CN100449644C - 多状态存储单元和存储器设备及形成存储单元的方法 - Google Patents

多状态存储单元和存储器设备及形成存储单元的方法 Download PDF

Info

Publication number
CN100449644C
CN100449644C CNB038085151A CN03808515A CN100449644C CN 100449644 C CN100449644 C CN 100449644C CN B038085151 A CNB038085151 A CN B038085151A CN 03808515 A CN03808515 A CN 03808515A CN 100449644 C CN100449644 C CN 100449644C
Authority
CN
China
Prior art keywords
layer
electrode
metal
storage unit
electrode layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB038085151A
Other languages
English (en)
Other versions
CN1647209A (zh
Inventor
T·L·吉尔顿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Micron Technology Inc
Original Assignee
Micron Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Micron Technology Inc filed Critical Micron Technology Inc
Publication of CN1647209A publication Critical patent/CN1647209A/zh
Application granted granted Critical
Publication of CN100449644C publication Critical patent/CN100449644C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0004Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements comprising amorphous/crystalline phase transition cells
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/56Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/56Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency
    • G11C11/5678Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency using amorphous/crystalline phase transition storage elements
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C17/00Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards
    • G11C17/14Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards in which contents are determined by selectively establishing, breaking or modifying connecting links by permanently altering the state of coupling elements, e.g. PROM
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • H10N70/24Multistable switching devices, e.g. memristors based on migration or redistribution of ionic species, e.g. anions, vacancies
    • H10N70/245Multistable switching devices, e.g. memristors based on migration or redistribution of ionic species, e.g. anions, vacancies the species being metal cations, e.g. programmable metallization cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/882Compounds of sulfur, selenium or tellurium, e.g. chalcogenides
    • H10N70/8822Sulfides, e.g. CuS
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/882Compounds of sulfur, selenium or tellurium, e.g. chalcogenides
    • H10N70/8825Selenides, e.g. GeSe
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/882Compounds of sulfur, selenium or tellurium, e.g. chalcogenides
    • H10N70/8828Tellurides, e.g. GeSbTe

Abstract

可编程多数据状态存储单元包括由第一导电材料形成的第一电极层、由第二导电材料形成的第二电极层、以及置于该第一和第二电极层之间的第一层金属掺杂硫族化物材料。该第一层提供一种媒质,其中可以形成导电生长以便将第一和第二电极层电耦合在一起。该存储单元还包括由第三导电材料形成的第三电极层,以及置于该第二和第三电极层之间的第二层金属掺杂硫族化物材料,该第二层提供一种媒质,其中可以形成导电生长以便将第二和第三电极层电耦合在一起。

