CN100560792C - 生长非常均匀的碳化硅外延层 - Google Patents

生长非常均匀的碳化硅外延层 Download PDF

Info

Publication number
CN100560792C
CN100560792C CNB2006101320892A CN200610132089A CN100560792C CN 100560792 C CN100560792 C CN 100560792C CN B2006101320892 A CNB2006101320892 A CN B2006101320892A CN 200610132089 A CN200610132089 A CN 200610132089A CN 100560792 C CN100560792 C CN 100560792C
Authority
CN
China
Prior art keywords
gas
silicon carbide
hydrogen
reactor
epitaxial layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CNB2006101320892A
Other languages
English (en)
Other versions
CN1958841A (zh
Inventor
O·C·E·科迪纳
K·G·伊尔温
M·J·派斯雷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wolfspeed Inc
Original Assignee
Cree Research Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cree Research Inc filed Critical Cree Research Inc
Publication of CN1958841A publication Critical patent/CN1958841A/zh
Application granted granted Critical
Publication of CN100560792C publication Critical patent/CN100560792C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/32Carbides
    • C23C16/325Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S148/00Metal treatment
    • Y10S148/148Silicon carbide

Abstract

公开一种改良的化学气相沉积方法,该方法能增强碳化硅外延层的均匀性并且对得到较厚外延层特别有用。该方法包括将反应器加热到碳化硅原料气体在反应器内基体上形成外延层的温度;和让原料气体和载气流过加热的反应器在基体上形成碳化硅外延层,同时载气包括氢气和第二种气体的混和气体,其中第二种气体的热导要低于氢气热导,使得原料气体在通过反应器时它的消耗比使用单一氢气作载气时的更低。

Description

生长非常均匀的碳化硅外延层
本申请是申请号为98812328.2、申请日为1998年12月14日、发明名称为“生长非常均匀的碳化硅外延层”的中国发明专利申请的分案申请。
技术领域
本发明涉及外延生长碳化硅,具体涉及在合适基体上制造非常均匀碳化硅外延层的化学气相沉积方法。
技术背景
本发明涉及生长碳化硅外延层。作为半导体材料,碳化硅由于能够用于高能量、高频率和高温电子器件而特别优越。碳化硅有特别高的热导,并且在其击穿前经得起高电场和高电流密度两者。碳化硅的宽带隙使得它即便在高温依然是低泄漏电流。出于这些和其他原因,碳化硅特别合乎功率器件的要求,亦即可设计它们在相当高的电压下运行。
然而碳化硅却是难以制造的材料。生长工艺要在相当高的温度下进行,对于外延生长至少大约1500℃以上,对于升华生长则要接近2200℃。另外,形成碳化硅可超过150种多型,其中大多数仅以很小的热力学差别来区分。结果,无论是外延层还是整体晶体,碳化硅晶体的生长都是一种附有挑战的工艺。还有,碳化硅特别坚硬(工业上常常用作磨料),这就造成难于将它加工和成形至合适的半导体器件。
尽管如此,近十年来,碳化硅的生长技术仍然取得很大进展并有所反映,例如US 4912063、4912064、Re.34861、4981551、5200022和5459107等,所有这些专利都转让或独家许可给本发明受让人。与本发明共同转让的这些及其他专利在碳化硅生长技术和其后由碳化硅制造合适的半导体器件方面引起世界范围的兴趣。
一种特定的生长技术叫作“化学气相沉积”或“CVD”。在这种方法中,将原料气体(诸如对碳化硅时的硅烷SiH4和丙烷C3H8)引入加热的反应舱室,该舱室还包括原料气体在其表面反应形成外延层的基体。为了有助于控制生长反应的速度,一般都引入带有载气的原料气体,同载气一起构成最大容积的气流。氢气通常用作载气,常常结合另一种惰性气体如氦气或氩气,见以下文章所讨论:DE 44 32813 A,WO 97/01658A和Chaudhry等人的文章“硅上CVD外延生长β-碳化硅中载气的作用”,晶体生长杂志,Vol.113,Nos,1/2,1991年8月,p.120-126。
碳化硅的化学气相沉积(CVD)都要精选一些项目如温度分布,气体速度,气体浓度,化学性质和压力。为制造特定外延层(epilayers)对使用条件的选择常常包括许多因素,例如所要求的生长速度、反应温度、作业时间、气体容积、设备成本,掺杂均匀性以及层厚度。
特别是同其他因素相匹敌的均匀层厚度,它能在随后由外延层制造的半导体器件中趋于提供更加一致的性能。相反,失去均匀性的薄层趋于损伤器件性能,甚至会使这些薄层不适合制造器件。
然而在传统CVD方法中,会发生公知的“消耗”现象,就是原料气体和载气通过反应舱室时原料气体浓度的损失。具体言之,传统CVD体系中,原料和载气平行于基体和外延层表面流动。由于原料气体反应形成外延层,它们的浓度在气体入口或反应器“上流”端部最高而在“下流”端部最低。那么,由于在原料气体通过反应器的旅行期间原料气体的浓度要降低,就会使外延层趋于在上流端部更厚而在下流端部更薄。如上所述,这种均匀性的损失会对许多情况不利,特别是在要求较厚的外延层或者在某些特定器件或器件结构中外延层较厚的情况下就特别麻烦。
在其他半导体材料(如硅)的生长技术中,表现的问题可通过直接的技术诸如旋转其上将生长外延层的基体(通常是硅片)来解决。然而这种技术生长碳化硅外延层时要在更高温度下进行,则变得更加复杂更加困难。碳化硅生长方法使用的基座一般必须由高纯石墨附高纯碳化硅涂层来形成。当这种材料形成运动部件时,它们趋于更加复杂并且趋于产生因碳化硅研磨特性而来的粉尘。因此,对碳化硅而言,这种机械的和与运动有关的解决方案一般不能令人满意,因为会遇到机械难题并且不同地必须控制杂质。
JP 02-296799(“799”申请)提出并讨论在冷壁反应器内形成改进均匀性的碳化硅外延层的一种方法。该“799”申请讨论了用氯代硅烷作硅原料的CVD体系。通过调节包括氢气和氩气的载气中氢气的分压来控制反应和沉积的速度。尽管“799”申请要求保护改良均匀性的外延层,氯代硅烷的使用对已经困难的方法添加了难度。因此,迫切需要一种能产生更加均匀外延层的碳化硅外延生长的化学气相沉积技术,而且还不能对方法带来额外的杂质或机械或化学复杂性。
发明内容
因此,本发明的一个目的是提供一种得到更均匀碳化硅外延层的方法。通过能增强碳化硅外延层均匀性并且特别能用来得到更厚外延层的一种改良化学气相沉积方法而实现本发明目的。该方法包括将反应器加热到碳化硅原料气体在反应器内基体上形成外延层的温度;然后让原料气体和载气流过加热的反应器在基体上形成碳化硅外延层,同时载气包括氢气和第二种气体的混和气,其中第二种气体的热导要低于氢气热导,使得原料气体在通过反应器时它的消耗比使用单一氢气作载气时的更低。在特定实施方案中,还优选第二种气体对化学气相沉积反应呈化学惰性。
本发明另一个目的包括厚度高度均匀的碳化硅外延层,其证据是沿横截面的标准厚度偏差。
本发明另一目的包括碳化硅外延层,去掉外延冠测量的数据点后沿其横截面厚度的标准偏差低于3%。在优选实施方案中,去掉外延冠测量的数据点后沿其横截面厚度的标准偏差低于2%,在最优选的实施方案中,沿其横截面厚度的标准偏差低于1%。
根据以下结合附图的发明详述将使本发明的前述和其他目的和优点以及实现方式更加清楚。
附图说明
图1概要说明本发明使用的作示例的化学气相沉积体系;
图2和3曲线是现有技术的硅片厚度与自生长外延层上流端部起的距离之关系;
图4曲线是本发明方法的硅片厚度与自生长外延层上流端部起的距离之关系;
图5曲线是用本发明方法在单一反应器中于三个相邻的硅片上生长外延层时硅片厚度与自上流端部距离之关系;
图6照片是用扫描电镜(“SEM”)对带有本发明生长外延层的基体剖开横截面照相得到。
具体实施方式
本发明是一种改良的化学气相沉积方法,该方法增加碳化硅外延层的均匀性并能得到特别有用的更厚的外延层。综观该方法,本发明包括将反应器加热到碳化硅原料气体在反应器内基体上形成外延层的温度;然后让原料气体和载气流过加热的反应器在基体上形成碳化硅外延层,同时载气包括氢气和第二种气体的混和气,其中第二种气体的热导要低于氢气热导,使得原料气体在通过反应器时它的消耗比使用单一氢气作载气时的更低。在特定实施方案中,还优选第二种气体对化学气相沉积反应呈现化学惰性。
在优选实施方案中,第二种气体包括氩气。氩气对本发明有许多优点。特别是氩气的热导明显低于氢气热导。氩气的存在就减轻了原料气体的热导,随之减缓了原料气体通过反应器时消耗的速率。氩气的另一个优点是“高贵”气体,意指它在任何大多数情况下趋于避免同其他元素或化合物反应。因此,氩气对外延层生长基体,对正在生长的外延层或者对体系中的其他气体都可避免任何不合要求的影响。然而应当了解,第二种载气并不限于氩气,而可进行功能性选择,只要(1)载气的热导适度和(2)能避免与原料气体、基体或外延层起不合要求的反应。
在优选实施方案中,载气是用大量氢气和少量第二种载气混和而成。在最优选的实施方案中,氩气和氢气形成混和气体,混和气体优选至少75vol%(体积)的氢气流量,而最优选至多大约90vol%的氢气流量。另外,混和气体并非必须限于氢气和较低热导的气体。如果需要,也可存在另一种气体(如氦气),条件是全部混和气体要满足前述功能性限制条件。
应当了解,本文体积流量意指基于每分钟流过的体积,由化学气相沉积中使用的一般测量气体量的方法测定。
在加热的反应器内,温度应当足够高到能使碳化硅外延层生长,但又要低于氢气载气趋于刻蚀碳化硅的温度。体系温度优选保持在低于大约1800℃,最优选在1500-1650℃之间。超过1800℃温度时,趋于发生不同类型的反应;例如见Kordina等人的文章,碳化硅″热壁″CVD和HTCVD的生长,Phys.Stat.501(B)202,321(1997)。
发现本发明在原料和载气直接流过碳化硅基体时特别有用,最优选的一种基体选择选自4H和6H多型,并且流过反应器时直接平行于外延生长表面。
图1是示范性用于本发明的反应体系示意图。这种化学气相沉积体系的基本结构和配置一般为本领域技术人员所熟知,而且无需过多试验就能用来实施本发明。
图1中,整个CVD体系记作10。该体系包括反应器舱室11,其中含有基座12。基座12一般用反应器外部电极13进行感应技术(如射频)加热。基体14置于基座12上使来自电极13的射频辐射加热基座12,基座再加热基体13。
体系包括图标分别为15和16的原料气体和载气供给器。有一种记作17的适当通道或管路系列直接连接反应器11并流过反应器,由曲线20表示。应当了解,曲线20仅仅只是简单说明和示意的目的,绝非表示气体在化学气相沉积体系中的确切流动图案。然后,气体通过类似一套管路或通道21在反应器下流端部流出。
大量对比实施例充分说明本发明优越性并概括在表1和图2-5中。收集的所有数据来自Cree Research,Inc.进行的试验,位于Durham,North Carolina,本发明的受让人。如上所述,用现有技术(氢气作单一载气)和本发明(氢气和氩气的混和气体作载气)两种方法在碳化硅基体上生长碳化硅外延层。每种情况都用硅烷和丙烷作原料气体,条件是其流速明显小于载气流速。
表1
  实施例   平均厚度(μm)   标准偏差(μm)   平均标准偏差(%)   载气(l/min)
  1   28.5   1.61   5.66   44H<sub>2</sub>
  2   58.7   1.33   2.26   60H<sub>2</sub>
  3   26.0   0.61   2.34   40H<sub>2</sub>+4Ar
  4   28.8   0   0   60H<sub>2</sub>+1Ar
  5   27.5   0   0   60H<sub>2</sub>+2Ar
  6   23.8   0   0   60H<sub>2</sub>+4Ar
用扫描电镜(SEM)测量试样。硅片沿流动方向剖开。然后将它们放在SEM边缘上。由于薄层比基体的掺杂低许多,则能观察到薄层和基体之间的对比度(图6)。因此能测量薄层厚度。如图2-5所示,沿剖开边缘对几个等距点以此方式进行测量,就能计算厚度的均匀性。也有许多其他方法测量厚度均匀性,此处不再赘述。然而为了再现表1所示均匀性,一般对所有(测量)技术都要将结合“外延-冠”(例如紧靠硅片圆周2mm)的数据点去掉。
在越过所得硅片直径10-15个位点之间测量所得外延层的厚度。然后对每个硅片测量平均厚度(亦即统计学平均值),标准偏差和百分比偏差(表达为平均厚度的百分比的标准偏差)。为了防止边缘效应对现有技术或本发明的结果产生不利影响,计算前应从总数去掉一个或两个数据点。
应当了解,并非因人为地增强结果而任意去掉这些数据点。作为替代,为了避免包括“外延-冠”而去掉硅片边缘的一个或两个数据点,外延-冠通常在外延生长中发现并且一般与消耗作用无关。
如图2,3和4所示,本发明在外延层厚度均匀性方面提供明显的改良。例如,用氢气作单一载气时(图2和3),去掉外延冠测量的数据点后百分比偏差是5.66%和2.66%。然而用本发明时,与单一氢气得到5.66%的同样流速情况下百分比偏差为2.34%。在沿气体流动方向使用几个依次排列的硅片时,本发明的优越效果更加显著。图5说明这种效果,并表明同样条件下生长三个硅片与一个硅片时的均匀性并肩比美。
图2说明现有技术用氢气作单一载气且流速为44l/min时边缘厚度的变化。图3说明用氢气作单一载气流速为60l/min时边缘厚度的变化。图5特别说明用多个硅片生长体系时本发明的优越性。如图5所示,试验本发明方法越过三个硅片的偏差同现有技术越过一个硅片的偏差(如图3所示)类似。
因此,本发明另一方面包括碳化硅外延层,当外延冠测量的数据点从总数中去掉时其带有沿横截面的厚度的标准偏差低于3%。在优选实施方案中,当外延冠的两个数据点从总数中去掉时其标准偏差低于2%,在最优选的实施方案中,标准偏差低于1%。
当然应了解,术语外延层隐含基体的存在,在优选实施方案中,基体是选自4H和6H多型碳化硅的碳化硅单晶基体。
本文所用术语“平均值”,“标准偏差”,“试样”和“总数”皆为其常规含义。这些数值和定义皆为统计学领域所熟知,因此其定义和计算方式不再详细讨论。
氢气和氩气混和气体作载气超过纯氩气作载气,因为氩气相当难于纯化并且昂贵,根据经验观察的基础,它似乎是伤害材料质量而氢气似乎纯化生长材料。要说不同,氢气作载气表现出具有某些除气性能。由于它的低热导,纯氩气作载气还将趋于延缓生长速度使其背离一般所要求的条件。
选择氩气和氢气混和的比例将取决于诸多因素。然而这些因素皆本领域技术人员所熟知,因此,一旦了解本发明的概念精神,本领域技术人员无需过多试验就能选择好混和气体。但是作为实例(非限制性),氢气中混和氩气的量将取决于诸多项条件如热区长度,氩气成本,总气流,气体纯度和区域温度。大多数情况下,热区扩展的(距离)越长且预期或要求的温度越高时,为减轻消耗作用氩气使用的越多。
另外,尽管理论上没有限制最不希望使用的氩气量是多少,然而氩气的价格(如上所述是昂贵的)实际存在。
第三个因素是总气流。在CVD体系中较低的总气流通常是有益的,因为它将减轻真空系统的载荷,要求较少的能量并减少湍流,而且还避免冷却基座。
氩气纯度代表另一个因素。由于氩气不能象氢气那样纯化,用量优选最小化要达到伴随杂质的相应最小化。幸亏因为氩气的热导仅为氢气热导的大约十分之一,相当小份数的氩气就足够实施本发明了。
在生长较厚薄层时,化学气相沉积期间有关均匀厚度控制的所有问题都将恶化。因此本发明对生长较厚薄层提供一种均衡的更显而易见的改良。还有,由于本发明只需要混合气体,就避免了其他降低消耗的体系中的移动部件和机械复杂性。
在说明书和附图中讨论了本发明的代表性实施方案,尽管使用了专门术语,皆属一般使用和说明,绝非限制,本发明范围列于权利要求书。

Claims (5)

1.一种碳化硅外延层,其特征在于去掉外延冠测量的数据点后沿其横截面厚度的标准偏差低于3%。
2.根据权利要求1的外延层,其中所述碳化硅基体选自4H和6H多型碳化硅。
3.根据权利要求1的碳化硅外延层,沿其横截面厚度的标准偏差低于2%。
4.根据权利要求1的碳化硅外延层,沿其横截面厚度的标准偏差低于1%。
5.根据权利要求1,3或4的碳化硅外延层,它在单晶碳化硅基体上。
CNB2006101320892A 1997-12-17 1998-12-14 生长非常均匀的碳化硅外延层 Expired - Lifetime CN100560792C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/992,157 1997-12-17
US08/992,157 US6063186A (en) 1997-12-17 1997-12-17 Growth of very uniform silicon carbide epitaxial layers

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CNB988123282A Division CN1313653C (zh) 1997-12-17 1998-12-14 生长非常均匀的碳化硅外延层

Publications (2)

Publication Number Publication Date
CN1958841A CN1958841A (zh) 2007-05-09
CN100560792C true CN100560792C (zh) 2009-11-18

Family

ID=25537981

Family Applications (2)

Application Number Title Priority Date Filing Date
CNB2006101320892A Expired - Lifetime CN100560792C (zh) 1997-12-17 1998-12-14 生长非常均匀的碳化硅外延层
CNB988123282A Expired - Lifetime CN1313653C (zh) 1997-12-17 1998-12-14 生长非常均匀的碳化硅外延层

Family Applications After (1)

Application Number Title Priority Date Filing Date
CNB988123282A Expired - Lifetime CN1313653C (zh) 1997-12-17 1998-12-14 生长非常均匀的碳化硅外延层

Country Status (11)

Country Link
US (2) US6063186A (zh)
EP (1) EP1042544B1 (zh)
JP (1) JP4195192B2 (zh)
KR (3) KR100853553B1 (zh)
CN (2) CN100560792C (zh)
AT (1) ATE226266T1 (zh)
AU (1) AU2086699A (zh)
CA (1) CA2312790C (zh)
DE (1) DE69808803T2 (zh)
ES (1) ES2184354T3 (zh)
WO (1) WO1999031306A1 (zh)

Families Citing this family (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6803546B1 (en) 1999-07-08 2004-10-12 Applied Materials, Inc. Thermally processing a substrate
WO2004031457A1 (en) * 2002-10-03 2004-04-15 Koninklijke Philips Electronics N.V. Method and apparatus for forming epitaxial layers
US6987281B2 (en) * 2003-02-13 2006-01-17 Cree, Inc. Group III nitride contact structures for light emitting devices
US6952024B2 (en) * 2003-02-13 2005-10-04 Cree, Inc. Group III nitride LED with silicon carbide cladding layer
US7170097B2 (en) * 2003-02-14 2007-01-30 Cree, Inc. Inverted light emitting diode on conductive substrate
US7898047B2 (en) * 2003-03-03 2011-03-01 Samsung Electronics Co., Ltd. Integrated nitride and silicon carbide-based devices and methods of fabricating integrated nitride-based devices
US7112860B2 (en) 2003-03-03 2006-09-26 Cree, Inc. Integrated nitride-based acoustic wave devices and methods of fabricating integrated nitride-based acoustic wave devices
US6964917B2 (en) * 2003-04-08 2005-11-15 Cree, Inc. Semi-insulating silicon carbide produced by Neutron transmutation doping
US7147713B2 (en) * 2003-04-30 2006-12-12 Cree, Inc. Phase controlled sublimation
US7247513B2 (en) * 2003-05-08 2007-07-24 Caracal, Inc. Dissociation of silicon clusters in a gas phase during chemical vapor deposition homo-epitaxial growth of silicon carbide
JP5122817B2 (ja) * 2003-05-09 2013-01-16 クリー インコーポレイテッド イオン・インプラント・アイソレーションによるled製作
US7018554B2 (en) * 2003-09-22 2006-03-28 Cree, Inc. Method to reduce stacking fault nucleation sites and reduce forward voltage drift in bipolar devices
JP4387159B2 (ja) * 2003-10-28 2009-12-16 東洋炭素株式会社 黒鉛材料、炭素繊維強化炭素複合材料、及び、膨張黒鉛シート
CN100418247C (zh) * 2003-11-07 2008-09-10 崇越科技股份有限公司 多腔体分离外延层有机金属化学气相外延装置及方法
US20050194584A1 (en) * 2003-11-12 2005-09-08 Slater David B.Jr. LED fabrication via ion implant isolation
US7230274B2 (en) * 2004-03-01 2007-06-12 Cree, Inc Reduction of carrot defects in silicon carbide epitaxy
US7173285B2 (en) 2004-03-18 2007-02-06 Cree, Inc. Lithographic methods to reduce stacking fault nucleation sites
US7109521B2 (en) * 2004-03-18 2006-09-19 Cree, Inc. Silicon carbide semiconductor structures including multiple epitaxial layers having sidewalls
US7592634B2 (en) * 2004-05-06 2009-09-22 Cree, Inc. LED fabrication via ion implant isolation
CN100430516C (zh) * 2005-03-18 2008-11-05 西北工业大学 碳/碳复合材料表面碳化硅纳米线的制备方法
US20060267043A1 (en) * 2005-05-27 2006-11-30 Emerson David T Deep ultraviolet light emitting devices and methods of fabricating deep ultraviolet light emitting devices
US8052794B2 (en) * 2005-09-12 2011-11-08 The United States Of America As Represented By The Secretary Of The Navy Directed reagents to improve material uniformity
US8193537B2 (en) 2006-06-19 2012-06-05 Ss Sc Ip, Llc Optically controlled silicon carbide and related wide-bandgap transistors and thyristors
US7821015B2 (en) 2006-06-19 2010-10-26 Semisouth Laboratories, Inc. Silicon carbide and related wide-bandgap transistors on semi insulating epitaxy
CA2657929C (en) * 2006-07-19 2014-11-04 Dow Corning Corporation Method of manufacturing substrates having improved carrier lifetimes
ITMI20061809A1 (it) * 2006-09-25 2008-03-26 E T C Srl Processo per realizzare un sustrato di carburo di silicio per applicazioni microelettroniche
US8823057B2 (en) 2006-11-06 2014-09-02 Cree, Inc. Semiconductor devices including implanted regions for providing low-resistance contact to buried layers and related devices
US20080173239A1 (en) * 2007-01-24 2008-07-24 Yuri Makarov Method, system, and apparatus for the growth of SiC and related or similar material, by chemical vapor deposition, using precursors in modified cold-wall reactor
CN100497760C (zh) * 2007-07-24 2009-06-10 中国电子科技集团公司第五十五研究所 高掺杂浓度的碳化硅外延生长的方法
US8536582B2 (en) 2008-12-01 2013-09-17 Cree, Inc. Stable power devices on low-angle off-cut silicon carbide crystals
CN101812730B (zh) * 2010-04-23 2013-02-13 中南大学 超长单晶β-SiC纳米线无金属催化剂的制备方法
JP2011243640A (ja) * 2010-05-14 2011-12-01 Sumitomo Electric Ind Ltd 炭化珪素基板の製造方法、半導体装置の製造方法、炭化珪素基板および半導体装置
US8685845B2 (en) 2010-08-20 2014-04-01 International Business Machines Corporation Epitaxial growth of silicon doped with carbon and phosphorus using hydrogen carrier gas
JP5212455B2 (ja) * 2010-12-16 2013-06-19 株式会社デンソー 炭化珪素単結晶の製造装置
SE536605C2 (sv) 2012-01-30 2014-03-25 Odling av kiselkarbidkristall i en CVD-reaktor vid användning av klorineringskemi
CN102646578B (zh) * 2012-05-09 2014-09-24 中国电子科技集团公司第五十五研究所 提高碳化硅多层结构外延材料批次间掺杂均匀性的方法
JP2014013850A (ja) * 2012-07-05 2014-01-23 Sumitomo Electric Ind Ltd 炭化珪素基板および半導体装置の製造方法、ならびに炭化珪素基板および半導体装置
TW201415541A (zh) * 2012-10-11 2014-04-16 Ritedia Corp 磊晶成長方法
JP6036200B2 (ja) * 2012-11-13 2016-11-30 富士電機株式会社 炭化珪素半導体装置の製造方法
US11091370B2 (en) 2013-05-02 2021-08-17 Pallidus, Inc. Polysilocarb based silicon carbide materials, applications and devices
US9657409B2 (en) 2013-05-02 2017-05-23 Melior Innovations, Inc. High purity SiOC and SiC, methods compositions and applications
US9919972B2 (en) 2013-05-02 2018-03-20 Melior Innovations, Inc. Pressed and self sintered polymer derived SiC materials, applications and devices
US10322936B2 (en) 2013-05-02 2019-06-18 Pallidus, Inc. High purity polysilocarb materials, applications and processes
JP5803979B2 (ja) 2013-05-29 2015-11-04 住友電気工業株式会社 炭化珪素基板および炭化珪素半導体装置ならびに炭化珪素基板および炭化珪素半導体装置の製造方法
WO2015129867A1 (ja) * 2014-02-28 2015-09-03 新日鐵住金株式会社 エピタキシャル炭化珪素ウエハの製造方法
CN104593865A (zh) * 2014-12-25 2015-05-06 廖奇泊 碳化硅垒晶层的制造方法
US9711353B2 (en) 2015-02-13 2017-07-18 Panasonic Corporation Method for manufacturing compound semiconductor epitaxial substrates including heating of carrier gas
JP2016028009A (ja) * 2015-09-02 2016-02-25 住友電気工業株式会社 炭化珪素基板および炭化珪素半導体装置ならびに炭化珪素基板および炭化珪素半導体装置の製造方法
US10249493B2 (en) 2015-12-30 2019-04-02 Siltronic Ag Method for depositing a layer on a semiconductor wafer by vapor deposition in a process chamber
JP6690282B2 (ja) * 2016-02-15 2020-04-28 住友電気工業株式会社 炭化珪素エピタキシャル基板および炭化珪素半導体装置の製造方法
JP6969628B2 (ja) * 2016-02-15 2021-11-24 住友電気工業株式会社 炭化珪素エピタキシャル基板および炭化珪素半導体装置の製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4912063A (en) * 1987-10-26 1990-03-27 North Carolina State University Growth of beta-sic thin films and semiconductor devices fabricated thereon
RU2067905C1 (ru) * 1993-04-23 1996-10-20 Новосибирский научно-исследовательский институт авиационной технологии и организации производства Способ автоматического регулирования толщины проката и устройство для его осуществления
US5674320A (en) * 1996-02-26 1997-10-07 Abb Research Ltd. Susceptor for a device for epitaxially growing objects and such a device

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61186288A (ja) * 1985-02-14 1986-08-19 Nec Corp 炭化珪素化合物半導体の気相エピタキシヤル成長装置
US4912064A (en) * 1987-10-26 1990-03-27 North Carolina State University Homoepitaxial growth of alpha-SiC thin films and semiconductor devices fabricated thereon
JPH02296799A (ja) * 1989-05-10 1990-12-07 Nec Corp 炭化珪素の成長方法
US5200022A (en) * 1990-10-03 1993-04-06 Cree Research, Inc. Method of improving mechanically prepared substrate surfaces of alpha silicon carbide for deposition of beta silicon carbide thereon and resulting product
US5374412A (en) * 1992-07-31 1994-12-20 Cvd, Inc. Highly polishable, highly thermally conductive silicon carbide
DE4432813A1 (de) * 1994-09-15 1996-03-21 Siemens Ag CVD-Verfahren zum Herstellen einer einkristallinen Silicimcarbidschicht
SE9500327D0 (sv) * 1995-01-31 1995-01-31 Abb Research Ltd Device for epitaxially growing SiC by CVD
SE9502288D0 (sv) * 1995-06-26 1995-06-26 Abb Research Ltd A device and a method for epitaxially growing objects by CVD
SE9503428D0 (sv) * 1995-10-04 1995-10-04 Abb Research Ltd A method for epitaxially growing objects and a device for such a growth
SE9503427D0 (sv) * 1995-10-04 1995-10-04 Abb Research Ltd A method for epitaxially growing objects and a device for such a growth
SE9503426D0 (sv) * 1995-10-04 1995-10-04 Abb Research Ltd A device for heat treatment of objects and a method for producing a susceptor
SE9600705D0 (sv) * 1996-02-26 1996-02-26 Abb Research Ltd A susceptor for a device for epitaxially growing objects and such a device
US6165874A (en) * 1997-07-03 2000-12-26 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Method for growth of crystal surfaces and growth of heteroepitaxial single crystal films thereon

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4912063A (en) * 1987-10-26 1990-03-27 North Carolina State University Growth of beta-sic thin films and semiconductor devices fabricated thereon
RU2067905C1 (ru) * 1993-04-23 1996-10-20 Новосибирский научно-исследовательский институт авиационной технологии и организации производства Способ автоматического регулирования толщины проката и устройство для его осуществления
US5674320A (en) * 1996-02-26 1997-10-07 Abb Research Ltd. Susceptor for a device for epitaxially growing objects and such a device

Also Published As

Publication number Publication date
KR20010024730A (ko) 2001-03-26
EP1042544B1 (en) 2002-10-16
KR100718575B1 (ko) 2007-05-15
US6297522B1 (en) 2001-10-02
WO1999031306A1 (en) 1999-06-24
KR20060121996A (ko) 2006-11-29
CA2312790C (en) 2008-08-05
AU2086699A (en) 1999-07-05
DE69808803D1 (de) 2002-11-21
CN1958841A (zh) 2007-05-09
JP4195192B2 (ja) 2008-12-10
KR20060061405A (ko) 2006-06-07
JP2002508298A (ja) 2002-03-19
KR100853553B1 (ko) 2008-08-21
ES2184354T3 (es) 2003-04-01
US6063186A (en) 2000-05-16
ATE226266T1 (de) 2002-11-15
DE69808803T2 (de) 2003-09-18
CN1313653C (zh) 2007-05-02
CA2312790A1 (en) 1999-06-24
CN1282386A (zh) 2001-01-31
EP1042544A1 (en) 2000-10-11

Similar Documents

Publication Publication Date Title
CN100560792C (zh) 生长非常均匀的碳化硅外延层
KR920004173B1 (ko) 실리콘 기판상에 단결정 β-sic층을 성장시키는 방법
Suzuki et al. Epitaxial growth of β-SiC single crystals by successive two-step CVD
US7230274B2 (en) Reduction of carrot defects in silicon carbide epitaxy
CN101490315A (zh) 生产具有改善的载流子寿命的基底的方法
JPH051380A (ja) 炭化ケイ素の成膜方法
GB1346938A (en) Reactors and method of manufacture of semiconductor devices using such a reactor
EP1732111A1 (en) Susceptor
Bundle The epitaxial growth of silicon in horizontal reactors
CN111286723A (zh) 基座和化学气相沉积装置
JPH0769791A (ja) 高配向性ダイヤモンド放熱基板
KR101936171B1 (ko) 탄화규소 에피 웨이퍼 제조 방법 및 탄화규소 에피 웨이퍼
JP3788836B2 (ja) 気相成長用サセプタ及びその製造方法
Zhiyong et al. Epitaxial monocrystalline SiC films grown on Si by HFCVD at 780° C
JP2550024B2 (ja) 減圧cvd装置
KR101942536B1 (ko) 탄화규소 에피 웨이퍼 제조 방법
KR101936170B1 (ko) 탄화규소 에피 웨이퍼 제조 방법
JPS6045159B2 (ja) 炭化珪素結晶層の製造方法
US20150144963A1 (en) Silicon carbide epi-wafer and method of fabricating the same
JPS58145697A (ja) エピタキシヤルシリコン製造装置
JPS6115150B2 (zh)
JPH02262324A (ja) X線透過膜およびその製造方法
JPS6191920A (ja) エピタキシヤル成長方法
JPH05102048A (ja) ダイヤモンド基板及びその製造方法
Zhu et al. Epitaxial Growth of 2 inch 3C-SiC on Si Substrates by Atmospheric Hot Wall CVD

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term
CX01 Expiry of patent term

Granted publication date: 20091118