CN100437070C - 一种标准漏孔的制作方法 - Google Patents

一种标准漏孔的制作方法 Download PDF

Info

Publication number
CN100437070C
CN100437070C CNB2004100919417A CN200410091941A CN100437070C CN 100437070 C CN100437070 C CN 100437070C CN B2004100919417 A CNB2004100919417 A CN B2004100919417A CN 200410091941 A CN200410091941 A CN 200410091941A CN 100437070 C CN100437070 C CN 100437070C
Authority
CN
China
Prior art keywords
making
leak
referance leak
referance
nano structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CNB2004100919417A
Other languages
English (en)
Other versions
CN1796958A (zh
Inventor
刘亮
唐洁
柳鹏
胡昭复
杜秉初
郭彩林
陈丕瑾
葛帅平
范守善
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Hongfujin Precision Industry Shenzhen Co Ltd
Original Assignee
Tsinghua University
Hongfujin Precision Industry Shenzhen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University, Hongfujin Precision Industry Shenzhen Co Ltd filed Critical Tsinghua University
Priority to CNB2004100919417A priority Critical patent/CN100437070C/zh
Priority to US11/228,967 priority patent/US7757371B2/en
Priority to JP2005302127A priority patent/JP4185088B2/ja
Publication of CN1796958A publication Critical patent/CN1796958A/zh
Application granted granted Critical
Publication of CN100437070C publication Critical patent/CN100437070C/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/08Perforated or foraminous objects, e.g. sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62227Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres
    • C04B35/62231Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62227Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres
    • C04B35/62231Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres based on oxide ceramics
    • C04B35/6224Fibres based on silica
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62227Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres
    • C04B35/62272Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres based on non-oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62227Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres
    • C04B35/62272Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres based on non-oxide ceramics
    • C04B35/62286Fibres based on nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F4/00Processes for removing metallic material from surfaces, not provided for in group C23F1/00 or C23F3/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/007Leak detector calibration, standard leaks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • G01M3/20Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material
    • G01M3/207Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material calibration arrangements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/526Fibers characterised by the length of the fibers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5264Fibers characterised by the diameter of the fibers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4998Combined manufacture including applying or shaping of fluent material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4998Combined manufacture including applying or shaping of fluent material
    • Y10T29/49982Coating

Abstract

本发明涉及一种标准漏孔的制作方法。本发明所提供的标准漏孔制作方法包括以下步骤:提供一基底;在基底上形成一催化剂薄膜,其具有预定图案结构;在催化剂的位置生长出预定尺寸及数目的一维纳米结构;在基底上形成一第二膜层;去除一维纳米结构及其附近的基底材料,使在第二膜层中形成尺寸与一维纳米结构相应的通孔,从而获得一标准漏孔。本发明通过数目、形状及尺寸可控的一维纳米结构作为制造模板,漏孔的漏率可由理论计算准确求得,因此可获得漏率可控性好、可自定标的标准漏孔;从而解决了现有技术中漏孔可控性差,且必须借助其它设备对其漏率值进行标定的不足。

