CN100505976C - 等离子体辅助连接 - Google Patents

等离子体辅助连接 Download PDF

Info

Publication number
CN100505976C
CN100505976C CNB03810279XA CN03810279A CN100505976C CN 100505976 C CN100505976 C CN 100505976C CN B03810279X A CNB03810279X A CN B03810279XA CN 03810279 A CN03810279 A CN 03810279A CN 100505976 C CN100505976 C CN 100505976C
Authority
CN
China
Prior art keywords
chamber
plasma
catalyst
radiation
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB03810279XA
Other languages
English (en)
Other versions
CN1653870A (zh
Inventor
D·库马尔
S·库马尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BTU International Inc
Original Assignee
BTU International Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BTU International Inc filed Critical BTU International Inc
Publication of CN1653870A publication Critical patent/CN1653870A/zh
Application granted granted Critical
Publication of CN100505976C publication Critical patent/CN100505976C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/66Circuits
    • H05B6/68Circuits for monitoring or control
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/087Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J19/088Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/122Incoherent waves
    • B01J19/126Microwaves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • F01N3/2013Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating using electric or magnetic heating means
    • F01N3/202Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating using electric or magnetic heating means using microwaves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/206Adding periodically or continuously substances to exhaust gases for promoting purification, e.g. catalytic material in liquid form, NOx reducing agents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • H01J37/32302Plural frequencies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32366Localised processing
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/6402Aspects relating to the microwave cavity
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/80Apparatus for specific applications
    • H05B6/806Apparatus for specific applications for laboratory use
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/01Engine exhaust gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/80Employing electric, magnetic, electromagnetic or wave energy, or particle radiation
    • B01D2259/818Employing electrical discharges or the generation of a plasma
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00054Controlling or regulating the heat exchange system
    • B01J2219/00056Controlling or regulating the heat exchange system involving measured parameters
    • B01J2219/00058Temperature measurement
    • B01J2219/00063Temperature measurement of the reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00191Control algorithm
    • B01J2219/00193Sensing a parameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00191Control algorithm
    • B01J2219/00193Sensing a parameter
    • B01J2219/00195Sensing a parameter of the reaction system
    • B01J2219/002Sensing a parameter of the reaction system inside the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00191Control algorithm
    • B01J2219/00211Control algorithm comparing a sensed parameter with a pre-set value
    • B01J2219/00213Fixed parameter value
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00191Control algorithm
    • B01J2219/00222Control algorithm taking actions
    • B01J2219/00227Control algorithm taking actions modifying the operating conditions
    • B01J2219/0024Control algorithm taking actions modifying the operating conditions other than of the reactor or heat exchange system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0873Materials to be treated
    • B01J2219/0892Materials to be treated involving catalytically active material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0894Processes carried out in the presence of a plasma
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/12Processes employing electromagnetic waves
    • B01J2219/1203Incoherent waves
    • B01J2219/1206Microwaves
    • B01J2219/1248Features relating to the microwave cavity
    • B01J2219/1269Microwave guides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B4/00Electrothermal treatment of ores or metallurgical products for obtaining metals or alloys
    • C22B4/005Electrothermal treatment of ores or metallurgical products for obtaining metals or alloys using plasma jets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/08Other arrangements or adaptations of exhaust conduits
    • F01N13/10Other arrangements or adaptations of exhaust conduits of exhaust manifolds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/28Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a plasma reactor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/08Adding substances to exhaust gases with prior mixing of the substances with a gas, e.g. air
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/02Details
    • H01J2237/0203Protection arrangements
    • H01J2237/0206Extinguishing, preventing or controlling unwanted discharges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/336Changing physical properties of treated surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/338Changing chemical properties of treated surfaces
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2206/00Aspects relating to heating by electric, magnetic, or electromagnetic fields covered by group H05B6/00
    • H05B2206/04Heating using microwaves
    • H05B2206/044Microwave heating devices provided with two or more magnetrons or microwave sources of other kind
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • H05H1/461Microwave discharges
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • H05H1/4645Radiofrequency discharges
    • H05H1/4652Radiofrequency discharges using inductive coupling means, e.g. coils
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B40/00Technologies aiming at improving the efficiency of home appliances, e.g. induction cooking or efficient technologies for refrigerators, freezers or dish washers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

本发明提供了用于一个或多个部件的等离子体辅助连接的方法和装置。连接过程可包括例如在腔中相互接近地放置至少第一和第二连接区域,在等离子体催化剂存在的情况下,通过使气体受到电磁辐射在所述腔内形成等离子体,以及维持所述等离子体至少直到所述第一和第二连接区域被连接。本发明还提供了用于激发、调节和维持连接等离子体的等离子体催化剂、方法和装置。本发明还提供了用于选择性等离子体连接的其它腔形状、方法和装置。

Description

等离子体辅助连接
相关申请的交叉引用
本申请要求以下美国临时专利申请的优先权:2002年5月8日申请的No.60/378,693,2002年12月4日申请的No.60/430,677,2002年12月23日申请的No.60/435,278,在此引入其整个内容作为参考。
技术领域
本发明涉及用等离子体辅助连接两个或多个物体的方法和装置,尤其是使用等离子体催化剂在各种类型的腔内连接这些物体的一个或多个部件。
背景技术
已知通过使气体受到足量的电磁辐射可以激发等离子体。还知道,辐射诱发的等离子体可用于连接部件。但是,激发和维持等离子体效率低下、价格昂贵和浪费能源,特别是在需要降低压力来激发等离子体时。因此,使用常规的等离子体辅助连接会限制连接的灵活性。
发明内容
本发明提供了一个或多个部件的等离子体辅助连接的方法和装置。根据本发明的一个实施例,提供了一种使用由波长为λ的电磁辐射激发的等离子体来连接至少两个部件的方法。该方法可以包括在腔中相互接近地放置至少第一和第二连接区域,在等离子体催化剂存在的情况下,通过使气体受到辐射在所述腔内形成等离子体,并通过将辐射引入所述腔维持所述等离子体至少直到所述第一和第二连接区域被连接。
根据本发明的另一个实施例,将要被互相连接(例如铜焊)的至少两个部件可以放置在形成于容器中的腔内。等离子体催化剂可以放在腔内或附近。铜焊材料(例如圈)可以至少部分围绕着其中一个部件并且与另一部件的表面邻近。在该实施例中,铜焊由利用辐射激发的等离子体至少部分熔化铜焊圈产生。
根据本发明还提供了用于激发、调节和维持等离子体的等离子体催化剂。催化剂可以是惰性或活性的。根据本发明的惰性等离子体催化剂可以包括能够使局部电场变形而诱发等离子体的任何物体,不需要增加附加的电源。另一方面,活性等离子体催化剂是在电磁辐射存在的情况下,能够传输足够的能量到气体原子或分子上从而从气体原子和分子中去除至少一个电子的任意粒子或者高能波包。在两种情况下,等离子催化剂都能改善或者放宽要求激发等离子体的环境条件。
此外,本发明还提供了用于激发、调节和维持等离子体的其它等离子体催化剂、方法和装置。本发明还提供了通常用于选择性等离子体连接的其它腔形状、方法和装置。
附图说明
本发明的其它特征将通过下面结合附图的详细说明变得明显,其中相同的标号表示相同的部件,其中:
图1表示根据本发明的等离子体系统的示意图;
图2表示根据本发明的部分等离子体系统的实施例,用于向等离子体腔加入粉末等离子体催化剂来激发、调节或维持腔中的等离子体;
图3表示根据本发明的等离子体催化剂纤维,该纤维的至少一种成分沿其长度方向具有浓度梯度;
图4表示根据本发明的等离子体催化剂纤维,该纤维的多种成分沿其长度按比率变化;
图5表示根据本发明的另一个等离子体催化剂纤维,该纤维包括内层核芯和涂层;
图6表示根据本发明的图5所示的等离子体催化剂纤维沿图5的线6-6的截面图;
图7表示根据本发明的另一个等离子体连接系统的实施例,该系统包括延伸通过激发口的伸长型等离子体催化剂;
图8表示根据本发明在图7的系统中使用的伸长型等离子体催化剂的实施例;
图9表示根据本发明在图7的系统中使用的伸长型等离子体催化剂的另一个实施例;以及
图10表示根据本发明的部分等离子体连接系统的实施例,用于将电离辐射引入等离子体腔;
图11表示根据本发明的等离子体连接腔和已插入所述腔的将要被连接的物体区域的另一个示例性实施例的截面图;
图12表示根据本发明的等离子体连接腔、连接区域和腔内的铜焊环的又一个示例性实施例的截面图;以及
图13表示根据本发明的等离子体连接腔和连接区域的又一个示例性实施例的截面图,其中所述连接区域起局部密封作用。
具体实施方式
本发明涉及至少两个部件的等离子体辅助连接,用于各种应用,例如包括:铜焊,焊接,粘接,锡焊等。尤其,本发明提供了不同的腔形状、等离子体催化剂以及连接方法。
在此引入下列共同拥有并同时申请的美国专利申请的全部内容作为参考:美国专利申请
No.10/513,221,
No.10/513,393,
No.10/513,394,
No.10/513,305,
No.10/513,607,
No.10/430,416,
No.10/430,415,
No.10/513,606,
No.10/513,309,
No.10/513,220,
No.10/513,397,
No.10/513,605,
No.10/430,426,现在的美国专利No.7,132,621,
No.10/513,604,
PCT申请
US03/14132,现在过期,
US03/14034,现在过期,
US03/14133,现在过期,
US03/14122,现在过期,
US03/14137,现在过期,
US03/14121,现在过期,
US03/14135,现在过期。
等离子体辅助连接系统的说明
图1表示根据本发明的一个方面的等离子体辅助连接系统10。在这个实施例中,在设置于辐射腔(即辐射器(applicator))14内的容器13中形成等离子体连接腔12。在另一个实施例(未示出)中,容器13和辐射腔14是同一个,从而不需要两个独立的部件。
容器13可包括一个或多个辐射透射隔板,以改善其热绝缘性能使腔12无需显著地屏蔽用来形成等离子体的辐射。应该意识到容器13中可以形成不止一个腔。在一个实施例中,容器13中可以形成多个腔并且这些腔可以互相流体连通。每个部件11和16的至少一部分可以放在腔12中。如下面更详细的说明,根据本发明的等离子体辅助连接可以包括在选定区域产生等离子体并防止在其它区域中的等离子体。
如这里所用的,等离子体连接腔是任何能够激发、调节和/或维持等离子体的局部容积。因此,应该意识到根据本发明的腔不必完全封闭,甚至可以敞开。已经知道通过使气体受到足量的辐射可以激发等离子体。于是通过直接吸收辐射可以来调节或维持等离子体,但是在连接期间可使用等离子体催化剂辅助。
在一个实施例中,腔12在由陶瓷制成的容器内形成。由于根据本发明的等离子体可以达到非常高的温度,可以使用能够在例如大约3000华氏度下工作的陶瓷。例如,陶瓷材料可以包括重量百分比为29.8%的硅,68.2%的铝,0.4%的氧化铁,1%的钛,0.1%的氧化钙,0.1%的氧化镁,0.4%的碱金属,该陶瓷材料为Model No.LW-30,由Pennsylvania,New Castle的New Castle Refractories公司出售。然而本领域的普通技术人员可知,根据本发明也可以使用其它材料,例如石英以及那些与上述陶瓷材料不同的材料。还应该意识到由于对不同的连接过程温度可以不同,用于制造容器的材料可以只需承受基本上低于3000华氏度,例如2500华氏度或大约1000华氏度,或者甚至更低。
在一个成功的实验中,催化的连接等离子体形成在部分开口的腔中,该腔在第一砖状物内并以第二砖状物封顶。腔的尺寸为约2英寸×约2英寸×约1.5英寸。在砖状物中至少具有两个与腔连通的孔:一个用来观察等离子体,并且至少一个用来供给气体。腔的尺寸取决于需要进行的等离子体处理。此外,腔至少应该设置成能够防止等离子体上升/漂移从而离开主要处理区。
如图1所示,例如,腔12可以通过管线20和控制阀22与一个或多个气体源24(例如氩气、氮气、氢气、氙气、氪气等气体源)相连,由电源28提供能量。管线20可以是管状或可以传送气体的任何其它装置。在一个实施例中,管的直径足够小以防辐射泄漏(例如在大约1/16英寸和大约1/4英寸之间,如大约1/8英寸)。而且,如果需要,真空泵(未示出)可以与腔相连来抽走在连接中产生的任何不需要的气体。尽管图1中未示出,腔12和腔14可以有分开的气体口以去除气体。
一个辐射泄漏探测器(未示出)安装在源26和波导管30附近,并与安全联锁系统相连,如果检测到泄漏量超过预定安全值时,例如由FCC和/或OSHA(例如5mW/cm2)规定的值,就自动关闭幅射(如微波)电源。
由电源28提供能量的辐射源26通过一个或多个波导管30将辐射能引入腔14。本领域的普通技术人员应该理解源26可以直接连到腔12或腔14,从而取消波导管30。进入腔12的辐射能可以用来在等离子体催化剂的辅助下激发腔内的等离子体。通过对催化剂施加附加的辐射可以充分维持该等离子体并将其限制在腔内。
通过可选的循环器32和调谐器34(例如,3通短线(3-stub)调谐器)提供辐射能。调谐器34用来使作为改变激发或处理条件的函数的反射能减至最少,特别是在等离子体形成之前,因为辐射能例如将被等离子体强烈吸收。
如下面更详细的说明,如果腔14支持多模,尤其当这些模可持续或周期性地混合时,腔14内腔12的位置并不重要。并如下面更详细的说明,马达36可以与模混合器38相连,使时间平均的辐射能量分布在腔14内大致均匀。而且,例如,如图1所示,窗口40(例如石英窗)可以设置在邻近腔12的腔14的一个壁上,使能用温度传感器42(例如光学高温计)来观察腔12内的处理。在一个实施例中,光学高温计输出值可以在温度升高时从0伏增加到追踪范围值之内。
传感器42能够产生作为腔12中相关工件11的温度或者任意其它可监测的条件的函数的输出信号,并将该信号供给控制器44。也可采用双重温度感应和加热,以及自动冷却速度和气流控制。该控制器44又用来控制电源28的运行,其具有一个与上述源26相连的输出端和另一个与控制气流进入腔12的阀22相连的输出端。尽管图1中未示出,腔14可以具有分开的气体口,用于去除废气。
尽管可以使用任何小于约333GHz频率的辐射,本发明采用由通讯和能源工业(CPI)提供的915MHz和2.45GHz微波源取得了同样的成功。2.45GHz系统持续提供从大约0.5千瓦到大约5.0千瓦的可变微波能。3通短线调谐器使得阻抗与最大能量传递相匹配,并且采用了测量入射和反射能量的双向连接器(未示出)。还采用了光学高温计来遥感样品温度。
如上所述,根据本发明可以使用任何小于大约333GHz频率的辐射。例如,可采用诸如能量线频率(大约50Hz至60Hz)这样的频率,尽管形成连接等离子体的气体压力可能降低以便有助于等离子体激发。此外,根据本发明,任何无线电频率或微波频率可以使用包括大于约100kHz的频率。在大多数情况下,用于这些相对高频的气体压力不需要为了激发、调节或维持等离子体而降低,因而在大气压和大气压之上能够实现多种等离子体处理。
该装置用采用LabVIEW 6i软件的计算机控制,它能提供实时温度监测和微波能量控制。通过利用适当数量数据点的平均值平滑处理来降低噪音。并且,为了提高速度和计算效率,在缓冲区阵列中储存的数据点数目用移位寄存器和缓存区大小调整来限制。高温计测量大约1cm2的敏感区域温度,用于计算平均温度。高温计用于探测两个波长的辐射强度,并利用普朗克定律拟合这些强度值以测定温度。
然而,应知道也存在并可使用符合本发明的用于监测和控制温度的其它装置和方法。例如,在共有并同时提出申请的美国专利申请US03/14135(现在过期)中说明了根据本发明可以使用的控制软件,在此引入其整个内容作为参考。
腔14具有几个具有辐射屏蔽的玻璃盖观察口和一个用于插入高温计的石英窗。尽管不是必须使用,还具有几个与真空泵和气体源相连的口。
系统10还包括一个带有用自来水冷却的外部热交换器的封闭循环去离子水冷却系统(未示出)。在操作中,去离子水先冷却磁电管,接着冷却循环器(用于保护磁电管)中的装卸处,最后流过焊接在腔的外表面上的水通道冷却辐射腔。
等离子体催化剂
根据本发明的等离子体催化剂可包括一种或多种不同的物质并且可以是惰性或者活性的。在气体压力低于、等于或大于大气压力的情况下,等离子体催化剂可以在其它物质中激发、调节和/或维持等离子体。
根据本发明的一种形成连接等离子体的方法可包括使腔内气体在惰性等离子体催化剂存在的情况下受到小于大约333GHz频率的电磁辐射。根据本发明的惰性等离子体催化剂包括通过使根据本发明的局部电场(例如电磁场)变形而诱发等离子体的任何物体,而无需对催化剂施加附加的能量,例如通过施加电压引起瞬间放电。
本发明的惰性等离子体催化剂也可以是例如纳米粒子或纳米管。这里所使用的术语“纳米粒子”包括最大物理尺寸小于约100nm的至少是半导电的任何粒子。并且,掺杂和不掺杂的、单层壁和多层壁的碳纳米管由于它们异常的导电性和伸长形状对本发明的激发等离子体尤其有效。该纳米管可以有任意合适的长度并且能够以粉末状固定在基板上。如果固定的话,当等离子体激发或维持时,该纳米管可以在基板的表面上任意取向或者固定到基板上(例如以一些预定方向)。
本发明的惰性等离子体也可以是粉末,而不必包括纳米粒子或纳米管。例如它可以形成为纤维、粉尘粒子、薄片、薄板等。在粉末态时,催化剂可以至少暂时地悬浮于气体中。如果需要的话,通过将粉末悬浮于气体中,粉末就可以迅速分散到整个腔并且更容易被消耗。
在一个实施例中,粉末催化剂可以加载到腔内并至少暂时地悬浮于载气中。载气可以与形成等离子体的气体相同或者不同。而且,粉末可以在引入腔前加入气体中。例如,如图1A所示,辐射源52可以对设置有等离子体腔60的辐射腔55施加辐射。粉末源65将催化剂粉末70供给气流75。在一个可选实施例中,粉末70可以先以大块(例如一堆)方式加入腔60,然后以任意种方式分布在腔内,包括气体流动穿过或越过该块状粉末。此外,可以通过移动、搬运、撒下、喷洒、吹或以其它方式将粉末送入或分布于腔内,将粉末加到气体中用来激发、调节或维持涂层等离子体。
在一个实验中,通过在伸入腔的铜管中设置一堆碳纤维粉末来使连接等离子体在腔内激发。尽管有足够的辐射被引入腔内,铜管屏蔽粉末受到的辐射而不发生等离子体激发。然而,一旦载气开始流入铜管,促使粉末流出铜管并进入腔内,从而使粉末受到辐射,腔内等离子体几乎瞬间激发。这种瞬间激发可以基本上消除以其它方式反射回辐射源的潜在的破坏性辐射。
根据本发明的粉末催化剂基本上是不燃的,这样它就不需要包括氧或者不需要在氧存在的情况下燃烧。如上所述,该催化剂可以包括金属、碳、碳基合金、碳基复合物、导电聚合物、导电硅橡胶弹性体、聚合物纳米复合物、有机无机复合物和其任意组合。
而且,根据本发明粉末催化剂可以在等离子体腔内基本均匀的分布(例如悬浮于气体中),并且等离子体激发可以在腔内精确地控制。均匀激发在一些应用中是很重要的,包括在要求等离子体暴露时间短暂的应用中,例如以一个或多个爆发的形式。还需要有一定的时间来使粉末催化剂本身均匀分布在整个腔内,尤其在复杂的多腔的腔内。因而,根据本发明的另一个方面,粉末等离子体可以通过多个激发口引入腔内以便在其中更快地形成更均匀的催化剂分布(如下)。
除了粉末,根据本发明的惰性等离子体催化剂还可包括,例如,一个或多个微观或宏观的纤维、薄片、针、线、绳、细丝、纱、细绳、刨花、裂片、碎片、编织线、带、须或其任意混合物。在这些情况下,等离子体催化剂可以至少具有一部分,该部分的一个物理尺寸基本上大于另一个物理尺寸。例如,在至少两个垂直尺寸之间的比率至少为约1∶2,也可大于约1∶5或者甚至大于约1∶10。
因此,惰性等离子体催化剂可以包括至少一部分与其长度相比相对细的材料。也可以使用催化剂束(例如纤维),其包括例如一段石墨带。在一个实验中,成功使用了一段具有大约三万股石墨纤维的、每股直径约为2-3微米的带。内部纤维数量和束长对激发、调节或维持等离子体来说并不重要。例如,用大约1/4英寸长的一段石墨带得到满意的结果。根据本发明成功使用了一种碳纤维是由Salt Lake City,Utah的Hexcel公司出售的商标为的Model No.AS4C-GP3K。此外,还成功地使用了碳化硅纤维。
根据本发明另一个方面的惰性等离子体催化剂可以包括一个或多个如基本为球形、环形、锥形、立方体、平面体、圆柱形、矩形或伸长形的部分。
上述惰性等离子体催化剂包括至少一种至少是半导电的材料。在一个实施例中,该材料具有强导电性。例如,根据本发明的惰性等离子体催化剂可以包括金属、无机材料、碳、碳基合金、碳基复合物、导电聚合体、导电硅橡胶弹性体、聚合纳米复合物、有机无机复合物或其任意组合。可以包括在等离子体催化剂中的一些可能的无机材料包括碳、碳化硅、钼、铂、钽、钨、氮化碳和铝,虽然相信也可以使用其它导电无机材料。
除了一种或多种导电材料以外,本发明的惰性等离子体催化剂还可包括一种或多种添加剂(不要求导电性)。如这里所用的,该添加剂可以包括使用者想要加入等离子体的任何材料。例如在半导体和其他材料的掺杂过程中,可通过催化剂将一种或多种掺杂剂加入等离子体。参见,例如,共有并同时提出申请的美国专利申请No.10/513,397,在此引入其整个内容作为参考。催化剂可以包括掺杂剂本身或者,它可以包括分解后能产生掺杂剂的前体材料。因此,根据最终期望的等离子体复合物和使用等离子体处理,等离子体催化剂可以以任意期望的比率包括一种或多种添加剂和一种或多种导电材料。
惰性等离子体催化剂中的导电成分与添加剂的比率随着其被消耗的时间变化。例如,在激发期间,等离子体催化剂可以要求包括较大百分比的导电成分来改善激发条件。另一方面,如果在调节和维持等离子体时使用,催化剂可以包括较大百分比的在连接过程中需要的添加剂。本领域普的通技术人员可知用于激发并随后维持等离子体的等离子体催化剂的成分比率可以相同。
预定的比率分布可以用于简化许多等离子体处理。在许多常规的等离子体处理中,等离子体中的成分是根据需要来增加的,但是这样的增加一般要求可编程装置根据预定计划来添加成分。然而,根据本发明,催化剂中的成分比率是可变的,因而等离子体本身的成分比率可以自动变化。这就是说,在任一特定时间等离子体的成分比率依赖于当前被等离子体消耗的催化剂部分。因此,在催化剂内的不同位置的催化剂成分比率可以不同。并且,当前等离子体的成分比率依赖于当前和/或在消耗前的催化剂部分,尤其在流过等离子体腔内的气体流速较慢时。
根据本发明的惰性等离子体催化剂可以是均匀的、不均匀的或渐变的。而且,整个催化剂中等离子体催化剂成分比率可以连续或者不连续改变。例如在图3中,比率可以平稳改变形成沿催化剂100长度方向的梯度。催化剂100可包括一股在段105含有较低浓度成分并向段110连续增大浓度的材料。
可选择地,如图4所示,在催化剂120的每一部分比率可以不连续变化,例如包括浓度不同的交替段125和130。应该知道催化剂120可以具有多于两段的形式。因此,被等离子体消耗的催化剂成分比率可以以任意预定的形式改变。在一个实施例中,当等离子体被监测并且已检测到特殊的添加剂时,可以自动开始或结束进一步的处理。
改变被维持的等离子体中的成分比率的另一种方法是通过在不同时间以不同速率引入具有不同成分比率的多种催化剂。例如,可以在腔中以大致相同位置或者不同位置引入多种催化剂。在不同位置引入时,在腔内形成的等离子体会有由不同催化剂位置决定的成分浓度梯度。因此,自动化系统可包括用于在等离子体激发、调节和/或维持以前和/或期间机械插入可消耗等离子体催化剂的装置。
根据本发明的惰性等离子体催化剂也可以被涂覆。在一个实施例中,催化剂可以包括沉积在基本导电材料表面的基本不导电涂层。或者,催化剂可包括沉积在基本不导电材料表面的基本导电涂层。例如图5和6表示了包括内层145和涂层150的纤维140。在一个实施例中,为了防止碳的氧化,等离子体催化剂包括涂覆镍的碳芯。
