CN100537839C - 形成含掺杂磷的二氧化硅的层的方法和在制造集成电路中形成沟槽隔离的方法 - Google Patents

形成含掺杂磷的二氧化硅的层的方法和在制造集成电路中形成沟槽隔离的方法 Download PDF

Info

Publication number
CN100537839C
CN100537839C CNB2004800194209A CN200480019420A CN100537839C CN 100537839 C CN100537839 C CN 100537839C CN B2004800194209 A CNB2004800194209 A CN B2004800194209A CN 200480019420 A CN200480019420 A CN 200480019420A CN 100537839 C CN100537839 C CN 100537839C
Authority
CN
China
Prior art keywords
layer
vapor phase
dioxide
silicon
phase reactant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2004800194209A
Other languages
English (en)
Other versions
CN1860251A (zh
Inventor
B·A·瓦尔特斯卓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Micron Technology Inc
Original Assignee
Micron Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Micron Technology Inc filed Critical Micron Technology Inc
Publication of CN1860251A publication Critical patent/CN1860251A/zh
Application granted granted Critical
Publication of CN100537839C publication Critical patent/CN100537839C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45531Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations specially adapted for making ternary or higher compositions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • C23C16/045Coating cavities or hollow spaces, e.g. interior of tubes; Infiltration of porous substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • C23C16/402Silicon dioxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • H01L21/02129Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC the material being boron or phosphorus doped silicon oxides, e.g. BPSG, BSG or PSG
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02214Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and oxygen
    • H01L21/02216Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and oxygen the compound being a molecule comprising at least one silicon-oxygen bond and the compound having hydrogen or an organic group attached to the silicon or oxygen, e.g. a siloxane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/0228Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/316Inorganic layers composed of oxides or glassy oxides or oxide based glass
    • H01L21/31604Deposition from a gas or vapour
    • H01L21/31625Deposition of boron or phosphorus doped silicon oxide, e.g. BSG, PSG, BPSG
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67207Apparatus for manufacturing or treating in a plurality of work-stations comprising a chamber adapted to a particular process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76224Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials
    • H01L21/76227Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials the dielectric materials being obtained by full chemical transformation of non-dielectric materials, such as polycristalline silicon, metals

Abstract

本发明包括形成含掺杂磷的二氧化硅的层的方法和在制造集成电路中形成沟槽隔离的方法。在一个实施中,一种形成含掺杂磷的二氧化硅的层的方法包括:在沉积室中定位衬底。在对于在衬底上沉积含掺杂磷的二氧化硅的层有效的条件下,在多个沉积循环中,将第一和第二汽相反应物以交替和瞬时分离脉冲的方式引入至该室中的衬底上。第一和第二汽相反应物中的一个是PO(OR)3,其中R是烃基,并且第一和第二汽相反应物中的另一个是Si(OR)3OH,其中R是烃基。

Description

形成含掺杂磷的二氧化硅的层的方法和在制造集成电路中形成沟槽隔离的方法
技术领域
本发明涉及形成含掺杂磷的二氧化硅的层的方法,并且涉及在制造集成电路中形成沟槽隔离的方法。
背景技术
在集成电路的制造中一种常用的材料是二氧化硅。可以将其以基本上100%纯的形式利用,或与包括性质调节掺杂剂的其它材料组合使用。因此,可以将二氧化硅在形成一层或多层中作为与其它材料的混合物利用,并且它可以占或者可以不占给定层的大多数。示例性材料是硼磷硅酸盐玻璃(BPSG)、磷硅酸盐玻璃(PSG)和硼硅酸盐玻璃(BSG)。典型地,这种材料的硼和/或磷原子各自的浓度为1原子%至4原子%的任何浓度,尽管也使用超过5%的原子%浓度。
由于半导体器件的几何尺寸持续缩小,这种趋势导致在横向尺寸上的收缩比纵向尺寸上的收缩更大。在某些情况下,纵向尺寸增大。无论如何,得到器件增加的纵横比(高度比宽度),从而使得开发可以将介电和其它材料填充高纵横或逐渐增加纵横比的沟槽、通孔或其它台阶或结构的方法日益重要。一种典型的介电材料选择是含掺杂或未掺杂二氧化硅的材料,例如上面所述的那些材料。掺杂剂如硼和磷可以促进沉积层在更高温度下的回流,从而促进对在衬底上的开口更完全的填充。在形成二氧化硅层中可以利用各种反应物前体,例如,在美国专利6,300,219中公开的硅烷醇。
发明概述
本发明包括形成含掺杂磷的二氧化硅的层的方法和在制造集成电路中形成沟槽隔离的方法。在一个实施中,一种形成含掺杂磷的二氧化硅的层的方法包括:在沉积室中定位衬底。在对于在衬底上沉积含掺杂磷的二氧化硅的层有效的条件下,在多个沉积循环中,将第一和第二汽相反应物以交替和瞬时分离脉冲的方式引入至该室中的衬底上。第一和第二汽相反应物中的一个是PO(OR)3,其中R是烃基,并且第一和第二汽相反应物中的另一个是Si(OR)3OH,其中R是烃基。
在一个实施中,一种形成含掺杂磷的二氧化硅的层的方法,该方法包括在沉积室中定位衬底。从包含其中R是烃基的PO(OR)3的第一汽相反应物中,将第一物种化学吸附至衬底的表面上,以在该室中向该表面上形成第一物种单层。使化学吸附的第一物种与包含其中R是烃基的Si(OR)3OH的第二汽相反应物接触,形成含Si和O的单层。在对于在衬底上沉积含掺杂磷的二氧化硅的层有效的条件下,依次重复第一物种的化学吸附和化学吸附的第一物种与第二反应物的接触。
其它方面和实施是预期的。
附图简述
以下参考下面的附图描述本发明的优选实施方案。
图1是在根据本发明的一个方面的方法中半导体晶片片段的剖面示意图。
图2是图1的晶片片段在图1所示的方法之后的处理步骤下的视图。
图3是图2的晶片片段在图2所示的步骤之后的处理步骤下的视图。
图4是在根据本发明的一个方面的方法中半导体晶片片段的剖面示意图。
图5是图4的晶片片段在图4所示的方法之后的处理步骤下的视图。
图6是图5的晶片片段在图5所示的步骤之后的处理步骤下的视图。
图7是图6的晶片片段在图6所示的步骤之后的处理步骤下的视图。
优选实施方案详述
在一个实施中,一种形成含掺杂磷的二氧化硅的层的方法包括:在沉积室中定位其上将要被沉积的衬底。在对于在衬底上沉积含掺杂磷的二氧化硅的层有效的条件下,在多个沉积循环中,将第一和第二汽相反应物以交替和瞬时分离脉冲的方式引入至该室中的衬底上。第一和第二汽相反应物中的一个是PO(OR)3,其中R是烃基。第一和第二汽相反应物中的另一个是Si(OR)3OH,其中R是烃基。这可以通过原子层沉积(ALD)方法(例如,包括化学吸附和接触方法),通过化学气相沉积(CVD)方法,和通过其它方法,以及通过这些方法与其它方法的组合来进行。此处使用CVD和ALD,参考于2002年4月25日提交的共同未决美国专利申请序列号10/133,947,标题为"Atomic Layer Deposition Methods and Chemical Vapor DepositionMethods",并且将Brian A.Vaartstra列为发明人,该美国专利申请案目前对应于美国专利公开号2003-0200917。于2002年4月25日提交的所述美国专利公开号2003-0200917通过引用而全文结合在此,如同将其全部内容列出在此一样。在此提供的优选和理解具体采用的实例被理解为主要通过原子层沉积。
PO(OR)3的R烃基和Si(OR)3OH的R烃基可以相同或不同,并且无论如何在一个优选实施方案中,各自的R烃基仅含有1至5个碳原子。一个优选并且具体采用的PO(OR)3材料包括磷酸三乙酯。一种优选示例且具体采用的Si(OR)3OH材料包括三叔丁基硅烷醇。示例性的优选条件包括约50℃至约500℃的温度,并且更优选为约100℃至约300℃。示例性的压力条件是低于大气压的,优选为约10-7托至约10托,并且更优选为约10-4托至约1托。所述的条件可以包括第一和第二反应物中至少一个的等离子体产生,或者没有第一和第二反应物的等离子体产生。如果利用等离子体产生,这可以发生在沉积室的内部,和/或其外部。相信最优选的条件是没有第一和第二反应物的等离子体产生。
该条件可以对于形成具有非常低磷含量的含二氧化硅的层是有效的,所述的磷含量例如不超过0.5原子%,包括更低的量。备选地,该条件可以对形成具有至少1.0原子%磷,包括例如5.0或更大的原子%磷的含二氧化硅的层有效。
在所述含掺杂磷的二氧化硅的层的形成中,该方法可以除了第一和第二汽相反应物外,不向该室中引入任何汽相反应物。备选地,该方法可以包括:在第一和第二汽相反应物的至少某些所述分离脉冲的中间,引入不同于第一和第二汽相反应物的另一种汽相反应物。仅作为实例,示例性的另一种汽相反应物是含氧的,例如O2、O3和/或任何汽相含氧化合物。除了PO(OR)3流之外,已经确定臭氧脉冲,例如作为O2和O3的混合物,有利于更多的磷结合,例如,高于5原子%的磷结合,如果这是所期望的。
另一种示例性汽相反应物将是含硼的,于是含掺杂磷的二氧化硅的层也将包含硼,例如在制造BPSG或类BPSG材料中。示例性的含硼材料是B(OR)3
所述交替和瞬时分离脉冲可以包括下列之一或组合:在分离脉冲中间,对室的抽气和/或用隋性气体(例如N2和/或任何稀有气体)对该室的吹扫,以除去未反应的前体/反应物。
一种用于形成含二氧化硅的层的现有技术描述于Hausmann等,RapidVapor Deposition of Highly Conformal Silica Nanolaminates,SCIENCEMAGAZINE,Vol.298,pp.402-406(2002)中。这种方法起初利用甲基铝(methyaluminum)反应物前体,例如三乙基铝或二甲基酰胺铝,其在衬底上形成初始的含铝层。然后,烷氧基硅烷醇,例如三(叔丁氧基)硅烷醇流向衬底。显然,铝的存在提供了自限制催化反应,由此含二氧化硅的层沉积至某个自限制厚度,该厚度为在100埃至700埃之间的任何厚度。换言之,持续地曝露于烷氧基硅烷醇没有导致含二氧化硅的层的持续生长。显然,与简单的类ALD方式相反,二氧化硅层的自限制生长是以某种催化方式发生,原因在于通过硅烷醇曝露/脉冲形成明显多于几层单层。无论如何,铝被结合到得到的层中,这可能不是所期望的。
虽然此处公开的本发明不排除它与类似Hausmann等人的方法一起使用,但是最优选的是,本发明的方法在所述含掺杂磷的二氧化硅的层的形成中,不向该室中引入任何汽相含铝反应物。此外,根据本发明优选的是,在所述含掺杂磷的二氧化硅的层的形成中,衬底没有铝。
在一个实施中,形成含掺杂磷的二氧化硅的层的方法至少包括某种ALD处理。仅仅作为实例,示例性的这种方法参考图1-3来描述。参考图1,将衬底10定位于任何适宜的沉积室(未显示)中。在一个示例性的实施方案中,衬底10是半导体衬底,例如包括某种材料12,所述的材料12优选包括至少某种半导体材料,并且当然可以包括多种材料和层。在本文件的上下文中,将术语“半导体衬底”或“半导体的衬底”定义为表示任何包括半导体材料的构造,包括但不限于大块半导体材料如半导体晶片(或者单独地,或者包括在其上的其它材料的组件),以及半导体材料层(或者单独地,或者包括在其上的其它材料的组件)。术语“衬底”是指任何支撑结构体,包括但不限于上面所述的半导体衬底。衬底10具有表面14,如所示的,提供被羟基化的表面14(含有悬空的OH基)。同样预期其它的表面端接在此处所述的方法中是也有效的。如果羟基化,可以将这种表面在提供在沉积室中之前羟基化,或者在沉积室中羟基化。用于羟基化表面14的示例性的技术包括将该表面曝露于水蒸汽中。此外,该表面可以通过简单曝露于环境气氛中而自然羟基化。
参考图2,从例如如上所述的包含其中R是烃基的PO(OR)3的第一汽相反应物中,化学吸附第一物种,以在该室中向该羟基化表面上形成第一物种单层16。在图2中,这被描绘为包括变量“A”,作为构成层16的至少部分。优选的条件和其它属性如上对于首先描述的实施所述。
参考图3,化学吸附的第一物种已经与包含Si(OR)3OH的第二汽相反应物接触,其中R为烃基,以形成将包含Si和O的单层18。再次,优选条件如上对于第一实施所述。图3描绘的层18包括变量“B”,其中化学吸附的第一物种单层被描绘为A’,A’示例性地表示在用A化学吸附B中的A物种的某种变体,其中确切优选和典型的物种A和B未被确定。无论如何,第一物种的化学吸附和化学吸附的第一物种与第二反应物的接触是在对于在衬底上沉积含掺杂磷的二氧化硅的层有效的条件下依次重复的。典型并且优选的是,这样的化学吸附和接触是对衬底以交替和瞬时分离脉冲的方式进行的,例如如上在首先描述的实施中所述。
上面所述的实施是相对于PO(OR)3的表面化学吸附,接着包含Si(OR)3OH的第二汽相反应物暴露,并且由此,具体采用本发明的一个方面,尽管本发明的多个方面不必如此限制。
无论如何,本发明的方面可以优选用于在集成电路的制造中形成沟槽隔离的方法,例如如图4-7所示并且如参考图4-7所述。图4显示包含大块单晶硅的半导体衬底26或其它半导体材料衬底28。在半导体衬底28上形成掩模层30。这被描绘为包括衬垫氧化物层32和上覆的含氮化物层34,所述的氮化物如氮化硅。
参考图5,已经将隔离沟槽36和38通过掩模层30蚀刻至衬底28/26的半导体材料中。现在或其后,例如对于二氧化硅,可以通过将衬底26暴露于热氧化条件而提供热氧化物层或其它层,例如氮化硅(未显示)层。
参考图6,已经在半导体材料隔离沟槽36和38中形成了磷掺杂的含二氧化硅的层40。用于这样做的示例性技术包括:如上所述的在多个沉积循环中将第一和第二汽相反应物以交替和瞬时分离脉冲的方式引入至该室中的衬底上,并且例如通过如上所述的化学吸附和接触方法。如所述,该沉积对于向掩模层30上沉积含磷掺杂的二氧化硅的层40是有效的,并且被描述为对于在隔离沟槽36和38中选择性沉积磷掺杂的二氧化硅的层40是无效的。在本文件的上下文中,“选择性/选择地沉积”是一种在衬底上沉积材料时,衬底的一个区域与另一个区域的沉积厚度比率至少为2:1的沉积。
例如如图6所示,该沉积对于完全地填充隔离沟槽36和38或不填充这样的隔离沟槽应该是有效的。例如如图7所示,可以连续进行沉积处理,例如如上任何一种所述,以完全填充这种沟槽。备选地,仅仅作为实例,可以将图6的构造在从掩模层30上除去所述材料之前或之后用另一种材料填充。
示例性的具体采用的实例利用磷酸三乙酯和三(叔丁氧基)硅烷醇作为第一和第二相应的汽相反应物。通过下面的方法在氮化硅衬里的沟槽之上沉积650埃的PSG保形层(8原子%磷):使用每种反应物的各自两秒反应性脉冲,其中一秒氩吹扫,之后在反应物脉冲之间没有流动氩的情况下抽空三秒。在300℃进行600个完全的循环。没有使用臭氧。用于进料磷酸三乙酯和三(叔丁氧基)硅烷醇的相应鼓泡器/安瓿温度为50℃和40℃。
还用温度为60℃的磷酸三乙酯和温度为70℃的三(叔丁氧基)硅烷醇进行这种处理。在300个完全的循环后,这种磷酸三乙酯和三(叔丁氧基)硅烷醇的一(1)秒和0.5秒相应脉冲得到650埃的膜,从而提供的沉积速率为约2.2埃/循环。这稍高于首先具体采用的实例沉积,其沉积速率为1.1埃/循环。沉积的膜基本上没有碳,并且磷含量低于0.5原子%。在这种反应物温度下磷酸三乙酯暴露的时间越长,预期得到生长速度越高,并且提高在沉积膜中的磷含量。
在另一种具体采用的实例中,将来自60℃鼓泡器/安瓿的磷酸三乙酯进料至沉积室中的基材,时间1秒。其后是1秒钟的30sccm Ar流,接着在没有任何气体向其流动的情况下对该室进行3秒的抽空。然后,向该室中流入25sccm的O2/O3(5体积%至12体积%的O3)的混合流,时间2秒。其后是1秒钟的30sccmAr流,接着在没有气体进料至该室的同时,抽空3秒。然后,从60℃鼓泡器/安瓿向该室流入三(叔丁氧基)硅烷醇,时间2秒。其后是1秒钟的30sccm Ar流,再之后,在没有气体进料至该室的同时,抽空3秒。进行400个完全的循环,其中在所有处理的过程中的压力从0.24托改变至10-6托。这得到100埃厚的层,其具有结合其中的5.7原子%的磷。

Claims (61)

1.一种形成含掺杂磷的二氧化硅的层的方法,该方法包括:
在沉积室中提供衬底;并且
在对于在衬底上沉积含掺杂磷的二氧化硅的层有效的条件下,在多个沉积循环中,将第一和第二汽相反应物以交替和瞬时分离脉冲的方式引入至该室中的衬底上,第一和第二汽相反应物中的一个是PO(OR)3,其中R是烃基,并且第一和第二汽相反应物中的另一个是Si(OR)3OH,其中R是烃基。
2.权利要求1的方法,其中所述的条件包括原子层沉积。
3.权利要求1的方法,其中所述的条件对于形成具有不超过0.5原子%磷的含二氧化硅的层是有效的。
4.权利要求1的方法,其中所述的条件对于形成具有至少1.0原子%磷的含二氧化硅的层是有效的。
5.权利要求1的方法,该方法在所述含掺杂磷的二氧化硅的层的形成中,除了第一和第二汽相反应物外,不向该室中引入任何汽相反应物。
6.权利要求1的方法,该方法包括:在第一和第二汽相反应物的至少某些所述分离脉冲的中间,引入不同于第一和第二汽相反应物的另一种汽相反应物。
7.权利要求6的方法,其中所述的另一种汽相反应物是含氧的。
8.权利要求7的方法,其中所述的另一种汽相反应物包括O3
9.权利要求6的方法,其中所述的另一种汽相反应物是含硼的,所述含掺杂磷的二氧化硅的层包含硼。
10.权利要求1的方法,其中PO(OR)3的R烃基仅含有1至5个碳原子。
11.权利要求1的方法,其中Si(OR)3OH的R烃基仅含有1至5个碳原子。
12.权利要求1的方法,其中PO(OR)3包括磷酸三乙酯。
13.权利要求1的方法,其中Si(OR)3OH包括三(叔丁氧基)硅烷醇。
14.权利要求1的方法,其中PO(OR)3包括磷酸三乙酯,并且其中Si(OR)3OH包括三(叔丁氧基)硅烷醇。
15.权利要求1的方法,其中所述的条件包括50℃至500℃的温度。
16.权利要求15的方法,其中所述的条件包括100℃至300℃的温度。
17.权利要求1的方法,其中所述的条件包括10-7托至10托的压力。
18.权利要求1的方法,其中所述的条件包括第一和第二反应物中的至少一个的等离子体产生。
19.权利要求1的方法,其中所述的条件没有第一和第二反应物的等离子体产生。
20.权利要求1的方法,该方法包括在分离脉冲的中间用惰性气体吹扫该室。
21.权利要求1的方法,该方法在所述含掺杂磷的二氧化硅的层的形成中,在衬底上没有铝。
22.权利要求1的方法,该方法在所述含掺杂磷的二氧化硅的层的形成中,不向该室中引入任何汽相含铝反应物。
23.权利要求1的方法,该方法包括形成具有均匀组成的所述含掺杂磷的二氧化硅的层。
24.一种形成含掺杂磷的二氧化硅的层的方法,该方法包括:
在沉积室中提供衬底;
从包含其中R是烃基的PO(OR)3的第一汽相反应物中,将第一物种化学吸附至衬底的表面上,以在该室中向该表面上形成第一物种单层;
使化学吸附的第一物种与包含其中R是烃基的Si(OR)3OH的第二汽相反应物接触,形成含Si和O的单层;并且
在对于在衬底上沉积含掺杂磷的二氧化硅的层有效的条件下,依次重复第一物种的化学吸附和化学吸附的第一物种与第二反应物的接触。
25.权利要求24的方法,其中提供的至少首先化学吸附第一物种的衬底表面为羟基化表面。
26.权利要求24的方法,其中所述的条件对于形成具有不超过0.5原子%磷的含二氧化硅的层是有效的。
27.权利要求24的方法,其中所述的条件对于形成具有至少1.0原子%磷的含二氧化硅的层是有效的。
28.权利要求25的方法,该方法在所述含掺杂磷的二氧化硅的层的形成中,至少在提供羟基化表面之后,除了所述的第一和第二汽相反应物外,不向该室中引入任何汽相反应物。
29.权利要求24的方法,该方法包括:在至少某些所述的重复化学吸附和接触的中间,引入不同于第一和第二汽相反应物的另一种汽相反应物。
30.权利要求29的方法,其中所述的另一种汽相反应物是含氧的。
31.权利要求30的方法,其中所述的另一种汽相反应物包括O3
32.权利要求29的方法,其中所述的另一种汽相反应物是含硼的,所述含掺杂磷的二氧化硅的层包含硼。
33.权利要求24的方法,其中PO(OR)3的R烃基仅含有1至5个碳原子。
34.权利要求24的方法,其中Si(OR)3OH的R烃基仅含有1至5个碳原子。
35.权利要求24的方法,其中PO(OR)3包括磷酸三乙酯。
36.权利要求24的方法,其中Si(OR)3OH包括三(叔丁氧基)硅烷醇。
37.权利要求24的方法,其中PO(OR)3包括磷酸三乙酯,并且其中Si(OR)3OH包括三(叔丁氧基)硅烷醇。
38.权利要求24的方法,该方法包括在所述的重复化学吸附和接触的中间用惰性气体吹扫该室。
39.权利要求24的方法,该方法在所述含掺杂磷的二氧化硅的层的形成中,在衬底上没有铝。
40.权利要求24的方法,该方法在所述含掺杂磷的二氧化硅的层的形成中,不向该室中引入任何汽相含铝反应物。
41.权利要求24的方法,该方法包括在衬底中形成的半导体材料隔离沟槽中沉积含掺杂磷的二氧化硅的层。
42.权利要求24的方法,该方法包括形成具有均匀组成的所述含掺杂磷的二氧化硅的层。
43.一种在集成电路的制造中形成沟槽隔离的方法,该方法包括:
在半导体衬底之上形成掩模层;
通过掩模层蚀刻隔离沟槽至半导体衬底的半导体材料中;并且
在蚀刻隔离沟槽之后,在对于在隔离沟槽中沉积含掺杂磷的二氧化硅的层有效的多个沉积循环中,将第一和第二汽相反应物以交替和瞬时分离脉冲的方式引入至该室中的衬底上,第一和第二汽相反应物中的一个是PO(OR)3,其中R是烃基,并且第一和第二汽相反应物中的另一个是Si(OR)3OH,其中R是烃基。
44.权利要求43的方法,其中所述的沉积对于填充所述的隔离沟槽是有效的。
45.权利要求43的方法,其中所述的沉积不填充所述的隔离沟槽。
46.权利要求43的方法,其中所述的沉积循环对于在掩模层上沉积掺杂磷的含二氧化硅的层是有效的。
47.权利要求43的方法,其中所述的沉积循环对于在所述的隔离沟槽中选择性沉积含掺杂磷的二氧化硅的层是无效的。
48.权利要求43的方法,其中所述的沉积循环对于形成具有不超过0.5原子%磷的含二氧化硅的层是有效的。
49.权利要求43的方法,其中所述的沉积循环对于形成具有至少1.0原子%磷的含二氧化硅的层是有效的。
50.权利要求43的方法,该方法在所述含掺杂磷的二氧化硅的层的形成中,除了所述第一和第二汽相反应物外,不向该室中引入任何汽相反应物。
51.权利要求43的方法,该方法包括:在第一和第二汽相反应物的至少某些所述分离脉冲的中间,引入不同于第一和第二汽相反应物的另一种汽相反应物。
52.权利要求51的方法,其中所述的另一种汽相反应物是含氧的。
53.权利要求52的方法,其中所述的另一种汽相反应物包括O3
54.权利要求51的方法,其中所述的另一种汽相反应物是含硼的,所述掺杂磷的含二氧化硅的层包含硼。
55.权利要求43的方法,其中PO(OR)3包括磷酸三乙酯。
56.权利要求43的方法,其中Si(OR)3OH包括三(叔丁氧基)硅烷醇。
57.权利要求43的方法,其中PO(OR)3包括磷酸三乙酯,并且其中Si(OR)3OH包括三(叔丁氧基)硅烷醇。
58.权利要求43的方法,该方法包括在分离脉冲的中间用惰性气体吹扫该室。
59.权利要求43的方法,该方法在所述含掺杂磷的二氧化硅的层的形成中,在衬底上没有铝。
60.权利要求43的方法,该方法在所述含掺杂磷的二氧化硅的层的形成中,不向该室中引入任何汽相含铝反应物。
61.权利要求43的方法,该方法包括形成具有均匀组成的所述含掺杂磷的二氧化硅的层。
CNB2004800194209A 2003-07-07 2004-06-30 形成含掺杂磷的二氧化硅的层的方法和在制造集成电路中形成沟槽隔离的方法 Expired - Fee Related CN100537839C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/615,051 US7125815B2 (en) 2003-07-07 2003-07-07 Methods of forming a phosphorous doped silicon dioxide comprising layer
US10/615,051 2003-07-07

Publications (2)

Publication Number Publication Date
CN1860251A CN1860251A (zh) 2006-11-08
CN100537839C true CN100537839C (zh) 2009-09-09

Family

ID=33564475

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2004800194209A Expired - Fee Related CN100537839C (zh) 2003-07-07 2004-06-30 形成含掺杂磷的二氧化硅的层的方法和在制造集成电路中形成沟槽隔离的方法

Country Status (9)

Country Link
US (3) US7125815B2 (zh)
EP (1) EP1641958B1 (zh)
JP (1) JP2007521658A (zh)
KR (1) KR100761189B1 (zh)
CN (1) CN100537839C (zh)
AT (1) ATE408720T1 (zh)
DE (1) DE602004016659D1 (zh)
TW (1) TWI277151B (zh)
WO (1) WO2005008746A2 (zh)

Families Citing this family (91)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7157385B2 (en) * 2003-09-05 2007-01-02 Micron Technology, Inc. Method of depositing a silicon dioxide-comprising layer in the fabrication of integrated circuitry
US6300219B1 (en) * 1999-08-30 2001-10-09 Micron Technology, Inc. Method of forming trench isolation regions
US6458416B1 (en) * 2000-07-19 2002-10-01 Micron Technology, Inc. Deposition methods
US7192888B1 (en) 2000-08-21 2007-03-20 Micron Technology, Inc. Low selectivity deposition methods
US7094690B1 (en) * 2000-08-31 2006-08-22 Micron Technology, Inc. Deposition methods and apparatuses providing surface activation
US7368014B2 (en) * 2001-08-09 2008-05-06 Micron Technology, Inc. Variable temperature deposition methods
US7160577B2 (en) 2002-05-02 2007-01-09 Micron Technology, Inc. Methods for atomic-layer deposition of aluminum oxides in integrated circuits
US6921702B2 (en) * 2002-07-30 2005-07-26 Micron Technology Inc. Atomic layer deposited nanolaminates of HfO2/ZrO2 films as gate dielectrics
US6958302B2 (en) 2002-12-04 2005-10-25 Micron Technology, Inc. Atomic layer deposited Zr-Sn-Ti-O films using TiI4
US7101813B2 (en) 2002-12-04 2006-09-05 Micron Technology Inc. Atomic layer deposited Zr-Sn-Ti-O films
US7135369B2 (en) * 2003-03-31 2006-11-14 Micron Technology, Inc. Atomic layer deposited ZrAlxOy dielectric layers including Zr4AlO9
US7125815B2 (en) * 2003-07-07 2006-10-24 Micron Technology, Inc. Methods of forming a phosphorous doped silicon dioxide comprising layer
WO2005007868A2 (en) * 2003-07-08 2005-01-27 Accumetrics, Inc. Controlled platelet activation to monitor therapy of adp antagonists
US7053010B2 (en) * 2004-03-22 2006-05-30 Micron Technology, Inc. Methods of depositing silicon dioxide comprising layers in the fabrication of integrated circuitry, methods of forming trench isolation, and methods of forming arrays of memory cells
JP3945519B2 (ja) * 2004-06-21 2007-07-18 東京エレクトロン株式会社 被処理体の熱処理装置、熱処理方法及び記憶媒体
US7601649B2 (en) 2004-08-02 2009-10-13 Micron Technology, Inc. Zirconium-doped tantalum oxide films
US20060038293A1 (en) * 2004-08-23 2006-02-23 Rueger Neal R Inter-metal dielectric fill
US7588988B2 (en) 2004-08-31 2009-09-15 Micron Technology, Inc. Method of forming apparatus having oxide films formed using atomic layer deposition
US7494939B2 (en) 2004-08-31 2009-02-24 Micron Technology, Inc. Methods for forming a lanthanum-metal oxide dielectric layer
US7235459B2 (en) * 2004-08-31 2007-06-26 Micron Technology, Inc. Methods of forming trench isolation in the fabrication of integrated circuitry, methods of fabricating memory circuitry, integrated circuitry and memory integrated circuitry
JP3998677B2 (ja) * 2004-10-19 2007-10-31 株式会社東芝 半導体ウェハの製造方法
US7235501B2 (en) 2004-12-13 2007-06-26 Micron Technology, Inc. Lanthanum hafnium oxide dielectrics
US7560395B2 (en) 2005-01-05 2009-07-14 Micron Technology, Inc. Atomic layer deposited hafnium tantalum oxide dielectrics
US7217634B2 (en) * 2005-02-17 2007-05-15 Micron Technology, Inc. Methods of forming integrated circuitry
US7510966B2 (en) * 2005-03-07 2009-03-31 Micron Technology, Inc. Electrically conductive line, method of forming an electrically conductive line, and method of reducing titanium silicide agglomeration in fabrication of titanium silicide over polysilicon transistor gate lines
US7687409B2 (en) 2005-03-29 2010-03-30 Micron Technology, Inc. Atomic layer deposited titanium silicon oxide films
US8012847B2 (en) 2005-04-01 2011-09-06 Micron Technology, Inc. Methods of forming trench isolation in the fabrication of integrated circuitry and methods of fabricating integrated circuitry
US7390756B2 (en) * 2005-04-28 2008-06-24 Micron Technology, Inc. Atomic layer deposited zirconium silicon oxide films
US7662729B2 (en) 2005-04-28 2010-02-16 Micron Technology, Inc. Atomic layer deposition of a ruthenium layer to a lanthanide oxide dielectric layer
US7572695B2 (en) 2005-05-27 2009-08-11 Micron Technology, Inc. Hafnium titanium oxide films
US7510983B2 (en) 2005-06-14 2009-03-31 Micron Technology, Inc. Iridium/zirconium oxide structure
US7393736B2 (en) 2005-08-29 2008-07-01 Micron Technology, Inc. Atomic layer deposition of Zrx Hfy Sn1-x-y O2 films as high k gate dielectrics
US20070049023A1 (en) * 2005-08-29 2007-03-01 Micron Technology, Inc. Zirconium-doped gadolinium oxide films
US7410910B2 (en) * 2005-08-31 2008-08-12 Micron Technology, Inc. Lanthanum aluminum oxynitride dielectric films
US7615438B2 (en) * 2005-12-08 2009-11-10 Micron Technology, Inc. Lanthanide yttrium aluminum oxide dielectric films
US7592251B2 (en) 2005-12-08 2009-09-22 Micron Technology, Inc. Hafnium tantalum titanium oxide films
US7972974B2 (en) 2006-01-10 2011-07-05 Micron Technology, Inc. Gallium lanthanide oxide films
US7709402B2 (en) 2006-02-16 2010-05-04 Micron Technology, Inc. Conductive layers for hafnium silicon oxynitride films
US7582161B2 (en) 2006-04-07 2009-09-01 Micron Technology, Inc. Atomic layer deposited titanium-doped indium oxide films
US7727908B2 (en) 2006-08-03 2010-06-01 Micron Technology, Inc. Deposition of ZrA1ON films
US7582549B2 (en) 2006-08-25 2009-09-01 Micron Technology, Inc. Atomic layer deposited barium strontium titanium oxide films
US7563730B2 (en) * 2006-08-31 2009-07-21 Micron Technology, Inc. Hafnium lanthanide oxynitride films
US20080057659A1 (en) * 2006-08-31 2008-03-06 Micron Technology, Inc. Hafnium aluminium oxynitride high-K dielectric and metal gates
US7605030B2 (en) 2006-08-31 2009-10-20 Micron Technology, Inc. Hafnium tantalum oxynitride high-k dielectric and metal gates
US7759747B2 (en) 2006-08-31 2010-07-20 Micron Technology, Inc. Tantalum aluminum oxynitride high-κ dielectric
US7776765B2 (en) 2006-08-31 2010-08-17 Micron Technology, Inc. Tantalum silicon oxynitride high-k dielectrics and metal gates
US7544604B2 (en) 2006-08-31 2009-06-09 Micron Technology, Inc. Tantalum lanthanide oxynitride films
US7935618B2 (en) * 2007-09-26 2011-05-03 Micron Technology, Inc. Sputtering-less ultra-low energy ion implantation
US20090203197A1 (en) * 2008-02-08 2009-08-13 Hiroji Hanawa Novel method for conformal plasma immersed ion implantation assisted by atomic layer deposition
US8907059B2 (en) * 2008-11-14 2014-12-09 Bio-Rad Laboratories, Inc. Phosphopeptide enrichment of compositions by fractionation on ceramic hydroxyapatite
CN101866873B (zh) * 2009-04-16 2012-08-01 上海华虹Nec电子有限公司 多层集成电路中沟槽的填充方法
JP2011023576A (ja) * 2009-07-16 2011-02-03 Hitachi Kokusai Electric Inc 半導体装置の製造方法及び基板処理装置
US8105956B2 (en) 2009-10-20 2012-01-31 Micron Technology, Inc. Methods of forming silicon oxides and methods of forming interlevel dielectrics
US8691675B2 (en) * 2009-11-25 2014-04-08 International Business Machines Corporation Vapor phase deposition processes for doping silicon
US8501268B2 (en) 2010-03-09 2013-08-06 Micron Technology, Inc. Methods of forming material over a substrate and methods of forming capacitors
US9373500B2 (en) 2014-02-21 2016-06-21 Lam Research Corporation Plasma assisted atomic layer deposition titanium oxide for conformal encapsulation and gapfill applications
US9892917B2 (en) 2010-04-15 2018-02-13 Lam Research Corporation Plasma assisted atomic layer deposition of multi-layer films for patterning applications
US9611544B2 (en) 2010-04-15 2017-04-04 Novellus Systems, Inc. Plasma activated conformal dielectric film deposition
US9390909B2 (en) 2013-11-07 2016-07-12 Novellus Systems, Inc. Soft landing nanolaminates for advanced patterning
US8637411B2 (en) 2010-04-15 2014-01-28 Novellus Systems, Inc. Plasma activated conformal dielectric film deposition
US8728956B2 (en) 2010-04-15 2014-05-20 Novellus Systems, Inc. Plasma activated conformal film deposition
US9257274B2 (en) 2010-04-15 2016-02-09 Lam Research Corporation Gapfill of variable aspect ratio features with a composite PEALD and PECVD method
US9997357B2 (en) 2010-04-15 2018-06-12 Lam Research Corporation Capped ALD films for doping fin-shaped channel regions of 3-D IC transistors
US9685320B2 (en) 2010-09-23 2017-06-20 Lam Research Corporation Methods for depositing silicon oxide
JP5696543B2 (ja) * 2011-03-17 2015-04-08 セイコーエプソン株式会社 半導体基板の製造方法
CN107342216B (zh) * 2011-09-23 2022-05-31 诺发系统公司 等离子体活化保形电介质膜沉积
TWI595112B (zh) 2012-10-23 2017-08-11 蘭姆研究公司 次飽和之原子層沉積及保形膜沉積
JP6538300B2 (ja) 2012-11-08 2019-07-03 ノベラス・システムズ・インコーポレーテッドNovellus Systems Incorporated 感受性基材上にフィルムを蒸着するための方法
SG2013083241A (en) 2012-11-08 2014-06-27 Novellus Systems Inc Conformal film deposition for gapfill
CN102943247B (zh) * 2012-11-20 2015-10-14 中国科学院宁波材料技术与工程研究所 一种无机质子导电膜的制备方法
RU2528278C1 (ru) * 2013-04-23 2014-09-10 Общество с ограниченной ответственностью "СибИС" (ООО "СибИС") Способ получения слоя диоксида кремния
US9214334B2 (en) 2014-02-18 2015-12-15 Lam Research Corporation High growth rate process for conformal aluminum nitride
CN105019019B (zh) * 2014-04-30 2019-04-19 应用材料公司 用于选择性外延硅沟槽填充的方法
US9478438B2 (en) 2014-08-20 2016-10-25 Lam Research Corporation Method and apparatus to deposit pure titanium thin film at low temperature using titanium tetraiodide precursor
US9478411B2 (en) 2014-08-20 2016-10-25 Lam Research Corporation Method to tune TiOx stoichiometry using atomic layer deposited Ti film to minimize contact resistance for TiOx/Ti based MIS contact scheme for CMOS
US9564312B2 (en) 2014-11-24 2017-02-07 Lam Research Corporation Selective inhibition in atomic layer deposition of silicon-containing films
US10566187B2 (en) 2015-03-20 2020-02-18 Lam Research Corporation Ultrathin atomic layer deposition film accuracy thickness control
US9502238B2 (en) 2015-04-03 2016-11-22 Lam Research Corporation Deposition of conformal films by atomic layer deposition and atomic layer etch
US10801540B2 (en) 2015-04-17 2020-10-13 Enduralock, Llc Locking mechanisms with deflectable lock member
US10526701B2 (en) 2015-07-09 2020-01-07 Lam Research Corporation Multi-cycle ALD process for film uniformity and thickness profile modulation
US9633838B2 (en) * 2015-12-28 2017-04-25 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Vapor deposition of silicon-containing films using penta-substituted disilanes
US9773643B1 (en) 2016-06-30 2017-09-26 Lam Research Corporation Apparatus and method for deposition and etch in gap fill
US10062563B2 (en) 2016-07-01 2018-08-28 Lam Research Corporation Selective atomic layer deposition with post-dose treatment
US10037884B2 (en) 2016-08-31 2018-07-31 Lam Research Corporation Selective atomic layer deposition for gapfill using sacrificial underlayer
US10269559B2 (en) 2017-09-13 2019-04-23 Lam Research Corporation Dielectric gapfill of high aspect ratio features utilizing a sacrificial etch cap layer
CN109904057A (zh) * 2017-12-11 2019-06-18 中芯国际集成电路制造(北京)有限公司 半导体装置的制造方法
US10431695B2 (en) 2017-12-20 2019-10-01 Micron Technology, Inc. Transistors comprising at lease one of GaP, GaN, and GaAs
US10825816B2 (en) 2017-12-28 2020-11-03 Micron Technology, Inc. Recessed access devices and DRAM constructions
US10319586B1 (en) 2018-01-02 2019-06-11 Micron Technology, Inc. Methods comprising an atomic layer deposition sequence
US10734527B2 (en) 2018-02-06 2020-08-04 Micron Technology, Inc. Transistors comprising a pair of source/drain regions having a channel there-between
KR20210091825A (ko) 2018-12-13 2021-07-22 어플라이드 머티어리얼스, 인코포레이티드 인 도핑된 실리콘 나이트라이드 막들을 증착하기 위한 방법들

Family Cites Families (112)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3614547A (en) * 1970-03-16 1971-10-19 Gen Electric Tungsten barrier electrical connection
US3809574A (en) 1971-07-15 1974-05-07 Rca Corp Aluminum oxide films for electronic devices
FR2252638B1 (zh) 1973-11-23 1978-08-04 Commissariat Energie Atomique
US4285761A (en) * 1980-06-30 1981-08-25 International Business Machines Corporation Process for selectively forming refractory metal silicide layers on semiconductor devices
US4398335A (en) * 1980-12-09 1983-08-16 Fairchild Camera & Instrument Corporation Multilayer metal silicide interconnections for integrated circuits
US4474975A (en) 1983-05-09 1984-10-02 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Process for producing tris (N-methylamino) methylsilane
JPS61206243A (ja) * 1985-03-08 1986-09-12 Mitsubishi Electric Corp 高融点金属電極・配線膜を用いた半導体装置
KR910006164B1 (ko) 1987-03-18 1991-08-16 가부시키가이샤 도시바 박막형성방법과 그 장치
EP0704883A3 (en) 1988-02-11 1997-07-09 Sgs Thomson Microelectronics Refractory metal silicide cap, to protect multi-layer polycide structures
US4836885A (en) * 1988-05-03 1989-06-06 International Business Machines Corporation Planarization process for wide trench isolation
US5105253A (en) 1988-12-28 1992-04-14 Synergy Semiconductor Corporation Structure for a substrate tap in a bipolar structure
JPH02277253A (ja) 1989-04-18 1990-11-13 Mitsubishi Electric Corp 半導体装置の製造方法
CA2017719C (en) 1990-05-29 1999-01-19 Zarlink Semiconductor Inc. Moisture-free sog process
JP3123061B2 (ja) 1990-06-13 2001-01-09 ソニー株式会社 バイアスecr―cvd法による埋め込み平坦化方法
US5130268A (en) 1991-04-05 1992-07-14 Sgs-Thomson Microelectronics, Inc. Method for forming planarized shallow trench isolation in an integrated circuit and a structure formed thereby
JPH0513566A (ja) 1991-07-01 1993-01-22 Toshiba Corp 半導体装置の製造方法
JP3163719B2 (ja) 1992-01-30 2001-05-08 ソニー株式会社 ポリッシュ工程を備えた半導体装置の製造方法
KR950002951B1 (ko) 1992-06-18 1995-03-28 현대전자산업 주식회사 트렌치 소자분리막 제조방법
US5444302A (en) * 1992-12-25 1995-08-22 Hitachi, Ltd. Semiconductor device including multi-layer conductive thin film of polycrystalline material
JPH06334031A (ja) 1993-05-25 1994-12-02 Nec Corp 半導体装置の素子分離方法
CA2131668C (en) * 1993-12-23 1999-03-02 Carol Galli Isolation structure using liquid phase oxide deposition
FR2717307B1 (fr) 1994-03-11 1996-07-19 Maryse Paoli Procede d'isolement de zones actives d'un substrat semi-conducteur par tranchees peu profondes quasi planes, et dispositif correspondant
US5565376A (en) 1994-07-12 1996-10-15 United Microelectronics Corp. Device isolation technology by liquid phase deposition
JPH08146224A (ja) 1994-11-21 1996-06-07 Kyocera Corp 液晶表示装置
US5895255A (en) 1994-11-30 1999-04-20 Kabushiki Kaisha Toshiba Shallow trench isolation formation with deep trench cap
KR0138308B1 (ko) 1994-12-14 1998-06-01 김광호 층간접촉구조 및 그 방법
US5570469A (en) 1995-01-06 1996-10-29 Lockheed Martin Corporation Method for removing metal contaminants from flue dust
US5972773A (en) 1995-03-23 1999-10-26 Advanced Micro Devices, Inc. High quality isolation for high density and high performance integrated circuits
US5786263A (en) 1995-04-04 1998-07-28 Motorola, Inc. Method for forming a trench isolation structure in an integrated circuit
FR2734402B1 (fr) 1995-05-15 1997-07-18 Brouquet Pierre Procede pour l'isolement electrique en micro-electronique, applicable aux cavites etroites, par depot d'oxyde a l'etat visqueux et dispositif correspondant
US5565076A (en) * 1995-05-22 1996-10-15 Henkel Corporation Fluoride sensing electrodes with longer service life, retrofittable shields therefor, and processes utilizing such electrodes
US5616513A (en) 1995-06-01 1997-04-01 International Business Machines Corporation Shallow trench isolation with self aligned PSG layer
US5665629A (en) * 1995-08-11 1997-09-09 International Business Machines Corporation Four transistor SRAM process
US5518959A (en) * 1995-08-24 1996-05-21 Taiwan Semiconductor Manufacturing Company Method for selectively depositing silicon oxide spacer layers
US5719085A (en) 1995-09-29 1998-02-17 Intel Corporation Shallow trench isolation technique
KR100209365B1 (ko) 1995-11-01 1999-07-15 김영환 에스.오.아이 반도체 웨이퍼의 제조방법
US5770469A (en) 1995-12-29 1998-06-23 Lam Research Corporation Method for forming semiconductor structure using modulation doped silicate glasses
US6013583A (en) 1996-06-25 2000-01-11 International Business Machines Corporation Low temperature BPSG deposition process
US6069055A (en) * 1996-07-12 2000-05-30 Matsushita Electric Industrial Co., Ltd. Fabricating method for semiconductor device
US5888880A (en) 1996-10-30 1999-03-30 Advanced Micro Devices, Inc. Trench transistor with localized source/drain regions implanted through selectively grown oxide layer
US6019848A (en) * 1996-11-13 2000-02-01 Applied Materials, Inc. Lid assembly for high temperature processing chamber
US5702977A (en) 1997-03-03 1997-12-30 Taiwan Semiconductor Manufacturing Company, Ltd. Shallow trench isolation method employing self-aligned and planarized trench fill dielectric layer
TW334614B (en) 1997-03-04 1998-06-21 Winbond Electronics Corp The method of forming shallow trench isolation
US5981354A (en) 1997-03-12 1999-11-09 Advanced Micro Devices, Inc. Semiconductor fabrication employing a flowable oxide to enhance planarization in a shallow trench isolation process
US6097076A (en) 1997-03-25 2000-08-01 Micron Technology, Inc. Self-aligned isolation trench
JP3519571B2 (ja) * 1997-04-11 2004-04-19 株式会社ルネサステクノロジ 半導体装置の製造方法
US5863827A (en) 1997-06-03 1999-01-26 Texas Instruments Incorporated Oxide deglaze before sidewall oxidation of mesa or trench
US5741740A (en) 1997-06-12 1998-04-21 Taiwan Semiconductor Manufacturing Company, Ltd. Shallow trench isolation (STI) method employing gap filling silicon oxide dielectric layer
US6455394B1 (en) 1998-03-13 2002-09-24 Micron Technology, Inc. Method for trench isolation by selective deposition of low temperature oxide films
US5895253A (en) 1997-08-22 1999-04-20 Micron Technology, Inc. Trench isolation for CMOS devices
US7157385B2 (en) * 2003-09-05 2007-01-02 Micron Technology, Inc. Method of depositing a silicon dioxide-comprising layer in the fabrication of integrated circuitry
TW365049B (en) 1997-10-18 1999-07-21 United Microelectronics Corp Manufacturing method for shallow trench isolation structure
US5801083A (en) 1997-10-20 1998-09-01 Chartered Semiconductor Manufacturing, Ltd. Use of polymer spacers for the fabrication of shallow trench isolation regions with rounded top corners
TWI246633B (en) 1997-12-12 2006-01-01 Applied Materials Inc Method of pattern etching a low k dielectric layen
US5883006A (en) 1997-12-12 1999-03-16 Kabushiki Kaisha Toshiba Method for making a semiconductor device using a flowable oxide film
US6171962B1 (en) 1997-12-18 2001-01-09 Advanced Micro Devices, Inc. Shallow trench isolation formation without planarization mask
US5930645A (en) 1997-12-18 1999-07-27 Advanced Micro Devices, Inc. Shallow trench isolation formation with reduced polish stop thickness
US5943585A (en) 1997-12-19 1999-08-24 Advanced Micro Devices, Inc. Trench isolation structure having low K dielectric spacers arranged upon an oxide liner incorporated with nitrogen
US6448150B1 (en) 1998-01-20 2002-09-10 Nanya Technology Corporation Method for forming shallow trench isolation in the integrated circuit
JPH11220017A (ja) * 1998-01-30 1999-08-10 Mitsubishi Electric Corp 半導体装置とその製造方法
US5998280A (en) 1998-03-20 1999-12-07 National Semiconductor Corporation Modified recessed locos isolation process for deep sub-micron device processes
KR100280106B1 (ko) 1998-04-16 2001-03-02 윤종용 트렌치 격리 형성 방법
JP3178412B2 (ja) 1998-04-27 2001-06-18 日本電気株式会社 トレンチ・アイソレーション構造の形成方法
US6033961A (en) 1998-04-30 2000-03-07 Hewlett-Packard Company Isolation trench fabrication process
US6030881A (en) 1998-05-05 2000-02-29 Novellus Systems, Inc. High throughput chemical vapor deposition process capable of filling high aspect ratio structures
KR100280107B1 (ko) 1998-05-07 2001-03-02 윤종용 트렌치 격리 형성 방법
JP3208376B2 (ja) * 1998-05-20 2001-09-10 株式会社半導体プロセス研究所 成膜方法及び半導体装置の製造方法
KR100286736B1 (ko) 1998-06-16 2001-04-16 윤종용 트렌치 격리 형성 방법
KR100278657B1 (ko) 1998-06-24 2001-02-01 윤종용 반도체장치의금속배선구조및그제조방법
US5989978A (en) 1998-07-16 1999-11-23 Chartered Semiconductor Manufacturing, Ltd. Shallow trench isolation of MOSFETS with reduced corner parasitic currents
KR100281899B1 (ko) * 1998-07-22 2001-03-02 윤종용 금속실리사이드막위에응집방지층을갖춘게이트전극및그형성방법
US6265282B1 (en) * 1998-08-17 2001-07-24 Micron Technology, Inc. Process for making an isolation structure
TW408432B (en) 1998-08-25 2000-10-11 United Microelectronics Corp The manufacture method of shallow trench isolation
US6103607A (en) * 1998-09-15 2000-08-15 Lucent Technologies Manufacture of MOSFET devices
US5930646A (en) 1998-10-09 1999-07-27 Chartered Semiconductor Manufacturing, Ltd. Method of shallow trench isolation
US5960299A (en) 1998-10-28 1999-09-28 United Microelectronics Corp. Method of fabricating a shallow-trench isolation structure in integrated circuit
US6156674A (en) 1998-11-25 2000-12-05 Micron Technology, Inc. Semiconductor processing methods of forming insulative materials
US6720604B1 (en) * 1999-01-13 2004-04-13 Agere Systems Inc. Capacitor for an integrated circuit
US5950094A (en) 1999-02-18 1999-09-07 Taiwan Semiconductor Manufacturing Company, Ltd. Method for fabricating fully dielectric isolated silicon (FDIS)
US6090675A (en) 1999-04-02 2000-07-18 Taiwan Semiconductor Manufacturing Company Formation of dielectric layer employing high ozone:tetraethyl-ortho-silicate ratios during chemical vapor deposition
US6190979B1 (en) 1999-07-12 2001-02-20 International Business Machines Corporation Method for fabricating dual workfunction devices on a semiconductor substrate using counter-doping and gapfill
US6300219B1 (en) 1999-08-30 2001-10-09 Micron Technology, Inc. Method of forming trench isolation regions
FI118804B (fi) * 1999-12-03 2008-03-31 Asm Int Menetelmä oksidikalvojen kasvattamiseksi
KR20010058498A (ko) 1999-12-30 2001-07-06 박종섭 반도체 소자의 트렌치형 소자분리막 형성방법
KR100367735B1 (ko) 2000-02-08 2003-01-10 주식회사 하이닉스반도체 집적 회로의 배선 구조 및 그 제조 방법
US6323104B1 (en) 2000-03-01 2001-11-27 Micron Technology, Inc. Method of forming an integrated circuitry isolation trench, method of forming integrated circuitry, and integrated circuitry
EP1266054B1 (en) 2000-03-07 2006-12-20 Asm International N.V. Graded thin films
US7011710B2 (en) 2000-04-10 2006-03-14 Applied Materials Inc. Concentration profile on demand gas delivery system (individual divert delivery system)
WO2001099166A1 (en) 2000-06-08 2001-12-27 Genitech Inc. Thin film forming method
US6818250B2 (en) * 2000-06-29 2004-11-16 The Regents Of The University Of Colorado Method for forming SIO2 by chemical vapor deposition at room temperature
DE10038877A1 (de) * 2000-08-09 2002-02-28 Infineon Technologies Ag Speicherzelle und Herstellungsverfahren
US6524912B1 (en) * 2000-08-31 2003-02-25 Micron Technology, Inc. Planarization of metal container structures
US6969539B2 (en) 2000-09-28 2005-11-29 President And Fellows Of Harvard College Vapor deposition of metal oxides, silicates and phosphates, and silicon dioxide
KR100379612B1 (ko) * 2000-11-30 2003-04-08 삼성전자주식회사 도전층을 채운 트렌치 소자 분리형 반도체 장치 및 그형성 방법
US6617251B1 (en) 2001-06-19 2003-09-09 Lsi Logic Corporation Method of shallow trench isolation formation and planarization
JP4434519B2 (ja) * 2001-06-29 2010-03-17 株式会社ルネサステクノロジ 半導体装置の製造法
US6583060B2 (en) 2001-07-13 2003-06-24 Micron Technology, Inc. Dual depth trench isolation
JP3781666B2 (ja) * 2001-11-29 2006-05-31 エルピーダメモリ株式会社 ゲート電極の形成方法及びゲート電極構造
WO2003083167A1 (en) 2002-03-28 2003-10-09 President And Fellows Of Harvard College Vapor deposition of silicon dioxide nanolaminates
JP2004047624A (ja) * 2002-07-10 2004-02-12 Renesas Technology Corp 半導体装置およびその製造方法
KR100443126B1 (ko) 2002-08-19 2004-08-04 삼성전자주식회사 트렌치 구조물 및 이의 형성 방법
US7045071B2 (en) * 2002-12-30 2006-05-16 Hynix Semiconductor Inc. Method for fabricating ferroelectric random access memory device
US6821865B2 (en) 2002-12-30 2004-11-23 Infineon Technologies Ag Deep isolation trenches
US6930058B2 (en) * 2003-04-21 2005-08-16 Micron Technology, Inc. Method of depositing a silicon dioxide comprising layer doped with at least one of P, B and Ge
US7282443B2 (en) 2003-06-26 2007-10-16 Micron Technology, Inc. Methods of forming metal silicide
US6777299B1 (en) * 2003-07-07 2004-08-17 Taiwan Semiconductor Manufacturing Company, Ltd. Method for removal of a spacer
US7125815B2 (en) 2003-07-07 2006-10-24 Micron Technology, Inc. Methods of forming a phosphorous doped silicon dioxide comprising layer
KR100512939B1 (ko) * 2003-07-10 2005-09-07 삼성전자주식회사 트렌치 소자분리 방법
US6933206B2 (en) 2003-10-10 2005-08-23 Infineon Technologies Ag Trench isolation employing a high aspect ratio trench
KR100559518B1 (ko) 2003-12-31 2006-03-15 동부아남반도체 주식회사 반도체의 에스티아이 형성방법
US7053010B2 (en) 2004-03-22 2006-05-30 Micron Technology, Inc. Methods of depositing silicon dioxide comprising layers in the fabrication of integrated circuitry, methods of forming trench isolation, and methods of forming arrays of memory cells
US7235459B2 (en) * 2004-08-31 2007-06-26 Micron Technology, Inc. Methods of forming trench isolation in the fabrication of integrated circuitry, methods of fabricating memory circuitry, integrated circuitry and memory integrated circuitry

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Rapid vapor deposition of highly conformalsilica nanolaminates. HAUSMANN D ET AL.SCIENCE,,AMERICAN ASSOCIATION FOR THE ADVANCEMENT OF SCIENCE,US,Vol.298 No.5592. 2002
Rapid vapor deposition of highly conformalsilica nanolaminates. HAUSMANN D ET AL.SCIENCE,,AMERICAN ASSOCIATION FOR THE ADVANCEMENT OF SCIENCE,US,Vol.298 No.5592. 2002 *

Also Published As

Publication number Publication date
US7294556B2 (en) 2007-11-13
US7125815B2 (en) 2006-10-24
KR100761189B1 (ko) 2007-09-21
US20070161260A1 (en) 2007-07-12
ATE408720T1 (de) 2008-10-15
US20050124171A1 (en) 2005-06-09
WO2005008746A2 (en) 2005-01-27
KR20060037329A (ko) 2006-05-03
US7790632B2 (en) 2010-09-07
EP1641958B1 (en) 2008-09-17
TWI277151B (en) 2007-03-21
WO2005008746A3 (en) 2005-04-07
CN1860251A (zh) 2006-11-08
TW200509243A (en) 2005-03-01
JP2007521658A (ja) 2007-08-02
EP1641958A2 (en) 2006-04-05
DE602004016659D1 (de) 2008-10-30
US20050009368A1 (en) 2005-01-13

Similar Documents

Publication Publication Date Title
CN100537839C (zh) 形成含掺杂磷的二氧化硅的层的方法和在制造集成电路中形成沟槽隔离的方法
US7250380B2 (en) Method of depositing a silicon dioxide-comprising layer in the fabrication of integrated circuitry
TW490739B (en) Graded thin films
US6867152B1 (en) Properties of a silica thin film produced by a rapid vapor deposition (RVD) process
US6821891B2 (en) Atomic layer deposition of copper using a reducing gas and non-fluorinated copper precursors
US7109129B1 (en) Optimal operation of conformal silica deposition reactors
US6861334B2 (en) Method of fabricating trench isolation structures for integrated circuits using atomic layer deposition
US7135418B1 (en) Optimal operation of conformal silica deposition reactors
CN100576474C (zh) 以钽前驱物taimata进行含钽材料的原子层沉积
US7097878B1 (en) Mixed alkoxy precursors and methods of their use for rapid vapor deposition of SiO2 films
CN1868041A (zh) 氧化硅和氧氮化硅的低温沉积
JPH0831454B2 (ja) 半導体装置の製造方法
WO2011008925A2 (en) Methods for forming dielectric layers
KR20020085487A (ko) 헥사 클로로 디실란 및 암모니아를 사용한 원자층의적층을 이용하여 실리콘을 함유하는 박막을 형성하는 방법
US7129189B1 (en) Aluminum phosphate incorporation in silica thin films produced by rapid surface catalyzed vapor deposition (RVD)
EP3902938A1 (en) Compositions and methods using same for silicon containing films
US7271112B1 (en) Methods for forming high density, conformal, silica nanolaminate films via pulsed deposition layer in structures of confined geometry
US20130049172A1 (en) Insulating region for a semiconductor substrate
US7491653B1 (en) Metal-free catalysts for pulsed deposition layer process for conformal silica laminates
KR890005915A (ko) 얇은 필름들 내의 응력을 감소시키는 장치 및 방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090909

Termination date: 20130630