Description

一种标准漏孔的制作方法
【技术领域】
本发明涉及一种标准漏孔的制作方法,尤其是一种通导型标准漏孔的制作方法。
【背景技术】
标准漏孔是在规定条件下(入口压力为100kPa±5%,温度为23±7℃),漏率是已知的一种校准用的漏孔。标准漏孔是真空科学技术及其应用领域一种常用的必不可少的计量器具,特别是标准氦漏孔,它是目前已得到广泛应用的氦质谱检漏仪中必备的相对计量标准,使用标准漏孔定期对氦质谱检漏仪的最主要参数-检漏灵敏度进行校准,从而准确给出被测系统漏气速率的数量级大小。
标准漏孔具有恒定漏率,它又叫定流量发生器,通常可分为两大类,第一类为通导型标准漏孔,如铂丝-玻璃非匹配标准漏孔、金属压扁型标准漏孔;第二类为渗透型标准漏孔,如石英薄膜标准漏孔。国家技术监督局专门为此制定了JJG793-92标准漏孔的国家计量鉴定规程。
参见刘秀林在文献《航空计测技术》Vol.21,No.5,43-45(2001)“标准漏孔及其校准”一文,目前所使用的铂丝-玻璃非匹配标准漏孔,漏率范围一般为10-6~10-8托·升/秒,其是一种将直径在0.1~0.15mm的铂丝与11#硬质玻璃做非匹配封结后,利用两种材料膨胀系数的不同而得到的漏孔。因此在制造过程中难以人为地控制标准漏孔的尺寸大小、数目,漏率大小受控性差,其漏率必须借助其它设备对其进行标定才能确定,不能自定标;温度会导致材料热胀冷缩,因此其易受温度变化的影响,漏率的稳定性差。
金属压扁型标准漏孔,漏率范围一般为10-6~10-8托·升/秒,是一种将一定直径的无氧铜管或可伐管用油压机压扁后产生漏隙,从而形成标准漏孔。但是,在制造过程中标准漏孔的孔径尺寸大小难以精确控制,漏率大小可控性差,其漏率必须借助其它设备对其进行标定才能确定,不能自定标。
石英薄膜标准漏孔,漏率范围一般为10-7~10-11托·升/秒,是目前使用较多的一种标准漏孔,其是将石英玻璃管吹制成各种直径和厚度的薄膜球泡,利用石英只能使氦气渗透通过,而其它气体通不过的特点制成的标准漏孔。由于薄膜球泡由吹制而成的,因此薄膜球泡的大小及其所包括的通孔数目难以控制,通孔的尺寸难以获取,从而在制造过程中漏率大小可控性差,其漏率必须借助其它设备对其进行标定才能确定,不能自定标;并且,石英薄膜标准漏孔只适用于氦气,限制了其应用范围。
如上所述,目前所使用的标准漏孔如铂丝-玻璃非匹配标准漏、金属压扁型标准漏孔、石英薄膜标准漏孔等,由于其制造过程中漏率大小的可控性差,漏率必须借助其它设备对其漏率值进行标定(可参见万昭志、叶盛等人在文献《真空电子技术》No.2,39-41(2002)中“标准漏孔校准中若干问题及其解决办法”一文),不能实现自定标。
有鉴于此,有必要提供一种标准漏孔,其具有漏率大小可控性好、能自定标等优点。
【发明内容】
为解决现有技术中标准漏孔漏率大小可控性差,漏率必须借助其它设备对其进行标定等不足,本发明的目的在于提供一漏率大小可控性好、能自定标标准漏孔的制作方法。
为实现本发明的目的,本发明所提供的一种标准漏孔的制作方法,其包括以下步骤:
提供一基底;
在基底上形成一催化剂薄膜,其形成有预定图案结构(Pattern);
在上述催化剂的位置生长出预定尺寸及数目的一维纳米结构;
在生长有一维纳米结构的基底上形成一第二膜层;
去除第二膜层中的一维纳米结构及其附近的基底材料,在第二膜层中形成尺寸与一维纳米结构相应的通孔,从而获得一标准漏孔。
所述基底包括硅基底。
所述硅基底的晶向包括硅<111>、硅<100>和硅<110>;优选为硅<111>。
优选的,所述催化剂薄膜包括金(Au)、铁(Fe)、钴(Co)、银(Ag)。
所述催化剂膜层的厚度范围为0.2nm~10nm;优选为1nm。
优选的,所述图案结构的尺寸不大于1μm。
优选的,所述一维纳米结构的直径范围为10nm~500nm。
优选的,所述一维纳米结构的长度范围为100nm~100μm。
优选的,所述催化剂薄膜的形成方法包括蒸镀、溅射及电镀。
优选的,所述图案结构的形成方法包括光刻技术及电子束刻蚀技术
优选的,所述一维纳米结构包括硅纳米线、二氧化硅纳米线、氮化镓纳米线、磷化铟纳米线、氧化锌纳米线。
优选的,所述第二膜层的材质包括金属材料、玻璃及陶瓷。
优选的,所述金属材料包括铜、镍、钼。
优选的,所述第二膜层的形成方法包括蒸镀、溅射、电镀及有机金属化学气相沉积(Metal Organic Chemical Vapor Deposition,MOCVD)。
所述一维纳米结构及其附近的基底材料的去除方法包括反应离子蚀刻(Reactive Ion Etching)、湿法蚀刻(Wet Etching)及等离子体蚀刻(PlasmaEtching)。
