CN100505313C - 半导体器件及其制造方法 - Google Patents

半导体器件及其制造方法 Download PDF

Info

Publication number
CN100505313C
CN100505313C CNB2006100999764A CN200610099976A CN100505313C CN 100505313 C CN100505313 C CN 100505313C CN B2006100999764 A CNB2006100999764 A CN B2006100999764A CN 200610099976 A CN200610099976 A CN 200610099976A CN 100505313 C CN100505313 C CN 100505313C
Authority
CN
China
Prior art keywords
film
tft
semiconductor film
dielectric film
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2006100999764A
Other languages
English (en)
Other versions
CN1901229A (zh
Inventor
河崎律子
笠原健司
大谷久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Publication of CN1901229A publication Critical patent/CN1901229A/zh
Application granted granted Critical
Publication of CN100505313C publication Critical patent/CN100505313C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78645Thin film transistors, i.e. transistors with a channel being at least partly a thin film with multiple gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/127Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement
    • H01L27/1274Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement using crystallisation of amorphous semiconductor or recrystallisation of crystalline semiconductor
    • H01L27/1281Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement using crystallisation of amorphous semiconductor or recrystallisation of crystalline semiconductor by using structural features to control crystal growth, e.g. placement of grain filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4908Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET for thin film semiconductor, e.g. gate of TFT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • H01L29/6675Amorphous silicon or polysilicon transistors
    • H01L29/66757Lateral single gate single channel transistors with non-inverted structure, i.e. the channel layer is formed before the gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • H01L29/78618Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure
    • H01L29/78621Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure with LDD structure or an extension or an offset region or characterised by the doping profile
    • H01L29/78624Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure with LDD structure or an extension or an offset region or characterised by the doping profile the source and the drain regions being asymmetrical
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78645Thin film transistors, i.e. transistors with a channel being at least partly a thin film with multiple gate
    • H01L29/78648Thin film transistors, i.e. transistors with a channel being at least partly a thin film with multiple gate arranged on opposing sides of the channel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78651Silicon transistors
    • H01L29/7866Non-monocrystalline silicon transistors
    • H01L29/78672Polycrystalline or microcrystalline silicon transistor
    • H01L29/78675Polycrystalline or microcrystalline silicon transistor with normal-type structure, e.g. with top gate
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1345Conductors connecting electrodes to cell terminals
    • G02F1/13454Drivers integrated on the active matrix substrate

Abstract

本发明的目的是,借助于制作结晶半导体膜,同时控制膜中的晶粒的位置和尺寸,将此结晶半导体膜用于TFT的沟道制作区,而提供能够高速运行的TFT。仅仅用常规的绝缘膜,而不用金属或热导高的绝缘膜,作为基底膜以引入温度梯度。在所需位置中提供基底绝缘膜的高程差,以便根据高程差的安排而在半导体膜中产生温度分布。利用此温度分布来控制横向生长的起点和方向。