Description

多状态存储单元和存储器设备及形成存储单元的方法
技术领域
本发明涉及随机存取存储器(“RAM”),并尤其涉及能够以多数据状态存储数据的RAM的存储单元。
背景技术
随机存取存储器设备是任何计算环境的主要部分。没有这些存储设备,在计算装置中处理数据几乎不可能。因此,已经针对随机存取计算机存储器领域进行了大量的研究和开发。这些研究和开发是针对与计算机存储器有关的不同领域,例如,加快存取存储设备所存储的数据的速度,设计功耗更低的存储器,以及设计具有更大数据保持时间的存储设备。此外,已经对其花费了大量努力的一个特定的领域是,增加存储密度和数据容量。
增加存储密度的一个传统方法是减小存储设备的尺寸,更特别地,减小存储单元的尺寸。因此,最近以来存储单元的尺寸已经大大减小了。然而,存储单元的尺寸已经减小到当制造具有这些特征尺寸的存储器设备时,当前的工艺技术正在持续地受到挑战的程度。作为另一种解决存储密度和数据容量的问题方法,已经采用能够以比传统的二进制存储器更多的状态存储数据的存储器设备进行了实验。即,传统存储器以二进制格式存储数据,其中数据存储为两个不同数据状态中的任意一个。使用多数据状态存储器,数据可以存储为多个不同状态中的一个,其中不同状态的数量大于二。因此使用多数据状态存储器,通常需要更少的存储单元用来存储数据。例如,具有四种不同数据状态的存储单元可以代替两个仅具有两个不同数据状态的传统存储单元。因此,存储相同量的数据将只需要一半的存储单元。相反,如果该多数据状态存储器的尺寸与传统存储单元相同,则相同的区域中可以存储两倍的数据。
在Ovshinsky等的几个美国专利中提供了在多数据状态存储器领域中所作的工作的例子。例如,在Ovshinsky等的美国专利No.5,296,716中,描述了将电可写和可擦除相变材料用于电子存储器的应用。此外,在Ovshinsky等的美国专利No.5,912,839中,描述了对Ovonic存储器多状态数字多位存储器元件进行编程以及在数据存储中应用的方法。如其中所描述,包括相变材料的存储器元件可以通过使用多个电流脉冲编程,所述相变材料是能够在通常的非晶和通常的晶体之间电转换的材料。在确定存储元件的数据状态时,可以通过计数使存储器元件的电阻水平回到第一状态所需要的脉冲数量来识别脉冲的数量。脉冲的数量代表存储器元件存储的数据的数据状态。如在前述的专利中进一步描述的,读存储器元件的当前状态的过程是破坏性的,因此需要在读之后对该数据重新编程。
在Kozicki等的美国专利中描述了设计多数据状态存储器时采用的另一种方法。如其中所述,由位于两个电极之间的快离子导体形成的可编程金属化单元(PMC),所述快离子导体是例如硫族化物材料,其包括含有硫、硒和碲的化合物。可以通过在两个电极之间施加电压差产生非挥发性金属树枝状晶体。非挥发性树枝状晶体的质量改变PMC的电阻,这可以被用作以多种状态存储数据的手段。在前述的专利中还描述了在不同应用中PMC的各种结构性实例。
虽然多数据状态和可变电阻存储器领域已经有了发展,但是可以理解,在该领域中新的和可替换的方法仍然是可能的。例如,在具有数据状态的真正量化的多数据状态存储单元领域中的进一步发展。因此,需要可替换的方法用来以多数据状态存储数据。
发明内容
本发明涉及多数据状态存储单元。该存储单元包括由第一导电材料形成的第一电极层、由第二导电材料形成的第二电极层、以及置于第一和第二电极层之间的第一层金属掺杂硫族化物材料,该第一层提供一种媒质,其中可以形成导电生长以便将第一和第二电极层电耦合在一起。该存储单元还包括由第三导电材料形成的第三电极层,以及置于该第二和第三电极层之间的第二层金属掺杂硫族化物材料,该第二层提供一种媒质,其中可以形成导电生长以便将第二和第三电极层电耦合在一起。
附图说明
图1是本发明的一个实施例的截面视图。
图2a-c是说明图1中实施例的操作的截面视图。
图3是本发明的另一实施例的截面视图。
图4是包括一个或多个本发明的存储器阵列的典型存储器设备的示意框图。
如同在集成电路领域的传统表示法一样,各个层的横向尺寸和厚度未按比例画出,并且可能被放大或缩小以便提高视图的易读性。
具体实施方式
本发明的实施例提供了多状态存储单元。下面进行特定的详细说明以提供对本发明的充分的理解。然而,本发明可以不使用这些特定的细节来实践,这对于本领域的技术人员是很清楚的。在其它方面,为了避免不必要地混淆本发明,未详细示出公知的制造技术、工艺方法、电路、控制信号和时序协议。
图1所示的是根据本发明一个实施例的多状态存储单元200的一部分的截面视图。形成金属电极层202以提供向其施加电压的阴极层。可以理解,金属层202可以在衬底上形成,或者在支撑多状态存储单元200的一层材料上形成。在金属层202上形成的是金属掺杂硫族化物层204,穿过其形成了在施加电压时到达浮置电极层206的导电链接,这将在下面做更详细的解释。此处所指的硫族化物材料包括那些硫、硒和碲的化合物。掺杂硫族化物的金属材料通常是I族或II族金属,例如银、铜、锌及其组合物。浮置电极层206通常由诸如银的金属材料形成。
在浮置电极层206上形成的是另一金属掺杂硫族化物层208。层208的材料成份可以但并不必须与层204的相同。如图2所示,层208的厚度t2大于层204的厚度t1。然而,在本发明的其它实施例中,厚度t2和t1可以接近或近似相同,或者厚度t2可以小于t1。如下面的详细描述,为了适应具有各种厚度的层206和208,各个金属掺杂硫族化物层206和208的成份可能需要改变。在金属掺杂硫族化物层208上形成的是另一金属电极层210,该层代表多状态存储单元200的阳极。通常,金属电极层210和浮置电极层206由相同的材料形成。如图1所说明的,阴极形成在阳极下方,然而,可以理解,不脱离本发明的范围,这两层的排列可以颠倒。此外,图1中的垂直取向可以改变,使得各层沿水平方向形成于横向彼此间隔的阴极和阳极之间。
可以理解,本领域的普通技术人员公知的很多材料都可用于金属掺杂硫族化物层。例如,可以使用硒化锗的组成物,即GexSey。示例性比例为Ge20Se80~GeSe的范围。硫化砷、碲化锗和硫化锗的组成物也可以用于金属掺杂硫族化物层。类似地,可以用于电极层的材料也是已知的,例如银、硒化银组成物、铜、硒化锗等。可以理解不脱离本发明的范围,与公知材料特性相同的最新开发的材料也可以用于金属掺杂硫族化物和电极层。
在操作中,通过以相对数字的方式改变或编程阳极和阴极之间的总电阻,图1所示的多状态存储单元200能够存储多个状态。然后存储单元200的电阻可以被测量或被比较,以确定由存储单元200存储的数据的值。作为电阻可以以相对离散的方式改变的结果,通过存储单元200可以存储多个状态。
电阻改变是通过形成从金属电极层202(即阴极)穿过层204而与浮置电极层206电接触的导电生长(conductive growth),以及形成从浮置电极206穿过层208而与金属电极层210(即阳极)电接触的导电生长来完成的。导电生长的形成是通过在阴极和阳极之间制造电压差实现的,例如通过向阳极施加电压而使阴极接地。
每次导电生长产生短路时,阳极和阴极之间的电阻变化相对显著。最初,如图2a所示,其中没有形成导电生长,阳极和阴极之间的电阻Rcell近似等于R1+R2,其中R1是层204的电阻,R2是层208的电阻。然而,在跨越金属掺杂硫族化物层202、210上施加的偏压的影响下,导电生长304和308开始分别穿过层204和208形成。当导电生长延伸穿过层208,并且在浮置电极层206和以层210代表的阳极之间产生短路时,如图2b,阳极和阴极之间的电阻Rcell变成小于R1但大于短路的值。此时的电阻Rcell是可重复的,因此,可以用来代表一种数据状态。当导电生长304延伸穿过层204,并在以层202代表的阴极和浮置电极层206之间产生短路时,电阻Rcell再次改变到相对低的电阻,如图2c所示。
由存储单元200提供的Rcell的每个不同电阻状态代表了不同的数据或逻辑状态。即,第一数据状态由近似等于总电阻(R1+R2)的Rcell表示,第二数据状态由值在R1和低电阻之间的Rcell表示,这在通过导电生长308使浮置电极层206到金属电极层210短路时发生,以及第三数据状态由低电阻表示,在通过导电生长304使金属电极层202到浮置电极层206短路之后。耦合到存储单元200的读电路测量存储单元200的电阻,以确定由该单元存储的数据。
导电生长304和308的生长依赖于施加到存储单元200的电场的取向。即,如迄今为止所讨论的,施加到金属电极层210(即阳极)的电压相对于施加到金属电极层202(即阴极)的电压是正的,因此,生长方向是从金属电极层202到浮置电极层206。类似地,导电生长将从浮置电极层206延伸至金属电极层210形成。然而,可以理解,以相反极性施加电压将会减少无论哪一种先前形成的导电生长。因此,通过在读或写操作期间改变施加到存储单元200的电压极性,以改变存储单元200的电阻,存储单元200可以被编程以存储不同的数据状态。
可以进一步理解,与本发明的实施例一起使用的读和写电路对于本领域的普通技术人员是公知的,并且可以使用传统的电路和设计实现。还可以进一步理解,此处的描述足以使本领域的普通技术人员能够实践本发明。
如图2b所示,向阳极施加电压不仅引起导电生长304的形成,也引起导电生长308的形成。然而,由于层208的厚度大于层204的的厚度,对于给定的跨越多状态存储单元200施加的电压,跨越层208的电压大于跨越层204的电压。因此,在阴极到浮置电极206短路之前,浮置电极206到阳极短路。通过持续向阳极施加电压,导电生长304最终在阴极和浮置电极206之间产生短路,因此将阳极和阴极之间的电阻减小至低电阻。此外,可以理解,在导电生长308使浮置电极206到阳极210短路之后,跨越阳极和阴极的电阻Rcell在R1和短路之间,这是因为随着导电生长304向浮置电极206生长,层204的电阻实际是减小的。然而,此时的电阻Rcell仍然是可重复的,并且足以不同于短路状态,以致多状态存储单元的传统读电路能够始终一致地识别该数据状态。
可以进一步理解,可以通过改变层204和/或208的厚度调整电阻的范围,或者从一个电阻相对于另一个的转变。此外,如前所述,层204和208的金属掺杂硫族化物材料的成份也可以被调整,以调节电阻中的转变点。
图3中示出的是根据本发明的实施例的存储单元400的一部分。存储单元400包括与存储单元200(图1)的层相似的层。然而,除了关于存储单元200所描述的层外,存储单元400还包括第二浮置电极420和第三金属掺杂硫族化物层424。第二浮置电极420和第三金属掺杂硫族化物层424的增加使得存储单元400能够具有在其中存储数据的附加存储状态。即,存储单元200提供三种不同的状态或电阻Rcell:(R2+R1)、R1与低电阻之间、以及低电阻,而存储单元400提供四种不同的状态或Rcell的电阻:(R3+R2+R1)、(R2+R1)与R1之间、R1和低电阻之间、以及低电阻。如前所讨论的,每个不同的电阻水平可以用于代表一种不同的数据状态。
如前讨论所说明的,可以理解,包含由金属掺杂硫族化物材料和浮置电极形成的附加层可以用来制作具有比存储单元400所提供的状态甚至更多状态的存储单元。
图4示出了包括存储器阵列502的存储器设备500,其中存储器阵列502具有根据本发明的实施例的存储单元。存储器设备500包括命令译码器506,该命令译码器506通过命令总线508接收存储命令并产生相应的控制信号。行或列地址通过地址总线520施加到存储器设备500,并分别通过行地址解码器524或列地址解码器528解码。存储器阵列读/写电路530耦合到阵列520,以便通过输入-输出数据总线540向数据输出缓冲器534提供读数据。通过数据输入缓冲器544和存储器阵列读/写电路530向存储器阵列施加写数据。
从前述内容可以理解,尽管这里为了说明目的描述了本发明的具体实施例,但是在不脱离本发明的主旨和范围的前提下,可以进行各种修改。因此,本发明仅由附属的权利要求所限定。

Claims (39)

1.多状态存储单元,包括:
由第一导电材料形成的第一电极层;
由第二导电材料形成浮置电极层的第二电极层;
置于第一和第二电极层之间的第一层金属掺杂硫族化物材料,该第一层提供一种媒质,其中能够形成导电生长以便将第一和第二电极层电耦合在一起;
由第三导电材料形成的第三电极层;以及
置于第二和第三电极层之间的第二层金属掺杂硫族化物材料,该第二层提供一种媒质,其中能够形成导电生长以便将第二和第三电极层电耦合在一起;
其中,所述导电生长的形成是通过在第一电极和第三电极之间制造电压差实现的。
2.权利要求1的存储单元,其中第一导电材料包括银材料的组成物。
3.权利要求1的存储单元,其中第一或第二层金属掺杂硫族化物材料中的至少一层是从包括硒化锗、硫化砷、碲化锗和硫化锗的组中选出的材料。
4.权利要求1的存储单元,其中第一或第二层金属掺杂硫族化物材料中的至少一层的材料包含硒化锗的组成物。
5.权利要求1的存储单元,其中第一、第二和第三电极的导电材料相同。
6.权利要求1的存储单元,其中第一层金属掺杂硫族化物材料的厚度小于第二层金属掺杂硫族化物材料的厚度。
7.权利要求1的存储单元,其中第二层金属掺杂硫族化物材料的厚度小于第一层金属掺杂硫族化物材料的厚度。
8.权利要求1的存储单元,还包括:
由第四导电材料形成的第四电极;以及
置于第三和第四电极层之间的第三层金属掺杂硫族化物材料,该第三层提供一种媒质,其中能够形成导电生长以便将第三和第四电极层电耦合在一起;
9.权利要求1的存储单元,其中第一和第二层的金属掺杂硫族化物材料是相同的。
10.权利要求1的存储单元,其中第一和第二层的金属掺杂硫族化物材料包括银玻璃材料。
11.多状态存储单元,包括:
由第一导电材料形成的第一电极层;
由第二导电材料形成浮置电极层的第二电极层;
置于第一和第二电极层之间并邻接二者的第一层金属掺杂硫族化物材料,该第一层提供一种媒质,其中能够形成导电生长以便将第一和第二电极层电耦合在一起;
由第三导电材料形成的第三电极层;
置于第二和第三电极层之间并邻接二者的第二层金属掺杂硫族化物材料,该第二层提供一种媒质,其中能够形成导电生长以便将第二和第三电极层电耦合在一起;
由第四导电材料形成的第四电极层;以及
置于第三和第四电极层之间并邻接二者的第三层金属掺杂硫族化物材料,该第三层提供一种媒质,其中能够形成导电生长以便将第三和第四电极层电耦合在一起;
其中,所述导电生长的形成是通过在第一电极和第三电极之间制造电压差实现的。
12.权利要求11的存储单元,其中第一、第二、第三和第四电极层中的至少一层包括银材料的组成物。
13.权利要求11的存储单元,其中第一、第二、第三和第四导电材料是相同的。
14.权利要求11的存储单元,其中第一层金属掺杂硫族化物材料的厚度小于第二层金属掺杂硫族化物材料的厚度,并且第二层金属掺杂硫族化物材料的厚度小于第三层金属掺杂硫族化物材料的厚度。
15.权利要求11的存储单元,其中第一、第二和第三层的金属掺杂硫族化物材料是相同的。
16.权利要求11的存储单元,其中第一、第二或第三层中的至少一层的金属掺杂硫族化物材料包括从由硒化锗、硫化砷、碲化锗和硫化锗组成的组中选出的材料。
17.权利要求11的存储单元,其中第一、第二或第三层中的至少一层的金属掺杂硫族化物材料包括硒化锗的组成物。
18.权利要求11的存储单元,其中第一电极位于第二电极下方,第二电极位于第三电极下方,且第三电极位于第四电极下方。
19.权利要求11的存储单元,其中在施加编程电压下,在第二导电生长将第二电极耦合到第三电极之前,第一导电生长将第三电极耦合到第一电极。
20.一种存储器设备,包括:
包括以行和列排列的多个存储单元的存储器阵列,每个存储单元包括:
由第一导电材料形成的并耦合到各行的第一电极层;
由第二导电材料形成浮置电极层的第二电极层;
置于第一和第二电极层之间并邻接二者的第一层金属掺杂硫族化物材料,该第一层提供一种媒质,其中能够形成导电生长以便将第一和第二电极层电耦合在一起;
由第三导电材料形成的并耦合到各列的第三电极层;以及
置于第二和第三电极层之间并邻接二者的第二层金属掺杂硫族化物材料,该第二层提供一种媒质,其中能够形成导电生长以便将第二和第三电极层电耦合在一起;
用于选择对应于行地址的一行存储单元的行地址解码器;
用于选择对应于列地址的一列存储单元的列地址解码器;
耦合到存储器阵列的读和写电路,用来从由行和列地址解码器选择的存储单元中读数据和向其中写数据;
耦合在读和写电路与存储设备的外部数据端之间的数据通路;以及
命令译码器,能够响应于施加到存储器设备的存储命令而产生控制信号;
其中,所述导电生长的形成是通过在第一电极和第三电极之间制造电压差实现的。
21.权利要求20的存储器设备,其中每个存储单元的第一导电层由银材料的组成物形成。
22.权利要求20的存储器设备,其中第一、第二和第三电极的导电材料是相同的。
23.权利要求20的存储器设备,其中第一层金属掺杂硫族化物材料的厚度小于第二层金属掺杂硫族化物材料的厚度。
24.权利要求20的存储器设备,其中每个存储单元还包括:
由第四导电材料形成的第四电极;以及
置于第三和第四电极层之间的第三层金属掺杂硫族化物材料,该第三层提供一种媒质,其中能够形成导电生长以便将第三和第四电极电耦合在一起。
25.权利要求20的存储器设备,其中第一和第二层的金属掺杂硫族化物材料是相同的。
26.权利要求20的存储器设备,其中第一和第二层的金属掺杂硫族化物材料包括银玻璃材料。
27.权利要求20的存储器设备,其中第一或第二层中的至少一层金属掺杂硫族化物材料包括从由硒化锗、硫化砷、碲化锗和硫化锗组成的组中选出的材料。
28.权利要求20的存储器设备,其中第一或第二层中的至少一层金属掺杂硫族化物材料包括硒化锗的组成物。
29.用于形成多状态存储单元的方法,包括:
由第一导电材料形成第一电极层;
在第一电极层上由金属掺杂硫族化物材料形成第一层;
在第一层上由第二导电材料形成浮置电极层的第二电极层;
在第二电极层上由金属掺杂硫族化物材料形成第二层;
在第二层上由第三导电材料形成第三电极层,
该第一层提供一种媒质,其中能够形成导电生长以便将第一和第二电极层电耦合在一起,且该第二层提供一种媒质,其中能够形成导电生长以便将第二和第三电极层电耦合在一起;
其中,所述导电生长的形成是通过在第一电极和第三电极之间制造电压差实现的。
30.权利要求29的方法,其中形成第一电极层包括由银材料的组成物形成第一电极层。
31.权利要求29的方法,其中形成第一和第二电极层包括由相同类型的材料形成第一和第二电极。
32.权利要求29的方法,其中形成第一层和形成第二层包括形成具有厚度小于第二层的厚度的第一层。
33.权利要求29的方法,其中形成第一层和形成第二层包括形成具有厚度大于第二层的厚度的第一层。
34.权利要求29的方法,还包括:
在第三电极层上形成第三层金属掺杂硫族化物材料;以及
在第三层上形成由第四导电材料形成的第四电极,该第三层提供一种媒质,其中能够形成导电生长以便将第三和第四电极层电耦合在一起。
35.权利要求29的方法,其中第一和第二层的金属掺杂硫族化物材料是相同的。
36.权利要求29的方法,其中第一或第二层中的至少一层的金属掺杂硫族化物材料包括从由硒化锗、硫化砷、碲化锗和硫化锗组成的组中选出的材料。
37.权利要求29的方法,其中第一或第二层中的至少一层的金属掺杂硫族化物材料包括硒化锗的组成物。
38.权利要求29的方法,其中第一电极在第一层下方形成,第一层在第二电极下方形成,第二电极在第二层下方形成,且第二层在第三电极下方形成。
39.权利要求29的方法,其中第一电极邻接第一层形成,第一层邻接第二电极形成,第二电极邻接第二层形成,且第二层邻接第三电极层形成。
CNB038085151A 2002-02-20 2003-02-05 多状态存储单元和存储器设备及形成存储单元的方法 Expired - Fee Related CN100449644C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/081,594 US6809362B2 (en) 2002-02-20 2002-02-20 Multiple data state memory cell
US10/081,594 2002-02-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN2008101738949A Division CN101414659B (zh) 2002-02-20 2003-02-05 多状态存储单元、存储设备及形成多状态存储单元的方法