一种等离子体催化剂也可以包括多层涂层。如果涂层在接触等离子体期间被消耗,该涂层可以从外涂层到最里面的涂层连续引入等离子体,从而形成限时释放(time-release)机制。因此,涂覆等离子体催化剂可以包括任意数量的材料,只要部分催化剂至少是半导电的。
根据本发明的另一实施例,为了基本上减少或防止辐射能泄漏,等离子体催化剂可以完全位于辐射腔内。这样,等离子体催化剂不会电或磁连接于包括腔的容器、或腔外的任何导电物体。这可以防止在激发口的瞬间放电,并防止在激发期间和如果等离子体被维持可能在随后辐射泄漏出腔。在一个实施例中,催化剂可以位于伸入激发口的基本不导电的延伸物末端。
例如,图7表示在其中可以设置有等离子体连接腔165的辐射腔160。等离子体催化剂170可以延长并伸入激发口175。如图8所示,根据本发明的催化剂170可包括导电的末梢部分180(设置于腔160内)和不导电部分185(基本上设置于腔160外,但是可稍微伸入腔160)。该结构防止了末梢部分180和腔160之间的电气连接(例如瞬间放电)。
在如图9所示的另一个实施例中,催化剂由多个导电片段190形成,所述多个导电片段190被多个不导电片段195隔开并与之机械相连。在这个实施例中,催化剂能延伸通过在腔中的一个点和腔外的另一个点之间的激发口,但是其电气不连续的分布有效地防止了产生瞬间放电和能量泄漏。
根据本发明的形成等离子体的另一种方法包括使腔内气体在活性等离子体催化剂存在的情况下受到小于大约333GHz频率的电磁辐射,产生或包括至少一个电离粒子。
根据本发明的活性等离子体催化剂可以是在电磁辐射存在的情况下能够向气态原子或分子传递足够能量来使气态原子或分子失去至少一个电子的任何粒子或者高能波包。利用源,电离粒子可以以聚焦或准直射束的形式直接引入腔,或者它们可以被喷射、喷出、溅射或者其它方式引入。
例如,图10表示辐射源200将辐射引入可以设置于腔205内的等离子体腔210。如果需要,等离子体腔210允许气体流过口215和216。源220可以将电离粒子225引入腔210。源220可以用例如电离粒子可以穿过的金属屏蔽来保护,但也屏蔽了对源220的电磁辐射。如果需要,源220可以水冷。
根据本发明的电离粒子的实例可包括x射线粒子、γ射线粒子、α粒子、β粒子、中子、质子及其任意组合。因此,电离粒子催化剂可以是带电荷(例如来自离子源的离子)或者不带电荷并且可以是放射性裂变过程的产物。在一个实施例中,在其中形成有等离子体腔的容器可以全部或部分地透过电离粒子催化剂。因此,当放射性裂变源位于腔外时,该源可以引导裂变产物穿过容器来激发等离子体。为了基本防止裂变产物(如电离粒子催化剂)引起安全危害,放射性裂变源可以位于辐射腔内。
在另一个实施例中,电离粒子可以是自由电子,但它不必是在放射性衰变过程中发射。例如,电子可以通过激发电子源(如金属)来引入腔内,这样电子有足够的能量从该源中逸出。电子源可以位于腔内、邻近腔或者甚至在腔壁上。本领域的普通技术人员可知可用任意组合的电子源。产生电子的常用方法是加热金属,并且这些电子通过施加电场能进一步加速。
除电子以外,自由能质子也能用于催化等离子体。在一个实施例中,自由质子可通过电离氢产生,并且选择性地由电场加速。
多模辐射腔
辐射波导管、腔或室被设置成支持或便于至少一种电磁辐射模的传播。如这里所使用,术语“模”表示满足Maxwell方程和可应用的边界条件(如腔的)的任何停滞或传播的电磁波的特殊形式。在波导管或腔内,该模可以是传播或停滞电磁场的各种可能形式中的任何一种。每种模由其电场和/或磁场矢量的频率和极化表征。模的电磁场形式依赖于频率、折射率或介电常数以及波导管或腔的几何形状。
横电(TE)模是电场矢量垂直于传播方向的模。类似地,横磁(TM)模是磁场矢量垂直于传播方向的模。横电磁(TEM)模是电场和磁场矢量均垂直于传播方向的模。中空金属波导管一般不支持辐射传播的标准TEM模。尽管辐射似乎沿着波导管的长度方向传播,它之所以这样只是通过波导管的内壁以某一角度反射。因此,根据传播模,辐射(例如微波)沿着波导管轴线(通常指z轴)具有一些电场成分或者一些磁场成分。
在腔或者波导管中的实际场分布是其中模的叠加。每种模可以用一个或多个下标(如TE10(“Tee ee one zero”))表示。下标一般说明在x和y方向上含有多少在导管波长的“半波”。本领域的普通技术人员可知波导管波长与自由空间的波长不同,因为波导管内的辐射传播是通过波导管的内壁以某一角度反射。在一些情况下,可以增加第三下标来定义沿着z轴在驻波形式中的半波数量。
对于给定的辐射频率,波导管的尺寸可选择得足够小以便它能支持一种传播模。在这种情况下,系统被称为单模系统(如单模辐射器)。在矩形单模波导管中TE10模通常占主导。
随着波导管(或波导管所连接的腔)的尺寸增加,波导管或辐射器有时能支持附加的高阶模,形成多模系统。当能够同时支持多个模时,系统往往表示为被高度模化(highly moded)。
一个简单的单模系统具有包括至少一个最大和/或最小的场分布。最大的量级很大程度上依赖于施加于系统的辐射的量。因此,单模系统的场分布是剧烈变化和基本上不均匀的。
与单模腔不同,多模腔可以同时支持几个传播模,在叠加时其形成混合场分布形式。在这种形式中,场在空间上变得模糊,并因此场分布通常不显示出腔内最小和最大场值的相同强度类型。此外,如下的详细说明,可以用一个模混合器来“混合”或“重新分布”模(如利用辐射反射器的机械运动)。这种重新分布有望提供腔内更均匀的时间平均场分布。
根据本发明的多模腔可以支持至少两个模,并且可以支持多于两个的多个模。每个模有最大电场矢量。虽然可以有两个或多个模,但是只有一个模占主导并具有比其它模大的最大电场矢量量级。如这里所用的,多模腔可以是任意的腔,其中第一和第二模量级之间的比率小于约1∶10,或者小于约1∶5,或者甚至小于约1∶2。本领域的普通技术人员可知比率越小,模之间的电场能量越分散,从而使腔内的辐射能越分散。
腔内等离子体的分布非常依赖于所施加的电磁辐射的分布。例如,在一个纯单模系统中只可以有一个电场最大值的位置。因此,强等离子体只能在这一个位置产生。在许多应用中,这样一个强局部化的等离子体会不合需要的引起不均匀等离子体处理或加热(即局部过热和加热不足)。
根据本发明无论使用单或多模腔,本领域的普通技术人员可知在其中形成等离子体的腔可以完全封闭或者半封闭。例如,在特定的应用中,如在等离子体辅助熔炉中,腔可以全部密封。参见,例如,共有并同时提出申请的美国专利申请No.10/__,__(Attorney Dorket No.1837.0020),在此引入其整个内容作为参考。然而在其它应用中,可能需要将气体流过腔,从而腔必须一定程度地打开。这样,流动气体的流量、类型和压力可以随时间而改变。这是令人满意的,因为具有较低电离势的如氩气的特定气体更容易激发,但在随后的等离子体处理中不需要。
模混合
在许多连接应用中,需要腔内包括均匀的等离子体。然而,由于辐射可以有较长波长(如几十厘米),很难获得基本均匀的等离子体分布。结果,根据本发明的一个方面,多模腔内的辐射模在在一段时间内可以混合或重新分布。因为腔内的场分布必须满足由腔的内表面设定的所有边界条件,可以通过改变内表面的任一部分的位置来改变这些场分布。
根据本发明的一个实施例中,可移动的反射表面位于辐射腔内。反射表面的形状和移动在移动期间将联合改变腔的内表面。例如,一个“L”型金属物体(即“模混合器”)在围绕任意轴旋转时将改变腔内的反射表面的位置或方向,从而改变其中的辐射分布。任何其它不对称形状的物体也可使用(在旋转时),但是对称形状的物体也能工作,只要相对移动(如旋转、平移或两者结合)引起反射表面的位置和方向上的一些变化。在一个实施例中,模混合器可以是围绕非圆柱体纵轴的轴旋转的圆柱体。
多模腔中的每个模都具有至少一个最大电场矢量,但是每个矢量会周期性出现在腔内。通常,假设辐射的频率不变,该最大值是固定的。然而,通过移动模混合器使它与辐射相作用,就可能移动最大值的位置。例如,图1的模混合器38可用于优化腔12内的场分布以便于优化等离子体激发条件和/或等离子体维持条件。因此,一旦激活等离子体,为了均匀的时间平均等离子体处理(如加热),可以改变模混合器的位置来移动最大值的位置。
因此根据本发明,在等离子体激发期间可以使用模混合。例如,当把导电纤维用作等离子体催化剂时,已经知道纤维的方向能够强烈影响最小等离子体激发条件。例如据报道说,当这样的纤维取向于与电场成大于60°的角度时,催化剂很少能改善或放松这些条件。然而通过移动反射表面进入或接近腔,电场分布能显著地改变。
通过例如安装在辐射器腔内的旋转波导管接头将辐射射入辐射器腔,也能实现模混合。为了在辐射腔内在不同方向上有效地发射辐射,该旋转接头可以机械地运动(如旋转)。结果,在辐射器腔内可产生变化的场形式。
通过柔性波导管将辐射射入辐射腔,也能实现模混合。在一个实施例中,波导管可固定在腔内。在另一个实施例中,波导管可伸入腔中。为了在不同方向和/或位置将辐射(如微波辐射)射入腔,该柔性波导管末端的位置可以以任何合适的方式连续或周期性移动(如弯曲)。这种移动也能引起模混合并有助于在时间平均基础上更均匀的等离子体处理(如加热)。可选择地,这种移动可用于优化激发的等离子体的位置或者其它的等离子体辅助处理。
如果柔性波导管是矩形的,波导管的开口末端的简单扭曲将使辐射器腔内的辐射的电场和磁场矢量的方向旋转。因而,波导管周期性的扭曲可引起模混合以及电场的旋转,这可用于辅助激发、调节或维持等离子体。
因此,即使催化剂的初始方向垂直于电场,电场矢量的重新定向能将无效方向变为更有效的方向。本领域的技术人员可知模混合可以是连续的、周期性的或预编程的。
除了等离子体激发以外,在后面的等离子体处理期间模混合可用来减少或产生(如调整)腔内的“热点”。当微波腔只支持少数模时(如少于5),一个或多个局部电场最大值可产生“热点”(如在腔12内)。在一个实施例中,这些热点可设置成与一个或多个分开但同时的等离子体激发或处理相一致。因此,等离子体催化剂可放在一个或多个这些激发或随后的处理位置上。
多位置激发
可使用不同位置的多种等离子体催化剂来激发等离子体。在一个实施例中,可用多纤维在腔内的不同点处激发等离子体。这种多点激发在要求均匀等离子体激发时尤其有益。例如,当等离子体在高频(即数十赫兹或更高)下调节,或在较大空间中激发,或两者都有时,可以改善等离子体的基本均匀的瞬态撞击和再撞击。可选地,当在多个点使用等离子体催化剂时,可以通过将催化剂选择性引入这些不同位置,使用等离子体催化剂在等离子体腔内的不同位置连续激发等离子体。这样,如果需要,在腔内可以可控地形成等离子体激发梯度。
而且,在多模连接腔中,腔中多个位置的催化剂的随机分布增加了如下可能性:根据本发明的至少一种纤维或任何其它惰性等离子体催化剂优化沿电力线取向。但是,即使催化剂没有优化取向(基本上没有与电力线对准),也改善了激发条件。
而且,由于催化剂粉末可以悬浮在气体中,可认为具有每个粉末颗粒具有位于腔内不同物理位置的效果,从而改善了腔内的激发均匀性。
双腔等离子体激发/维持
根据本发明的双腔排列可用于激发和维持连接等离子体。在一个实施例中,系统至少包括激发腔和与激发腔流体连通的第二腔。为了激发等离子体,激发腔中的气体选择性地在等离子体催化剂存在的情况下受到频率小于大约333GHz的电磁辐射。这样,接近的第一和第二腔可使第一腔中形成的等离子体激发第二腔中的等离子体,其可用附加的电磁辐射来维持。
在本发明的一个实施例中,激发腔可以非常小并主要或只设置用于等离子体激发。这样,只需很少的辐射能来激发等离子体,使激发更容易,尤其在使用根据本发明的等离子体催化剂时。
在一个实施例中,激发腔基本上是单模腔,第二腔是多模腔。当激发腔只支持单模时腔内的电场分布会剧烈变化,形成一个或多个精确定位的电场最大值。该最大值一般是等离子体激发的第一位置,将其作为安放等离子体催化剂的理想点。然而应该知道,当使用等离子体催化剂时,催化剂不需要设置在电场最大值之处,而且在大多数情况下,不需要取向于特定的方向。
等离子体辅助连接的说明
如这里所用的,术语“等离子体辅助连接”或简称“连接”是指利用等离子体来装配或集合至少两个部件并将它们连接起来从而成为一个部件的任何操作或操作的组合。因此,等离子体辅助连接可包括例如铜焊、焊接、压焊、锡焊、熔化等。
根据本发明中的等离子体辅助连接可以包括在连接腔内或附近互相接近地放置至少第一部件的第一连接区域和第二部件的第二连接区域。例如,各部件的连接区域可以是金属、非金属及其组合。如上所述,可以将足量的气体引入腔以至少形成等离子体,然后调节或维持等离子体。通过辐射的连续吸收可以在腔内调节或维持等离子体直到该至少两个连接区域相互连在一起,或者直到达到特定连接状态的预定温度指示。
如上面更加详细的说明,连接腔中等离子体的分布取决于施加的辐射的分布。例如,强烈的等离子体只在电场(例如,辐射密度)强的地方形成。由于在腔的内表面附近电场强度会减小,或者甚至减小到零,因而该表面可以被防止形成等离子体。因此,可以将腔的内表面设置成这样的轮廓:选择性地只在部件应该被加热以完全连接的地方形成等离子体。相似地,在其它位置电场不可能强到足以形成等离子体,例如在腔的内表面(例如金属表面)与部件的表面以间距小于约λ/4分开的地方。此外,在物体的特殊表面附近控制等离子体的体积可以用来控制传送到该表面区域的热能。
例如,图11表示根据本发明在容器313中形成的等离子体处理腔的截面图。部件300和310的连接区域305和315可以分别布置在腔360中。在该例中,容器313可以设置在导电的辐射腔303内部,并且容器313可基本透过形成等离子体的辐射。在该例中,腔360的内壁365至少在某些区域具备常规的形状以适应部件,特别是在需要小间隙以抑制等离子体加热的地方。可选择地,通过用基本不透射辐射的材料屏蔽部分物体的表面来防止形成等离子体,而不必通过设置腔的表面的轮廓来防止。
内表面365定形为可以容下部件300和310以致连接区域305和315与内表面365以至少约λ/4的间距325隔开,其中λ为施加的辐射的波长。部件300和310的其它表面部分与内表面365以小于约λ/4的间距隔开,例如以间距326和327。并且,为了将等离子体基本上限定在腔360中并基本上防止在间隙小于约λ/4的区域形成任何等离子体,在开口320处的腔360的表面330和表面340之间的间距335可以小于约λ/4。
然而,腔壁313的开口可打开并在需要时足以使气体通过。并且应该意识到,尽管只示出了一个气体口,开口320可以作为另一个口,或者容器313可以有多个气体口。应该意识到物体300可以作为开口320的部分密封并可以被支撑在那里。
根据本发明在等离子体辅助连接处理期间可以将偏压施加到任何连接区域。通过将等离子体中的带电离子吸引到连接区域,这样的偏压有助于连接区域的加热,这将促进整个连接区域上等离子体的均匀覆盖。施加于连接区域的偏压可以是例如交流、直流、脉冲、连续和周期性的。可以根据特定的应用来选取偏压数值。例如,根据电离粒子的吸引比率,电压数值范围可以从约0.1伏到约100伏,甚至几百或数千伏。此外,偏压可以是正、负或在二者之间交替。应该意识到,根据本发明的部件或连接区域可以设置在导电板上并且在等离子体辅助处理期间把电压偏压施加于该板。
图12表示了在容器413内形成的等离子体连接腔460和将要相互连接的部件400和410的侧截面图。铜焊环420可包括各种铜焊材料并且至少环绕着部件410和接近块400的外表面。例如,当部件410为金属管而部件400是有凹槽415的金属块时,就是这种情况。此时,管410的末端412可插入块400中的凹槽415。可选择地,末端412可以刚好接触部分块400而没有任何插入。铜焊环420可以由例如金属、金属粉末、焊剂及其任意组合来组成。如图12所示,块400,管410和铜焊环420可放在腔460内,管410延伸穿过容器413的开口450。在该实施例中,至少部分铜焊环420的熔化和凝结可以形成连接。如果需要,至少一种等离子体催化剂(如上所说明)也可置于腔460的内部或附近以辅助形成等离子体连接。
图13表示形成于容器513中的等离子体连接腔560以及要互相连接的部件500和510的截面图。该实施例中,非连接区域507和517以及连接区域505和515在靠近容器513设置时可以全部或部分的密封开口520,尽管不需要密封。连接区域505和515与腔560的内表面565以至少约λ/4的间距隔开,其中λ为用于在连接区域505和515附近形成等离子体所施加的辐射的波长,以允许在这些区域形成等离子体。应该意识到根据本发明在腔560内可以使用任何等离子体催化剂来激发、调节和维持等离子体。
如上所述,与连接处理相关的温度可由至少一个温度传感器监控并用于控制等离子体辅助连接处理。任何部件的温度,例如图12中的部件400或部件410或者腔的内表面,例如图11中的表面365也因此可以被监控。如果使用彩色高温计,在等离子体辅助连接处理期间,从表面发射的辐射颜色可以被监控。当铜焊环熔化时,等离子体中可能产生一些附加发射,它在温度传感器的输出中产生尖峰。例如,当温度达到预定值时,例如当检测到温度尖峰时,意味着铜焊环已被熔化而且过程已经结束。在这种情况下,控制器44可编程地立即或者需要时在过了一段延迟时间之后关掉辐射源26和关闭控制阀22。在另一个实施例中,为了更快的冷却部件11,在连接处理完成后控制阀22仍然开一段时间。本领域的技术人员会意识到,在熔化铜焊环时从等离子体发射的附加辐射可以通过任何合适的带有或不带适当波长选择过滤器的光学传感器(例如,光电二极管,光电倍增管,中空阴极灯等)监测。
在根据本发明的一个实施例中,等离子体还可用于快速获得高温来将金属连接到非金属上,例如将金属连接到玻璃上。有益地是,两种不同材料的连接可以只包括连接区域附近的局部加热和熔化。例如将玻璃(或石英)连接到金属密封可用于制造电灯泡(例如,白炽灯、石英卤灯、钠灯、水银灯以及其它类型电灯泡)。
为了使玻璃-金属连接能够在较宽温度范围内维持真空密封,这两种材料可以具备几乎相同的热膨胀系数。可选择地是,我们可以“分级”密封,其中连接材料(例如铜焊环材料)成分在连接区域逐渐变化从而在连接的任何点或区域中热膨胀特性不会有突变。在一个实施例中,连接可以在连接区域之间保持一个间隙时形成,将粉末金属/玻璃混合物以适当的浓度变化方式放入间隙中。在混合物放入间隙中后,根据本发明的连接可以用等离子体辅助加热熔合。
在另一个实施例中,将要连接的部件放置在单个腔中,该腔由一个或多个可透射辐射的块例如陶瓷制成。至少一种等离子体催化剂可以放在每一个腔中以激发和/或维持其中的等离子体。在该例中,辐射可由一个辐射源或几个组合的辐射源产生。可通过合适形状的导波管(例如连接辐射源和在大陶瓷块中形成的单个腔的角状物)将辐射提供给单个腔或不使用导波管直接提供。
在前述的实施例中,为了简化说明,各种特征被集合在单个实施例中。这种公开方法不意味着本发明权利要求书要求了比每个权利要求中明确叙述的特征更多的特征。而是,如下列权利要求所述,创造性方面要比前述公开的单个实施例的全部特征少。因此,下列权利要求被加入到该具体实施方式中,每个权利要求本身作为本发明的一个单独的优选实施例。

Claims (59)

1.一种连接至少第一部件的第一连接区域和第二部件的第二连接区域的方法,该方法包括:
在多模腔中相互接近地放置至少第一和第二连接区域;
在等离子体催化剂存在的情况下,通过使气体受到频率小于333GHz的电磁辐射,在所述腔内形成等离子体;以及
通过将辐射引入所述腔来维持所述等离子体至少直到所述第一和第二连接区域被连接。
2.如权利要求1所述的方法,还包括使气体流过所述腔。
3.如权利要求1所述的方法,还包括使辐射的时间平均分布在所述腔内基本均匀。
4.如权利要求1所述的方法,其中在大气压下激发所述等离子体。
5.如权利要求1所述的方法,其中所述腔形成于容器内,所述容器包括基本上能透射辐射的材料。
6.如权利要求1所述的方法,其中所述腔形成于容器内,所述容器位于包括基本上不透射辐射的材料的腔中。
7.如权利要求1所述的方法,其中在维持期间所述第一和第二部件中的至少一个具有位于所述腔外的部分。
8.如权利要求1所述的方法,其中所述腔形成于容器内,并且其中所述容器的内壁的至少一个部分具有这样的轮廓:该轮廓基本遵循所述第一部件和第二部件中的至少一个的部分的轮廓。
9.如权利要求1所述的方法,其中所述腔形成于容器内,并且其中所述容器的内壁的至少一个部分被定形以使所述等离子体只在内壁和第一、第二连接区域之间限定的区域形成。
10.如权利要求1所述的方法,其中至少一个所述连接区域包括非金属。
11.如权利要求1所述的方法,还包括监控来自所述等离子体的发射物,其中进行所述维持步骤直到在发射强度中出现尖峰。
12.如权利要求1所述的方法,还包括用基本不透射辐射的材料来屏蔽所述第一和第二部件之一的至少一部分。
13.如权利要求1所述的方法,还包括将一个第三部件放在所述腔中的所述第一和第二连接区域附近,其中所述第一和第二连接区域通过所述腔内的所述第三部件的至少一部分的熔化来连接。
14.如权利要求13所述的方法,其中所述第三部件包括选自如下的材料:金属、金属粉末、焊剂及其任意组合。
15.如权利要求1所述的方法,还包括在所述第一和第二连接区域中的至少一个上施加电偏压。
16.如权利要求15所述的方法,其中所述电偏压的形式为交流、直流、脉冲、连续、周期性、预编程及其任意组合中的至少一种。
17.如权利要求15所述的方法,还包括:
将所述第一和第二部件放在导电板上;以及
对所述板施加电偏压。
18.如权利要求17所述的方法,其中所述电偏压的形式为交流、直流、脉冲、连续、周期性、预编程及其任意组合中的至少一种。
19.如权利要求1所述的方法,其中所述等离子体催化剂是活性催化剂和惰性催化剂中的至少一种。
20.如权利要求19所述的方法,其中所述活性催化剂包括至少一种电离粒子。
21.如权利要求20所述的方法,其中所述至少一种电离粒子包括粒子束。
22.如权利要求21所述的方法,其中所述粒子是x射线粒子、γ射线粒子、α粒子、β粒子、中子和质子中的至少一种。
23.如权利要求20所述的方法,其中所述电离粒子包括电子和离子中的至少一种。
24.如权利要求19所述的方法,其中所述惰性催化剂包括至少是半导体材料。
25.如权利要求24所述的方法,其中所述材料包括无机材料、有机无机复合物及其任意组合中的至少一种。
26.如权利要求19所述的方法,其中所述惰性催化剂包括金属、碳、碳基合金、碳基复合物、导电聚合体、聚合物纳米复合物及其任意组合中的至少一种。
27.如权利要求26所述的方法,其中所述导电聚合体包括导电硅橡胶弹性体。
28.如权利要求25-27中任一项所述的方法,其中所述催化剂的形式为纳米粒子、纳米管、粉末、粉尘、薄片、纤维、薄板、针、线、绳、细丝、纱、细绳、刨花、裂片、碎片、编织线、带和须中的至少一种。
29.如权利要求25-27中任一项所述的方法,其中所述催化剂包括碳纤维。
30.如权利要求24所述的方法,其中所述催化剂的形式为纳米粒子、纳米管、粉末、粉尘、薄片、纤维、薄板、针、线、绳、细丝、纱、细绳、刨花、裂片、碎片、编织线、带和须中的至少一种。
31.如权利要求24所述的方法,其中所述材料包括至少一种纳米管。
32.一种连接至少第一部件的第一连接区域和第二部件的第二连接区域的系统,该系统包括:
至少一个频率小于333GHz的电磁辐射源;以及
至少一个容器,在其中形成至少一个多模腔,其中所述腔设置成受到所述辐射源的辐射,所述腔具有足以容纳所述第一连接区域、第二连接区域和至少一种等离子体催化剂的尺寸,所述至少一种等离子体催化剂用于通过使气体受到来自所述源的辐射而在所述腔中形成等离子体。
33.如权利要求32所述的系统,还包括包含基本不透射辐射的材料的腔,其中所述容器位于该腔的内部。
34.如权利要求32所述的系统,还包括与所述至少一个腔连接的气源。
35.如权利要求32所述的系统,其中所述腔不密封。
36.如权利要求32所述的系统,其中在大气压下激发所述等离子体。
37.如权利要求32所述的系统,还包括在所述至少一个腔中监控温度的至少一个温度传感器。
38.如权利要求32所述的系统,还包括至少一个控制器,用于根据在所述至少一个腔内的温度调节来自所述至少一个辐射源的辐射功率水平。
39.如权利要求32所述的系统,还包括在辐射中的至少一个混模器,以使所述腔中的辐射随时间分布地更均匀。
40.如权利要求32所述的系统,还包括至少一个屏蔽物,用于覆盖所述第一和第二部件中的至少一个,其中所述屏蔽物包括基本不透射辐射的材料。
41.如权利要求32所述的系统,其中所述第一和第二部件中的至少一个具有位于所述腔外的部分。
42.如权利要求32所述的系统,其中所述第一和第二连接区域中的至少一个包括非金属。
43.如权利要求32所述的系统,其中所述容器的内壁的至少一个部分具有这样的轮廓:该轮廓基本遵循所述第一部件和第二部件中的至少一个的部分的轮廓。
44.如权利要求32所述的系统,其中所述容器的内壁的至少一个部分被定形以使所述等离子体只在内壁和第一、第二连接区域之间限定的区域形成。
45.如权利要求32所述的系统,还包括将一个第三部件放在所述第一和第二连接区域附近,其中所述第一和第二连接区域之间的连接通过所述第三部件的至少部分熔化和凝结来实现。
46.如权利要求45所述的系统,其中所述第三部件包括选自如下的材料:金属、金属粉末、焊剂及其任意组合。
47.如权利要求32所述的系统,其中所述等离子体催化剂是活性催化剂和惰性催化剂中的至少一种。
48.如权利要求47所述的系统,其中所述活性催化剂包括至少一种电离粒子。
49.如权利要求48所述的系统,其中所述至少一种电离粒子包括粒子束。
50.如权利要求48所述的系统,其中所述电离粒子包括电子和离子中的至少一种。
51.如权利要求48所述的系统,其中所述粒子是x射线粒子、γ射线粒子、α粒子、β粒子、中子和质子中的至少一种。
52.如权利要求47所述的系统,其中所述惰性催化剂包括至少是半导体材料。
53.如权利要求52所述的系统,其中所述材料包括无机材料、有机无机复合物及其任意组合中的至少一种。
54.如权利要求47所述的方法,其中所述惰性催化剂包括金属、碳、碳基合金、碳基复合物、导电聚合体、聚合物纳米复合物及其任意组合中的至少一种。
55.如权利要求54所述的方法,其中所述导电聚合体包括导电硅橡胶弹性体。
56.如权利要求53-55中任一项所述的系统,其中所述材料的形式为纳米粒子、纳米管、粉末、粉尘、薄片、纤维、薄板、针、线、绳、细丝、纱、细绳、刨花、裂片、碎片、编织线、带和须中的至少一种。
57.如权利要求52所述的系统,其中所述催化剂包括碳纤维。
58.如权利要求52所述的系统,其中所述材料包括至少一种纳米管。
59.一种连接至少第一部件的第一连接区域和第二部件的第二连接区域的系统,该系统包括:
至少一个电磁辐射源,设置成提供频率小于333GHz的辐射;以及
至少一个容器,在其中形成至少一个腔,其中所述腔设置成受到所述辐射源的辐射,所述腔具有足以容纳至少一种等离子体催化剂的尺寸,所述至少一种等离子体催化剂用于通过使气体受到来自所述源的辐射而在所述腔中形成等离子体,其中所述腔的最小截面尺寸大于λ/4,此处λ表示所述辐射的波长。
CNB03810279XA 2002-05-08 2003-05-07 等离子体辅助连接 Expired - Fee Related CN100505976C (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US37869302P 2002-05-08 2002-05-08
US60/378,693 2002-05-08
US43067702P 2002-12-04 2002-12-04
US60/430,677 2002-12-04
US43527802P 2002-12-23 2002-12-23
US60/435,278 2002-12-23

Publications (2)

Publication Number Publication Date
CN1653870A CN1653870A (zh) 2005-08-10
CN100505976C true CN100505976C (zh) 2009-06-24

Family

ID=29424519

Family Applications (15)

Application Number Title Priority Date Filing Date
CNB038102692A Expired - Fee Related CN100505975C (zh) 2002-05-08 2003-05-07 等离子体辅助涂覆
CNB038102684A Expired - Fee Related CN1302843C (zh) 2002-05-08 2003-05-07 等离子体辅助渗碳
CNB038102706A Expired - Fee Related CN100441732C (zh) 2002-05-08 2003-05-07 等离子体辅助增强涂覆
CN03810275A Expired - Fee Related CN100588305C (zh) 2002-05-08 2003-05-07 一种形成等离子体的方法
CNB038102668A Expired - Fee Related CN100436763C (zh) 2002-05-08 2003-05-07 等离子体辅助发动机排气处理
CNB03810265XA Expired - Fee Related CN100338976C (zh) 2002-05-08 2003-05-07 等离子体辅助处理多个工件的方法和装置
CNB038102730A Expired - Fee Related CN1304103C (zh) 2002-05-08 2003-05-07 等离子体辅助碳结构的形成
CNB038102676A Expired - Fee Related CN1324931C (zh) 2002-05-08 2003-05-07 辐射装置、等离子体装置和采用多个辐射源的方法
CNA038102722A Pending CN1652889A (zh) 2002-05-08 2003-05-07 等离子体辅助烧结
CNB038102714A Expired - Fee Related CN1324114C (zh) 2002-05-08 2003-05-07 等离子体辅助掺杂
CNB038102765A Expired - Fee Related CN100425106C (zh) 2002-05-08 2003-05-07 等离子体辅助消除结晶
CNB03810279XA Expired - Fee Related CN100505976C (zh) 2002-05-08 2003-05-07 等离子体辅助连接
CNB038102773A Expired - Fee Related CN100455144C (zh) 2002-05-08 2003-05-07 等离子体辅助热处理
CNB038102781A Expired - Fee Related CN100447289C (zh) 2002-05-08 2003-05-07 等离子体辅助氮表面处理
CNB038102749A Expired - Fee Related CN100336156C (zh) 2002-05-08 2003-05-07 等离子体辅助气体产生

Family Applications Before (11)

Application Number Title Priority Date Filing Date
CNB038102692A Expired - Fee Related CN100505975C (zh) 2002-05-08 2003-05-07 等离子体辅助涂覆
CNB038102684A Expired - Fee Related CN1302843C (zh) 2002-05-08 2003-05-07 等离子体辅助渗碳
CNB038102706A Expired - Fee Related CN100441732C (zh) 2002-05-08 2003-05-07 等离子体辅助增强涂覆
CN03810275A Expired - Fee Related CN100588305C (zh) 2002-05-08 2003-05-07 一种形成等离子体的方法
CNB038102668A Expired - Fee Related CN100436763C (zh) 2002-05-08 2003-05-07 等离子体辅助发动机排气处理
CNB03810265XA Expired - Fee Related CN100338976C (zh) 2002-05-08 2003-05-07 等离子体辅助处理多个工件的方法和装置
CNB038102730A Expired - Fee Related CN1304103C (zh) 2002-05-08 2003-05-07 等离子体辅助碳结构的形成
CNB038102676A Expired - Fee Related CN1324931C (zh) 2002-05-08 2003-05-07 辐射装置、等离子体装置和采用多个辐射源的方法
CNA038102722A Pending CN1652889A (zh) 2002-05-08 2003-05-07 等离子体辅助烧结
CNB038102714A Expired - Fee Related CN1324114C (zh) 2002-05-08 2003-05-07 等离子体辅助掺杂
CNB038102765A Expired - Fee Related CN100425106C (zh) 2002-05-08 2003-05-07 等离子体辅助消除结晶

Family Applications After (3)

Application Number Title Priority Date Filing Date
CNB038102773A Expired - Fee Related CN100455144C (zh) 2002-05-08 2003-05-07 等离子体辅助热处理
CNB038102781A Expired - Fee Related CN100447289C (zh) 2002-05-08 2003-05-07 等离子体辅助氮表面处理
CNB038102749A Expired - Fee Related CN100336156C (zh) 2002-05-08 2003-05-07 等离子体辅助气体产生

Country Status (12)

Country Link
US (7) US7227097B2 (zh)
EP (15) EP1504464A2 (zh)
JP (5) JP2005526359A (zh)
KR (3) KR101015744B1 (zh)
CN (15) CN100505975C (zh)
AT (1) ATE536086T1 (zh)
AU (21) AU2003234499A1 (zh)
BR (6) BR0309814A (zh)
CA (1) CA2485195A1 (zh)
IL (2) IL164824A0 (zh)
MX (1) MXPA04010875A (zh)
WO (21) WO2003095699A1 (zh)

Families Citing this family (216)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6207646B1 (en) * 1994-07-15 2001-03-27 University Of Iowa Research Foundation Immunostimulatory nucleic acid molecules
US7212860B2 (en) * 1999-05-21 2007-05-01 Cardiac Pacemakers, Inc. Apparatus and method for pacing mode switching during atrial tachyarrhythmias
EP1361437A1 (en) * 2002-05-07 2003-11-12 Centre National De La Recherche Scientifique (Cnrs) A novel biological cancer marker and methods for determining the cancerous or non-cancerous phenotype of cells
US7494904B2 (en) * 2002-05-08 2009-02-24 Btu International, Inc. Plasma-assisted doping
US20050233091A1 (en) * 2002-05-08 2005-10-20 Devendra Kumar Plasma-assisted coating
US20060233682A1 (en) * 2002-05-08 2006-10-19 Cherian Kuruvilla A Plasma-assisted engine exhaust treatment
CN100505975C (zh) * 2002-05-08 2009-06-24 Btu国际公司 等离子体辅助涂覆
US7638727B2 (en) * 2002-05-08 2009-12-29 Btu International Inc. Plasma-assisted heat treatment
US7498066B2 (en) * 2002-05-08 2009-03-03 Btu International Inc. Plasma-assisted enhanced coating
US20060237398A1 (en) * 2002-05-08 2006-10-26 Dougherty Mike L Sr Plasma-assisted processing in a manufacturing line
US7497922B2 (en) * 2002-05-08 2009-03-03 Btu International, Inc. Plasma-assisted gas production
JP4163681B2 (ja) * 2002-05-08 2008-10-08 レオナード クルツ シュティフトゥング ウント コンパニー カーゲー 大型のプラスチック製三次元物体の装飾方法
US7445817B2 (en) * 2002-05-08 2008-11-04 Btu International Inc. Plasma-assisted formation of carbon structures
US20060057016A1 (en) * 2002-05-08 2006-03-16 Devendra Kumar Plasma-assisted sintering
CN101076221B (zh) * 2002-05-08 2011-08-31 Btu国际公司 多个辐射源的等离子体产生和处理
US7465362B2 (en) * 2002-05-08 2008-12-16 Btu International, Inc. Plasma-assisted nitrogen surface-treatment
US20060062930A1 (en) * 2002-05-08 2006-03-23 Devendra Kumar Plasma-assisted carburizing
US20060228497A1 (en) * 2002-05-08 2006-10-12 Satyendra Kumar Plasma-assisted coating
US7560657B2 (en) * 2002-05-08 2009-07-14 Btu International Inc. Plasma-assisted processing in a manufacturing line
US7189940B2 (en) * 2002-12-04 2007-03-13 Btu International Inc. Plasma-assisted melting
US7511246B2 (en) 2002-12-12 2009-03-31 Perkinelmer Las Inc. Induction device for generating a plasma
US20040216845A1 (en) * 2003-05-02 2004-11-04 Czeslaw Golkowski Non-thermal plasma generator device
JP2005024539A (ja) * 2003-06-10 2005-01-27 Hitachi Ltd 荷電粒子検出器およびそれを用いた検知装置
US20050067098A1 (en) * 2003-09-30 2005-03-31 Tokyo Electron Limited Method and system for introduction of an active material to a chemical process
JP4324078B2 (ja) * 2003-12-18 2009-09-02 キヤノン株式会社 炭素を含むファイバー、炭素を含むファイバーを用いた基板、電子放出素子、該電子放出素子を用いた電子源、該電子源を用いた表示パネル、及び、該表示パネルを用いた情報表示再生装置、並びに、それらの製造方法
FR2871478B1 (fr) * 2004-06-15 2006-12-22 Arash Mofakhami Systeme d'intrusion et de collision cation-electrons dans un materiau non conducteur
US7517215B1 (en) * 2004-07-09 2009-04-14 Erc Incorporated Method for distributed ignition of fuels by light sources
US20080129208A1 (en) * 2004-11-05 2008-06-05 Satyendra Kumar Atmospheric Processing Using Microwave-Generated Plasmas
CA2588343C (en) * 2004-11-24 2011-11-08 Nanotechnologies, Inc. Electrical, plating and catalytic uses of metal nanomaterial compositions
ATE467335T1 (de) * 2005-03-09 2010-05-15 Askair Technologies Ag Verfahren zur führung einer durchfluss- plasmavorrichtung
US8633416B2 (en) 2005-03-11 2014-01-21 Perkinelmer Health Sciences, Inc. Plasmas and methods of using them
US20090212015A1 (en) * 2005-03-18 2009-08-27 Dougherty Sr Mike L Plasma-Assisted Processing in a Manufacturing Line
US20090014441A1 (en) * 2005-06-17 2009-01-15 Dominique Tasch Microwave plasma cooking
US8622735B2 (en) * 2005-06-17 2014-01-07 Perkinelmer Health Sciences, Inc. Boost devices and methods of using them
AU2006259381B2 (en) * 2005-06-17 2012-01-19 Perkinelmer Health Sciences, Inc. Boost devices and methods of using them
US7742167B2 (en) 2005-06-17 2010-06-22 Perkinelmer Health Sciences, Inc. Optical emission device with boost device
JP4732057B2 (ja) * 2005-07-29 2011-07-27 株式会社日立ハイテクノロジーズ プラズマ処理装置および処理方法
KR100689037B1 (ko) 2005-08-24 2007-03-08 삼성전자주식회사 마이크로파 공명 플라즈마 발생장치 및 그것을 구비하는플라즈마 처리 시스템
US20070051233A1 (en) * 2005-09-06 2007-03-08 Duge Robert T Radiant electromagnetic energy management
JP5531240B2 (ja) * 2005-09-20 2014-06-25 イマジニアリング株式会社 点火装置、内燃機関、点火プラグ、及びプラズマ装置
US8945686B2 (en) * 2007-05-24 2015-02-03 Ncc Method for reducing thin films on low temperature substrates
JP4699235B2 (ja) * 2006-02-20 2011-06-08 株式会社サイアン プラズマ発生装置およびそれを用いるワーク処理装置
JP4846392B2 (ja) * 2006-02-28 2011-12-28 株式会社東芝 水中補修溶接方法
US20070278199A1 (en) * 2006-04-14 2007-12-06 Ewa Environmental, Inc. Particle burning in an exhaust system
US7714248B2 (en) * 2006-05-24 2010-05-11 Kuan-Jiuh Lin Microwave plasma generator
EP1867386A1 (en) * 2006-06-02 2007-12-19 Thomas Wendling Method for the production of nanoparticles
US7722778B2 (en) * 2006-06-28 2010-05-25 Lam Research Corporation Methods and apparatus for sensing unconfinement in a plasma processing chamber
US20110064605A1 (en) * 2006-07-05 2011-03-17 Thermapure, Inc. Method for treating an object contaminated with harmful biological organisms or chemical substances utilizing electromagnetic waves
US7541561B2 (en) * 2006-09-01 2009-06-02 General Electric Company Process of microwave heating of powder materials
US7326892B1 (en) 2006-09-21 2008-02-05 General Electric Company Process of microwave brazing with powder materials
US7524385B2 (en) * 2006-10-03 2009-04-28 Elemetric, Llc Controlled phase transition of metals
CN101646433B (zh) * 2006-10-24 2011-11-16 戴维·W·克雷姆平 抗再吸收的和造骨的食物增补剂和使用方法
US7775416B2 (en) * 2006-11-30 2010-08-17 General Electric Company Microwave brazing process
US8342386B2 (en) * 2006-12-15 2013-01-01 General Electric Company Braze materials and processes therefor
US8574686B2 (en) * 2006-12-15 2013-11-05 General Electric Company Microwave brazing process for forming coatings
US8409318B2 (en) * 2006-12-15 2013-04-02 General Electric Company Process and apparatus for forming wire from powder materials
US7946467B2 (en) * 2006-12-15 2011-05-24 General Electric Company Braze material and processes for making and using
US8951632B2 (en) 2007-01-03 2015-02-10 Applied Nanostructured Solutions, Llc CNT-infused carbon fiber materials and process therefor
US8158217B2 (en) 2007-01-03 2012-04-17 Applied Nanostructured Solutions, Llc CNT-infused fiber and method therefor
US8951631B2 (en) 2007-01-03 2015-02-10 Applied Nanostructured Solutions, Llc CNT-infused metal fiber materials and process therefor
US9806273B2 (en) * 2007-01-03 2017-10-31 The United States Of America As Represented By The Secretary Of The Army Field effect transistor array using single wall carbon nano-tubes
US9005755B2 (en) 2007-01-03 2015-04-14 Applied Nanostructured Solutions, Llc CNS-infused carbon nanomaterials and process therefor
DE102007011310B4 (de) * 2007-03-06 2015-06-18 Biotronik Crm Patent Ag Medizinisches Implantat und Verfahren zur Herstellung desselben
FR2921388B1 (fr) * 2007-09-20 2010-11-26 Air Liquide Dispositif et procede de depot cvd assiste par plasma tres haute frequence a la pression atmospherique, et ses applications
US20090139607A1 (en) * 2007-10-28 2009-06-04 General Electric Company Braze compositions and methods of use
US8115135B2 (en) * 2008-02-14 2012-02-14 Adventix Technologies Inc. Plasma assisted oxygen decontaminant generator and sprayer
US20090295509A1 (en) * 2008-05-28 2009-12-03 Universal Phase, Inc. Apparatus and method for reaction of materials using electromagnetic resonators
US8575843B2 (en) 2008-05-30 2013-11-05 Colorado State University Research Foundation System, method and apparatus for generating plasma
EP2297377B1 (en) 2008-05-30 2017-12-27 Colorado State University Research Foundation Plasma-based chemical source device and method of use thereof
WO2011123124A1 (en) 2010-03-31 2011-10-06 Colorado State University Research Foundation Liquid-gas interface plasma device
US8994270B2 (en) 2008-05-30 2015-03-31 Colorado State University Research Foundation System and methods for plasma application
US8410712B2 (en) * 2008-07-09 2013-04-02 Ncc Nano, Llc Method and apparatus for curing thin films on low-temperature substrates at high speeds
US8128788B2 (en) * 2008-09-19 2012-03-06 Rf Thummim Technologies, Inc. Method and apparatus for treating a process volume with multiple electromagnetic generators
US8760520B2 (en) 2008-11-10 2014-06-24 Eduard Levin System and method for tracking and monitoring personnel and equipment
CN101579617B (zh) * 2009-01-20 2012-05-30 江苏工业学院 一种微波化学反应器
US9186742B2 (en) * 2009-01-30 2015-11-17 General Electric Company Microwave brazing process and assemblies and materials therefor
JP5577356B2 (ja) 2009-02-17 2014-08-20 アプライド ナノストラクチャード ソリューションズ リミテッド ライアビリティー カンパニー カーボン・ナノチューブを繊維上に含んで構成された複合材料
BRPI1008131A2 (pt) 2009-02-27 2016-03-08 Applied Nanostructured Sols "crescimento de nanotubo de carbono de baixa temperatura usando método de preaquecimento de gás".
US20100227134A1 (en) 2009-03-03 2010-09-09 Lockheed Martin Corporation Method for the prevention of nanoparticle agglomeration at high temperatures
EP2420113A4 (en) 2009-04-14 2014-04-02 Rf Thummim Technologies Inc METHOD AND DEVICE FOR EXPLORING RESONANCES IN MOLECULES
CN102461361A (zh) 2009-04-24 2012-05-16 应用纳米结构方案公司 并入cnt的emi屏蔽复合材料和涂层
US9111658B2 (en) 2009-04-24 2015-08-18 Applied Nanostructured Solutions, Llc CNS-shielded wires
AU2010245098B2 (en) 2009-04-27 2014-11-13 Applied Nanostructured Solutions, Llc. CNT-based resistive heating for deicing composite structures
JP5400885B2 (ja) * 2009-07-10 2014-01-29 パナソニック株式会社 マイクロ波加熱装置
EP2461953A4 (en) 2009-08-03 2014-05-07 Applied Nanostructured Sols USE OF NANOPARTICLES IN COMPOSITE FIBERS
US8222822B2 (en) 2009-10-27 2012-07-17 Tyco Healthcare Group Lp Inductively-coupled plasma device
US20120160966A1 (en) 2009-11-23 2012-06-28 Applied Nanostructured Solutions, Llc Cnt-tailored composite space-based structures
EP2504164A4 (en) 2009-11-23 2013-07-17 Applied Nanostructured Sols CERAMIC COMPOSITE MATERIALS CONTAINING FIBER MATERIALS IMPREGNATED WITH CARBON NANOTUBES AND METHODS OF MAKING SAME
WO2011142785A2 (en) 2009-12-14 2011-11-17 Applied Nanostructured Solutions, Llc Flame-resistant composite materials and articles containing carbon nanotube-infused fiber materials
US9167736B2 (en) 2010-01-15 2015-10-20 Applied Nanostructured Solutions, Llc CNT-infused fiber as a self shielding wire for enhanced power transmission line
US20110180385A1 (en) * 2010-01-28 2011-07-28 Raytheon Company Control of Catalytic Chemical Processes
BR112012018244A2 (pt) 2010-02-02 2016-05-03 Applied Nanostructured Sols materiais de fibra infundidos com nanotubo de carbono contendo nanotubos de carbono alinhados em paralelo, métodos para produção dos mesmos e materiais compósitos derivados dos mesmos
EP2534051A4 (en) * 2010-02-08 2017-04-05 Microspace Rapid PTE LTD A micro-nozzle thruster
JP2013521656A (ja) 2010-03-02 2013-06-10 アプライド ナノストラクチャード ソリューションズ リミテッド ライアビリティー カンパニー カーボン・ナノチューブ浸出電極材料を含む螺旋に巻き付けられた電気機器及びその生産方法並びに生産装置
BR112012021634A2 (pt) 2010-03-02 2019-09-24 Applied Nanostructured Sols dispositivos elétricos contendo fibras de nanotubo de carbono infundidas e métodos para reprodução das mesmas.
WO2011116187A1 (en) 2010-03-17 2011-09-22 Rf Thummim Technologies, Inc. Method and apparatus for electromagnetically producing a disturbance in a medium with simultaneous resonance of acoustic waves created by the disturbance
EP2552340A4 (en) 2010-03-31 2015-10-14 Univ Colorado State Res Found PLASMA DEVICE WITH LIQUID GAS INTERFACE
EP2556594B1 (en) * 2010-04-08 2020-08-12 NCC Nano, LLC Apparatus for curing thin films on a moving substrate
US10422578B2 (en) * 2010-04-08 2019-09-24 Ncc Nano, Pllc Apparatus for curing thin films on a moving substrate
CN101940902A (zh) * 2010-05-04 2011-01-12 姚光纯 一种采用脉冲波提高催化化学反应效率的工艺方法
US8780526B2 (en) 2010-06-15 2014-07-15 Applied Nanostructured Solutions, Llc Electrical devices containing carbon nanotube-infused fibers and methods for production thereof
US9017854B2 (en) 2010-08-30 2015-04-28 Applied Nanostructured Solutions, Llc Structural energy storage assemblies and methods for production thereof
EP2616189B1 (en) 2010-09-14 2020-04-01 Applied NanoStructured Solutions, LLC Glass substrates having carbon nanotubes grown thereon and methods for production thereof
CN103118975A (zh) 2010-09-22 2013-05-22 应用奈米结构公司 具有碳纳米管成长于其上的碳纤维基板及其制造方法
BR112012017246A2 (pt) 2010-09-23 2016-03-22 Applied Nanostructured Solutins Llc fibra infundida por cnt como um fio autoblindado para linha de transmissão de energia aprimorada
US8755165B2 (en) 2010-10-18 2014-06-17 Veeco Instruments, Inc. Fault tolerant ion source power system
CN102476954A (zh) * 2010-11-22 2012-05-30 鸿富锦精密工业(深圳)有限公司 不锈钢与氮化硅陶瓷的连接方法及制得的连接件
CN102093915B (zh) * 2010-12-17 2013-05-01 南通海鹰机电集团有限公司 生物质发电系统重整反应釜
CN102172833B (zh) * 2011-02-21 2012-10-03 南京航空航天大学 基于放电诱导可控烧蚀的非导电工程陶瓷磨削加工方法
EP2684420B1 (en) * 2011-03-11 2016-08-03 Inderjit Singh A method and apparatus for plasma assisted laser cooking of food products
CN102794354A (zh) * 2011-05-26 2012-11-28 昆山市瑞捷精密模具有限公司 一种具有耐高温涂层的镍基超耐热合金冲压模具
CN102806270A (zh) * 2011-05-30 2012-12-05 昆山市瑞捷精密模具有限公司 一种具有耐高温涂层的铁素体不锈钢模具
CN102343391A (zh) * 2011-06-14 2012-02-08 昆山市瑞捷精密模具有限公司 一种具有硬膜结构的镍基超耐热合金冲压模具
CN102343394A (zh) * 2011-06-14 2012-02-08 昆山市瑞捷精密模具有限公司 一种具有硬膜结构的镍基超耐热模具的制备方法
CN102343392A (zh) * 2011-06-14 2012-02-08 昆山市瑞捷精密模具有限公司 一种具有硬膜结构的铁素体不锈钢模具的制备方法
CN102825135A (zh) * 2011-06-16 2012-12-19 昆山市瑞捷精密模具有限公司 一种具有自润滑涂层的铁素体不锈钢冲压模具
CN102389922A (zh) * 2011-06-16 2012-03-28 昆山市瑞捷精密模具有限公司 一种具有自润滑涂层的镍基超耐热合金冲压模具
JP5490192B2 (ja) * 2011-12-28 2014-05-14 東京エレクトロン株式会社 マイクロ波加熱処理装置および処理方法
CN103199215B (zh) * 2012-01-05 2016-12-21 三星Sdi株式会社 热处理设备
AU2013212461B2 (en) * 2012-01-27 2017-05-25 N/C Quest Inc. Carbon nanotube production method to stimulate soil microorganisms and plant growth produced from the emissions of internal combustion
US9085464B2 (en) 2012-03-07 2015-07-21 Applied Nanostructured Solutions, Llc Resistance measurement system and method of using the same
AU2013290093B2 (en) 2012-07-13 2017-09-21 Peter Morrisroe Torches and methods of using them
CN102961787B (zh) * 2012-12-13 2015-06-03 北京大学 一种全降解心血管支架用铁基复合材料及其制备方法
US9374853B2 (en) 2013-02-08 2016-06-21 Letourneau University Method for joining two dissimilar materials and a microwave system for accomplishing the same
US9532826B2 (en) 2013-03-06 2017-01-03 Covidien Lp System and method for sinus surgery
US9555145B2 (en) 2013-03-13 2017-01-31 Covidien Lp System and method for biofilm remediation
US9793095B2 (en) 2013-03-14 2017-10-17 Tokyo Electron Limited Microwave surface-wave plasma device
US9505503B2 (en) * 2013-03-27 2016-11-29 Lockheed Martin Corporation Reactants sprayed into plasma flow for rocket propulsion
US9941126B2 (en) 2013-06-19 2018-04-10 Tokyo Electron Limited Microwave plasma device
US9512766B2 (en) 2013-08-16 2016-12-06 Ford Global Technologies, Llc Multi-cell structure for automotive catalyst support
CN103495730B (zh) * 2013-10-12 2015-06-10 宝鸡正微金属科技有限公司 真空等离子粉末冶金烧结工艺
TWI553700B (zh) 2013-11-06 2016-10-11 東京威力科創股份有限公司 多單元共振器微波表面波電漿設備
CN103647095B (zh) * 2013-11-20 2016-01-20 江苏大学 一种激光-碱性燃料电池
CN104649247A (zh) * 2013-11-22 2015-05-27 中国科学院苏州纳米技术与纳米仿生研究所 一种形成氮掺杂单壁碳纳米管的方法
KR102437125B1 (ko) * 2014-06-27 2022-08-25 어플라이드 머티어리얼스, 인코포레이티드 고온 프로세싱을 위한 플라즈마 부식 저항성 가열기
CN104176949A (zh) * 2014-08-18 2014-12-03 苏州宏久航空防热材料科技有限公司 一种高红外吸收的玻璃纤维的制备方法
WO2016112473A1 (zh) * 2015-01-12 2016-07-21 王守国 可插拔的等离子体放电管装置
US10153133B2 (en) 2015-03-23 2018-12-11 Applied Materials, Inc. Plasma reactor having digital control over rotation frequency of a microwave field with direct up-conversion
DE102015111555B3 (de) * 2015-07-16 2016-09-29 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Anordnung zur Behandlung von Materialien mit Mikrowellen
US10244613B2 (en) 2015-10-04 2019-03-26 Kla-Tencor Corporation System and method for electrodeless plasma ignition in laser-sustained plasma light source
US20180346372A1 (en) * 2015-11-30 2018-12-06 The Board Of Regents For Oklahoma State University Microwave processing of thermoelectric materials and use of glass inclusions for improving the mechanical and thermoelectric properties
EP3389862B1 (en) 2015-12-16 2023-12-06 6K Inc. Method of producing spheroidal dehydrogenated titanium alloy particles
US10987735B2 (en) 2015-12-16 2021-04-27 6K Inc. Spheroidal titanium metallic powders with custom microstructures
CN109247031B (zh) * 2016-01-19 2023-02-17 辉光能源公司 热光伏发电机
US9831066B1 (en) * 2016-05-27 2017-11-28 Mks Instruments, Inc. Compact microwave plasma applicator utilizing conjoining electric fields
CN106435519A (zh) * 2016-09-18 2017-02-22 北京工业大学 一种提高cvd法在长管内壁制备钨涂层均匀性的方法
US9812295B1 (en) 2016-11-15 2017-11-07 Lyten, Inc. Microwave chemical processing
EP3542036B1 (en) * 2016-11-17 2020-11-04 Eprotech S.R.L. Device for abatement of liquid, gaseous and/or solid pollutant substances of various kind, contained into the exhaust smokes, and process for treatment and abatement of such pollutant substances
CN106631086A (zh) * 2017-01-16 2017-05-10 青岛大学 一种多模烧结腔内微波焊接陶瓷材料的分析方法
CN106744676A (zh) * 2017-01-23 2017-05-31 上海朗研光电科技有限公司 辉光放电合成纳米粒子的装置及其合成方法
US9767992B1 (en) 2017-02-09 2017-09-19 Lyten, Inc. Microwave chemical processing reactor
US9997334B1 (en) 2017-02-09 2018-06-12 Lyten, Inc. Seedless particles with carbon allotropes
CN110418816B (zh) 2017-03-16 2022-05-31 利腾股份有限公司 碳和弹性体整合
US10920035B2 (en) 2017-03-16 2021-02-16 Lyten, Inc. Tuning deformation hysteresis in tires using graphene
CN106861912B (zh) * 2017-03-21 2018-08-17 哈尔滨工程大学 一种增强等离子体浓度提高除尘效率的装置及方法
US11424104B2 (en) 2017-04-24 2022-08-23 Applied Materials, Inc. Plasma reactor with electrode filaments extending from ceiling
CN107029645A (zh) * 2017-05-12 2017-08-11 武汉喜玛拉雅光电科技股份有限公司 一种连续微波合成装置及用其制备铂碳催化剂的方法
US11358869B2 (en) 2017-08-08 2022-06-14 H Quest Vanguard, Inc. Methods and systems for microwave assisted production of graphitic materials
US11358113B2 (en) 2017-08-08 2022-06-14 H Quest Vanguard, Inc. Non-thermal micro-plasma conversion of hydrocarbons
US10434490B2 (en) 2017-08-08 2019-10-08 H Quest Vanguard, Inc. Microwave-induced non-thermal plasma conversion of hydrocarbons
US9987611B1 (en) 2017-08-08 2018-06-05 H Quest Vanguard, Inc. Non-thermal plasma conversion of hydrocarbons
US20190061005A1 (en) * 2017-08-30 2019-02-28 General Electric Company High Quality Spherical Powders for Additive Manufacturing Processes Along With Methods of Their Formation
WO2019098292A1 (ja) * 2017-11-15 2019-05-23 日本発條株式会社 接合体および自動車用シートフレーム
WO2019126196A1 (en) 2017-12-22 2019-06-27 Lyten, Inc. Structured composite materials
KR20200103788A (ko) 2018-01-04 2020-09-02 라이텐, 인코포레이티드 공진 가스 센서
EP3508334A1 (en) * 2018-01-08 2019-07-10 CL Schutzrechtsverwaltungs GmbH Apparatus for additively manufacturing of three-dimensional objects
WO2019143559A1 (en) 2018-01-16 2019-07-25 Lyten, Inc. Microwave transparent pressure barrier
EP3581371B1 (en) * 2018-06-14 2021-04-14 Fundació Institut de Ciències Fotòniques A method and a system for self-repairing an object
WO2019246257A1 (en) 2018-06-19 2019-12-26 Amastan Technologies Inc. Process for producing spheroidized powder from feedstock materials
CN109186216B (zh) * 2018-08-23 2023-08-22 绍兴市质量技术监督检测院 一种防泄漏的微波快速干燥装置
DE102018121897A1 (de) 2018-09-07 2020-03-12 Infineon Technologies Ag Halbleitervorrichtung mit einem silizium und stickstoff enthaltenden bereich und herstellungsverfahren
EP3488851A1 (en) * 2018-10-03 2019-05-29 AVM Biotechnology, LLC Immunoablative therapies
EP3671511B1 (en) 2018-12-19 2022-07-06 Rohde & Schwarz GmbH & Co. KG Communication system and method
KR102217086B1 (ko) * 2018-12-28 2021-02-18 금오공과대학교 산학협력단 자동차용 리어램프 사출 게이트 커팅 및 플라즈마 표면 처리 시스템
CN109570739A (zh) * 2019-02-12 2019-04-05 黄山学院 一种用于控制搅拌摩擦焊接变形的新装置
CN110289115B (zh) * 2019-02-22 2022-08-30 中国工程物理研究院核物理与化学研究所 一种高强型硅橡胶基柔性中子屏蔽材料及其制备方法
US20200286757A1 (en) * 2019-03-08 2020-09-10 Dsgi Technologies, Inc. Apparatus for annealing semiconductor integrated circuit wafers
CN114007782A (zh) 2019-04-30 2022-02-01 6K有限公司 机械合金化的粉末原料
SG11202111578UA (en) 2019-04-30 2021-11-29 6K Inc Lithium lanthanum zirconium oxide (llzo) powder
US11158561B2 (en) * 2019-05-01 2021-10-26 Micron Technology, Inc. Memory device with low density thermal barrier
CN110064291B (zh) * 2019-05-07 2021-09-24 中冶华天工程技术有限公司 集成式低浓度恶臭废气处理装置
CN110557853B (zh) * 2019-07-18 2022-08-09 武汉纺织大学 能通电发热的高温烧结体的制造方法、产品及应用方法
CN112404713B (zh) * 2019-08-23 2022-10-14 大族激光科技产业集团股份有限公司 一种oled激光焊接系统与温度控制方法
CN110385020B (zh) * 2019-09-02 2024-01-30 浙江大学城市学院 用于氮氧化物脱除的多针同轴式放电脱除方法及反应器
CN110735691B (zh) * 2019-11-13 2021-07-30 燕山大学 一种基于等离子体的汽车尾气净化设备
CN114641462A (zh) 2019-11-18 2022-06-17 6K有限公司 用于球形粉末的独特原料及制造方法
CN112899617B (zh) * 2019-12-04 2023-03-31 中微半导体设备(上海)股份有限公司 形成耐等离子体涂层的方法、装置、零部件和等离子体处理装置
US11590568B2 (en) 2019-12-19 2023-02-28 6K Inc. Process for producing spheroidized powder from feedstock materials
KR20220152325A (ko) 2020-03-24 2022-11-15 에펜코 오우 플라즈마 연소를 안정화하고 보조하기 위한 나노크기의 세라믹 플라즈마 촉매
CN111250916B (zh) * 2020-03-25 2021-06-29 荆门诺恒科技有限公司 一种航空发动机实验滑车的水戽斗组焊退火工装
CN111545148B (zh) * 2020-04-07 2022-06-07 华东交通大学 一种手性催化方法及其催化装置
CN111420834A (zh) * 2020-04-11 2020-07-17 张新旺 一种电缆半导电石墨涂敷设备
CN113539076B (zh) * 2020-04-20 2022-12-13 Oppo广东移动通信有限公司 终端设备及其折叠显示屏
CN111479375B (zh) * 2020-05-08 2022-12-02 高维等离子体源科技(孝感)有限公司 一种表面耦合诱导电离技术及其对应的等离子体与等离子体器件
JP7421838B2 (ja) 2020-05-09 2024-01-25 高維等離子体源科技(孝感)有限公司 表面結合による電離誘起技術及びそれに対応するプラズマ、ならびにプラズマデバイス
TWI755749B (zh) * 2020-06-08 2022-02-21 馬思正 内燃機降廢及節能設備
WO2021263273A1 (en) 2020-06-25 2021-12-30 6K Inc. Microcomposite alloy structure
CN111850489B (zh) * 2020-07-29 2023-01-24 江苏集萃先进金属材料研究所有限公司 靶材中间料及其形成方法和实现该形成方法的装置
CN111992161A (zh) * 2020-09-04 2020-11-27 江西科技学院 用于铜矿渣污染物的光催化降解装置及其使用方法
KR20230073182A (ko) 2020-09-24 2023-05-25 6케이 인크. 플라즈마를 개시하기 위한 시스템, 디바이스 및 방법
JP2023548325A (ja) 2020-10-30 2023-11-16 シックスケー インコーポレイテッド 球状化金属粉末の合成のためのシステムおよび方法
CN112675648B (zh) * 2020-12-02 2022-04-15 杨振华 一种节能型空气净化设备及其使用方法
CN112594031A (zh) * 2020-12-08 2021-04-02 上研动力科技江苏有限公司 一种带有烟气处理及二次利用装置的柴油机
CN112759408B (zh) * 2021-01-04 2022-12-23 苏州第一元素纳米技术有限公司 碳化硼陶瓷及其制备方法与应用
CN112985064A (zh) * 2021-02-05 2021-06-18 陕西翼飞航智能科技有限公司 基于等离子体热风炉的烧结装置及烧结方法
CN113218190B (zh) * 2021-04-01 2022-09-27 青海湘和有色金属有限责任公司 一种富氧侧吹炉稳定供氧装置及其使用方法
CN112996209B (zh) * 2021-05-07 2021-08-10 四川大学 一种微波激发常压等离子体射流的结构和阵列结构
CN113244866B (zh) * 2021-05-14 2022-05-06 昆明理工大学 一种微波辅助气体催化合成轻烃的装置及其方法
CN113245901B (zh) * 2021-06-28 2022-03-04 浙江重力智能装备有限公司 一种数控机床用冷却液清理装置
CN114234239A (zh) * 2021-12-13 2022-03-25 哈尔滨工业大学 一种基于金属基颗粒与微波协同的燃烧系统及方法
CN114199032B (zh) * 2021-12-21 2023-11-28 清华大学深圳国际研究生院 等离子体辅助陶瓷烧结装置和陶瓷烧结方法
CN114543523B (zh) * 2022-01-19 2023-10-24 福建华清电子材料科技有限公司 精准控制氮气供应的氮化铝粉末制备石墨炉
CN114873561A (zh) * 2022-05-12 2022-08-09 哈尔滨工业大学 一种变催化剂粒径的填充床式重整制氢反应器及反应方法
CN115121388A (zh) * 2022-08-09 2022-09-30 南木纳米科技(北京)有限公司 一种干法电池极片底涂机
CN115275507A (zh) * 2022-08-09 2022-11-01 南木纳米科技(北京)有限公司 一种干法隔膜涂布机
CN116609189B (zh) * 2023-07-21 2023-10-20 镇江华浩通信器材有限公司 一种射频同轴电缆连接器快速检测装置

Family Cites Families (216)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU432371B2 (en) * 1967-07-13 1973-02-06 Commonwealth Scientific And Industrial Research Organization Plasma sintering
US3612686A (en) 1968-01-03 1971-10-12 Iit Res Inst Method and apparatus for gas analysis utilizing a direct current discharge
US3731047A (en) * 1971-12-06 1973-05-01 Mc Donnell Douglas Corp Plasma heating torch
US4004934A (en) 1973-10-24 1977-01-25 General Electric Company Sintered dense silicon carbide
JPS5823349B2 (ja) 1975-08-11 1983-05-14 新日本製鐵株式会社 タイカブツノシヨウケツホウホウ
JPS5378170A (en) * 1976-12-22 1978-07-11 Toshiba Corp Continuous processor for gas plasma etching
US4025818A (en) * 1976-04-20 1977-05-24 Hughes Aircraft Company Wire ion plasma electron gun
CA1080562A (en) 1977-02-10 1980-07-01 Frederick D. King Method of and apparatus for manufacturing an optical fibre with plasma activated deposition in a tube
US4307277A (en) * 1978-08-03 1981-12-22 Mitsubishi Denki Kabushiki Kaisha Microwave heating oven
US4213818A (en) 1979-01-04 1980-07-22 Signetics Corporation Selective plasma vapor etching process
JPS55131175A (en) * 1979-03-30 1980-10-11 Toshiba Corp Surface treatment apparatus with microwave plasma
US4230448A (en) 1979-05-14 1980-10-28 Combustion Electromagnetics, Inc. Burner combustion improvements
JPS5673539A (en) 1979-11-22 1981-06-18 Toshiba Corp Surface treating apparatus of microwave plasma
FR2480552A1 (fr) 1980-04-10 1981-10-16 Anvar Generateur de plasmaŸ
US4404456A (en) 1981-03-26 1983-09-13 Cann Gordon L Micro-arc welding/brazing of metal to metal and metal to ceramic joints
JPS5825073A (ja) * 1981-08-07 1983-02-15 Mitsubishi Electric Corp 無電極放電ランプ
US4479075A (en) 1981-12-03 1984-10-23 Elliott William G Capacitatively coupled plasma device
US4500564A (en) * 1982-02-01 1985-02-19 Agency Of Industrial Science & Technology Method for surface treatment by ion bombardment
US4504007A (en) * 1982-09-14 1985-03-12 International Business Machines Corporation Solder and braze fluxes and processes for using the same
FR2533397A2 (fr) 1982-09-16 1984-03-23 Anvar Perfectionnements aux torches a plasma
US4664937A (en) 1982-09-24 1987-05-12 Energy Conversion Devices, Inc. Method of depositing semiconductor films by free radical generation
JPS59103348A (ja) * 1982-12-06 1984-06-14 Toyota Central Res & Dev Lab Inc 半導体装置の製造方法
JPS59169053A (ja) * 1983-03-16 1984-09-22 Toshiba Corp 無電極放電灯
DD222348A1 (de) * 1983-12-27 1985-05-15 Erste Maschinenfabrik K Marx S Verfahren zur intensivierung des stoffueberganges bei thermisch-chemischen behandlungen von werkstoffen
US4504564A (en) * 1984-01-03 1985-03-12 Xerox Corporation Method for the preparation of photoconductive compositions
US4637895A (en) * 1985-04-01 1987-01-20 Energy Conversion Devices, Inc. Gas mixtures for the vapor deposition of semiconductor material
US4666775A (en) * 1985-04-01 1987-05-19 Kennecott Corporation Process for sintering extruded powder shapes
US4624738A (en) 1985-07-12 1986-11-25 E. T. Plasma, Inc. Continuous gas plasma etching apparatus and method
US4687560A (en) 1985-08-16 1987-08-18 The United States Of America As Represented By The United States Department Of Energy Method of synthesizing a plurality of reactants and producing thin films of electro-optically active transition metal oxides
SE448297B (sv) * 1985-09-27 1987-02-09 Stiftelsen Inst Mikrovags Forfarande och anordning for uppvermning av glasror
JPS6311580A (ja) 1986-06-30 1988-01-19 株式会社豊田中央研究所 セラミツクスの接合装置
US4767902A (en) 1986-09-24 1988-08-30 Questech Inc. Method and apparatus for the microwave joining of ceramic items
DE3632684A1 (de) 1986-09-26 1988-03-31 Philips Patentverwaltung Verfahren und vorrichtung zum innenbeschichten von rohren
JPH0689456B2 (ja) 1986-10-01 1994-11-09 キヤノン株式会社 マイクロ波プラズマcvd法による機能性堆積膜形成装置
IT1213433B (it) 1986-12-23 1989-12-20 Eniricerche S P A Agip S P A Procedimento per oligomerizzare olefine leggere
US4919077A (en) * 1986-12-27 1990-04-24 Mitsubishi Denki Kabushiki Kaisha Semiconductor producing apparatus
US4792348A (en) 1987-03-02 1988-12-20 Powerplex Technologies, Inc. Method of forming glass bonded joint of beta-alumina
JPH0754759B2 (ja) * 1987-04-27 1995-06-07 日本電信電話株式会社 プラズマ処理方法および装置並びにプラズマ処理装置用モード変換器
US4883570A (en) 1987-06-08 1989-11-28 Research-Cottrell, Inc. Apparatus and method for enhanced chemical processing in high pressure and atmospheric plasmas produced by high frequency electromagnetic waves
FR2616614B1 (fr) * 1987-06-10 1989-10-20 Air Liquide Torche a plasma micro-onde, dispositif comportant une telle torche et procede pour la fabrication de poudre les mettant en oeuvre
JPH0623430B2 (ja) 1987-07-13 1994-03-30 株式会社半導体エネルギ−研究所 炭素作製方法
US4891488A (en) 1987-07-16 1990-01-02 Texas Instruments Incorporated Processing apparatus and method
US4963709A (en) 1987-07-24 1990-10-16 The United States Of America As Represented By The Department Of Energy Method and device for microwave sintering large ceramic articles
EP0329338A3 (en) 1988-02-16 1990-08-01 Alcan International Limited Process and apparatus for heating bodies at high temperature and pressure utilizing microwave energy
US4893584A (en) * 1988-03-29 1990-01-16 Energy Conversion Devices, Inc. Large area microwave plasma apparatus
JP2805009B2 (ja) * 1988-05-11 1998-09-30 株式会社日立製作所 プラズマ発生装置及びプラズマ元素分析装置
DE3820237C1 (zh) 1988-06-14 1989-09-14 Max-Planck-Gesellschaft Zur Foerderung Der Wissenschaften Ev, 3400 Goettingen, De
DE3830249A1 (de) * 1988-09-06 1990-03-15 Schott Glaswerke Plasmaverfahren zum beschichten ebener substrate
US5122431A (en) * 1988-09-14 1992-06-16 Fujitsu Limited Thin film formation apparatus
US4877589A (en) * 1988-09-19 1989-10-31 Hare Louis R O Nitrogen fixation by electric arc and catalyst
US4956590A (en) 1988-10-06 1990-09-11 Techco Corporation Vehicular power steering system
US5131993A (en) 1988-12-23 1992-07-21 The Univeristy Of Connecticut Low power density plasma excitation microwave energy induced chemical reactions
US5015349A (en) * 1988-12-23 1991-05-14 University Of Connecticut Low power density microwave discharge plasma excitation energy induced chemical reactions
JP2994652B2 (ja) 1989-01-26 1999-12-27 キヤノン株式会社 マイクロ波プラズマcvd法による堆積膜形成装置
US4888088A (en) 1989-03-06 1989-12-19 Tegal Corporation Ignitor for a microwave sustained plasma
US5103715A (en) * 1989-03-17 1992-04-14 Techco Corporation Power steering system
DE3912568A1 (de) * 1989-04-17 1990-10-18 Siemens Ag Gas-laser, insbesondere co(pfeil abwaerts)2(pfeil abwaerts)-laser
US5227695A (en) 1989-06-05 1993-07-13 Centre National De La Recherche Scientifique Device for coupling microwave energy with an exciter and for distributing it therealong for the purpose of producing a plasma
EP0476004B1 (de) * 1989-06-07 1993-05-26 MOSHAMMER, Wolfgang, Dipl.-Ing. Verfahren und vorrichtung zur einstrahlung von mikrowellenenergie in wasserhaltige oder mit wasser versetzte materie
US5114770A (en) * 1989-06-28 1992-05-19 Canon Kabushiki Kaisha Method for continuously forming functional deposited films with a large area by a microwave plasma cvd method
US5130170A (en) * 1989-06-28 1992-07-14 Canon Kabushiki Kaisha Microwave pcvd method for continuously forming a large area functional deposited film using a curved moving substrate web with microwave energy with a directivity in one direction perpendicular to the direction of microwave propagation
DE69030140T2 (de) * 1989-06-28 1997-09-04 Canon Kk Verfahren und Anordnung zur kontinuierlichen Bildung einer durch Mikrowellen-Plasma-CVD niedergeschlagenen grossflächigen Dünnschicht
JPH03193880A (ja) * 1989-08-03 1991-08-23 Mikakutou Seimitsu Kogaku Kenkyusho:Kk 高圧力下でのマイクロ波プラズマcvdによる高速成膜方法及びその装置
US4946547A (en) 1989-10-13 1990-08-07 Cree Research, Inc. Method of preparing silicon carbide surfaces for crystal growth
US5023056A (en) 1989-12-27 1991-06-11 The United States Of America As Represented By The Secretary Of The Navy Plasma generator utilizing dielectric member for carrying microwave energy
US5277773A (en) * 1989-12-27 1994-01-11 Exxon Research & Engineering Co. Conversion of hydrocarbons using microwave radiation
CA2031927A1 (en) * 1989-12-27 1991-06-28 Imperial Oil Limited Method for improving the activity maintenance of a plasma initiator
EP0435591A3 (en) * 1989-12-27 1991-11-06 Exxon Research And Engineering Company Conversion of methane using microwave radiation
US5074112A (en) 1990-02-21 1991-12-24 Atomic Energy Of Canada Limited Microwave diesel scrubber assembly
KR910016054A (ko) * 1990-02-23 1991-09-30 미다 가쓰시게 마이크로 전자 장치용 표면 처리 장치 및 그 방법
US5164130A (en) * 1990-04-20 1992-11-17 Martin Marietta Energy Systems, Inc. Method of sintering ceramic materials
US5120567A (en) 1990-05-17 1992-06-09 General Electric Company Low frequency plasma spray method in which a stable plasma is created by operating a spray gun at less than 1 mhz in a mixture of argon and helium gas
JPH0462716A (ja) 1990-06-29 1992-02-27 Matsushita Electric Ind Co Ltd 結晶性炭素系薄膜およびその堆積方法
JPH0474858A (ja) * 1990-07-16 1992-03-10 Asahi Chem Ind Co Ltd 窒化膜の製造方法
US5058527A (en) * 1990-07-24 1991-10-22 Ricoh Company, Ltd. Thin film forming apparatus
US5307892A (en) * 1990-08-03 1994-05-03 Techco Corporation Electronically controlled power steering system
US5072650A (en) 1990-08-03 1991-12-17 Techco Corporation Power steering system with improved stability
JPH0779102B2 (ja) * 1990-08-23 1995-08-23 富士通株式会社 半導体装置の製造方法
US5085885A (en) 1990-09-10 1992-02-04 University Of Delaware Plasma-induced, in-situ generation, transport and use or collection of reactive precursors
DE4029270C1 (zh) * 1990-09-14 1992-04-09 Balzers Ag, Balzers, Li
JP2958086B2 (ja) * 1990-09-18 1999-10-06 奈良精機株式会社 注射針の熔融処理装置
JPH04144992A (ja) * 1990-10-01 1992-05-19 Idemitsu Petrochem Co Ltd マイクロ波プラズマ発生装置およびそれを利用するダイヤモンド膜の製造方法
US5282338A (en) * 1990-10-12 1994-02-01 British Aerospace Public Limited Company Sealing structure
US5087272A (en) 1990-10-17 1992-02-11 Nixdorf Richard D Filter and means for regeneration thereof
JPH084103Y2 (ja) * 1990-10-24 1996-02-07 新日本無線株式会社 マイクロ波プラズマ装置
JP2714247B2 (ja) * 1990-10-29 1998-02-16 キヤノン株式会社 マイクロ波プラズマcvd法による大面積の機能性堆積膜を連続的に形成する方法及び装置
JP2994814B2 (ja) * 1990-11-09 1999-12-27 キヤノン株式会社 液晶装置
JP2824808B2 (ja) * 1990-11-16 1998-11-18 キヤノン株式会社 マイクロ波プラズマcvd法による大面積の機能性堆積膜を連続的に形成する装置
AU649770B2 (en) * 1991-01-25 1994-06-02 Societe Prolabo Apparatus for simultaneous treatment, in a moist medium, on a plurality of samples, and utilisation of the said apparatus
US5202541A (en) * 1991-01-28 1993-04-13 Alcan International Limited Microwave heating of workpieces
EP0502269A1 (en) 1991-03-06 1992-09-09 Hitachi, Ltd. Method of and system for microwave plasma treatments
US5397558A (en) * 1991-03-26 1995-03-14 Semiconductor Energy Laboratory Co., Ltd. Method of forming diamond or diamond containing carbon film
US5349154A (en) 1991-10-16 1994-09-20 Rockwell International Corporation Diamond growth by microwave generated plasma flame
US5223308A (en) 1991-10-18 1993-06-29 Energy Conversion Devices, Inc. Low temperature plasma enhanced CVD process within tubular members
US5321223A (en) 1991-10-23 1994-06-14 Martin Marietta Energy Systems, Inc. Method of sintering materials with microwave radiation
US5521360A (en) * 1994-09-14 1996-05-28 Martin Marietta Energy Systems, Inc. Apparatus and method for microwave processing of materials
US5961871A (en) * 1991-11-14 1999-10-05 Lockheed Martin Energy Research Corporation Variable frequency microwave heating apparatus
US5316043A (en) 1992-02-04 1994-05-31 Techco Corporation Preload mechanism for power steering apparatus
US5311906A (en) 1992-02-04 1994-05-17 Techco Corporation Preload mechanism for power steering apparatus
DE4204650C1 (zh) 1992-02-15 1993-07-08 Hoffmeister, Helmut, Dr., 4400 Muenster, De
EP0586708B1 (en) * 1992-03-06 2001-09-26 Omron Corporation Image processor and method therefor
US5222448A (en) * 1992-04-13 1993-06-29 Columbia Ventures Corporation Plasma torch furnace processing of spent potliner from aluminum smelters
US5366764A (en) 1992-06-15 1994-11-22 Sunthankar Mandar B Environmentally safe methods and apparatus for depositing and/or reclaiming a metal or semi-conductor material using sublimation
US5330800A (en) * 1992-11-04 1994-07-19 Hughes Aircraft Company High impedance plasma ion implantation method and apparatus
US5271963A (en) 1992-11-16 1993-12-21 Materials Research Corporation Elimination of low temperature ammonia salt in TiCl4 NH3 CVD reaction
JP2738251B2 (ja) * 1993-01-20 1998-04-08 松下電器産業株式会社 内燃機関用フィルタ再生装置
US5307766A (en) * 1993-03-12 1994-05-03 Westinghouse Electric Corp. Temperature control of steam for boilers
US5370525A (en) 1993-03-22 1994-12-06 Blue Pacific Environments Corporation Microwave combustion enhancement device
US5449887A (en) 1993-03-25 1995-09-12 Martin Marietta Energy Systems, Inc. Thermal insulation for high temperature microwave sintering operations and method thereof
WO1994022628A1 (en) * 1993-04-05 1994-10-13 Seiko Epson Corporation Combining method and apparatus using solder
JP2803017B2 (ja) * 1993-06-07 1998-09-24 工業技術院長 抗血栓性医用材料及び医療用具並びにこれらの製造方法、製造装置及びプラズマ処理装置
JPH09502236A (ja) 1993-07-29 1997-03-04 テクコ・コーポレイション 改良式ブートストラップパワーステアリングシステム
US5435698A (en) 1993-07-29 1995-07-25 Techco Corporation Bootstrap power steering systems
US5505275A (en) * 1993-09-09 1996-04-09 Techo Corporation Power steering system
US5755097A (en) 1993-07-29 1998-05-26 Techco Corporation Bootstrap power steering systems
US6342195B1 (en) * 1993-10-01 2002-01-29 The Penn State Research Foundation Method for synthesizing solids such as diamond and products produced thereby
US5671045A (en) 1993-10-22 1997-09-23 Masachusetts Institute Of Technology Microwave plasma monitoring system for the elemental composition analysis of high temperature process streams
ZA95482B (en) 1994-01-31 1995-10-09 Atomic Energy South Africa Treatment of a chemical
JPH07245193A (ja) * 1994-03-02 1995-09-19 Nissin Electric Co Ltd プラズマ発生装置及びプラズマ処理装置
DE4423471A1 (de) 1994-07-05 1996-01-11 Buck Chem Tech Werke Vorrichtung zur Plasmabehandlung von feinkörnigen Gütern
GB9414561D0 (en) * 1994-07-19 1994-09-07 Ea Tech Ltd Method of and apparatus for microwave-plasma production
JPH0891951A (ja) * 1994-09-22 1996-04-09 Sumitomo Electric Ind Ltd アルミニウムと窒化ケイ素の接合体およびその製造方法
JP3339200B2 (ja) 1994-09-28 2002-10-28 ソニー株式会社 プラズマ発生装置、プラズマ加工方法および薄膜トランジスタの製造方法
JPH08217558A (ja) * 1995-02-15 1996-08-27 Mitsubishi Heavy Ind Ltd セラミックス接合装置
US5536477A (en) 1995-03-15 1996-07-16 Chang Yul Cha Pollution arrestor
US5794113A (en) * 1995-05-01 1998-08-11 The Regents Of The University Of California Simultaneous synthesis and densification by field-activated combustion
US5689949A (en) 1995-06-05 1997-11-25 Simmonds Precision Engine Systems, Inc. Ignition methods and apparatus using microwave energy
US5793013A (en) * 1995-06-07 1998-08-11 Physical Sciences, Inc. Microwave-driven plasma spraying apparatus and method for spraying
SE504795C2 (sv) * 1995-07-05 1997-04-28 Katator Ab Nätbaserad förbränningskatalysator och framställning av densamma
US6139656A (en) * 1995-07-10 2000-10-31 Ford Global Technologies, Inc. Electrochemical hardness modification of non-allotropic metal surfaces
US6132550A (en) * 1995-08-11 2000-10-17 Sumitomo Electric Industries, Ltd. Apparatuses for desposition or etching
US5848348A (en) * 1995-08-22 1998-12-08 Dennis; Mahlon Denton Method for fabrication and sintering composite inserts
US5980999A (en) * 1995-08-24 1999-11-09 Nagoya University Method of manufacturing thin film and method for performing precise working by radical control and apparatus for carrying out such methods
US5796080A (en) 1995-10-03 1998-08-18 Cem Corporation Microwave apparatus for controlling power levels in individual multiple cells
US5712000A (en) * 1995-10-12 1998-01-27 Hughes Aircraft Company Large-scale, low pressure plasma-ion deposition of diamondlike carbon films
US5859404A (en) * 1995-10-12 1999-01-12 Hughes Electronics Corporation Method and apparatus for plasma processing a workpiece in an enveloping plasma
JP3150056B2 (ja) * 1995-10-19 2001-03-26 東京エレクトロン株式会社 プラズマ処理装置
DE19542352A1 (de) * 1995-11-14 1997-05-15 Fraunhofer Ges Forschung Verfahren zum Verbinden von Bauteilen aus keramischen Werkstoffen und von Metallen mit keramischen Werkstoffen
GB9525543D0 (en) * 1995-12-14 1996-02-14 Central Research Lab Ltd A single mode resonant cavity
US5847355A (en) * 1996-01-05 1998-12-08 California Institute Of Technology Plasma-assisted microwave processing of materials
WO1997026777A1 (fr) * 1996-01-19 1997-07-24 Belin-Lu Biscuits France Dispositif applicateur de micro-ondes notamment pour la cuisson de produits sur un support metallique
US6376021B1 (en) * 1996-02-12 2002-04-23 Polymer Alloys Llc Heat treatment of polyphenylene oxide-coated metal
AU729396B2 (en) * 1996-04-04 2001-02-01 Mitsubishi Heavy Industries, Ltd. Apparatus and method for treating exhaust gas and pulse generator used therefor
US5828338A (en) * 1996-05-23 1998-10-27 Hughes Electronics Thyratron switched beam steering array
JP3895000B2 (ja) * 1996-06-06 2007-03-22 Dowaホールディングス株式会社 浸炭焼入焼戻方法及び装置
JPH1081971A (ja) * 1996-07-10 1998-03-31 Suzuki Motor Corp 高分子基材へのプラズマCVDによるSiC薄膜形成方法及び装置
US6011248A (en) * 1996-07-26 2000-01-04 Dennis; Mahlon Denton Method and apparatus for fabrication and sintering composite inserts
JP3670452B2 (ja) * 1996-07-31 2005-07-13 株式会社東芝 磁場発生用コイルユニットおよびコイル巻装方法
US6038854A (en) * 1996-08-19 2000-03-21 The Regents Of The University Of California Plasma regenerated particulate trap and NOx reduction system
US5711147A (en) * 1996-08-19 1998-01-27 The Regents Of The University Of California Plasma-assisted catalytic reduction system
US6248206B1 (en) * 1996-10-01 2001-06-19 Applied Materials Inc. Apparatus for sidewall profile control during an etch process
US5734501A (en) * 1996-11-01 1998-03-31 Minnesota Mining And Manufacturing Company Highly canted retroreflective cube corner article
JP2001511937A (ja) * 1996-11-01 2001-08-14 エッチ. マイリー、ジョージ 慣性静電閉じ込め放電プラズマを用いるプラズマ・ジェット発生源
US5715677A (en) * 1996-11-13 1998-02-10 The Regents Of The University Of California Diesel NOx reduction by plasma-regenerated absorbend beds
FR2757082B1 (fr) * 1996-12-13 1999-01-15 Air Liquide Procede d'epuration d'un gaz plasmagene et installation pour la mise en oeuvre d'un tel procede
AU5960698A (en) * 1997-01-17 1998-08-07 California Institute Of Technology Microwave technique for brazing materials
US6189482B1 (en) * 1997-02-12 2001-02-20 Applied Materials, Inc. High temperature, high flow rate chemical vapor deposition apparatus and related methods
US6616767B2 (en) * 1997-02-12 2003-09-09 Applied Materials, Inc. High temperature ceramic heater assembly with RF capability
US6039834A (en) * 1997-03-05 2000-03-21 Applied Materials, Inc. Apparatus and methods for upgraded substrate processing system with microwave plasma source
US5998774A (en) * 1997-03-07 1999-12-07 Industrial Microwave Systems, Inc. Electromagnetic exposure chamber for improved heating
US6287988B1 (en) * 1997-03-18 2001-09-11 Kabushiki Kaisha Toshiba Semiconductor device manufacturing method, semiconductor device manufacturing apparatus and semiconductor device
EP0979595B1 (en) * 1997-04-10 2007-07-04 Nucon Systems Inc. Process and apparatus for microwave joining thick-walled ceramic parts
FR2762748B1 (fr) * 1997-04-25 1999-06-11 Air Liquide Dispositif d'excitation d'un gaz par plasma d'onde de surface
US5952671A (en) * 1997-05-09 1999-09-14 Micron Technology, Inc. Small electrode for a chalcogenide switching device and method for fabricating same
JPH1154773A (ja) * 1997-08-01 1999-02-26 Canon Inc 光起電力素子及びその製造方法
US6284202B1 (en) * 1997-10-03 2001-09-04 Cha Corporation Device for microwave removal of NOx from exhaust gas
US6339206B1 (en) * 1997-10-15 2002-01-15 Tokyo Electron Limited Apparatus and method for adjusting density distribution of a plasma
US5868670A (en) * 1997-11-03 1999-02-09 Werner A. Randell, Sr. Article of manufacture for a biomedical electrode and indicator
US6183689B1 (en) * 1997-11-25 2001-02-06 Penn State Research Foundation Process for sintering powder metal components
CN1078264C (zh) * 1997-12-11 2002-01-23 中国科学院物理研究所 微波等离子体化学气相沉积合成晶相碳氮薄膜
US6028393A (en) * 1998-01-22 2000-02-22 Energy Conversion Devices, Inc. E-beam/microwave gas jet PECVD method and apparatus for depositing and/or surface modification of thin film materials
US20020034461A1 (en) * 1998-01-29 2002-03-21 Segal David Leslie Plasma assisted processing of gas
US6892669B2 (en) * 1998-02-26 2005-05-17 Anelva Corporation CVD apparatus
DE19814812C2 (de) * 1998-04-02 2000-05-11 Mut Mikrowellen Umwelt Technol Plasmabrenner mit einem Mikrowellensender
US6228773B1 (en) * 1998-04-14 2001-05-08 Matrix Integrated Systems, Inc. Synchronous multiplexed near zero overhead architecture for vacuum processes
JP4037956B2 (ja) * 1998-04-28 2008-01-23 東海カーボン株式会社 チャンバー内壁保護部材
US6214372B1 (en) * 1998-05-04 2001-04-10 Con Lin Co., Inc. Method of using isomer enriched conjugated linoleic acid compositions
US6368678B1 (en) * 1998-05-13 2002-04-09 Terry Bluck Plasma processing system and method
JP4014300B2 (ja) * 1998-06-19 2007-11-28 東京エレクトロン株式会社 プラズマ処理装置
JP2000021871A (ja) * 1998-06-30 2000-01-21 Tokyo Electron Ltd プラズマ処理方法
JP4024389B2 (ja) * 1998-07-14 2007-12-19 東京エレクトロン株式会社 プラズマ処理装置
EP1098805A4 (en) * 1998-07-21 2001-11-07 Techco Corp FEEDBACK AND SERVO CONTROL FOR AN ELECTRONIC POWER STEERING SYSTEM
JP2991192B1 (ja) * 1998-07-23 1999-12-20 日本電気株式会社 プラズマ処理方法及びプラズマ処理装置
US6362449B1 (en) * 1998-08-12 2002-03-26 Massachusetts Institute Of Technology Very high power microwave-induced plasma
JP3293564B2 (ja) * 1998-08-20 2002-06-17 株式会社村田製作所 電子デバイスの作製方法
US6204606B1 (en) * 1998-10-01 2001-03-20 The University Of Tennessee Research Corporation Slotted waveguide structure for generating plasma discharges
TW383500B (en) * 1998-10-03 2000-03-01 United Semiconductor Corp Manufacturing method for lower electrode of capacitor using hemisphere grain polysilicon
US6186090B1 (en) * 1999-03-04 2001-02-13 Energy Conversion Devices, Inc. Apparatus for the simultaneous deposition by physical vapor deposition and chemical vapor deposition and method therefor
US6237526B1 (en) * 1999-03-26 2001-05-29 Tokyo Electron Limited Process apparatus and method for improving plasma distribution and performance in an inductively coupled plasma
SE516722C2 (sv) * 1999-04-28 2002-02-19 Hana Barankova Förfarande och apparat för plasmabehandling av gas
JP2000348898A (ja) * 1999-06-03 2000-12-15 Nisshin:Kk 表面波励起プラズマの生成方法
JP2000349081A (ja) * 1999-06-07 2000-12-15 Sony Corp 酸化膜形成方法
US6149985A (en) * 1999-07-07 2000-11-21 Eastman Kodak Company High-efficiency plasma treatment of imaging supports
FR2797372B1 (fr) * 1999-08-04 2002-10-25 Metal Process Procede de production de plasmas elementaires en vue de creer un plasma uniforme pour une surface d'utilisation et dispositif de production d'un tel plasma
JP3471263B2 (ja) * 1999-09-22 2003-12-02 株式会社東芝 冷陰極電子放出素子及びその製造方法
AU8027800A (en) * 1999-10-18 2001-04-30 Penn State Research Foundation, The Microwave processing in pure h fields and pure e fields
EP1102299A1 (en) * 1999-11-05 2001-05-23 Iljin Nanotech Co., Ltd. Field emission display device using vertically-aligned carbon nanotubes and manufacturing method thereof
JP2001149771A (ja) * 1999-11-30 2001-06-05 Japan Organo Co Ltd マイクロ波プラズマ装置
JP3595233B2 (ja) * 2000-02-16 2004-12-02 株式会社ノリタケカンパニーリミテド 電子放出源及びその製造方法
US6367412B1 (en) * 2000-02-17 2002-04-09 Applied Materials, Inc. Porous ceramic liner for a plasma source
DE10009569C2 (de) * 2000-02-29 2003-03-27 Schott Glas Verfahren und Vorrichtung zum Zerkleinern von Glaskörpern mittels Mikrowellenerwärmung
US6345497B1 (en) * 2000-03-02 2002-02-12 The Regents Of The University Of California NOx reduction by electron beam-produced nitrogen atom injection
JP2001257097A (ja) * 2000-03-09 2001-09-21 Toshiba Corp プラズマ発生装置
EP1279187B1 (en) * 2000-04-26 2004-07-14 Cornell Research Foundation, Inc. Lamp utilizing fiber for enhanced starting field
KR100341407B1 (ko) * 2000-05-01 2002-06-22 윤덕용 플라즈마 처리에 의한 리튬전이금속 산화물 박막의 결정화방법
AU2001258109A1 (en) * 2000-05-11 2001-11-20 Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of National Defence Process for preparing carbon nanotubes
JP4523118B2 (ja) * 2000-06-14 2010-08-11 東京エレクトロン株式会社 プラズマ処理装置
JP2001357999A (ja) * 2000-06-15 2001-12-26 Yoshihiko Otsuki プラズマ発生装置
JP2002025425A (ja) * 2000-07-07 2002-01-25 Hitachi Ltd 電子エミッターとその製造法および電子線装置
JP3865289B2 (ja) * 2000-11-22 2007-01-10 独立行政法人科学技術振興機構 マイクロ波によるプラズマ発生装置
AU2002237870A1 (en) * 2001-01-17 2002-07-30 The Penn State Research Foundation Microwave processing using highly microwave absorbing powdered material layers
JP2002280196A (ja) * 2001-03-15 2002-09-27 Micro Denshi Kk マイクロ波を利用したプラズマ発生装置
US6503846B1 (en) * 2001-06-20 2003-01-07 Texas Instruments Incorporated Temperature spike for uniform nitridization of ultra-thin silicon dioxide layers in transistor gates
JP2003075077A (ja) * 2001-09-05 2003-03-12 Natl Inst For Fusion Science マイクロ波焼成炉およびマイクロ波焼成方法
CN100505975C (zh) * 2002-05-08 2009-06-24 Btu国际公司 等离子体辅助涂覆
US7097782B2 (en) * 2002-11-12 2006-08-29 Micron Technology, Inc. Method of exposing a substrate to a surface microwave plasma, etching method, deposition method, surface microwave plasma generating apparatus, semiconductor substrate etching apparatus, semiconductor substrate deposition apparatus, and microwave plasma generating antenna assembly

Also Published As

Publication number Publication date
WO2003095807A1 (en) 2003-11-20
EP1502490A1 (en) 2005-02-02
CN100505975C (zh) 2009-06-24
IL164824A (en) 2010-04-15
MXPA04010875A (es) 2005-07-14
WO2003095058A2 (en) 2003-11-20
CN1652889A (zh) 2005-08-10
CN1324931C (zh) 2007-07-04
IL164824A0 (en) 2005-12-18
AU2003234501A1 (en) 2003-11-11
CN1653574A (zh) 2005-08-10
CN100588305C (zh) 2010-02-03
EP1502489A1 (en) 2005-02-02
AU2003234477A1 (en) 2003-11-11
CN100425106C (zh) 2008-10-08
JP5209174B2 (ja) 2013-06-12
EP1502486A1 (en) 2005-02-02
US7227097B2 (en) 2007-06-05
EP1501959A1 (en) 2005-02-02
US6870124B2 (en) 2005-03-22
WO2003096382A3 (en) 2004-07-15
CN1324114C (zh) 2007-07-04
US7592564B2 (en) 2009-09-22
AU2003228882A1 (en) 2003-11-11
US20040004062A1 (en) 2004-01-08
CN1653867A (zh) 2005-08-10
EP1502274A1 (en) 2005-02-02
JP2005525234A (ja) 2005-08-25
EP1501632A1 (en) 2005-02-02
BR0309812A (pt) 2005-03-01
JP2005524962A (ja) 2005-08-18
EP1501959A4 (en) 2009-07-22
AU2003245263A1 (en) 2003-11-11
BR0309811A (pt) 2007-04-10
AU2003267104A1 (en) 2003-11-11
BR0309813A (pt) 2005-03-01
US20040118816A1 (en) 2004-06-24
CN100436763C (zh) 2008-11-26
CN1653205A (zh) 2005-08-10
WO2003095090A1 (en) 2003-11-20
CN1653851A (zh) 2005-08-10
US7214280B2 (en) 2007-05-08
ATE536086T1 (de) 2011-12-15
WO2003095058A3 (en) 2004-04-29
WO2003096381A3 (en) 2004-07-08
AU2003230266B2 (en) 2008-03-13
CN1653870A (zh) 2005-08-10
AU2003267860A1 (en) 2003-11-11
WO2003095130A1 (en) 2003-11-20
EP1502480A4 (en) 2009-07-01
EP1502489B1 (en) 2013-10-23
WO2003096771A1 (en) 2003-11-20
AU2003234474A1 (en) 2003-11-11
AU2003228881A8 (en) 2003-11-11
EP1501649A4 (en) 2009-07-15
AU2003245264A1 (en) 2003-11-11
AU2003234474A8 (en) 2003-11-11
AU2003234476A8 (en) 2003-11-11
US7132621B2 (en) 2006-11-07
AU2003234476A1 (en) 2003-11-11
CN100336156C (zh) 2007-09-05
JP2005526359A (ja) 2005-09-02
BR0309815A (pt) 2005-03-01
CA2485195A1 (en) 2003-11-20
CN100441732C (zh) 2008-12-10
CN100447289C (zh) 2008-12-31
US20060249367A1 (en) 2006-11-09
EP1501911A1 (en) 2005-02-02
BR0309814A (pt) 2005-03-01
EP1502488A1 (en) 2005-02-02
US20050061446A1 (en) 2005-03-24
CN1653868A (zh) 2005-08-10
WO2003096768A1 (en) 2003-11-20
WO2003095089A1 (en) 2003-11-20
EP1502480A1 (en) 2005-02-02
WO2003096774A1 (en) 2003-11-20
AU2003234478A1 (en) 2003-11-11
AU2003228882A8 (en) 2003-11-11
EP1501649A1 (en) 2005-02-02
CN100455144C (zh) 2009-01-21
CN100338976C (zh) 2007-09-19
CN1653161A (zh) 2005-08-10
WO2003096382A2 (en) 2003-11-20
WO2003096383A3 (en) 2004-07-22
AU2003234500A1 (en) 2003-11-11
EP1502012A1 (en) 2005-02-02
EP1502012A4 (en) 2009-07-01
WO2003095591A1 (en) 2003-11-20
WO2003096772A1 (en) 2003-11-20
WO2003096747A3 (en) 2004-02-19
WO2003096770A1 (en) 2003-11-20
US7608798B2 (en) 2009-10-27
US20040107896A1 (en) 2004-06-10
CN1302843C (zh) 2007-03-07
AU2003228880A1 (en) 2003-11-11
AU2003230267A1 (en) 2003-11-11
AU2003267863A1 (en) 2003-11-11
WO2003096369A1 (en) 2003-11-20
AU2003267104A8 (en) 2003-11-11
WO2003096749A1 (en) 2003-11-20
BR0309810A (pt) 2007-04-10
US7309843B2 (en) 2007-12-18
JP2005524963A (ja) 2005-08-18
AU2003234500A8 (en) 2003-11-11
CN1304103C (zh) 2007-03-14
CN1652866A (zh) 2005-08-10
CN1653248A (zh) 2005-08-10
WO2003095699A1 (en) 2003-11-20
AU2003234475A1 (en) 2003-11-11
KR20050025173A (ko) 2005-03-11
EP1501632A4 (en) 2009-07-29
EP1504464A2 (en) 2005-02-09
EP1502287A2 (en) 2005-02-02
EP1501631A1 (en) 2005-02-02
US20040001295A1 (en) 2004-01-01
EP1501631A4 (en) 2009-07-22
AU2003230265A1 (en) 2003-11-11
EP1502486B1 (en) 2011-11-30
AU2003234479A1 (en) 2003-11-11
AU2003230264A1 (en) 2003-11-11
WO2003096381A2 (en) 2003-11-20
AU2003234499A1 (en) 2003-11-11
EP1502487A1 (en) 2005-02-02
AU2003228881A1 (en) 2003-11-11
CN1653866A (zh) 2005-08-10
KR20050028913A (ko) 2005-03-23
CN1652893A (zh) 2005-08-10
JP2005524799A (ja) 2005-08-18
WO2003096370A1 (en) 2003-11-20
WO2003096383A2 (en) 2003-11-20
WO2003096747A2 (en) 2003-11-20
CN1652867A (zh) 2005-08-10
WO2003096380A3 (en) 2004-07-08
WO2003096773A1 (en) 2003-11-20
KR101015744B1 (ko) 2011-02-22
CN1653869A (zh) 2005-08-10
KR20050026387A (ko) 2005-03-15
US20070164680A1 (en) 2007-07-19
AU2003230266A1 (en) 2003-11-11
WO2003096380A2 (en) 2003-11-20
CN1653204A (zh) 2005-08-10

Similar Documents

Publication Publication Date Title
CN100505976C (zh) 等离子体辅助连接
US7189940B2 (en) Plasma-assisted melting
US7494904B2 (en) Plasma-assisted doping
CN101076221B (zh) 多个辐射源的等离子体产生和处理
CN100460128C (zh) 等离子体辅助熔炼方法
EP1579023A2 (en) Plasma-assisted melting

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
ASS Succession or assignment of patent right

Owner name: BTU INTERNATIONAL CO., LTD.

Free format text: FORMER OWNER: DANA CORP.

Effective date: 20070720

C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20070720

Address after: Massachusetts, USA

Applicant after: BTU International, Inc.

Address before: ohio

Applicant before: Dana Corp

C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090624

Termination date: 20100507