相对于现有技术,本发明所提供的标准漏孔的制作方法,控制催化剂薄膜的图案结构数目,并使单个图案结构尺寸不大于1μm,从而使单个图案结构上只生长一个一维纳米结构,进而可获得预定数量的一维纳米结构;通过对单个图案结构具体尺寸的控制和一维纳米结构的生长温度、生长气氛浓度及生长时间的精确控制,可获取预定尺寸的一维纳米结构;然后,以一维纳米结构为模版,进而可获取具有预定数量及预定尺寸的通孔的标准漏孔,因此制作过程中标准漏孔的漏率可控性好。并且,在满足λ>(1/3)D且L≥20D(式中,λ为被测气体分子自由程,D为通孔直径,L为通孔长度)两个条件的情况下,可以通过克努曾(Knusen)公式:Q=n×(P1-P2)×Y(式中,n(n≥1)为通孔的数目,P1为漏孔的气体流入端压强,P2为漏孔的气体流出端压强, Y = 12.1 &times; 29 / M &times; ( D 3 / L ) (式中,M为通孔中的被测气体的分子量)可计算出标准漏孔的漏率值,其可自定标。
【附图说明】
图1是相关本发明实施例的硅基底的示意图。
图2是硅基底上形成一催化剂薄膜的示意图。
图3是硅基底上生长有一维纳米结构的示意图。
图4是在生长有一维纳米结构的硅基底上形成一第二膜层的示意图。
图5是去除一维纳米结构及硅基底材料的结构示意图。
【具体实施方式】
下面结合附图将对本发明作进一步的详细说明。
参见图5,本发明所提供的标准漏孔10,其包括一金属膜层3,和形成在金属膜层3中的通孔31,通孔31具有预定尺寸孔径及数目,且通孔31的孔径大小达纳米级。其可用于氦质谱检漏仪的准确定标、微型真空泵抽速的测量、气固界面科学研究中,提供微小流量的气体等领域。
参见图1~图5,本发明所提供之标准漏孔的制作方法,包括以下步骤:
第一,提供一洁净的硅基底1,其晶向可为<111>、<100>、<110>、或其它晶向;本实施例中优选为<111>晶向,即Si<111>;
第二,在上述硅基底1上形成一催化剂薄膜作为生长一维纳米结构的催化剂,催化剂薄膜的材料可为金、铁、钴、银等,本实施例中采用金薄膜2作为催化剂;金薄膜2的厚度范围为0.2nm~10nm,优选为1nm;其中,金薄膜2的形成方法包括蒸镀、溅射或电镀等,然后,采用光刻工艺或电子束刻蚀技术在上述金薄膜2上形成预定数目及尺寸大小的图案结构21,且图案结构21的尺寸不大于1μm,使单一图案结构21上只生长一根纳米线;也可以在硅基底1上通过印刷技术直接形成具有预定尺寸且排列规则的图案结构21的金薄膜2;其中,图案结构21的具体形状可为微小方块及其变形结构;
第三,将上述形成有金薄膜2的硅基底置于CVD(Chemical VaporDeposition)反应腔体(图中未示出),并向CVD反应腔体内提供气相的含硅物质,本实施例中采用四氯化硅(SiCl4)气体;控制四氯化硅气体的浓度,将CVD反应腔体内的温度控制在700℃~900℃,在上述金薄膜2的催化作用下,在具有图案结构的位置将生长出一维纳米结构,如纳米线、纳米棒;本实施例中,在硅基底1生长出硅纳米线11,其为圆柱形结构;硅纳米线11沿硅<111>方向排列,即垂直于硅基底1;其中,硅纳米线11的孔径范围为10nm~500nm,硅纳米线11的长度范围为100nm~100μm;具体的硅纳米线11的直径及长度可通过控制金薄膜2中的图案结构的尺寸、一维纳米结构的生长温度、生长气氛浓度及生长时间来调控;在图案结构的尺寸不大于1μm的条件下,可通过控制CVD条件使得硅纳米线11的数目等于图案结构的数目;硅纳米线11的直径、长度受金薄膜2厚度、生长温度、生长气氛浓度以及生长时间等条件的控制。另外,根据后续工艺的需要,可将硅纳米线11氧化成二氧化硅纳米线。为保证以Knusen公式计算漏率的结果误差在5%以下,要求硅纳米线11的长度不小于20倍其直径大小。
第四,在生长有硅纳米线11的硅基底1上沉积一第二膜层,第二膜层的材质可为金属材料、玻璃、陶瓷;其材质的选择决定最终所形成的标准漏孔的适用范围,如果选择金属材料,则可应用于氦气的漏率测量,因为氦气不能渗透金属;如果选择玻璃或陶瓷,则可应用于空气、氧气、氩气的漏率测量,因为空气、氧气、氩气等不能渗透玻璃和陶瓷;本实施例中采用金属膜层3,如铜、镍、钼等,其沉积的厚度可根据需要,在硅纳米线11的高度范围内调节;并且,在沉积完金属膜层3之后,还可采用机械或电化学抛光等工艺使金属膜层3上表面平齐、去除露头的硅纳米线11端部、根据预定漏率调节所需的金属层厚度,保持其不小于硅纳米线11直径的20倍;
第五,采用反应离子刻蚀(Reative Ion Etching,RIE)去除硅纳米线11及硅基底材料而不损伤金属膜层3,从而在金属膜层3形成孔径尺寸与硅纳米线11的直径大小相一致的预定数目的通孔31(其中,通孔31垂直于硅基底1平面);由于采用反应离子刻蚀方法只去除硅纳米线11及硅基底材料,而不损伤硅纳米线11周围的金属膜层3,并将硅纳米线完全蚀刻掉;因此,获得的通孔31的孔径大小与硅纳米线11的直径大小一致,通孔31的长度与最终金属膜层3的厚度一致,通孔31的数目与硅纳米线11的数目相等;进而获得一标准漏孔10(如图5所示),其通孔31具有预定尺寸孔径及数目。还可以采用湿法刻蚀(如,氢氟酸等腐蚀液)或等离子体刻蚀等工艺去除硅纳米线11及硅基底材料,而不损伤金属膜层3;或根据不同的纳米线材料及第二膜层的材料选择适当的去除工艺。
上述标准漏孔的制作工艺中,若采用其它晶向的硅基底,则生长出的硅纳米线与硅基底平面成一定的角度;相应的,制成的标准漏孔的通孔也与基底成一定的角度。而通孔的孔径大小、数目仍由硅纳米线的直径大小、数目决定。
上述标准漏孔的制作工艺中,只采用了生长硅纳米线;当然,也可通过生长其它种类的一维纳米结构,如氮化镓、磷化铟(InP)、氧化锌(ZnO)等,只要其形貌符合上述硅纳米线11的特征即可。
下面将具体说明本发明所提供的标准漏孔的漏率的计算。如上所形成的标准漏孔10,因为其通孔31的形状标准(为圆柱形),且尺寸及数目都已知,通孔的孔径大小达纳米级;因此可用真空科学的经典理论计算直接得出其漏率值。例如压强为大气压强的氦气,其平均自由程λ>50nm,因此本发明所提供的标准漏孔的流导可用克努曾(Knusen)公式计算。对于孔径为D,长度为L,且L≥20D的单一通孔,在20℃条件下,按Knusen公式,氦气的流导(稳定状态下,单位压力差下通孔的气流通量)满足:
Y = 12.1 &times; 29 / M &times; ( D 2 / L ) &CenterDot; &CenterDot; &CenterDot; &CenterDot; &CenterDot; &CenterDot; ( 1 )
公式(1)中,Y为单个通孔氦气的流导,单位为升/秒(L/s);
M为通孔中的氦气的分子量,M=4;
D为通孔的孔径,单位为厘米(cm);
L为通孔的长度,单位为厘米(cm)。
对于任意温度条件下,公式(1)的修正为: Y = 12.1 &times; 29 / M &times; T / 293 &times; ( D 3 / L ) &CenterDot; &CenterDot; &CenterDot; &CenterDot; &CenterDot; &CenterDot; ( 2 )
公式(2)中,T为绝对温度值,单位为开尔文(K)。
而且,单位时间内通过标准漏孔的氦气流量,即标准漏孔的漏率满足:Q1=n×(P1-P2)×Y    ……(3)
公式(3)中,Q1为标准漏孔的漏率,单位为托·升/秒(Torr·L/s);
n为标准漏孔中通孔的数目,且为整数(n≥1);
P1为标准漏孔的气体流入端压强,单位为托(Torr);
P2为标准漏孔的气体流出端压强,单位为托(Torr)。
因此,当通孔直径D为100nm,长度L为5μm,P1=760Torr,P2=0,通孔数n=1,温度为20℃时,由公式(1)及公式(3)可知,单一通孔的氦气流导 Y = 12.1 &times; 29 / 4 &times; ( ( 10 - 5 ) 3 / ( 5 &times; 10 - 4 ) ) &ap; 6.51 &times; 10 - 11 L / s , 标准漏孔的漏率Q=(760-0)×6.51×10-11≈4.95×10-8Torr·L/s;当P1=1Torr,本发明所提供的标准漏孔可实现10-15Torr·L/s的漏率;另外,通过适当地变换通孔直径D、长度L、以及通孔数n的值,本发明所提供的标准漏孔的漏率可达10-3Torr·L/s。
当通孔的数目n为1000时,则由公式(3)可知,标准漏孔的漏率相应为n=1时的1000倍。
本发明所提供的标准漏孔,通过变更第二膜层的材质,将适用于氦气的金属膜层3更换为二氧化硅膜层,可获得适用于空气、氧气、氩气的标准漏孔,在其漏率的计算时,相应地改变公式(1)和公式(2)中M的值即可。
另外,以上所述的标准漏孔的通孔的形状为圆柱形,其也可以是其它形状,只要其不偏离本发明的效果。如通孔的形状可为多边形,但对于流导计算公式(1)和(2),需要考虑相应的形状修正系数。
另外,本领域技术人员还可在本发明精神内做其它变化,如采用其他方法在基底上形成催化剂薄膜及第二膜层,采用其他蚀刻方法去除一维纳米结构以形成通孔等设计。当然,这些依据本发明精神所做的变化,都应包含在本发明所要求保护的范围之内。

Claims (18)

1.一种标准漏孔的制作方法,其包括以下步骤:提供一基底;在基底上形成一催化剂薄膜,其形成有预定图案结构;在上述催化剂的位置生长出预定尺寸及数目的一维纳米结构;在生长有一维纳米结构的基底上形成一第二膜层;去除一维纳米结构及其附近的基底材料,使在第二膜层中形成尺寸与一维纳米结构相应的通孔。
2.如权利要求1所述的标准漏孔的制作方法,其特征在于所述基底包括硅。
3.如权利要求2所述的标准漏孔的制作方法,其特征在于所述硅的晶向包括硅<111>、硅<110>和硅<100>。
4.如权利要求1所述的标准漏孔的制作方法,其特征在于所述催化剂薄膜包括金、铁、钴、银薄膜。
5.如权利要求1所述的标准漏孔的制作方法,其特征在于所述催化剂薄膜的厚度范围为0.2nm~10nm。
6.如权利要求5所述的标准漏孔的制作方法,其特征在于所述催化剂薄膜的厚度为1nm。
7.如权利要求1所述的标准漏孔的制作方法,其特征在于所述图案结构的尺寸不大于1μm。
8.如权利要求1所述的标准漏孔的制作方法,其特征在于所述一维纳米结构的直径范围为10nm~500nm。
9.如权利要求1所述的标准漏孔的制作方法,其特征在于所述一维纳米结构的长度范围为100nm~100μm。
10.如权利要求1所述的标准漏孔的制作方法,其特征在于所述催化剂薄膜是通过蒸镀、溅射或电镀方法形成的。
11.如权利要求10所述的标准漏孔的制作方法,其特征在于所述图案结构是通过光刻技术或电子束刻蚀技术形成的。
12.如权利要求1所述的标准漏孔的制作方法,其特征在于所述催化剂薄膜是通过印刷法形成的。
13.如权利要求1所述的标准漏孔的制作方法,其特征在于所述一维纳米结构包括硅纳米线、二氧化硅纳米线、氮化镓纳米线、磷化铟纳米线、氧化锌纳米线。
14.如权利要求1所述的标准漏孔的制作方法,其特征在于所述第二膜层的材质包括金属材料、玻璃或陶瓷。
15.如权利要求14所述的标准漏孔的制作方法,其特征在于所述金属材料包括铜、镍、钼。
16.如权利要求1所述的标准漏孔的制作方法,其特征在于所述第二膜层是通过蒸镀、溅射、电镀及有机金属化学气相沉积方法形成的。
17.如权利要求1所述的标准漏孔的制作方法,其特征在于所述一维纳米结构及基底材料是通过反应离子蚀刻、湿法蚀刻或等离子体蚀刻方法去除的。
18.如权利要求1所述的标准漏孔的制作方法,其特征在于所述标准漏孔的漏率范围为10-3托·升/秒~10-15托·升/秒。
CNB2004100919417A 2004-12-30 2004-12-30 一种标准漏孔的制作方法 Active CN100437070C (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CNB2004100919417A CN100437070C (zh) 2004-12-30 2004-12-30 一种标准漏孔的制作方法
US11/228,967 US7757371B2 (en) 2004-12-30 2005-09-16 Process for manufacturing a reference leak
JP2005302127A JP4185088B2 (ja) 2004-12-30 2005-10-17 標準校正リークの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2004100919417A CN100437070C (zh) 2004-12-30 2004-12-30 一种标准漏孔的制作方法

Publications (2)

Publication Number Publication Date
CN1796958A CN1796958A (zh) 2006-07-05
CN100437070C true CN100437070C (zh) 2008-11-26

Family

ID=36638717

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2004100919417A Active CN100437070C (zh) 2004-12-30 2004-12-30 一种标准漏孔的制作方法

Country Status (3)

Country Link
US (1) US7757371B2 (zh)
JP (1) JP4185088B2 (zh)
CN (1) CN100437070C (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109485012A (zh) * 2018-12-07 2019-03-19 合肥工业大学 一种基于玻璃浆料的标准漏孔密封方法

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8539528B2 (en) 1995-04-17 2013-09-17 Starsight Telecast, Inc. Multi-source switching in a television system
CN100437070C (zh) * 2004-12-30 2008-11-26 清华大学 一种标准漏孔的制作方法
GB0605360D0 (en) * 2006-03-16 2006-04-26 Dupont Teijin Films Us Ltd Method of manufacture
US8657584B2 (en) * 2010-02-16 2014-02-25 Edwards Limited Apparatus and method for tuning pump speed
DE102010032747B4 (de) * 2010-07-29 2014-07-17 Deutsches Zentrum für Luft- und Raumfahrt e.V. Verfahren zur solaren Herstellung von Nanodrähten mit einem Katalysator
CN102320555A (zh) * 2010-12-07 2012-01-18 东南大学 基于玻璃微管的单纳米孔制备及辨识介质的方法
US20120213995A1 (en) * 2011-02-22 2012-08-23 University Of South Carolina Flexible Zn2SnO4/MnO2 Core/Shell Nanocable - Carbon Microfiber Hybrid Composites for High Performance Supercapacitor Electrodes
CN102192822B (zh) * 2011-03-10 2012-10-10 安徽皖仪科技股份有限公司 高温石英膜氦质谱漏孔
CN102928173A (zh) * 2011-08-08 2013-02-13 北京卫星环境工程研究所 现场校准正压标准漏孔的方法
US9091622B2 (en) * 2011-12-20 2015-07-28 Exxonmobil Upstream Research Company Capillary-based calibration standards for measurement of permeability
CN102583230B (zh) * 2012-03-14 2014-11-19 中国电子科技集团公司第三十八研究所 一种硅纳米孔洞的孔径调节方法
US9139416B2 (en) * 2012-08-01 2015-09-22 University Of South Carolina Microfluidic devices for the generation of nano-vapor bubbles and their methods of manufacture and use
CN103846640B (zh) * 2012-12-07 2017-02-15 哈尔滨工业大学深圳研究生院 微小孔的等离子体放电加工装置及加工方法
CN105731367B (zh) * 2016-03-01 2017-12-26 合肥工业大学 硅与玻璃的阳极键合技术制作尺寸可控的标准漏孔
CN106981432B (zh) * 2017-04-11 2019-04-23 合肥工业大学 一种铜铜键合制作通道型标准漏孔的方法
US20210223134A1 (en) * 2018-05-31 2021-07-22 Goertek Inc. Test device and calibrating method
CN109115425A (zh) * 2018-09-26 2019-01-01 长春微控机械制造有限公司 一种气体泄漏标定仪

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3482703A (en) * 1967-11-17 1969-12-09 Brunswick Corp Particulate and biological filters
US5564067A (en) * 1989-07-05 1996-10-08 Alabama Cryogenic Engineering, Inc. Controlled-porosity trapping plugs for space cryogen system phase separators
JP2000188256A (ja) * 1998-12-24 2000-07-04 Sharp Corp 半導体装置の製造方法
CN1356260A (zh) * 2001-09-26 2002-07-03 复旦大学 一种矩阵排列的碳纳米管的制备方法
US20030070751A1 (en) * 2001-09-27 2003-04-17 Kevin Bergevin Method of manufacture for fluid handling polymeric barrier tube
CN1482472A (zh) * 2002-09-10 2004-03-17 �廪��ѧ 一种偏光元件及其制造方法

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4164861A (en) * 1978-02-17 1979-08-21 Inficon Leybold-Heraeus Inc. Leak standard generator
JPH064311Y2 (ja) * 1988-02-23 1994-02-02 株式会社島津製作所 キャピラリ形標準リーク発生器
JPH02140439U (zh) * 1989-04-27 1990-11-26
DE19521275A1 (de) * 1995-06-10 1996-12-12 Leybold Ag Gasdurchlaß mit selektiv wirkender Durchtrittsfläche sowie Verfahren zur Herstellung der Durchtrittsfläche
JPH10106960A (ja) * 1996-09-25 1998-04-24 Sony Corp 量子細線の製造方法
DE19726559A1 (de) * 1997-06-23 1998-12-24 Bosch Gmbh Robert Diagnosemodul
US7344627B2 (en) * 1999-06-08 2008-03-18 Broadley-James Corporation Reference electrode having a flowing liquid junction and filter members
US6913075B1 (en) * 1999-06-14 2005-07-05 Energy Science Laboratories, Inc. Dendritic fiber material
US20040009353A1 (en) * 1999-06-14 2004-01-15 Knowles Timothy R. PCM/aligned fiber composite thermal interface
JP3387897B2 (ja) * 1999-08-30 2003-03-17 キヤノン株式会社 構造体の製造方法、並びに該製造方法により製造される構造体及び該構造体を用いた構造体デバイス
US7301199B2 (en) * 2000-08-22 2007-11-27 President And Fellows Of Harvard College Nanoscale wires and related devices
JP2002220300A (ja) * 2001-01-18 2002-08-09 Vision Arts Kk ナノファイバーおよびナノファイバーの作製方法
US7115305B2 (en) * 2002-02-01 2006-10-03 California Institute Of Technology Method of producing regular arrays of nano-scale objects using nano-structured block-copolymeric materials
US7378347B2 (en) * 2002-10-28 2008-05-27 Hewlett-Packard Development Company, L.P. Method of forming catalyst nanoparticles for nanowire growth and other applications
US7355216B2 (en) * 2002-12-09 2008-04-08 The Regents Of The University Of California Fluidic nanotubes and devices
US7335259B2 (en) * 2003-07-08 2008-02-26 Brian A. Korgel Growth of single crystal nanowires
US7354850B2 (en) * 2004-02-06 2008-04-08 Qunano Ab Directionally controlled growth of nanowhiskers
US7226802B2 (en) * 2004-08-06 2007-06-05 Freescale Semiconductor, Inc. Tungsten coated silicon fingers
US7592255B2 (en) * 2004-12-22 2009-09-22 Hewlett-Packard Development Company, L.P. Fabricating arrays of metallic nanostructures
US7235475B2 (en) * 2004-12-23 2007-06-26 Hewlett-Packard Development Company, L.P. Semiconductor nanowire fluid sensor and method for fabricating the same
CN100437070C (zh) * 2004-12-30 2008-11-26 清华大学 一种标准漏孔的制作方法
CN100462706C (zh) * 2005-01-06 2009-02-18 清华大学 标准漏孔
CN100468029C (zh) * 2005-03-03 2009-03-11 清华大学 标准漏孔及其制作方法
WO2008004597A1 (fr) * 2006-07-04 2008-01-10 Toppan Printing Co., Ltd. Procédé de fabrication d'une micro-aiguille
KR101345440B1 (ko) * 2007-03-15 2013-12-27 삼성전자주식회사 메조세공 템플릿을 이용한 나노 구조체의 대량 제조방법 및그에 의해 제조된 나노 구조체
US20080315430A1 (en) * 2007-06-22 2008-12-25 Qimonda Ag Nanowire vias