Description

半导体器件及其制造方法
本发明涉及到制作在具有绝缘表面的衬底上且具有晶体结构的半导体膜的制造方法以及用这种半导体膜作为有源层而制造半导体器件的方法。更确切地说,本发明涉及到使用结晶半导体膜作为有源层的半导体器件以及使用此半导体器件作为显示单元的电子装置。
近年来,关于低温多晶硅迁移率的改善以及Ioff的降低,在由缺陷较少的单晶制作沟道形成区的过程中,人们发现了优点。于是发展了相关的工艺,它包括在具有绝缘表面的透光衬底上制作非晶半导体膜,以及用激光退火、热退火等方法使此膜结晶,从而用得到的结晶半导体膜作为薄膜晶体管(以下称为TFT)的有源层。
已知激光退火是能够将高能量仅仅赋予非晶半导体膜以使之结晶的一种结晶技术。特别是,发射400nm或更短波长的短波光的准分子激光器,是从激光退火技术发展早期阶段以来被使用的一种有代表性的激光器。除了准分子激光器退火外,近来又发展了使用作为固体激光器的YAG激光器的技术。在上述的激光退火中,激光束被光学系统处理,以便在辐照表面上形成点状或线状形状,并用处理过的激光来扫描衬底上的辐照表面(激光的辐照位置相对于辐照表面移动)。例如,使用线状激光的准分子激光器退火能够借助于仅仅沿垂直于表面纵向的一个方向进行扫描而用激光器对整个辐照表面进行退火。使用线状激光的准分子激光退火因而在产率方面是优越的,并正在成为制造采用TFT的液晶显示器的技术中的主流。这一激光退火技术已经实现了单片型液晶显示器,其中构成象素部分的TFT(象素TFT)和构成提供在象素部分外围中的驱动电路的TFT,被制作在玻璃衬底上。
然而,用激光退火方法制作的结晶半导体膜是多个晶粒的聚集,且各个晶粒随机地位于膜中,其尺寸是不规则的。在制造在玻璃衬底上的TFT中,结晶半导体膜被分割并制作成小岛状图形,目的是形成分隔元件。因此,不可能制作具有规定的晶粒位置和尺寸的FTT。晶粒间界(晶粒边界)具有由非晶结构、晶体缺陷等引起的复合中心和俘获中心,它们是降低载流子电流输运特性的因素。晶粒边界中的电位水平也影响这一特性。
沟道制作区中的半导体膜的结晶性对TFT特性有很大的影响。但要从单晶半导体膜制作沟道形成区同时又消除晶粒边界的不利影响,几乎是不可能的。
为了解决这一问题,曾经试图生长更大的晶粒。例如,在论文″High-Mobility Poly-Si Thin-Film Transistors Fabricated bya Novel Excimer Laser Crystallization Method(新颖的准分子激光结晶方法所制造的高迁移性多硅报膜晶体管)″,K.Shimizu,O.Sugiwara and M.Mstsumura,IEEE Transactions on ElectronDevices,vol.40,No.1,pp.112-117,1993中,已经报道了一种激光退火方法。根据此方法,由Si、SiO2和Si组成的三层膜被制作在衬底上,且器件的二侧,亦即三层膜侧和衬底侧,被准分子激光辐照。此论文指出,此方法借助于用某种能量强度的激光辐照,能够增大晶粒的尺寸。
K.Shimizu等人提出的方法的特征是,非晶硅膜的基底材料的热特性被局部地改变,以便控制到衬底的热流并引入温度梯度。为了引入温度梯度,在玻璃衬底上制作由高熔点金属层、氧化硅层和半导体膜组成的三层结构。从结构上说,要制造具有这种半导体层作为有源层的顶部栅型的TFT不是不可能的。然而,提供在半导体膜和高熔点金属膜之间的氧化硅膜产生寄生电容并增大功耗,使得难以获得高速运行的TFT。
诸如使用具有相位差的激光器的方法和步进辐照方法之类的其它方法,也有其问题并要求复杂的激光装置。此外,当应用于具有组合在其中的驱动器电路的液晶屏的驱动元件的结晶时,在使沟道制作区的所有部分能够具有大的晶粒的过程中,或在使它们结晶成单晶的过程中,由于各个元件通常不规则地排列,也没有规则的间距,因而这些方法不总是成功的。
还有一种方法是双束方法与三层小岛结构的组合。(双束方法是这样一种方法,其中,借助于用激光辐照衬底的各个侧,或用激光辐照衬底的一侧,然后用透过衬底并被平面镜之类反射的激光辐照衬底的另一侧,而使非晶半导体膜结晶。)当应用于具有组合在其中的驱动电路的液晶屏的驱动元件的结晶时,此组合方法能够将规定位置结晶成晶体,但不善于将晶粒生长成大到5微米或更大的晶粒尺寸。因此,此方法不适合于制造沟道宽度大的薄膜晶体管。此方法还在金属与硅之间产生寄生电容,引起信号延迟。而且,由于依赖于所用的金属材料,在辐照时,温度有时达到很高,故此方法有剥离的问题。
基底膜由热导高的绝缘膜组成的方法,具有金属与Si之间不产生寄生电容的优点。但此方法要求开发稳定的热导高的绝缘膜。
本发明公开了解次这些问题的方法。本发明的目的是,借助于在控制膜中晶粒的位置和尺寸的情况下,制作结晶半导体膜,从而使用此结晶半导体膜作为TFT的沟道制作区,而提供一种能够高速运行的TFT。本发明的另一个目的是,提供一种将此TFT应用于诸如透射型液晶显示器和使用电致发光材料的显示器之类的各种半导体器件的方法。
为了达到上述目的,在形成高程差的过程中,本发明仅仅使用制作在诸如玻璃衬底之类的衬底上的常规绝缘膜,而不使用金属或高热导绝缘膜。高程差建立起温度梯度,在用激光退火使非晶半导体层结晶的过程中利用了这一温度梯度。根据本发明的激光退火,脉冲发射型或连续光发射型准分子激光器、YAG激光器或氩激光器被用作光源。从光源发射的激光被光学系统形成线状或矩形状,而此线状或矩形状的激光被用来辐照小岛状的半导体层。小岛状的半导体层被来自衬底正面(此处将正面定义为制作小岛状半导体层的一侧)或来自衬底正面和背面二者(此处将背面定义为与制作小岛状半导体层的一侧相反的侧)的激光辐照。
依照本发明的方法,基底绝缘膜被图形化,以便形成小岛状绝缘膜,而这一小岛状绝缘膜引起的高程差在进行结晶的过程中建立起温度梯度。已经模拟过这一结晶过程中的热分析,得到了图5B所示的结果。如图4A-4C所示,此处高程差规定了提供在基底绝缘膜中的突出部分,即小岛状绝缘膜引起的不平坦的半导体膜中的顶部(对应于图1C中的区域A的部分)与底部(时应于图1C中的区域B的部分)之间的高度差。
此温度梯度大概与这种结果有关。在区域B中,热进入1)区域B正下方的部分基底绝缘膜中和2)区域B旁边的基底绝缘膜的另一部分中。因此,区域B比其它区域冷却得更快。相反,区域C接受来自区域B的热,因而冷却得慢。于是在区域B和区域C之间产生温度梯度。
接着,解释一下激光辐照如何使半导体膜完全熔化且然后结晶。凝固首先在由于上述原因而温度降低得最迅速的区域B开始,并产生晶体核。这种核起晶体生长中心的作用,且晶体生长向温度高和半导体膜处于熔化状态的区域C或区域A进行。
若半导体膜不完全被激光辐照熔化,且其一部分保持固态,则固态部分(微小的固相)起晶体生长中心的作用,且晶体生长从此中心沿着温度梯度进行。因而有可能控制晶体生长,致使在指定的位置形成大晶粒的晶体。
如上所述,基底绝缘膜可以被用作热储存层或所需位置处的热容量梯度,且为此不必在衬底上制作高热导膜。而是,已经应用于制作在玻璃衬底上的常规TFT的由半导体膜、基底绝缘膜和衬底组成的结构就足够了。此结构中的基底绝缘膜被图形化成具有所需的形状并形成高程差。因而有可能利用半导体膜中对应于高程差排列的温度分布而控制横向生长的起点和方向。
在附图中:
图1A-1C示出了根据本发明的结晶工艺;
图2A-2B示出了根据本发明的结晶工艺;
图3A-3C示出了根据本发明的另一结晶工艺;
图4A-4C示出了本发明的模式的例子;
图5A和5B是热分析模拟及其结果图;
图6A-6g俯视图示出了小岛状绝缘膜的各种形状;
图7A和7B示出了SEM观察到的结晶结果,
图8A和8B示出了SEM观察到的结晶结果;
图9A-9D示出了制造用于象素部分和驱动电路部分的TFT的工艺;
图10A-10D示出了制造用于象素部分和驱动电路部分的TFT的工艺;
图11A-11D示出了制造用于象素部分和驱动电路部分的TFT的工艺;
图12A-12C示出了制造用于象素部分和驱动电路部分的TFT的工艺;
图13示出了制造用于象素部分和驱动电路部分的TFT的工艺;
图14示出了液晶显示器的结构;
图15示出了反铁电混合液晶的光透射特性的例子;
图16A-16F示出了半导体器件的例子;
图17A-17D示出了半导体器件的例子;
图18A-18C示出了半导体器件的例子;
图19A和19B示出了EL显示器的结构;
图20A和20B示出了另一个EL显示器的结构;
图21示出了图20A和20B的EL显示器的结构;
图22A和22B示出了图20A和20B的EL显示器的结构;
图23示出了又一个EL显示器的结构;
图24A-24C示出了再一个EL显示器的结构;
图25A和25B分别示出了TFT的特性;以及
图26示出了SEM观察到的结晶结果。
实施例模式1
参照图1和2来描述本发明的实施例模式。在图1A中,由钡硼硅酸盐玻璃、铝硼硅酸盐玻璃之类制成的非碱性玻璃衬底被用作衬底101。例如,最好可以使用Corning Incorporated制造的#7059玻璃、#1737玻璃等。
具有透光性和绝缘性的绝缘膜被制作在其上制作TFT的衬底101的表面上,并对绝缘膜进行图形化以形成小岛状的绝缘膜102。小岛状绝缘膜可以由热导优异的材料制成。此时,希望热导率为10Wm-1K-1或更大。氧化铝(Al2O3)由于其对可见光透明且热导率为20Wm-1K-1,因而适合于用作这种材料。而且,氧化铝不局限于化学配比比率,因此其中可以加入另一种元素,以便控制诸如热导率和内应力之类的特性。例如,可以将氮加入氧化铝,以便使用氮氧化铝(AlNxO1-x:0.02≤x≤0.5),或者,可以使用氮化铝(AlNx),而且,可以使用含有硅(Si)、氧(O)、氮(N)和M(M是铝(Al)或选自稀土元素的至少一种)的化合物。例如最好可以使用AlSiON、LaSiON等。此外,也可以使用氮化硼。
可以用溅射、等离子体CVD(化学汽相淀积)等方法来制作上述氧化物、氮化物和化合物。在溅射的情况下,使用具有所需组分的靶和诸如氩(Ar)或氮(N)之类的惰性气体。而且,可以提供热导率为1000Wm-1K-1的薄膜金刚石层即DLC(类金刚石碳)层。在任何一种情况下,绝缘膜102都用这种材料制作成厚度为50-500nm(最好是200nm),从而能够抑制激光辐照造成的温度上升。而且,用腐蚀方法削尖绝缘膜102端面上的侧壁,以便相对于玻璃衬底101的主表面具有5度到小于50度的角度,从而确保待要制作在绝缘膜上的薄膜的台阶覆盖。
用氧化硅膜、氮化硅膜、氮氧化硅膜之类来制作基底绝缘膜103。采用SiH4和N2O作为材料气体,用等离子体CVD方法,来制作氮氧化硅膜。可以将氧(O2)加入到材料气体中。虽然对生产条件没有限制,但当氮氧化硅膜被用作基底绝缘膜时,它被制作成厚度为50-500nm,其氧浓度为55%原子比到小于70%原子比,而氮浓度为1%原子比到小于20%原子比。在这种组分下,降低了氮氧化硅膜的内应力,并降低了固定电荷密度。
图1B所示的小岛状半导体膜104被制作成厚度为25-2000nm(最好是30-100nm)。借助于用诸如等离子体CVD或溅射之类的熟知的方法制作具有非晶结构的半导体膜,随之以用腐蚀方法清除不必要的部分,来获得小岛状半导体膜。图1C是小岛状半导体膜的俯视图。此小岛状半导体膜被制作在图形化成条状或矩形状的小岛状绝缘膜上,并排列成垂直跨越小岛状基底绝缘膜而不允许基底绝缘膜的短边上的端部覆盖小岛状半导体膜的端部。具有用来制作小岛状半导体膜的非晶结构的半导体膜的例子,包括非晶半导体膜和单晶半导体膜。可以使用诸如非晶硅锗薄膜之类的具有非晶结构的化合物半导体膜。
图2示出了根据本发明利用激光退火的结晶的步骤。
在结晶步骤中,首先希望非晶半导体膜中含有的氢能够被释放;在400℃-500℃下。对非晶半导体膜进行大约1小时的热处理,以便将氢含量规定为5%原子比或更低。
在用激光退火方法结晶的情况下,脉冲振荡型或连续振荡型准分子激光器、YAG激光器或氩激光器被用作光源。
图2示出了用激光110辐照小岛状半导体膜的状态。小岛状半导体膜104沿小岛状绝缘膜102被制作,而区域A105表示由小岛状绝缘膜102形成的高程差区域,且参考号106表示外面的区域B。在任何一种情况下,都用激光辐照方法加热小岛状半导体膜,并立即熔化。假设在冷却步骤中产生晶体核,其中小岛状半导体膜从熔化状态偏离到固体状态。根据经验已知核产生密度与熔化状态中的温度和冷却速度有关,且当小岛状半导体膜从高温度被迅速冷却时,核产生密度倾向于高。
参照图1A所示的结构,在制作小岛状绝缘膜102的部分中,体积和热容量增大,致使能够抑制激光辐照造成的温度上升。而且,在使用双束激光退火的情况下,激光从小岛状半导体膜104的衬底侧表面和其反表面辐照,二个表面都被加热;因此,比之使用单束的常规激光退火,冷却速度变得比较低。结果,横向生长方向被高程差中的温度分布抑制,并从覆盖小岛状绝缘膜102的小岛状半导体膜的部分择优产生晶体核,晶体生长从中向外围开始。
结果,大晶粒尺寸的晶体生长在小岛状绝缘膜102的外围,从而在参考号105表示的区域A中获得被小岛状绝缘膜102环绕的大晶粒尺寸的晶体,而在参考号106表示的区域B中得到晶粒尺寸相对小的晶体。图2B俯视图示出了晶体生长状态。当制作TFT时,高程差区域成为沟道制作区的宽度。而且,由于待要辐照的脉冲激光的重复脉冲的数目的增加,这一效应变得明显。
然后,在300℃-450℃下,在含有3-100%的氢的气氛中,或在200℃-450℃下,在含有等离子体产生的氢的气氛中,对小岛状半导体膜进行热处理,从而能够中和残留的缺陷。借助于用小岛状半导体膜104的区域A105作为沟道制作区来制造TFT的有源层,能够提高TFT的特性。
实施例模式2
不仅用激光退火,而且还用根据本发明的激光退火与热退火的组合,来制作用作TFT有源层的具有晶体结构的小岛状半导体膜。特别是,当热退火结晶被用来结晶时,使用日本专利申请No.7-130652中公开的催化元素,能够在600℃或以下实现结晶。当这样制作的结晶半导体膜被根据本发明的激光退火处理时,能够得到高质量的结晶半导体层。下面参照图3来描述这种实施例模式。
在图3A中,最好用实施例模式1所示的玻璃衬底作为衬底150。用与实施例模式1相同的方法来制作小岛状绝缘膜151、基底绝缘膜152和非晶半导体膜153。然后,用甩涂方法,借助于用含有催化元素(5-100ppm重量比)的水溶液进行涂敷,而制作含有催化元素的层154。或者,可以用溅射、汽相淀积之类的方法采制作含有催化元素的层154。此时,含有催化元素的层154的厚度被规定为0.5-2nm。催化元素的例子包括镍(Ni)、锗(Ge)、铁(Fe)、钯(Pd)、锡(Sn)、铅(Pb)、钴(Co)、铂(Pt)、铜(Cu)和金(Au)。
然后,在400℃-600℃下进行大约1小时热处理,从而非晶半导体膜中的氢含量被规定为5%原子比或更低。然后使用退火炉,在550℃-600℃下进行1-8小时热处理,最好在氮气气氛中于550℃下进行4小时热处理。于是能够得到由结晶硅膜组成的结晶半导体层155(图3B)。
如图3C所示,从结晶半导体膜155制作小岛状半导体膜160。更具体地说,如图3C所示,在这种状态下,对衬底进行单束激光退火。(可以进行双束激光退火。倘若使用双束退火,则可以使用具有透明性的衬底。)结果,结晶半导体膜155被激光156立即熔化,以形成具有晶体结构的小岛状半导体膜160。在这样制作的小岛状半导体膜160中,能够在区域A的中央形成晶粒尺寸等于或大于图2所示小岛状半导体膜107的晶粒尺寸的晶粒。然而,小岛状半导体膜160中含有浓度为每立方厘米大约1×1017到大约1×1019原子的催化元素。
然后,采用日本专利申请No.Hei 10-135468和No.Hei 10-135469所公开的方法,有可能将小岛状半导体膜中的催化元素的浓度降低到每立方厘米大约1×1017原子或更低,最好是降低到每立方厘米大约1×1016原子。
在这些方法中,属于周期表5族的杂质元素,通常是磷,被加入到小岛状半导体膜的选定部分、并在氮气气氛中于5500-800℃下进行5-24小时热处理。残留在小岛状半导体膜中的催化元素则能够被清除到加入了磷的部分中。然后,借助于用腐蚀方法清除移入了催化元素的部分,就能够得到催化元素的浓度被降低到每立方厘米大约1×1017原子或更少的小岛状半导体膜。
实施例模式3
以相似于实施例模式1的方式,在衬底上制作绝缘膜。然后对绝缘膜进行图形化,以形成小岛状绝缘膜。此绝缘膜可以有各种形状。其在本实施例模式中的例子示于图6A-6E。图6A-6E都是俯视图,图中的阴影区域表示基底绝缘膜产生的高程差区域。
在图6A中,绝缘膜被图形化,形成宽度(对应于沟道制作区的部分)为2-5微米的矩形,其目的是在高程差区域中引起横向生长。
在图6A中,利用制作成与半导体膜相交的小岛状绝缘膜引起的温度梯度的向着沟道长度方向的横向生长,与利用由于半导体膜制作成小岛状而在其边沿处产生的温度梯度的向着沟道宽度方向的横向生长相结合。这使得有可能扩大任何位置处的晶粒尺寸。
图7A和7B示出了当小岛状绝缘膜被制作成宽度为5微米的矩形然后结晶时的晶体状态的SEM观察结果。在图中显然,晶体生长从小岛状绝缘膜引起的高程差区的边沿和从小岛状半导体膜的边沿开始进行。
如图6B所示,若在矩形基底绝缘膜内制作窗口,则晶体生长也从窗口开始并向外推进,改善了结晶。
在图6C中,绝缘膜被图形化成具有圆形形状,致使横向生长径向进行,高程差区作为晶粒生长的中心。圆形绝缘膜的直径为1.0-2.0微米。当其直径被设定为大约1微米时,有可能抑制根据高程差区中的温度梯度的横向生长。
图8A和8B示出了柱形高程差区(此区被规定具有2微米的直径)中的晶体生长的SEM观察结果。图8A和8B证实,横向生长以柱形高程差区作为中心迅速进行。
图6D是借助于绝缘膜被图形化成具有图6C所示的柱形的结晶而制造的TFT。
在图6E中,横向生长从一对小岛状绝缘膜中的一个引起的高程差区的内边沿向着此对小岛状绝缘膜的另一个进行。为了避免向着相反方向进行的横向生长之间在中途相撞,制作成缝隙状的小岛状绝缘膜与小岛状半导体膜局部地覆盖,以便交替地提供小岛状绝缘膜和小岛状半导体膜。
如图6F所示,为了借助于降低冷却速率而不改变利用小岛状绝缘膜引起的高程差的温度分布来提高晶体生长,诸如BCB(苯并环丁烯)膜的热导率低的有机树脂膜,也可以用作高程差区的材料。
图6G示出了在半导体膜的长边附近形成高程差区以便不跨过半导体膜的边沿,或与半导体膜稍微覆盖的例子。成对小岛状绝缘膜之间的距离可以由有意实施本发明的人透当地设定。这造成半导体膜的边沿比通常冷却得更快,在半导体膜的边沿与其内部之间引起剧烈的温度差。于是促进了横向生长。
上述小岛状绝缘膜的图形可以被实施例模式1和实施例模式2二者采用。
实施例1
下面参照图9-12,用实施例来描述本发明。在此实施例中,将根据各个步骤来描述同时制造n沟道TFT(以下称为象素TFT)和象素部分的存储电容器、以及提供在象素部分外围上的驱动电路的n沟道TFT和p沟道TFT的方法。
在图9中,Corning Incorporated制造的#1737玻璃可以被用作衬底201。在待要制作TFT的衬底201的表面上,制作基底绝缘膜。此膜由氧化硅膜、氮化硅膜、氮氧化硅膜之类组成。
在使用氧化硅膜的情况下,可以用等离子体CVD方法,在反应压力为40Pa、衬底温度为300℃-400℃、和0.5-0.8W/cm2的13.56MHz高频功率密度的条件下,使用原硅酸四乙酯(TEOS)和氧(O2)的混合物来制作。在使用氮氧化硅膜的情况下,可以用等离子体CVD方法,在反应压力为20-200Pa、衬底温度为300℃-400℃、0.1-1.0W/cm2的60MHz高频功率密度的条件下,由SiH4、N2O和NH3或SiH4和N2O组成。而且,也可以使用由SiH4、N2O和H2组成的氢化氮氧化硅膜。氮化硅膜也可以用等离子体CVD方法,由SiH4和NH3组成。
上述基底绝缘膜被制作在衬底201的整个表面上,厚度为20-200nm(最好是30-60nm),并制作光刻胶掩模,随之以用光刻方法腐蚀不需要的部分,以形成预定的图形  。绝缘膜被图形化成矩形形状,以便形成小岛状绝缘膜202-206。可以对绝缘膜使用氟类气体的干法腐蚀方法或氟类水溶液的湿法腐蚀方法。在选择后一种方法的情况下,含有7.13%的二氟酸铵(NH4HF2)和15.4%的氟酸铵(NH4F)的混合溶液(Stella Chemifa Kabushiki Kaisha制造的LAL 500)可以被用来腐蚀。
小岛状绝缘膜202-206的图形尺寸由本技术领域熟练人员恰当地确定;但实际上可以根据待要制作的TFT的尺寸(沟道长度、沟道宽度)来确定。在本实施例中,如实施例模式3的图6A所示,制作了宽度为5微米的小岛状绝缘膜,然而,小岛状绝缘膜可以被制作成实施例模式3所示的各种形状。
然后,制作覆盖小岛状绝缘膜的基底绝缘膜207。此膜由氧化硅膜、氮化硅膜、氮氧化硅膜之类组成,以便如小岛状绝缘膜中那样具有50-300nm(最好是100-200nm)的厚度。
然后,用诸如等离子体CVD和溅射之类的熟知的方法,将具有非晶结构的半导体膜208制作成厚度为25-2000nm(最好是30-100nm)。在本实施例中,用等离子体CVD方法制作厚度为55nm的非晶硅膜。具有非晶结构的半导体膜的例子包括非晶半导体膜和微晶半导体膜。可以使用诸如非晶硅锗膜之类的具有非晶结构的化合物半导体膜。而且,由于能够用等离子体CVD方法制作基底绝缘膜207和非晶硅膜208,故可以在降低的压力下连续地制作二种层。在制作基底绝缘膜207之后,借助于不暴露于气氛,致使其表面能够防止沾污,导致待要制作的TFT的特性的变化减小以及阈值电压的起伏减小。
如图9B所示,用腐蚀方法清除非晶半导体膜的不需要的部分,以便形成小岛状半导体膜209-212。小岛状半导体膜的形状和尺寸可以由本技术领域熟练人员恰当地确定。
用单束激光退火方法使小岛状半导体膜209-212结晶。可以使用实施例模式1和2所述的任何一种方法。例如,利用XeC1准分子激光器(波长为308nm)作为激光发生装置,并用激光退火装置中的光学系统形成线状激光,在振荡频率为5-50Hz、能量密度为100-500mJ/cm2、线状束的覆盖比率为80-98%的条件下,进行激光辐照。以这种方式,利用结晶而制作小岛状半导体膜209-212。
然后,用等离子体CVD、低压CVD或溅射方法,制作厚度为50-100nm的氧化硅膜组成的掩模层213。例如,用低压CVD方法,在266Pa和400℃下,利用由SiH4和O2组成的混合气体制作氧化硅膜(图9C)。
在沟道掺杂工艺中,提供了光刻胶掩模15,并在其上待要制作n沟道TFT的小岛状半导体膜209-212的整个表面上,掺入浓度约为每立方厘米1×1016到5×1017原子的硼(B)作为p型杂质元素。可以用离子掺杂的方法来掺入硼(B),或在制作非晶硅膜时掺入。为了控制阈值电压而进行沟道掺杂。沟道掺杂不是制造TFT所要求的步骤,但为了使n沟道TFT的阈值电压落入预定的范围,最好进行沟道掺杂(图9D)。
然后,为了制作驱动电路的n沟道TFT的LDD区,将n型杂质元素选择性地加入到小岛状半导体膜210和211中。此时,预先制作光刻胶掩模215-218。在这一步骤中,为了加入磷(P),用磷烷(PH3)进行离子掺杂。待要制作的杂质区(n-)219、220和221中的磷(P)的浓度被规定为每立方厘米5×1017到5×1018原子(图10A)。而且,杂质区221是用来制作象素部分的存储电容器的半导体膜。建议应该以同样的浓度将磷(P)加入这一区域,以便提高导电率。
接着,用氢氟酸之类清除掩模层213,以便激活在图9D和10A中加入的杂质元素。可以用氮气氛中500℃-600℃下热退火或激光退火1-4小时的方法来进行激活。可以使用热退火和激光退火的组合。在本实施例中,用激光器来进行激活。更具体地说,用由KrF准分子激光(波长为248nm)形成的线状光束,在振荡频率为5-50Hz、能量密度为100-500mJ/cm2的条件下,在其上制作有小岛状半导体膜的衬底的整个表面上进行扫描,这些没有特别的限制,可以由本技术领域的熟练人员恰当地确定。
用等离子体CVD或溅射方法,制作厚度为40-150nm的由含有硅的绝缘膜组成的栅绝缘膜222。例如,栅绝缘膜222由使用SiH4、N2O和O2的等离子体CVD方法制作的氮氧化硅膜组成(图10B)。
接着,制作用来形成栅电极和存储电容器线的第一导电层223和224。导电层可以制作成单层。如果需要,第一导电层可以具有由二层或三层组成的层状结构。在本实施例中,导电层具有由导电金属氮化物膜制成的导电层(A)223和金属膜制成的导电层(B)224组成的层状结构。导电层(B)224可以由选自钽(Ta)、钛(Ti)、钼(Mo)和钨(W)的元素组成;可以由主要含有这些元素的合金组成;或由含有这些元素的组合的合金膜(例如Mo-W合金膜、Mo-Ta合金膜)组成。导电层(A)223由氮化钽(TaN)、氮化钨(WN)、氮化钛(TiN)、氮化钼(MoN)之类组成。而且,导电层(A)223可以由硅化钨、硅化钛、硅化钼之类组成。导电层(B)224中的杂质浓度应该降低,以便降低电阻。特别是,氧的浓度应该是30ppm或更低。例如,借助于规定氧浓度为30ppm或更低,钨(W)能够表现20微欧姆厘米或更低的电阻率。
导电层(A)223的厚度被规定为10-50nm(最好是20-30nm),而导电层(B)224的厚度被规定为200-400nm(最好是250-350nm)。在本实施例中,用溅射方法,分别制作厚度为30nm的TaN膜和厚度为350nm的Ta膜作为导电层(A)223和导电层(B)224。用由氩(Ar)和氮(N)组成的混合气体作为溅射气体,并用Ta作为靶,来制作TaN膜。用氩(Ar)作为溅射气体,来制作Ta膜。而且,当适当数量的Xe或Kr被加入到溅射气体时,待要制作的膜的内应力被弛豫,从而防止了膜的剥离。处于α相的Ta膜,具有大约20微欧姆厘米的电阻,致使能够用作栅电极;然而,处于β相的Ta膜,具有大约180微欧姆厘米的电阻,致使不适合于用作栅电极。TaN膜的晶体结构接近α相。因此,若在TaN膜上制作Ta膜,则能够容易地得到处于α相的Ta膜。虽然未示出,但在导电层(A)223下方制作厚度约为2-20nm的掺有磷(P)的硅膜是有效的。因此,待要制作在硅膜上的导电膜的粘附性被提高,并防止了氧化。而且,能够防止导电层(A)223或导电层(B)224中所含有的痕量碱性金属元素扩散到栅绝缘膜222。在任何情况下,导电层(B)224的电阻最好被设定在10-500微欧姆厘米的范围内(图10C).
接着,制作光刻胶掩模225-229,并一起腐蚀导电层(A)223和导电层(B)224,以便形成栅电极231-234以及存储电容器线235。此时,例如在1-20Pa的反应压力下,用由CF4和O2或Cl2组成的混合气体执行干法腐蚀,栅电极231-234以及电容器线235,由导电层(A)223制成的231a-235a以及导电层(B)制成的231b-235b的组合组成。此时,提供在n沟道TFT中的栅电极232和233,被制作成部分覆盖杂质区219和220(图10D)。而且,栅电极可以仅仅由导电层(B)224组成。
接着,为了制作驱动电路的p沟道TFT的源区和漏区,加入p型杂质元素。此处,用栅电极231作为掩模,以自对准的方式形成杂质区。用光刻胶掩模236覆盖制作n沟道TFT的区域。然后,用离子掺杂方法,用双硼烷(B2H6)形成浓度为每立方厘米1×1021原子的杂质区(p+)237。
接着,在n沟道TFT中,制作起源区或漏区作用的杂质区。制作光刻胶掩模238-241,并加入n型杂质元素以形成杂质区242-246。用磷烷(PH3)进行离子掺杂以形成杂质区,杂质区(n+)242-246中的磷(P)浓度被规定为每立方厘米5×1020原子(图11B)。杂质区242含有先期加入的硼(B);但向此区域加入的磷(P)的浓度仅仅为硼浓度的1/2-1/3,致使无需考虑加入的磷(P)的影响,TFT的特性不会受到影响。
为了制作象素部分的n沟道TFT的LDD区,加入n型杂质元素。此处,用栅电极234作为掩模,用离子掺杂方法,以自对准的方式加入n型杂质元素。待要加入的磷(P)的浓度被规定为每立方厘米5×1016原子,这低于图10A、11A和11B中加入的杂质元素的浓度,致使实际上仅仅形成杂质区(n-)247和248(图11C)。
然后,为了激活以各种浓度加入的n型或p型杂质元素而进行热处理。可以用激光退火方法来进行热处理。在本实施例中,用炉子退火的方法来进行激活。在具有1ppm或更少,最好是0.1ppm或更少的氧浓度的氮气氛中,在400℃-700℃下,通常在500℃-600℃下进行热处理。在本实施例中,在500℃下进行4小时的热处理。
在上述的热退火中,在形成栅电极231-234和电容器线235的Ta膜231b-235b上,形成厚度为5-80nm的由TaN制成的导电层(C)231c-235c。而且,在导电层(B)231b-235b由钨(W)制成的情况下,其上形成氮化钨(WN)层。在导电层(B)231b-235b由钛(Ti)制成的情况下,其上形成氮化钛(TiN)层。而且,即使当栅电极231-234被暴露干使用氮、氨之类的含氮的等离子体气氛时,其上也能够形成相似的层。然后,在含有3-100%的氢的气氛中,于300℃-450℃下,进行1-12小时的热退火,以便对小岛状半导体膜进行氢化。在此步骤中,小岛状半导体膜中的1016-1018/cm3的悬挂键被热激发的氢中断。作为另一种氢化方法,可以进行等离子体氢化(使用等离子体激发的氢)。
若在结晶步骤中使用了促进硅结晶的催化元素,且随后不进行实施例模式2所述的吸杂步骤,则痕量(每立方厘米大约1×1017原子到大约1×1019原子)的催化元素残留在小岛状半导体膜中。无需多说,即使在这种情况下也能够完成TFT;但最好是至少从沟道制作区清除残留的催化元素。清除催化元素的一种方法是利用磷(P)的吸杂功能。吸杂所要求的磷(P)的浓度可以与图11B中制作的杂质区(n+)的相同。由于此处实现的激活步骤中的热退火,催化元素能够从n沟道TFT和p沟道TFT的沟道制作区分凝到杂质区242-246。结果,浓度为每立方厘米大约1×1017原子到大约1×1019原子的催化元素能够分凝到杂质区242-246(图11D)。
在完成激活和氢化步骤之后,制作用来形成栅线的第二导电层。第二导电层由主要含有铝(Al)、铜(Cu)之类的低阻材料的导电层(D)组成。在任何情况下,第二导电层的电阻都被规定为大约0.1~大约10微欧姆厘米。而且,最好制作由钛(Ti)、钽(Ta)、钨(W)、钼(Mo)之类组成的导电层(E)。在本实施例中,导电层(D)249由含有0.1-2%重量比的钛(Ti)的铝(Al)膜组成,而导电层(E)250由钛(Ti)膜组成。导电层(D)249最好制作成厚度为200-400nm(最好是250-350nm),而导电层(E)250最好制作成厚度为50-200nm(最好是100-150nm)(图12A)。
然后,对导电层(E)250和导电层(D)249进行腐蚀以形成连接到栅电极的栅线,从而形成栅线251和252以及电容器线253。首先用干法腐蚀方法,使用由SiCl4和BCl3组成的混合气体进行腐蚀,其中导电层(D)被从导电层(E)的表面清除,从而能够形成栅线,保特对基底膜的选择性加工性能(图12B)。
第一层间绝缘膜254由氧化硅膜或氮氧化硅膜组成,厚度为500-1500nm。在本实施例中,此膜在27SCCM的SiH4、900SCCM的N2O、160Pa的反应压力,325℃的衬底温度和0.15W/cm2的放电功率密度的条件下被制作。然后,制作达及制作在各个小岛状半导体膜上的源区或漏区的接触孔,并形成源线255-258以及漏线259-262。虽然未示出,但在本实施例中,此电极被制作成三层结构,其中用溅射方法连续制作Ti膜(100nm)、含有Ti的铝膜(300nm)和Ti膜(150nm)。
接着,制作厚度为50-500nm(通常为100-300nm)的氮化硅膜、氧化硅膜或氮氧化硅膜作为钝化膜263。若在这种状态下进行氢化,则得到TFT特性的最佳提高结果。例如,可以在含有3-100%的氢的气氛中,于300℃-450℃下进行1-12小时的热处理。作为变通,即使用等离子体氢化方法,也能够得到相似的结果。而且,出现在第一层间绝缘膜254中的氢被这一热处理扩散到小岛状半导体膜209-212,从而能够进行氢化。在任何情况下,都希望规定小岛状半导体膜209-212的缺陷密度为1016/cm3或更低。为此目的,应该加入数量约为0.01-0.1%原子百分比的氢(图12C)。此处,在钝化膜263中制作稍后用来将象素电极连接到漏线的接触孔的位置处,可以制作窗口。
然后,如图13所示,制作厚度为1.0-1.5微米的由有机树脂组成的第二层间绝缘膜264。有机树脂的例子包括聚酰亚胺、丙烯酸树脂、聚酰胺、聚酰亚胺氨化物和BCB(苯并环丁烯)。此处,使用了涂敷到衬底之后被热聚合的聚酰亚胺。聚酰亚胺被烘焙到300℃,以形成第二层间绝缘膜264。然后在第二层间绝缘膜264中制作接触孔,以便达及漏线262,并制作象素电极265和266。在制造透射型液晶显示器的情况下,可以使用透明的导电膜。在制造反射型液晶显示器的情况下,可以使用金属膜。在本实施例中,为了生产透射型液晶显示器,用溅射方法制作了厚度为100nm的选自氧化铟锡(ITO)膜、氧化锌(ZnO)膜和氧化铟/锡/氧化锌膜的透明导电膜。
驱动电路的TFT和象素部分的象素TFT,可以制作在同一个衬底上。在驱动电路中,制作p沟道TFT 301、第一n沟道TFT 302和第二n沟道TFT 303,而在象素部分中,制作象素TFT 304和存储电容器305。为方便起见,在本说明书中,这种衬底被称为有源矩阵衬底。
驱动电路中的p沟道TFT包括小岛状半导体膜209中的沟道制作区306、源区307a和307b、以及漏区308a和308b。第一n沟道TFT 302包括小岛状半导体膜210中的沟道制作区309、覆盖栅电极233的LDD区(Lov)310、源区311、以及漏区312。LDD区(Lov)沿沟道长度方向的长度为0.5-3.0微米,最好是1.0-1.5微米。第二n沟道TFT 303包括小岛状半导体膜211中的沟道制作区313、Lov区和Loff区(不覆盖栅电极的LDD区,以下称为Loff区)。Loff区沿沟道长度方向的长度为0.3-2.0微米,最好是0.5-1.5微米。象素TFT304包括小岛状半导体膜212中的沟道制作区318和319、Loff区320-323、和源区或漏区324-326。Loff区沿沟道长度方向的长度为0.5-3.0微米,最好是1.5-2.5微米。而且,存储电容器305由电容器线253、与栅绝缘膜相同的材料制成的绝缘膜、以及连接到象素TFT 304的漏区326且加入了n型杂质元素的半导体层327组成。在图13中,象素TFT 304具有双栅结构;但可以具有单栅结构或其中提供多个栅电极的多栅结构。
因此,有可能根据象素TFT所要求的特性来优化组成各个电路的TFT的结构,即优化驱动电路,并能够提高半导体器件的工作性能和可靠性。而且,栅电极由具有热阻的导电材料组成,从而能够容易地激活LDD区、源区和漏区。而且,栅线由低阻材料制成,从而能够充分地降低其电阻。于是,本发明能够应用于显示区(屏幕尺寸)为4英寸或更大的显示器。此外,利用具有单晶结构的选择性地制作在小岛状绝缘膜202-206上的结晶硅膜来形成基底膜,能够制造精细的TFT。
实施例2
在实施例2中,解释了利用实施例1的有源矩阵衬底来制造有源矩阵液晶显示器的工艺。在实施例1中图13的状态下,制作了有源矩阵衬底的对准膜。聚酰亚胺树脂常常被用于液晶显示器的对准膜。遮光膜603、透明导电膜604和对准膜605,被制作在相反侧的相反衬底602上。在制作对准膜之后,执行研磨工艺以赋予液晶分子某个固定的预倾斜角。使它们对准。然后,根据熟知的液晶盒构造工艺,其上制作象素部分和CMOS电路的有源矩阵衬底以及相反的衬底,被密封材料或分隔物(图中均未示出)连接到一起。之后,液晶材料606被注入到二个衬底之间,液晶盒从而被密封剂(图中未示出)完全密封。已知的液晶材料可以被用作液晶材料。于是完成了图14所示的有源矩阵液晶显示器。
注意,根据实施例1所示的结构解释了实施例2的有源矩阵液晶显示器,但不局限于实施例1的结构,也可以使用由实施例模式1-3到实施例1所示的工艺所完成的有源矩阵衬底。
实施例3
在本实施例中,利用如图26的观察结果所示的借助于用激光退火方法使小岛状绝缘膜结晶而得到的半导体膜,制造了N沟道TFT。图25A和25B示出了这样制造的N沟道TFT的漏电流(ID)与其栅电压(VG)之间的关系(以下称为ID-VG曲线),并示出了场效应迁移率(μFE)。此处,源电压(VS)被设定为0V,漏电压(VD)被设定为1V或5V。测得的沟道长度(L)为2微米,沟道宽度(W)为4微米。在图25A中,半导体膜的厚度为55nm,而基底绝缘膜的高程差为50nm。为比较起见,图25B示出了在用激光退火结晶的不使用本发明的高程差的半导体膜制造的N沟道TFT上执行相似的测量的结果。
S数值是表示、ID-VG曲线上升部分中的最大倾斜的倒数的数值。当VG=5V时,根据本发明制造的N沟道TFT的S值为0.2-0.4(V/十进位)。当VG=1V时,场效应迁移率(μFE)为120-140(Vm2/Vsec)。得到的这些结果是优异的。
上述的描述证实,本发明的方法能够制造结晶半导体膜,同时控制膜中的晶粒的位置和尺寸。
实施例4
在上述发明的液晶显示器中,除了向列相液晶外,还有可能使用各种各样的其它的液晶。例如,有可能使用下列论文中公开的液晶:H.Furue et al.,″Characteristics and Driving Scheme ofPolymer-stabilized Monostable FLCD Exhibiting Fast ResponseTime and High Contrast Ratio with Gray-scale Capability(具有快速响应时间和带灰度能力的高反差率的聚合物稳定的单稳FLCD的特性和驱动方案)″SID,1998;T.Yashida et al.,″A Full-colorThresholdless Antiferroelectric LCD Exhibiting Wide ViewingAngle with Fast Response Time(具有快速响应时间下的宽视角的全色无阈值反铁电LCD)″SID Digest,841,1997;J. Mater.Chem.,6(4),pp.671-3,1996;S.Inui et al.,″Thresholdlessantiferroelectricity in liquid crystals and its applicationto displays(液晶的无阈值反铁电性及其在显示器中的应用)″,以及美国专利No.5594569.
图15示出了单稳铁电液晶(FLC)的电光特性,其中使用了表现各向同性相-胆甾相-手性近晶C相的相转变系统的FLC,且其中引起了由胆甾相到手性近晶C相的转变,圆锥边沿被作成几乎与施加DC电压时的研磨方向一致。如图15所示的铁电液晶的显示模式被称为“半V开关模式”。图15所示的垂直轴是透射率(任意单位),而水平轴是外加电压。在下列论文中可以找到有关“半V开关模式”的细节:Terada et al.,″Half-V Switching Mode FLCD(半V开关模式FLCD)″,Proceedings of the 46th Japan Society of AppliedPhysics Letters,March 1999,p.1316;Yoshihara et al.,″Time-Division Full Color LCD by Ferroelectric Liquid Crystal(铁电液晶的时分全色LCD)″,Liquid Crystals,vol.3,no.3,p.190。
如图15所示,显然,若使用这种类型的铁电混合液晶,则有可能具有低电压驱动和灰度显示。表现这些电光特性的铁电液晶能够被用于本发明的液晶显示器中。
此外,在某些温度范围内表现反铁电相的液晶,被称为反铁电液晶(AFLC)。作为具有反铁电液晶的混合液晶,有称为无阈值反铁电混合液晶的那些液晶,它表现透射率随电场连续改变的电光响应特性。无阈值反铁电混合液晶表现所谓的V型电光响应特性,而且有些已经被发现具有大约±2.5V的驱动电压(当液晶盒厚度约为1-2微米时)。
再者,无阈值反铁电混合液晶的自发极化很大,且液晶本身的介电常数高。因而,当元阈值反铁电混合液晶被用于液晶显示器时,象素中的存储电容器必须比较大。因此,最好是使用具有小的自发极化的无阈值反铁电混合液晶。
注意,利用本发明的液晶显示器中的这种无阈值反铁电混合液晶,能够实现低的驱动电压,因此也能够实现低的功耗。
实施例5
借助于实施本发明而制作的CMOS电路和象素部分,能够被用于各种各样的电光器件中(诸如有源矩阵液晶显示器、有源矩阵EL显示器、有源矩阵EC显示器之类)。亦即,本发明能够在这些电光器件被建造在显示部分中的所有电子装置中实施。
这种电子装置如下:摄象机、数码相机、投影仅(背面型或正面型)、头戴式显示器(目镜型显示器)、个人电脑、以及便携信息终端(诸如移动电脑、移动电话或电子记事本)。图16、17和18示出了这些装置的例子。
图16A是一种个人电脑,它包括主体2001、图象输入部分2002、显示部分2003和键盘2004等。本发明能够应用于图象输入部分2002、显示部分2003或其它信号控制电路。
图16B是一种摄象机,它包括主体2101、显示部分2102、声频输入部分2103、操作开关2104、电池2105和图象接收部分2106等。本发明能够应用于显示部分2102或其它信号控制电路。
图16C是移动电脑,它包括主体2201、相机部分2202、图象接收部分2203、操作开关2204和显示部分2205。本发明能够应用于显示部分2205或其它信号控制电路。
图16D是一种目镜型显示器,它包括主体2301、显示部分2302、镜臂部分2303等。本发明能够应用于显示部分2302或其它信号控制电路。
图16E是一种游戏机,它使用其上记录了程序的记录媒质(以下称为记录媒质),此游戏机包括主体2401、显示部分2402、扬声器部分2403、记录媒质2404和操作开关2405等。注意,此游戏机使用了诸如DVD(数码万用盘)或CD之类的记录媒质,并能够执行音乐欣赏、影片欣赏、玩游戏和上网。本发明能够应用于显示部分2402或其它信号控制电路。
图16F是一种数码相机,它包括主体2501、显示部分2502、目镜部分2503、操作开关2504和图象接收部分(图中未示出)等。本发明能够应用于显示部分2502或其它信号控制电路。
图17A是一种正面型投影仪,它包括投影系统2601、屏幕2602等。本发明能够应用于组成部分投影系统2601的液晶显示器2808或其它信号控制电路。
图17B是一种背面型投影仪,它包括主体2701、投影系统2702、平面镜2703、屏幕2704等。本发明能够应用于构成部分投影系统2702的液晶显示器2808或其它信号控制电路。
注意,图17C示出了图17A和17B的投影系统2601和2702的结构的例子。投影系统2601和2702包含光学光源系统2801、平面镜2802和2804-2806、分光平面镜2803、棱镜2807、液晶显示器2808、相位微分片2809和投影光学系统2810。投影光学系统2810包含包括投影透镜的光学系统。本实施例表现为三片型,但不局限于这种结构,例如也可以是单片型。而且,操作人员可以将诸如光学透镜、具有光偏振功能的膜、用来调整相位差的膜和IR膜之类的光学系统恰当地排列在图17C中箭头所示的光路中。
此外,图17D示出了图17C的光学光源系统2801的结构的例子。在本实施例中,光学光源系统2801包含反射器2811、光源2812、透镜阵列2813和2814、光偏振转换元件2815和会聚透镜2816。注意,图17D所示的光学光源系统仅仅是一个例子,并无具体的限制。例如,操作人员可以将诸如光学透镜、具有光偏振功能的膜、用来调整相位差的膜和IR膜之类的光学系统恰当地排列在光学光源系统中。
然而,图17所示的投影仪表现了使用透射型电光器件的情况,而图中未示出反射型电光器件的应用例子。
图18A是一种移动电话,它包括主体2901、声频输出部分2902、声频输入部分2903、显示部分2904、操作开关2905和天线2906等。本发明能够应用于声频输出部分2902、声频输入部分2903、显示部分2904或其它信号控制电路。
图18B是一种移动记事本(电子记事本),它包括主体3001、显示部分3002和3003、记录媒质3004、操作开关3005和天线3006等。本发明能够应用于显示部分3002和3003或其它信号控制电路。
图18C是一种显示器,它包括主体3101、支座3102和显示部分3103等。本发明能够应用于显示部分3103。本发明的显示器由于屏幕尺寸大而特别有优点,并由于沿对角转显示等于或大于10英寸(特别是等于或等于30英寸)而有优点。
本发明可应用的范围因而极为广阔,有可能将本发明应用于所有领域的电子装置。而且,利用组成实施例模式1-4和实施例1-3的组合,能够实现本实施例的电子装置。
实施例6
在本实施例中,将描述用本发明来制作EL(电致发光)显示器的情况。
图19A是采用本发明的EL显示屏的俯视图。在图19A中,参考号4010表示衬底,4011表示象素部分,4012表示源侧驱动电路,而4013表示栅侧驱动电路。各个驱动电路通过线4014-4016被连接到FPC 4017,以便被连接到外部设备。
此时,制作覆盖材料6000、密封材料(也称为外罩材料)7000和气密性密封材料(第二密封材料)7001,以便至少包封象素部分,最好是包封驱动电路和象素部分二者。
而且,图19B是本实施例中的EL显示器的剖面图。在衬底4010和基底膜4021上,制作驱动电路的TFT 4022(此处示出了一个CMOS电路,它是n沟道TFT与p沟道TFT的组合)和象素部分的TFT 4023(此处仅仅示出了用来控制到EL元件的电流的TFT)。
本发明能够被用于驱动电路的TFT 4022和象素部分的TFT4023。
在用本发明完成驱动电路的TFT 4022和象素部分的TFT 4023之后,在树脂材料制成的层间绝缘膜(整平膜)4026上,制作电连接到象素部分的TFT 4023的漏的由透明导电膜制成的象素电极4027。可以用氧化铟和氧化锡的化合物(称为ITO)或氧化铟和氧化锌的化合物作为透明导电膜。当制作象素电极4027时,制作绝缘膜4028,并在象素电极4027上制作窗口。
接着,制作EL层4029。EL层4029可以具有包括由熟知的EL材料制成的层(空穴注入层、空穴输运层、光发射层、电子输运层、或电子注入层)的适当组合的层状结构或单层结构。可以用熟知的方法得到这样的层。而且,EL材料的例子包括小分子量材料和聚合物材料。在使用小分子量材料的情况下,采用汽相淀积方法,另一方面,在使用聚合物材料的情况下,可以采用诸如甩涂、印刷或喷墨方法之类的简单方法。
在本实施例中,用汽相淀积方法。使用屏蔽掩模来制作EL层。借助于用屏蔽掩模在象素基础上制作能够发射不同波长的光的光发射层(红光发射层、绿光发射层和蓝光发射层),能够执行彩色显示。此外,可以使用彩色转换层(CCM)和彩色滤波器的组合或白光发射层和彩色滤波器的组合。无需多说,也可以使用发射单色光的EL显示器。
当制作EL层4029时,在其上制作阴极4030。尽可能多地清除阴极4030与EL层4029之间的界面处存在的潮气和氧,是可取的。于是,要求在真空中连续地制作EL层4029和阴极4030,或在不活泼的气氛中制作EL层4029,并在EL层4029不暴露于外界空气的情况下制作阴极4030。为此目的,在本实施例中,使用多工作室系统(集结工具系统)组成的薄膜制作装置。
在本实施例中,由LiF(氟化锂)膜和Al(铝)膜组成的层状结构被用作阴极4030。更具体地说,用汽相淀积方法,在EL层4029上制作厚度为1nm的LiF膜,并在其上制作厚度为300nm的Al膜。也可以使用熟知的阴极材料MgAg电极。阴极4030被连接到参考号4031所示的区域中的线4016。线4016是用来将预定电压馈送到阴极4030的电源馈线,并经由导电膏材料4032被连接到FPC 4017。
为了将阴极4030电连接到区域4031中的线4016,要求在层间绝缘膜4026和绝缘膜4028中制作接触孔。此接触孔可以在腐蚀层间绝缘膜4026的过程中(制作象素电极的接触孔的过程中)或在腐蚀绝缘膜4028的过程中(制作EL层之前的窗口制作过程中)制作。而且,当绝缘膜4028被腐蚀时,层间绝缘膜4026也可以被一起腐蚀。此时,若层间绝缘膜4026和绝缘膜4028由相同的树脂材料制成,则接触孔的形状能够制作得令人满意。
制作覆盖这样制得的EL元件的表面的钝化膜6003、填充材料6004和覆盖材料6000。
此外,在覆盖材料6000与衬底4010之间制作密封材料,以便环绕EL元件部分,并在密封材料7000外面制作气密性密封材料(第二密封材料)7001。
此时,填充材料6004用作键合覆盖材料6000的粘合剂。PVC(聚氯乙烯),环氧树脂、硅树脂、PVB(聚乙烯丁缩醛)、和EVA(乙烯乙酸乙烯酯)。可以被用作填充材料6004。若在填充材料6004的内部制作干燥剂,则能够连续保持吸潮作用,这是最好不过的。
而且,在填充材料6004中可以含有分隔物。此分隔物可以是诸如BaO之类的粉末状物质,使分隔物本身具有吸潮的能力。
在提供分隔物之后,钝化膜6003能够释放分隔物压力。而且,能够与钝化膜分隔地制作诸如树脂膜之类的膜,以便释放分隔物压力。
而且,玻璃片、铝片、不锈钢片、FRP(玻璃纤维加固的塑料)片、PVF(聚氟乙烯)膜、聚酯(密拉)膜、聚酯膜和丙烯酸膜可以用作覆盖材料6000。注意,若PVB或EVA被用作填充材料6004,则最好使用具有几十微米的铝箔被PVF膜或聚酯(密拉)膜夹在中间的结构的薄片。
此外,根据光从EL元件发射的方向(光辐射方向),覆盖材料6000必须具有透光特性。
而且,线4016通过气密性密封材料7001与衬底4010之间的间隙被电连接到FPC 4017。注意,虽然此处已经解释了线4016,但线4014和4015也借助于相似地通过密封材料7000和气密性密封材料7001下方而被电连接到FPC 4017。
实施例7
在本实施例中,描述了制作具有不同于实施例6的结构的EL显示器的例子。参考号与图19A和19B相同的零件表示相同的部分,因而略去其解释。
图20A是实施例7的EL显示器的俯视图,而图20B示出了沿图20A中的线A-A′的剖面图。
根据实施例6,通过制作覆盖EL元件的表面的钝化膜6003而进行制造。
此外,制作填充材料6004以便覆盖EL元件。填充材料6004还用作键合覆盖材料6000的粘合剂。PVC(聚氯乙烯)、环氧树脂、硅树脂、PVB(聚乙烯丁缩醛)、和EVA(乙烯乙酸乙烯酯),可以被用作填充材料6004。若在填充材料6004的内部制作干燥剂,则能够连续保持吸潮作用,这是最好不过的。
而且,在填充材料6004中可以含有分隔物。此分隔物可以是诸如BaO之类的粉末状物质,使分隔物本身具有吸潮的能力。
在提供分隔物时,钝化膜6003能够释放分隔物压力。而且,能够与钝化膜分隔地制作诸如树脂膜之类的膜,以便释放分隔物压力。
而且,玻璃片、铝片、不锈钢片、FRP(玻璃纤维加固的塑料)片、PVF(聚氟乙烯)膜、聚酯(密拉)膜、聚酯膜和丙烯酸膜,可以被用作覆盖材料6000。注意,若PVB或EVA被用作填充材料6004,则最好使用具有几十微米的铝箔被PVF膜或聚酯(密拉)膜夹在中间的结构的薄片。
然而,根据光从EL元件发射的方向(光辐射方向),覆盖材料6000必须具有透光特性。
在用填充材料6004键合覆盖材料6000之后,固定框架材料6001,以便覆盖填充材料6004的横行表面(暴露的表面)。框架材料6001被密封材料(用作粘合剂)6002键合。最好使用光硬化树脂作为此时的密封材料6002,但倘若EL层的热阻特性允许的话,则也可以使用热硬化树脂。注意,密封材料6002最好是尽可能不透潮气和氧的材料。而且,也可以将干燥剂加入到密封材料6002的内部。
线4016通过密封材料6002与衬底4010之间的间隙被电连接到FPC 4017。注意,虽然此处已经解释了线4016,但线4014和4015也借助于相似地通过密封材料6002下方而被电连接到FPC 4017。
实施例8
此处在图21中,示出了EL显示屏中的象素部分的更详细的剖面结构。图22A示出了顶部结构,而图22B示出了电路图。在图21、图22A和22B中,使用了公共的参考号,可以彼此参照。
在图21中,利用根据本发明的n沟道TFT,制作了提供在衬底3501上的用于开关的TFT 3502。(见实施例模式1-3和实施例1-2)由于双栅结构,故有二个TFT基本上被串联连接,从而降低了关态电流数值的优点。可以具有双栅结构、单栅结构、三栅结构或具有更多的栅的多栅结构。
用根据本发明的NTFT来形成控制电流的TFT 3503。开关FFT3502的漏线35,经由线36被电连接到控制电流的TFT的栅电极37。而且,线38是电连接到开关TFT 3502的栅电极39a和39b的栅线。
此时,至关重要的是,控制电流的TFT 3503具有根据本发明的结构。控制电流的TFT用来控制流过EL元件的电流的数量,致使TFT可能由于流过其中的大量电流造成的热和热载流子而退化。因此,本发明的结构是非常有效的,其中LDD区被提供在控制电流的TFT的漏侧,致使经由栅绝缘膜而覆盖栅电极。
而且,在本实施例中,控制电流的TFT 3503具有单栅结构。但也可以具有多栅结构,其中多个TFT被串联连接。此外,也有可能多个TFT被并联连接,以基本上将沟道制作区分成多个部分,致使导致高效率散热。这种结构对于防止热造成的退化是有效的。
如图22A所示,作为控制电流的TFT 3503的栅电极37的线,经由区域3504中的绝缘膜而覆盖TFT 3503的漏线40。在区域3504中制作电容器。电容器3504用来维持施加到TFT 3503的栅上的电压。漏线40被电连接到电流馈线(电源线)3506,致使总是被馈以恒定电压。
在开关TFT 3502和控制电流的TFT 3503上,提供第一钝化膜41,并在其上制作由树脂绝缘膜制成的整平膜。利用整平膜42来整平TFT造成的高程差是非常重要的。由于稍后要制作的EL层非常薄,故高程差可以引起发光缺陷。于是,希望在制作象素电极之前整平高程差,以便EL层被制作在平坦的表面上。
此外,参考号43表示由具有高反射率的导电膜制成并连接到控制电流的TFT 3503的漏的象素电极(EL元件的阴极)。最好可以使用诸如铝合金膜、铜合金膜和银合金膜或其层状结构之类的低阻导电膜作为象素电极43。无需多说,也可以使用具有其它导电膜的层状结构。
在由绝缘膜(最好是树脂)制成的边坡44a和44b构成的沟槽(对应于象素)中,制作光发射层45。此处,仅仅示出了一个象素;但可以制作对应于R(红色)、G(绿色)和B(兰色)各个颜色的光发射层。π共轭聚合物材料被用作光发射层的有机EL材料。典型的聚合物材料的例子包括聚对苯乙烯(PPV)、聚乙烯基咔唑(PVK)和聚芴。
有各种类型的PPV有机EL材料。例如,可以使用论文H.Shenk,Becker,O.Gelsen,E.Kluge,W.Kreuder and H.Spreitzer,″Polymers for Light Emitting Diodes(发光二极管用聚合物)″,Euro Display,Prodeedings,1999,pp.33-37和日本专利公开No.10-92576中所述的材料。
更具体地说,可以用氰聚苯乙烯作为发射红光的光发射层。可以用聚苯乙烯作为发射绿光的光发射层。可以用聚苯乙烯域聚亚烷基苯作为发射蓝光的光发射层。膜的厚度可以规定为30-150nm(最好是40-100nm)。
上述有机EL材料仅仅是用作光发射层的一些例子。本发明不局限于此。光发射层、电荷输运层或电荷注入层可以适当地组合成为EL层(用于光发射和移动其载流子)。
例如,在本实施例中,已经描述了聚合物材料被用于光发射层的情况。然而,可以使用分子量小的有机EL材料。而且,也可以用诸如碳化硅之类的无机材料作为电荷输运层和电荷注入层。熟知的材料可以被用作这些有机EL材料和无机材料。
在本实施例中,使用了具有层状结构的EL层,其中在光发射层45上提供了由PEDOT(聚噻吩)或PAni(聚苯胺)制成的空穴注入层46,并在空穴注入层46上提供由透明导电膜制成的阳极47。在本实施例中,光发射层45产生的光,向上表面(向TFT的上部)辐射,故阳极47必须对光透明。氧化铟和氧化锡的化合物,或氧化铟和氧化锌的化合物,可以被用作透明导电膜。在制作光发射层和具有低的热阻的空穴注入层之后,制作透明导电膜,以便最好使用能够在可能低的温度下制作的透明导电膜。
当制作阳极47时,就完成了EL元件3503。EL元件3503即由象素电极(阴极)43、光发射层45、空穴注入层46和阳极47组成的电容器。如图22A所示,象素电极43基本上对应于象素的整个区域。因此,整个象素用作EL元件。于是,能够执行具有非常高的光使用效率的光图形显示。
在本实施例中,在阳极47上还制作了第二钝化膜48。最好采用氮化硅膜或氮氧化硅膜作为第二钝化膜48。钝化膜48的目的是防止EL元件被暴露于外面。亦即,钝化膜48保护有机EL材料免于氧化造成的退化,并抑制气体从有机EL材料释放。因此,提高了EL显示器的可靠性。
如上所述,本发明能EL显示屏具有由具有图21所示结构的象素组成的象素部分,并电括具有足够低的关态电流的开关TFT和控制为注入热载流子而很强的电流的TFT。这样就得到了具有高可靠性并能够显示令人满意的图象的EL显示屏。
借助于与实施例模式1-3和实施例1-4进行适当的组合,能够实现本实施例。而且,使用本实施例的EL显示屏作为实施例4的电子装置的显示部分是有效的。
实施例9
在本实施例中,将参照图23来描述RL元件3503与实施例8所述象素部分相反的情况。与图21所述结构不同之处仅仅在于EL件和控制电流的TFT,从而略去了其它零件的描述。
在图23中,控制电流的TFT 3503由根据本发明的p沟道TFT组成。至于生产工艺,应该参照实施例模式1-3和实施例1-4。
在本实施例中,透明导电膜被用作象素电极(阳极)50。更具体地说,采用了由氧化铟和氧化锌组成的化合物制成的导电膜。无需多说,也可以采用由氧化铟和氧化锡组成的化合物制成的导电膜。
在制作由绝缘膜制成的边坡51a和51b之后,用涂敷溶液的方法制作由聚乙烯基咔唑制成的光发射层52。在光发射层52上,制作由乙酰丙酮钾(acacK)制成的电子注入层53和由铝合金制成的阴极54。此时,阴极54用作钝化膜。这样就形成了EL元件3701。
在本实施例中,光发射层52产生的光,如箭头所示向着其上制作TFT的衬底辐射。
借助于与实施例模式1-3和实施例1-4进行适当的组合,能够实现本实施例。而且,使用本实施例的EL显示屏作为实施例5的电子装置的显示部分是有效的。
实施例10
在本实施例中,参照图24A-24C,来描述使用结构不同于图22B所示电路的象素的情况。注意,参考号3801表示开关TFT 3802的源线,3803表示开关TFT 3802的栅线,3804表示控制电流的TFT,3805表示电容器,3806和3808表示电流馈线,而3807表示EL元件。
图24A示出了二个象素共用电流馈线3806的情况。更具体地说,二个象素被制作成相对于电流馈线而轴对称。此时,能够减少电源馈线的数目,致使能够使象素部分具有更高的分辨率。
而且,图24B示出了电流馈线3808与栅线3803被平行提供的情况。注意在图24B中,电流馈线3808不覆盖栅线3803,若二种线被制作在不同的层上,则它们可以被提供成经由绝缘膜而相互覆盖。此时,电流馈线3808和栅线3803可以共用所占据的区域,致使象素部分能够具有更高的分辨率。
此外,图24C示出了以与图24B相同的方法平行提供电流馈线3808和栅线3803且二个象素被制作成相对于电流馈线3808而轴对称的情况。将电流馈线3808提供成覆盖一个栅线3803也是有效的。此时,能够减少电源馈线的数目,致使能够使象素部分具有更高的分辨率。
借助于与实施例模式1-3和实施例1-4进行适当的组合,能够实现本实施例。而且,使用具有本实施例的象素结构的EL显示屏作为实施例5的电子装置的显示部分是有效的。
实施例11
在实施例8的图22A和22B中,提供了电容器3504,以便维持施加到控制电流的TFT 3503的栅上的电压。然而,可以略去电容器3504。在实施例7的情况下,由于本发明实施例模式1-3和实施例1-4所示的n沟道TFT被用作控制电流的TFT 3503,故TFT具有提供成经由栅绝缘膜而覆盖栅电极的LDD区。在此区域中,通常形成称为栅电容器的寄生电容器。本实施例的特征是,此寄生电容器被主动地用来代替电容器3504。
寄生电容器的电容依赖于栅电极覆盖LDD区的上述区域而改变。因此,电容被包括此区域的LDD区的长度确定。
同样,在实施例10的图24A、24B和24C所示的结构中,也可以略去电容器3805。
借助于与实施例模式1-3和实施例1-4的结构进行适当的组合,能够实现本实施例。而且,使用具有本实施例的象素结构的EL显示屏作为实施例5的电子装置的显示部分是有效的。
利用本发明的方法,有可能制作结晶半导体膜,同时控制膜中的晶粒的位置和尺寸。因而可以根据TFT的沟道制作区来形成结晶半导体膜的晶粒的位置,从而按指数地改善TFT的静态特性和动态特性。

Claims (8)

1.一种半导体器件,包含:
制作在衬底表面上的基底绝缘膜;
制作在所述基底绝缘膜上的小岛状绝缘膜;
制作成覆盖所述小岛状绝缘膜的顶部和侧面以及所述基底绝缘膜的半导体膜;
制作在所述半导体膜上的栅绝缘膜;以及
制作在所述栅绝缘膜上的栅电极,
其中所述小岛状绝缘膜具有矩形形状,且内部具有窗口。
2.根据权利要求1的半导体器件,其中所述小岛状绝缘膜为矩形,并被制作成与所述半导体膜相交。
3.根据权利要求1的半导体器件,其中在位于小岛状绝缘膜上的部分所述半导体膜中,制作沟道形成区。
4.根据权利要求1的半导体器件,其中所述小岛状绝缘膜的厚度为50-500nm。
5.根据权利要求1的半导体器件,其中所述衬底是由钡硼硅酸盐玻璃或铝硼硅酸盐玻璃制成的非碱性玻璃衬底。
6.根据权利要求1的半导体器件,其中所述小岛状绝缘膜具有透光性和绝缘性。
7.根据权利要求1的半导体器件,其中所述小岛状绝缘膜的热传导率是10Wm-1K-1以上。
8.根据权利要求1的半导体器件,其中所述半导体器件用于下列电子装置:个人电脑、摄像机、目镜型显示器、使用记录媒质的游戏机、数码相机、正面型投影仪和背面型投影仪。
CNB2006100999764A 1999-12-10 2000-12-11 半导体器件及其制造方法 Expired - Fee Related CN100505313C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP351060/1999 1999-12-10
JP35106099 1999-12-10

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CNB200510006329XA Division CN100352022C (zh) 1999-12-10 2000-12-11 半导体器件及其制造方法

Publications (2)

Publication Number Publication Date
CN1901229A CN1901229A (zh) 2007-01-24
CN100505313C true CN100505313C (zh) 2009-06-24

Family

ID=18414781

Family Applications (3)

Application Number Title Priority Date Filing Date
CN00135261XA Expired - Fee Related CN1217417C (zh) 1999-12-10 2000-12-11 半导体器件及其制造方法
CNB200510006329XA Expired - Fee Related CN100352022C (zh) 1999-12-10 2000-12-11 半导体器件及其制造方法
CNB2006100999764A Expired - Fee Related CN100505313C (zh) 1999-12-10 2000-12-11 半导体器件及其制造方法

Family Applications Before (2)

Application Number Title Priority Date Filing Date
CN00135261XA Expired - Fee Related CN1217417C (zh) 1999-12-10 2000-12-11 半导体器件及其制造方法
CNB200510006329XA Expired - Fee Related CN100352022C (zh) 1999-12-10 2000-12-11 半导体器件及其制造方法

Country Status (2)

Country Link
US (2) US6653657B2 (zh)
CN (3) CN1217417C (zh)

Families Citing this family (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6599788B1 (en) * 1999-08-18 2003-07-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of fabricating the same
US6780687B2 (en) * 2000-01-28 2004-08-24 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device having a heat absorbing layer
US7078321B2 (en) 2000-06-19 2006-07-18 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
US6605826B2 (en) 2000-08-18 2003-08-12 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and display device
US6599818B2 (en) * 2000-10-10 2003-07-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device manufacturing method, heat treatment apparatus, and heat treatment method
US7217605B2 (en) * 2000-11-29 2007-05-15 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation method and method of manufacturing a semiconductor device
JP2002176000A (ja) * 2000-12-05 2002-06-21 Semiconductor Energy Lab Co Ltd 熱処理装置及び半導体装置の製造方法
US6759313B2 (en) * 2000-12-05 2004-07-06 Semiconductor Energy Laboratory Co., Ltd Method of fabricating a semiconductor device
US7534977B2 (en) * 2000-12-28 2009-05-19 Semiconductor Energy Laboratory Co., Ltd. Heat treatment apparatus and method of manufacturing a semiconductor device
US6809012B2 (en) * 2001-01-18 2004-10-26 Semiconductor Energy Laboratory Co., Ltd. Method of making a thin film transistor using laser annealing
JP4663139B2 (ja) 2001-02-16 2011-03-30 株式会社半導体エネルギー研究所 半導体装置の作製方法
TW480735B (en) * 2001-04-24 2002-03-21 United Microelectronics Corp Structure and manufacturing method of polysilicon thin film transistor
TW548860B (en) 2001-06-20 2003-08-21 Semiconductor Energy Lab Light emitting device and method of manufacturing the same
US7211828B2 (en) 2001-06-20 2007-05-01 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and electronic apparatus
JP2003109773A (ja) * 2001-07-27 2003-04-11 Semiconductor Energy Lab Co Ltd 発光装置、半導体装置およびそれらの作製方法
US6847006B2 (en) * 2001-08-10 2005-01-25 Semiconductor Energy Laboratory Co., Ltd. Laser annealing apparatus and semiconductor device manufacturing method
SE0103047D0 (sv) * 2001-09-14 2001-09-14 Acreo Ab Process relating to polymers
KR100483985B1 (ko) * 2001-11-27 2005-04-15 삼성에스디아이 주식회사 박막 트랜지스터용 다결정 실리콘 박막 및 이를 사용한디바이스
JP2003168645A (ja) * 2001-12-03 2003-06-13 Hitachi Ltd 半導体薄膜装置、その製造方法及び画像表示装置
EP1326273B1 (en) * 2001-12-28 2012-01-18 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR100426031B1 (ko) * 2001-12-29 2004-04-03 엘지.필립스 엘시디 주식회사 능동행렬 유기전기발광소자 및 그의 제조 방법
JP4137460B2 (ja) * 2002-02-08 2008-08-20 株式会社半導体エネルギー研究所 半導体装置の作製方法
JP3961310B2 (ja) 2002-02-21 2007-08-22 株式会社半導体エネルギー研究所 半導体装置の作製方法
TWI267131B (en) * 2002-03-05 2006-11-21 Semiconductor Energy Lab Semiconductor element and semiconductor device using the same
US6847050B2 (en) 2002-03-15 2005-01-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor element and semiconductor device comprising the same
TWI288443B (en) 2002-05-17 2007-10-11 Semiconductor Energy Lab SiN film, semiconductor device, and the manufacturing method thereof
US7474045B2 (en) * 2002-05-17 2009-01-06 Semiconductor Energy Laboratory Co., Ltd. Display device having TFT with radiation-absorbing film
JP2004071696A (ja) * 2002-08-02 2004-03-04 Semiconductor Energy Lab Co Ltd 半導体装置及びその作製方法
US7605023B2 (en) * 2002-08-29 2009-10-20 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method for a semiconductor device and heat treatment method therefor
JP4627961B2 (ja) * 2002-09-20 2011-02-09 株式会社半導体エネルギー研究所 半導体装置の作製方法
JP2004281998A (ja) * 2003-01-23 2004-10-07 Seiko Epson Corp トランジスタとその製造方法、電気光学装置、半導体装置並びに電子機器
JP2004335839A (ja) * 2003-05-09 2004-11-25 Nec Corp 半導体薄膜、薄膜トランジスタ、それらの製造方法および半導体薄膜の製造装置
US7294874B2 (en) * 2003-08-15 2007-11-13 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation method, method for manufacturing a semiconductor device, and a semiconductor device
US7138316B2 (en) * 2003-09-23 2006-11-21 Intel Corporation Semiconductor channel on insulator structure
JP2006019466A (ja) * 2004-07-01 2006-01-19 Hitachi Displays Ltd 薄膜半導体装置とその製造方法、およびこの薄膜半導体装置を用いた画像表示装置
JP4063266B2 (ja) * 2004-09-30 2008-03-19 セイコーエプソン株式会社 薄膜半導体装置の製造方法、薄膜半導体装置、電気光学装置、および電子機器
US7235501B2 (en) 2004-12-13 2007-06-26 Micron Technology, Inc. Lanthanum hafnium oxide dielectrics
US7560395B2 (en) 2005-01-05 2009-07-14 Micron Technology, Inc. Atomic layer deposited hafnium tantalum oxide dielectrics
US7550382B2 (en) * 2005-05-31 2009-06-23 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device, evaluation method of semiconductor device, and semiconductor device
US8115206B2 (en) 2005-07-22 2012-02-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US7972974B2 (en) 2006-01-10 2011-07-05 Micron Technology, Inc. Gallium lanthanide oxide films
US7776765B2 (en) 2006-08-31 2010-08-17 Micron Technology, Inc. Tantalum silicon oxynitride high-k dielectrics and metal gates
US7605030B2 (en) 2006-08-31 2009-10-20 Micron Technology, Inc. Hafnium tantalum oxynitride high-k dielectric and metal gates
US7544604B2 (en) 2006-08-31 2009-06-09 Micron Technology, Inc. Tantalum lanthanide oxynitride films
US7563730B2 (en) 2006-08-31 2009-07-21 Micron Technology, Inc. Hafnium lanthanide oxynitride films
US7432548B2 (en) 2006-08-31 2008-10-07 Micron Technology, Inc. Silicon lanthanide oxynitride films
US7759747B2 (en) 2006-08-31 2010-07-20 Micron Technology, Inc. Tantalum aluminum oxynitride high-κ dielectric
JP2008252068A (ja) * 2007-03-08 2008-10-16 Semiconductor Energy Lab Co Ltd 半導体装置及びその作製方法
JP5371144B2 (ja) 2007-06-29 2013-12-18 株式会社半導体エネルギー研究所 半導体装置及び半導体装置の作製方法、並びに電子機器
US8048749B2 (en) * 2007-07-26 2011-11-01 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
JP4465405B2 (ja) * 2008-02-27 2010-05-19 Hoya株式会社 フォトマスクブランクおよびフォトマスク並びにこれらの製造方法
JP2010123758A (ja) * 2008-11-19 2010-06-03 Nec Corp 薄膜デバイス及びその製造方法
US8878288B2 (en) 2011-04-22 2014-11-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8809854B2 (en) 2011-04-22 2014-08-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8916868B2 (en) 2011-04-22 2014-12-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
US8932913B2 (en) * 2011-04-22 2015-01-13 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device
US8847233B2 (en) 2011-05-12 2014-09-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having a trenched insulating layer coated with an oxide semiconductor film
CN102315120B (zh) * 2011-09-02 2015-02-04 上海芯导电子科技有限公司 降低半导体芯片漏电流的方法
US20130082357A1 (en) * 2011-10-04 2013-04-04 International Business Machines Corporation Preformed textured semiconductor layer
US20130126508A1 (en) * 2011-11-17 2013-05-23 Texas Instruments Incorporated Extending Radiation Tolerance By Localized Temperature Annealing Of Semiconductor Devices
CN103824780B (zh) * 2014-02-28 2016-03-30 上海和辉光电有限公司 一种低温多晶硅tft器件及其制造方法
KR20220069118A (ko) 2014-07-15 2022-05-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치와 그 제작 방법, 및 상기 반도체 장치를 포함하는 표시 장치
CN109509793B (zh) * 2017-09-15 2020-12-01 京东方科技集团股份有限公司 薄膜晶体管、其制造方法及电子装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4692994A (en) * 1986-04-29 1987-09-15 Hitachi, Ltd. Process for manufacturing semiconductor devices containing microbridges

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4422090A (en) * 1979-07-25 1983-12-20 Northern Telecom Limited Thin film transistors
JPS58218169A (ja) 1982-06-14 1983-12-19 Seiko Epson Corp 半導体集積回路装置
CA2011670A1 (en) * 1989-03-20 1990-09-20 Diane L. Furio Absorbent structures with odor control
JPH046A (ja) * 1990-04-17 1992-01-06 Komatsu Ltd 汚染物質混合油供給装置
US5056099A (en) * 1990-09-10 1991-10-08 General Dynamics Corp., Electronics Division Rugate filter on diode laser for temperature stabilized emission wavelength
JP3277548B2 (ja) 1991-05-08 2002-04-22 セイコーエプソン株式会社 ディスプレイ基板
JP3255942B2 (ja) * 1991-06-19 2002-02-12 株式会社半導体エネルギー研究所 逆スタガ薄膜トランジスタの作製方法
US5766344A (en) * 1991-09-21 1998-06-16 Semiconductor Energy Laboratory Co., Ltd. Method for forming a semiconductor
JP3173854B2 (ja) * 1992-03-25 2001-06-04 株式会社半導体エネルギー研究所 薄膜状絶縁ゲイト型半導体装置の作製方法及び作成された半導体装置
JPH065862A (ja) 1992-06-22 1994-01-14 Casio Comput Co Ltd 薄膜トランジスタの製造方法
JPH0629321A (ja) * 1992-07-09 1994-02-04 Casio Comput Co Ltd 薄膜トランジスタおよびその製造方法
JP3431682B2 (ja) * 1993-03-12 2003-07-28 株式会社半導体エネルギー研究所 半導体回路の作製方法
JP3193803B2 (ja) * 1993-03-12 2001-07-30 株式会社半導体エネルギー研究所 半導体素子の作製方法
US5594569A (en) 1993-07-22 1997-01-14 Semiconductor Energy Laboratory Co., Ltd. Liquid-crystal electro-optical apparatus and method of manufacturing the same
JP2762215B2 (ja) * 1993-08-12 1998-06-04 株式会社半導体エネルギー研究所 薄膜トランジスタおよび半導体装置の作製方法
JPH0766420A (ja) * 1993-08-31 1995-03-10 Matsushita Electric Ind Co Ltd 薄膜の加工方法
US5923962A (en) 1993-10-29 1999-07-13 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a semiconductor device
JP3431033B2 (ja) 1993-10-29 2003-07-28 株式会社半導体エネルギー研究所 半導体作製方法
TW264575B (zh) 1993-10-29 1995-12-01 Handotai Energy Kenkyusho Kk
JPH07131029A (ja) * 1993-11-04 1995-05-19 Casio Comput Co Ltd 薄膜トランジスタの製造方法
JPH09213630A (ja) * 1996-02-05 1997-08-15 Semiconductor Energy Lab Co Ltd 半導体装置の作製方法
JP3476320B2 (ja) 1996-02-23 2003-12-10 株式会社半導体エネルギー研究所 半導体薄膜およびその作製方法ならびに半導体装置およびその作製方法
JP3369055B2 (ja) * 1996-09-06 2003-01-20 シャープ株式会社 薄膜半導体装置及びその製造方法
JP3645377B2 (ja) 1996-10-24 2005-05-11 株式会社半導体エネルギー研究所 集積回路の作製方法
JP3597331B2 (ja) 1996-10-24 2004-12-08 株式会社半導体エネルギー研究所 半導体装置の作製方法
JPH10229197A (ja) * 1997-02-17 1998-08-25 Sanyo Electric Co Ltd 薄膜トランジスタ、薄膜トランジスタの製造方法
EP0867701A1 (en) * 1997-03-28 1998-09-30 Interuniversitair Microelektronica Centrum Vzw Method of fabrication of an infrared radiation detector and more particularly an infrared sensitive bolometer
TW517260B (en) * 1999-05-15 2003-01-11 Semiconductor Energy Lab Semiconductor device and method for its fabrication
JP4307635B2 (ja) 1999-06-22 2009-08-05 株式会社半導体エネルギー研究所 半導体装置の作製方法
US6599788B1 (en) * 1999-08-18 2003-07-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of fabricating the same
US6410368B1 (en) * 1999-10-26 2002-06-25 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device with TFT
JP4562835B2 (ja) * 1999-11-05 2010-10-13 株式会社半導体エネルギー研究所 半導体装置の作製方法
US6245602B1 (en) * 1999-11-18 2001-06-12 Xerox Corporation Top gate self-aligned polysilicon TFT and a method for its production
US6359766B1 (en) * 2000-03-02 2002-03-19 International Business Machines Corporation Apparatus for proper grounding of twisted pair cabling

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4692994A (en) * 1986-04-29 1987-09-15 Hitachi, Ltd. Process for manufacturing semiconductor devices containing microbridges

Also Published As

Publication number Publication date
CN100352022C (zh) 2007-11-28
US20040248387A1 (en) 2004-12-09
CN1311534A (zh) 2001-09-05
US7122409B2 (en) 2006-10-17
CN1645578A (zh) 2005-07-27
US20010015441A1 (en) 2001-08-23
CN1901229A (zh) 2007-01-24
US6653657B2 (en) 2003-11-25
CN1217417C (zh) 2005-08-31

Similar Documents

Publication Publication Date Title
CN100505313C (zh) 半导体器件及其制造方法
JP6170641B1 (ja) 液晶表示装置
EP1041641B1 (en) A method for manufacturing an electrooptical device
US7700947B2 (en) Semiconductor device
US6645826B2 (en) Semiconductor device and method of fabricating the same
JP4562835B2 (ja) 半導体装置の作製方法
EP2105966B1 (en) Display device
US20060240602A1 (en) Transistor for active matrix display and a method for producing said transistor
JP4776773B2 (ja) 半導体装置の作製方法
JP4712156B2 (ja) 半導体装置の作製方法
JP2001196590A (ja) 半導体装置の作製方法
JPH0334465A (ja) 薄膜トランジスタおよびその製造方法並びに液晶ディスプレイ装置
KR100222435B1 (ko) 반도체 소자용 막 제조방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090624

Termination date: 20171211

CF01 Termination of patent right due to non-payment of annual fee