CN101022151A - 具有空气绝热单元的可编程电阻材料存储阵列 - Google Patents

具有空气绝热单元的可编程电阻材料存储阵列 Download PDF

Info

Publication number
CN101022151A
CN101022151A CNA2006101603139A CN200610160313A CN101022151A CN 101022151 A CN101022151 A CN 101022151A CN A2006101603139 A CNA2006101603139 A CN A2006101603139A CN 200610160313 A CN200610160313 A CN 200610160313A CN 101022151 A CN101022151 A CN 101022151A
Authority
CN
China
Prior art keywords
electrode
cover layer
phase change
electrode member
combination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2006101603139A
Other languages
English (en)
Other versions
CN100524878C (zh
Inventor
赖二琨
何家骅
谢光宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Macronix International Co Ltd
Original Assignee
Macronix International Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Macronix International Co Ltd filed Critical Macronix International Co Ltd
Publication of CN101022151A publication Critical patent/CN101022151A/zh
Application granted granted Critical
Publication of CN100524878C publication Critical patent/CN100524878C/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • H10N70/231Multistable switching devices, e.g. memristors based on solid-state phase change, e.g. between amorphous and crystalline phases, Ovshinsky effect
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/021Formation of the switching material, e.g. layer deposition
    • H10N70/026Formation of the switching material, e.g. layer deposition by physical vapor deposition, e.g. sputtering
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/041Modification of the switching material, e.g. post-treatment, doping
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/061Patterning of the switching material
    • H10N70/063Patterning of the switching material by etching of pre-deposited switching material layers, e.g. lithography
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/821Device geometry
    • H10N70/826Device geometry adapted for essentially vertical current flow, e.g. sandwich or pillar type devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/841Electrodes
    • H10N70/8418Electrodes adapted for focusing electric field or current, e.g. tip-shaped
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/861Thermal details
    • H10N70/8616Thermal insulation means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/882Compounds of sulfur, selenium or tellurium, e.g. chalcogenides
    • H10N70/8828Tellurides, e.g. GeSbTe
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/883Oxides or nitrides
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/883Oxides or nitrides
    • H10N70/8833Binary metal oxides, e.g. TaOx
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/883Oxides or nitrides
    • H10N70/8836Complex metal oxides, e.g. perovskites, spinels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/884Other compounds of groups 13-15, e.g. elemental or compound semiconductors
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0004Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements comprising amorphous/crystalline phase transition cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/30Resistance change memory devices, e.g. resistive RAM [ReRAM] devices comprising selection components having three or more electrodes, e.g. transistors

Abstract

本发明提供一种存储器件。此器件包含第一元件,其为第一电极元件(通常为平面的),并具有内接触表面。此外,另有一覆盖层,与第一电极元件之间具有间隔,以及相变化元件,其接触表面与第一电极接触表面及覆盖层相接触,而该相变化元件的侧向尺寸大小,小于第一与第二电极元件。还有第二电极元件延伸穿过覆盖层,以与相变化元件产生接触,以及介质材料所构成的侧壁,延伸穿过第一电极元件与覆盖层;这样,相变化元件、第一电极的接触表面、以及侧壁,即可限定出与相变化元件相邻的绝热单元。

Description

具有空气绝热单元的可编程电阻材料存储阵列
相关申请的引用
本发明专利主张美国专利优先权,申请号为60/739,089,名称为″Air Cell Thermal Isolation for a Phase Change Memory Array″,申请日期为2005年11月21日,申请的内容参见下列说明。
技术领域
本发明通常涉及非易失存储装置的领域,其中尤其涉及利用相变化材料的存储装置。
背景技术
具有可变电阻状态的材料已经得到广泛利用,该材料可在短时间内,依据需求由高电阻值转换为低电阻值。由于两种相态均相当稳定,因此可将该种材料应用于存储相关的领域,以相态的转换来改变电阻值,代表“开启”或“关闭”。
相变化存储材料,已广泛运用于可擦写光盘之中。这些材料至少具有两种固态相,例如包括大致非晶固态相与大致结晶固态相。可擦写光盘利用激光脉冲,改变相态,并读取不同相态的光学性质。
硫属化物或其它相似材料的相变化存储材料,也可通过集成电路施以适当强度的电流,来改变相位。大致非晶态的电阻率高于大致结晶态,而此种电阻差异易于检测,即可代表不同数据内容。这种物质特性引发研究动机,希望利用可控制的电阻材料,制作非易失、并且可随机读写的存储电路。
非晶态转换至结晶态的过程,通常采用较低的操作电压。由结晶态转换为非晶态的过程,则通常需要较高的操作电压;因为此过程需要一短时间且高密度的电流脉冲,以熔化或破坏结晶结构,随后快速冷却相变化材料,经淬火处理,将至少一部分相变化结构稳定为非晶态。以下将此过程称为“重置”(reset)。该过程通过重置电流将相变化材料由结晶态转变为非晶态,而我们希望尽量降低重置电流的强度。欲降低重置电流的强度,可降低存储单元中的相变化材料器件尺寸,或者降低电极与相变化材料的接触区域大小,因此较高的电流密度可以在较小的绝对电流值穿过相变化材料器件的情况下实现。
在集成电路结构中制作小孔洞,为此项技术发展方向之一;同时,也采用少量的可编程电阻材料填充该小孔洞。显示小孔洞发展的专利包括:Ovshinsky,“Multibit Single Cell Memory Element HavingTapered Contact”,美国专利号5,687,112,专利授权日期1997年11月11日;Zahorik等人,“Method of Making Chalcogenide[sic]MemoryDevice”,U.S.Pat.No.5,789,277,专利授权日期1998年8月4日;Doan等人,“Controllable Ovonic Phase-Change Semiconductor MemoryDevice and Methods of Gabracting the Same,”美国专利号6,150,253,专利授权日期2000年11月21日,以及Reinberg,“ChalcogenideMemory Cell with a Plurality of Chalcogenide Electrodes,”美国专利号5,920,788,专利授权日期1999年7月6日。
公知的相变化存储器与其结构设计上,存有散热效应的问题。一般而言,公知技术在相变化存储元件的两侧采用金属电极,其中电极的大小约略相等于相变化单元。此种电极可利用金属的高导热性质,迅速导引热量散逸。由于相变化由热能所驱动,因此设计上必须利用高电流产生高热能,以满足相变化的需求。
一种解决热流问题的方法,可见于美国专利号No.6,815,704,其标题为“Self Aligned Air-Gap Thermal Insulation for Nano-scaleInsulated Chalcogenide Electronics(NICE)RAM”,其中公开一种隔绝存储单元的方法。该结构与制造方法均太过复杂,以致于无法在存储装置中造成最小电流。
因此必须提供具有小尺寸与低重置电流的存储单元结构,同时该结构必须注重散热问题,而该结构的制造方法又必须符合大型存储装置的严格工艺参数需求。此外,还必须提供一种结构与其制造方法,使其可与同一集成电路上的外围电路工艺兼容。
发明内容
本发明的目的之一为提供一种存储器件,该器件包含第一元件,其为第一电极元件(通常为平面的),并具有内接触表面。此外,另有一覆盖层,与第一电极元件之间具有间隔,以及相变化元件,其接触表面与第一电极接触表面及覆盖层相接触,而该相变化元件的侧向尺寸大小,小于第一与第二电极元件。还有第二电极元件延伸穿过覆盖层,以与相变化元件产生接触,以及介质材料所构成的侧壁,延伸穿过第一电极元件与覆盖层;如此,相变化元件、第一电极的接触表面、以及侧壁,即可限定出与相变化元件相邻的绝热单元。
附图说明
图1A显示本发明一实施例的相变化存储元件的剖面图,该相变化元件利用空气绝热单元元件。
图1B显示如图1A所示的相变化存储元件中的电流路径。
图2显示利用图1A的相变化存储元件的电路图。
图3显示利用图1A的相变化存储元件的存储阵列。
图4A、图4B、图4C、图4D、图4E、图4F、图4G、与图4H显示本发明的一实施例的制造图1A的相变化存储的工艺剖面图。
主要器件符号说明
10、10a、10b:存储元件
12、112:衬底
14、114、114a:下层电极
16、145、146:区块
18:侧壁
20:覆盖层
22:相变化元件
24、124:绝热单元
26、126:侧壁子
28、128:上层电极
30、30a、30b、130:电极接触元件
31:高温区域
50:存储单元
100:存储阵列
110:起始结构
111 a、111b、111c:柱体
116a、120a:SiO2
120:电极间介质层122、122a:GST层
123、123a:顶部层
128、148:共同源极线
141、142:位线
143、144:字线
150、151、152、153:存取晶体管
具体实施方式
以下将依据图1A至图4的内容,公开本发明的数个实施例。所公开的实施例与特征,均应理解为范例,而不是以此限制本发明的范围;该范围仅应由权利要求限定。
本发明关于存储元件与存储单元。公知技术中,存储单元为一种可以通过保持电荷或状态的方式以记录单一数据位的逻辑电平的电路器件。举例而言,存储单元的阵列可作为计算机的随机存取存储器。某些存储器件的操作,利用保持电荷或是状态。公知的动态随机存取存储单元中,采用例如电容以代表单元的逻辑电平,其中完全充电的状态代表逻辑1或高电平状态,完全放电则代表逻辑0或低电平状态。
图1A概略显示根据本发明的一种实施例的存储元件10示意图。为清楚显示内容,此处存储元件10仅为单一单元。实际运用上,各元件均为存储单元的一部分,其也作为较大存储阵列的一部分,以下将示出。首先,必须先讨论存储元件的结构,稍后再叙述其制造过程。
存储元件形成于衬底12之上,优选实施例中采用二氧化硅等介质填充材料。下层电极14形成于氧化层之中,优选实施例中采用钨等顽固金属材料。其它适合作为顽固金属的材料包括Ti、Mo、Al、Ta、Cu、Pt、Ir、La、Ni、与Ru。电极14可作为字线,与存储阵列中一定数量的存储元件相连接,同时此优选实施例中,字线由多晶硅所形成。此存储元件利用区块16与其它元件分离,其由衬底向上延伸,直至存储元件的顶部。上述区块可采用适当的低介电常数材料,例如公知技术采用的二氧化硅、氮氧化硅、氮化硅、或Al2O3等。
前述区块的内部侧壁18用介质填充材料形成,其由下层电极14的表面,向上延伸至区块的顶部,由此限定存储元件的中心部分。该中心部分包含相变化元件22,其与下层电极14相接触,同时具有覆盖层20与侧壁子26。
相变化器件22的存储单元实施例包含电阻性随机存取存储材料,而该种材料还包括硫属化物与其它材料。硫属化物可能包含氧(O)、硫(S)、硒(Se)、碲(Te)等四种元素,为元素周期表第六族的一部分。硫属化物包含硫族元素的化合物,以及一种正电性较强的元素或化合物基(radical);硫属化物合金则包含硫族元素与其它元素的组合,例如过渡金属。硫属化物合金通常包含一种以上的元素周期表第六族元素,例如锗(Ge)和锡(Sn)。通常,硫属化物合金中包含一种以上的锑(Sb)、镓(Ga)、铟(In)、与银(Ag)元素。文献中已有许多种类的相变化存储材料,例如下列合金:Ga/Sb、In/Sb、In/Se、Sb/Te、Ge/Te、Ge/Sb/Te、In/Sb/Te、Ga/Se/Te、Sn/Sb/Te、In/Sb/Ge、Ag/In/Sb/Te、Ge/Sn/Sb/Te、Ge/Sb/Se/Te、以及Te/Ge/Sb/S。Ge/Sb/Te的合金族中,许多合金组合均可作为相变化存储材料,此类组合可特定为TeaGebSb100-(a+b)。已有研究人员指出,效能最佳的合金,其沉积材料中的Te平均浓度均低于70%,通常低于60%,而其范围多为23%至58%之间,最佳浓度又为48%至58%的Te。Ge的浓度则为5%以上,范围约为8%至30%之间,通常低于50%。最佳实施例中,Ge的浓度范围约为8%至40%。此组成中,最后一项主要组成元素为Sb。上述百分比,指原子百分比,而总原子百分比100%即为组成元素的总和。(Ovshinsky’112 patent,columns 10-11)。另一研究人员所评估的特定合金包含Ge2Sb2Te5、GeSb2Te4、与GeSb4Te7(Noboru Tamada,“Potential of Ge-Sb-Te Phase-Change Optical Disks forHigh-Data-Rate-Recording”,SPIE v.3109,pp.28-37(1997))。更为普遍地,过渡金属,例如铬(Cr)、铁(Fe)、镍(Ni)、铌(Nb)、钯(Pd)、铂(Pt),与上述元素的合金,均可能与Ge/Sb/Te组成相变化合金,并使其具备程序可程序电阻的性质。可作为存储材料的特定范例,见于Ovshinsky’112 11-13栏,此处所陈述的范例即为参考上述文献所作的组合。
相变化合金可在通常为非晶固态相的第一结构与通常为结晶固态相的第二结构之间来回转换,而此种转换在存储单元中的活性通道内进行。这些合金至少具有两种稳定态。“非晶”指相比单晶而言,较无固定晶向的结构,例如比结晶相具有更高的电阻率等特性。“结晶”则指相对于非晶结构而言,较有固定晶向的结构,例如较非晶相具有更低的电阻率等特性。通常而言,可在完全非晶态与完全结晶态之间,利用电流变换相变化材料的相态。非晶态与结晶态转换所影响的其它材料性质,还包括原子排列、自由电子密度、与活化能。此种材料可转换为两种相异的固态相,也可转换为两种固态相的组合,因此可在完整非晶相与完整结晶相之间,形成灰色地带,材料的电性也将随之变化。
相变化合金可利用电脉冲改变相态。从过去观察,得知时间较短、振幅较大的脉冲,更倾向将相变化材料转为大致非晶态。而时间长、振幅较低的脉冲,则易将相变化材料转为大致结晶态。时间短且振幅高的脉冲,能量较高,足以破坏结晶态的键结,同时缩短时间,可防止原子重新排列为结晶态。无须大量实验,即可获得适当的脉冲参数,以应用于特定的相变化合金。以下公开的内容中,相变化材料指GST,同时应理解为其它相变化材料也可适用。另外Ge2Sb2Te5金属,为PCRAM器件制作材料的一种实施例。
本发明的其它实施例中,还可采用他可编程的电阻存储材料,包括布植N2的GST、GexSby、或其它利用晶相变化决定电阻的材料;也可采用PrxCayMnO3、PrSrMnO、ZrOx、或其它以电脉冲改变电阻的材料,例如四氰代二甲基苯醌(7,7,8,8-tetracyanoquinodimethane,TCNQ)、甲烷富勒烯(methanofullerene 6)、6苯基C61丁酸甲酯(6-phenyl C61-butyric acid methyl ester,PCBM)、TCNQ-PCBM、Cu-TCNQ、Ag-TCNQ、C60-TCNQ、TCNQ掺杂其它金属、或其它具有双重或多种稳定电阻状态,并可由电脉冲控制的高分子材料。
下列简短说明四种电阻存储材料。硫属化物材料GexSbyTez,其中x∶y∶z=2∶2∶5,其它组成为x:0~5、y:0~5、z:0~10。GeSbTe另掺杂如N-、Si-、Ti-等元素或添加其它元素。
前述硫属化物制作方法的一种实施例,是以物理气相沉积(PVD)溅镀或磁控溅镀法,采用Ar、N2、和/或He等作为反应气体,硫属化物压力为1mtorr~100mtorr。此沉积步骤通常在室温下完成。可采用深宽比1~5的准直仪,以增进填充效能。为增进填充的效能,常施加数十伏特至数百伏特的DC偏压。另一方面,也可同时结合DC偏压与准直仪的使用。
有时需要在真空或N2环境中进行沉积后的退火处理,以提升硫属化物材料的结晶状态。退火温度的通常范围为100℃至400℃,退火时间则低于30分钟。
硫属化物材料的厚度依据单元结构的设计有所不同。通常而言,硫属化物材料的厚度若高于8nm,则可具有相变化的特性,如此材料即有两种以上具有稳定电阻的相态。
第二种制作存储材料的实施例为采用巨磁阻材料,例如PrxCayMnO3,其中x∶y=0.5∶0.5、或其它组成x:0~1,y:0~1,也可采用包含Mn氧化物的其它巨磁阻材料。
前述巨磁电阻材料制作方法的一种实施例,是利用PVD溅镀或磁控溅镀法,采用Ar、N2、和/或He等作为反应气体,压力为1mTorr~100mTorr。沉积温度范围可为室温至600℃,会依据沉积后工艺而有不同。可采用深宽比1~5的准直仪,以增进填充效能。为增进填充的效能,常施加数十伏特至数百伏特的DC偏压。另一方面,也可同时结合使用DC偏压与准直仪。同时,也可能施加几十高斯至10,000高斯的磁场,以增进磁结晶态的排列。
有时需要在真空、N2或N2/O2混合的环境中进行沉积后的退火处理,以提升CMR材料的结晶状态。退火温度的通常范围为400℃至600℃,退火时间则低于2小时。
CMR材料的厚度依据单元结构的设计而有不同,其核心材料的厚度可为10nm至200nm。一般常采用YBCO(YBaCuO3,一种高温超导材料)缓冲层,以增进CMR材料的结晶性质。YBCO先于CMR材料而沉积,其厚度范围约为30nm至200nm。
第三种制作存储材料的实施例为利用二元素化合物,例如NixOy;TixOy;AlxOy;WxOy;ZnxOy;ZrxOy;CuxOy;等,其中x∶y=0.5∶0.5,或其它组成x:0~1,y:0~1。前述二元素化合物存储材料制作方法的一种实施例,为利用PVD溅镀或磁控溅镀法,采用Ar、N2、和/或He等作为反应气体,压力为1mTorr~100mTorr,以金属氧化物作为钯材,诸如NixOy、TixOy、AlxOy、WxOy、ZnxOy、ZrxOy、CuxOy等。此一沉积步骤通常在室温下完成。可采用深宽比1~5的准直仪,以增进填充效能。为增进填充的效能,常施加数十伏特至数百伏特的DC偏压。另一方面,也可同时结合使用DC偏压与准直仪。
有时需要在真空、N2或N2/O2混合的环境中进行沉积后的退火处理,以促进金属氧化物中的氧分子扩散。退火温度的通常范围为400℃至600℃,退火时间则低于2小时。
另一种制作二元素化合物存储材料的实施例,为利用PVD溅镀或磁控溅镀法,采用Ar/O2、Ar/N2/O2、和/或纯O2、He/O2、He/N2/O2等作为反应气体,压力为1mTorr~100mTorr,以金属氧化物作为钯材,诸如Ni、Ti、Al、W、Zn、Zr、Cu等。此沉积步骤通常在室温下完成。可采用深宽比1~5的准直仪,以增进填充效能。为增进填充的效能,常施加数十伏特至数百伏特的DC偏压。另一方面,也可同时结合使用DC偏压与准直仪。
有时需要在真空、N2或N2/O2混合的环境中进行沉积后的退火处理,以促进金属氧化物中的氧分子扩散。退火温度的通常范围为400℃至600℃,退火时间则低于2小时。
还有一种制作二元素化合物存储材料的实施例,其为利用高温炉或RTP等高温氧化系统。温度范围约为200C至700C,以纯O2或O2/N2混合气体,在几个mTorr至1atm的压力下进行反应。时间的范围可为几分钟至几个小时。另一氧化方法为等离子氧化。以RF或DC来源的等离子,以纯O2、Ar/O2或Ar/N2/O2混和气体,在1mnTorr至100mTorr的压力下,氧化Ni、Ti、Al、W、Zn、Zr、或Cu等金属表面。氧化时间的范围则可为几秒钟至几分钟。氧化温度的范围,为室温至300℃,依据等离子氧化的程度而有所不同。
第四种制作存储材料的方式为采用高分子材料,其中包含TCNQ掺杂Cu、C60、Ag等、或PCBM-TCNQ混合高分子。前述高分子存储材料的一种制作方法为利用热蒸镀、电子束蒸镀、或分子束外延(MBE)系统。固态TCNQ与掺杂物质共同在单一反应箱中蒸发。固态的TCNQ与掺杂物质置放于钨舟、钽舟、或陶瓷舟之中。可施加高电流或电子束以熔化来源,才可将材料混和,并沉积在晶圆片之上。其中无高活性的化学成分或气体。沉积的压力约为10-4Torr至10-10Torr,晶圆片温度范围则为室温至200℃。
沉积后,有时需要在真空或N2环境中进行退火,以增进高分子材料的组成分布。退火温度范围约为室温至300℃,退火时间则低于1小时。
另一种制作前述高分子存储材料的实施例,为利用旋涂仪,以掺杂的TCNQ溶液,在1000rpm以下的旋转速度旋镀。旋镀后,静置晶圆片(通常置于室温至200℃的温度范围内),等待固态相的形成。等待的时间范围可由几分钟至几天,依据温度与形成条件而有所不同。
本发明的优选实施例采用相变化存储材料,但仍应理解为上述任何可编程的电阻材料均可作为有效的存储材料。
覆盖层20由相变化器件的表面向上延伸,填充存储元件的中心部分,而此覆盖层由二氧化硅等低介电常数的介质填充材料制成。此外,覆盖层可能包含由Si、Ti、Al、Ta、N、O、与C的组合中,所选择的一种以上材料。侧壁子元件26位于覆盖层之上,向上延伸至区块16,优选实施例中采用SiN或类似的材料。其它可作为介质填充材料的物质包含掺杂氟的硅化玻璃(FSG)、磷硼硅玻璃(BPSG)、或磷硅玻璃(PSG)。由上述公知技术,得知选择材料的首要条件,为着重材料于蚀刻工艺中的蚀刻相对选择性,稍后将加以说明。
中央通道完全穿过覆盖层20、侧壁子元件26、与上层电极28,形成顶部,同时穿过存储元件10(包含接触元件30),其向下延伸并占据整个中央通道,以之与相变化元件22发生电接触。优选实施例中,上层电极采用TiN或TaN。此外,电极可能为TiAIN或TaAIN,也可能为由Ti、W、Mo、Al、Ta、Cu、Pt、Ir、La、Ni、与Ru的组合中所选择的一个以上的元素。
相变化元件22并未占据下层电极14与覆盖层20之间的所有空间,反而是绝热单元24在空间的中心处,包围相变化元件,并在优选实施例中包含空气。相比于所有公知的介质材料,空气提供最低的导热率,同时该空气单元为相变化元件提供优选的绝热效能。
实际操作时,电流由下层电极14穿过存储元件,进入相变化元件22,再穿出接触元件30与上层电极28。当然,电流方向可能因为元件几何形状而有所改变,而本领域的技术人员应能理解。任一情况下,相变化材料均依据电流产生的焦耳热能,使GST材料中心的温度提升。若温度超过相变化所需的温度,即会有部分的相变化材料开始改变相态。相变化材料的温度将决定其产生的效应,因此必须获得适当的电流,以造成所需的结果—即在GST材料中形成非晶态或结晶态。若必须读取元件的状态,则可能利用低电流作为感测之用。读取的操作不会对结构造成影响,因为此操作使元件温度保持在低于相变化的临界温度。
绝热单元24用以将热量保存在相变化元件中;此动作具有几项正面功用:第一,可预防热量散逸在相变化元件之外,由此减低相变化所需的总能量,也可依次减低“设置”或“重置”的作用电流。同时,保存在相变化元件中的热量可减低传导至其它存储阵列的热量,即可延长器件的寿命。若集成电路中存有大量的存储元件(例如1GB的存储装置中,至少即具有80亿个器件),此种降低热能散逸的设计效果即会相当可观。相变化元件的效率,另可由接触元件30的小面积接触区域改善。小面积接触区域将电流集中,由此即可提高电流密度,使邻近接触区域的温度升高。此效应的详细内容可见于图1B,其中箭头Iin由电极14(未显示)进入,并具有相对均匀的电流密度,但与接触元件30在接触点集中接触,制造高温区域31,即可选择适当的电流,造成该区域的相变化。此设计可减低存储元件的电流消耗。
如上述,存储单元包含存储元件10,而存储单元又为存储阵列的一部分。存储单元由存储元件存取电路以及适当的连接线所组成。存取电路可为单一晶体管或多个晶体管,并利用公知技术配置。晶体管电路并未显示于其中,但举例而言,其可置于存储元件10之下的集成电路中。连接线通常包含字线与位线的阵列;就此而言,上方电极28可作为位线,而下方电极14则可作为字线。
优选实施例中,单元的总宽度(由一区块的中心线至另一连接区域的区块中心线的范围)约为100至500nm,最佳实施例则为300nm。相变化元件22的宽度约为10至50nm,最佳实施例则为20nm,而其厚度则约为5至50nm,最佳实施例为25nm,其由相变化元件的底部至侧壁18为止测量。
图2显示存储单元50中的存储元件10a与10b,其依序为存储阵列100的部分。应该理解,图2中所显示的阵列结构也可为其它构造。图2中,共同源极线148、字线143与字线144以通常的Y轴平行方向排列,位线141与142以通常的X轴方向平行排列。因此,区块145中的Y解码器与字线驱动器会与字线143和144连接。区块146中的X解码器与一组感应放大器会与位线141和142连接。共同源极导线128与存取晶体管150、151、152、和153的源极终端连接,存取晶体管150的栅极与字线143连接、存取晶体管151与字线144连接。存取晶体管152的存取栅极与字线143连接;存取晶体管153的栅极与字线144连接。存取晶体管的源极150与相变化存储元件10a的电极元件14连接,而其又进而与电极28连接(未显示于图中)。同样地,晶体管151的源极与相变化存储元件10b的电极14连接,其又进而与电极30连接。电极30与位线141连接,存取晶体管152与153与位线142上相对应的存储单元连接。可视为共同源极线128由两排存储单元所共享,其中一排如图示般以Y方向排列。图3显示部分的存储阵列100,其中包含存储元件10a与10b。如所示,存储元件相连顺序形成于集成电路中,并以区块16作为区隔。本发明的一种实施例中,存储元件以方形阵列排列,其上层电极28在平行表面的方向上跨过多个元件,同时下层电极14在垂直表面的方向跨过多个元件,而其分别具有位线与字线的功能。上层电极28对应存储元件10a/10b具有接触元件30a/30b。各存储元件包含上述所有的个别器件,故此处不再重复。
图4A显示依据本发明一实施例的制造存储元件的第一步骤的剖面图。其中显示起始结构110,其包含衬底介质层112、下层电极层114、与GST层122、电极间介质层120、与SiN构成的顶部层123。图4B显示形成柱状图案化的步骤,其中多层结构110转换为系列柱体111a、111b、与111c,而柱体又分别包含相变化层122、电极间介质层或覆盖层120、以及顶部层123。图中,各个柱体器件均标有适当的副标,如122a。图案化步骤以公知技术进行,优选实施例利用光阻薄膜进行平板印刷工艺,随后以光掩模或中间掩模(reticle)印上图案,将图案暴露于可见光或其它电磁辐射中,再蚀刻材料层。优选实施例采用各向异性干蚀刻,其可利用判别抵达下层电极的光学装置来控制。
应注意,本发明在此处与稍后的附图中,均仅标示柱体左边的器件、通常器件、与其它步骤中特别讨论的器件。同时,图中仅显示单一存储元件的形成过程,然而本领域的技术人员将可轻易了解上述存储元件的形成同时在整个集成电路模(die)上完成。
在随后的步骤中开始形成空气单元,其结果显示于图4C中。图4B的结构对应干蚀刻,其对GST材料具有蚀刻选择性;此步骤相对于上方电极间介质层120,对GST进行侧削,以形成绝热单元区域124。通过仔细选择蚀刻化学品与控制工艺,即可获得所需的侧削程度、空气单元大小、以及剩余的GST材料。
于此,干蚀刻化学品可包含Cl2、BCl3、或HBr;无论单独使用或其组合均可,也可同时使用与Ar、O2、CF4的组合。本方法可利用反应离子蚀刻技术,利用公知的终端检测系统进行控制。该控制技术可检测过度蚀刻,允许10-50%的过度蚀刻,或于设计蚀刻工艺时设定上述参数。
然后如图4D,形成侧壁;首先沉积一层介质填充材料于图4C的结构上,以在柱体111的侧壁上制造沉积薄膜;此步骤的优选实施例采用化学气相沉积(CVD)与等离子辅助化学气相沉积(PECVD)。随后的蚀刻步骤由柱体底部之间去除材料,分隔沉积薄膜并限定侧壁118。后续的蚀刻步骤,将电极层分隔为如电极114a的电极元件,其优选实施例采用干的、各向异性、并对电极层114具有选择性的蚀刻工艺。
优选实施例中,上述三项蚀刻步骤包括首先蚀刻氧化侧壁子,其优选实施例采用CF4、C4F8、CHF3、或C4F6、或其相类物的组合、或其与Ar、O2、N2的组合,并利用具有终端控制的RIE进行。此一步骤对下层TiN层具有选择性。对TiN层进行的第二蚀刻步骤,优选实施例采用Cl2、BCl3、或其相类物的组合、或其与Ar、O2、N2的组合,并同样利用具有终端控制的RIE进行。
参照图4E,各个存储元件间的区块以下列方式制作。沉积前述的适当介质材料116a至柱间区域中,以填充该空旷区域。优选实施例为将该空旷区域完全填充,同时利用化学机械研磨(CMP)等平整化工艺,将区块的尺寸调整至所需大小。
图4F图显示下一步骤的结果,其去除顶部层123a的剩余部分。优选实施例中,该顶部层由SiN所构成,因此优选的蚀刻方式为以H3PO4进行湿蚀刻,由此对SiO2层120a与116a产生较高的蚀刻选择性。
下列步骤叙述在覆盖层之上形成侧壁子元件126的一种实施例。优选实施例中,侧壁子元件如前述包含SiN,将其沉积后,再以蚀刻工艺所建立的杯形空缺,并完全延伸穿过该器件。随后,对下方的覆盖层进行第二次蚀刻,优选实施例采用各向异性蚀刻,以开启完全延伸穿过该器件的窄直信道。终点停止可控制该蚀刻步骤停止于GST层之上。
如图4H的最终步骤,可制作上层电极128,其中包含接触元件130。此步骤中,必须控制沉积工艺,使其完全填充前一蚀刻步骤中所建立的空缺,使得与相变化元件130接触。
本发明在此公开如上述优选实施例与细节,应该理解,上述内容仅作为范例,而非用以限制发明的范围。其可推知,本领域的技术人员,在本发明的权利要求之内,可轻易将其调整组合。

Claims (21)

1.一种存储器件,包含:
第一电极元件,大致为平面形状,其具有内部接触表面;
覆盖层,与该第一电极元件之间有间隔;
可编程电阻元件,具有多个接触表面,与该第一电极(元件)的该接触表面及该覆盖层接触,其中该可编程电阻元件的侧向尺寸小于该第一电极与该第二电极元件的侧向尺寸;
第二电极元件,该第二电极元件延伸穿过该覆盖层,与该可编程电阻元件接触;以及
多个侧壁,包含介质填充材料所构成,并延伸于该第一电极元件与该覆盖层之间,由此该可编程电阻元件、该第一电极(元件)的该接触表面、与该侧壁限定出绝热单元邻近于该可编程电阻元件。
2.如权利要求1的存储器件,其中该覆盖层包含第二介质填充材料;且该第一电极元件包含顽固金属材料;而该第二电极元件包含氮化钛。
3.如权利要求1的存储器件,其中该可编程电阻元件包含相变化元件。
4 如权利要求3的存储器件,其中该相变化元件包含Ge、Sb、与Te的组合。
5.如权利要求3的存储器件,其中该相变化元件包含由Ge、Sb、Te、Se、In、Ti、Ga、Bi、Sn、Cu、Pd、Pb、Ag、S、与Au的组合中所选出两种或以上材料的组合。
6.如权利要求1的存储器件,其中该绝热单元包含空气。
7.如权利要求1的存储器件,还包含位于该覆盖层与该第二电极元件之间的侧壁子元件,该侧壁子元件包含氮化硅。
8.如权利要求1的存储器件,其中该可编程电阻元件包含巨磁阻材料。
9.如权利要求1的存储器件,其中该可编程电阻元件包含由NixOy;TixOy;AlxOy;WxOy;ZnxOy;ZrxOy;CuxOy所构成的组合中选出两种以上材料的组合,而其中x∶y=0.5∶0.5。
10.如权利要求1的存储器件,其中该可编程电阻元件包含高分子材料,该高分子材料包含由TCNQ、PCBM、与TCNQ掺杂Cu、C60所构成的组合。
11.一种制造存储器件的方法,包含下列步骤:
提供衬底,该衬底为一绝热材料;
在该衬底上沉积多个连续层,包括第一电极层,相变化材料层与覆盖层;
平板印刷图案化并蚀刻该连续层,以限定存储单元基底;
选择性蚀刻该相变化材料层,以在该第一电极层与该覆盖层中制作多个凹陷区域,进一步限定蚀刻步骤后该相变化材料的剩余区域;
沉积多个侧壁,使其与该第一电极与该覆盖层接触,由此封闭该凹陷区域,以限定多个绝热单元;
形成第二电极,其延伸穿过该覆盖层,以与该相变化材料层产生电接触。
12.如权利要求11的方法,其中该存储单元基底包含相变化元件、覆盖元件、与第一电极元件。
13.如权利要求12的方法,还包括下列步骤:
在该覆盖元件上形成侧壁子元件;
形成通道,其延伸穿过该侧壁子元件与该覆盖元件;以及
其中该形成第二电极的步骤包含形成第二电极接触元件,其延伸穿过该侧壁子元件与该覆盖元件,以建立与该相变化元件的电接触。
14.如权利要求11的方法,其中该相变化材料包含Ge、Sb、与Te的组合。
15.如权利要求11的方法,其中该相变化材料由包含Ge、Sb、Te、Se、In、Ti、Ga、Bi、Sn、Cu、Pd、Pb、Ag、S、与Au的组合中所选出两种或以上材料的组合。
16.一种存储阵列,包含:
多个第一电极元件,大致为平面形状,其具有内部接触表面,同时在第一方向上相互平行排列;
多个存储元件,以区块互相分隔,各器件包含:
覆盖层,与该第一电极元件之间具有间隔;
相变化元件,具有多个接触表面,与该第一电极(元件)的该接触表面及该覆盖层接触,其中该可编程电阻元件的侧向尺寸小于该第一电极与该第二电极元件的侧向尺寸;以及
多个侧壁,邻近于各该区块,其包含介质填充材料所构成,并延伸于该第一电极元件与该覆盖层之间,由此该相变化元件、该第一电极(元件)的该接触表面、与这些侧壁限定出绝热单元邻近于该相变化元件;
多个第二电极元件,其在该第一电极大致为垂直方向,相互平行排列,各该第二电极元件之间包含多个存储元件,同时在各该存储元件上具有接触元件,该接触元件延伸穿过该存储元件,以和该相变化元件接触。
17.如权利要求16的存储阵列,其中该覆盖层包含第二介质填充材料,且该第一电极元件包含顽固金属材料,而该第二电极元件包含氮化钛。
18.如权利要求16的存储阵列,其中该相变化元件包含Ge、Sb、与Te的组合。
19.如权利要求16的存储阵列,其中该相变化器件包含由Ge、Sb、Te、Se、In、Ti、Ga、Bi、Sn、Cu、Pd、Pb、Ag、S、与Au的组合中所选出两种或以上材料的组合。
20.如权利要求16的存储阵列,其中该绝热单元包含空气。
21.如权利要求16的存储阵列,还包括含位于该覆盖层与该第二电极元件之间的侧壁子元件,该侧壁子元件包含氮化硅。
CNB2006101603139A 2005-11-21 2006-11-21 具有空气绝热单元的可编程电阻材料存储阵列 Active CN100524878C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US73908905P 2005-11-21 2005-11-21
US60/739,089 2005-11-21

Publications (2)

Publication Number Publication Date
CN101022151A true CN101022151A (zh) 2007-08-22
CN100524878C CN100524878C (zh) 2009-08-05

Family

ID=38709843

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2006101603139A Active CN100524878C (zh) 2005-11-21 2006-11-21 具有空气绝热单元的可编程电阻材料存储阵列

Country Status (3)

Country Link
US (1) US7816661B2 (zh)
CN (1) CN100524878C (zh)
TW (1) TWI318003B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102651369A (zh) * 2011-02-25 2012-08-29 株式会社东芝 非易失性半导体存储装置及其制造方法
CN103682094A (zh) * 2013-12-11 2014-03-26 上海新安纳电子科技有限公司 一种相变存储器结构及其制备方法
CN104659050A (zh) * 2013-11-22 2015-05-27 台湾积体电路制造股份有限公司 Rram器件的顶电极阻挡层
CN105301896A (zh) * 2015-11-25 2016-02-03 华中科技大学 一种基于金属玻璃薄膜相变材料的光刻方法
CN106601910A (zh) * 2016-12-23 2017-04-26 河北大学 一种有机电极阻变存储器及其制备方法
CN108807453A (zh) * 2017-05-04 2018-11-13 旺宏电子股份有限公司 介电掺杂且富含锑的gst相变存储器
CN111587493A (zh) * 2017-12-29 2020-08-25 台湾积体电路制造股份有限公司 具有更强健读/写效能的自旋力矩转移磁性随机存取存储器散热器及磁性屏蔽结构设计

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7682979B2 (en) * 2006-06-29 2010-03-23 Lam Research Corporation Phase change alloy etch
TWI343642B (en) 2007-04-24 2011-06-11 Ind Tech Res Inst Phase-change memory devices and methods for fabricating the same
TWI355072B (en) * 2007-10-17 2011-12-21 Nanya Technology Corp Phase-change memory devices and methods for fabric
US8021897B2 (en) 2009-02-19 2011-09-20 Micron Technology, Inc. Methods of fabricating a cross point memory array
US8017433B2 (en) 2010-02-09 2011-09-13 International Business Machines Corporation Post deposition method for regrowth of crystalline phase change material
US8574954B2 (en) * 2010-08-31 2013-11-05 Micron Technology, Inc. Phase change memory structures and methods
US8816314B2 (en) * 2011-05-13 2014-08-26 Adesto Technologies Corporation Contact structure and method for variable impedance memory element
JP5611903B2 (ja) * 2011-08-09 2014-10-22 株式会社東芝 抵抗変化メモリ
US8860001B2 (en) 2012-04-09 2014-10-14 Freescale Semiconductor, Inc. ReRAM device structure
KR101994449B1 (ko) 2012-11-08 2019-06-28 삼성전자주식회사 상변화 메모리 소자 및 그 제조방법
US9256126B2 (en) 2012-11-14 2016-02-09 Irresistible Materials Ltd Methanofullerenes
KR20150007520A (ko) * 2013-07-11 2015-01-21 에스케이하이닉스 주식회사 상변화 메모리 장치 및 그의 제조방법
US9741918B2 (en) 2013-10-07 2017-08-22 Hypres, Inc. Method for increasing the integration level of superconducting electronics circuits, and a resulting circuit
KR102465967B1 (ko) * 2016-02-22 2022-11-10 삼성전자주식회사 메모리 소자 및 그 제조방법

Family Cites Families (141)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3271591A (en) 1963-09-20 1966-09-06 Energy Conversion Devices Inc Symmetrical current controlling device
US3530441A (en) 1969-01-15 1970-09-22 Energy Conversion Devices Inc Method and apparatus for storing and retrieving information
IL61678A (en) * 1979-12-13 1984-04-30 Energy Conversion Devices Inc Programmable cell and programmable electronic arrays comprising such cells
US4719594A (en) * 1984-11-01 1988-01-12 Energy Conversion Devices, Inc. Grooved optical data storage device including a chalcogenide memory layer
US4876220A (en) 1986-05-16 1989-10-24 Actel Corporation Method of making programmable low impedance interconnect diode element
JP2685770B2 (ja) 1987-12-28 1997-12-03 株式会社東芝 不揮発性半導体記憶装置
US5534712A (en) * 1991-01-18 1996-07-09 Energy Conversion Devices, Inc. Electrically erasable memory elements characterized by reduced current and improved thermal stability
US5166758A (en) 1991-01-18 1992-11-24 Energy Conversion Devices, Inc. Electrically erasable phase change memory
US5177567A (en) * 1991-07-19 1993-01-05 Energy Conversion Devices, Inc. Thin-film structure for chalcogenide electrical switching devices and process therefor
US5166096A (en) 1991-10-29 1992-11-24 International Business Machines Corporation Process for fabricating self-aligned contact studs for semiconductor structures
US5958358A (en) 1992-07-08 1999-09-28 Yeda Research And Development Co., Ltd. Oriented polycrystalline thin films of transition metal chalcogenides
US5515488A (en) * 1994-08-30 1996-05-07 Xerox Corporation Method and apparatus for concurrent graphical visualization of a database search and its search history
US5785828A (en) 1994-12-13 1998-07-28 Ricoh Company, Ltd. Sputtering target for producing optical recording medium
US5831276A (en) 1995-06-07 1998-11-03 Micron Technology, Inc. Three-dimensional container diode for use with multi-state material in a non-volatile memory cell
US5879955A (en) * 1995-06-07 1999-03-09 Micron Technology, Inc. Method for fabricating an array of ultra-small pores for chalcogenide memory cells
US5789758A (en) * 1995-06-07 1998-08-04 Micron Technology, Inc. Chalcogenide memory cell with a plurality of chalcogenide electrodes
US5869843A (en) * 1995-06-07 1999-02-09 Micron Technology, Inc. Memory array having a multi-state element and method for forming such array or cells thereof
US6420725B1 (en) * 1995-06-07 2002-07-16 Micron Technology, Inc. Method and apparatus for forming an integrated circuit electrode having a reduced contact area
US5837564A (en) 1995-11-01 1998-11-17 Micron Technology, Inc. Method for optimal crystallization to obtain high electrical performance from chalcogenides
US5687112A (en) * 1996-04-19 1997-11-11 Energy Conversion Devices, Inc. Multibit single cell memory element having tapered contact
US6025220A (en) * 1996-06-18 2000-02-15 Micron Technology, Inc. Method of forming a polysilicon diode and devices incorporating such diode
US5985698A (en) 1996-07-22 1999-11-16 Micron Technology, Inc. Fabrication of three dimensional container diode for use with multi-state material in a non-volatile memory cell
US5814527A (en) * 1996-07-22 1998-09-29 Micron Technology, Inc. Method of making small pores defined by a disposable internal spacer for use in chalcogenide memories
US5789277A (en) * 1996-07-22 1998-08-04 Micron Technology, Inc. Method of making chalogenide memory device
US5998244A (en) 1996-08-22 1999-12-07 Micron Technology, Inc. Memory cell incorporating a chalcogenide element and method of making same
US6147395A (en) 1996-10-02 2000-11-14 Micron Technology, Inc. Method for fabricating a small area of contact between electrodes
US6087674A (en) * 1996-10-28 2000-07-11 Energy Conversion Devices, Inc. Memory element with memory material comprising phase-change material and dielectric material
US6015977A (en) 1997-01-28 2000-01-18 Micron Technology, Inc. Integrated circuit memory cell having a small active area and method of forming same
US5952671A (en) 1997-05-09 1999-09-14 Micron Technology, Inc. Small electrode for a chalcogenide switching device and method for fabricating same
US6031287A (en) * 1997-06-18 2000-02-29 Micron Technology, Inc. Contact structure and memory element incorporating the same
US6768165B1 (en) * 1997-08-01 2004-07-27 Saifun Semiconductors Ltd. Two bit non-volatile electrically erasable and programmable semiconductor memory cell utilizing asymmetrical charge trapping
US6617192B1 (en) 1997-10-01 2003-09-09 Ovonyx, Inc. Electrically programmable memory element with multi-regioned contact
US7023009B2 (en) * 1997-10-01 2006-04-04 Ovonyx, Inc. Electrically programmable memory element with improved contacts
US6087269A (en) * 1998-04-20 2000-07-11 Advanced Micro Devices, Inc. Method of making an interconnect using a tungsten hard mask
US7157314B2 (en) 1998-11-16 2007-01-02 Sandisk Corporation Vertically stacked field programmable nonvolatile memory and method of fabrication
US6034882A (en) * 1998-11-16 2000-03-07 Matrix Semiconductor, Inc. Vertically stacked field programmable nonvolatile memory and method of fabrication
US6351406B1 (en) * 1998-11-16 2002-02-26 Matrix Semiconductor, Inc. Vertically stacked field programmable nonvolatile memory and method of fabrication
DE19903325B4 (de) 1999-01-28 2004-07-22 Heckler & Koch Gmbh Verriegelter Verschluß für eine Selbstlade-Handfeuerwaffe, mit einem Verschlußkopf und Verschlußträger und einem federnden Sperring mit Längsschlitz
US6177317B1 (en) * 1999-04-14 2001-01-23 Macronix International Co., Ltd. Method of making nonvolatile memory devices having reduced resistance diffusion regions
US6075719A (en) 1999-06-22 2000-06-13 Energy Conversion Devices, Inc. Method of programming phase-change memory element
US6077674A (en) * 1999-10-27 2000-06-20 Agilent Technologies Inc. Method of producing oligonucleotide arrays with features of high purity
US6314014B1 (en) 1999-12-16 2001-11-06 Ovonyx, Inc. Programmable resistance memory arrays with reference cells
US6420216B1 (en) * 2000-03-14 2002-07-16 International Business Machines Corporation Fuse processing using dielectric planarization pillars
US6420215B1 (en) * 2000-04-28 2002-07-16 Matrix Semiconductor, Inc. Three-dimensional memory array and method of fabrication
US6888750B2 (en) * 2000-04-28 2005-05-03 Matrix Semiconductor, Inc. Nonvolatile memory on SOI and compound semiconductor substrates and method of fabrication
US6501111B1 (en) 2000-06-30 2002-12-31 Intel Corporation Three-dimensional (3D) programmable device
US6440837B1 (en) 2000-07-14 2002-08-27 Micron Technology, Inc. Method of forming a contact structure in a semiconductor device
US6563156B2 (en) * 2001-03-15 2003-05-13 Micron Technology, Inc. Memory elements and methods for making same
US6567293B1 (en) * 2000-09-29 2003-05-20 Ovonyx, Inc. Single level metal memory cell using chalcogenide cladding
US6429064B1 (en) 2000-09-29 2002-08-06 Intel Corporation Reduced contact area of sidewall conductor
US6555860B2 (en) * 2000-09-29 2003-04-29 Intel Corporation Compositionally modified resistive electrode
US6339544B1 (en) 2000-09-29 2002-01-15 Intel Corporation Method to enhance performance of thermal resistor device
US6569705B2 (en) 2000-12-21 2003-05-27 Intel Corporation Metal structure for a phase-change memory device
US6627530B2 (en) 2000-12-22 2003-09-30 Matrix Semiconductor, Inc. Patterning three dimensional structures
US6271090B1 (en) 2000-12-22 2001-08-07 Macronix International Co., Ltd. Method for manufacturing flash memory device with dual floating gates and two bits per cell
TW490675B (en) 2000-12-22 2002-06-11 Macronix Int Co Ltd Control method of multi-stated NROM
US6534781B2 (en) * 2000-12-26 2003-03-18 Ovonyx, Inc. Phase-change memory bipolar array utilizing a single shallow trench isolation for creating an individual active area region for two memory array elements and one bipolar base contact
US6487114B2 (en) 2001-02-28 2002-11-26 Macronix International Co., Ltd. Method of reading two-bit memories of NROM cell
US6730928B2 (en) * 2001-05-09 2004-05-04 Science Applications International Corporation Phase change switches and circuits coupling to electromagnetic waves containing phase change switches
US6744086B2 (en) * 2001-05-15 2004-06-01 Nve Corporation Current switched magnetoresistive memory cell
US6514788B2 (en) * 2001-05-29 2003-02-04 Bae Systems Information And Electronic Systems Integration Inc. Method for manufacturing contacts for a Chalcogenide memory device
US6613604B2 (en) 2001-08-02 2003-09-02 Ovonyx, Inc. Method for making small pore for use in programmable resistance memory element
US6589714B2 (en) * 2001-06-26 2003-07-08 Ovonyx, Inc. Method for making programmable resistance memory element using silylated photoresist
US6511867B2 (en) * 2001-06-30 2003-01-28 Ovonyx, Inc. Utilizing atomic layer deposition for programmable device
US6605527B2 (en) 2001-06-30 2003-08-12 Intel Corporation Reduced area intersection between electrode and programming element
US6673700B2 (en) * 2001-06-30 2004-01-06 Ovonyx, Inc. Reduced area intersection between electrode and programming element
US6643165B2 (en) * 2001-07-25 2003-11-04 Nantero, Inc. Electromechanical memory having cell selection circuitry constructed with nanotube technology
US6709958B2 (en) 2001-08-30 2004-03-23 Micron Technology, Inc. Integrated circuit device and fabrication using metal-doped chalcogenide materials
US6586761B2 (en) * 2001-09-07 2003-07-01 Intel Corporation Phase change material memory device
US6861267B2 (en) * 2001-09-17 2005-03-01 Intel Corporation Reducing shunts in memories with phase-change material
US6566700B2 (en) * 2001-10-11 2003-05-20 Ovonyx, Inc. Carbon-containing interfacial layer for phase-change memory
US6800563B2 (en) 2001-10-11 2004-10-05 Ovonyx, Inc. Forming tapered lower electrode phase-change memories
US6545903B1 (en) * 2001-12-17 2003-04-08 Texas Instruments Incorporated Self-aligned resistive plugs for forming memory cell with phase change material
US6512241B1 (en) * 2001-12-31 2003-01-28 Intel Corporation Phase change material memory device
US6867638B2 (en) * 2002-01-10 2005-03-15 Silicon Storage Technology, Inc. High voltage generation and regulation system for digital multilevel nonvolatile memory
JP3796457B2 (ja) 2002-02-28 2006-07-12 富士通株式会社 不揮発性半導体記憶装置
US6579760B1 (en) * 2002-03-28 2003-06-17 Macronix International Co., Ltd. Self-aligned, programmable phase change memory
US6864500B2 (en) 2002-04-10 2005-03-08 Micron Technology, Inc. Programmable conductor memory cell structure
US6605821B1 (en) 2002-05-10 2003-08-12 Hewlett-Packard Development Company, L.P. Phase change material electronic memory structure and method for forming
US6864503B2 (en) * 2002-08-09 2005-03-08 Macronix International Co., Ltd. Spacer chalcogenide memory method and device
US6850432B2 (en) * 2002-08-20 2005-02-01 Macronix International Co., Ltd. Laser programmable electrically readable phase-change memory method and device
JP4133141B2 (ja) 2002-09-10 2008-08-13 株式会社エンプラス 電気部品用ソケット
JP4190238B2 (ja) * 2002-09-13 2008-12-03 株式会社ルネサステクノロジ 不揮発性半導体記憶装置
US6992932B2 (en) * 2002-10-29 2006-01-31 Saifun Semiconductors Ltd Method circuit and system for read error detection in a non-volatile memory array
JP4928045B2 (ja) * 2002-10-31 2012-05-09 大日本印刷株式会社 相変化型メモリ素子およびその製造方法
US6791102B2 (en) 2002-12-13 2004-09-14 Intel Corporation Phase change memory
US6744088B1 (en) 2002-12-13 2004-06-01 Intel Corporation Phase change memory device on a planar composite layer
US6815266B2 (en) * 2002-12-30 2004-11-09 Bae Systems Information And Electronic Systems Integration, Inc. Method for manufacturing sidewall contacts for a chalcogenide memory device
KR100486306B1 (ko) * 2003-02-24 2005-04-29 삼성전자주식회사 셀프 히터 구조를 가지는 상변화 메모리 소자
US7067865B2 (en) * 2003-06-06 2006-06-27 Macronix International Co., Ltd. High density chalcogenide memory cells
US7893419B2 (en) * 2003-08-04 2011-02-22 Intel Corporation Processing phase change material to improve programming speed
US6815704B1 (en) 2003-09-04 2004-11-09 Silicon Storage Technology, Inc. Phase change memory device employing thermally insulating voids
US6927410B2 (en) 2003-09-04 2005-08-09 Silicon Storage Technology, Inc. Memory device with discrete layers of phase change memory material
DE10345455A1 (de) 2003-09-30 2005-05-04 Infineon Technologies Ag Verfahren zum Erzeugen einer Hartmaske und Hartmasken-Anordnung
US6937507B2 (en) 2003-12-05 2005-08-30 Silicon Storage Technology, Inc. Memory device and method of operating same
JP4124743B2 (ja) 2004-01-21 2008-07-23 株式会社ルネサステクノロジ 相変化メモリ
KR100564608B1 (ko) * 2004-01-29 2006-03-28 삼성전자주식회사 상변화 메모리 소자
US6936840B2 (en) 2004-01-30 2005-08-30 International Business Machines Corporation Phase-change memory cell and method of fabricating the phase-change memory cell
JP4529493B2 (ja) 2004-03-12 2010-08-25 株式会社日立製作所 半導体装置
KR100598100B1 (ko) 2004-03-19 2006-07-07 삼성전자주식회사 상변환 기억 소자의 제조방법
DE102004014487A1 (de) 2004-03-24 2005-11-17 Infineon Technologies Ag Speicherbauelement mit in isolierendes Material eingebettetem, aktiven Material
US20060108667A1 (en) * 2004-11-22 2006-05-25 Macronix International Co., Ltd. Method for manufacturing a small pin on integrated circuits or other devices
KR100827653B1 (ko) * 2004-12-06 2008-05-07 삼성전자주식회사 상변화 기억 셀들 및 그 제조방법들
US7220983B2 (en) * 2004-12-09 2007-05-22 Macronix International Co., Ltd. Self-aligned small contact phase-change memory method and device
US7214958B2 (en) * 2005-02-10 2007-05-08 Infineon Technologies Ag Phase change memory cell with high read margin at low power operation
US7488967B2 (en) 2005-04-06 2009-02-10 International Business Machines Corporation Structure for confining the switching current in phase memory (PCM) cells
US7166533B2 (en) * 2005-04-08 2007-01-23 Infineon Technologies, Ag Phase change memory cell defined by a pattern shrink material process
US7321130B2 (en) 2005-06-17 2008-01-22 Macronix International Co., Ltd. Thin film fuse phase change RAM and manufacturing method
US7534647B2 (en) * 2005-06-17 2009-05-19 Macronix International Co., Ltd. Damascene phase change RAM and manufacturing method
US7514288B2 (en) 2005-06-17 2009-04-07 Macronix International Co., Ltd. Manufacturing methods for thin film fuse phase change ram
US7514367B2 (en) 2005-06-17 2009-04-07 Macronix International Co., Ltd. Method for manufacturing a narrow structure on an integrated circuit
US7598512B2 (en) 2005-06-17 2009-10-06 Macronix International Co., Ltd. Thin film fuse phase change cell with thermal isolation layer and manufacturing method
US8237140B2 (en) 2005-06-17 2012-08-07 Macronix International Co., Ltd. Self-aligned, embedded phase change RAM
US7238994B2 (en) 2005-06-17 2007-07-03 Macronix International Co., Ltd. Thin film plate phase change ram circuit and manufacturing method
US20070037101A1 (en) * 2005-08-15 2007-02-15 Fujitsu Limited Manufacture method for micro structure
US7397060B2 (en) * 2005-11-14 2008-07-08 Macronix International Co., Ltd. Pipe shaped phase change memory
US20070111429A1 (en) * 2005-11-14 2007-05-17 Macronix International Co., Ltd. Method of manufacturing a pipe shaped phase change memory
US7635855B2 (en) * 2005-11-15 2009-12-22 Macronix International Co., Ltd. I-shaped phase change memory cell
US7786460B2 (en) * 2005-11-15 2010-08-31 Macronix International Co., Ltd. Phase change memory device and manufacturing method
US7450411B2 (en) * 2005-11-15 2008-11-11 Macronix International Co., Ltd. Phase change memory device and manufacturing method
US7394088B2 (en) * 2005-11-15 2008-07-01 Macronix International Co., Ltd. Thermally contained/insulated phase change memory device and method (combined)
US7414258B2 (en) * 2005-11-16 2008-08-19 Macronix International Co., Ltd. Spacer electrode small pin phase change memory RAM and manufacturing method
US7507986B2 (en) * 2005-11-21 2009-03-24 Macronix International Co., Ltd. Thermal isolation for an active-sidewall phase change memory cell
US7829876B2 (en) * 2005-11-21 2010-11-09 Macronix International Co., Ltd. Vacuum cell thermal isolation for a phase change memory device
US7449710B2 (en) * 2005-11-21 2008-11-11 Macronix International Co., Ltd. Vacuum jacket for phase change memory element
US7479649B2 (en) * 2005-11-21 2009-01-20 Macronix International Co., Ltd. Vacuum jacketed electrode for phase change memory element
US7599217B2 (en) * 2005-11-22 2009-10-06 Macronix International Co., Ltd. Memory cell device and manufacturing method
US7688619B2 (en) * 2005-11-28 2010-03-30 Macronix International Co., Ltd. Phase change memory cell and manufacturing method
US7459717B2 (en) * 2005-11-28 2008-12-02 Macronix International Co., Ltd. Phase change memory cell and manufacturing method
US7605079B2 (en) * 2005-12-05 2009-10-20 Macronix International Co., Ltd. Manufacturing method for phase change RAM with electrode layer process
US7642539B2 (en) * 2005-12-13 2010-01-05 Macronix International Co., Ltd. Thin film fuse phase change cell with thermal isolation pad and manufacturing method
US7531825B2 (en) * 2005-12-27 2009-05-12 Macronix International Co., Ltd. Method for forming self-aligned thermal isolation cell for a variable resistance memory array
US8062833B2 (en) * 2005-12-30 2011-11-22 Macronix International Co., Ltd. Chalcogenide layer etching method
US7595218B2 (en) * 2006-01-09 2009-09-29 Macronix International Co., Ltd. Programmable resistive RAM and manufacturing method
US7560337B2 (en) * 2006-01-09 2009-07-14 Macronix International Co., Ltd. Programmable resistive RAM and manufacturing method
US7741636B2 (en) * 2006-01-09 2010-06-22 Macronix International Co., Ltd. Programmable resistive RAM and manufacturing method
US20070158632A1 (en) * 2006-01-09 2007-07-12 Macronix International Co., Ltd. Method for Fabricating a Pillar-Shaped Phase Change Memory Element
US7825396B2 (en) * 2006-01-11 2010-11-02 Macronix International Co., Ltd. Self-align planerized bottom electrode phase change memory and manufacturing method
US7432206B2 (en) * 2006-01-24 2008-10-07 Macronix International Co., Ltd. Self-aligned manufacturing method, and manufacturing method for thin film fuse phase change ram
US7456421B2 (en) 2006-01-30 2008-11-25 Macronix International Co., Ltd. Vertical side wall active pin structures in a phase change memory and manufacturing methods
US8129706B2 (en) 2006-05-05 2012-03-06 Macronix International Co., Ltd. Structures and methods of a bistable resistive random access memory

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9006815B2 (en) 2011-02-25 2015-04-14 Kabushiki Kaisha Toshiba Nonvolatile semiconductor memory device and method for manufacturing the same
CN102651369A (zh) * 2011-02-25 2012-08-29 株式会社东芝 非易失性半导体存储装置及其制造方法
CN104659050A (zh) * 2013-11-22 2015-05-27 台湾积体电路制造股份有限公司 Rram器件的顶电极阻挡层
CN104659050B (zh) * 2013-11-22 2017-09-19 台湾积体电路制造股份有限公司 Rram器件的顶电极阻挡层
CN103682094A (zh) * 2013-12-11 2014-03-26 上海新安纳电子科技有限公司 一种相变存储器结构及其制备方法
CN103682094B (zh) * 2013-12-11 2016-08-17 上海新安纳电子科技有限公司 一种相变存储器结构及其制备方法
CN105301896B (zh) * 2015-11-25 2020-01-10 华中科技大学 一种基于金属玻璃薄膜相变材料的光刻方法
CN105301896A (zh) * 2015-11-25 2016-02-03 华中科技大学 一种基于金属玻璃薄膜相变材料的光刻方法
CN106601910A (zh) * 2016-12-23 2017-04-26 河北大学 一种有机电极阻变存储器及其制备方法
CN106601910B (zh) * 2016-12-23 2018-10-09 河北大学 一种有机电极阻变存储器及其制备方法
CN108807453A (zh) * 2017-05-04 2018-11-13 旺宏电子股份有限公司 介电掺杂且富含锑的gst相变存储器
CN108807453B (zh) * 2017-05-04 2021-09-10 旺宏电子股份有限公司 介电掺杂且富含锑的gst相变存储器
CN111587493A (zh) * 2017-12-29 2020-08-25 台湾积体电路制造股份有限公司 具有更强健读/写效能的自旋力矩转移磁性随机存取存储器散热器及磁性屏蔽结构设计
CN111587493B (zh) * 2017-12-29 2023-10-13 台湾积体电路制造股份有限公司 具有更强健读/写效能的自旋力矩转移磁性随机存取存储器散热器及磁性屏蔽结构设计

Also Published As

Publication number Publication date
TW200733353A (en) 2007-09-01
TWI318003B (en) 2009-12-01
US7816661B2 (en) 2010-10-19
US20080266940A1 (en) 2008-10-30
CN100524878C (zh) 2009-08-05

Similar Documents

Publication Publication Date Title
CN100524878C (zh) 具有空气绝热单元的可编程电阻材料存储阵列
US7456421B2 (en) Vertical side wall active pin structures in a phase change memory and manufacturing methods
US6830952B2 (en) Spacer chalcogenide memory method and device
US8106376B2 (en) Method for manufacturing a resistor random access memory with a self-aligned air gap insulator
CN100555653C (zh) 可编程电阻随机存取存储器及其制造方法
CN100563020C (zh) 有金属氧化物的多阶电阻随机存取存储结构及其制造方法
US7642539B2 (en) Thin film fuse phase change cell with thermal isolation pad and manufacturing method
US7732800B2 (en) Resistor random access memory cell with L-shaped electrode
US7463512B2 (en) Memory element with reduced-current phase change element
US8158963B2 (en) Programmable resistive RAM and manufacturing method
CN101290948B (zh) 存储器结构及其制造方法以及存储单元阵列的制造方法
US7842536B2 (en) Vacuum jacket for phase change memory element
US7820997B2 (en) Resistor random access memory cell with reduced active area and reduced contact areas
US20070138458A1 (en) Damascene Phase Change RAM and Manufacturing Method
CN100563042C (zh) 具有自对准气隙绝缘体的电阻随机存取存储器的制造方法
US20090101879A1 (en) Method for Making Self Aligning Pillar Memory Cell Device
CN101241966A (zh) 电阻随机存取存储单元装置
CN1979813A (zh) 具有电极层处理的相变随机存取存储器的制造方法
US20080096341A1 (en) Method for Manufacturing a Resistor Random Access Memory with Reduced Active Area and Reduced Contact Areas
US8610098B2 (en) Phase change memory bridge cell with diode isolation device

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant