CN100455855C - 用于车辆驱动设备的控制装置 - Google Patents

用于车辆驱动设备的控制装置 Download PDF

Info

Publication number
CN100455855C
CN100455855C CNB2005100828836A CN200510082883A CN100455855C CN 100455855 C CN100455855 C CN 100455855C CN B2005100828836 A CNB2005100828836 A CN B2005100828836A CN 200510082883 A CN200510082883 A CN 200510082883A CN 100455855 C CN100455855 C CN 100455855C
Authority
CN
China
Prior art keywords
vehicle
gear
motor
stepless
differential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2005100828836A
Other languages
English (en)
Other versions
CN1737412A (zh
Inventor
田端淳
多贺丰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Publication of CN1737412A publication Critical patent/CN1737412A/zh
Application granted granted Critical
Publication of CN100455855C publication Critical patent/CN100455855C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/101Infinitely variable gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/1755Brake regulation specially adapted to control the stability of the vehicle, e.g. taking into account yaw rate or transverse acceleration in a curve
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/02Control of vehicle driving stability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2201/00Particular use of vehicle brake systems; Special systems using also the brakes; Special software modules within the brake system controller
    • B60T2201/14Electronic locking-differential
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Abstract

本发明公开了一种用于车辆的驱动设备的控制装置,该驱动设备包括无级换档部分和自动换档部分,前者包括将发动机的输出分配到第一电动机和传动构件的差速设备、和设置在从传动构件到多个驱动轮的动力传动路径中的第二电动机,后者构成动力传动路径的一部分,该控制装置包括:用于在车辆状况不稳定时稳定其的车辆状况稳定控制器;耦合设备,其可选择性地切换到松开状态和啮合状态,在前一状态中耦合设备将无级换档部分置于可用作电控CVT的无级换档状态,在后一状态中耦合设备将无级换档部分置于其不可用作电控CVT的有级换档状态;和车辆稳定相关切换控制器,其在所述车辆状况稳定控制器进行车辆状况稳定控制时,将耦合设备切换到松开状态。

Description

用于车辆驱动设备的控制装置
技术领域
本发明涉及包括差速设备的车辆驱动设备,所述差速设备具有差速功能并由此用作变速设备(即变速器),更具体而言,本发明涉及确保驱动设备可以采用例如小容量电动机的技术。
背景技术
已知一种车辆驱动系统,其包括:将发动机输出分配到第一电动机和输出轴的差速设备;以及设置在差速设备的输出轴和车辆的驱动轮之间的第二电动机。混合动力车的驱动设备的示例由日本专利申请公布No.2000-2327和日本专利申请公布No.2000-346187中的每个公开。在该混合动力车驱动设备中,差速设备例如由行星齿轮组构成,并且其由于行星齿轮组的差速功能而将发动机驱动动力的主要部分机械地传递到驱动轮,并将动力的其余部分通过电气路径从第一电动机电气传递到第二电动机。于是,差速设备用作其速比电控可变的变速器,例如电控CVT(无级变速器)。差速设备由控制设备控制,以使得车辆可以在发动机保持于最优工作状态下时行驶。于是,改善了车辆的燃油消耗率。
同时,通常车辆可以响应于驾驶员对诸如转向盘之类的转向构件的操作而稳定地转弯。但是,取决于例如行驶在具有低摩擦阻力的路面上、在高速下行驶或在高速下转弯的行驶条件或者外部原因,当车辆在转弯时车辆的状况可能变得不稳定。车辆的不稳定状况例如是其中车辆的后轮比其前轮更不附着路面,从而后轮趋向于在其横向上滑动的状态,或者其中前轮比后轮更不附着路面,从而前轮趋向于在横向上滑动的状态。当后轮趋向于在横向上滑动时,所谓的“过度转向”趋向于发生,就是说,车辆趋向于转弯一个过分大于与驾驶员对转向构件的操作量相对应角度的角度。当前轮趋向于在横向上滑动时,所谓的“不足转向”趋向于发生,就是说,车辆趋向于转弯一个过分小于与转向构件的操作量相对应角度的角度。
已知一种采用了车辆状况稳定控制装置或设备的车辆控制设备,该车辆状况稳定控制装置或设备在车辆状况变得不稳定时通过控制驱动动力源的输出转矩(即驱动动力源转矩)或施加到每个驱动轮的制动力,并由此控制每个驱动轮的转矩,来稳定车辆的状况。该车辆控制设备的一个示例由日本专利申请公布No.2003-194209公开。所公开的车辆控制设备采用这样一种设备作为车辆状况稳定控制装置,该设备被称为“VSC(车辆稳定性控制)系统”并当车辆在转弯时稳定车辆的状况。如果在当车辆在转弯时趋向于发生过度转向或不足转向,则VSC系统通过降低发动机的输出转矩(即发动机转矩)并对前轮和/或后轮施加制动力,由此产生后轮横向滑动约束力矩或前轮横向滑动约束力矩,而稳定车辆。
作为与VSC系统不同的一种车辆状况稳定控制装置,公知一种被称为“ABS(防抱死制动系统)”的设备。当车辆被制动时,ABS恰当地控制施加到一个或多个驱动轮上的制动力,以防止一个或多个驱动轮的锁止,并由此确保车辆可以享有优异的制动性能并由此保持高稳定性和可转向性。
发明内容
一般而言,CVT(无级变速器)被认为是改善车辆燃油消耗率的设备,而诸如有级自动变速器的齿轮式变速器设备被认为是表现出高传动效率的设备。但是,还没有具有CVT和齿轮式变速器各自优点的动力传动设备。例如,因为上述日本专利申请公布No.2000-2327所公开的混合动力车驱动设备采用了其中电力从第一电动机传递到第二电动机的电气路径,即其中车辆驱动动力的一部分作为电力传递的传动路径,所以当车辆采用高动力发动机时,驱动设备需要采用大容量电动机作为第一电动机。此外,因为第二电动机由从第一电动机输出的电力驱动,所以驱动设备需要采用大容量电动机作为第二电动机,从而驱动设备整体上不得不占据大的空间。而且,因为发动机输出的一部分被一次转换成电力并随后供应到驱动轮,所以车辆的燃油消耗率可能由于车辆例如在高速下行驶的行驶条件而被降低。该问题也在这样的情况下发生,其中上述差速设备(例如动力分配器)被用作其速比电控可变的变速器,例如CVT,即所谓的“电控CVT”。
此外,一般而言,当车辆的状况变得不稳定并且例如VSC系统或ABS的车辆状况稳定控制装置进行控制操作来稳定车辆的状况时,期望提高车辆状况稳定控制装置的控制性能。就是说,期望采用可以提高稳定控制装置性能的控制设备。这对于没有混合动力车驱动设备的上述问题的上述车辆驱动设备也是同样的。
因此本发明的一个目的是提供一种可以享有自身的小尺寸或者可以改善车辆燃油消耗率的车辆驱动设备,和/或一种控制装置,该控制装置包括用于在车辆的状况不稳定时稳定车辆的不稳定状况的车辆状况稳定控制器,并在该稳定控制器控制或稳定车辆状况时提高车辆状况稳定控制器的控制性能。
本发明者已进行了广泛的研究来实现上述目的,并发现如果车辆在其中发动机输出相当小的使用(service)发动机输出范围中行驶,则第一和第二电动机不需要具有这么大的容量,但如果车辆车辆在高发动机输出范围中(例如在最大发动机输出范围中)行驶则需要具有或产生大容量或输出,例如如果车辆在高发动机输出下行驶,因此如果在高发动机输出范围中,发动机输出只通过机械动力传动路径传递到驱动轮,则第一和第二电动机可以具有小容量,从而车辆的驱动设备可以设置在小空间中。此外,本发明者发现,如果当车辆在高速下行驶时发动机输出被类似地只通过机械动力传动路径传递到驱动轮,则不建立其中发动机输出的一部分被第一电动机一次转换成电力并随后由第二电动机将驱动动力传递到驱动轮的电气路径,由此可以有效地减小驱动动力和电能之间的转换损失,使得车辆的燃油消耗率被进一步改善。基于这些发现开发了本发明。
(1)根据本发明的第一特征,提供了一种用于车辆驱动系统的控制装置,所述驱动设备包括:(A)无级换档部分和(B)自动换档部分,所述无级换档部分包括(a1)将发动机的输出分配到第一电动机和传动构件的差速设备、和(a2)设置在从所述传动构件到多个驱动轮的动力传动路径中的第二电动机,并且所述无级换档部分可用作电控无级变速器,所述自动换档部分构成所述动力传动路径的一部分并用作自动变速器,所述控制装置包括:用于在所述车辆的状况不稳定时稳定所述车辆状况的车辆状况稳定控制器(46、48、80、82);耦合设备,其可选择性地切换到(a)松开状态和(b)啮合状态,在所述松开状态中所述耦合设备将所述无级换档部分置于其中所述无级换档部分可用作所述电控无级变速器的无级换档状态,在所述啮合状态中所述耦合设备将所述无级换档部分置于其中所述无级换档部分不可用作所述电控无级变速器的有级换档状态;和车辆稳定相关切换控制器,当所述车辆状况稳定控制器进行车辆状况稳定控制时,所述车辆稳定相关切换控制器将所述耦合设备切换到其所述松开状态。在耦合设备的松开状态中,耦合设备可以允许所述差速设备的旋转元件彼此相对旋转,并由此将所述无级换档部分置于其无级换档状态,并且在耦合设备的啮合状态中,耦合设备可以将所述差速设备的旋转元件彼此相对约束或绝对约束差速设备的一个旋转元件,并由此将所述无级换档部分置于其有级换档状态。
在根据本发明第一特征的控制装置中,耦合设备选择性地将车辆驱动设备的无级换档部分切换到其中无级换档部分可用作电控CVT(无级变速器)的无级换档状态,或其中无级换档部分不可用作电控CVT的有级换档状态。因此,驱动设备可以享有两个优点,即其速比电控可变的变速器的燃油消耗率改善效果和机械传递驱动动力的齿轮式变速器的高传动效率。例如,在其中车辆在低速或中速下或者低输出或中输出下行驶的巡航或使用发动机输出范围中,无级换档部分被切换到其无级换档状态以获得改善的燃油消耗率;并且,当车辆在高速下行驶时,无级换档部分被切换到其有级换档状态,在该状态中发动机输出只通过机械动力传动路径传递到驱动轮,从而有效限制了当无级换档部分用作其速比电控可变的变速器时将会产生的驱动动力和电能之间的转换损耗,以改善车辆的燃油消耗率。此外,当车辆在高输出下行驶时,无级换档部分被切换到其有级换档状态。于是,无级换档部分用作这样的变速器,其速比仅在其中车辆在低速或中速下或者低输出或中输出下行驶的范围中电控可变。因此,要由电动机产生的电能的最大值,即要由电动机传递的电能可以减小,从而这些电动机或包括这些电动机在内的车辆驱动设备可以相对于其容量减小。
此外,在包括可选择性切换到其无级换档状态或其有级换档状态的无级换档部分在内的驱动设备中,当车辆状况稳定控制器进行控制操作来稳定车辆状况时,耦合设备被车辆稳定相关切换控制器切换到其松开状态。于是,因为发动机和驱动轮从其中其机械连接到彼此的状态中解除,即因为发动机可以相对于驱动轮自由旋转,所以可以以提高的自由度控制每个驱动轮的转矩,从而可以提高车辆状况稳定控制器控制或稳定车辆状况的控制性能。
(2.)根据本发明的第二特征,提供了一种用于车辆驱动系统的控制装置,所述驱动设备包括可用作电控差速系统的动力传动设备,所述动力传动设备包括(a1)将发动机的输出分配到第一电动机和传动构件的差速设备、和(a2)设置在从所述传动构件到多个驱动轮的动力传动路径中的第二电动机,所述控制装置包括用于在所述车辆的状况不稳定时稳定所述车辆状况的车辆状况稳定控制器;耦合设备,其与所述差速设备相关联并用于将所述差速设备选择性地切换到(a)其中所述差速设备表现出差速功能的差速状态和(b)其中所述差速设备不表现出所述差速功能的锁止状态;和车辆稳定相关切换控制器,当所述车辆状况稳定控制器进行车辆状况稳定控制时,所述车辆稳定相关切换控制器操作所述耦合设备,以将所述差速设备切换到其所述差速状态。
在根据本发明第二特征的控制装置中,耦合设备选择性地将车辆驱动设备的差速设备切换到其中差速设备表现出差速功能的差速状态,或其中差速设备不表现出差速功能的锁止状态。因此,驱动设备可以享有两个优点,即变速器速比电控可变的燃油消耗率改善效果和机械传递驱动动力的齿轮式变速器的高传动效率。例如,在其中车辆在低速或中速下或者低输出或中输出下行驶的巡航或使用发动机输出范围中,差速设备被切换到其差速状态以获得车辆的改善燃油消耗率;并且,当车辆在高速下行驶时,差速设备被切换到其锁止状态,在该状态中发动机输出只通过机械动力传动路径传递到驱动轮,从而有效减小了当差速设备用作其速比电控可变的变速器时将会产生的驱动动力和电能之间的转换损耗,以改善车辆的燃油消耗率。此外,当车辆在高输出下行驶时,差速设备被切换到其锁止状态。于是,差速设备用作这样的变速器,其速比仅在其中车辆在低速或中速下或者低输出或中输出下行驶的范围中电控可变。因此,要由电动机产生的电能的最大值,即要由电动机传递的电能可以减小,从而这些电动机或包括这些电动机在内的车辆驱动设备可以相对于其容量减小。
此外,在包括可选择性切换到其差速状态或其锁止状态的差速设备在内的驱动设备中,当车辆状况稳定控制器进行控制操作来稳定车辆状况时,差速设备被车辆稳定相关切换控制器切换到其差速状态。于是,因为发动机和驱动轮从其中其机械连接到彼此的状态中解除,即因为发动机可以相对于驱动轮自由旋转,所以可以以提高的自由度控制每个驱动轮的转矩,从而可以提高车辆状况稳定控制器控制或稳定车辆状况的控制性能。
(3)根据本发明可以与第一特征(1)结合的第三特征,当所述差速设备被所述耦合设备切换到其中所述差速设备表现出差速功能的差速状态时,所述无级换档部分被置于其所述无级换档状态,并且当所述差速设备被所述耦合设备切换到其中所述差速设备不表现出所述差速功能的锁止状态时,所述无级换档部分被置于其所述有级换档状态。于是,无级换档部分可以容易地切换到其无级换档状态或其有级换档状态
(4)根据本发明可以与第二特征(2)或第三特征(3)结合的第四特征,所述差速设备包括连接到所述发动机的第一元件、连接到所述第一电动机的第二元件和连接到所述传动构件的第三元件。所述耦合设备可以通过允许所述第一元件、第二元件和第三元件彼此相对旋转来将所述差速设备切换到其所述差速状态,并通过允许所述第一元件、第二元件和第三元件作为一个整体单元旋转或禁止所述第二元件旋转来将所述差速设备切换到其所述锁止状态。于是,差速设备可以容易地切换到其差速状态或其锁止状态。
(5)根据本发明可以与第四特征(4)结合的第五特征,所述耦合设备包括(a)离合器和(b)制动器中至少之一,所述离合器选择性地将所述第一元件、第二元件和第三元件中的至少两个元件彼此连接,以使得所述第一元件、第二元件和第三元件作为一个整体单元旋转,所述制动器选择性地将所述第二元件连接到非旋转元件以禁止所述第二元件旋转。于是,差速设备可以容易地切换到其差速状态或其锁止状态。
(6)根据本发明可以与第五特征(5)结合的第六特征,当所述离合器和所述制动器被松开时,所述差速设备被切换到其所述差速状态,在所述差速状态中所述第一元件、第二元件和第三元件彼此相对旋转。当所述离合器被啮合而所述制动器被松开时,所述差速设备被切换到其所述锁止状态,在所述锁止状态中所述差速设备用作速比等于1的变速器,并且/或者其中当所述制动器被啮合而所述离合器被松开时,所述差速设备被切换到其所述锁止状态,在所述锁止状态中所述差速设备用作速比小于1的增速变速器。于是,差速设备可以容易地切换到其差速状态或其锁止状态,并且可以用作具有单个恒定速比或多个恒定速比的单级或多级变速器。
(7)根据本发明可以与第四特征(4)至第六特征(6)中任一个结合的第七特征,所述差速设备包括具有行星轮架、太阳轮和齿圈的行星齿轮组,并且所述差速设备的所述第一元件、第二元件和第三元件分别包括所述行星轮架、所述太阳轮和所述齿圈。于是,差速设备在其轴向上的尺寸可以减小。此外,差速设备可以简单地由单个行星齿轮组构成。
(8)根据本发明可以与第七特征(7)结合的第八特征,所述行星齿轮组包括具有行星齿轮(P1)的单级行星齿轮式行星齿轮组。于是,差速设备在其轴向上的尺寸可以减小。此外,差速设备可以简单地由单个行星齿轮组构成。
(9)根据本发明可以与第一特征(1)和第三特征(3)至第八特征(8)中任一个结合的第九特征,所述驱动设备的总速比由所述自动换档部分的速比和所述无级换档部分的速比所限定。因为通过利用自动换档部分的速比而可以在宽范围中改变驱动动力,所以无级换档部分可以在高效率下用作电控CVT。
(10)根据本发明可以与第二特征(2)和第四特征(4)至第八特征(8)中任一个结合的第十特征,控制装置还包括构成所述动力传动路径一部分的自动换档部分,其中所述驱动设备的总速比由所述自动换档部分的速比和所述差速设备的速比所限定。因为通过利用自动换档部分的速比而可以在宽范围中改变驱动动力,所以无级换档部分可以在高效率下用作电控CVT。
(11)根据本发明可以与第一特征(1)和第三特征(3)至第十特征(10)中任一个结合的第十一特征,所述自动换档部分包括有级自动变速器。于是,在无级换档部分的无级换档状态中,或在差速设备的差速状态中,无级换档部分或差速设备与有级自动变速器协作来构成CVT;而在无级换档部分的有级换档状态中,或在差速设备的锁止状态中,无级换档部分或差速设备与有级自动变速器协作来构成有级变速器。
附图说明
通过结合附图考虑来阅读对本发明当前优选实施例的以下详细说明,将更好地理解本发明的以上和其他目的、特征、优点以及技术和工业重要性,附图中:
图1是用于解释作为本发明所应用的混合动力车驱动设备一部分的变速器系统的构造的示意图;
图2是一张操作表,表示变速器系统的无级或有级换档操作,与分别用来进行这些换档操作的液压操作摩擦耦合设备的各个操作状态的组合之间的关系;
图3是共线图,用于解释在变速器系统的每个有级换档操作中八个旋转元件RE1至RE8各自的相对转速;
图4是用于解释驱动设备的电子控制设备的输入输出信号的简图;
图5是用于解释图4的控制设备的各种控制功能的简图;
图6是示出在两个参数即车速和输出转矩所定义的二维坐标系中准备的预先存储的换档图和在同一二维坐标系中准备的预先存储的状态切换图两者之间关系的视图,其中根据该换档图来选择变速器系统的自动换档部分所要换档到的档位,并根据该状态切换图来选择变速器系统所要切换到的换档状态;
图7是示出这样的预先存储关系的视图,该关系包括无级控制区域和有级控制区域之间的边界线,并用作准备图6的状态切换图的无级控制区域和有级控制区域之间的边界(由虚线表示)的基础;
图8是示出当作为有级变速器的变速器系统的档位被升档时发动机转速变化的示例的曲线图;
图9是用于解释图5的控制设备的控制操作的流程图,即当在行驶状态下的车辆状况不稳定时进行车辆状况稳定控制操作时其用于切换变速器系统的换档状态的控制操作;
图10是用于解释图9的流程图所表示的控制操作的时序图,特别是在车辆被制动时控制ABS(防抱死制动系统)来稳定车辆状况的控制操作;
图11是与图1相应的示意图,用于解释作为本发明第二实施例的另一混合动力车的驱动设备一部分的变速器系统的构造;
图12是与图2相对应的表,表示图11的变速器系统的无级或有级换档操作,与分别用来进行这些换档操作的液压操作摩擦耦合设备的各个操作状态的组合之间的关系;
图13是与图3相对应的共线图,用于解释在图11的变速器系统的每个有级换档操作中七个旋转元件RE1至RE7各自的相对转速;和
图14是作为一种切换设备的交互转换式开关的视图,该切换设备构成可由驾驶员手动操作的换档状态选择设备的一部分。
具体实施方式
下面将参照附图详细说明本发明的优选实施例。
<第一实施例>
图1是用于解释构成本发明所应用的所谓“混合动力”汽车的驱动设备一部分的变速器系统10的示意图。该混合动力车还包括图4所示的电子控制设备40。在图1中,变速器系统10包括:作为旋转输入构件的输入轴14、作为动力传动设备的无级(即连续)换档部分11、作为有级自动变速器的自动换档部分20、以及作为旋转输出构件的输出轴22,所有这些都串联设置在变速器壳体12(以下称为“壳体12”)中的公共轴上,壳体12作为固定到车身上的非旋转(即静止)构件。无级换档部分11直接连接到输入轴14,但是其可以通过例如未示出的脉动吸收阻尼器(即减振设备)而间接连接到输入轴14。自动换档部分20在车辆的无级换档部分11和一对驱动轮38(图5)之间的动力传动路径中通过传动构件18(例如传动轴)串联连接到无级换档部分11。输出轴22连接到自动换档部分20。变速器系统10优选地用于其中系统10沿着车辆纵轴设置的FR(发动机前置后驱)车辆。更具体而言,变速器系统10设置在例如汽油机或者柴油机的内燃机(E/G)8(以下称为发动机8)和两个驱动轮38之间。发动机8用作产生驱动或行驶车辆的驱动动力的驱动动力源,并直接或通过例如未示出的脉动吸收阻尼器而间接连接到输入轴14。如图5所示,变速器系统10将发动机8产生的驱动动力首先通过差速齿轮单元(例如主减速器)36并随后通过两个半轴而传递到两个驱动轮38。差速齿轮单元36构成驱动设备的另一部分,并设置在动力传动路径中。因为变速器系统10具有相对于上述公共轴对称的构造,所以在图1中未示出系统10的下半部分。这同样适用于第二实施例的另一变速器系统70,如图11所示。在作为第一实施例的本变速器系统10中,无级换档部分11“直接耦合”到发动机8。短语“直接耦合”意味着无级换档部分11以这样的方式连接到发动机8,即在两个元件11、8之间未设置诸如变矩器或者液力耦合器之类的液动动力传动设备,从而“直接耦合”包含其中两个元件11、8通过例如脉动吸收阻尼器连接到彼此的上述情况。
无级换档部分11包括:第一电动机M1、用作差速设备的动力分动器16、以及第二电动机M2。动力分动器16是这样的机械设备,其机械分配输出到输入轴14的发动机8的驱动动力,更具体而言,其将发动机8的输出机械分配到第一电动机M1和传动构件18。第二电动机M2与传动构件18一体旋转。第二电动机M2可以布置在传动构件18和驱动轮38之间的一部分动力传动路径内的任何位置。虽然第一电动机M1和第二电动机M2中的每个都是具有发电功能的所谓“电动发电机”,但是第一电动机M1至少用作产生反作用力的发电机,而第二电动机M2至少用作产生驱动或行驶车辆的驱动动力的驱动动力源的电动机。
动力分动器16主要包括具有例如约0.418的预定传动比ρ1的单级行星齿轮式的第一行星齿轮组24、切换离合器C0和切换制动器B0。第一行星齿轮组24包括作为其多个旋转元件(即其多个元件)的:第一太阳轮S1;第一行星齿轮P1;第一行星轮架CA1,其支撑第一行星齿轮P1使得第一行星齿轮P1可以自转和公转;和通过第一行星齿轮P1与第一太阳轮S1啮合的第一齿圈R1。在第一太阳轮S1的齿数表示为ZS1并且第一齿圈R1的齿数表示为ZR1的情况下,第一行星齿轮组24的上述传动比ρ1表示为ρ1=ZS1/ZR1。
动力分动器16被构造成这样,即第一行星轮架CA1连接到输入轴14,从而连接到发动机8;第一太阳轮S1连接到第一电动机M1;而第一齿圈R1连接到传动构件18。此外,切换制动器B0设置在第一太阳轮S1和壳体12之间,而切换离合器C0设置在第一太阳轮S1和第一行星轮架CA1之间。在离合器C0和制动器B0两者都分离(即松开)的状态下,动力分动器16被切换到其差速状态。就是说,在离合器C0和制动器B0两者都分离的状态下,作为第一行星齿轮组24三个元件的第一太阳轮S1、第一行星轮架CA1和第一齿圈R1可以相对于彼此可旋转,使得动力分动器16被切换到其差速状态,在该状态中动力分动器16表现出差速功能,即用作差速设备,从而将发动机8的输出分配到第一电动机M1和传动构件18。更具体而言,发动机8的一部分输出被存储为由第一电动机M1产生的电能,并且发动机8的另一部分输出被用来转动第二电动机M2,使得无级换档部分11(或动力分动器16)用作电控差速系统,例如部分11被切换到所谓的“无级换档状态”,在该状态中部分11用作电控CVT(无级变速器)。于是,当发动机8在恒定速度下旋转时,传动构件18的转速连续变化。就是说,当动力分动器16被切换到其差速状态时,无级换档部分11也被切换到其差速状态,即被切换到其无级换档状态,在该状态中部分11用作电控CVT,从而部分11的速比(即变速器传动比)γ0可以在最小值γ0min和最大值γ0max之间连续变化。无级换档部分11的速比γ0被定义为将输入轴14的转速除以传动构件18的转速而得到的值。
在上述无级换档状态中,如果切换离合器C0或切换制动器B0啮合,则动力分动器16被切换到其非差速状态,在此非差速状态中动力分动器16不可用作差速设备,即不表现出差速功能。更具体而言,在切换离合器C0啮合(但切换制动器B0保持分离),从而第一太阳轮S1和第一行星轮架CA1彼此一体啮合的状态下,作为第一行星齿轮组24三个元件的第一太阳轮S1、第一行星轮架CA1和第一齿圈R1被置于锁止状态,在该状态中这三个元件相对约束到彼此并作为一个整体单元旋转,使得动力分动器16被切换到非差速状态,其中动力分动器16无法用作差速设备。因此,无级换档部分11也被切换到其非差速状态。因为,在非差速状态中,发动机8和传动构件18各自的转速彼此相等,所以无级换档部分11(或动力分动器16)被切换到其恒定换档状态,即其有级换档状态,在该状态中部分11用作速比γ0固定为1的变速器。或者,如果切换制动器B0啮合(但切换离合器C0分离)时,从而第一太阳轮S1连接到壳体12,则动力分动器16被切换到不同的锁止状态,在该状态中第一太阳轮S1被绝对地约束到壳体12并且不可旋转,使得动力分动器16被切换到其中动力分动器16无法用作差速设备的非差速状态。因此,无级换档部分11也被切换到其非差速状态。因为在后一非差速状态中,第一齿圈R1在高于第一行星轮架CA1的转速下旋转,所以动力分动器16用作增速设备。无级换档部分11被切换到其不同的恒定换档状态,即其不同的有级换档状态,其中部分11用作速比γ0固定为比1小的值(例如等于约0.7的值)的增速变速器。于是,在本实施例中,当切换离合器C0和切换制动器B0中的每个被选择性地切换到其松开状态或其啮合状态时,每个耦合设备C0、B0用作状态切换设备,其选择性地将无级换档部分11(或动力分动器16)切换到其差速状态或非差速状态,例如切换到其无级换档状态(其差速状态)或其锁止状态即恒定换档状态(其非差速状态),在无级换档状态中部分11(或分动器16)用作电控差速系统,例如表现出电控CVT功能或用作其中部分11的速比γ0可电控连续变化的电控CVT,在锁止状态中部分11不表现出电控CVT功能或者不用作电控CVT,即部分11的速比γ0固定为某个值,在恒定换档状态中部分11用作具有一个或多个恒定或固定速比的单档位或多档位的变速器。
自动换档部分20包括单级行星齿轮式第二行星齿轮组26、单级行星齿轮式第三行星齿轮组28和单级行星齿轮式第四行星齿轮组30。第二行星齿轮组26包括:第二太阳轮S2;第二行星齿轮P2;第二行星轮架CA2,其支撑第二行星齿轮P2使得第二行星齿轮P2可以自转和公转;和通过第二行星齿轮P2与第二太阳轮S2啮合的第二齿圈R2。第二行星齿轮组26具有例如约0.562的预定传动比ρ2。第三行星齿轮组28包括:第三太阳轮S3;第三行星齿轮P3;第三行星轮架CA3,其支撑第三行星齿轮P3使得第三行星齿轮P3可以自转和公转;和通过第三行星齿轮P3与第三太阳轮S3啮合的第三齿圈R3。第三行星齿轮组28具有例如约0.425的预定传动比ρ3。第四行星齿轮组30包括:第四太阳轮S4;第四行星齿轮P4;第四行星轮架CA4,其支撑第四行星齿轮P4使得第四行星齿轮P4可以自转和公转;和通过第四行星齿轮P4与第四太阳轮S4啮合的第四齿圈R4。第四行星齿轮组30具有例如约0.421的预定传动比ρ4。在第二太阳轮S2、第二齿圈R2、第三太阳轮S3、第三齿圈R3、第四太阳轮S4和第四齿圈R4各自的齿数分别表示为ZS2、ZR2、ZS3、ZR3、ZS4和ZR4的情况下,上述传动比ρ2、ρ3和ρ4分别表示为ρ2=ZS2/ZR2、ρ3=ZS3/ZR3和ρ4=ZS4/ZR4。
在自动换档部分20中,第二太阳轮S2和第三太阳轮S3一体连接到彼此,可通过第二离合器C2选择性地连接到传动构件18,并且可通过第一制动器B1选择性地连接到壳体12;第二行星轮架CA2可通过第二制动器B2选择性地连接到壳体12;第四齿圈R4可通过第三制动器B3选择性地连接到壳体12;第二齿圈R2、第三行星轮架CA3和第四行星轮架CA4一体地连接到彼此并连接到输出轴22;并且第三齿圈R3和第四太阳轮S4一体地连接到彼此,并可通过第一离合器C1选择性地连接到传动构件18。由此,自动换档部分20和传动构件18可通过用来建立自动换档部分20档位中合适一个的第二离合器C2或者第一离合器C1而选择性地连接到彼此。换言之,第一离合器C1和第二离合器C2中的每一个都用作耦合设备,其可选择性地将传动构件18和自动换档部分20之间的动力传动路径,即无级换档部分11(传动构件18)和驱动轮38之间的动力传动路径,选择性地切换到其中允许传递动力的其动力传动允许状态和其中禁止传递动力的动力传动禁止状态。也就是说,当第一离合器C1和第二离合器C2中至少一个被啮合时,动力传动路径被切换到其动力传动允许状态,并且当第一离合器C1和第二离合器C2两者都被松开时,动力传动路径被切换到其动力传动禁止状态。
上述切换离合器C0、第一离合器C1、第二离合器C2、切换制动器B0、第一制动器B1、第二制动器B2和第三制动器B3中的每个都是传统车用自动变速器中通常使用的液压操作摩擦耦合设备,并可以是其中彼此叠置的多个摩擦盘由液压驱动器压紧的盘式设备,或者其中缠绕在转鼓的外周表面上的一条带或两条带的一端或各自的一端由液压驱动器张紧的带式设备。每个摩擦耦合设备用于选择性地将每个耦合设备位于其间的两个构件彼此连接。
在如上构造的变速器系统10中,切换离合器C0、第一离合器C1、第二离合器C2、切换制动器B0、第一制动器B1、第二制动器B2和第三制动器B3如图2中操作表所示地被选择性地啮合或分离,来选择性地建立第一档位(1st)、第二档位(2nd)、第三档位(3rd)、第四档位(4th)、第五档位(5th)、倒车档位(R)和空档位置(N)之一。第一档位1st至第五档位5th的各个速比γ以基本上相同的比率变化。每个速比γ被定义为等于(输入轴14的转速NIN)/(输出轴22的转速NOUT)。在图2的操作表中,符号“○”表示每个离合器C0、C1、C2或每个制动器B1、B2、B3的啮合状态;而符号“◎”表示当无级换档部分11在恒定换档状态下操作时切换离合器C0或切换制动器B0的啮合状态,以及当无级换档部分11用作电控CVT时切换离合器C0或切换制动器B0的分离(即松开)状态。在本实施例中,动力分动器16采用切换离合器C0和切换制动器B0,并且除了其中无级换档部分11用作电控CVT的无级换档状态外,当切换离合器C0或切换制动器B0啮合时,无级换档部分11可以采用恒定换档状态,其中该部分11用作其速比γ0固定的变速器。所以,当切换离合器C0或切换制动器B0啮合时,变速器系统10可以采用有级换档状态,其中被置于恒定换档状态的无级换档部分11与自动换档部分20协作,以用作有级变速器;并且当切换离合器C0和切换制动器B0都不啮合时,变速器系统10可以采用无级(连续)换档状态,其中被置于无级换档状态的无级换档部分11与自动换档部分20协作,以用作电控CVT。简言之,当切换离合器C0或切换制动器B0啮合时,变速器系统10被切换到有级换档状态;而当切换离合器C0和切换制动器B0都不啮合时,变速器系统10被切换到无级换档状态。此外,可以认为与变速器系统10一样,无级换档部分11是可选择性地切换到有级换档状态和无级换档状态的变速器。
例如,当变速器系统10用作有级变速器时,并且同时当切换离合器C0、第一离合器C1和第三制动器B3如图2所示地啮合时,建立其速比γ1的最大值等于例如约3.357的第一档位1st;当切换离合器C0、第一离合器C1和第二制动器B2啮合时,建立其速比γ2小于速比γ1并等于例如约2.180的第二档位2nd;当切换离合器C0、第一离合器C1和第一制动器B1啮合时,建立其速比γ3小于速比γ2并等于例如约1.424的第三档位3rd;当切换离合器C0、第一离合器C1和第二离合器C2啮合时,建立其速比γ4小于速比γ3并等于例如约1.000的第四档位4th;并且当切换制动器B0、第一离合器C1和第二离合器C2啮合时,建立其速比γ5小于速比γ4并等于例如约0.705的第五档位5th。此外,当第二离合器C2和第三制动器B3啮合时,建立其速比γR小于速比γ1、大于速比γ2并等于例如约3.209的倒车档位R。当建立空档位置N时,仅切换离合器C0啮合。
另一方面,在变速器系统10用作CVT时,切换离合器C0和切换制动器B0两者都被松开,如图2所示。由此,无级换档部分11用作CVT,并且串联连接到该部分11的自动换档部分20用作有级变速器。所以,当自动换档部分20在第一档位1st、第二档位2nd、第三档位3rd和第四档位4th的每一个中操作时,输入到该部分20的转速即传动构件18的转速可以被无级即连续地改变,因此第一至第四档位的每一个都具有这样的速比范围,在该速比范围中每个档位的速比可以被连续地改变。由此变速器系统10的速比γ作为整体可在第一至第五档位中每对相邻档位之间连续变化。即,变速器系统10总速比γT作为整体可以连续变化。
由此,变速器系统10包括用作差速部分或第一换档部分的无级换档部分11;和用作自动换档部分或者第二换档部分的自动换档部分20。图3示出了共线图,其示出了表示第一至第八旋转元件RE1至RE8各自的相对转速的各个关系的直线,该关系对应于八个旋转元件以不同方式连接到彼此的不同档位。图3的共线图是二维坐标系,由表示第一至第四行星齿轮组24、26、28、30的传动比ρ的横轴,和表示八个旋转元件的相对转速的纵轴所限定。下面的水平实线X1表示转速0(零);上面的水平实线X2表示转速1.0(一),即连接到输入轴14的发动机8的转速NE;而两条水平虚线XG中的每一条表示传动构件18的转速。
三条垂直线Y1、Y2和Y3分别对应于作为无级换档部分11一部分的动力分动器16的三个元件。按照从左向右的顺序,第一垂直线Y1表示对应于第二旋转元件(即第二元件)RE2的第一太阳轮S1的相对转速;第二垂直线Y2表示对应于第一旋转元件(即第一元件)RE1的第一行星轮架CA1的相对转速;而第三垂直线Y3表示对应于第三旋转元件(即第三元件)RE3的第一齿圈R1的相对转速。三条垂直线Y1、Y2和Y3彼此分别隔开一定距离,该距离根据第一行星齿轮组24的传动比ρ1限定。此外,五条垂直线Y4、Y5、Y6、Y7和Y8分别对应于自动换档部分20的五个元件。按照从左向右的顺序,第四垂直线Y4表示连接到彼此并对应于第四旋转元件(即第四元件)RE4的第二和第三太阳轮S2、S3的相对转速;第五垂直线Y5表示对应于第五旋转元件(即第五元件)RE5的第二行星轮架CA2的相对转速;第六垂直线Y6表示对应于第六旋转元件(即第六元件)RE6的第四齿圈R4的相对转速;第七垂直线Y7表示连接到彼此并对应于第七旋转元件(即第七元件)RE7的第二齿圈R2、第三行星轮架CA3和第四行星轮架CA4的相对转速;而第八垂直线Y8表示连接到彼此并对应于第八旋转元件(即第八元件)RE8的第三齿圈R3和第四太阳轮S4的相对转速。五条垂直线Y4、Y5、Y6、Y7、Y8彼此分别隔开一定距离,该距离根据第二、第三和第四行星齿轮组26、28、30各自的传动比ρ2、ρ3和ρ4限定。在图3的共线图中,如果对应于每个行星齿轮组24、26、28、30的太阳轮S和行星轮架CA的两条垂直线Y之间的距离等于1(一),那么对应于每个行星齿轮组24、26、28、30的行星轮架CA和齿圈R的垂直线Y之间的距离等于每个行星齿轮组24、26、28、30的传动比ρ。更具体而言,在无级换档部分11中,两条垂直线Y1和Y2之间的距离等于1,而两条垂直线Y2和Y3之间的距离等于第一行星齿轮组24的传动比ρ1;而在自动换档部分20中,对应于第二、第三和第四行星齿轮组26、28、30中每一个的太阳轮S和行星轮架CA的两条垂直线Y之间的距离等于1(一),并且对应于行星齿轮组26、28、30中每一个的行星轮架CA和齿圈R的两条垂直线Y之间的距离等于行星齿轮组26、28、30中每一个的传动比ρ。
由此,图3的共线图表示了在变速器系统10的动力分动器16(或无级换档部分11)中,第一行星齿轮组24的第一旋转元件RE1(即第一行星轮架CA1)被直接耦合到输入轴14(即耦合到发动机8),并且通过切换离合器C0可选择性地连接到第二旋转元件RE2(即第一太阳轮S1);第二旋转元件RE2连接到第一电动机M1,并通过切换制动器B0可选择性地连接到壳体12;第三旋转元件RE3(即第一齿圈R1)连接到传动构件18和第二电动机M2,使得输入轴14的旋转运动(即旋转)通过传动构件18传递(即输入)到自动换档部分20。穿过两条线Y2和X2的交点的倾斜直线L0表示第一太阳轮S1和第一齿圈R1各自的转速之间的关系。
例如,在切换离合器C0和切换制动器B0两者都被松开使得动力分动器16被切换到无级换档状态(即差速状态)的状态下,如果由直线L0和垂直线Y1的交点所表示的第一太阳轮S1的转速增大或减小,则由直线L0和垂直线Y3的交点表示的第一齿圈R1的转速分别减小或增大。此外,当切换离合器C0被啮合并且由此使得第一太阳轮S1和第一行星轮架CA1被连接到彼此时,动力分动器16被切换到其中动力分动器16的上述三个旋转构件作为一个整体单元一起旋转的非差速状态。因此,直线L0与水平线X2对准,即传动构件18在与发动机转速NE相同的转速下旋转。或者,当切换制动器B0被啮合时并由此使得第一太阳轮S1的旋转被停止时,动力分动器16被切换到其中动力分动器16用作增速器的不同非差速状态。因此,直线L0采取图3所示的状态,并且由直线L0和垂直线Y3的交点表示的第一齿圈R1或传动构件18的转速在从发动机转速NE被增大后输入到自动换档部分20。
此外,图3的共线图表示在自动换档部分20中,第四旋转元件RE4通过第二离合器C2可选择性地连接到传动构件18,并且通过第一制动器B1可选择性地连接到壳体12;第五旋转元件RE5通过第二制动器B2可选择性地连接到壳体12;第六旋转元件RE6通过第三制动器B3可选择性地连接到壳体12;第七旋转元件RE7可连接到输出轴22;而第八旋转元件RE8通过第一离合器C1可选择性地连接到传动构件18。
如图3所示,在自动换档部分20中,当第一离合器C1和第三制动器B3啮合时,(A)倾斜直线L1和(B)垂直线Y7的交点表示与第一档位1st相对应的输出轴22的转速,其中倾斜直线L1穿过(a1)表示第八旋转元件RE8转速的垂直线Y8和(a2)水平线X2的交点、以及(a3)表示第六旋转元件RE6转速的垂直线Y6和(a4)水平线X1之间的交点,垂直线Y7表示连接到输出轴22的第七旋转元件RE7的转速。类似地,当第一离合器C1和第二制动器B2啮合时,(C)倾斜直线L2和(B)表示连接到输出轴22的第七旋转元件RE7的转速的垂直线Y7的交点,表示与第二档位2nd相对应的输出轴22的转速;当第一离合器C1和第一制动器B1啮合时,(D)倾斜直线L3和(B)表示连接到输出轴22的第七旋转元件RE7的转速的垂直线Y7的交点,表示与第三档位3rd相对应的输出轴22的转速;并且当第一离合器C1和第二离合器C2啮合时,(E)水平直线L4和(B)表示连接到输出轴22的第七旋转元件RE7的转速的垂直线Y7的交点,表示与第四档位4th相对应的输出轴22的转速。在第一档位1st、第二档位2nd、第三档位3rd和第四档位4th的每一个中,因为切换离合器C0被啮合,所以驱动动力在与发动机转速NE相同的转速下从动力分动器16或无级换档部分11输入到第八旋转元件RE8。但是,当切换制动器B0取代切换离合器C0而被啮合时,驱动动力在比发动机转速NE高的转速下从无级换档部分11输入到第八旋转元件RE8。由此,当第一离合器C1、第二离合器C2和切换制动器B0被啮合时,(F)水平直线L5和(B)表示连接到输出轴22的第七旋转元件RE7的转速的垂直线Y7之间的交点,表示与第五档位5th相对应的输出轴22的转速。
图4示出了被输入到控制变速器系统10的电子控制装置40的信号、以及从控制装置40输出的输出信号。此控制装置40主要由包括CPU(中央处理器)、ROM(只读存储器)、RAM(随机访问存储器)和输入/输出(I/O)接口的所谓“微计算机”构成,并且在利用RAM的临时数据存储功能的同时根据存储在ROM中的程序来处理这些信号。由此,控制装置40执行变速器系统10的驱动控制,例如对于电动机M1和M2的混合动力驱动控制,以及对于自动换档部分20的换档控制。
如图4所示,电子控制设备40从横摆率传感器接收表示作为车身绕垂直轴线旋转的角速度的横摆角速度(即横摆率)的横摆率信号ω;从转向传感器接收表示转向构件的操作角度和方向的转向量信号;从发动机水温传感器接收表示发动机8的水温的信号;从换档位置传感器接收表示换档位置的信号PSH;从发动机转速传感器接收表示发动机转速NE的信号;从传动比组选择器开关接收表示传动比组的选择的信号;从M模式开关接收命令M(电机运行)模式的信号;从空调开关接收表示电动空调操作的信号;从车速传感器接收与输出轴22的转速NOUT相对应的车速信号;从AT油温传感器接收表示自动换档部分20的工作油的温度的油温信号;从ECT开关接收ECT信号;从驻车制动器开关接收表示驻车制动器的操作的信号;从脚踏制动器开关接收表示脚踏制动器的操作的信号;从催化剂温度传感器接收表示催化剂温度的信号;从加速踏板开度传感器接收表示加速踏板的操作量的加速踏板开度信号Acc;从凸轮角度传感器接收凸轮角度信号;从雪地模式选择器开关接收表示对雪地模式的选择的雪地模式信号;从车辆加速度传感器接收表示车辆加速度的加速度信号;从自动巡航选择器开关接收表示对自动巡航行驶模式的选择的自动巡航信号;从车辆重量传感器接收表示车辆重量的车辆重量信号;从车轮速度传感器接收表示驱动轮38各自的转速V的车轮速度信号;从有级变速器开关接收表示其操作的信号,该操作将无级换档部分11(或动力分动器16)切换到其有级换档状态(即其锁止或非差速状态),以将变速器系统10用作有级变速器;从无级变速器开关接收表示其操作的信号,该操作将无级换档部分11(或动力分动器16)切换到其无级换档状态(即其差速状态),以将变速器系统10用作无级变速器(即无级变速器CVT);从M1转速传感器接收表示第一电动机M1的转速NM1的信号;从M2转速传感器接收表示第二电动机M2的转速NM2的信号;并从踩压力传感器接收表示利用其来踩压制动踏板的力的踩压力信号。
此外,如图4所示,电子控制设备40向控制发动机8输出动力的发动机输出控制设备48(图5)输出控制信号,例如向调节电子节气门开度的节气门驱动器输出驱动信号,向调节发动机8的燃油供应量的燃油喷射设备输出燃油供应信号,和/或输出表示将发动机8点火正时的点火信号;向增压器输出增压器压力调节信号以调节增压器压力;输出电动空调驱动信号以驱动电动空调;输出命令信号以命令操作第一电动机M1;输出命令信号以命令操作第二电动机M2;输出换档位置显示信号以操作换档位置指示器显示换档位置(即操作位置);输出传动比显示信号以操作传动比指示器显示传动比;输出雪地模式显示信号以操作雪地模式指示器显示雪地模式;输出信号以控制AT管路压力控制电磁阀;输出M模式显示信号以操作M模式指示器显示M模式;输出阀操作信号以操作液压控制回路42的电磁阀来控制无级换档部分11和自动换档部分20的液压操作摩擦耦合设备各自的液压驱动器;输出驱动信号以操作作为液压控制回路42的液压源的电动油泵;输出信号以驱动电热器;输出信号到巡航控制计算机;并输出信号到控制供应到驱动轮38的各个轮缸的各个液压的制动器驱动器46(图5)。
图5是用于解释电子控制设备40的各种控制功能的简图。在图5中,有级换档控制装置或设备54基于由车速V和自动换档部分20的输出转矩TOUT表示的车辆状况,根据图6所示的换档图来判断是否应当执行变速器系统10的换档控制,该换档图包括实线和点划线并由换档图存储装置或设备56预先存储。也就是说,有级换档控制装置54选择变速器系统10应当变化或换档到的一个适当的档位,并进行自动换档部分20的自动换档控制。更具体而言,有级换档控制装置54根据图2所示的操作表向液压控制回路42输出命令来使得除切换离合器C0或切换制动器B0之外的液压操作摩擦耦合设备啮合和/或松开,以建立一个适当的档位。
混合动力(HB)控制装置或设备52控制变速器系统10在上述无级换档状态中操作,即控制无级换档部分11在差速状态中操作,使得发动机8在高效率操作范围内操作。此外,混合动力控制装置52改变并优化发动机8和第二电动机M2之间的驱动力分配以及由第一电动机M1产生电能所引起的反作用力,来控制用作电控CVT即无级变速器的无级换档部分11的速比γ0。例如,混合动力控制装置52首先基于加速踏板的当前操作量Acc和车辆的当前行驶速度V来计算驾驶员所要求的输出,然后基于驾驶员所要求的输出和充电电能的期望值来计算需要的驱动力,然后计算发动机转速NE和总输出,最后基于总输出和发动机转速NE来控制发动机8的输出和由第一电动机M1产生的电能量。换言之,即使车速V和自动换档部分20的速比不改变,即传动构件18的转速不改变,混合动力控制装置52也可以通过控制或改变由第一电动机M1产生的电能量来控制或改变发动机转速NE
混合动力控制装置52在考虑自动换档部分20的档位的同时进行其控制操作,以改善车辆的驱动性能和燃油消耗率。在此混合动力控制中,无级换档部分11被控制用作电控CVT,使得被确定为使发动机8在高效操作范围中操作的发动机转速NE(例如目标发动机转速NE*)与基于车速V和自动换档部分20的档位确定的传动构件18的转速相匹配。更具体而言,混合动力控制装置52在两个参数(即发动机转速NE和发动机转矩TE)限定的二维坐标系中具有预先存储的预先试验确定的优化曲线(即图或关系),因此当车辆在无级换档控制模式下行驶时,车辆的驱动性能和燃油消耗率彼此协调。为了按照预先存储的优化曲线操作发动机8,混合动力控制装置52确定变速器系统10的总速比γT的目标值,使得发动机转矩TE和发动机转速NE产生满足期望驱动力所需要的发动机输出,并控制无级换档部分11的速比γ0以获得总速比γT的目标值。由此,混合动力控制装置52在容许总速比γT被改变的容许范围(例如从13至0.5的范围)中控制或改变总速比γT。
混合动力控制装置52将第一电动机M1产生的电能或电功率通过逆变器58供应到电能存储设备60和第二电动机M2。因此,虽然发动机8的驱动动力的主要部分被机械地传递到传动构件18,但发动机8的一部分驱动动力被第一电动机M1消耗以产生电能,即被转换成电能。因此,由第一电动机M1产生的电能首先通过逆变器58被供应到第二电动机M2,并且因为第二电动机M2被驱动,所以电能随后从第二电动机M2供应到传动构件18。与电能的产生、电能的供应和第二电动机M2的电能消耗相关的所有元件彼此协作以构成电气路径,该电气路径以将发动机8的驱动动力的一部分转换成电能开始,并以电能转换成机械能结束。
此外,即使发动机8可能处于停机状态或怠速状态,混合动力控制装置52也可以通过操作无级换档部分11作为电控CVT,即仅操作一个或多个电动机(例如仅仅第二电动机M2)作为驱动动力源来起动或行驶车辆。而且,混合动力控制装置52可以通过操作发动机8代替第二电动机M2作为驱动动力源来起动车辆。在后一情况下,混合动力控制装置52通过控制由第一电动机M1产生电能所导致的反作用力并将动力分动器16用作差速设备,由此增大传动构件18的转速,来控制车辆的起动。如上所述,通常车辆的起动通过操作第二电动机M2来执行。但是,取决于车辆当前的状态,车辆的起动可以通过操作发动机8来执行。
即使车辆可能处于停止状态或低速行驶状态,混合动力控制装置52也可以通过将无级换档部分11用作电控CVT来保持发动机8的工作状态。例如,如果当车辆处于停止状态时,电能存储设备60的充电状态SOC降低,并且需要操作第一电动机M1来产生电能,则发动机8的驱动动力被用来操作第一电动机M1产生电能,即增大第一电动机M1的转速,使得发动机8的转速NE由于动力分动器16的差速功能而可以保持在不低于发动机8可以自己旋转的极限转速下,虽然由车速V单一确定的第二电动机M2的转速可能由于车辆处于停机状态而等于(或基本上等于)零。
此外,不管车辆是否可能处于停止状态或处于行驶状态,混合动力控制装置52都可以由于无级换档部分11的电控CVT功能而通过控制第一电动机M1的转速NM1或第二电动机M2的转速NM2,来将发动机转速NE保持在某一转速下。换言之,混合动力控制装置52可以将第一电动机M1的转速NM1或第二电动机M2的转速NM2改变成所期望的转速,同时将发动机转速NE保持在某一转速下。例如,如从图3的共线图可以理解的,混合动力控制装置52通过增大第一电动机M1的转速NM1来降低第二电动机M2的转速NM2,同时将发动机转速NE保持在某一转速下。
混合动力控制装置52可以将第一电动机M1和第二电动机M2操作为“怠速”,即不产生反作用力。由此,混合动力控制装置52可以将无级换档部分11置于与部分11不能传递转矩即部分11中的动力传递路径被断开的状态等效的状态。
增速档位判断装置或设备62基于车辆状态并根据换档图存储装置56预先存储的图6的换档图,来判断变速器系统10应当变化到的档位是否是增速档位(例如第五档位5th),以在变速器系统10被切换到有级换档状态时判断切换离合器C0和切换制动器B0中哪一个应当被啮合。
切换控制装置或设备50基于车辆状态(即车速V和输出转矩TOUT)并根据由图6中虚线和双点划线表示并且由换档图存储装置56预先存储的状态切换图(即关系),来判断变速器系统10应当被切换到无级换档状态和有级换档状态中的哪一个,即判断车辆状态处于(a)其中系统10应当被切换到无级换档状态的无级换档控制区域和(b)其中系统应当被切换到有级换档状态的有级换档控制区域中的哪一个。由此,切换控制装置50选择性地将变速器系统10切换到无级换档状态或有级换档状态。
更具体而言,当切换控制装置50判断车辆状态处于有级换档控制区域时,切换控制设备50向混合动力控制装置52输出信号不允许即禁止混合动力控制设备52进行混合动力控制或者无级换档控制,并且向有级换档控制装置54输出信号以允许有级换档控制装置54进行与变速器系统10的有级换档状态相对应的预定换档控制。更具体而言,有级换档控制装置54根据由换档图存储装置56预先存储的图6的换档图,来进行自动换档部分20的自动换档控制。例如由换档图存储装置56预先存储的图2示出了液压操作摩擦耦合设备即离合器C0、C1、C2以及制动器B0、B1、B2和B3的各个操作状态的组合,在自动换档控制中选择这些摩擦耦合设备中适当的一个或多个。简言之,变速器系统10整体上,即无级换档部分11和自动换档部分20彼此协作以用作所谓的“有级自动变速器”,其根据图2的操作表来建立适当的一个档位。
例如,当增速档位判断装置62判断或选择第五档位5th时,切换控制装置50向液压控制回路42输出命令以使得松开切换离合器C0并使得啮合切换制动器B0,因此无级换档部分11用作具有固定速比γ0(例如0.7)的辅助变速器。由此变速器系统10整体上建立所谓“超速档位”,即其速比小于1.0的增速档位。另一方面,当增速档位判断装置62不判断或选择第五档位5th时,切换控制装置50向液压控制回路42输出命令以使得啮合切换离合器C0并使得松开切换制动器B0,因此无级换档部分11用作具有固定速比(例如1)的辅助变速器。由此变速器系统10整体上建立其速比不小于1.0的减速档位。简言之,切换控制设备50将变速器系统10切换到有级换档状态,并且在有级换档状态中无级换档部分11用作辅助变速器,其速比γ0可以在与两个档位相对应的两个值之间被选择性地改变或切换,而串联连接到无级换档部分11的自动换档部分20用作有级变速器。由此变速器系统10整体上用作所谓的“有级自动变速器”。
另一方面,当切换控制装置50判断车辆状态处于应当将变速器系统10切换到无级换档状态的无级换档控制区域中时,切换控制装置50向液压控制回路42输出命令以使得松开切换离合器C0和切换制动器B0,因此无级换档部分11被切换到无级换档状态,即被允许连续地改变转速。同时,切换控制装置50向混合动力控制装置52输出信号以允许混合动力控制装置52进行混合动力控制,并且向有级换档控制装置54输出信号,以使得有级换档控制装置54固定到与变速器系统10的无级换档状态相对应的预定档位,或者向有级换档控制装置54输出信号以允许有级换档控制装置54根据换档图存储装置56预先存储的图6的换档图进行自动换档部分20的自动换档控制。在此情况下,有级换档控制装置54根据图2的操作表来进行自动换档控制,虽然有级换档控制装置54不操作切换离合器C0或切换制动器B0。简言之,切换控制部分50将无级换档部分11切换到无级换档状态,使得无级换档部分11用作无级变速器,而串联连接到无级换档部分11的自动换档部分20用作有级变速器。由此获得适当的驱动力。此外,因为在自动换档部分20的第一档位1st、第二档位2nd、第三档位3rd和第四档位4th的每一个中,输入到该部分20的转速,即传动构件18的转速可以被连续地改变,所以每个档位的速比也可连续地改变。因为每个档位的速比可以被连续地改变,即在每对相邻档位之间速比可以被连续地改变,所以变速器系统10整体上可以被切换到其中总速比γT连续地改变的无级换档状态。
此处,将详细说明图6所示的曲线图。图6的曲线图示出了由换档图存储装置56预先存储的换档图(即关系),其被用来选择自动换档部分20的档位中适当的一个。预先存储的换档图是在由作为某种与驱动力相关的参数的两个参数(即车速V和输出转矩TOUT)所限定的二维坐标系中确定或准备的换档图示例。在图6中,实线表示升档操作,而点划线表示降档操作。此外,在图6中,两条虚线表示被切换控制装置50使用来判断车辆状态是处于有级换档控制区域还是无级换档控制区域的参考车速V1和参考输出转矩T1。更具体而言,图6中的第一虚线是高车速判断线,其是多个点的集合,每个点都表示作为被预先设置来判断车辆是否行驶在高速下的高车速判断值的参考车速V1;而第二虚线是高输出行驶判断线,其是多个点的集合,每个点都表示作为被预先设置来判断混合动力车是否行驶在自动换档部分20的高值输出转矩TOUT(其是与车辆的驱动力相关的某种与驱动力相关的参数)下的高输出行驶判断值的参考输出转矩T1。而且,在图6中,两条双点划线表示被用来判断车辆状态是否处于有级换档控制区域或无级换档控制区域中的两条虚线各自的滞后。由此,图6示出了预先存储的状态切换图(即关系),其包括参考车速V1和参考输出转矩T1,并在基于两个参数即车速V和输出转矩TOUT来判断车辆状态是处于有级换档控制区域还是无级换档控制区域中时被切换控制装置50使用。此状态切换图可以由换档图存储装置56存储作为换档图的一个组成部分。此外,此状态切换图可以被修改为仅包括参考车速V1和参考输出转矩T1中的一个,或者可以被修改为仅采用车速V和输出转矩TOUT中的一个作为参数。
用于比较实际车速V与参考车速V1的判断数学公式和/或用于比较实际输出转矩TOUT与参考输出转矩T1的判断数学公式可以由换档图存储装置56预先存储,来代替换档图和/或状态切换图。在此情况下,例如当作为车辆状态的实际车速V高于参考车速V1时,切换控制装置50将变速器系统10切换到有级换档状态。或者,例如当作为车辆状态的自动换档部分20的实际输出转矩TOUT大于参考输出转矩T1时,切换控制装置50将变速器系统10切换到有级换档状态。可以使切换控制装置50适合于这样,当使无级换档部分11用作电控CVT的电气控制设备(例如一个或多个电动机)发生故障或其性能下降时,例如,当与电气路径(以第一电动机M1产生电能开始并以电能转换成机械能结束)相关的电气设备的性能下降,即当因为例如故障或低温,第一电动机M1、第二电动机M2、逆变器58、存储设备60和将这些元件M1、M2、58、60彼此连接起来的传动路径出现故障,或者元件M1、M2、58、60和传动路径的性能下降或失败时,切换控制装置50优先将变速器系统10切换到有级换档状态。
上述与驱动力相关的参数一一对应于车辆的驱动力,并且可以不仅是输入到驱动轮38的驱动转矩或驱动力,还可以是例如自动换档部分20的输出转矩TOUT的实际值、发动机转矩TE、车辆加速度、或者基于例如加速踏板开度或节气门开度(或进气量、空燃比或燃油消耗)和发动机转速NE而计算出的发动机转矩TE、或者基于驾驶员对加速踏板的操作量或节气门开度而计算出的发动机转矩TE或期望驱动力的估计值。上述驱动转矩可以在考虑例如差速比或驱动轮38的半径的同时从例如输出转矩TOUT来计算,或者可以通过例如转矩传感器直接检测。这些对上述其他种类的转矩同样适用。
此外,例如参考车速V1被预设为这样,如果变速器系统10被切换到无级换档状态,当车辆在相当高的速度下行驶但燃油消耗率在该速度下恶化时,则变速器系统10不被切换到无级换档状态,即在该速度下保留在有级换档状态中。此外,参考输出转矩T1被预设为与例如第一电动机M1的这样的特性相对应,该特性使得电动机M1可以被设置来输出小电能作为其最大电能输出,以达到这样的目的,即减小电动机M1的大小,而不会在车辆在高输出下行驶时使得电动机M1的反作用力矩跟随发动机8的输出达到其高输出范围。
图7示出了可以由换档图存储装置56预先存储的另一个状态切换图(即另一关系)。此状态切换图示出了作为边界线的发动机输出线,其由切换控制装置50用来判断由两个参数(即发动机转速NE和发动机转矩TE)所表示的当前车辆状态是处于有级换档控制区域还是无级换档控制区域中。切换控制装置50在判断由发动机转速NE和发动机转矩TE所表示的车辆状态是处于有级换档控制区域还是无级换档控制区域中时,可以使用图7所示的状态切换图来代替取6所示的状态切换图。图7的状态切换图被用作确定图6所示的虚线的基础。换言之,通过将图7所示的状态切换图(或关系)转换成在由两个参数(即车速V和输出转矩TOUT)限定的二维坐标系中绘制的状态切换图,来获得图6的虚线。
在图6所示的关系中,有级换档控制区域(简称为有级控制区域(S))被定义为不低于预定参考输出转矩T1的高转矩区域,或不低于参考车速V1的高车速区域。所以,当发动机8在相当高驱动转矩下被操作,或者当车辆在相当高速度下行驶时,进行有级换档控制;当发动机8在相当低驱动转矩下被操作,或者当车辆在相当低速度下行驶时,即当发动机8在正常输出区域下操作时,进行无级换档控制。类似地,在图7所示的关系中,有级控制区域(S)被定义为不低于预定参考发动机转矩TE1的高转矩区域、不低于预定参考发动机转速NE1的高转速区域、或者不低于基于发动机转矩TE和发动机转速NE计算的预定参考发动机输出的高输出区域。于是,当发动机8在相当高的转矩下、相当高的转速下或者相当高的输出下操作时,进行有级换档控制;当发动机8在相当低的转矩下、相当低的转速下或者相当低的输出下操作时,即当发动机8在正常输出区域下操作时,进行无级换档控制。图7所示的有级换档控制区域(S)和无级换档控制区域(N)之间的边界对应于参考高车速线(其是每个都表示参考高车速的点的集合)和参考高输出线(其作为每个都表示参考高输出的点的集合)。
因此,例如当车辆在低速或中速下或者低输出或中输出下行驶时,变速器系统10被控制到无级换档状态,以获得车辆的高燃油经济性。但是,当车辆在高速下行驶时,例如当实际车速V超过参考车速V1时,变速器系统10被控制到其中变速器系统10作为有级变速器的有级换档状态,使得发动机8的输出只通过机械动力传动路径传递到驱动轮38,同时限制驱动动力和电能之间的转换损失(当变速器系统10被操作为电控CVT时会发生此转换损失)并由此改善了车辆的燃油消耗率。此外,当车辆在高输出下行驶时,例如,当诸如输出转矩TOUT的上述与驱动力相关的参数超过参考输出转矩T1时,变速器系统10被控制到其中变速器系统10用作有级变速器的有级换档状态,使得发动机8的输出只通过机械动力传动路径传递到驱动轮38。于是,仅当车辆行驶在低速或中速或者在低输出或中输出下行驶时,变速器系统10才被用作电控CVT。所以,可以减小由第一电动机M1产生的电能(即由第一电动机M1传送的电能)的最大值,由此可以减小第一电动机M1或者包括第一电动机M1的车辆驱动设备的大小。换言之,可以认为因为当车辆在高输出下行驶时,驾驶员的期望驱动力比期望燃油消耗率更重要,所以变速器系统10被切换到有级换档状态(即恒定换档状态)而非无级换档状态。由此,驾驶员可以享受如图8所示的发动机转速NE的节奏性变化,当在有级自动换档状态中升高档位时产生此节奏性变化。
回到图5,作为车辆状况稳定控制器的车辆状况稳定控制装置或设备80包括车辆稳定必要性判断装置或设备82,其判断行驶状态下的车辆状况是否变得不稳定,并由此判断是否需要车辆状况稳定控制。如果车辆稳定必要性判断装置82判断需要车辆状况稳定控制,则车辆状况稳定控制装置80控制发动机转矩TE和/或施加到驱动轮38的各个制动力,并由此控制驱动轮38的各个转矩(即各个驱动轮转矩)。于是,车辆状况稳定控制装置80稳定了车辆的状况。
接着,将说明其中车辆稳定必要性判断装置82判断需要车辆状况稳定控制的一些示例,以及车辆状况稳定控制装置80进行车辆状况稳定控制的操作。
例如,前述VSC系统在车辆的转弯状况变得不稳定时稳定车辆的转弯状况。在此情况下,车辆稳定必要性判断装置82判断或检测驱动轮38如何趋向于在横向上滑动。基于所检测到的驱动轮38横向滑动趋势的程度,车辆状况稳定控制装置80控制发动机转矩TE和/或施加到驱动轮38的制动力,并由此减小驱动轮38的横向滑动趋势。
车辆稳定必要性判断装置82以以下方式判断或检测例如车辆后轮横向滑动的趋势,即后轮的转弯角度趋向于相对于转向构件的操作量过大的所谓“过度转向”趋势:首先,车辆稳定必要性判断装置82基于供应到电子控制设备40的横摆率信号ω和加速度信号来计算车身的滑动角β和滑动角速度dβ/dt,其表示车辆相对于车辆重心的运动方向的倾斜。如果计算出的滑动角β大于预设的滑动角并且计算出的滑动角速度dβ/dt大于预设的滑动角速度,则车辆稳定必要性判断装置82判断车辆的后轮趋向于在横向上滑动。预设的滑动角和预设的滑动角速度是预先从例如实验获得并存储的参考值,以使得这些预设值可用来判断车辆的后轮是否趋向于在横向上滑动而达到需要稳定车辆转弯状况的控制的程度。
此外,车辆稳定必要性判断装置82以以下方式判断或检测例如车辆前轮横向滑动的趋势,即前轮的转弯角度趋向于相对于转向构件的操作量过分小的所谓“不足转向”趋势:首先,车辆稳定必要性判断装置82基于供应到电子控制设备40的转向量信号和车速信号来计算对应于转向构件操作量的目标横摆率ω*,并且如果实际横摆率ω小于目标横摆率ω*,则判断装置82判断车辆的前轮趋向于在横向上滑动。
如果车辆稳定必要性判断装置82判断车辆的后轮趋向于在横向上滑动,则车辆状况稳定控制装置80向制动器驱动器46输出控制信号,以根据例如后轮横向滑动趋势的程度来向两个后轮与车辆的位于与转弯方向相反一侧上的前轮施加各自的制动力,使得在车辆向外的方向上产生力矩,即产生后轮横向滑动限制力矩来限制后轮横向滑动的趋势。于是,车速V被施加到车辆位于与转弯方向相反一侧上的前后轮上各自的制动力降低了。于是,车辆的转弯状况被稳定了。
如果车辆稳定必要性判断装置82判断车辆的前轮趋向于在横向上滑动,则车辆状况稳定控制装置80向发动机输出控制设备48输出控制信号,以根据例如前轮横向滑动趋势的程度来限制发动机转矩TE,并另外向制动器驱动器46输出控制信号以向车辆位于与转弯方向相反一侧上的前后轮施加各自的制动力,使得产生前轮横向滑动限制力矩来限制前轮横向滑动的趋势。于是,车辆的转弯状况被稳定了。
此外,前述ABS用作与VSC系统不同的一种车辆状况稳定控制装置。在此情况下,首先,车辆稳定必要性判断装置82基于供应到电子控制设备40并表示驱动轮38的各个转速的车轮速度信号,来计算车辆四个车轮各自的转速和各自的旋转加速度,并且基于计算出的各个转速和各个旋转加速度来检测驱动轮38如何滑动。基于这样检测到的驱动轮38的滑动,车辆状况稳定控制装置80向发动机输出控制设备48输出控制信号,来控制施加到两个驱动轮38的各个制动力。于是,当驱动轮38被制动时,可以防止驱动轮38被锁死,从而可以表现出优异的制动性能。因此,车辆可以保持其高稳定性和可转向性。
此处,假定变速器系统10处于其中连接了从发动机8到驱动轮38的动力传动路径并且车辆可以被驱动的其动力传动允许状态,同时处于其有级换档状态。在此状态下,发动机8和驱动轮38被机械地连接到彼此,从而发动机转速NE被车速V所影响和约束。如果在此状态下,车辆状况稳定控制装置80进行车辆状况稳定控制,则发动机8的惯性可能变化,从而车辆状况稳定控制的有效性可能降低。例如,如果发动机8的惯性变化,则施加到驱动轮38的制动力的控制精度可能降低,从而车辆状况稳定控制的有效性可能降低。换言之,因为发动机8不能相对于车速自由旋转,所以控制发动机转矩的自由度,即控制驱动轮转矩的自由度可能降低,从而车辆状况稳定控制的有效性可能降低。
因此,切换控制装置50基于车辆状态并根据由换档图存储装置56预先存储的图6的状态切换图,来判断车辆状态处于(a)无级换档控制区域和(b)有级换档控制区域中的哪一个,并由此判断变速器系统10是否处于有级换档状态。如果车辆稳定必要性判断装置82判断需要进行车辆状况稳定控制,并且同时切换控制装置50判断变速器系统10处于有级换档状态,则切换控制装置50向液压控制回路42输出命令以使得松开切换离合器C0或切换制动器B0,因此无级换档部分11(或动力分动器16)从其恒定换档状态解除。于是,当车辆状况稳定控制装置80进行车辆状况稳定控制时,切换控制装置50用作与车辆稳定相关的切换控制装置或设备,即作为与车辆稳定相关的切换控制器。
于是,发动机8和驱动轮38从其中其机械连接到彼此的状态中解除,从而相对于车速V发动机8可以自由旋转。因此,提高了车辆状况稳定控制装置80对于发动机转矩的控制的自由度。此外,因为发动机转速NE的变化可以在不由车速V约束的情况下被限制,所以可以有效地限制发动机8惯性的变化。
图9是表示电子控制设备40的各种控制操作的相关部分的流程图,即其用于在行驶状态下的车辆的状况变得不稳定而需要车辆状况稳定控制时,切换变速器系统10的换档状态的控制操作。该控制操作以非常短的周期时间(例如从数毫秒至数十毫秒)重复。图10示出了用于解释根据图9流程图的控制操作的时序图,特别是在车辆被制动时操作前述ABS来稳定车辆状况时执行的该控制操作的示例。
首先,在对应于车辆稳定必要性判断装置82的步骤S1处,控制设备40判断行驶状态下的车辆的状况是否变得不稳定并由此需要车辆状况稳定控制。例如,通过判断车辆的后轮是否趋向于在横向上滑动来做出此判断,例如判断车身的滑动角β和滑动角速度dβ/dt是否分别大于预设的滑动角和预设的滑动角速度。或者,可以通过基于车轮转速和车辆旋转加速度而判断或检测驱动轮38的滑动来做出该判断。如果在步骤S1处做出否定判断,则控制设备40的控制进行到步骤S5以进行除车辆状况稳定控制以及与稳定控制一起执行的控制操作之外的其他普通控制操作,或者维持车辆的当前行驶状态并随后退出本例程。
另一方面,如果在步骤S1处做出肯定判断,则控制设备40的控制进行到对应于切换控制装置50的步骤S2。在步骤S2处,控制设备40基于车辆状态并根据由换档图存储装置56预先存储的图6的状态切换图,来判断车辆状态处于(a)无级换档控制区域和(b)有级换档控制区域中的哪一个,并由此判断变速器系统10是否处于有级换档状态。这是图10所示的时间t1
如果在步骤S2处做出肯定判断,则控制设备40的控制进行到也对应于切换控制装置50的步骤S3。在步骤S3处,控制设备40向液压控制回路42输出命令以使得松开切换离合器C0或切换制动器B0,因此无级换档部分11(或动力分动器16)从其恒定换档状态(即其锁止状态)解除。这是图10所示的时间t1。如图10所示的时间t1和时间t2间的时间段所示,当执行车辆状况稳定控制时,无级换档部分11暂时从其锁止状态切换到其差速状态。
在执行步骤S3之后,或者当在步骤S2处做出否定判断时,控制设备40的控制进行到对应于车辆状况稳定控制装置80的步骤S4。在步骤S4处,控制设备40控制发动机转矩TE和/或施加到驱动轮38的各个制动力,并由此控制各个驱动轮转矩,以稳定车辆状况。例如,如果在步骤S1判断车辆的后轮趋向于在横向上滑动,则控制设备40向制动器驱动器46输出控制信号,以根据例如后轮横向滑动趋势的程度来向车辆位于与转弯方向相反一侧上的前后轮施加各自的制动力,使得产生后轮横向滑动限制力矩来限制后轮横向滑动的趋势。于是,车速V被施加到车辆位于与转弯方向相反一侧上的前后轮上各自的制动力降低了。于是,车辆的转弯状况被稳定了。或者,可以在步骤S1判断或检测驱动轮38的滑动。在后一情况下,基于检测到的驱动轮38的滑动,控制设备40向制动器驱动器46输出控制信号,来控制施加到两个驱动轮38的各个制动力。于是,当驱动轮38被制动时,可以防止驱动轮38被锁死,从而可以表现出优异的制动性能。因此,车辆可以保持其高稳定性和可转向性。这是图10所示时间t1和时间t7间的时间段。
当在步骤S4处进行车辆状况稳定控制时,无级换档部分11从其锁止状态解除。于是,相对于车速V发动机8可以自由旋转。因此,提高了控制设备40对于发动机转矩的控制的自由度,从而提高了车辆状况稳定控制的有效性。此外,因为发动机8惯性的变化被限制并且施加到驱动轮38的各个制动力的控制精度被提高,所以提高了车辆状况稳定控制的有效性。
如图10所示时间t1和时间t2间的时间段所示,发动机转速NE从车速V的约束解除,并且降低到怠速转速。于是,在图10所示时间t2和时间t5间的时间段中,可以在其中降低了发动机8的惯性对驱动轮38的影响的状态下控制驱动轮38的制动,从而提高了制动控制的响应性。此外,如图10所示时间t5和时间t7间的时间段所示,混合动力控制装置52增大第一电动机M1的转速NM1,使得向着与车速V相应的转速控制发动机转速NE,并且无级换档部分11准备好返回其有级换档状态。然后,如图10中的时间t7所示,在已经执行车辆状况稳定控制之后,切换控制装置50向液压控制回路42输出命令来使得切换离合器C0或切换制动器B0啮合,因此,无级换档部分11准备好返回其有级换档状态。
如图10中的虚线所示,当无级换档部分11处于其差速状态时,混合动力控制装置52可以控制第一电动机M1和第二电动机M2(未在图10中示出)“怠速”,即控制第一电动机M1和第二电动机M2不产生转矩或基本上不产生转矩,使得发动机转速NE变成等于零。于是,可以在没有发动机8的惯性的状态下控制驱动轮38的制动。当第一电动机M1和第二电动机M2怠速时,无级换档部分11被置于其中该部分无法传递动力的空档状态中。
从本实施例的上述说明很明显,变速器系统10包括可选择性切换到其无级换档状态或其有级换档状态的无级换档部分11。当车辆状况稳定控制装置80进行车辆状况稳定控制时,切换控制装置50使得松开切换离合器C0或切换制动器B0,并由此将无级换档部分11从其有级换档状态(即其锁止状态)解除。于是,发动机8和驱动轮38从其中其机械连接到彼此的状态中解除,从而允许发动机8相对于驱动轮38自由旋转。因此,提高了车辆状况稳定控制装置80对于施加到驱动轮38的转矩的控制的自由度,从而提高了车辆状况稳定控制装置80所进行的车辆状况稳定控制的有效性。
下面,将说明本发明的其他实施例。在下面的说明中,与第一实施例中所用标号相同的标号被用来指示其他实施例中相应的元件或部分,并且省略这些元件或部分的说明。
<第二实施例>
图11是用于解释构成本发明所应用到的另一驱动设备一部分的变速器系统70的示意图;图12是操作表,表示变速器系统70的档位与液压操作摩擦耦合设备的各个操作状态的相应组合之间的关系;并且图13是共线图,用于解释变速器系统70的换档操作。
与第一实施例中采用的变速器系统10相似,本第二实施例中采用的变速器系统70包括无级(即连续)换档部分11,其包括第一电动机M1、动力分动器16和第二电动机M2。此外,变速器系统70包括自动换档部分72,其设置在无级换档部分11和输出轴22之间,通过传动构件18串联连接到无级换档部分11,并具有三个档位。动力分动器16包括具有例如约0.418的预定传动比ρ1的单级行星齿轮式的第一行星齿轮组24、切换离合器C0和切换制动器B0。自动换档部分72包括具有单级行星齿轮式的第二行星齿轮组26和单级行星齿轮式的第三行星齿轮组28。第二行星齿轮组26具有例如约0.532的预定传动比ρ2;并且第三行星齿轮组28具有例如约0.418的预定传动比ρ3。在自动换档部分72中,第二行星齿轮组26的第二太阳轮S2和第三行星齿轮组28的第三太阳轮S3一体地连接到彼此,通过第二离合器C2可选择性地连接到传动构件18,并且通过第一制动器B1可选择性地连接到壳体12;第二行星齿轮组26的第二行星轮架CA2和第三行星齿轮组28的第三齿圈R3一体地连接到彼此并且连接到输出轴22;第二行星齿轮组26的第二齿圈R2通过第一离合器C1可选择性地连接到传动构件18;并且第三行星齿轮组28的第三行星轮架CA3通过第二制动器B2可选择性地连接到壳体12。
在如上构造的变速器系统70中,切换离合器C0、第一离合器C1、第二离合器C2、切换制动器B0、第一制动器B1和第二制动器B2被选择性地啮合或分离(即松开),如图12所示的操作表表示的那样,以选择性地建立第一档位(1st)、第二档位(2nd)、第三档位(3rd)、第四档位(4th)、倒车档位(R)和空档位置(N)中任一个。第一档位1st至第四档位4th各自的速比γ(=输入轴14的转速NIN/输出轴22的转速NOUT)以基本上相同的比率变化。在图12的操作表中,符号“○”表示每个离合器C0、C1、C2和每个制动器B1、B2的啮合状态;而符号“◎”表示当无级换档部分11在恒定换档状态(其中部分11用作速比固定的变速器)下操作时切换离合器C0和切换制动器B0中每一个的啮合状态,和当该部分11在无级换档状态(其中部分11用作电控CVT)中操作时切换离合器C0、切换制动器B0的分离(松开)状态。在本实施例中,动力分动器16采用切换离合器C0和切换制动器B0,并且当切换离合器C0或切换制动器B0中任一个啮合时,无级换档部分11可以被选择性地切换到恒定换档状态,来代替无级换档状态。所以,当切换离合器C0和切换制动器B0中任一个啮合时,变速器系统70可以采用有级换档状态,其中被切换到恒定换档状态的无级换档部分11与自动换档部分72协作,来用作有级变速器;并且当切换离合器C0和切换制动器B0都不啮合时,变速器系统70可以采用无级(即连续)换档状态,其中被切换到无级换档状态的无级换档部分11与自动换档部分72协作,来用作电控CVT。简言之,当切换离合器C0或切换制动器B0中任一个啮合时,变速器系统70被切换到有级换档状态;而当切换离合器C0或切换制动器B0都不啮合时,变速器系统70被切换到无级换档状态。
例如,当变速器系统70用作有级变速器时,并且同时当切换离合器C0、第一离合器C1和第二制动器B2如图12所示地啮合时,建立其速比γ1的最大值等于例如约2.804的第一档位1st;当切换离合器C0、第一离合器C1和第一制动器B1啮合时,建立其速比γ2小于速比γ1并等于例如约1.531的第二档位2nd;当切换离合器C0、第一离合器C1和第二离合器C2啮合时,建立其速比γ3小于速比γ2并等于例如约1.000的第三档位3rd;并且当切换制动器B0、第一离合器C1和第二离合器C2啮合时,建立其速比γ4小于速比γ3并等于例如约0.705的第四档位4th。此外,当第二离合器C2和第二制动器B2啮合时,建立其速比γR小于速比γ1而大于速比γ2并等于例如约2.393的倒车档位R。当建立空档位置N时,仅切换离合器C0啮合。
另一方面,在变速器系统70用作电控CVT时,切换离合器C0和切换制动器B0两者都被分离(松开),如图12所示。于是,无级换档部分11用作电控CVT,并且串联连接到该部分11的自动换档部分72用作有级变速器。所以,当自动换档部分72在对应于第一档位1st、第二档位2nd和第三档位3rd的三个档位的每一个中操作时,输入到该部分72的转速即传动构件18的转速可以被无级即连续地改变,因此每一个档位都具有这样的速比范围,在该速比范围中每个档位的速比可以被连续地改变。由此,变速器系统70的速比可在第一至第四档位中每对相邻档位之间连续变化。即,变速器系统70总速比γT作为整体可以连续变化。
由此,变速器系统10包括用作差速部分或第一换档部分的无级换档部分11;和用作自动换档部分或者第二换档部分的自动换档部分72。图13示出了共线图,其示出了表示第一至第七旋转元件RE1至RE7各自的相对转速之间的各个关系的直线,该关系对应于旋转元件以不同方式连接到彼此的不同档位。当切换离合器C0和切换制动器B0两者被分离,或者当切换离合器C0或切换制动器B0中任一个被啮合时,动力分动器16的第一旋转元件RE1至第三旋转元件RE3各自的转速与第一实施例中采用的第一旋转元件RE1至第三旋转元件RE3的转速相同。
在图13中,四条垂直线Y4、Y5、Y6、Y7分别对应于有级换档部分70的四个元件。按照从左向右的顺序,第四垂直线Y4表示连接到彼此并对应于第四旋转元件RE4的第二和第三太阳轮S2、S3的相对转速;第五垂直线Y5表示对应于第五旋转元件RE5的第三行星轮架CA3的相对转速;第六垂直线Y6表示连接到彼此并对应于第六旋转元件RE6的第二行星轮架CA2和第三齿圈R3的相对转速;并且第七垂直线Y7表示对应于第七旋转元件RE7的第二齿圈R2的相对转速。在自动换档部分72中,第四旋转元件RE4通过第二离合器C2可选择性地连接到传动构件18,并且通过第一制动器B1可选择性地连接到壳体12;第五旋转元件RE5通过第二制动器B2可选择性地连接到壳体12;第六旋转元件RE6连接到输出轴22;而第七旋转元件RE7通过第一离合器C1可选择性地连接到传动构件18。
如图13所示,在自动换档部分72中,当第一离合器C1和第二制动器B2啮合时,由(A)倾斜直线L1和(B)垂直线Y6的交点表示输出轴22与第一档位1st相对应的转速,其中倾斜直线L1穿过(a1)表示第七旋转元件RE7转速的垂直线Y7和(a2)水平线X2的交点以及(a3)表示第五旋转元件RE5转速的垂直线Y5和(a4)水平线X1的交点,垂直线Y6表示连接到输出轴22的第六旋转元件RE6的转速。类似地,当第一离合器C1和第一制动器B1啮合时,由(C)倾斜直线L2和(B)表示连接到输出轴22的第六旋转元件RE6的转速的垂直线Y6的交点,表示与第二档位2nd相对应的输出轴22的转速;并且当第一离合器C1和第二离合器C2啮合时,由(D)倾斜直线L3和(B)表示连接到输出轴22的第六旋转元件RE6的转速的垂直线Y6的交点,表示与第三档位3rd相对应的输出轴22的转速。在第一档位1st、第二档位2nd和第三档位3rd的每一个中,因为切换离合器C0被啮合,所以驱动动力在与发动机转速NE相同的转速下从无级换档部分11输入到第七旋转元件RE7。但是,当切换制动器B0取代切换离合器C0而被啮合时,驱动动力在比发动机转速NE高的转速下从无级换档部分11输入到第七旋转元件RE7。由此,当第一离合器C1、第二离合器C2和切换制动器B0被啮合时,由(F)水平直线L4和(B)表示连接到输出轴22的第六旋转元件RE6的转速的垂直线Y6的交点,表示与第四档位4th相对应的输出轴22的转速。
因此,本变速器系统70包括用作差速部分或者第一换档部分的无级换档部分11和用作自动换档部分或者第二换档部分的自动换档部分72。所以,包括变速器系统70的驱动设备可以享有与包括变速器系统10的驱动设备的上述优点相同的优点。
<第三实施例>
图14示出了作为换档状态手动选择器一部分的交互转换式开关44(以下简称为开关44),其可由驾驶员手动操作来选择性地将动力分动器16切换到差速状态或非差速状态,即将变速器系统10、70选择性地切换到无级换档状态或者有级换档状态。在上述第一和第二实施例的每一个中,此开关44可以设置在混合动力车中,使得开关44可由驾驶员手动操作。此开关44允许驾驶员使车辆在不同换档控制模式中所期望或选择的一个控制模式中行驶车辆。开关44包括标有“有级”并对应于有级换档控制模式的第一部分,和标有“无级”并对应于无级换档控制模式的第二部分。当驾驶员推动开关44的第一或第二部分时,驾驶员可以选择无级换档控制模式(在此模式中变速器系统10、70被切换到无级换档状态以用作电控CVT)或者有级换档控制模式(在此模式中变速器系统10、70被切换到有级换档状态以用作有级变速器)。在第一和第二实施例的每一个中,根据例如图6或图7所示的状态切换图,基于车辆状态的改变,而自动地切换变速器系统10、70的换档状态。代替或者增加到此自动状态切换控制模式,第三实施例采用手动状态切换模式,其中通过操作开关44来手动切换变速器系统10、70的换档状态。也就是说,当开关44被手动操作以选择无级换档状态和有级换档状态中任一个时,切换控制装置50优先将变速器系统10、70切换到如此选择的换档状态中。例如,当驾驶员希望感觉电控CVT的操作和/或获得燃油消耗率改善效果时,驾驶员可以手动操作开关44来选择无级换档状态;而当驾驶员希望感觉由有级变速器的换档控制引起的发动机转速变化时,驾驶员可以手动操作开关44来选择有级换档状态。开关44可以被修改以能够选择性地采取中立操作位置,其不同于分别与无级换档状态和有级换档状态相对应的两个操作位置。在后一情况下,当开关44被操作来选择中立操作位置时,既不选择无级换档状态也不选择有级换档状态。因此,中立操作位置的选择表示驾驶员不希望选择无级换档状态和有级换档状态中的任何一个,即希望选择自动状态切换控制模式。此外,即使在开关44被选择性地操作来有意将变速器系统10切换到其有级换档状态的情况下,当车辆状况稳定控制装置80进行车辆状况稳定控制时,切换控制装置50也将无级换档部分11从其有级换档状态(即其锁止状态)解除。
虽然已经在其优选实施例中说明了本发明,但应当理解到本发明可以以其他方式实施。
例如,在每个图示实施例中,变速器系统10、70被设置成这样,使得无级换档部分11(或动力分动器16)可以被选择性地切换到其中该部分11用作电控CVT的差速状态和其中该部分11不用作电控CVT的非差速状态,从而变速器系统10、70可以被选择性地切换到其无级换档状态和其有级换档状态。就是说,通过将无级换档部分11在其差速状态和其非差速状态之间切换,而使变速器系统10、70在其无级换档状态和其有级换档状态之间切换。但是,例如当无级换档部分11处于其差速状态时,部分11的速比可以不是被连续地改变而是有级地改变,使得部分11可以用作有级变速器。换言之,无级换档部分11的差速和非差速状态不是分别一一对应于变速器系统10、70的无级和有级换档状态。所以,变速器系统10、70不需要设置成可选择性地切换到其无级和有级换档状态。即,本发明可以应用到其中变速器系统10、70(无级换档部分11或动力分动器16)被设置成可选择性地切换到其差速或非差速状态的车辆驱动设备。
在每个图示实施例中,VSC系统和ABS被描述为车辆状况稳定控制装置80的示例,并且当操作VSC系统或ABS时使用本发明的原理。但是,本发明的原理可以在操作不同于VSC系统或ABS的车辆状况稳定控制装置80时使用,以稳定车辆的不稳定状况。例如,当车辆在例如滑的路面上起动或加速时,节气门可能被驾驶员打开得太大了,由此可能对驱动轮38施加了过大的转矩,使得驱动轮38可能在路面上打滑,从而车辆在其起动时的加速度或车辆的可控制性可能降低。在此情况下,可以操作本领域已知的TRC(牵引力控制)系统来控制施加到驱动轮38的制动力,并控制发动机转矩,以限制驱动轮38的打滑,并且另外保持适合于路面条件的驱动力,并保持车辆在其起动时的加速性能、车辆的直行性能及其转弯稳定性。
在每个图示实施例中,当进行车辆状况稳定控制时,切换控制装置50(图9的步骤S3)暂时松开切换离合器C0或切换制动器B0,并由此将无级换档部分11从其恒定换档状态(即其锁止状态)解除。但是,切换离合器C0或切换制动器B0可以不完全松开,例如可以在低液压下被置于部分啮合状态或等待状态。在后面情况的每一种中,可以在进行车辆状况稳定控制之后快速啮合切换离合器C0或切换制动器B0。
此外,在每个图示实施例中,动力分动器16包括连接到发动机8的第一行星轮架CA1、连接到第一电动机M1的第一太阳轮S1和连接到传动构件18的第一齿圈R1。但是,发动机8、第一电动机M1和传动构件18可以以不同的方式连接到第一行星齿轮组24的三个元件CA1、S1、R1。例如,发动机8、第一电动机M1和传动构件18中的每一个都可以连接到三个元件CA1、S1、R1中的任一个。
在每个图示实施例中,发动机8直接与输入轴14耦合。但是,发动机8可通过齿轮、带等可操作地连接到输入轴14。而且,发动机8不需要被设置成与输入轴14共轴。
在每个图示实施例中,第一电动机M1和第二电动机M2与输入轴14共轴,第一电动机M1连接到第一太阳轮S1,而第二电动机M2连接到传动构件18。但是,第一电动机M1可以通过齿轮、带等可操作地连接到第一太阳轮S1;而第二电动机M2可以通过齿轮、带等可操作地连接到传动构件18。
在每个图示实施例中,动力分动器16包括切换离合器C0和切换制动器B0。但是,不必要采用离合器C0和制动器B0两者。此外,在每个图示实施例中,切换离合器C0选择性地将太阳轮S1和行星轮架CA1连接到彼此。但是,离合器C0可以被修改成离合器C0选择性地将太阳轮S1和齿圈R1连接到彼此,或者选择性地将行星轮架CA1和齿圈R1连接到彼此。简言之,切换离合器C0可以被修改成离合器C0选择性地连接第一行星齿轮组24的三个元件S1、CA1、R1中的任两个元件。
在每个图示实施例中,通过使切换离合器C0啮合而将变速器系统10、70控制到空档位置“N”。但是,可以不使离合器C0啮合而建立空档位置“N”。
在每个图示实施例中,例如切换离合器C0和切换制动器B0的液压操作摩擦耦合设备可以被例如粉(磁粉)离合器、电磁离合器或爪形离合器的磁粉式、电磁式或机械式耦合设备所代替。
在每个图示实施例中,第二电动机M2连接到传动构件18。但是,第二电动机M2可以连接到输出轴22,或者自动换档部分20、72的旋转元件中任一个。
在每个图示实施例中,自动换档部分20、72设置在作为无级换档部分11或动力分动器16输出构件的传动构件18与驱动轮38之间的动力传动路径中。但是,可以设置一种不同的动力传动设备,例如无级变速器(CVT)来作为一种自动变速器。在采用无级变速器(CVT)的情况下,当动力分动器16被切换到其恒定换档状态时,变速器系统10、70整体上被切换到其有级换档状态。有级换档状态是这样的状态,其中动力只通过机械传动路径传递,而不通过电气传动路径传递。可选地,无级变速器可以被布置成这样,即与有级变速器的多个档位相应的多个固定速比被存储在存储器中,并且自动换档部分20、72的档位根据多个固定速比而改变或换档。或者,本发明可应用于这样的变速器系统,其中不采用自动换档部分20、72。
在每个图示实施例中,自动换档部分20、72通过传动构件18串联连接到无级换档部分11。但是,可以设置平行于输入轴14延伸的副轴,并且将自动换档部分20、72设置成该部分20、72与副轴共轴。在后一情况下,无级换档部分11和自动换档部分20、72可以通过例如包括一对反转齿轮、链轮和链条在内的一组传动构件连接到彼此,使得驱动动力可以从部分11传递到部分20、72。
在每个图示实施例中,作为差速设备的动力分动器16可以被例如差速齿轮单元所代替,该差速齿轮单元包括被发动机8驱动或旋转的小齿轮、与小齿轮啮合的一对斜齿轮、和可操作地连接到这两个斜齿轮的第一电动机M1和第二电动机M2。
在每个图示实施例中,动力分动器16由单个行星齿轮组构成。但是,动力分动器16可以由两个或更多行星齿轮组构成,使得动力分动器16在其非差速状态中可以用作具有三个或更多档位的变速器。
在每个图示实施例中,开关44是交互转换式的。但是,开关44可以被可操作来选择至少无级换档状态(差速状态)和有级换档状态(非差速状态)中任一个的任何类型的开关所代替,例如按钮式开关、不能同时保持在各自按压状态下的一对按钮式开关(即两者之一可以保持在其按压状态)、杠杆式开关、滑动式开关等。此外,在每个图示实施例中,开关44可以被修改为具有中立操作位置,如上所述。但是,代替开关44的此修改,可以采用另一种开关,其可操作来采取或者忽视通过操作开关44而选择的有级或无级换档状态,即选择旋转开关44的中立操作位置。
应当理解到,在上述本发明的技术教导的启示下,本发明可以用本领域技术人员可以想到的各种其他改变、修改和改进来实施。
本申请基于2004年7月9递交的日本专利申请No.2004-203945,其内容通过引用包含于此。

Claims (14)

1.一种用于车辆的驱动设备(10、36;70)的控制装置,所述驱动设备包括:(A)无级换档部分(11)和(B)自动换档部分(20;72),所述无级换档部分包括(a1)将发动机(8)的输出分配到第一电动机(M1)和传动构件(18)的差速设备(16)、和(a2)设置在从所述传动构件到多个驱动轮(38)的动力传动路径中的第二电动机(M2),并且所述无级换档部分可用作电控无级变速器,所述自动换档部分构成所述动力传动路径的一部分并用作自动变速器,所述控制装置包括用于在所述车辆的状况不稳定时稳定所述车辆状况的车辆状况稳定控制器(46、48、80、82),所述控制装置的特征在于还包括:
所述动力传递路径可选择性地切换到能够传递动力的动力传递状态和不能传递动力的动力传递中断状态,
耦合设备(C0、B0),其可选择性地切换到(a)松开状态和(b)啮合状态,在所述松开状态中所述耦合设备允许所述差速设备的多个旋转元件彼此相对旋转,并由此将所述无级换档部分置于其中所述无级换档部分可用作所述电控无级变速器的无级换档状态,在所述啮合状态中所述耦合设备将所述差速设备的所述旋转元件彼此相对约束,并由此将所述无级换档部分置于其中所述无级换档部分不可用作所述电控无级变速器的有级换档状态;和
车辆稳定相关切换控制器(50),当所述车辆状况稳定控制器进行车辆状况稳定控制时,如果所述耦合设备被置于所述啮合状态中,则所述车辆稳定相关切换控制器将所述耦合设备从所述啮合状态切换到其所述松开状态。
2.根据权利要求1所述的控制装置,其中所述驱动设备(10、36;70)的总速比由所述自动换档部分(20;72)的速比和所述无级换档部分(11)的速比所限定。
3.根据权利要求1所述的控制装置,其中所述自动换档部分(20;72)包括有级自动变速器。
4.根据权利要求1所述的控制装置,其中当所述车辆状况稳定控制器(46、48、80、82)进行所述车辆状况稳定控制时,所述车辆稳定相关切换控制器(50)将所述耦合设备(C0、B0)切换到其部分啮合的滑动状态来作为其所述松开状态。
5.根据权利要求1所述的控制装置,其中,用作所述无级换档部分的输出构件的所述传动构件经由所述自动换档部分连接到所述车辆的驱动轮,当所述车辆状况稳定控制器执行用于稳定所述车辆状况的控制时,所述车辆稳定相关切换控制器将所述耦合设备从所述啮合状态切换到所述松开状态。
6.根据权利要求1所述的控制装置,其中,在所述无级换档状态准备返回到所述有级换档状态中,将所述第一电动机的转速升高,使得朝着与车速相应的转速旋转地控制所述发动机的转速。
7.一种用于车辆的驱动设备(10、36;70)的控制装置,所述驱动设备包括可用作电控差速系统的动力传动设备(11),所述动力传动设备包括(a1)将发动机(8)的输出分配到第一电动机(M1)和传动构件(18)的差速设备(16)、和(a2)设置在从所述传动构件到多个驱动轮(38)的动力传动路径中的第二电动机(M2),所述控制装置包括用于在所述车辆的状况不稳定时稳定所述车辆状况的车辆状况稳定控制器(46、48、80),所述控制装置的特征在于还包括:
所述动力传递路径可选择性地切换到能够传递动力的动力传递状态和不能传递动力的动力传递中断状态,
耦合设备(C0、B0),其与所述差速设备相关联并用于将所述差速设备选择性地切换到(a)其中所述差速设备表现出差速功能的差速状态和(b)其中所述差速设备不表现出所述差速功能的锁止状态;和
车辆稳定相关切换控制器(50),当所述车辆状况稳定控制器进行车辆状况稳定控制时,如果所述耦合设备被置于所述锁止状态中,则所述车辆稳定相关切换控制器操作所述耦合设备,以将所述差速设备从所述锁止状态切换到其所述差速状态。
8.根据权利要求7所述的控制装置,其中所述差速设备(16)包括连接到所述发动机(8)的第一元件(RE1)、连接到所述第一电动机(M1)的第二元件(RE2)和连接到所述传动构件(18)的第三元件(RE3),并且其中所述耦合设备(C0、B0)通过允许所述第一元件、第二元件和第三元件彼此相对旋转来将所述差速设备切换到其所述差速状态,并通过允许所述第一元件、第二元件和第三元件作为一个整体单元旋转或禁止所述第二元件旋转来将所述差速设备切换到其所述锁止状态。
9.根据权利要求8所述的控制装置,其中所述耦合设备包括(a)离合器(C0)和(b)制动器(B0)中的至少一个,所述离合器选择性地将所述第一元件、第二元件和第三元件(RE1-RE3)中的至少两个元件(RE1、RE2)彼此连接,以使得所述第一元件、第二元件和第三元件作为一个整体单元旋转,所述制动器选择性地将所述第二元件(RE2)连接到非旋转元件(12)以禁止所述第二元件旋转。
10.根据权利要求9所述的控制装置,其中当所述离合器(C0)和所述制动器(B0)被松开时,所述差速设备(16)被切换到其所述差速状态,在所述差速状态中所述第一元件、第二元件和第三元件彼此相对旋转,并且其中当所述离合器被啮合而所述制动器被松开时,所述差速设备(16)被切换到其所述锁止状态,在所述锁止状态中所述差速设备用作速比等于1的变速器,或者其中当所述制动器被啮合而所述离合器被松开时,所述差速设备被切换到其所述锁止状态,在所述锁止状态中所述差速设备用作速比小于1的增速变速器。
11.根据权利要求8所述的控制装置,其中所述差速设备(16)包括具有行星轮架(CA1)、太阳轮(S1)和齿圈(R1)的行星齿轮组(24),并且所述差速设备的所述第一元件、第二元件和第三元件(RE1-RE3)分别包括所述行星轮架、所述太阳轮和所述齿圈。
12.根据权利要求11所述的控制装置,其中所述行星齿轮组(24)包括具有行星齿轮(P1)的单级行星齿轮式行星齿轮组。
13.根据权利要求1或7所述的控制装置,还包括电机控制器(52),所述电机控制器控制所述第一电动机(M1)和所述第二电动机(M2)以不产生转矩或基本上不产生转矩。
14.根据权利要求1或7所述的控制装置,其中所述车辆状况稳定控制器(46、48、80、82)包括车辆稳定性控制系统和防抱死制动系统中至少一个。
CNB2005100828836A 2004-07-09 2005-07-11 用于车辆驱动设备的控制装置 Expired - Fee Related CN100455855C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004203945A JP4155236B2 (ja) 2004-07-09 2004-07-09 車両用駆動装置の制御装置
JP203945/2004 2004-07-09

Publications (2)

Publication Number Publication Date
CN1737412A CN1737412A (zh) 2006-02-22
CN100455855C true CN100455855C (zh) 2009-01-28

Family

ID=35540565

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2005100828836A Expired - Fee Related CN100455855C (zh) 2004-07-09 2005-07-11 用于车辆驱动设备的控制装置

Country Status (4)

Country Link
US (1) US7238133B2 (zh)
JP (1) JP4155236B2 (zh)
CN (1) CN100455855C (zh)
DE (1) DE102005032100B4 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102947154A (zh) * 2010-06-15 2013-02-27 大陆-特韦斯贸易合伙股份公司及两合公司 用于调节可电操作的制动器的方法和装置以及电子制动系统

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7449793B2 (en) * 2004-02-18 2008-11-11 Bluwav Systems, Llc Portable range extender with autonomous control of starting and stopping operations
US7832297B2 (en) 2005-04-19 2010-11-16 Hewatt Chris B Method and apparatus for gyroscopic propulsion
JP4258496B2 (ja) * 2005-06-24 2009-04-30 トヨタ自動車株式会社 車両用駆動装置
JP4497057B2 (ja) * 2005-08-23 2010-07-07 日産自動車株式会社 車両の変速制御装置
JP2007099225A (ja) * 2005-10-07 2007-04-19 Denso Corp 車両の自動走行制御装置
JP4519085B2 (ja) * 2006-02-24 2010-08-04 トヨタ自動車株式会社 内燃機関の制御装置
US7500930B2 (en) * 2006-05-09 2009-03-10 Gm Global Technology Operations, Inc. Electrically variable transmission with multiple interconnected gearsets
JP2007314066A (ja) * 2006-05-26 2007-12-06 Nissan Motor Co Ltd ハイブリッド車両のクラッチ締結制御装置
FR2909065B1 (fr) * 2006-11-27 2009-07-10 Peugeot Citroen Automobiles Sa Dispositif de pilotage pour l'amelioration de la motricite d'un vehicule.
US7771312B2 (en) * 2007-03-14 2010-08-10 Honda Motor Co., Ltd. Selectable drivetrain control for a vehicle
JP4591471B2 (ja) * 2007-04-13 2010-12-01 トヨタ自動車株式会社 ハイブリッド車両用駆動装置の制御装置
DE102007024491A1 (de) * 2007-05-25 2008-11-27 Volkswagen Ag Fahrerassistenzsystem und Verfahren zur Verbesserung des Lenkverhaltens eines Kraftfahrzeuges
JP4983453B2 (ja) * 2007-07-18 2012-07-25 トヨタ自動車株式会社 車両用駆動装置の制御装置
JP4447027B2 (ja) * 2007-08-07 2010-04-07 トヨタ自動車株式会社 車両用動力伝達装置の制御装置
JP4445986B2 (ja) * 2007-08-21 2010-04-07 本田技研工業株式会社 内燃機関の着火時期を判定するための制御装置
US7972235B2 (en) * 2007-10-11 2011-07-05 GM Global Technology Operations LLC Hybrid powertrain system having selectively connectable engine, motor/generator, and transmission
US8224544B2 (en) 2007-11-07 2012-07-17 GM Global Technology Operations LLC Method and apparatus to control launch of a vehicle having an electro-mechanical transmission
US7552712B1 (en) * 2007-12-13 2009-06-30 Caterpillar Inc. Part-throttle performance optimization
JP2010030404A (ja) * 2008-07-28 2010-02-12 Visteon Global Technologies Inc 先行車両の位置検出方法及び位置検出装置並びにデータフィルタリング方法
JP5278161B2 (ja) * 2008-07-29 2013-09-04 日産自動車株式会社 アクセルペダル反力制御装置
GB0816109D0 (en) * 2008-09-04 2008-10-15 Ford Global Tech Llc Drivetrain for hybrid vehicles
JP4631962B2 (ja) * 2008-11-11 2011-02-16 トヨタ自動車株式会社 エンジン始動制御装置
DE102009004023B4 (de) * 2009-01-08 2018-07-12 Knorr-Bremse Systeme für Nutzfahrzeuge GmbH Verfahren zum Steuern eines Start-Stop-Betriebs eines Fahrzeugs mit Hybridantrieb und ein entsprechendes Fahrzeug
JP4970480B2 (ja) * 2009-03-06 2012-07-04 日産自動車株式会社 自動変速機の制御装置
WO2012018644A1 (en) * 2010-07-26 2012-02-09 Vandyne Super Turbo, Inc. Superturbocharger control systems
JP5336447B2 (ja) * 2010-09-02 2013-11-06 日立建機株式会社 電気駆動車両
WO2012073651A1 (ja) * 2010-12-03 2012-06-07 本田技研工業株式会社 ハイブリッド駆動装置
JP5645124B2 (ja) * 2011-01-21 2014-12-24 スズキ株式会社 シリーズハイブリッド車両の制御装置
WO2012101798A1 (ja) * 2011-01-27 2012-08-02 トヨタ自動車株式会社 車両および車両の制御方法
US9254834B2 (en) 2011-01-27 2016-02-09 Toyota Jidosha Kabushiki Kaisha Vehicle and control method for vehicle
DE102012210328A1 (de) 2012-06-19 2013-12-19 Bayerische Motoren Werke Aktiengesellschaft Fahrzeugstabilisierung für ein Hybridfahrzeug bei Bremsschlupf der Antriebsräder oder erhöhter Gefahr hierfür
US9732499B2 (en) * 2013-06-28 2017-08-15 Komatsu Ltd. Work vehicle and control method for same
KR101510343B1 (ko) * 2013-10-31 2015-04-07 현대자동차 주식회사 플러그인 하이브리드 자동차의 방전지향모드 제어장치 및 방법
US9248745B1 (en) * 2014-09-16 2016-02-02 Robert Bosch Gmbh Wheel stability control based on the moment of an electrical motor
JP6187497B2 (ja) * 2015-02-18 2017-08-30 トヨタ自動車株式会社 車両の制御装置、および、車両
TWI636917B (zh) * 2017-05-09 2018-10-01 摩特動力工業股份有限公司 ECVT (electronic stepless speed change) system and control method thereof
JP6748059B2 (ja) * 2017-12-28 2020-08-26 本田技研工業株式会社 車両の制御装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4913270A (en) * 1987-06-19 1990-04-03 Fuji Jukogyo Kabushiki Kaisha Control system for an automatic transmission of a motor vehicle with an antilock brake system
CN1160380A (zh) * 1994-10-10 1997-09-24 西门子公司 机动车行驶稳定性的调节系统
CN1176199A (zh) * 1996-06-27 1998-03-18 本田技研工业株式会社 车辆的防抱死制动控制装置
US5775449A (en) * 1994-06-06 1998-07-07 Kabushikikaisha Equos Research Hybrid vehicle
JPH11217025A (ja) * 1998-02-03 1999-08-10 Fuji Heavy Ind Ltd ハイブリッド車
JP2002078105A (ja) * 2000-08-25 2002-03-15 Toyota Motor Corp 動力出力装置およびこれを搭載する自動車
US6527658B2 (en) * 2001-04-02 2003-03-04 General Motors Corporation Electrically variable transmission with selective input split, compound split, neutral and reverse modes

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3409523B2 (ja) * 1995-08-02 2003-05-26 アイシン・エィ・ダブリュ株式会社 車両用駆動装置の制御装置
JP3409698B2 (ja) 1998-06-16 2003-05-26 トヨタ自動車株式会社 ハイブリッド車の変速制御装置
JP3402236B2 (ja) 1999-01-13 2003-05-06 トヨタ自動車株式会社 動力出力装置およびハイブリッド車両並びにその制御方法
JP4370637B2 (ja) 1999-06-04 2009-11-25 トヨタ自動車株式会社 ハイブリッド車両およびその制御方法
JP3458795B2 (ja) * 1999-10-08 2003-10-20 トヨタ自動車株式会社 ハイブリッド駆動装置
US6579201B2 (en) * 2000-08-22 2003-06-17 New Venture Gear, Inc. Electric hybrid four-wheel drive vehicle
JP2003194209A (ja) 2002-11-01 2003-07-09 Toyota Motor Corp 車両の制御装置
JP2004236406A (ja) 2003-01-29 2004-08-19 Toyota Motor Corp 動力出力装置およびこれを備える自動車

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4913270A (en) * 1987-06-19 1990-04-03 Fuji Jukogyo Kabushiki Kaisha Control system for an automatic transmission of a motor vehicle with an antilock brake system
US5775449A (en) * 1994-06-06 1998-07-07 Kabushikikaisha Equos Research Hybrid vehicle
CN1160380A (zh) * 1994-10-10 1997-09-24 西门子公司 机动车行驶稳定性的调节系统
CN1176199A (zh) * 1996-06-27 1998-03-18 本田技研工业株式会社 车辆的防抱死制动控制装置
JPH11217025A (ja) * 1998-02-03 1999-08-10 Fuji Heavy Ind Ltd ハイブリッド車
JP2002078105A (ja) * 2000-08-25 2002-03-15 Toyota Motor Corp 動力出力装置およびこれを搭載する自動車
US6527658B2 (en) * 2001-04-02 2003-03-04 General Motors Corporation Electrically variable transmission with selective input split, compound split, neutral and reverse modes

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102947154A (zh) * 2010-06-15 2013-02-27 大陆-特韦斯贸易合伙股份公司及两合公司 用于调节可电操作的制动器的方法和装置以及电子制动系统
CN102947154B (zh) * 2010-06-15 2014-11-26 大陆-特韦斯贸易合伙股份公司及两合公司 用于调节可电操作的制动器的方法和装置以及电子制动系统

Also Published As

Publication number Publication date
JP2006022932A (ja) 2006-01-26
DE102005032100B4 (de) 2016-01-07
JP4155236B2 (ja) 2008-09-24
CN1737412A (zh) 2006-02-22
US20060006734A1 (en) 2006-01-12
DE102005032100A1 (de) 2006-03-02
US7238133B2 (en) 2007-07-03

Similar Documents

Publication Publication Date Title
CN100455855C (zh) 用于车辆驱动设备的控制装置
CN100427813C (zh) 用于控制车辆驱动设备的控制装置
CN100509513C (zh) 控制车辆驱动设备的控制设备及包括其的车辆驱动系统
CN100377902C (zh) 车用驱动系统的控制设备
CN102161311B (zh) 车辆及控制车辆的方法
CN101209707B (zh) 用于车辆驱动系统的控制装置
CN101242980B (zh) 用于车辆用驱动系统的控制设备
CN104619538B (zh) 混合动力车辆的动力传递装置及混合动力系统
CN101196235B (zh) 用于车辆驱动系统的控制设备
CN100540348C (zh) 用于车辆用驱动系统的控制设备
CN104395122B (zh) 混合动力车辆的动力传递装置及混合动力系统
CN102256853A (zh) 车辆用动力传递装置的控制装置
CN102227344A (zh) 车辆用动力传递装置
CN108349484A (zh) 混合动力车辆的驱动装置的运行和混合动力车辆
JP2007120587A (ja) 動力伝達装置の制御装置
WO2008075502A1 (ja) 車両およびその制御方法
CN102137783A (zh) 车辆用动力传递装置的控制装置
CN101386302A (zh) 用于车辆动力传递装置的控制装置及控制方法
CN101133268A (zh) 车用驱动设备的控制设备
JP2008185070A (ja) 車両用駆動装置の制御装置
CN101151480A (zh) 用于车辆驱动系统的控制设备
CN101795916A (zh) 车辆用自动变速机的控制装置
CN101354078A (zh) 用于车辆动力传送装置的控制装置
CN107206886A (zh) 混合动力车辆
JP2010083361A (ja) 車両用動力伝達装置の制御装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090128

Termination date: 20180711