Publications (2)

Publication Number Publication Date
CN1647209A CN1647209A (zh) 2005-07-27
CN100449644C true CN100449644C (zh) 2009-01-07

Family

ID=27733281

Family Applications (2)

Application Number Title Priority Date Filing Date
CNB038085151A Expired - Fee Related CN100449644C (zh) 2002-02-20 2003-02-05 多状态存储单元和存储器设备及形成存储单元的方法
CN2008101738949A Expired - Fee Related CN101414659B (zh) 2002-02-20 2003-02-05 多状态存储单元、存储设备及形成多状态存储单元的方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN2008101738949A Expired - Fee Related CN101414659B (zh) 2002-02-20 2003-02-05 多状态存储单元、存储设备及形成多状态存储单元的方法

Country Status (10)

Country Link
US (4) US6809362B2 (zh)
EP (1) EP1476876B1 (zh)
JP (1) JP2005518671A (zh)
KR (1) KR100635366B1 (zh)
CN (2) CN100449644C (zh)
AT (1) ATE358876T1 (zh)
AU (1) AU2003212907A1 (zh)
DE (1) DE60312961T2 (zh)
TW (1) TW587347B (zh)
WO (1) WO2003073428A1 (zh)

Families Citing this family (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6864521B2 (en) * 2002-08-29 2005-03-08 Micron Technology, Inc. Method to control silver concentration in a resistance variable memory element
US7227170B2 (en) * 2003-03-10 2007-06-05 Energy Conversion Devices, Inc. Multiple bit chalcogenide storage device
US7471552B2 (en) * 2003-08-04 2008-12-30 Ovonyx, Inc. Analog phase change memory
US7381611B2 (en) * 2003-08-04 2008-06-03 Intel Corporation Multilayered phase change memory
US7529123B2 (en) * 2003-09-08 2009-05-05 Ovonyx, Inc. Method of operating a multi-terminal electronic device
JP4608875B2 (ja) * 2003-12-03 2011-01-12 ソニー株式会社 記憶装置
US7326950B2 (en) 2004-07-19 2008-02-05 Micron Technology, Inc. Memory device with switching glass layer
WO2006132813A1 (en) * 2004-07-19 2006-12-14 Micron Technology, Inc. Memory device with switching glass layer
US7190048B2 (en) 2004-07-19 2007-03-13 Micron Technology, Inc. Resistance variable memory device and method of fabrication
US20060045974A1 (en) * 2004-08-25 2006-03-02 Campbell Kristy A Wet chemical method to form silver-rich silver-selenide
EP1643508B1 (en) * 2004-10-01 2013-05-22 International Business Machines Corporation Non-volatile memory element with programmable resistance
TWI254443B (en) * 2004-10-08 2006-05-01 Ind Tech Res Inst Multilevel phase-change memory, manufacture method and status transferring method thereof
JP2006108645A (ja) * 2004-10-08 2006-04-20 Ind Technol Res Inst マルチレベル相変化メモリ、及びその動作方法並びに製造方法
DE102004052645A1 (de) * 2004-10-29 2006-05-04 Infineon Technologies Ag Speicherzelle und Verfahren zu deren Herstellung
US7138290B2 (en) * 2004-12-03 2006-11-21 Micron Technology, Inc. Methods of depositing silver onto a metal selenide-comprising surface and methods of depositing silver onto a selenium-comprising surface
US8193606B2 (en) * 2005-02-28 2012-06-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including a memory element
KR100657956B1 (ko) * 2005-04-06 2006-12-14 삼성전자주식회사 다치 저항체 메모리 소자와 그 제조 및 동작 방법
US7427770B2 (en) * 2005-04-22 2008-09-23 Micron Technology, Inc. Memory array for increased bit density
US20070009821A1 (en) * 2005-07-08 2007-01-11 Charlotte Cutler Devices containing multi-bit data
US20080042119A1 (en) * 2005-08-09 2008-02-21 Ovonyx, Inc. Multi-layered chalcogenide and related devices having enhanced operational characteristics
US7723712B2 (en) * 2006-03-17 2010-05-25 Micron Technology, Inc. Reduced power consumption phase change memory and methods for forming the same
US20080037324A1 (en) * 2006-08-14 2008-02-14 Geoffrey Wen-Tai Shuy Electrical thin film memory
US7560723B2 (en) 2006-08-29 2009-07-14 Micron Technology, Inc. Enhanced memory density resistance variable memory cells, arrays, devices and systems including the same, and methods of fabrication
US7479671B2 (en) * 2006-08-29 2009-01-20 International Business Machines Corporation Thin film phase change memory cell formed on silicon-on-insulator substrate
US7705707B2 (en) * 2006-12-21 2010-04-27 Motorola, Inc. Bistable microelectronic switch stack
US20080152792A1 (en) * 2006-12-21 2008-06-26 Motorola, Inc. Method of manufacturing a bistable microelectronic switch stack
US20080165569A1 (en) * 2007-01-04 2008-07-10 Chieh-Fang Chen Resistance Limited Phase Change Memory Material
KR100810617B1 (ko) 2007-02-09 2008-03-06 삼성전자주식회사 멀티 비트 상전이 메모리소자 및 그 제조방법
KR20080088776A (ko) * 2007-03-30 2008-10-06 삼성전자주식회사 비휘발성 기억 장치의 스토리지 및 그 형성 방법
KR100941514B1 (ko) 2007-04-06 2010-02-12 삼성전자주식회사 멀티 비트 상전이 메모리소자 및 그 제조방법
US7859883B2 (en) 2007-05-14 2010-12-28 Hong Kong Applied Science And Technology Research Institute Co. Ltd. Recordable electrical memory
DE102007032865A1 (de) * 2007-07-13 2009-01-15 Qimonda Ag Integrierte Schaltung, Verfahren zum Betreiben einer integrierten Schaltung, Speicherzellenarray sowie Speichermodul
KR101390340B1 (ko) * 2007-09-11 2014-05-07 삼성전자주식회사 다중 레벨 메모리 장치 및 그 동작 방법
US20090135640A1 (en) * 2007-11-28 2009-05-28 International Business Machines Corporation Electromigration-programmable semiconductor device with bidirectional resistance change
US7977722B2 (en) * 2008-05-20 2011-07-12 Seagate Technology Llc Non-volatile memory with programmable capacitance
US7786463B2 (en) * 2008-05-20 2010-08-31 Seagate Technology Llc Non-volatile multi-bit memory with programmable capacitance
US8742387B2 (en) * 2008-06-25 2014-06-03 Qimonda Ag Resistive memory devices with improved resistive changing elements
US7825479B2 (en) 2008-08-06 2010-11-02 International Business Machines Corporation Electrical antifuse having a multi-thickness dielectric layer
US8487291B2 (en) * 2009-01-30 2013-07-16 Seagate Technology Llc Programmable metallization memory cell with layered solid electrolyte structure
US8331168B2 (en) 2009-04-30 2012-12-11 International Business Machines Corporation Increased capacity heterogeneous storage elements
US8134139B2 (en) * 2010-01-25 2012-03-13 Macronix International Co., Ltd. Programmable metallization cell with ion buffer layer
JP2011204744A (ja) * 2010-03-24 2011-10-13 Toshiba Corp 半導体記憶装置
US8828788B2 (en) * 2010-05-11 2014-09-09 Micron Technology, Inc. Forming electrodes for chalcogenide containing devices
US8395927B2 (en) * 2010-06-18 2013-03-12 Sandisk 3D Llc Memory cell with resistance-switching layers including breakdown layer
US8724369B2 (en) 2010-06-18 2014-05-13 Sandisk 3D Llc Composition of memory cell with resistance-switching layers
US8520425B2 (en) 2010-06-18 2013-08-27 Sandisk 3D Llc Resistive random access memory with low current operation
JP5364739B2 (ja) * 2011-02-18 2013-12-11 株式会社東芝 不揮発性抵抗変化素子
JP2012199336A (ja) * 2011-03-18 2012-10-18 Sony Corp 記憶素子および記憶装置
JP5687978B2 (ja) * 2011-09-14 2015-03-25 ルネサスエレクトロニクス株式会社 抵抗変化型不揮発記憶装置、半導体装置及び抵抗変化型不揮発記憶装置の動作方法
CN102306705A (zh) 2011-09-16 2012-01-04 北京大学 一种大容量多值阻变存储器
CN103078053A (zh) * 2012-12-21 2013-05-01 北京大学 一种多值阻变存储器及其制备方法
US9416949B2 (en) * 2013-01-25 2016-08-16 Field Controls, Llc Adjustable bracket assembly for an ultraviolet lamp
US20160005965A1 (en) * 2014-07-01 2016-01-07 Micron Technology, Inc. Memory cells having a first selecting chalcogenide material and a second selecting chalcogenide material and methods therof
US9406881B1 (en) 2015-04-24 2016-08-02 Micron Technology, Inc. Memory cells having a heater electrode formed between a first storage material and a second storage material and methods of forming the same
US10008665B1 (en) * 2016-12-27 2018-06-26 Intel Corporation Doping of selector and storage materials of a memory cell
US11444125B2 (en) * 2020-06-17 2022-09-13 Globalfoundries Singapore Pte. Ltd. Memory devices and methods of forming memory devices

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999028914A2 (en) * 1997-12-04 1999-06-10 Axon Technologies Corporation Programmable sub-surface aggregating metallization structure and method of making same
US6034882A (en) * 1998-11-16 2000-03-07 Matrix Semiconductor, Inc. Vertically stacked field programmable nonvolatile memory and method of fabrication
US6084796A (en) * 1996-05-30 2000-07-04 Axon Technologies Corporation Programmable metallization cell structure and method of making same
CN1276905A (zh) * 1997-08-15 2000-12-13 薄膜电子有限公司 一种铁电体数据处理器件

Family Cites Families (189)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US160551A (en) * 1875-03-09 Improvement in revolving fire-arfvls
US47765A (en) * 1865-05-16 Improved metallic thill-holder
US47773A (en) * 1865-05-16 Chakles k
US32254A (en) * 1861-05-07 Improvement in methods of distillation
US47772A (en) * 1865-05-16 Improvement in grain-separators
US38301A (en) * 1863-04-28 Improved alloys of aluminum
US190289A (en) * 1877-05-01 Improvement in sewing-machine shuttles
US137869A (en) * 1873-04-15 Improvement in stilts
US3271591A (en) 1963-09-20 1966-09-06 Energy Conversion Devices Inc Symmetrical current controlling device
US3622319A (en) 1966-10-20 1971-11-23 Western Electric Co Nonreflecting photomasks and methods of making same
US3868651A (en) 1970-08-13 1975-02-25 Energy Conversion Devices Inc Method and apparatus for storing and reading data in a memory having catalytic material to initiate amorphous to crystalline change in memory structure
US3743847A (en) 1971-06-01 1973-07-03 Motorola Inc Amorphous silicon film as a uv filter
US4267261A (en) 1971-07-15 1981-05-12 Energy Conversion Devices, Inc. Method for full format imaging
US3961314A (en) 1974-03-05 1976-06-01 Energy Conversion Devices, Inc. Structure and method for producing an image
US3966317A (en) 1974-04-08 1976-06-29 Energy Conversion Devices, Inc. Dry process production of archival microform records from hard copy
US4177474A (en) 1977-05-18 1979-12-04 Energy Conversion Devices, Inc. High temperature amorphous semiconductor member and method of making the same
US4269395A (en) * 1978-07-23 1981-05-26 Newman James L Portable hydraulic rig for performing workover, drilling and other operations on a well
JPS5565365A (en) 1978-11-07 1980-05-16 Nippon Telegr & Teleph Corp <Ntt> Pattern forming method
DE2901303C2 (de) 1979-01-15 1984-04-19 Max Planck Gesellschaft Zur Foerderung Der Wissenschaften E.V., 3400 Goettingen Festes Ionenleitermaterial, seine Verwendung und Verfahren zu dessen Herstellung
US4312938A (en) 1979-07-06 1982-01-26 Drexler Technology Corporation Method for making a broadband reflective laser recording and data storage medium with absorptive underlayer
US4269935A (en) 1979-07-13 1981-05-26 Ionomet Company, Inc. Process of doping silver image in chalcogenide layer
US4316946A (en) 1979-12-03 1982-02-23 Ionomet Company, Inc. Surface sensitized chalcogenide product and process for making and using the same
US4499557A (en) 1980-10-28 1985-02-12 Energy Conversion Devices, Inc. Programmable cell for use in programmable electronic arrays
US4405710A (en) 1981-06-22 1983-09-20 Cornell Research Foundation, Inc. Ion beam exposure of (g-Gex -Se1-x) inorganic resists
US4737379A (en) 1982-09-24 1988-04-12 Energy Conversion Devices, Inc. Plasma deposited coatings, and low temperature plasma method of making same
US4545111A (en) 1983-01-18 1985-10-08 Energy Conversion Devices, Inc. Method for making, parallel preprogramming or field programming of electronic matrix arrays
US4608296A (en) 1983-12-06 1986-08-26 Energy Conversion Devices, Inc. Superconducting films and devices exhibiting AC to DC conversion
US4795657A (en) 1984-04-13 1989-01-03 Energy Conversion Devices, Inc. Method of fabricating a programmable array
US4668968A (en) 1984-05-14 1987-05-26 Energy Conversion Devices, Inc. Integrated circuit compatible thin film field effect transistor and method of making same
US4769338A (en) 1984-05-14 1988-09-06 Energy Conversion Devices, Inc. Thin film field effect transistor and method of making same
US4843443A (en) 1984-05-14 1989-06-27 Energy Conversion Devices, Inc. Thin film field effect transistor and method of making same
US4673957A (en) 1984-05-14 1987-06-16 Energy Conversion Devices, Inc. Integrated circuit compatible thin film field effect transistor and method of making same
US4670763A (en) 1984-05-14 1987-06-02 Energy Conversion Devices, Inc. Thin film field effect transistor
US4678679A (en) 1984-06-25 1987-07-07 Energy Conversion Devices, Inc. Continuous deposition of activated process gases
US4646266A (en) 1984-09-28 1987-02-24 Energy Conversion Devices, Inc. Programmable semiconductor structures and methods for using the same
US4664939A (en) 1985-04-01 1987-05-12 Energy Conversion Devices, Inc. Vertical semiconductor processor
US4637895A (en) 1985-04-01 1987-01-20 Energy Conversion Devices, Inc. Gas mixtures for the vapor deposition of semiconductor material
US4710899A (en) 1985-06-10 1987-12-01 Energy Conversion Devices, Inc. Data storage medium incorporating a transition metal for increased switching speed
US4671618A (en) 1986-05-22 1987-06-09 Wu Bao Gang Liquid crystalline-plastic material having submillisecond switch times and extended memory
US4766471A (en) 1986-01-23 1988-08-23 Energy Conversion Devices, Inc. Thin film electro-optical devices
US4818717A (en) 1986-06-27 1989-04-04 Energy Conversion Devices, Inc. Method for making electronic matrix arrays
US4728406A (en) 1986-08-18 1988-03-01 Energy Conversion Devices, Inc. Method for plasma - coating a semiconductor body
US4845533A (en) 1986-08-22 1989-07-04 Energy Conversion Devices, Inc. Thin film electrical devices with amorphous carbon electrodes and method of making same
US4809044A (en) 1986-08-22 1989-02-28 Energy Conversion Devices, Inc. Thin film overvoltage protection devices
US4853785A (en) 1986-10-15 1989-08-01 Energy Conversion Devices, Inc. Electronic camera including electronic signal storage cartridge
US4788594A (en) 1986-10-15 1988-11-29 Energy Conversion Devices, Inc. Solid state electronic camera including thin film matrix of photosensors
US4847674A (en) 1987-03-10 1989-07-11 Advanced Micro Devices, Inc. High speed interconnect system with refractory non-dogbone contacts and an active electromigration suppression mechanism
US4800526A (en) 1987-05-08 1989-01-24 Gaf Corporation Memory element for information storage and retrieval system and associated process
US4891330A (en) 1987-07-27 1990-01-02 Energy Conversion Devices, Inc. Method of fabricating n-type and p-type microcrystalline semiconductor alloy material including band gap widening elements
US4775425A (en) 1987-07-27 1988-10-04 Energy Conversion Devices, Inc. P and n-type microcrystalline semiconductor alloy material including band gap widening elements, devices utilizing same
US5272359A (en) 1988-04-07 1993-12-21 California Institute Of Technology Reversible non-volatile switch based on a TCNQ charge transfer complex
GB8910854D0 (en) 1989-05-11 1989-06-28 British Petroleum Co Plc Semiconductor device
US5159661A (en) 1990-10-05 1992-10-27 Energy Conversion Devices, Inc. Vertically interconnected parallel distributed processor
US5314772A (en) 1990-10-09 1994-05-24 Arizona Board Of Regents High resolution, multi-layer resist for microlithography and method therefor
JPH0770731B2 (ja) 1990-11-22 1995-07-31 松下電器産業株式会社 電気可塑性素子
US5341328A (en) 1991-01-18 1994-08-23 Energy Conversion Devices, Inc. Electrically erasable memory elements having reduced switching current requirements and increased write/erase cycle life
US5414271A (en) 1991-01-18 1995-05-09 Energy Conversion Devices, Inc. Electrically erasable memory elements having improved set resistance stability
US5166758A (en) 1991-01-18 1992-11-24 Energy Conversion Devices, Inc. Electrically erasable phase change memory
US5536947A (en) 1991-01-18 1996-07-16 Energy Conversion Devices, Inc. Electrically erasable, directly overwritable, multibit single cell memory element and arrays fabricated therefrom
US5296716A (en) 1991-01-18 1994-03-22 Energy Conversion Devices, Inc. Electrically erasable, directly overwritable, multibit single cell memory elements and arrays fabricated therefrom
US5596522A (en) 1991-01-18 1997-01-21 Energy Conversion Devices, Inc. Homogeneous compositions of microcrystalline semiconductor material, semiconductor devices and directly overwritable memory elements fabricated therefrom, and arrays fabricated from the memory elements
US5534711A (en) 1991-01-18 1996-07-09 Energy Conversion Devices, Inc. Electrically erasable, directly overwritable, multibit single cell memory elements and arrays fabricated therefrom
US5534712A (en) 1991-01-18 1996-07-09 Energy Conversion Devices, Inc. Electrically erasable memory elements characterized by reduced current and improved thermal stability
US5335219A (en) 1991-01-18 1994-08-02 Ovshinsky Stanford R Homogeneous composition of microcrystalline semiconductor material, semiconductor devices and directly overwritable memory elements fabricated therefrom, and arrays fabricated from the memory elements
US5406509A (en) 1991-01-18 1995-04-11 Energy Conversion Devices, Inc. Electrically erasable, directly overwritable, multibit single cell memory elements and arrays fabricated therefrom
US5128099A (en) 1991-02-15 1992-07-07 Energy Conversion Devices, Inc. Congruent state changeable optical memory material and device
US5219788A (en) 1991-02-25 1993-06-15 Ibm Corporation Bilayer metallization cap for photolithography
US5177567A (en) 1991-07-19 1993-01-05 Energy Conversion Devices, Inc. Thin-film structure for chalcogenide electrical switching devices and process therefor
US5359205A (en) 1991-11-07 1994-10-25 Energy Conversion Devices, Inc. Electrically erasable memory elements characterized by reduced current and improved thermal stability
US5238862A (en) 1992-03-18 1993-08-24 Micron Technology, Inc. Method of forming a stacked capacitor with striated electrode
US5512328A (en) 1992-08-07 1996-04-30 Hitachi, Ltd. Method for forming a pattern and forming a thin film used in pattern formation
US5350484A (en) 1992-09-08 1994-09-27 Intel Corporation Method for the anisotropic etching of metal films in the fabrication of interconnects
EP0617312B1 (en) * 1993-03-26 2002-10-02 Matsushita Electric Industrial Co., Ltd. A spatial light modulator and a method for driving the same
US5818749A (en) 1993-08-20 1998-10-06 Micron Technology, Inc. Integrated circuit memory device
BE1007902A3 (nl) 1993-12-23 1995-11-14 Philips Electronics Nv Schakelelement met geheugen voorzien van schottky tunnelbarriere.
DE4408330A1 (de) 1994-03-11 1995-09-14 Cherry Mikroschalter Gmbh Ergonomische Tastatur
US5500532A (en) 1994-08-18 1996-03-19 Arizona Board Of Regents Personal electronic dosimeter
JP2643870B2 (ja) 1994-11-29 1997-08-20 日本電気株式会社 半導体記憶装置の製造方法
US5543737A (en) 1995-02-10 1996-08-06 Energy Conversion Devices, Inc. Logical operation circuit employing two-terminal chalcogenide switches
US5751012A (en) 1995-06-07 1998-05-12 Micron Technology, Inc. Polysilicon pillar diode for use in a non-volatile memory cell
DE69614545T2 (de) 1995-06-07 2002-05-23 Micron Technology Inc Gestapelte vergrabene diode zur verwendung mit einem mehrzustand-material in einer nichtflüchtigen speicherzelle
US6420725B1 (en) 1995-06-07 2002-07-16 Micron Technology, Inc. Method and apparatus for forming an integrated circuit electrode having a reduced contact area
US5869843A (en) 1995-06-07 1999-02-09 Micron Technology, Inc. Memory array having a multi-state element and method for forming such array or cells thereof
US5879955A (en) 1995-06-07 1999-03-09 Micron Technology, Inc. Method for fabricating an array of ultra-small pores for chalcogenide memory cells
US5789758A (en) 1995-06-07 1998-08-04 Micron Technology, Inc. Chalcogenide memory cell with a plurality of chalcogenide electrodes
US5714768A (en) 1995-10-24 1998-02-03 Energy Conversion Devices, Inc. Second-layer phase change memory array on top of a logic device
US5694054A (en) 1995-11-28 1997-12-02 Energy Conversion Devices, Inc. Integrated drivers for flat panel displays employing chalcogenide logic elements
US5591501A (en) 1995-12-20 1997-01-07 Energy Conversion Devices, Inc. Optical recording medium having a plurality of discrete phase change data recording points
US6653733B1 (en) 1996-02-23 2003-11-25 Micron Technology, Inc. Conductors in semiconductor devices
US5687112A (en) 1996-04-19 1997-11-11 Energy Conversion Devices, Inc. Multibit single cell memory element having tapered contact
US5852870A (en) 1996-04-24 1998-12-29 Amkor Technology, Inc. Method of making grid array assembly
US5851882A (en) 1996-05-06 1998-12-22 Micron Technology, Inc. ZPROM manufacture and design and methods for forming thin structures using spacers as an etching mask
US5814527A (en) 1996-07-22 1998-09-29 Micron Technology, Inc. Method of making small pores defined by a disposable internal spacer for use in chalcogenide memories
US5789277A (en) 1996-07-22 1998-08-04 Micron Technology, Inc. Method of making chalogenide memory device
US5998244A (en) 1996-08-22 1999-12-07 Micron Technology, Inc. Memory cell incorporating a chalcogenide element and method of making same
US6147395A (en) 1996-10-02 2000-11-14 Micron Technology, Inc. Method for fabricating a small area of contact between electrodes
US5825046A (en) 1996-10-28 1998-10-20 Energy Conversion Devices, Inc. Composite memory material comprising a mixture of phase-change memory material and dielectric material
US6087674A (en) 1996-10-28 2000-07-11 Energy Conversion Devices, Inc. Memory element with memory material comprising phase-change material and dielectric material
US5846889A (en) 1997-03-14 1998-12-08 The United States Of America As Represented By The Secretary Of The Navy Infrared transparent selenide glasses
US5998066A (en) 1997-05-16 1999-12-07 Aerial Imaging Corporation Gray scale mask and depth pattern transfer technique using inorganic chalcogenide glass
US6031287A (en) * 1997-06-18 2000-02-29 Micron Technology, Inc. Contact structure and memory element incorporating the same
US5933365A (en) 1997-06-19 1999-08-03 Energy Conversion Devices, Inc. Memory element with energy control mechanism
US6005527A (en) 1997-07-10 1999-12-21 Andrew Corporation RF coupler for concealed mobile telecommunications systems utilizing window-mounted antennas and systems using same
US6051511A (en) 1997-07-31 2000-04-18 Micron Technology, Inc. Method and apparatus for reducing isolation stress in integrated circuits
GB9722149D0 (en) * 1997-10-22 1997-12-17 Philips Electronics Nv Semiconductior memory devices
US6011757A (en) 1998-01-27 2000-01-04 Ovshinsky; Stanford R. Optical recording media having increased erasability
US6141241A (en) 1998-06-23 2000-10-31 Energy Conversion Devices, Inc. Universal memory element with systems employing same and apparatus and method for reading, writing and programming same
US5912839A (en) 1998-06-23 1999-06-15 Energy Conversion Devices, Inc. Universal memory element and method of programming same
US6297170B1 (en) 1998-06-23 2001-10-02 Vlsi Technology, Inc. Sacrificial multilayer anti-reflective coating for mos gate formation
US6388324B2 (en) 1998-08-31 2002-05-14 Arizona Board Of Regents Self-repairing interconnections for electrical circuits
US6469364B1 (en) 1998-08-31 2002-10-22 Arizona Board Of Regents Programmable interconnection system for electrical circuits
US6825489B2 (en) 2001-04-06 2004-11-30 Axon Technologies Corporation Microelectronic device, structure, and system, including a memory structure having a variable programmable property and method of forming the same
US6635914B2 (en) 2000-09-08 2003-10-21 Axon Technologies Corp. Microelectronic programmable device and methods of forming and programming the same
US6487106B1 (en) 1999-01-12 2002-11-26 Arizona Board Of Regents Programmable microelectronic devices and method of forming and programming same
US6177338B1 (en) 1999-02-08 2001-01-23 Taiwan Semiconductor Manufacturing Company Two step barrier process
ATE361530T1 (de) * 1999-02-11 2007-05-15 Univ Arizona Programmierbare mikroelektronische struktur sowie verfahren zu ihrer herstellung und programmierung
US6072716A (en) 1999-04-14 2000-06-06 Massachusetts Institute Of Technology Memory structures and methods of making same
US6143604A (en) 1999-06-04 2000-11-07 Taiwan Semiconductor Manufacturing Company Method for fabricating small-size two-step contacts for word-line strapping on dynamic random access memory (DRAM)
US6350679B1 (en) 1999-08-03 2002-02-26 Micron Technology, Inc. Methods of providing an interlevel dielectric layer intermediate different elevation conductive metal layers in the fabrication of integrated circuitry
US20030107105A1 (en) 1999-08-31 2003-06-12 Kozicki Michael N. Programmable chip-to-substrate interconnect structure and device and method of forming same
US6423628B1 (en) 1999-10-22 2002-07-23 Lsi Logic Corporation Method of forming integrated circuit structure having low dielectric constant material and having silicon oxynitride caps over closely spaced apart metal lines
JP2001189431A (ja) * 1999-12-28 2001-07-10 Seiko Epson Corp メモリのセル構造及びメモリデバイス
US6914802B2 (en) 2000-02-11 2005-07-05 Axon Technologies Corporation Microelectronic photonic structure and device and method of forming the same
US6865117B2 (en) 2000-02-11 2005-03-08 Axon Technologies Corporation Programming circuit for a programmable microelectronic device, system including the circuit, and method of forming the same
US6501111B1 (en) 2000-06-30 2002-12-31 Intel Corporation Three-dimensional (3D) programmable device
WO2002021542A1 (en) * 2000-09-08 2002-03-14 Axon Technologies Corporation Microelectronic programmable device and methods of forming and programming the same
US6563164B2 (en) 2000-09-29 2003-05-13 Ovonyx, Inc. Compositionally modified resistive electrode
US6429064B1 (en) 2000-09-29 2002-08-06 Intel Corporation Reduced contact area of sidewall conductor
US6567293B1 (en) 2000-09-29 2003-05-20 Ovonyx, Inc. Single level metal memory cell using chalcogenide cladding
US6555860B2 (en) 2000-09-29 2003-04-29 Intel Corporation Compositionally modified resistive electrode
US6404665B1 (en) 2000-09-29 2002-06-11 Intel Corporation Compositionally modified resistive electrode
US6339544B1 (en) 2000-09-29 2002-01-15 Intel Corporation Method to enhance performance of thermal resistor device
US6653193B2 (en) * 2000-12-08 2003-11-25 Micron Technology, Inc. Resistance variable device
US6649928B2 (en) 2000-12-13 2003-11-18 Intel Corporation Method to selectively remove one side of a conductive bottom electrode of a phase-change memory cell and structure obtained thereby
US6696355B2 (en) 2000-12-14 2004-02-24 Ovonyx, Inc. Method to selectively increase the top resistance of the lower programming electrode in a phase-change memory
US6437383B1 (en) 2000-12-21 2002-08-20 Intel Corporation Dual trench isolation for a phase-change memory cell and method of making same
US6569705B2 (en) 2000-12-21 2003-05-27 Intel Corporation Metal structure for a phase-change memory device
US6646297B2 (en) 2000-12-26 2003-11-11 Ovonyx, Inc. Lower electrode isolation in a double-wide trench
US6534781B2 (en) 2000-12-26 2003-03-18 Ovonyx, Inc. Phase-change memory bipolar array utilizing a single shallow trench isolation for creating an individual active area region for two memory array elements and one bipolar base contact
US6531373B2 (en) 2000-12-27 2003-03-11 Ovonyx, Inc. Method of forming a phase-change memory cell using silicon on insulator low electrode in charcogenide elements
US6687427B2 (en) 2000-12-29 2004-02-03 Intel Corporation Optic switch
US6638820B2 (en) 2001-02-08 2003-10-28 Micron Technology, Inc. Method of forming chalcogenide comprising devices, method of precluding diffusion of a metal into adjacent chalcogenide material, and chalcogenide comprising devices
JP3884266B2 (ja) * 2001-02-19 2007-02-21 株式会社東芝 半導体メモリ装置及びその製造方法
US6727192B2 (en) 2001-03-01 2004-04-27 Micron Technology, Inc. Methods of metal doping a chalcogenide material
US6348365B1 (en) 2001-03-02 2002-02-19 Micron Technology, Inc. PCRAM cell manufacturing
US6818481B2 (en) 2001-03-07 2004-11-16 Micron Technology, Inc. Method to manufacture a buried electrode PCRAM cell
US6734455B2 (en) * 2001-03-15 2004-05-11 Micron Technology, Inc. Agglomeration elimination for metal sputter deposition of chalcogenides
US6473332B1 (en) 2001-04-04 2002-10-29 The University Of Houston System Electrically variable multi-state resistance computing
WO2002082452A2 (en) * 2001-04-06 2002-10-17 Axon Technologies Corporation Microelectronic device, structure, and system, including a memory structure having a variable programmable property and method of forming the same
DE60220912T2 (de) 2001-05-07 2008-02-28 Advanced Micro Devices, Inc., Sunnyvale Speichervorrichtung mit einem sich selbst einbauenden polymer und verfahren zur herstellung derselben
US6480438B1 (en) 2001-06-12 2002-11-12 Ovonyx, Inc. Providing equal cell programming conditions across a large and high density array of phase-change memory cells
US6589714B2 (en) 2001-06-26 2003-07-08 Ovonyx, Inc. Method for making programmable resistance memory element using silylated photoresist
US6613604B2 (en) 2001-08-02 2003-09-02 Ovonyx, Inc. Method for making small pore for use in programmable resistance memory element
US6570784B2 (en) 2001-06-29 2003-05-27 Ovonyx, Inc. Programming a phase-change material memory
US6487113B1 (en) 2001-06-29 2002-11-26 Ovonyx, Inc. Programming a phase-change memory with slow quench time
US6462984B1 (en) 2001-06-29 2002-10-08 Intel Corporation Biasing scheme of floating unselected wordlines and bitlines of a diode-based memory array
US6605527B2 (en) 2001-06-30 2003-08-12 Intel Corporation Reduced area intersection between electrode and programming element
US6673700B2 (en) 2001-06-30 2004-01-06 Ovonyx, Inc. Reduced area intersection between electrode and programming element
US6642102B2 (en) 2001-06-30 2003-11-04 Intel Corporation Barrier material encapsulation of programmable material
US6511862B2 (en) 2001-06-30 2003-01-28 Ovonyx, Inc. Modified contact for programmable devices
US6514805B2 (en) 2001-06-30 2003-02-04 Intel Corporation Trench sidewall profile for device isolation
US6511867B2 (en) 2001-06-30 2003-01-28 Ovonyx, Inc. Utilizing atomic layer deposition for programmable device
US6951805B2 (en) 2001-08-01 2005-10-04 Micron Technology, Inc. Method of forming integrated circuitry, method of forming memory circuitry, and method of forming random access memory circuitry
US6590807B2 (en) 2001-08-02 2003-07-08 Intel Corporation Method for reading a structural phase-change memory
US6737312B2 (en) * 2001-08-27 2004-05-18 Micron Technology, Inc. Method of fabricating dual PCRAM cells sharing a common electrode
US6881623B2 (en) * 2001-08-29 2005-04-19 Micron Technology, Inc. Method of forming chalcogenide comprising devices, method of forming a programmable memory cell of memory circuitry, and a chalcogenide comprising device
US6955940B2 (en) * 2001-08-29 2005-10-18 Micron Technology, Inc. Method of forming chalcogenide comprising devices
US6784018B2 (en) * 2001-08-29 2004-08-31 Micron Technology, Inc. Method of forming chalcogenide comprising devices and method of forming a programmable memory cell of memory circuitry
US20030047765A1 (en) * 2001-08-30 2003-03-13 Campbell Kristy A. Stoichiometry for chalcogenide glasses useful for memory devices and method of formation
US6646902B2 (en) * 2001-08-30 2003-11-11 Micron Technology, Inc. Method of retaining memory state in a programmable conductor RAM
US6709958B2 (en) * 2001-08-30 2004-03-23 Micron Technology, Inc. Integrated circuit device and fabrication using metal-doped chalcogenide materials
US6507061B1 (en) 2001-08-31 2003-01-14 Intel Corporation Multiple layer phase-change memory
JP4214055B2 (ja) 2001-09-01 2009-01-28 エナージー コンバーション デバイセス インコーポレイテッド 青色レーザおよび/またはプラズモンレンズを用いて光データ記憶検索システムにおいて増大されたデータ記憶
US6586761B2 (en) 2001-09-07 2003-07-01 Intel Corporation Phase change material memory device
US6545287B2 (en) * 2001-09-07 2003-04-08 Intel Corporation Using selective deposition to form phase-change memory cells
US6690026B2 (en) 2001-09-28 2004-02-10 Intel Corporation Method of fabricating a three-dimensional array of active media
WO2003032392A2 (en) 2001-10-09 2003-04-17 Axon Technologies Corporation Programmable microelectronic device, structure, and system, and method of forming the same
US6566700B2 (en) 2001-10-11 2003-05-20 Ovonyx, Inc. Carbon-containing interfacial layer for phase-change memory
DE60212679D1 (de) 2001-10-26 2006-08-03 Univ Arizona Programmierbare oberflächenkontrollbauelemente sowie deren anwendung
US6545907B1 (en) 2001-10-30 2003-04-08 Ovonyx, Inc. Technique and apparatus for performing write operations to a phase change material memory device
US6576921B2 (en) * 2001-11-08 2003-06-10 Intel Corporation Isolating phase change material memory cells
US6815818B2 (en) * 2001-11-19 2004-11-09 Micron Technology, Inc. Electrode structure for use in an integrated circuit
US6791859B2 (en) * 2001-11-20 2004-09-14 Micron Technology, Inc. Complementary bit PCRAM sense amplifier and method of operation
US6625054B2 (en) 2001-12-28 2003-09-23 Intel Corporation Method and apparatus to program a phase change memory
US6667900B2 (en) 2001-12-28 2003-12-23 Ovonyx, Inc. Method and apparatus to operate a memory cell
US6512241B1 (en) 2001-12-31 2003-01-28 Intel Corporation Phase change material memory device
WO2003079463A2 (en) 2002-03-15 2003-09-25 Axon Technologies Corporation Programmable structure, an array including the structure, and methods of forming the same
US6671710B2 (en) 2002-05-10 2003-12-30 Energy Conversion Devices, Inc. Methods of computing with digital multistate phase change materials
US6918382B2 (en) 2002-08-26 2005-07-19 Energy Conversion Devices, Inc. Hydrogen powered scooter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6084796A (en) * 1996-05-30 2000-07-04 Axon Technologies Corporation Programmable metallization cell structure and method of making same
CN1276905A (zh) * 1997-08-15 2000-12-13 薄膜电子有限公司 一种铁电体数据处理器件
WO1999028914A2 (en) * 1997-12-04 1999-06-10 Axon Technologies Corporation Programmable sub-surface aggregating metallization structure and method of making same
US6034882A (en) * 1998-11-16 2000-03-07 Matrix Semiconductor, Inc. Vertically stacked field programmable nonvolatile memory and method of fabrication

Also Published As

Publication number Publication date
US20040223357A1 (en) 2004-11-11
JP2005518671A (ja) 2005-06-23
DE60312961D1 (de) 2007-05-16
US6908808B2 (en) 2005-06-21
EP1476876B1 (en) 2007-04-04
US6809362B2 (en) 2004-10-26
WO2003073428A1 (en) 2003-09-04
US20070128792A1 (en) 2007-06-07
KR100635366B1 (ko) 2006-10-17
TW587347B (en) 2004-05-11
CN101414659B (zh) 2010-11-03
TW200304235A (en) 2003-09-16
DE60312961T2 (de) 2007-12-13
AU2003212907A1 (en) 2003-09-09
US20030156452A1 (en) 2003-08-21
US7498231B2 (en) 2009-03-03
KR20040083457A (ko) 2004-10-01
CN101414659A (zh) 2009-04-22
CN1647209A (zh) 2005-07-27
US20050157567A1 (en) 2005-07-21
US7202520B2 (en) 2007-04-10
ATE358876T1 (de) 2007-04-15
EP1476876A1 (en) 2004-11-17

Similar Documents

Publication Publication Date Title
CN100449644C (zh) 多状态存储单元和存储器设备及形成存储单元的方法
CN100538878C (zh) 可编程导体随机存取存储器以及向其中写入的方法
CN1938781B (zh) 具有可变电阻的薄膜存储器件
US7714311B2 (en) Memory device, memory circuit and semiconductor integrated circuit having variable resistance
CN100392758C (zh) 非易失性半导体存储装置
EP1873832B1 (en) Memory device and semiconductor integrated circuit
US7192792B2 (en) Method of changing an electrically programmable resistance cross point memory bit
CN100481254C (zh) 存储装置及半导体装置
KR20000052840A (ko) 상 전이(phase-change)메모리 물질과 유전체 물질의 혼합물을 포함하는 복합 메모리 재료
CN1744325A (zh) 可实现多位存储的单元结构
CN112086116A (zh) 存储单元、存储单元的控制方法以及存储芯片
DE102007032865A1 (de) Integrierte Schaltung, Verfahren zum Betreiben einer integrierten Schaltung, Speicherzellenarray sowie Speichermodul

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090107

Termination date: 20130205