizid et al. Industrial robotics platform for simulation design, planning and optimization based on off-line CAD programming
JP7448651B2 (ja) オフライン教示装置および動作プログラム生成方法
JP7320629B2 (ja) 溶接設備の干渉回避方法及び溶接設備の制御装置
JP3068577B2 (ja) 多関節ロボットの制御装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20081112

Termination date: 20121122