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3482703A (en) * 1967-11-17 1969-12-09 Brunswick Corp Particulate and biological filters
US5564067A (en) * 1989-07-05 1996-10-08 Alabama Cryogenic Engineering, Inc. Controlled-porosity trapping plugs for space cryogen system phase separators
JP2000188256A (ja) * 1998-12-24 2000-07-04 Sharp Corp 半導体装置の製造方法
CN1356260A (zh) * 2001-09-26 2002-07-03 复旦大学 一种矩阵排列的碳纳米管的制备方法
US20030070751A1 (en) * 2001-09-27 2003-04-17 Kevin Bergevin Method of manufacture for fluid handling polymeric barrier tube
CN1482472A (zh) * 2002-09-10 2004-03-17 �廪��ѧ 一种偏光元件及其制造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109485012A (zh) * 2018-12-07 2019-03-19 合肥工业大学 一种基于玻璃浆料的标准漏孔密封方法

Also Published As

Publication number Publication date
JP2006189419A (ja) 2006-07-20
US7757371B2 (en) 2010-07-20
CN1796958A (zh) 2006-07-05
JP4185088B2 (ja) 2008-11-19
US20060143895A1 (en) 2006-07-06

Similar Documents

Publication Publication Date Title
CN100462706C (zh) 标准漏孔
CN100437070C (zh) 一种标准漏孔的制作方法
US8802047B2 (en) Embedded nanoparticle films and method for their formation in selective areas on a surface
Haas et al. Nanoimprint and selective-area MOVPE for growth of GaAs/InAs core/shell nanowires
KR20100064360A (ko) 수직으로 정렬된 si 와이어 어레이를 형성하기 위한 방법 및 구조
US20060060863A1 (en) System and method for controlling nanostructure growth
Hantschel et al. Diamond scanning probes with sub-nanometer resolution for advanced nanoelectronics device characterization
Vazquez-Mena et al. Reliable and improved nanoscale stencil lithography by membrane stabilization, blurring, and clogging corrections
CN100468029C (zh) 标准漏孔及其制作方法
US20110268884A1 (en) Formation of nanoscale carbon nanotube electrodes using a self-aligned nanogap mask
CN100474522C (zh) 一种硅片表面图形刻蚀方法及其硅片
KR101224785B1 (ko) 다공성 글래스 템플릿을 이용한 나노와이어의 제조방법 및이를 이용한 멀티프로브의 제조방법
CN105223421B (zh) 纳米线巨压阻特性测量装置及其制造方法
CN104743507B (zh) 一种在微器件表面区域性生长氧化锌纳米线阵列的方法
CN108394857A (zh) 一种核壳GaN纳米线阵列的制备方法
CN101587830A (zh) 大面积纳米线p-n结阵列及其制备方法
Demami et al. Fabrication of polycrystalline silicon nanowires using conventional UV lithography
Melechko et al. Nanopipe fabrication using vertically aligned carbon nanofiber templates
KR20010099655A (ko) Mems 장치의 기능 소자로서의 탄소 나노튜브를제조하기 위한 방법
Zamani et al. Focused ion-beam (FIB) nanomachining of silicon carbide (SiC) stencil masks for nanoscale patterning
US7825020B2 (en) Method for manufacturing semiconductor device
Baek et al. Fabrication of suspended nanowires using suspended carbon nanotubes as template for gas sensing
CN112744782A (zh) 一种微悬臂梁的制备方法
Kang et al. Patterned Polycrystalline Diamond Microtip Vacuum Diode Arrays
Tang et al. Formation of silicon nano tips using post SAM-based wet etching

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant