CN100492884C - 单片集成功率放大器装置 - Google Patents

单片集成功率放大器装置 Download PDF

Info

Publication number
CN100492884C
CN100492884C CNB2006800001845A CN200680000184A CN100492884C CN 100492884 C CN100492884 C CN 100492884C CN B2006800001845 A CNB2006800001845 A CN B2006800001845A CN 200680000184 A CN200680000184 A CN 200680000184A CN 100492884 C CN100492884 C CN 100492884C
Authority
CN
China
Prior art keywords
amplifier
transistors
amplifier installation
transistorized
transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CNB2006800001845A
Other languages
English (en)
Other versions
CN1954488A (zh
Inventor
T·阿恩博格
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Infineon Technologies AG
Original Assignee
Infineon Technologies AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Infineon Technologies AG filed Critical Infineon Technologies AG
Publication of CN1954488A publication Critical patent/CN1954488A/zh
Application granted granted Critical
Publication of CN100492884C publication Critical patent/CN100492884C/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/21Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • H03F3/211Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only using a combination of several amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High frequency amplifiers, e.g. radio frequency amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823475MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type interconnection or wiring or contact manufacturing related aspects
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0207Geometrical layout of the components, e.g. computer aided design; custom LSI, semi-custom LSI, standard cell technique
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41758Source or drain electrodes for field effect devices for lateral devices with structured layout for source or drain region, i.e. the source or drain region having cellular, interdigitated or ring structure or being curved or angular
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0277Selecting one or more amplifiers from a plurality of amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0288Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers using a main and one or several auxiliary peaking amplifiers whereby the load is connected to the main amplifier using an impedance inverter, e.g. Doherty amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/30Modifications of amplifiers to reduce influence of variations of temperature or supply voltage or other physical parameters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/451Indexing scheme relating to amplifiers the amplifier being a radio frequency amplifier

Abstract

单片集成微波频率大功率放大器装置包括以负载调制配置连接的多个晶体管(31,33),其中工作的晶体管的数目取决于驱动电平。每个晶体管都具有指状物类型的布局,其中不同晶体管(31,33)的指状物(41-45)交错。该多个晶体管的源极(41)一般互连,而这些晶体管的栅极(42,43)优选地具有单独的连接(42a,43a),用于连接到单独的封装引线。类似地,晶体管的漏极(44,45)优选地具有单独的连接(44a,45a),用于连接到单独的封装引线。优选地,基于LC的无源网络执行该放大器装置的功率合成操作。

Description

单片集成功率放大器装置
技术领域
本发明一般涉及集成电路技术领域,更具体而言,本发明涉及单片集成微波频率大功率放大器装置。
背景技术
用于很多新型调制技术的功率放大器,尤其是应用于像CDMA这样的3G基站和多载波技术的功率放大器,需要高的线性度以及合理的功率效率。很常用的方法是使用前馈功率放大器,其实例在图1中示出。将大电感器用于DC馈送,并将大电容器用于DC阻隔,简化了偏置网络。
为获得大功率,由各种分级元件(例如晶体管指状物、电池、封装或放大器)形成发射器是切实有效的,可以通过从处于一级的每个元件向下一级的元件增加功率而一起使用这些分级元件。
现今经常使用两种方法:并联耦合和功率合成。
最简单的方法是仅使用低电阻导线使元件并联连接。只要电流分布均匀,这将很好地工作。不幸的是,因为制造工艺的变化、设计中的不对称性或者单个元件的故障,情况并不总是如此。
使用功率合成的更复杂的方法,是十分可靠的,且允许所有这类变化和故障,而不导致发射器的完全损坏。因为没有其它备选方法,很多情况都使用功率合成器。
研究实验室中,测试了像Doherty、Chireix和Kahn这样的老概念的新实施。图2中示出了典型的Doherty放大器的结构。
发明内容
前馈和切换技术的主要问题是低的功率效率。
Doherty、Chireix和Kahn放大器满足所需的规格,但由于通常发生的电学参数数据的扩展,而难以实现。
而且,它们都依赖于功率合成器,而功率合成器并不特别节省面积。
因此,本发明的一个目的是提供一种单片集成微波频率大功率放大器装置,它克服了现有技术装置相关的问题和限制。
本发明的一个特定目的是提供这样一种装置,它具有高的线性度和高的功率效率。
本发明的另一个目的是提供这样一种装置,它比现有技术功率放大器占用的面积少。
本发明的又一个目的是提供这样一种装置,它可以在任何MOS工艺中制造,不需要额外的工艺步骤。
根据本发明,通过所附专利权利要求书中权利要求的装置获得这些目的。
本发明的单片集成微波频率大功率放大器装置包括至少两个晶体管,它们以负载调制或Doherty配置连接,其中工作的晶体管的数量取决于驱动电平。这些晶体管每一个都具有指状布局,其中不同晶体管的指相交叉。
优选地,这些晶体管的源极是互连的,而这些晶体管的栅极和漏极具有单独的连接,用于连接到不同的封装引线。
优选地,与放大器装置集成形成的LC基无源网络在芯片指状物级局部地执行功率合成操作,此处工艺变化和不对称性可以忽略。
由此,获得了具有在封装内形成的功率合成装置的完全集成的微波频率功率放大器装置。该装置比现有技术的电路板解决方案占用的面积少。
本发明的其它特征和优点,从此后给出的本发明的优选实施例的详细描述以及附图1-11将显而易见,附图仅以说明性方式给出,而不限制本发明。
附图说明
图1和2示意性地示出了现有技术放大器装置。
图3示意性地示出了根据本发明的实施例的单片集成功率放大器装置。
图4是图1的功率放大器装置中包括的LDMOS晶体管结构的示意性布局。
图5-11的视图示出了图1的功率放大器装置和现有技术放大器装置相比的各种模拟的晶体管特性。
具体实施方式
图3中,示意性地示出了根据本发明的实施例的单片集成微波频率大功率放大器装置。
该功率放大器装置包括两个晶体管31、33,它们以负载调制或Doherty配置连接。左边部分表示为主放大器,且右边部分表示为峰值放大器。Doherty放大器的特征在于,对于低输入功率,峰值放大器断开连接,使主放大器执行放大。当主放大器开始压缩时,峰值放大器逐渐导通。最后,在最大输入功率下,两个放大器并联连接,对功率放大贡献相等。
在模拟电路的实施方式中,功率输送的控制通过电路的智能设计自动进行。使用两个重要的要素:负载拉移(load pull)动作和峰值放大器的C类偏置。文献中仅对于特定的情况分析了Doherty放大器:仅主放大器工作时的低输入功率的情况,以及主放大器和峰值放大器对放大贡献相等时的最大输入功率的情况。峰值放大器辅助主放大器时的更复杂操作模式,仅可以使用实验和模拟来研究。
文献中已经详细描述了典型的Doherty放大器的操作,参见1999年Artech House Publisher出版的Steven Cribbs的“RF PowerAmplifiers for Wireless Communication”,以及2002年Artech HousePublisher出版的Steven Cribbs的“Advanced Techniques in RF PowerAmplifier Design”。
对于为漏电压VDD等于28V以及最大电流约等于15mA而设计的典型的Doherty放大器,负载必须被四分之一波长变换器转换,以使特征阻抗减小一半。一个解决方案是特征阻抗Z0为1欧姆且负载ZL为0.5欧姆。和常规放大器一样,对于低功率操作,这将给出Z0*Z0/ZL=2欧姆,但在最大输入功率,对于每个放大器,考虑到另一个的负载拉移,得到该值的两倍,或4欧姆。
根据本发明,图3的功率放大器装置的主放大器和峰值放大器通过整体形成的无源网络36连接,而不是典型的Doherty放大器中使用的四分之一波长(λ/4)变换器。该无源网络是包括两个分路电容器C1、C2和一个串联连接的电感器L1的集总元件解决方案。电容和电感的值根据下式计算:
ωCZ0=1以及ωL=Z0
其中Z0是特征阻抗,且ω/2π是工作微波频率。
通过形成芯片上无源网络作为功率合成装置,获得了节省面积的峰值晶体管,它避免了在基于PCB的放大器解决方案中单独的功率合成器所需要的额外空间。
图3中,以34表示的晶体管31、33的源极一般是短路的,在35处示意性示出。
本发明的放大器装置的晶体管31、33实现为如图4所示的指状物类型布局中的LDMOS晶体管结构。注意图4中仅示出了晶体管结构的一部分。不同晶体管31、33的指状物41-45相交错。
晶体管的微波频率功率的合成设置成在芯片指状物级局部地发生,此处工艺变化和不对称性可以忽略。
晶体管的栅极指状物42、43具有单独的连接42a、43a,用于连接到独立的封装引线。类似地,晶体管的漏极指状物45、46具有单独的连接45a、46a,用于连接到独立的封装引线。所述单独的栅极和漏极连接一般在集成结构的上端形成,而晶体管的源极或源极接收器(source sinker)41连接在集成结构的下端。
每个晶体管包括多个互连的漏极指状物44、45,每个漏极指状物44、45在相对侧被栅极指状物42、43环绕,优选地,所述栅极指状物属于与该漏极指状物相同的晶体管。安置在漏极指状物44、45的相对侧的每两个相邻的栅极指状物组42、43被源极接收器区域41分开,该接收器区域为两个晶体管共享。
优选地,安置在漏极指状物44、45的相对侧的栅极指状物组42、43交替地属于不同的晶体管。
然而应当理解,可以以本领域技术人员熟知的很多其它方式形成交错晶体管结构。然而,当放大器装置中用于放大的晶体管数目是2时,该结构需要两个单独的栅极连接、两个单独的漏极连接以及一个公共的源极连接。
然而,晶体管的数目可能大于2。在放大器装置中具有N个晶体管的一般情况下,晶体管结构需要N个晶体管、N个单独的栅极连接、N个单独的漏极连接以及一个公共的源极连接。需要N-1个无源LC网络形式的功率合成器以合成晶体管的输出。所有的晶体管和无源LC网络都整体形成在单个芯片上。
所有晶体管的指状物可以相互交错,或仅一个组中的晶体管的指状物相交错。
当N个晶体管与用作无源功率合成网络中的电感器的N个键合引线相连时,每个分路电容器的电容是C=1/NωZ0,每个串联连接的电感器的电感是L=Z0N/ω。
作为非限制性实例,介绍下面的计算。假设漏极电压为28V,总漏极宽度为85mm,频率f=ω/2π为1GHz,Z0=1欧姆,ZL=0.5欧姆,且键合引线数量N=1,每个电容器应该具有约80pF的电容值,每个电感器应该具有约80pH的电感值。如果N=10,每个功率合成网络中的每个电容器应该具有约8pF的电容值,每个电感器应该具有约800pH的电感值。
而且,应当理解,该放大器装置的晶体管可以具有不同数目的指状物和不同的总宽度。
本发明已经使用微波电路模拟得到验证。晶体管选择为LDMOS类型。每个放大器中的任何内部匹配网络都被去除,因为其已经用于Doherty功率合成。
图5-7中的模拟结果比较了常规放大器、典型的Doherty放大器和本发明的封装Doherty放大器。品质因数是增益,3阶截获点IP3和功率附加效率(power added efficiency)。
图5示出了增益与输入功率的关系。输入功率一般由匹配网络决定。这种情况下,输入直接从电压发生器驱动,功率计算为电压电流的乘积。Doherty放大器具有来自空闲的峰值放大器的贡献,其与常规放大器相比,减小了增益。由于压缩引起的增益减小在Doherty放大器中被部分地阻止。不仅对于增益,而且对于其它品质因数,本发明的封装Doherty放大器和典型的Doherty放大器之间的差别很小。原因在于这里研究的用于第一载波和双频(two-tone)激励的集总元件CLC网络是四分之一波长变换器的很好的近似。
图6示出了IP3与输入功率的关系。对于三个放大器,发现大体类似的行为。然而,观察幅度,这些曲线仅在低输入功率处类似。在较高的输入功率下,这些曲线显示出本发明和常规Doherty放大器之间的差异。这是因为峰值放大器起作用了。
图7示出了输出功率和输入功率的关系。常规放大器与本发明和常规Doherty放大器之间的功率效率的巨大差别是很显著的。常规放大器显示出百分之几的效率,而本发明和常规Doherty放大器显示出百分之几十的效率。常规放大器的峰值是10%,而本发明和常规Doherty放大器的峰值是40%。
图8示出了本发明的Doherty放大器装置的主放大器和峰值放大器的输出功率和输入功率的关系。应当注意,峰值放大器逐渐地传递更多的功率,并且最后处于最大输入功率,峰值放大器和主放大器贡献相同的量。
图9-11示出了负载线,即,在三个不同输入功率(0dBm,15dBm以及35dBm)下,常规放大器(图9)、本发明的Doherty放大器装置的主放大器(图10)以及本发明的Doherty放大器的峰值放大器(图11)的漏-源电流与漏-源电压的关系。大功率负载线可以认为是由于LC元件的存在而具有不寻常的行为。然而,由于Doherty负载拉移现象,可以注意到不同功率水平的平均斜率的改变。
从该模拟研究很明显地得出:本发明的封装的Doherty放大器装置的行为很像典型的Doherty放大器,且将给出比现今的装置可以获得的功率效率好得多的功率效率。同时,不需要用于传输线功率合成的额外的板上空间。
还可以得出其它的结论:由本发明提供的微波频率功率晶体管的更密集的应用是有优势的,因为对于相同的装置面积,可以充分增加功率附加效率。

Claims (15)

1.一种单片集成微波频率大功率放大器装置,包括:
-多个晶体管(31,33),以负载调制配置连接,其中工作着的所述多个晶体管的数目取决于驱动电平,其特征在于
-所述多个晶体管每个都具有指状物类型的布局,其中所述多个晶体管(31,33)中不同的晶体管的指状物(41-45)交错。
2.权利要求1的放大器装置,其中
-所述指状物表示所述多个晶体管中一个晶体管的源极和栅极,
-表示所述多个晶体管的源极(34)的所述指状物(41)是互连的(35)
-表示所述多个晶体管的的栅极的指状物(42,43)具有用于连接到单独的封装引线的单独的连接(42a,43a)。
3.权利要求2的放大器装置,其中所述指状物表示所述多个晶体管的晶体管的漏极,表示所述多个晶体管的漏极的指状物(44,45)具有用于连接到单独的封装引线的单独的连接(44a,45a)。
4.权利要求1中任一项的放大器装置,其中每个晶体管(31,33)具有漏极,并且所述多个晶体管的每个漏极包括多个互连的漏极指状物(44,45)。
5.权利要求4的放大器装置,其中每个晶体管(31,33)具有栅极,其中表示所述栅极的所述指状物(42,43)安置在每个漏极指状物(44,45)的相对侧。
6.权利要求1的放大器装置,其中,安置在表示漏极的指状物(44,45)的相对侧的两个相邻的表示栅极的指状物(42,43)被源极区域(41)分离。
7.权利要求1的放大器装置,其中所述多个晶体管(31,33)通过功率合成装置彼此连接。
8.权利要求7的放大器装置,其中所述功率合成装置由无源网络(36)组成。
9.权利要求7的放大器装置,其中所述功率合成装置由CLC网络(C1,C2,L1)组成。
10.权利要求9的放大器装置,其中,所述CLC网络包括两个分路电容器(C1,C2)以及一个串联连接的电感器(L1),所述串联连接的电感器连接于所述两个分路电容器(C1,C2)之间。
11.权利要求10的放大器装置,其中每个所述分路电容器的电容是C=1/(NωZ0),且每个所述串联连接的电感器的电感是L=Z0N/ω,其中Z0是特征阻抗,ω/2π是工作微波频率,且N是所述多个晶体管(31,33)的数目。
12.权利要求1的放大器装置,其中所述多个晶体管(31,33)的数目是2。
13.权利要求1的放大器装置,其中所述多个晶体管的数目大于2。
14.权利要求1的放大器装置,其中所述放大器装置是Doherty放大器。
15.权利要求1的放大器装置,其中所述多个晶体管(31,33)中的至少两个具有不同的宽度。
CNB2006800001845A 2005-02-28 2006-01-27 单片集成功率放大器装置 Active CN100492884C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
SE0500452A SE528473C2 (sv) 2005-02-28 2005-02-28 Monolitiskt integrerad effektförstärkaranordning
SE05004528 2005-02-28

Publications (2)

Publication Number Publication Date
CN1954488A CN1954488A (zh) 2007-04-25
CN100492884C true CN100492884C (zh) 2009-05-27

Family

ID=36226433

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2006800001845A Active CN100492884C (zh) 2005-02-28 2006-01-27 单片集成功率放大器装置

Country Status (7)

Country Link
US (1) US7330077B2 (zh)
EP (1) EP1854207B1 (zh)
KR (1) KR100816904B1 (zh)
CN (1) CN100492884C (zh)
DE (1) DE602006021150D1 (zh)
SE (1) SE528473C2 (zh)
WO (1) WO2006089614A1 (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7609115B2 (en) * 2007-09-07 2009-10-27 Raytheon Company Input circuitry for transistor power amplifier and method for designing such circuitry
US7973684B2 (en) * 2008-10-27 2011-07-05 Microchip Technology Incorporated Self auto-calibration of analog circuits in a mixed signal integrated circuit device
EP2425527B1 (en) * 2009-04-30 2013-12-25 Freescale Semiconductor, Inc. Wireless communication device and semiconductor package device having a power amplifier therefor
CN102281220B (zh) 2010-06-12 2015-04-29 华为技术有限公司 数据流处理方法、设备及系统
CN102339336A (zh) * 2010-07-22 2012-02-01 沈阳中科微电子有限公司 改善微波/射频功率放大器芯片热失效的设计方法
CN102130657A (zh) * 2010-09-14 2011-07-20 华为技术有限公司 一种功率放大器、不对称达赫笛功率放大设备和基站
JP5599364B2 (ja) * 2011-05-06 2014-10-01 三菱電機株式会社 ドハティ増幅器
CN103259494A (zh) * 2012-02-16 2013-08-21 京信通信系统(中国)有限公司 一种功率放大器
US8928411B2 (en) * 2012-12-31 2015-01-06 Silicon Image, Inc. Integration of signal sampling within transistor amplifier stage
CN104065351B (zh) * 2013-03-18 2017-02-22 宋胜君 一种基于单片集成电路的功率放大器
KR101729653B1 (ko) 2013-12-30 2017-04-25 한국전자통신연구원 질화물 반도체 소자
WO2017102017A1 (en) * 2015-12-17 2017-06-22 U-Blox Ag Power amplifier apparatus, envelope tracking amplifier apparatus and method of amplifying a signal
JP7192099B2 (ja) * 2019-04-01 2022-12-19 ヌヴォトンテクノロジージャパン株式会社 モノリシック半導体装置およびハイブリッド半導体装置
US11108361B2 (en) 2019-08-15 2021-08-31 Nxp Usa, Inc. Integrated multiple-path power amplifier with interdigitated transistors
US11417644B2 (en) * 2020-06-17 2022-08-16 Macom Technology Solutions Holdings, Inc. Integration of multiple discrete GaN devices

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4939485A (en) * 1988-12-09 1990-07-03 Varian Associates, Inc. Microwave field effect switch
US5420541A (en) * 1993-06-04 1995-05-30 Raytheon Company Microwave doherty amplifier
US5757229A (en) * 1996-06-28 1998-05-26 Motorola, Inc. Bias circuit for a power amplifier
JPH11261351A (ja) * 1998-03-09 1999-09-24 Matsushita Electric Ind Co Ltd 電力増幅器mmic
JP2001068556A (ja) * 1999-08-30 2001-03-16 Mobile Communications Tokyo Inc 高周波電力増幅用半導体装置
SE522892C2 (sv) 1999-09-28 2004-03-16 Ericsson Telefon Ab L M En förstärkarkrets för att förstärka signaler
US6362689B1 (en) 2000-09-22 2002-03-26 U.S. Monolithics, L.L.C. MMIC folded power amplifier
AU2001292953A1 (en) 2000-09-22 2002-04-02 U.S. Monolithics, L.L.C. Mmic folded power amplifier

Also Published As

Publication number Publication date
KR100816904B1 (ko) 2008-03-25
DE602006021150D1 (de) 2011-05-19
CN1954488A (zh) 2007-04-25
KR20070088307A (ko) 2007-08-29
US20070146079A1 (en) 2007-06-28
WO2006089614A1 (en) 2006-08-31
EP1854207B1 (en) 2011-04-06
SE528473C2 (sv) 2006-11-21
SE0500452L (sv) 2006-08-29
EP1854207A1 (en) 2007-11-14
US7330077B2 (en) 2008-02-12

Similar Documents

Publication Publication Date Title
CN100492884C (zh) 单片集成功率放大器装置
CN1252913C (zh) 功率放大器电路
US7898338B2 (en) High power integrated RF amplifier
JP5223008B2 (ja) 高周波電力増幅器
CN103023448A (zh) 具有补偿性谐振器匹配拓扑的rf器件
Roshani et al. Design of a high efficiency class-F power amplifier with large signal and small signal measurements
Alizadeh et al. Investigation of a class-J mode power amplifier in presence of a second-harmonic voltage at the gate node of the transistor
Jee et al. Switching behavior of class-E power amplifier and its operation above maximum frequency
CN101826847A (zh) 高效率的单端转双端放大器
CN1675831A (zh) 用于分布式功率放大器的混合结构
Fraysse et al. A 2 W, high efficiency, 2-8 GHz, cascode HBT MMIC power distributed amplifier
CN104272587A (zh) 级联放大器以及放大电路
Huang et al. An ultra-compact 14.9-W X-band GaN MMIC power amplifier
Mohadeskasaei et al. Design of broadband, high-efficiency, and high-linearity GaN HEMT Class-J RF power amplifier
Son et al. A 1.8-GHz CMOS power amplifier using stacked nMOS and pMOS structures for high-voltage operation
Clarke et al. Investigation and analysis into device optimization for attaining efficiencies in-excess of 90% when accounting for higher harmonics
CN213521807U (zh) 一种提高毫米波功率放大器单边供电稳定性的电路
Liao et al. Harmonic control network for 2.6 GHz CMOS class-F power amplifier
Dehqan et al. A highly efficient class-EF 2 power amplifier in GaAs pHEMT technology
CN213043651U (zh) 一种基于栅极调谐技术的高效率功率放大器
Luengvongsakorn et al. A 0.1-W CMOS class-E power amplifier for Bluetooth applications
Lin et al. Ultra wideband high gain GaN power amplifier
CN1385957A (zh) 高效率e类功率放大器优化设计方法
Nagisetty et al. Design of Multistage Class-AB/J Power Amplifier for 5G Smart grid’s Advanced Metering Infrastructure Applications
Bengtsson et al. Investigation of SOI-LDMOS for RF-power applications using computational load pull

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant