CN101035647B - 用于提高激光系统性能的声光调制器调制技术 - Google Patents

用于提高激光系统性能的声光调制器调制技术 Download PDF

Info

Publication number
CN101035647B
CN101035647B CN2005800233157A CN200580023315A CN101035647B CN 101035647 B CN101035647 B CN 101035647B CN 2005800233157 A CN2005800233157 A CN 2005800233157A CN 200580023315 A CN200580023315 A CN 200580023315A CN 101035647 B CN101035647 B CN 101035647B
Authority
CN
China
Prior art keywords
converter
acousto
optic modulator
frequency
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2005800233157A
Other languages
English (en)
Other versions
CN101035647A (zh
Inventor
J·约翰逊
D·瓦特
B·贝尔德
R·哈里斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electro Scientific Industries Inc
Original Assignee
Electro Scientific Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electro Scientific Industries Inc filed Critical Electro Scientific Industries Inc
Priority claimed from PCT/US2005/019775 external-priority patent/WO2005121889A2/en
Publication of CN101035647A publication Critical patent/CN101035647A/zh
Application granted granted Critical
Publication of CN101035647B publication Critical patent/CN101035647B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0626Energy control of the laser beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0648Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0665Shaping the laser beam, e.g. by masks or multi-focusing by beam condensation on the workpiece, e.g. for focusing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/082Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/292Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection by controlled diffraction or phased-array beam steering
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/33Acousto-optical deflection devices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/33Acousto-optical deflection devices
    • G02F1/332Acousto-optical deflection devices comprising a plurality of transducers on the same crystal surface, e.g. multi-channel Bragg cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/11Mode locking; Q-switching; Other giant-pulse techniques, e.g. cavity dumping
    • H01S3/1123Q-switching
    • H01S3/117Q-switching using intracavity acousto-optic devices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0121Operation of devices; Circuit arrangements, not otherwise provided for in this subclass
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/16Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 series; tandem
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/106Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
    • H01S3/1068Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using an acousto-optical device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • H01S3/1306Stabilisation of the amplitude
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • H01S3/136Stabilisation of laser output parameters, e.g. frequency or amplitude by controlling devices placed within the cavity

Abstract

腔内及腔外声光调制器(AOM)(60)的频率数字控制及/或振幅调制技术能促进基本完全消除激光束(90),以阻止不需要的激光能量冲击工件(80);通过脉冲至脉冲激光能量的闭环控制来促进激光脉冲振幅的稳定性;促进光束定位控制,该控制包括对诸如对准误差修正、光束移动校正或三重定位等应用的闭环控制,但不限于此;以及促进运用声光调制器(60)上的一个以上的变换器来执行上列的任何一种应用。

Description

用于提高激光系统性能的声光调制器调制技术
技术领域
【001】本发明涉及激光微机械加工,特别是涉及利用声光调制器(AOM)频率及/或振幅调制来提高激光机械加工性能的方法及系统。 
背景技术
【002】图1为典型的采用传统声光Q一开关10a的现有技术激光器2的示意图。图2A及图2B(统称为图2)为公知声光调制器(AOM)10的另一部分的示意图,其中该声光调制器具有响应于射频驱动器14的变换器或传感器(transducer)12,射频驱动器14可控制声光调制器10传输零阶光束16及/或第一阶光束18的程度或范围。图3是示出用于控制射频驱动器14的传统技术的示意图。如图1至图3所示,声光调制器10传统上被用作激光器2的共振器当中的Q-开关10a,以用来控制脉冲时序、重复率以及腔增益。典型的Q-开关10a(或典型的声光调制器10)具有射频变换器12,射频变换器12的振幅在制造商所设定的特定频率下由射频驱动器14进行调制。Q-开关10a通常由激光系统控制器4控制,激光系统控制器4命令电源14a向射频变换器12提供可选择大小的电能,从而允许激光脉冲离开激光器,或使激光能量保持在激光共振器的内部。电源14a通常亦将电能提供到激光抽运源或泵浦源(laser pumping source)6,从而响应于激光系统控制器4的命令而将泵浦辐射提供到激光介质8。当需要时,上述组件可协同运作而产生脉冲式激光束20。 
【003】如Emmons Jr等人的美国专利第5197074号所描述的技术内容,声光调制器10亦可被用作可变的共振器内损耗调制器,并通过以可变方式控制传送到声光调制器10上的射频变换器12的射频信号振幅来控制激光脉冲的时序及强度。声光调制器10亦已用来作为腔外光束衰减器,其通过以变化的衍射效率使激光束20衍射或衍射来控制激光束20的强度,使得有某些比率的光能沿着期望的光束路径传播, 而其余的大部分光能则行进到「光束截止器或光束收集器(beamdump)」。 
【004】近来,位于美国Oregon州Portland市的Electro ScientificIndustries公司已采用声光调制器10当作选通控制器件或「脉冲选取器(pulse picker)」,其允许来自于激光器2的脉冲传播通过或沿着各式不同的定位系统组件传播,从而在接到命令时冲击工件,而在未接到命令时防止激光脉冲冲击工件。关于这个过程的更多细节,可参照Baird等人的美国专利第6172325号。 
【005】请再次参照图2及图3。变换器12会将来自于模拟射频驱动器14的射频输入信号转换成设定于声光调制器10内的声波19。当声波19传递通过声光调制器10时,声波19会使声光调制器10的光学介质产生形变,导致声光调制器10的折射率升高和降低。因此,入射的激光束20会被声波19衍射并遵守衍射定律,产生同轴(on-axis)的零阶光束16以及在与衍射过程有关的方程式所规定角度的第一阶(或更高阶)光束18。 
【006】当声光调制器10上没有施加射频功率22时,入射的激光束20会大致沿其原来的光束路径通过声光调制器10。当射频功率22施加到声光调制器10时,部分入射的激光束的能量会由第零阶光束16的光束路径衍射到第一阶光束18的光束路径。衍射效率被定义为第一阶光束18的激光能量与入射激光束20的激光能量的比率。 
【007】参考图4,根据不同应用的考虑,第一阶光束18或第零阶光束16可用来当作冲击工件30的工作光束。当使用第一阶光束18当作工作光束时,随着射频功率22分别从其最大功率值改变到几乎为零,可以动态地控制工作激光脉冲的能量而从其最大值的100%降至几乎为零。由于在容许的最大射频功率负载下,声光调制器10的实际限制衍射效率约为75%至90%,因此工作激光脉冲的最大能量值约为激光器所提供的激光脉冲能量值的75%至90%。 
【008】然而,当使用第零阶光束16来当作工作光束时,随着射频功率22分别从几乎为零改变到其最大功率,可以动态地控制工作激光脉冲的能量,使其从激光器所提供的最大激光脉冲能量值的约100%(减去因行进通过声光调制器10而造成的损耗,或许由于热量和消散 原因而达数个百分点)降至约最大能量值的15%至20%。举例而言,在存储连接处理方面,当没有工作激光脉冲的需求时,不希望发生系统激光脉冲能量溢漏的情况(亦即工作激光脉冲能量应为零);因此,如图4所示,第一阶光束18作为工作光束,第零阶光束16则被导入光束收集器,例如吸收器32。 
【009】声光调制器10的消光比(extinction ratio)34定义为激光脉冲36(36a或36b)的传输功率在「未阻隔」(或「传输」)状态38与「阻隔」或「非传输」状态40之间的差值。图5为经过简化的示意图,示出阻隔与未阻隔的激光束20的透射率的差值,其为在特定频率下施加到声光调制器10的分贝级的函数。参考图3和图5,脉冲选取或拣选(pulse-picking)激光系统所用的常规声光调制器10可从固定频率产生器24(通常为锁相回路或晶体)接收由制造商设定且不可改变的特定单一射频。此频率确定输出角度,并控制射频振幅的衍射量在消光比34限制的范围内。 
【010】藉由将来自于开启/关闭(on/off)数字控制器26的晶体管一晶体管逻辑(TTL)“ON”或“OFF”信号传送到射频驱动器14内,以及/或藉由将来自于模拟振幅控制板28的非整数增量0至1伏的模拟信号传送到射频驱动器14内,可控制传送到常规声光调制器10的模拟射频驱动器14的信号振幅。TTL“OFF”信号会指示模拟射频驱动器14将输出降至最低水平,而此最低水平为射频驱动器14所允许的最低功率输出。将送至射频驱动器14内的模拟信号设定为最低水平亦可达到相同结果。然而,上述两种可供选择的方式仍会让少量的射频功率22传递到变换器12,并产生低能量的衍射的第一阶光束18,在不希望有它时它通过工件30。 
【011】随着各种不同激光应用(例如激光DRAM处理、激光修整和微机械加工,以及激光微型钻孔)的激光功率的持续增加,许多这些激光应用寻求能完全关闭到达工作表面的激光功率。在这些激光操作中,工件的材料及/或预先处理可能非常昂贵。若激光输出没有完全被关闭,则有可能使能量「溢漏」或衍射于工件的某些位置上,在这些位置处对材料性质或特性造成的破坏、改变或不良效应是无法接受的。举例而言,在激光修整处理中,不需要的能量可在材料中引入不 希望的光电效应。不论为何种激光操作,溢漏的激光能量均有可能会对客户的产品(例如晶片上的器件)造成不可恢复的显著破坏,而且此类损坏不一定能通过视觉检查觉察出来。激光系统的能量溢漏问题可能出现在连续的波长范围,其中包括CO2长波长CO2(约10μm)、红外光及近红外光(例如1.3μm至1.0μm)、可见光,以及紫外光(低于约400μm)等。 
【012】随着声光调制器10日益多地应用于激光加工应用,能量溢漏的问题变得愈来愈明显。遗憾的是,即使是将最低水平的射频功率传送到最先进的AOM控制器,仍然会有某些射频功率22溢漏到声光调制器10内,导致某些激光束能量被衍射到可能不需要的位置。当运用传统的Q-开关10a时,同样会出现上述溢漏现象,在形成激光能量而不希望有激光输出期间,这允许某些激光能量离开激光器2。 
发明内容
【013】在此说明的某些实施例和技术可实现各式不同的激光处理优点,其优于常规激光系统及常规的激光机械加工方法。这些实施例和技术包括下列其中之一或数项,但不以此为限:频率及/或振幅的声光调制器调制技术的数字控制;腔内及/或腔外的声光调制器调制技术,其包括但不限于促进激光束基本完全消光(extinction)的频率及/或振幅调制,以阻止不想要的激光能量冲击到工件;具有闭环控制功能的脉冲至脉冲激光能量的声光调制器调制技术,以促进激光脉冲能量的稳定性;以及促进光束定位控制的频率及/或振幅声光调制器调制技术,其包括但不限于运用声光调制器上的一个以上变换器、在对准误差修正、光束移动校正或三重定位(tertiary positioning)等应用上运用闭环控制。 
【014】因此,本发明的一目的在于通过一个或更多选定的声光调制器应用来提供改良的激光系统性能。 
【015】本发明的其它目的及优点将通过以下针对优选实施例的详细解说并参照附图而更明显。 
附图说明
【016】图1为常规激光器的示意图,该激光器采用现有技术声光调制器器件当作Q-开关。 
【017】图2A和图2B为另一现有技术声光调制器器件的示意图,该声光调制器器件能响应于其所接收的射频功率大小而传送部分的第零阶与第一阶光束。 
【018】图3为用于控制现有技术声光调制器器件的方法的示意图。 
【019】图4为采用现有技术声光调制器器件当作脉冲选通器件的激光系统的示意图。 
【020】图5是示出受到阻隔与未受阻隔的激光束透射率差值的简化图,该差值为在特定频率施加到声光调制器的分贝级的函数。 
【021】图6为采用频率调制式声光调制器的激光系统的示意图。 
【022】图7为示范性高宽带频移波形的时序图,其中该波形以声光调制器变换器来表示,而达到从声光调制器完全消光。 
【023】图8为一时序流程表,其示出与运用高宽带频移而达到从声光调制器完全消光有关的事件与结果。 
【024】图9为一时序流程表,其示出与运用白噪声而达到从声光调制器无衍射有关的事件。 
【025】图10为采用频率调制式声光调制器及从光束收集器的激光系统的示意图。 
【026】图11为采用直流电源开关的声光调制器控制系统的示意图。 
【027】图12为采用频率调制式声光调制器当作激光器中的Q开关的激光系统示意图。 
【028】图13为激光系统的示意图,其中该激光系统采用由腔外频率控制的声光调制器以及频率调制式声光调制器当作Q-开关。 
【029】图14为激光系统的示意图,其中该激光系统采用两个腔外频率控制的声光调制器。 
【030】图15为振幅对时间图,其示出激光脉冲之间的典型峰值能量漂移。 
【031】图16为具有闭环光束能量控制的激光系统的示意图,该 激光系统系采用腔外振幅及/或频率控制的声光调制器。 
【032】图17为振幅对时间图,其示出通过声光调制器闭环能量控制所能达到的振幅稳定性。 
【033】图18为运用腔外声光调制器来达成光束定位的激光系统的示意图。 
【034】图19是示出声光调制器的示范性偏转角范围的示意图。 
【035】图20为声光调制器扫描系统的示意图,其中该声光调制器扫描系统采用串联的声光调制器来达成两条轴的光束定位。 
【036】图20A是示出扫描角度衍射效率相对于示范性紫外线(UV)和红外线(IR)波长的特定布拉格角(Bragge angle)的角度改变量的图。 
【037】图20B为声光调制器扫描系统的示意图,其中该声光调制器扫描系统采用串联的声光调制器来扩张指定轴的光束定位范围。 
【038】图20C示出扫描角度衍射效率相对于示范性紫外线和红外线波长下串联的相同轴线调制声光调制器60所造成的角度改变量的图。 
【039】图21为激光系统的示意图,其中该激光系统采用腔外声光调制器与闭环修正控制来影响光束定位。 
【040】图22为声光调制器的示意图,其中该声光调制器采用至少两个变换器而使与声光调制器入射面成一角度的光束产生转向。 
【041】图22A为声光调制器的示意图,其中该声光调制器采用至少两个变换器而使垂直于声光调制器入射面的光束产生转向。 
【042】图23A和图23B示出声光调制器上的至少两个变换器沿着相同轴线传播不同频率的效应的示意图。 
【043】图23C是示出配置两个位于彼此不同角度的变换器而扩张光束定位范围的效应的示意图。 
【044】图23D为一替代性实施例的示意图,该实施例说明定位两个变换器在彼此不同角度而扩张光束定位范围的效应。 
【045】图23E是说明定位多个变换器在彼此不同角度而扩张光束定位范围的优点的示意图。 
【046】图23F为图23E的一部分的放大示意图。 
【047】图23G为一替代性实施例的示意图,该实施例说明定位 多个变换器在彼此不同角度而扩张光束定位范围的优点的示意图。 
【048】图24为声光调制器扫描系统的示意图,其中该声光调制器扫描系统采用拥有至少两个变换器的声光调制器。 
【049】图25为声光调制器扫描系统的示意图,其中该声光调制器扫描系统采用拥有至少两个变换器及闭环控制系统的声光调制器。 
【050】图26为声光调制器的示意图,其中该声光调制器采用四个变换器。 
【051】图27为激光系统的示意图,其中该激光系统系采用腔外声光调制器而实现激光脉冲选通,并采用运用多个变换器的腔外声光调制器而实现光束定位以及具闭环控制的振幅调制。 
【052】图28为激光系统的示意图,其中该激光系统采用腔外声光调制器而实现激光脉冲选通,并采用运用至少两个变换器的腔外声光调制器而实现配合检流计的三重光束定位。 
【053】图29表示检流计扫描头与声光调制器的示范性扫描场,其中该检流计扫描头和该声光调制器可结合用于激光修整应用使用。 
【054】图30表示检流计扫描头与声光调制器的示范性扫描场,其中该检流计扫描头和该声光调制器可结合用于集成电路(IC)封装处理应用,例如钻孔。 
【055】图31表示检流计扫描头与声光调制器的示范性扫描场,其中该检流计扫描头和该声光调制器可结合用于激光连结切割。 
具体实施方式
【056】图6示出激光系统50的实施例,其中激光系统50采用调制增强声光调制器60当作脉冲选通器件。声光调制器60具有光束射入面52与光束射出面54。参考图6,激光系统控制器62能以直接或间接方式将控制信号提供给激光器64及射频驱动器66,而射频驱动器66则能以直接或间接方式控制声光调制器60的性能;关于此技术,以下将会详加说明。激光器64会射出沿着光路径72传播的激光束,并在该激光束进入到传播第零阶光束16及/或第一阶光束18的声光调制器60之前,先经过光路径上的各式光学组件74,例如光束扩张光学器件或各种转向反射镜(turn mirror)(图中未示出)。对于大部分的应用, 上述激光束最好为Q-开关型或脉冲式激光束,但在某些应用领域亦可为连续波(Continuous-wave,CW)光束。 
【057】在典型情况下,第零阶光束16和第一阶光束18两者其中之一会接着由一个或数个转向反射镜76以及各种可选的光束定位组件(图中未示出)导向通过聚焦透镜78,从而冲击在工件80上的一个或数个目标位置。第零阶光束16和第一阶光束18(或更高阶的光束)两者其中之一可用来当作工作光束90,工作光束90沿着工作光束路径72a传播而冲击到由夹盘88或其他类型定位系统平台所支承的工件80。另一第零阶或第一阶光束为非工作光束92,其可沿着非工作光束路径72b而被导向到光束收集器94,例如饱和吸收器(saturable absorber)。许多实施例优选使用第一阶光束18作为工作光束90,因此本发明的图一般地描绘此配置。 
【058】然而,技术人员了解,在此讨论的与任一声光调制器60有关的反向逻辑电路及工作光束路径72a的重新定位可毋须进行过度的实验,采用具有以第零阶光束16当作工作光束90的配置的实施例实现。在此种实施例中,可采用声光调制器60来防止高于约15%的激光脉冲能量沿着冲击工件80的光束路径传播;且每当不需要工作光束时,优选只容许低于或等于约10%的激光脉冲能量沿着冲击工件80的光束路径传播。此外,每当需要高于约75%的激光脉冲能量时,声光调制器60的此种配置结构可让该声光调制器沿着冲击工件80的光束路径传播这种激光脉冲能量;而且,在某些优选实施例中,每当需要高于约90%、甚至高达约100%的激光脉冲能量时,此种激光脉冲能量可沿着冲击在工件80的光束路径传播。 
【059】关于调制增强式声光调制器60,声光调制器驱动器信号的直接数字合成技术(或其他高速信号调制技术)允许声光调制器60的命令在高速率之下(例如高达或高于10MHz的串行速率以及100MHz的并行速率)驱动并调制射频驱动信号的射频及振幅,同时具有极佳的准确度和稳定性。采用此种调制技术可达到从声光调制器60完全消光,以全面防止激光能量沿着工作光束路径72a朝向工件80行进,从而在不希望的时候或位置上进行冲击80。除传统的声光调制器调制(例如将声光调制器射频信号的振幅设定为低水平或“OFF”状态)之外,另可 采用上述技术。 
【060】图7至图9描绘示范性调制技术的时序图,其中调制声光调制器60射频所处的频宽或带宽(bandwidth)大于声光调制器60设定声波而与通过声光调制器60的光产生交互作用所处的带宽。图7为示范性高带宽频移波形的时序图,其中该波形由声光调制器变换器70(图11)表示,以达到从声光调制器60完全消光。图8为时序流程表,其示出与运用高带宽频移而达到从声光调制器60完全消光有关的事件与结果。 
【061】请参照图6、图7和图8,在一实施例中,送到声光调制器60的射频能量的射频信号在其速率高于声光调制器60的频宽的「关闭」状态下进行调制。在某些实施例中,声光调制器60的频宽可被定义为声波通过沿着光学路径72行进的激光束的中窄部所需要的时间函数。因此,频宽会受到激光束的直径以及在声光调制器60介质中的声速的影响。将激光束的直径除以在声光调制器60材料当中的声速,即可得到声音通过激光束的过渡时间。将过渡时间转换成频率(1/过渡时间)即可提供关于上述实施例的声光调制器60的最大频宽。 
【062】若在频宽大于声光调制器60所能容纳的频宽的情况下调制射频信号的射频,则可阻止在声光调制器60当中形成声波,进而阻止沿着光学路径72行进的激光束产生衍射。只要射频的改变速率高于声光调制器60的频宽,即可阻止通过声光调制器60的光产生光学衍射。若工作光束路径高于第零阶,则光能就不会传递到较高的阶数。 
【063】在图7所示「开启」状态中,设定射频信号频率以获得转到工件80的衍射光束路径72a的所需衍射角;设定射频信号振幅则以获得在工件80的所需要能量水平,以完成如连结切断(link blowing)或钻孔(via drilling)等加工应用。在图7所示「关闭」状态中,射频信号频率会在高速之下改变,同时也使射频信号振幅为最小,即将其关闭或切换到低偏压功率级,以确保没有衍射能量到达工件80。图8为一时序流程表,其解释图7所示波形的后续结果。请再次参照图6所示出的配置,其中到工件80的光束路径是衍射光束72a,且光束收集器94接收第零阶的传递光束72b,在此较高的带宽频率调制期间,激光能量将会完全传递,因此到工件80时完全(100%)消失。 
【064】图6同样表示相较于产生所需衍射的射频信号,将「关闭」状态下的射频信号设定为DC或超低频信号电平(亦即最低的振幅水平)的技术。此种低频信号或DC射频信号不会使光束衍射到光学路径72a到达工件80。将射频信号调制成DC数值或小到足够无法形成衍射角的水平,则阻止在声光调制器60内部形成波。将射频信号调制到最小衍射角度采用如此小的射频信号,以致于可使衍射光束实质上与传递到光束收集器94的光束共线(collinear)。若将声光调制器60设定为零频率,则在声光调制器60中将不会有衍射光栅的效应,而且100%的光会传递到光束收集器94。在「开启」状态中,设定射频信号以获得通往工件80的光学路径的所需衍射角(F1),设定射频信号振幅以获得在工件80上进行处理时的所需能量水平。 
【065】数字频率合成器可驱动数字至模拟(D/A)转换器,此种合成器为一种频率信号源,其适于实施频率调制而使高频射频信号缩减为低频或DC水平的信号。A/D转换器输出以及相关的信号调整电路将频率信号施加于射频功率驱动器,以驱动阻抗经过控制(通常为50欧姆)的传输线路。举例而言,由位于美国马萨诸塞州Norwood市的Analog Devices,Inc.公司所生产的直接数字合成器(DDS)(型号为AD9852 ASQ)即为一种可购得的频率信号源。型号为AD 9852 ASQ的直接数字合成器耦合于内部高速D/A转换器,并具有每秒300百万个样本(megasample)的输出更新速率。利用表现出48位的频率分辨率、14位的相位偏移分辨率及12位的振幅控制的平行数字接口来控制AD9852 ASQ直接数字合成器,即可达到100MHz的更新。AD 9852 ASQ直接数字合成器的输出可施加到任何一种可购得的集成射频驱动模块(例如Motorola,Inc.及其它集成电路器件制造公司所制造的集成射频驱动模块),从而驱动声光调制器变换器70。 
【066】将数字信号处理器(DSP)(例如Analog Devices,Inc.公司所生产型号为TigerSHARC
Figure 058233157_0
的DSP)与现场可编程门阵列(FPGA)(例如美国加州San Jose市的Xilinx,Inc.公司所生产型号为Virtex-II的FPGA)结合在一起,并使集成DDS与两者匹配,即可在频率信号及输出控制方面得到较大的灵活性。 
【067】通过配置射频驱动器66而包括具备增益k的高频宽操作 放大器即可从「开启」状态快速切换到「关闭」状态,其中高频宽操作放大器可接收D/A转换器的输出并驱动电感器L。选择L值来设定在「开启」状态下操作射频频率时的共振,可在AOM变换器70的输入端提供较高的电压,且该操作放大器无须消耗许多功率。(共振电路包含电感器L的阻抗损耗、AOM变换器70以及AOM变换器70的电容。)共振会造成瞬态振铃(transient ringing)而减慢从「开启」状态切换成「关闭」状态。 
【068】DDS可搭配DSP与FPGA使用,以测量从D/A转换器到位于AOM变换器70输入端的电压的转移函数。利用AOM变换器70输入电压所用的D/A转换器,并将其引导到DSP/FPGA电路,即可通过脉冲响应、扫描正弦波德图(swept-sine Bode plot)或白噪声输入/输出测量量测来确定转移函数。测量完成后,适用于将测量到的模拟电路频率响应反相的数字双二次滤波器被配置在FPGA内当作系统反相陷波滤波器(inverting notch filter),以产生描述模拟驱动电路的特性的平坦转移函数。 
【069】根据线性系统理论,FPGA双二次滤波器、D/A转换器输入与模拟驱动电路的组合可展现出平坦转移函数,使得能够在无DC或射频「关闭」状态与射频「开启」状态之间进行瞬间切换。若要瞬间开启射频,则需要输送大量的能量来启动它,而且抽离大量的能量使它停止。如此可能会在所需要的频宽使操作放大器的电流/电压/转换速率功能呈现饱和。 
【070】为了使驱动电路发挥功效,可能需要射频信号的缓升或缓降。通过在缓升时将正弦波乘以k_ramp*t,以及在缓降时将正弦波乘以(1-k_ramp*t),就能立即在DSP/FPGA当中实现这些函数。k_ramp参数可被设计成操作放大器的电流、电压及转换速率输出的线性操作的限值,并可依照设计上的特殊需求来选定此参数,而不是针对组件的变化来进行调整。虽然缓升/缓降需要时间,但可预期的是,此时间将远小于使瞬态自然衰减所需要的时间。 
【071】随后可将DDS板的输出放入射频功率模块内,然后再通过50欧姆传输线路耦合到AOM变换器70。 
【072】图9示出另一种用于在速率高于声光调制器频宽情况下调 制射频的类似技术,其通过将白噪声置入射频信号内进行调制。通过在信号内的宽广频谱范围具有多重频率分量,声光调制器60将不会有在声光调制器介质内形成衍射光栅的声波。请再次参照图6,在「关闭」状态中,白噪声会被送至声光调制器60,而使光束全部被传送到光束收集器94。在「开启」状态下,设定射频以获得通往工件80的光束路径72a的所需衍射角;设定射频信号振幅以获得在工件80上进行处理时所需要的能量水平。导入具有高于在声光调制器器件内形成声波的时间的射频的白噪声,亦可得到期望的结果。 
【073】技术人员应能了解,以上参照图7至图9说明的技术可针对布拉格方程式而利用低效率或实质上无效率的频率来加以实现。为达到完全消光的效果,施加到变换器70的射频信号可简单设定成提供实质上为零的布拉格效率的其中一个频率;而在振幅方面,如果需要,可选择将其设定为零或是某一个基准量。或者,可利用跳频(frequencyhopping)及其它技术,或将频率限制在使布拉格效率实际上为零的频率。 
【074】图10示出激光系统50a的配置,此配置类似于激光系统50,但其运用两个或两个以上的光束收集器94a和94b。光束收集器94a沿传递光束的光学路径72b而设置,光束收集器94b则是沿着射频信号(F2)的光学路径72c而设置,该信号产生不会到达工件80的衍射角(F2)。在「开启」状态中,设定射频信号以获得通往工件80的光学路径的所需衍射角(F1);设定上述射频信号振幅以获得在工件80上进行处理时所需要的能量水平。在「关闭」状态中,射频信号被设定为频率F2以及最低振幅,其将形成能让光束衍射至第二个光束收集器94b的衍射角。在此「关闭」状态下,总激光能量将会在传递的光束与F2 衍射光束两者之间共享,而使得在通往工件80的光学路径72a上没有激光能量。 
【075】图11为声光调制器控制系统100的示例实施例的简化示意图,其中声光调制器控制系统100采用系统控制器62来控制一个控制开关102,以阻断传送至射频放大器68或AOM变换器70的功率,并且/或者采用控制开关104来阻断来自于射频驱动器66而传至射频放大器68或AOM变换器70的频率信号。控制开关102和104的示例 实施例具备快速切换与定时功能,其优选大于激光器64的重复率,以便具有激光处理应用的频宽。控制开关102和104可为机械式或固态继电器(relay),或是能够阻断至射频放大器68或AOM变换器70的射频信号或功率的其他类型器件。在「开启」状态中,允许DC功率以及射频和振幅信号通过射频放大器68并经过声光调制器60。在「关闭」状态中,DC功率及/或射频和振幅信号由控制开关102和104阻隔而无法到达声光调制器60。 
【076】图12示出激光系统50b的示例简化配置,其中激光系统50b利用上述声光调制器调制技术,采用声光调制器60a当作激光器64a内部的Q-开关。虽然可利用共享电源110来供给电力至泵浦源112和射频信号驱动器66a,但可以非常类似于上述声光调制器调制控制的方式来产生射频驱动信号,并传送到声光调制器60a的Q-开关。然而,在图12中显示,每当声光调制器60a处于「关闭」状态时,声光调制器60a会沿着工作光束光学路径72c来传递激光光,而每当声光调制器60a处于「开启」状态时,声光调制器60a会使光沿着非工作光束光学路径72d衍射至光束收集器94c。 
【077】技术人员能了解,通过在「开启」状态下使激光光衍射至工作光束路径,声光调制器60a亦适于在相反的配置中工作。不论是何种配置,以上所讨论的声光调制器调制技术均可在工件80不需要激光能量时,在使用或不使用外部声光调制器60的情况下,达到完全消除激光能量的效果。 
【078】图13为激光系统50c的示例简化示意配置图,其中激光系统50c利用上述声光调制器调制技术而采用激光器64a的外部声光调制器60及激光器64a的内部声光调制器60a(图中未示出),以达到完全消光。技术人员能了解,声光调制器60和60a可通过相同或各自分开的射频驱动器66b加以控制。 
【079】图14为激光系统50d的示例简化示意配置,其中激光系统50d利用上述声光调制器调制技术而采用激光器64的两个或两个以上串联的外部声光调制器601和602,以达到完全消光的效果,避免在需要处于「阻隔」状态时,即使是最低的能量到达工件80并造成工件损坏。参考图14,在示例实施例中,在「关闭」状态下,声光调制器 601会沿着光学路径72b1将激光光传递到光束收集器941;在「开启」状态下,声光调制器601则可使激光光沿着X轴(相对于光学路径72b1)衍射至工作光束光学路径72a1。工作光束光学路径72a1与声光调制器602相交,声光调制器602可在「关闭」状态下沿着光学路径72b2而将激光光传递到光束收集器942,并可在「开启」状态下使激光光沿着Y轴(相对于光学路径72b2)衍射至工作光束光学路径72a2,而最后再到达工件80。技术人员能了解,虽然图中示出与在此说明的声光调制器601 与声光调制器602沿着垂直轴改变光束路径,但声光调制器601与声光调制器602亦适于沿着相同轴设置或沿着不互相垂直的横轴设置。技术人员亦能了解,声光调制器601与声光调制器602两者亦适于设置成具有相反的「开启」/「关闭」状态配置(例如以第零阶当作工作光束路径),或者适于设置成具有不同的「开启」/「关闭」状态配置。此外,声光调制器601和602两者可通过相同或各自分开的射频驱动器66b(图中未示出)加以控制。 
【080】请参照图13与图14,单独的声光调制器60可定义为具有消光比N,而两个串联的声光调制器601和声光调制器602则将具有消光比N1和消光比N2,并由于其附加的衰减值而增加总消光比。技术人员能了解,使用多于N个声光调制器60可使总消光比提高更多,对特别敏感的工件80或特别敏感的处理应用而言,更高的消光比是所期望的。上述实施例及其变更或组合可用于完全消除或转移激光脉冲能量,使其在不需要此类脉冲能量时不会到达工件80,排除破坏敏感性材料的可能性。 
【081】技术人员能了解,这些技术可应用到任何一种激光器,其包括但不限于:固态激光器(例如Nd:YAG激光器或Nd:YLF激光器)以及CO2激光器,其波长范围从深紫外线(UV)到远红外线(IR),其包括但不限于:约266nm、355nm、532nm、1064nm、1320nm及10um的波长。上述技术可应用于激光处理系统,其中包括:连结处理系统、激光修整及微加工系统,以及微钻孔系统。 
【082】一个或数个不论其是否具备上述频率调制技术的声光调制器60亦可应用于各式不同的其他新应用。举例而言,图15为振幅对时间图,其示出由于各式不同激光不稳定性或热漂移所引起的激光脉 冲之间的典型峰值能量漂移,其中激光脉冲冲击到激光输出探测器。在某些类型的激光系统当中(特别是高重复率的UV系统),这个脉冲至脉冲能量变化量可能高达22%(即使长期平均的变化量可能小于5%)。此激光能量的变化量有可能会在工件80上造成问题。对某一指定的激光操作而言,整体「处理窗」可能会相对小,此处理窗可定义为不会对产品产量造成负面影响的个别或几组参数(其中包括激光输出能量)的变化量容限。因此,保持大的处理窗或控制影响处理窗的分量(特别是激光能量)将会非常有用。 
【083】图16示出激光系统50e的范例,其中激光系统50e采用分光光学元件120,将沿着光束路径72a传播的一部分激光输出导向激光输出探测器122。激光输出探测器122可用于确定至工件80的激光脉冲的入射振幅和能量。 
【084】虽然图16示出光学路径72以布拉格角或接近布拉格角的入射角114相对于光束射入面52或变换器70的变换器调制区116来冲击声光调制器60的光束射入面52,但技术人员能了解,光学路径72可被对准而以大致垂直的非布拉格入射角114冲击声光调制器60的光束射入面52。技术人员亦能了解,在声光调制器60(尤其对于具有高折射率材料的声光调制器60而言)的光束射入面52上可利用切角(angle cut),使得入射角114可垂直于光束射入面52对准,并可大致满足既定频率的布拉格条件。 
【085】技术人员能进一步了解,布拉格声光调制器对准可以前述任何实施例或以下参照任一图式所说明的实施例来加以实现。一般而言,当入射角114落在相对于光束射入面52及/或穿过光学路径72的变换器调制区域116的布拉格角的约±0.5度范围内时,即可得到令人满意的布拉格效率(或经由声光调制器60的衍射效率)。在激光束有一个主要IR波长分量的某些实施例中,入射角114最好落在约布拉格角的±0.4度范围内,落在约布拉格角的±0.1度范围内更佳;当然,入射角114正好是布拉格角最为理想。在激光束有一个主要UV波长分量的某些实施例中,入射角114最好落在约布拉格角的±0.2度范围内,落在约布拉格角的±0.05度范围内更佳;当然,入射角114正好是布拉格角最为理想。 
【086】请再次参照图16,分光元件120本身亦可为附加的声光调制器60。在某些实施例中,控制振幅的声光调制器60可用来当作分光元件120,其中较高阶的光束或相反的第一阶光束会被导向激光输出探测器122。技术人员能进一步了解,可沿光学路径72在声光调制器60的上游处及/或第零阶或非工作光学路径72b上设置额外的激光输出探测器122(若有需要,亦可设置分光元件120),以提供振幅监视与控制的额外信息。在某些实施例中,可将分光元件120与激光输出探测器122沿着光学路径放置于其它下游位置,而使振幅修正得以补偿光学路径72a上的其它组件所造成的振幅偏差。激光输出探测器122为技术人员所熟知的组件,并已运用在许多激光应用领域。然而,激光输出探测器122适于将信号124直接或间接传输到系统控制器62;系统控制器62则可将修正信号126传送到射频驱动器66,或对传送到射频驱动器66的现有振幅或频率控制信号进行调整。 
【087】因此,在闭环系统内,可利用一或数个具备或不具备频率控制技术的声光调制器60,以提高在高更新率之下的脉冲振幅稳定度。此种振幅或频率的调整可用来控制激光输出中的激光漂移及/或热不稳定性以及/或声光调制器60的不一致的射频感应加热的激光脉冲能量。调制施加到声光调制器60的射频信号,从而影响任何给定的激光输出脉冲的振幅或能量,以响应关于一个或数个先前激光输出脉冲的振幅或能量的信息。在多重连续脉冲的连续串行(例如数十、数百或数千)内的任何给定连续激光输出脉冲的振幅或能量可被控制成变化低于常规可应用的激光微机械加工系统的通常7%(或高于7%)的脉冲至脉冲能量变化量。在某些优选实施例中,脉冲至脉冲能量变化量可低于约3%,甚至低于约0.5%至1%。对采用固态谐波激光器的实施例而言(特别是用来产生UV波长的激光器),这样的脉冲至脉冲能量稳定性特别有用。 
【088】有了频率控制的附加优点,另在宽广的时间尺度下达到脉冲振幅的稳定性,限制各种情况(例如激光器64当中的热变化、声光调制器60本身,或是其它线性或可能的非线性事件)所造成的激光能量变化效应。此外,亦可运用多个变换器来调制同一个光束轴,以提高衍射效率;关于这一点,以下将会详加解说。 
【089】图17为振幅对时间图,其示出通过利用声光调制器60(例如图16所示出的激光系统50e实施例当中的声光调制器)的闭环控制所达成的振幅稳定度。反馈用于改变送至声光调制器60的射频功率的振幅,进而改变沿着行进到工件80的较高阶光学路径72a传播的转移能量。 
【090】在声光调制器应用的另一个例子当中,图18为激光系统50f的示意图,其中激光系统50f采用两个腔外的声光调制器601和602(统称为声光调制器60)来影响在横向笛卡尔坐标轴中在工件80的表面上的光束定位。在优选实施例中,其中一个声光调制器60可控制沿X轴的移动,而另一个声光调制器60则可控制沿Y轴的移动,如此即可让激光束在工件80的表面的X轴及Y轴上进行全方位的角度调整。在图18当中,第一个声光调制器601在X轴上进行调制,第二个声光调制器602则是在Y轴上进行调制,但技术人员能了解,可以相反的次序或定位来进行调制。技术人员亦能了解,可以增加声光调制器601 和602两者或其中之一(特别是声光调制器602)的尺寸大小,而允许较大的接受角。 
【091】声光调制器601和602最好分别由单独的射频驱动器661 和662予以驱动,其中射频驱动器661和662能够如同上述实施例,而以可变方式控制传送到变换器70的射频功率的振幅及/或频率,使得位于工件80处的输出光束的振幅和位置均得以准确地控制。由于可在速率非常高的情况下调整射频驱动器频率,因此声光调制器60能够用于在具备特性化线性效应查询表的开环扫描系统内对光束进行实时操纵,以校正不希望见到的位置误差效应。 
【092】图19示出示范性声光调制器60响应于射频驱动器在2W驱动至50MHz时的示范性定位及偏向角范围的示意图。当声光调制器60设置在离聚焦透镜78约40mm的示范性高度时,聚焦透镜78设置在工件80上方约40mm的示范性距离,并假设总偏向角为约96mrad或5.5度的0角,则计算结果显示:工件80上的有效扫描范围在X轴及/或Y轴上形成至少4mm的扫描场。 
【093】关于角度分辨率,在一个实施例中,用于射频功率的DDS驱动器输出可设定为1Hz的微小增量,允许由下列方程式设定的分辨 率的理论值: 
θ = λ 2 v s f - - - ( 1 )
【094】举例而言,使用355nm的波长和650m/s的声速,和声波1Hz的频率变化有关的角度改变量为2.73E-10度。然而,由于系统实际分辨频率的机械限制,此分辨率可能是不切实际的。因此,在某些实施例中,控制的数值范围可由4.1E-6度或0.72微弧度(microradian)的最低步进分辨率来指定,其相当于频率上步进大小为15KHz。例如,角度设定为约50毫弧度(milliradian)的声光调制器光学扫描系统将可提供69444步的角度分辨率。 
【095】声光调制器60的频宽主要由三个因素决定:电子器件(例如射频驱动器66)能够产生新频率的最大速率、AOM变换器70产生此新频率的振荡的能力以及在声光调制器60当中产生新声波所需耗费的时间。一般而言,第三个关于形成新声波的因素会耗费最多时间,因此将会支配扫描频宽。 
【096】与对应于特定频率的角度有关的方程式可表示为: 
θ = sin - 1 ( λ 2 Λ ) = sin - 1 ( fλ 2 v s ) ≈ λ 2 v s f - - - ( 2 )
其中vs为声音在介质当中的速率。 
【097】因此,频宽B可表示为: 
B = v s D - - - ( 3 )
其中D为激光束通过声光调制器60时的宽度。 
【098】对一般的声光调制器60而言,上列参数可为: 
【099】材料:熔凝石英(fused quartz)(n=1.46,vs=6km/s); 
【100】声:频率f=100MHz; 
光:波长1047nm; 
激光束直径:12mm。 
利用上述参数,扫描系统中的一个示例声光调制器60在可接受角度上将会有高达约500kHz的频宽。对照之下,一般的检流计频宽约为4kHz;搭配快速操控反射镜则可达约12kHz。检流计扫描仪的主要限制在于移动物质时所产生的惯性以及此移动的共振效果。由于声光调制器60不会引发此种与质量有关的效应,因此其频宽可高达100倍以上。 
图20为图18所示声光调制器601和602实施例的更详细示意图,其中声光调制器60沿不同轴对准,以提供一种双轴扫描系统。声光调制器601被设置处于使其轴线A垂直于声光调制器602的轴线A的位置。因此,改变至声光调制器601的驱动信号频率即可改变声光调制器601在X轴方向上的输出角度,其关系为频率的改变将会改变出射角θX。改变至声光调制器602的驱动信号频率即可改变声光调制器602在Y轴方向上的出射角度,其关系为频率的改变将会改变角θY。声光调制器601和602可设置为靠近在一起,并各自以相同或不同的频率和振幅进行调制。因此,输出光束的振幅可以改变,并可沿着X轴和Y轴方向移动。光束收集器941和942的大小和形状可加以调整,以使其适用于所需要的扫描场而阻止不需要的光传播到工件80。 
图20A提供扫描角度衍射效率相对于示范性UV和IR波长的特定布拉格角的角度改变量的图。声光调制器的衍射效率可由下列方程式表示: 
I 0 I 1 = η sin c 2 η + ΔΦ 2 4 - - - ( 4 )
其中,材料特性可描述为: 
η = π 2 2 λ M L H P - - - ( 5 )
其中λ为光波长,M为材料的优值或品质因素(figure of merit),L 为变换器作用区的长度,H为变换器70的高度,P则为所施加的射频功率。信号的频率调制所引发的改变量可以ΔΦ来表示: 
ΔΦ = πλ v Δf 2 L Λ 0 - - - ( 6 )
【106】其中v为材料当中的声速,Δf为调制的频率改变量,L为作用区长度,Λ0为声音在材料当中的波长。将方程式(5)和方程式(6)代入方程式(4),即可得到频率改变时在特定布拉格角的衍射效率。所示出的衍射效率范例当中,在355nm的UV波长上产生1.2度布拉格角的初始频率75MHz已改变±14MHz(对UV波长而言,约为±0.175度的扫描角度改变量)。因此,举例而言,若要保持80%以上的衍射效率,可采用可获得的±0.1度的扫描角度变化。 
【107】图中亦同时示出在1064nm的衍射效率,其表示:容许的扫描角度会随着波长的缩短而变小。有用的「扫描角度」区域可被定义为用激光功率处理窗表示的系统所能承受的最低衍射效率。若存在大的处理窗,则系统会有较多的激光一般性功率预算可供运用,因而允许较大的扫描角度。 
【108】请再次参照图18至图20。若将一个或数个额外的声光调制器60(或如快速操控反射镜(FSM)之类的其他可移式器件)放置在各自轴向上的扫描声光调制器601和/或声光调制器602的前方,则可改变入射的布拉格角条件,以提供一个次要布拉格角或多个可供选择而增大扫描式声光调制器60的扫描范围的布拉格角。 
【109】图20B为示出声光调制器扫描系统的示意图,其中该声光调制器扫描系统采用串联的声光调制器60x1和60x2来在指定笛卡尔坐标轴或工件轴内扩张光束定位范围。参考图20B,上游声光调制器60x1 可沿着光束路径72设置(最好在其布拉格角上),使其第零阶输出能达到下游的声光调制器60x2的布拉格角。随后,上游声光调制器60x1 的第一阶输出可设定为下游声光调制器60x2的第二个布拉格角。亦可利用如图23C所示具备多个变换器的声光调制器603(稍后进行描述)来完成光束定位范围的扩张,而不运用分开的声光调制器60x1和60x2。 
【110】在某一实施例中,上游声光调制器60x1偏离第一阶光束1.2度,下游声光调制器60x2进一步偏离此入射光束0.2度,且不会在效率上造成巨大损失。图20C示出在示范性UV和IR波长的扫描角度衍射效率相对于串联的同一轴线调制声光调制器60所造成的角度改变量。参考图18至图20C所示,采用串联的声光调制器60来调制同一轴线可以扩展下游声光调制器60x2的扫描角度,而此扫描角度由上游声光调制器60x1或其它器件的扫描角度大小来决定。当作上游布拉格调整器件的声光调制器60x1可提供比使用单独一个声光调制器60所能得到的更大扫描角度,而且可在比大部分激光重复率更高的频宽下(即高于100kHz)完成扫描动作。技术人员能了解,在布拉格效率因素有些许限制的情况下,即使声光调制器扫描范围的改进程度不高,其仍旧对UV波长特别有益。 
【111】当作上游布拉格调整器件的更慢速器件,例如FSM或检流计系统,可将下游声光调制器60x2的扫描角度扩展到更大的范围,但整体的速率性能会受到此类上游定位器(positioner)的频宽限制。然而,此类较慢速上游布拉格调整器件仍然非常有用,特别是用于使角度偏移来补偿导致布拉格效率下降的激光束定位的慢偏移量。举例而言,若利用下游声光调制器60x2来修正激光光学系统的不稳定性,该系统正在造成斜向通过聚焦透镜78的激光束稍微偏离,且在示例的连结切割系统上造成准确度的问题。利用声光调制器60x2即可非常快速进行这种小幅修正,并消除几乎所有来自于微小热效应和其它效应所造成的指向偏差。然而,经过数日或可能数周之后,以声光调制器60x2 的入射面上的入射角来说,来自初始校正的偏移量可能会非常大,导致通过声光调制器60x2的效率降低。此问题的其中一种解决方法是包括上游的较慢速布拉格调整器件(其可保证获得较大的调整角度,或者较慢的调整时间可能已经足够),使其能调整(或校正)入射的光束而调整声光调制器60x2的准确布拉格条件,以达到通过它的最高效率。若在声光调制器60x2之前没有较慢速的上游布拉格调整器件声光调制器60x1,则可能必须以手动方式(或用可通过手动或电子装置来移动的声光调制器60x2下方的机台)对器件进行准确细微的定位校正。 
【112】技术人员能了解,上游的布拉格调整器件可在大范围上被 可变地控制,或仅当作两个或数个特定角度之间的开关,这些角度可充分满足下游声光调制器60x2的高效布拉格角。可采用第三个串联的声光调制器60(或其它光束调整器件,图中未示出)修正在两种布拉格条件之间移动或切换时所造成的孔移动。技术人员亦能了解,可运用串联的同轴声光调制器60(或其他的上游布拉格调整器件)来改善声光调制器扫描系统的任一轴或两轴上的扫描范围。如以下说明的,技术人员亦能了解,可调整施加到(多个)变换器70的射频信号的振幅来补偿声光调制器60x1或声光调制器60x2的射出角度移位或偏移所造成的布拉格效率偏差。 
【113】图21为激光系统50g的示意图,其中激光系统50g采用腔外声光调制器601和602、两个分光元件120a和120b、能量与振幅探测器122以及位置感应探测器130来提供工件80的表面上的脉冲能量和振幅以及激光束位置的闭环控制。对许多处理操作的结果而言,光束调准非常重要;特别是在需要得到次微米级的精确度时,光束调准尤其重要。影响光束对准的因素很多,其中包括:机械移动、任何光学介质中的振动或热变化,以及/或其它造成光束移动的因素。闭环式声光调制器光束定位控制可减少上述因素所造成的光束不对准以及输出损耗等情况。 
【114】在利用声光调制器射频功率的频率控制来实现修正角度时,若角度小于或大于接受布拉格条件的角度,则第一阶光束的衍射效率均会随之下降。布拉格条件所定义的角为: 
Sin θ B = λ 2 Λ - - - ( 7 )
其中θB为入射光线的入射角,λ为光波长,Λ则是声音在声光调制器介质内的波长。 
【115】若变换器70的频率经过调制,则声波的波长亦将会改变,使得满足布拉格方程式的布拉格角亦随之改变。此时,衍射光的反射率或衍射效率将会下降,其关系等效如下: 
Figure DEST_PATH_G17487451150131000D000021
其中L为声音和光线作用区的长度(或光束的直径)。 
函数sinc可限制激光机械加工操作当中所使用的角度,因为处理过程中通常会要求高效率。然而,激光功率或能量的耗用量可补偿角度控制过程所造成的效率降低情况,并调和系统的能量和振幅。 
举例而言,运用TeO2声光调制器晶体,其工作在60-80MHz、在1064nm、光束直径2mm的激光上具有高于2W的射频功率和650m/s的声速,可在零效率衍射至第一阶光束之前提供大约50毫弧度的最大容许角度。 
举例而言,在修正光学系统的瞬态效应的激光光束修正应用当中,需要至少±0.5毫弧度的角度范围。若声光调制器60在布拉格条件下的效率为80%,则从布拉格条件的偏差将会造成第一阶光束约0.8%的效率损失,或约79.2%的新第一阶衍射效率。 
在上述情况下,可利用激光功率限制值的某些额外激光能量而容许角度修正所引起的额外损耗,以及激光瞬态现象的振幅修正、热效应或光学器件系列当中的其它扰动。因此,在布拉格条件下,可将传往声光调制器60的射频功率设定为较低的功率,以得到最大的激光能量输出Emax;在此可将其设定为效率为75%的等效能量。因此,在振幅调整与角度修正方面,可使用效率5%的总控制量。由于调整的角度会偏离布拉格条件约+0.5毫弧度,因此效率会下降至79.2%,但射频振幅可提高约0.8%而能补偿角度修正所造成的效率降低。在此实施例中,仍有4.4%的额外耗用量可用于其它可能需要的振幅修正。 
【120因此,可调整施加于变换器70的射频信号振幅,以补偿光束路径72上布拉格角的射出角度偏移所造成的布拉格效率差值,该布拉格角会冲击标称光束位置而成为一定位角,而引导光束路径72来冲击偏离标称光束位置的所需光束位置。每一个具有指定特性的声光调制器60均可以数学方法及/或实验方式决定布拉格效率振幅的补偿信息。补偿数据可置于查询表内,或由例如以sinc函数为基础的算法提供。布拉格效率振幅补偿信息可在来自激光系统控制器62的射频驱动器66上实现,或是在来自中间控制器或单独控制器的射频驱动器66 上实现。 
【121】布拉格效率补偿可在声光调制器601或声光调制器602 其中之一或两者之上实现,以在工件80的表面上的各自X轴和Y轴上|完成|振幅修正。同样地,布拉格效率补偿可在横向或正交定位的变换器70x和70y(图24)其中之一或两者上实现;关于这点,以下会详加说明。 
【122】再次参考图21所示,来自于振幅探测器122与位置感应探测器130的信号可送至激光系统控制器62,以及/或是直接或间接送至X和Y射频驱动器661和662。在某些替代实施例中,分光元件120和位置感应探测器130可设置在各个声光调制器60的后方。分光元件120甚至可直接附在一个或两个声光调制器60的输出面上。 
【123】反馈控制系统所使用的反馈方法从机械旋转的电容探测变化到用来探测激光光斑的位置感应电子装置。就能够准确地探测声光调制器60的角度位置而言,(多个)位置感应探测器130的电子装置可能是声光调制器性能的限制因素。因此,可利用技术人员所熟知的替代闭环系统组件和技术。 
【124】闭环控制系统内的(多个)位置感应探测器130的频宽可优选利用滤波技术,通过降低电子装置的噪声来提高位置准确度。若希望获得极高的准确度,则可采用极高的噪声降低功能,但(多个)位置感应探测器130的频宽可能会因滤波而受到限制。 
【125】控制系统的系数可在高于所需整体系统频宽的速率下进行更新,但并非在声光调制器更新的每一个周期上均可进行更新。可根据所需要的准确度和系统频宽来设定这个更新参数。示例系统具有下列参数: 
【126】声光调制器频宽=250kHz; 
【127】需要的系统频宽=25kHz;及 
【128】位置感测频宽(滤波之后)=250Hz。 
【129】然后,声光调制器控制参数即可以系统的每100个周期更新一次,以允许控制高达250Hz的瞬态探测,并提供25kHz的整体系统性能。因此,利用上述任一种技术来配合声光调制器601和602的超快频更新及调整速率,闭环控制系统即可以实时方式忙碌地对对准进 行微小的调整。 
【130】图22为声光调制器603的示意图,其中声光调制器603采用至少两个变换器70A和70B(统称为变换器70),这些变换器有重迭的变换器调制区域116,以允许选择传播声波通过声光调制器60的介质的方向。变换器70A会产生沿路径72B的频率向下偏移的反射光,变换器70B则会产生同样沿着路径72B的频率向上偏移的反射光。使用相同的频率时(且相位优选已被锁定),这些变换器的额外信号可产生衍射光效率的微幅增益。估计的效率增益范围在约1%至大于或等于约15%之间,其取决于波长与其它典型的激光参数。 
【131】在某一个指定时间,可以只启用变换器70A与70B两者其中之一,或是变换器70A与70B两者同时启用。技术人员能了解,每一个变换器70均可根据先前描述的声光调制器调制技术或实施例,在相同或不同的频率,由相同或不同的射频驱动器66(图中未示出)进行驱动。若变换器70A和70B在不同的频率下工作,则有可能会在器件当中导致多重衍射,使得形成两道分隔了频率差值所定义的角度的分开光束。变换器70A和70B亦可同时在相位角稍有不同的情况下进行工作,以使扫描角度分辨率增加,超过单独一个变换器70所能得到扫描角度分辨率。至少两个或两个以上的变换器70A和70B亦可设置或者设置在声光调制器603的同一个表面上而得到类似的优点。上述实施例适用于朝向任一轴向的声光调制器60。 
【132】若变换器70A和70B的尺寸不同,则有可能使得不同频率的驱动器可让其中一个变换器70产生高于另一个变换器的频率。再次参考方程式(7),通过提高变换器70A和70B任一个的声音频率即可加大布拉格角。对传统的变换器70而言,当布拉格角介于0.7度与4度之间时,其频率范围将介于50MHz与250MHz之间。当频率高于250MHz时,通常需要较小的变换器及射频功率产生器,且此种射频功率产生器具备在较高频率下驱动变换器的功能。在需要利用两个变换器70A或70B中较小的一个时,可形成较大的入射光束布拉格角(从而得到较大的第一阶射出角),可能使其从第零阶光束中分离出来更多(而且更容易放置光束收集器94),进而更容易使第一阶光束传播到工件80。在需要利用变换器70A或70B中较大的一个时,则可在不需要 较大的布拉格角时得到较大的衍射效率。同样地,两个较小的频率和相位锁定变换器70A和70B可用来扩张衍射效率高于单独一个较小型变换器70的衍射效率,在单独一个较小型变换器70的情况下,应用或系统的限制要求较大的布拉格角。此类实施例可为声光调制器扫描系统增加更大的通用性。 
【133】图22A为声光调制器603的示意图,其中声光调制器603 采用至少两个变换器70A和70B,以提供传播声波通过声光调制器60的介质的方向选择,而使垂直于声光调制器入射面的光束转向。如以上和图22有关的讨论,本实施例可用来提高衍射效率、通过提供较高的合成频率而加大衍射角度范围,或通过采用不同大小的变换器70而提高通用性。技术人员亦能了解,当输入光束72比较接近其中任一个变换器70时,可能会稍微延长声光调制器603的响应时间。 
【134】图23A和图23B示出声光调制器60上至少两个变换器70A和70B在重迭的变换器调制区域116当中传播不同频率的效应。图23A显示示例的不同频率在变换器70A和70B同时处于「开启」状态时传播通过声光调制器60的情况;图23B则显示在声光调制器60内部由两个来源合成所可能形成的衍射。 
【135】在某些示例中,例如当两个变换器70均处于「开启」状态,且第一个变换器70A所提供的频率为第二个变换器70B所提供的频率的两倍时,两个频率在声光调制器60的介质中的衍射合成可能会超过独立的声光调制器射频驱动器66的频率限制而独立地产生,并且超过任一个变换器70的频率限制而独立地产生(归因于变换器在机械上的限制,以及射频功率放大器的电性限制)。这些频率合成可导致获得比运用单独一个射频驱动器66来驱动单个变换器70的实施例所能得到的更高角度光束定位分辨率或更大的布拉格角。技术人员亦能了解,在某些实施例中,变换器70可设置成使得变换器调制区域116相互平行而不是重迭的位置。在此类实施例中,两个变换器70可放置成使得它们都处于同一个平面或相对面。 
【136】至少两个或两个以上的变换器70A和70B亦可用来使同一个光束产生多重波长的衍射。请再次参照图22,入射的激光束72可包含数种波长,例如当激光器64产生谐波时。举例而言,若激光束 72具有利用第三谐波产生技术而得到由波长1064nm产生的355nm波长,则激光束72就会包含来自波长710nm的能量以及波长355nm的能量。在此情况下,声光调制器603可当作波长选择器,而只允许满足布拉格方程式(7)的特定波长。因此,若第一个变换器70A上的选定波长设定在产生波长355nm的布拉格衍射的频率,则光束当中波长710nm的部分将不会形成衍射,而会沿着第零阶路径72A行进。技术人员能了解,在某些激光应用当中,使用具有多重选定波长的激光输出将会非常有利,因此需要一种能使两种波长向工件表面行进的方法。因此,除了为第一个波长设定第一个变换器70A能满足布拉格方程式之外,技术人员可为第二个波长设定第二个变换器70B能满足布拉格方程式,其中两种波长均在第一阶路径72B中传播。 
【137】图23C为示意图,其示出至少两个位于彼此不同角度的变换器70在单一笛卡尔坐标轴中扩张光束定位范围的效应。参考图20至图20C以及图23A至图23C,第二个变换器70B的位置相对于第一个变换器70A呈一倾斜角132,所以两者各自的变换器调制区域116b和116a并未相互平行,但两者在同一平面横穿过光束路径72,使得两者是在相同的笛卡尔坐标轴上调制射出角或偏转角。变换器70A和70B被优选设置成使得其各自的变换器调制区域116a和116b未互相重迭;但在某些情况下,重迭是许可的,且可能是需要的。 
【138】技术人员能了解,在具有适当倾斜角132的情况下,可替代地将第二个变换器70B设置在相对的变换器表面138上。然而,选取第二个变换器70B的倾斜角132时,必须使第二个变换器70B的衍射阶数可由第一个变换器70A的衍射阶数予以补偿,以允许将变换器放置在与声光调制器603同一侧的附近。 
【139】在某些优选实施例中,第一个变换器调制区域116a与光束射入面52平行,第二个变换器调制区域116b与光束射出面54平行,以至于光束射入面52与光束射出面54不平行。在其它优选实施例中,其中一个变换器调制区域116与光束射入面52和光束射出面54两者平行,以至于光束射入面52与光束射出面54平行。在另外的优选实施例中,其中一个变换器调制区域116与光束射入面52平行,光束射出面54则处于90度与90度±倾斜角132的平均值的角度,或是处于 介于90度与90度±倾斜角132之间的某个其他角度。或者,光束射入面52与第一个变换器调制区域116a之间形成夹角,而光束射出面54与第二个变换器调制区域116b平行。 
【140】取决于声光调制器的材料,通过在变换器136b表面或附近表面136a上钻孔(broaching)或铣削(milling)成所需要的角度,声光调制器603可经过斜切而提供第二个变换器70B的倾斜角132。运用上述光学材料/器件业公知的技术,并搭配其它技术即可获得精准的表面。虽然图中所示出的变换器表面136b从变换器表面136a向外延伸,但技术人员能了解,若以相同的倾斜角132向内延伸,则变换器表面136b亦能正常运作。 
【141】在大部分实施例中,倾斜角132通常是不大于5度的小角度,其最好小于约2.5至3度。在大部分的实施例中,倾斜角132通常大于约0.1度,其最好大于约0.3度或0.5度。图23C示出约1度的示例倾斜角132。 
【142】声光调制器603优选设置在光束路径72上,使得光束路径72能以入射角114或114a冲击声光调制器603,该角度处于或接近相对于光束射入面52或第一个变换器调制区域116a的布拉格角。技术人员能了解,施加到第一个变换器70A的射频信号频率可加以调整或校正,以补偿对准过程中意外造成的微小偏差。 
【143】每当需要沿着光束路径72a1或其相关的扫描范围134a1进行扫描时(降低到最小的所需布拉格效率),第一个变换器70A会由处于满足或大致满足布拉格条件的频率的射频信号启动,而使光束路径72偏向到扫描范围134a1内的所需射出角118a1,并使得光束路径72a1 在偏离其标称或原始光束位置的所需光束位置142(图27)上冲击工件80。施加到第一个变换器70A的射频信号频率可经过调整,以决定扫描范围内134a1内的所需射出角118a1,而且施加到第一个变换器70A的射频信号振幅亦可调整为所需要的振幅,以控制光束功率或能量。此外,每当需要沿着光束路径72a1或其相关的扫描范围134a1进行扫描时,优选地没有任何的射频信号会施加到第二个变换器70B,因此第二个变换器调制区域116b大致上不会影响光束路径72a1的射出角118a1。然而,在某些实施例中,可能需要设定倾斜角132,以使第二 个变换器70B所产生的第一阶或更高阶的光束路径能够与光束路径72a1对准;在这种情况下,第二个变换器70B可在完全的振幅与满足布拉格条件的射频频率下予以驱动。 
【144】每当需要在超过扫描范围134a1并在扫描范围134a2内进行扫描,且此扫描源自于同时协作操作变换器70A与70B时,变换器70A与70B会在满足或大致满足布拉格条件的各自频率上由各自的射频信号予以启动,而使光束路径72偏向扫描范围134a2内的所需射出角118a2,并使光束路径72a2在共同的偏转角(或共同的偏转传播方向)128a2传播,从而在超出扫描范围134a1的所需光束位置142冲击工件80。施加到第二个变换器70B的射频信号频率可经过调整,以决定扫描范围内134a2内的所需射出角118a2。在某些优选实施例中,第二个变换器70B可在完全的振幅下予以驱动,且施加到第一个变换器70A的射频信号振幅可调整为所需要的振幅,以控制光束功率或能量。 
【145】虽然在某些优选实施例中,变换器70A和70B可为相同的变换器,并以上述方式由相同的可变控制式射频驱动器66加以驱动,但在某些优选实施例中,变换器70A和70B及其关联的射频驱动器66可有不同的操作特性或参数。具体而言,在某些实施例中,第一个变换器70A的尺寸较小,并在高于第二个变换器70B的频率下工作,而使第一个变换器调制区域116a可提供比第二个变换器调制区域116b更大的布拉格角度范围。 
【146】虽然扫描角度范围134a1和134a2可变化降至0%的布拉格效率,但是使用示范性扫描范围134只降至20%、50%或80%的布拉格效率(如图23C的概略描述的)。在一个实施例中,如图23C所描述的,第一个变换器70A的入射布拉格条件为1.2度,第二个变换器70B的入射布拉格条件则为0.2度,如各自的光束路径72a1和72a2所表示的。 
【147】图23D为替代实施例的示意图,该实施例说明两个定位成彼此相对夹一倾斜角132的变换器70A和70B而达到扩张光束定位范围的效应。参考图23D所示,在某些优选实施例中,变换器70A和70B被设置成使其各自的倾斜角132对准变换器调制区域116,而能提供共同的第零阶光束路径72b。 
【148】倾斜角132b以及施加到变换器70B的射频信号频率适于提供来自于变换器调制区域116b的第一阶光束路径72a2,其扫描范围134a2邻近或重迭由变换器调制区域116b提供的第一阶光束路径72a2 的扫描范围134a1。在此例中,每当需要扫描范围134a1内的射出角118a1 时,变换器70A会在所需要的频率和振幅之下进行调制,而变换器70B会以先前提到的完全消光技术而有效地被「关闭」,例如仅仅改变频率来提供为零的有效布拉格效率。每当需要扫描范围134a2内的射出角118a2时,变换器70B会在所需要的频率和振幅之下进行调制,而变换器70A会有效地被「关闭」。在某些实施例中,通过声光调制器603 的第零阶光束路径可用来当作工作光束路径,以提供绕第零阶光束路径的接近于扫描范围134a1的扫描范围,且倾斜角132以及施加到变换器70B的频率可经过调整,以提供邻近于扫描范围134a1或与其重迭的扫描范围134a2。 
【149】也可采用具倾斜角132的第二个变换器70B来产生第二道光束,其中施加到变换器70A和70B的频率经过设定而同时提供两道可以分辨的光束光斑。施加到变换器70A的射频信号的振幅(此时变换器70B接收完全振幅信号)可用于控制上述两道光束的功率含量。替代地,可控制施加到变换器70A和70B的振幅。 
【150】因此,在倾斜角132运用第二个变换器70B可扩展整体扫描范围,同时限制布拉格效率约束所导致的损耗,并可提供其它类似于针对图20A至图20C所说明的那些优点。技术人员能了解,第二个变换器70B和倾斜角132可用于控制任一个或两个笛卡尔坐标轴上的偏转角度。 
【151】图23E为一示意图,其说明使多个变换器70位于声光调制器一侧的不同角度(相对于变换器70A的变换器表面136a所在平面)从而扩张光束定位范围的优点;图23F则示出图23E的部分放大图。参考图23C至图23F所示,倾斜角132的概念可扩展至利用多个倾斜且串联的变换器70A-70F来进一步扩展沿单一笛卡尔坐标轴的声光调制器603的扫描范围。 
【152】如以上参照图23C所做的讨论,至声光调制器603的输入光束路径72被设定成达到所需要的布拉格角,从而考虑到第一个变换 器70A的第零阶光束路径72b与第一阶光束路径72a1之间的所需距离。在任一方向针对第一个变换器70A稍微进行频率调制,将可得到从第一个变换器调制区域116a内的变换器70A所产生的声波衍射而来的第一阶光束的可允许的扫描角度范围134a1。图23E示出一个实例,其运用波长355nm的光束、650m/s的声速,以及约±0.2度作为所需的最大扫描角度范围134a1。然而,亦可采用±0.1度的示例扫描角度范围134a1,并提供较高的衍射效率,其相当于偏离布拉格条件最大0.1度的仅仅20%的效率损耗。 
【153】若要扩展范围,则可使第二个变换器70B倾斜成倾斜角132(相对于第一个变换器70A的变换器表面的平面),其相当于: 
倾斜角=入射的布拉格角-分隔角(Tilt=incomingBraggAngle-Separation Angle)    (9) 
其中入射的布拉格角为第一个变换器70A的布拉格角,分隔角则为第二个变换器70B的扫描角度134与第一个变换器70A的扫描角度之间的所需重迭大小。此可在图23E当中的衍射效率方面观察到。 
【154】在图23E所示的情况下,入射的布拉格角设定为1.4度,其可利用施加到第一个变换器70A的声速为650m/s、波长355nm的光束及射频频率90MHz的声光调制器材料而获得。若来自于第二个变换器70B的衍射光束的重迭需要相隔0.2度,则采用1.2度的倾斜角132。此时,施加到第二个变换器70B的射频信号的频率应设定在大约12.8MHz,以产生0.2度的布拉格角。此频率可通过找出最大的衍射效率加以校正,以降低精密制造任何一个变换器70的任何制造容差,或减小在声光调制器603上的其各自的倾斜角132。由于第一个变换器70A设定为具有1.4度射出角118a1的外送光束,该光束冲击由第二个变换器70B的1.2度倾斜角132b造成的第二个变换器调制区域116b,因此0.2度的布拉格条件匹配第二个变换器70B。在此情况下,若希望范围超过第一个变换器70A的扫描角度范围134a1,则可利用第一个变换器70A在满足变换器70A的布拉格方程式的所需振幅和射频频率来引起衍射。结果形成的光束路径72a1将可由第二个变换器70B衍射,其中第二个变换器70B在达到所需射出角118a2及共同偏转角128a2而使光束光斑定位于工件80上的全振幅和频率下运作。 
【155】上述概念可扩展到附加的变换器70C-70F,使倾斜角132c-132f和变换器调制区域116c-116f排列成直线,以使各个扫描角度范围134a3-134a6均有所需要的衍射效率。在此实例中,需要±0.1度的衍射角度,因此要求有1.0度的倾斜角132来满足方程式(9),而且采用第一个变换器70A的1.4度的入射布拉格角以及0.4度的分离角。在此实例中,变换器70C采用0.4度的分离角,因为第二个变换器70B的扫描角度范围(134a2)±0.1度已算作分离角度。若希望扫描角度落在变换器70C的扫描角度范围134a3内,则可将射频功率施加到第一个变换器70A,以控制在工件80以及满足布拉格方程式的频率所希望的振幅;而且,可在19.1MHz与32MHz之间的频率下,将完全的射频功率施加到变换器70C,以达到所需要的射出角118a3以及所需要的共同偏转角128a,用于将光束定位于工件80上。变换器70C在频率约25.6MHz、其布拉格角为0.4度时有最高的效率。 
【156】上述用于找出变换器70C的倾斜角132c的相同逻辑可应用在确定串联的额外变换器70的倾斜角132。在此实例中,变换器70D的倾斜角132d设定在0.8度,而得到0.6度的布拉格条件;变换器70E的倾斜角132e设定在0.6度,而得到0.8度的布拉格条件;变换器70F的倾斜角132f则设定在0.4度,而得到1.0度的布拉格条件。若需要上述任何一个扩展的扫描角度范围134,则可在满足布拉格条件的所需振幅与频率下,将射频功率施加到第一个变换器70A,而且在特定变换器70的扫描范围的频率下,将完全的射频功率给于需要的各自变换器70。如前面所述,在声光调制器603上放置变换器70时的切角可能不尽理想,因此可能需要稍微调整符合理论上的布拉格条件的频率。 
【157】除了根据最小的理想衍射效率来决定扫描范围之外,技术人员能优选地在第一个变换器70A上为布拉格角效率偏差实施功率分配并采用振幅补偿,如前面所述。 
【158】虽然这个实例随着变换器调制区域116与光束射入面52之间的各自距离的增加而采用递减的各自倾斜角132及各自的频率,但技术人员能了解,变换器70B-70F及其各自的倾斜角132、变换器调制区域116及频率可依任何次序相对于光束射入面52进行放置。举例而言,附带倾斜角132及频率的变换器70F与变换器70C可以相互 对调的方式定位。 
【159】如上所述,倾斜角132可向内或向外延伸,且变换器70可被移动且设置在声光调制器603的大致相对的变换器侧上。在一个有利的实施例当中,可替代地将变换器70A-70F设置在大致相反的两侧,使得变换器70A、70C和70E大致在声光调制器603的同一侧,而变换器70B、70D和70F则大致在声光调制器603的另一侧。 
【160】如上所述,变换器调制区域116a可平行于光束射入面52,且最后一个串联的变换器调制区域116f可平行于光束射出面54,以至于光束射入面52与光束射出面54两者不平行。在其它优选实施例中,其中一个变换器调制区域116平行于光束射入面52与光束射出面54,而使得光束射入面52与光束射出面54两者平行。另在其它优选实施例中,其中一个变换器调制区域116平行于光束射入面52,而光束射出面54处于的角度则为90度与90度±倾斜角132f的平均、平行于代表平均值的变换器调制区域116,或是处在90度与90度±倾斜角132b范围之间的某个其他角度。替代性地,光束射入面52可与第一个变换器调制区域116a形成一个角度,而光束射出面54则可平行于最后一个变换器调制区域116f。 
【161】技术人员能了解,所采用的倾斜变换器70的最大串联数目取决于所希望的整体扫描范围、倾斜角132、相对定位置排列及次序、变换器70的尺寸大小、声光调制器材料的特性、相对于制造过程或系统对准的声光调制器603的尺寸大小限制,或是任何其它为技术人员所熟知的变量。某些示例实施例采用两个至五个或两个至十个倾斜的变换器70。其它示例实施例可能会采用至少三个或十五个以上的倾斜的变换器70。在这些实施例中,声光调制器603的长度仍可小于数英寸或10公分,但亦可依照需要而更长。 
【162】虽然在某些优选实施例变换器70A-70F可以是相同的,并由先前所讨论的同一可变控制式射频驱动器66予以驱动,但在某些优选实施例中,变换器70A-70F及其关联的射频驱动器66可以有不同的操作特性或参数。具体而言,在某些优选实施例中,倾斜角132(相对于变换器70A的变换器表面的平面)分别较大的变换器70可能具有分别较大的尺寸,并在低于对应的较小变换器70的频率下工作。 
【163】图23G示出替代实施例,该实施例采用多个倾斜的变换器70A-70F,其说明使多个变换器70定位于声光调制器表面的不同角度而扩展声光调制器603在单一笛卡尔坐标轴中的扫描范围的优点。参考图23C至图23G所示,各自变换器70B-70F的倾斜角132a-132f及频率可被组织成使第零阶光束共同对准第零阶光束路径72b,所以其第一阶光束路径72a1-72a6的扫描范围134a2-134a6邻接或稍微重迭。技术人员能了解,变换器70B-70F以较方便的方式排列,处于与图23E所示排列相反的位置;然而,任何一种排列均适用,如以上说明的。 
【164】每当希望射出角118a1在扫描范围134a1内时,变换器70A会在希望的频率和振幅之下被调制,而其余的变换器70B-70F则被有效地「关闭」。每当希望射出角118a2在各自扫描范围134a2内时,变换器70B会在希望的频率和振幅之下被调制,而变换器70A与70C-70F则被有效地「关闭」。同样地,每当希望射出角118a3-118a6在各自扫描范围134a3-134a6内时,各自的变换器70C-70F会在希望的频率和振幅之下被调制,而其余的所有变换器70则被有效地「关闭」。上述实施例的一个优点在于:只需要启用一个变换器70即能得到任何一个扫描范围。此实施例的另一项优点在于:当利用第零阶光束路径72b当作其它变换器70衍射的基本光束路径时,只会出现少量损耗或没有任何损耗。 
【165】技术人员能了解,具有多个串联的倾斜变换器70的声光调制器603可用于在一个或两个笛卡尔坐标轴中进行脉冲选取(具备或不具备完全消光技术)及振幅控制;关于此技术特点,先前已有讨论,在下文当中另有说明。 
【166】如图18、图20和图21所示,如以上已说明的,两个声光调制器601和602邻接在一起的组合可产生非常优良的扫描系统;然而,第二个声光调制器602的入射孔(entrance aperture)可能会对声光调制器601所能达到的角度造成限制。大部分扫描系统典型的另一项不便之处在于:聚焦透镜78通常被调整成具有位于两个检流计定位器件之间的焦距或孔,且这些检流计可由如前面实施例中描述的声光调制器601 和602取代。当声光调制器扫描系统所在位置不同于符合聚焦透镜78的后孔的条件时,亦可采用额外的串联声光调制器60(或图中未示出的 其他光束调整器件)来修正孔的移动。 
【167】图24为示意图,其中示出声光调制器604采用在横向(优选垂直的)表面定位的变换器70x和70y来调制单一介质中的不同变换器调制轴(横向的且优选垂直的),从而提供在工件80表面上X轴和Y轴或X和Y两个方向上的扫描控制。参考图24所示,(多个)射频驱动器66xy将信号施加到变换器70x来控制光束在X轴中的位置,并将信号施加到变换器70y来控制光束在Y轴中的位置。技术人员能了解,每一个变换器70均可根据先前说明的任何一种声光调制器调制技术或实施例,由相同或不同的射频驱动器66xy在相同或不同的频率下驱动。运用单独一个声光调制器604的一个优点在于可以降低聚焦透镜78的复杂性,因为焦距可设定在单独一个声光调制器604的输出端,并且由于第二个声光调制器60没有入射孔限制而使扫描角度得以加大。然而,当声光调制器扫描系统所在位置不同于符合聚焦透镜78的后孔的条件时,亦可采用一个或数个额外的单轴或双轴声光调制器60(或图中未示出的其他光束调整器件)来修正孔的移动。 
【168】图25示出激光系统50h所采用的声光调制器604的示例实施例,其中激光系统50h采用闭环光束探测及定位系统,该定位系统在声光调制器604的输出面上运用分光元件120以及位置感应探测器130来探测光束路径72在声光调制器604(如先前连同图21与图24所讨论的实施例组合)的射出面上的角度。 
【169】图26为声光调制器605的示意图,其中声光调制器605采用四个变换器70Ax、70Bx、70Ay和70By(统称为变换器70)。此实施例将关于图22与图23的声光调制器603所描述的优点和关于图24与图25的声光调制器604所描述的优点结合,以促进较大的扫描角度及更大的通用性。技术人员能了解,每一个变换器70均可根据先前描述的任何一种声光调制器调制技术或实施例,在相同或不同的频率,由相同或不同的射频驱动器66或66xy进行驱动。此外,技术人员能了解,声光调制器604和605可用来取代先前所讨论的任何一个或一对声光调制器60。 
【170】声光调制器604和605的某些替代优选实施例会采用多个处于倾斜角132的变换器70来扩展扫描范围,如先前所讨论的。技术 人员能了解,在横向笛卡尔坐标轴中的变换器调制区域116可为非相交区域,但相交的横向轴变换器调制区域116是优选的。为了方便进行制造和控制,某些优选实施例会采用相同的倾斜角132用于相交变换器调制区域116的变换器70,但此种关系并非必需的。在某些采用角度倾斜的变换器70的实施例中(其中扫描范围绕第零阶光束路径72b配置),对每一个笛卡尔坐标轴,只需要启用单独一个变换器70即可在两个轴上提供范围完全延伸的扫描控制。亦可在两个轴上采用角度倾斜的变换器70来提供光束矩阵,其中每道光束均具有进入到声光调制器60的光束的可选择部分能量。 
【171】图27为示例激光系统50i的示意图,其中激光系统50i采用:腔外声光调制器60来达到激光脉冲选通;采用多个变换器70、分光元件1203及位置感应探测器130来实现具有闭环控制的光束定位的腔外声光调制器604;以及分光元件1201和1202以及振幅探测器122a和122b来实现闭环振幅控制。参考图27所示,振幅反馈信号124a及/或124b可被引导到系统控制器62及/或(多个)射频驱动器66xy。同样地,位置反馈信号126亦可被引导到系统控制器62及/或(多个)射频驱动器66xy。技术人员能了解,每一个变换器70均可根据先前描述的任何一种声光调制器调制技术或实施例,在相同或不同的频率下,由相同或不同的(多个)射频驱动器66xy进行驱动。 
【172】此实施例采用单独的声光调制器60来当作用于脉冲选通(「脉冲拣选」)的激光遮蔽器(shutter)或光栅,以允许脉冲仅在需要时才能行进通过扫描系统。某些实施例会利用脉冲拣选式声光调制器60的不同角度配置,因而不需要用到光束收集器94。采用单独的脉冲拣选式声光调制器60的一项优点在于:声光调制器604可被定位成提供其全方位的角位移功能。此种单独的脉冲拣选式声光调制器60可与先前所讨论的任何一种实施例或声光调制器调制技术结合使用。然而,技术人员能了解,脉冲拣选式声光调制器60并非必需的。声光调制器604可相对于光束路径72进行角位移,使声光调制器604可执行脉冲选取和光束定位两种功能。此种配置可能会对工件80的总扫描角度造成限制。技术人员能了解,在先前针对光束定位及/或振幅调制说明的实施例中所采用的声光调制器60亦可通过相对于光束路径72选择性 地定位声光调制器60而应用于脉冲拣选。 
【173】技术人员能了解,目前激光处理设备中的光束定位或扫描系统通常为机械式系统,其可能为基于检流计的系统、快速操控反射镜(fast-steering-mirror,FSM)或是其它类型的基于移动式反射镜的系统。检流计与FSM技术均有机械质量,其会限制系统的整体扫描速率。一般而言,扫描角度与扫描速率之间的权衡可在以下两种系统当中看出:检流计系统具有较大的扫描角度及较慢的扫描速率;FSM系统则有较小的扫描角度和较高的扫描速率。 
【174】图28为示范性激光系统50j的示意图,其中激光系统50j具备可与典型的快速定位器(例如FSM或检流计扫描头140,其包括一对检流计反射镜)搭配工作的光束定位声光调制器604或605,以通过由常规的慢速定位器(例如单轴或分轴式X-Y平台)所支撑的多个复合或三重光束定位系统来提升激光系统50的整体输出量。声光调制器604 或605或一对声光调制器60或603可处在检流计扫描头140的上游或下游位置。声光调制器与检流计扫描系统之间的移动可直接或间接地由系统控制器62进行协调,并可借助或不借助于(多个)射频驱动器66xy及/或检流计控制器144,其中检流计控制器144可接收来自于检流计扫描头140的检流计反馈信号146。 
【175】技术人员能了解,图中示出用于脉冲拣选的单独声光调制器60可用来简化移动控制的协调工作;然而,可以不采用声光调制器60,且声光调制器604或605可用于脉冲拣选以及光束定位。技术人员亦能了解,虽然为了简单而示出开环系统,但仍可轻易地实现激光系统50j的替代实施例而包括用于闭环控制的位置及/或振幅反馈功能。技术人员亦能了解,声光调制器604或605可通过关于上述任何实施例讨论的那样加以调制,且激光系统50j可调整成合并先前所讨论的任何一种实施例的变化。 
【176】图29、图30和图31表示检流计扫描头140及声光调制器604或605的扫描场范例,其中检流计扫描头140及声光调制器604或605可结合用于不同的激光处理应用,例如分别是修整、钻孔、连结线路处理等。参照图28至图31及常规的光束定位技术,虽然X-Y平台可用于移动夹盘88及其所支承的工件80,但检流计扫描头140可处 在固定位置,或定位于分轴排列结构内,而使其沿着一个或数个几何轴线被引导。检流计扫描头140与工件80之间的相对移动可用于主要声光调制器扫描场160(及其方形声光调制器子场162)内的主要检流计扫描场150(及其方形检流计子场152)相对于工件80表面上目标物的定位。由于检流计的频宽远小于声光调制器的频宽,因此当声光调制器604或605在其主要声光调制器扫描场160范围内处理目标物时,检流计(及工件80)可保持连续移动。此为线性马达与检流计的协调移动以外的移动。 
【177】上述修改非常有利于处理位置非常密集的激光应用。更快速更小的声光调制器扫描场160将能够在一次单独的检流计移动中以非常快的速度处理多个电阻器164、多个连结线路166,以及多个集成电路封装,而并非多次的常规检流计移动。 
【178】除了用作光束定位系统、FSM及/或检流计扫描头的替代系统,或用作额外的光束定位系统组件以外,声光调制器扫描系统另可用来仿真光斑放大或abbe误差修正,并可沿着光束路径设置在「快速」定位组件之前或之后。此外,技术人员能了解,一个或更多个具有或不具有调制增强功能的声光调制器60均可用来取代(或附加在)美国专利第4532402号、第5751585号、第5847960号、第6430465号、第6706999号及美国专利申请案公开第2002/0117481号所描述的任何一种「快速」定位系统组件,在此以引用方式并入上述美国专利及专利公开案的内容。 
【179】对于本领域技术人士明显的是,在不脱离本发明的基本原理前提下,可对上述实施例的细节进行许多的变更。因此,本发明的范畴仅仅由所附的权利要求确定。 

Claims (318)

1.一种用于在激光系统中调制声光调制器以防止激光束沿冲击工件的光束路径传播的方法,所述声光调制器具有光束射入面,所述方法包括:
产生激光束;
沿光学路径传播所述激光束穿过所述光束射入面进入声光调制器中;
提供与所述声光调制器相关的变换器;
提供可变频率控制器,其用于通过所述变换器调制施加到所述声光调制器的射频信号的频率;以及
利用所述可变频率控制器调制施加到所述声光调制器的所述射频信号的所述频率,以阻止所述激光束沿冲击所述工件的所述光束路径传播。
2.根据权利要求1所述的方法,进一步包括:
选择所述激光束沿所述光束路径传播来冲击所述工件的频率。
3.根据权利要求2所述的方法,进一步包括:
调制所述信号的振幅以影响冲击所述工件的所述激光束的强度。
4.根据权利要求1所述的方法,其中所述声光调制器包括在所述声光调制器中建立声波的波建立时间,以使所述激光束沿所述光束路径传播来冲击所述工件,且其中每当沿所述光束路径的激光束传播被阻止时,所述施加的射频信号的所述频率在比所述波建立时间短的时间间隔内连续变化。
5.根据权利要求4所述的方法,其中所述施加的射频信号的所述频率在所述时间间隔内的两个选定频率之间交替变化。
6.根据权利要求1所述的方法,其中所述施加的射频信号的所述频率在两个选定频率之间交替变化。
7.根据权利要求1所述的方法,其中所述施加的射频信号的所述频率在许多个频率之间变化。
8.根据权利要求4所述的方法,其中所述施加的射频信号的所述频率在所述时间间隔内的许多个频率之间变化。
9.根据权利要求1所述的方法,其中所述频率被调制以产生白噪声。
10.根据权利要求1所述的方法,其中每当光束传播被阻止时,所述射频信号的振幅减少。
11.根据权利要求1所述的方法,其中所述声光调制器是第一声光调制器,且每当沿所述光束路径的激光束传播被阻止时,沿所述光束路径采用第二声光调制器以增强光束消除能力。
12.根据权利要求11所述的方法,其中在所述第一和第二声光调制器中采用不同的频率。
13.根据权利要求1所述的方法,其中分光元件设置在所述声光调制器的所述光束路径下游,以使一部分所述激光束转向到直接或间接地给激光控制器传递信息的探测器,该激光控制器直接或间接地调整施加到所述声光调制器的所述射频信号的调制。
14.根据权利要求13所述的方法,其中对所述调制的调整增强了所述激光束的脉冲到脉冲输出振幅稳定性。
15.根据权利要求1所述的方法,其中所述声光调制器采用至少两个变换器。
16.根据权利要求15所述的方法,其中所述至少两个变换器对横穿所述光束路径的共同变换器调制区域进行调制,以影响沿共同笛卡尔轴的所述光束路径的偏转角。
17.根据权利要求15所述的方法,其中所述至少两个变换器对横穿所述光束路径的各自的第一和第二变换器调制区域进行调制,以影响沿各自不同笛卡尔轴的所述光束路径的偏转角。
18.根据权利要求15所述的方法,其中所述至少两个变换器在不同的频率上进行调制。
19.根据权利要求1所述的方法,其中所述声光调制器被用作Q开关。
20.根据权利要求1所述的方法,其中所述声光调制器具有光束射入面,所述射频信号被施加到变换器以在所述声光调制器内产生变换器调制区域,且其中所述光束路径相对于所述光束射入面或所述变换器调制区域以等于或接近布拉格角的入射角冲击所述声光调制器。
21.根据权利要求20所述的方法,所述射频信号在具有实际上为零的布拉格效率的一个或更多个频率被施加。
22.根据权利要求1所述的方法,其中所述射频信号在具有实际为零的布拉格效率的一个或更多个频率被施加。
23.一种用于处理对杂散激光辐射敏感的工件的激光系统,包括:
用于促进沿光学路径产生激光束的激光介质;
沿所述光学路径设置的声光调制器;
与所述声光调制器相关的变换器;以及
可变频率控制器,其用于通过所述变换器调制施加到所述声光调制器的射频信号的频率,以每当不需要所述激光束冲击所述工件时,使所述激光束的主要部分向激光截止器传播,且每当需要所述激光束冲击所述工件时,使所述激光束的主要部分向所述工件传播。
24.根据权利要求23所述的激光系统,其中调节所述频率的振幅以影响冲击所述工件的所述激光束的强度。
25.根据权利要求23所述的激光系统,其中所述声光调制器包括在所述声光调制器上建立声波的波建立时间,以使所述激光束沿所述光束路径传播来冲击所述工件,且其中每当激光束沿所述光束路径的传播被阻止时,所述施加的射频信号的所述频率在比所述波建立时间短的时间间隔内连续变化。
26.根据权利要求25所述的激光系统,其中所述施加的射频信号的所述频率在所述时间间隔内的两个选定频率之间交替变化。
27.根据权利要求23所述的激光系统,其中所述施加的射频信号的所述频率在两个选定频率之间交替变化。
28.根据权利要求23所述的激光系统,其中所述施加的射频信号的所述频率在许多个频率之间变化。
29.根据权利要求25所述的激光系统,其中所述施加的射频信号的所述频率在所述时间间隔内的许多个频率之间变化。
30.根据权利要求23所述的激光系统,其中所述频率被调制以产生白噪声。
31.根据权利要求23所述的激光系统,其中第一变换器连接到所述声光调制器并且每当激光束沿所述光束路径的传播被阻止时被使用,且其中所述声光调制器具有第二变换器,每当选择冲击所述工件的沿所述光束路径的激光束传播时,所述第二变换器在选定的频率上使用。
32.根据权利要求23所述的激光系统,其中所述声光调制器是第一声光调制器,且每当激光束沿所述光束路径的传播被阻止时,沿所述光束路径采用第二声光调制器以增强光束消除能力。
33.根据权利要求31所述的激光系统,其中在所述第一和第二声光调制器中采用不同的频率。
34.根据权利要求23所述的激光系统,其中分光元件设置在所述声光调制器的所述光束路径下游,以使一部分所述激光束偏转到直接或间接地给激光控制器传递信息的探测器,该激光控制器直接或间接地调节施加到所述声光调制器的所述射频信号的调制。
35.根据权利要求34所述的激光系统,其中对所述调制的调整增强了所述激光束的脉冲至脉冲输出振幅的稳定性。
36.根据权利要求23所述的激光系统,其中所述声光调制器采用至少两个变换器。
37.根据权利要求36所述的激光系统,其中所述至少两个变换器调制横穿所述光束路径的共同变换器调制区域,以影响沿共同笛卡尔轴的所述光束路径的偏转角。
38.根据权利要求36所述的激光系统,其中所述至少两个变换器调制横穿所述光束路径的各自第一和第二变换器调制区域,以影响沿各自不同的笛卡尔轴的所述光束路径的偏转角。
39.根据权利要求37所述的激光系统,其中所述至少两个变换器以不同的频率调制。
40.根据权利要求36所述的激光系统,其中所述声光调制器被用作Q开关。
41.根据权利要求36所述的激光系统,其中所述声光调制器被用作腔外脉冲选取器。
42.根据权利要求23所述的激光系统,其中所述声光调制器具有光束射入面,所述射频信号被施加到变换器以在所述声光调制器内产生变换器调制区域,且其中所述光束路径相对于所述光束射入面或所述变换器调制区域以等于或接近布拉格角的入射角冲击所述声光调制器。
43.根据权利要求42所述的激光系统,其中所述射频信号在具有实际上为零的布拉格效率的一个或更多个频率被施加。
44.根据权利要求43所述的激光系统,其中冲击所述工件的所述光束路径包括第零阶光束路径。
45.一种用于阻止激光束沿冲击工件的光束路径传播的方法,包括:
产生激光束;
沿光学路径将所述激光束传播到具有第一变换器的第一声光调制器;
对所述第一变换器进行调制以阻止所述激光束沿冲击所述工件的所述光束路径的传播,使一大部分所述光束传播到第一光束收集器,并使所述光束的一小部分继续沿所述光束路径传播,所述光束路径具有在所述第一声光调制器和所述工件之间的第二声光调制器,所述第二声光调制器具有第二变换器;以及
对所述第二变换器进行调制以阻止所述激光束的一小部分沿冲击所述工件的所述光束路径的传播,使得所述光束的所述小部分基本全部传播到第二光束收集器,因此阻止所述激光束沿冲击所述工件的所述光束路径的传播。
46.根据权利要求45所述的方法,其中冲击所述工件的所述光束路径包括第零阶光束路径。
47.一种在激光系统中用于调制声光调制器以防止激光束沿冲击工件的光束路径传播的方法,包括:
提供具有光束射入面的声光调制器;
提供变换器以响应于施加的射频信号在所述声光调制器内产生变换器调制区域;
产生激光束;
沿光学路径传播所述激光束进入所述声光调制器,所述光学路径相对于所述光束射入面或所述变换器调制区域以一入射角冲击所述声光调制器,所述入射角等于或接近布拉格角;以及
在布拉格效率实际上为零的频率将所述射频信号施加到所述声光调制器上的所述变换器,以阻止所述激光束沿冲击所述工件的所述光束路径的传播。
48.根据权利要求47所述的方法,其中所述射频信号具有振幅,每当光束传播被阻止时,所述振幅减少。
49.一种调和被导向工件的多个连续激光输出脉冲的振幅或能量的方法,包括:
沿冲击工件的光束路径在光束位置产生多个连续激光脉冲,所述多个连续激光脉冲具有显著变化的振幅或能量;
将所述多个连续激光脉冲传播通过沿所述光束路径设置的声光调制器,以提供多个连续激光输出脉冲;
将所述多个连续的激光输出脉冲中每一个的一部分偏转到振幅探测器或能量探测器;
将关于所述多个连续的激光输出脉冲中的每一个的振幅或能量的信息直接或间接地传送给声光调制器控制器;以及
调制施加到所述声光调制器的射频信号,以响应关于在所述多个连续激光输出脉冲的指定一个之前的所述多个连续激光输出脉冲的一个或更多个的振幅或能量的所述信息,而影响所述多个连续激光输出脉冲中的所述指定一个的振幅或能量。
50.根据权利要求49所述的方法,进一步包括:
将所述多个连续激光输出脉冲传播通过沿所述声光调制器的所述光束路径下游设置的分光元件,以使所述多个连续激光输出脉冲中的每一个的一部分偏转到振幅探测器或能量探测器。
51.根据权利要求49所述的方法,其中连续激光输出脉冲的所述振幅或能量的变化量低于5%。
52.根据权利要求51所述的方法,其中所述多个连续激光脉冲由固态紫外谐波激光器产生。
53.根据权利要求49所述的方法,其中连续激光输出脉冲的所述振幅或能量的变化量低于1%。
54.根据权利要求49所述的方法,其中所述多个连续激光脉冲的所述振幅或能量由于激光不稳定性或热漂移而变化。
55.根据权利要求49所述的方法,其中所述多个连续激光脉冲的所述振幅或能量由于来自不一致施加的射频能量产生的所述声光调制器的发热而变化。
56.根据权利要求49所述的方法,其中所述多个连续激光脉冲由固态谐波激光器产生。
57.根据权利要求49所述的方法,其中所述光束路径相对于所述声光调制器的光束射入面以等于或接近布拉格角的角度冲击所述声光调制器,施加到所述声光调制器的射频信号被进行频率调制,以影响沿着所述光束路径向所述工件传播的所述多个连续激光输出脉冲中所述指定一个的射出角,且所述射频信号被调制,以影响所述多个连续激光输出脉冲中所述指定一个的振幅或能量,从而补偿由所述光束路径的射出角从所述布拉格角偏移所造成的布拉格效率偏差。
58.根据权利要求49所述的方法,其中冲击所述工件的所述光束路径包含自所述声光调制器传播的第一阶光束路径。
59.根据权利要求49所述的方法,其中冲击所述工件的所述光束路径包含自所述声光调制器传播的第零阶光束路径。
60.根据权利要求59所述的方法,其中所述声光调制器将所述多个连续激光输出脉冲的一部分引向所述振幅或能量探测器。
61.根据权利要求59所述的方法,其中所述激光束具有激光脉冲能量,且所述声光调制器用于阻止高于所述激光脉冲能量的10%的脉冲能量沿着冲击所述工件的所述光束路径传播。
62.根据权利要求61所述的方法,其中所述声光调制器用于沿着冲击所述工件的所述光束路径传播高于所述激光脉冲能量的75%的脉冲能量。
63.根据权利要求62所述的方法,其中所述声光调制器用于沿着冲击所述工件的所述光束路径传播高于所述激光脉冲能量的90%的脉冲能量。
64.根据权利要求49所述的方法,其中所述声光调制器采用至少第一变换器与第二变换器。
65.根据权利要求64所述的方法,其中所述声光调制器包含两个大致正交的轴,所述第一变换器与所述第二变换器对共同的变换器区域进行调制,且被锁定相位。
66.一种调和导向工件的多个连续激光输出脉冲的振幅或能量的激光系统,包含:
激光介质,其用于促进产生多个沿着光学路径的连续激光脉冲;
声光调制器,其沿着所述光学路径设置,用以沿光束路径将多个连续激光输出脉冲向所述工件传播;
变换器,其和所述声光调制器关联;
分光元件,其使所述多个连续激光输出脉冲中每一个的一部分转向离开所述光束路径;
振幅或能量探测器,其接收所述多个连续激光输出脉冲的部分,并用于传送关于所述多个连续激光输出脉冲中每一个的振幅或能量的信息;以及
声光调制器射频驱动器,其响应关于所述多个连续激光输出脉冲之一或更多个的振幅或能量的信息,对施加到所述变换器的射频信号进行调制,以影响所述多个连续激光输出脉冲其中指定一个的振幅或能量,其中所述多个连续激光输出脉冲之一或更多个在所述多个连续激光输出脉冲其中指定一个之前。
67.根据权利要求66所述的激光系统,其中所述连续激光输出脉冲的振幅或能量的变化量低于5%。
68.根据权利要求67所述的激光系统,其中所述多个连续激光脉冲由固态紫外谐波激光器产生。
69.根据权利要求66所述的激光系统,其中所述连续激光输出脉冲的振幅或能量的变化量低于1%。
70.根据权利要求66所述的激光系统,其中所述多个连续激光输出脉冲的振幅或能量由于激光不稳定性或热漂移而改变。
71.根据权利要求66所述的激光系统,其中所述多个连续激光脉冲由固态谐波激光器产生。
72.根据权利要求66所述的激光系统,其中所述声光调制器构成所述分光元件,并将所述多个连续激光输出脉冲的部分导向所述振幅或能量探测器。
73.根据权利要求66所述的激光系统,其中所述声光调制器包含至少两个变换器,其响应于所述声光调制器射频驱动器而对单一调制轴进行调制。
74.一种运用声光调制器来调和导向工件的多个连续激光输出脉冲的振幅或能量的方法,所述声光调制器适于沿激光器与工件之间的光束路径设置,所述声光调制器具有一光束射入面、一光束射出面及第一变换器,所述第一变换器设置于所述声光调制器的第一变换器表面上,且所述第一变换器在第一变换器调制区域内进行调制,所述第一变换器表面位于第一平面,所述第一平面横穿所述光束射入面,所述方法包含:
沿着冲击工件的光束路径产生激光束;
使所述激光束传播通过沿着所述光束路径设置的所述声光调制器,所述光束路径相对于所述光束射入面或所述第一变换器调制区域以一入射角冲击所述声光调制器,所述入射角等于或接近布拉格角,且所述光束路径以第一射出角离开所述声光调制器;
控制施加到所述第一变换器的第一射频信号的第一频率,所述第一变换器在横穿所述光束路径的第一变换器调制区域内进行调制,以影响相对于所述工件表面沿第一工件轴的所述光束路径的所述第一射出角;以及
控制施加到所述第一变换器的所述第一射频信号的第一振幅,以补偿由所述光束路径的所述第一射出角从所述布拉格角的第一偏移所造成的布拉格效率偏差。
75.根据权利要求74所述的方法,进一步包含:
控制施加到位于所述声光调制器的第二变换器表面上的第二变换器的第二射频信号的第二频率,所述第二变换器表面位于第二平面,所述第二平面横穿所述光束射入面及所述第一平面,所述第二变换器在横穿所述光束路径的第二变换器调制区域内进行调制,以影响沿第二工件轴的光束路径的第二射出角,所述第二工件轴相对于所述工件表面横穿所述第一工件轴,且所述第二变换器调制区域横穿所述第一变换器调制区域;
协调所述第一与所述第二频率,以偏转所述第一工件轴与所述第二工件轴中的所述光束路径,其偏转角为所述第一与第二变换器响应于所述第一与第二射频信号而提供的所述第一与第二射出角所形成的共同偏转角;以及
控制施加到所述第二变换器的所述第二射频信号的第二振幅,以补偿由所述光束路径的所述第二射出角从所述布拉格角的第二偏移所造成的布拉格效率偏差。
76.根据权利要求75所述的方法,其中所述第一与第二变换器表面大致正交。
77.根据权利要求75所述的方法,其中所述第一与第二频率不相同。
78.根据权利要求74所述的方法,其中所述光束路径先于标称光束位置冲击所述工件,且其中所述第一射出角使用所述声光调制器而使所述光束路径从所述标称光束位置偏转,从而在所需光束位置冲击所述工件。
79.根据权利要求74所述的方法,进一步包含:
控制施加到位于所述声光调制器的第二变换器表面上的第二变换器的第二射频信号的第二频率,所述第二变换器表面位于第二平面,所述第二平面横穿所述光束射入面,所述第二变换器在横穿所述光束路径的第二变换器调制区域内进行调制,以影响沿所述第一工件轴的光束路径的第二射出角,所述第二变换器是分隔开的,并相对于所述第一变换器定向成一倾斜角,使得所述第一与第二变换器调制区域不平行,其中所述倾斜角小于或等于5度;
协调所述第一与所述第二频率以偏转所述光束路径,其偏转角为所述第一与第二变换器响应于所述第一与所述第二射频信号而提供的所述第一与第二射出角所形成的共同偏转角;以及
控制施加到所述第二变换器的所述第二射频信号的第二振幅,以补偿由所述光束路径的所述第二射出角从所述布拉格角的第二偏移所造成的布拉格效率偏差。
80.根据权利要求79所述的方法,其中所述第一与第二变换器调制区域未重迭。
81.根据权利要求79所述的方法,其中所述第一与第二平面相互横穿,其中所述光束射入面与所述光束射出面具有不平行的平面,其中所述第一变换器调制区域大致平行于所述光束射入面,且其中所述第二变换器调制区域大致平行于所述光束射出面。
82.根据权利要求79所述的方法,其中所述倾斜角在0.1度至3度之间。
83.根据权利要求82所述的方法,其中所述倾斜角在0.5度至2.5度之间。
84.根据权利要求79所述的方法,其中所述第一与第二频率不相同。
85.根据权利要求79所述的方法,其中所述共同偏转角的范围包括相对于所述布拉格角达到至少100毫弧度。
86.根据权利要求79所述的方法,其中所述第一变换器在第一布拉格角范围响应于高频驱动器,所述第二变换器则在第二布拉格角范围响应于低频驱动器,所述第一布拉格角范围大于所述第二布拉格角范围。
87.根据权利要求74所述的方法,进一步包含:
提供来自于定位信号处理器的第一和第二移动控制信号;
利用第一定位器驱动器,响应于所述第一移动控制信号,大致沿着一平移轴控制平移平台的第一范围的相对光束导向移动;
利用所述第一及/或第二变换器,响应于所述第二移动控制信号,控制所述声光调制器的第二范围的相对光束导向移动,所述第二范围的相对移动小于所述第一范围的相对移动,且所述声光调制器提供比所述平移平台所提供的相对光束导向移动更快的相对光束导向移动;
在所述光束路径与所述平移平台上的所述工件之间,产生所述第一范围的相对光束导向移动;以及
利用所述声光调制器,在所述光束路径与所述工件之间,产生所述第二范围的相对光束导向移动,以在需要的光束位置冲击所述工件。
88.根据权利要求74所述的方法,其中所述激光束包含具有最大峰值功率及/或能量的脉冲,所述方法进一步包含:
运用激光总开销功率分配,使得每当需要工作脉冲冲击所述工件且所述第一射出角等于或接近所述布拉格角时,下降的峰值功率及/或能量被许可传播通过所述声光调制器并沿着所述光束路径,所述下降的峰值功率及/或能量低于最大峰值功率及/或能量;以及
每当需要工作脉冲冲击所述工件且所述第一射出角偏离所述布拉格角时,运用较高的补偿峰值功率及/或能量,以传播通过所述声光调制器并沿着所述光束路径,所述较高的补偿峰值功率及/或能量大于所述下降的峰值功率及/或能量,且低于所述最大峰值功率及/或能量。
89.一种用于控制声光调制器的声光调制器控制系统,所述声光调制器适于沿着激光器与工件之间的光束路径设置,所述声光调制器具有光束射入面、光束射出面,以及设置在所述声光调制器的第一变换器表面上的第一变换器,所述第一变换器在第一变换器调制区域内进行调制,所述第一变换器表面位于第一平面,所述第一平面横穿所述光束射入面,所述声光调制器亦提供相对于所述光束射入面、第一变换器调制区域以及/或所述光束射出面的布拉格角,所述系统包含:
第一射频驱动器,其包含或连通可变频率控制器,所述可变频率控制器适于将第一射频信号的第一频率施加于所述第一变换器,使所述光束路径在第一变换器调制区域从所述布拉格角偏离,以影响所述光束路径沿着第一笛卡尔轴的偏转角,且所述第一射频驱动器亦适于调整施加到所述第一变换器的所述第一射频信号的第一振幅;以及
控制器,用于将关于布拉格效率补偿数据的信息传递到所述第一射频驱动器,从而调整所述第一振幅,以补偿由所述光束路径从所述布拉格角的偏移所造成的布拉格角效率偏差。
90.根据权利要求89所述的声光调制器控制系统,其中所述布拉格效率补偿数据包含查询表。
91.根据权利要求89所述的声光调制器控制系统,其中所述布拉格效率补偿数据包含以sinc函数为基础的算法。
92.根据权利要求89所述的声光调制器控制系统,其中所述激光束包含具有最大峰值功率及/或能量的脉冲,激光总开销功率分配被运用,使得每当需要工作脉冲冲击所述工件且所述偏转角等于或接近所述布拉格角时,下降的峰值功率及/或能量被许可传播通过所述声光调制器并沿着所述光束路径,其中所述下降的峰值功率及/或能量低于最大峰值功率及/或能量;且其中每当需要工作脉冲冲击所述工件且所述偏转角偏离所述布拉格角时,较高的补偿峰值功率及/或能量被许可传播通过所述声光调制器并沿着所述光束路径,其中所述较高的补偿峰值功率及/或能量大于所述下降的峰值功率及/或能量,且低于所述最大峰值功率及/或能量。
93.一种增强声光调制器的性能的方法,所述声光调制器适于沿着激光器与工件之间的光束路径设置,所述声光调制器具有一光束射入面、一光束射出面及第一变换器,所述第一变换器设置于所述声光调制器的第一变换器表面上,所述第一变换器表面位于第一平面,所述第一平面横穿所述光束射入面,所述方法包含:
沿着一光束路径产生激光束,所述光束路径在标称光束位置冲击一工件;
使所述激光束传播通过沿所述光束路径设置的所述声光调制器;
控制施加到所述第一变换器的第一射频信号的第一频率,所述第一变换器在横穿过所述光束路径的第一变换器调制区域内进行调制,以影响相对于所述工件表面的沿着第一工件轴的所述光束路径的偏转角;
控制施加到位于所述声光调制器的第二变换器表面上的第二变换器的第二射频信号的第二频率,所述第二变换器表面位于第二平面,所述第二平面横穿所述光束射入面,且所述第二平面大致平行于所述第一变换器表面,或与所述第一变换器表面共平面,且所述第二变换器在横穿所述光束路径的第二变换器调制区域内进行调制,以影响沿着所述第一工件轴的所述光束路径的所述偏转角;以及
协调所述第一与第二射频信号,使来自所述工件上的所述标称光束位置的激光束偏转,以在需要的光束位置冲击所述工件,所述需要的光束位置由于所述第一与第二射频信号提供的光束路径的共同偏转角所造成。
94.根据权利要求93所述的方法,其中所述第一与第二频率不相同。
95.根据权利要求93所述的方法,其中所述第一与第二频率是谐波相关的。
96.根据权利要求93所述的方法,其中所述第一与第二频率相同,且大致同相。
97.根据权利要求93所述的方法,其中所述第一与第二频率相同且异相。
98.根据权利要求93所述的方法,其中所述第一与第二变换器表面共平面,且其中所述第一与第二变换器调制区域未重迭。
99.根据权利要求98所述的方法,其中所述激光束包含至少不同的第一与第二波长,且所述第一频率对所述第一波长进行调制,所述第二频率对所述第二波长进行调制。
100.根据权利要求93所述的方法,其中所述第一与第二变换器表面平行,且其中所述第一与第二变换器调制区域未重迭。
101.根据权利要求93所述的方法,其中所述第一与第二变换器表面平行,且其中所述第一与第二变换器调制区域基本重迭。
102.根据权利要求93所述的方法,其中所述共同偏转角的范围包括相对于所述第一变换器调制区域的平面达到至少100毫弧度。
103.根据权利要求93所述的方法,其中冲击所述工件的所述光束路径包含从所述声光调制器传播而来的第一阶光束路径。
104.根据权利要求93所述的方法,其中冲击所述工件的所述光束路径包含从所述声光调制器传播而来的第零阶光束路径。
105.根据权利要求93所述的方法,其中所述光束路径以大致垂直于所述光束射入面的角度冲击所述声光调制器。
106.根据权利要求93所述的方法,其中所述光束路径相对于所述光束射入面或所述第一变换器调制区域以等于或接近布拉格角的入射角冲击所述声光调制器。
107.根据权利要求106所述的方法,其中所述共同偏转角的范围包括相对于所述布拉格角达到至少50毫弧度。
108.根据权利要求93所述的方法,其中所述第一变换器在第一布拉格角范围响应于高频驱动器,所述第二变换器在第二布拉格角范围响应于低频驱动器,所述第一布拉格角范围大于所述第二布拉格角范围。
109.根据权利要求93所述的方法,进一步包含:
提供来自于定位信号处理器的第一和第二移动控制信号;
利用第一定位器驱动器,响应于所述第一移动控制信号,大致沿着一平移轴控制平移平台的第一范围的相对光束导向移动;
利用所述第一及/或第二变换器,响应于所述第二移动控制信号,控制所述声光调制器的第二范围的相对光束导向移动,所述第二范围的相对移动小于所述第一范围的相对移动,且所述声光调制器提供比所述平移平台所提供的相对光束导向移动更快的相对光束导向移动;
在所述光束路径与所述平移平台上的所述工件之间,产生所述第一范围的相对光束导向移动;以及
利用所述声光调制器,在所述光束路径与所述工件之间,产生所述第二范围的相对光束导向移动,以在需要的光束位置冲击所述工件。
110.根据权利要求109所述的方法,进一步包含:
取得关于所述光束路径与所述需要的光束位置之间差值的误差信息;以及
以直接或间接方式,将所述误差信息传送到所述第一及/或第二变换器,以补偿所述光束路径与所述需要的光束位置之间的差值。
111.根据权利要求109所述的方法,进一步包含:
取得关于沿扫描线的光束路径与离轴但平行于所述扫描线的所述需要的光束位置之间差值的离轴信息;以及
将所述离轴信息传送到所述第一及/或第二变换器,以使所述激光束偏转而冲击所述工件上方平行于所述扫描线的所述需要的光束位置。
112.根据权利要求93所述的方法,其中独立地以所述第一或第二变换器无法获得所述共同偏转角。
113.根据权利要求93所述的方法,其中所述光束路径相对于所述光束射入面或所述第一变换器调制区域以等于或接近布拉格角的入射角冲击所述声光调制器,其中所述第一与第二变换器表面平行,其中所述第一与第二变换器调制区域基本重迭,且其中所述第一与第二频率是大致谐波相关的。
114.根据权利要求93所述的方法,其中所述第一变换器响应于第一射频驱动器,所述第一射频驱动器具有对应于第一偏转角范围限制的第一频率限制,所述第二变换器响应于第二射频驱动器,所述第二射频驱动器具有对应于第二偏转角范围限制的第二频率限制,所述第二频率不同于所述第一频率,且所述共同偏转角大于所述第一与第二偏转角范围限制。
115.根据权利要求114所述的方法,其中所述第一与第二频率谐波相关。
116.根据权利要求93所述的方法,其中所述第一变换器响应于第一射频驱动器,所述第一变换器具有对应于第一偏转角分辨率限制的第一频率响应限制,所述第一偏转角分辨率限制是限制由施加所述第一射频信号到所述第一变换器而产生的第一虚偏转角的第一分辨率,所述第二变换器响应于第二射频驱动器,所述第二变换器具有对应于第二偏转角分辨率限制的第二频率响应限制,所述第二偏转角分辨率限制是限制由施加所述第二射频信号到所述第二变换器而产生的第二虚偏转角的第二分辨率,所述第一与第二频率不相同或具有不同的相位,且所述共同偏转角提供比所述第一或第二分辨率更精密的共同分辨率。
117.根据权利要求116所述的方法,其中所述第一与第二变换器表面平行,其中所述第一与第二变换器调制区域基本重迭,且其中所述第一与第二射频信号的相位经过调整,以对所述共同偏转角进行微调。
118.根据权利要求116所述的方法,其中所述第一与第二变换器表面共平面,其中所述第一与第二变换器调制区域未重迭,且其中所述第一与第二频率经过调整,以对所述共同偏转角进行微调。
119.根据权利要求93所述的方法,其中所述激光束包含至少不同的第一与第二波长,且所述第一频率对所述第一波长进行调制,而所述第二频率对所述第二波长进行调制。
120.根据权利要求119所述的方法,其中所述第一与第二频率经过调整,以使所述第一与第二波长产生衍射而大致沿着共同的光束路径传播。
121.根据权利要求120所述的方法,其中所述第一与第二波长以等于或接近满足布拉格条件的角度被衍射。
122.根据权利要求93所述的方法,其中所述第一与第二频率由分开的射频驱动器产生。
123.一种声光调制器控制系统,包含:
声光调制器,其适于沿着激光器与工件之间的光束路径设置,所述声光调制器具有光束射入面、光束射出面,以及设置在第一变换器表面上的第一变换器,所述第一变换器表面位于第一平面,所述第一平面横穿所述光束射入面,所述第一变换器适于在横穿所述光束路径的第一变换器调制区域内进行调制;
第二变换器,其附着到处于第二表面的第二变换器表面,所述第二表面横穿所述光束射入面,所述第二变换器适于在横穿所述光束路径的第二变换器调制区域内进行调制;
第一射频驱动器,其包含或连通可变频率控制器,所述可变频率控制器适于将第一射频信号的第一频率施加到所述第一变换器,以在所述第一变换器调制区域内进行调制,从而影响所述光束路径沿着第一笛卡尔轴的偏转角;以及
第二射频驱动器,其包含或连通可变频率控制器,以将第二射频信号的第二频率施加到所述第二变换器来在所述第二变换器调制区域内进行调制,从而影响所述光束路径沿着所述第一笛卡尔轴的所述偏转角,以使得同时施加所述第一与第二射频信号而产生所述偏转角。
124.根据权利要求123所述的声光调制器控制系统,进一步包含:
一光束位置控制器,其协调所述第一与第二频率,以利用所述声光调制器使所述光束路径偏转,从而在由所述偏转角引起的所需光束位置冲击所述工件。
125.根据权利要求123所述的声光调制器控制系统,其中所述第一与第二射频驱动器构成一单个射频驱动器。
126.根据权利要求123所述的声光调制器控制系统,其中所述第一与第二射频驱动器构成分开的射频驱动器。
127.根据权利要求123所述的声光调制器控制系统,其中所述第一与第二射频驱动器包含不同的频率范围。
128.根据权利要求123所述的声光调制器控制系统,其中所述第一与第二频率不相同。
129.根据权利要求123所述的声光调制器控制系统,其中所述第一与第二频率是谐波相关的。
130.根据权利要求123所述的声光调制器控制系统,其中所述第一与第二频率大致为同相。
131.根据权利要求123所述的声光调制器控制系统,其中所述第一与第二频率为异相。
132.根据权利要求123所述的声光调制器控制系统,其中所述第一与第二变换器表面共平面,且其中所述第一与第二变换器调制区域未重迭。
133.根据权利要求123所述的声光调制器控制系统,其中所述第一与第二变换器表面平行,且其中所述第一与第二变换器调制区域未重迭。
134.根据权利要求123所述的声光调制器控制系统,其中所述偏转角的范围包括相对于所述第一变换器调制区域的平面达到至少100毫弧度。
135.根据权利要求123所述的声光调制器控制系统,其中所述声光调制器适于传播第一阶光束路径作为工作光束路径。
136.根据权利要求123所述的声光调制器控制系统,其中所述声光调制器适于由所述光束路径相对于所述光束射入面或所述第一变换器调制区域以等于或接近布拉格角的入射角进行冲击。
137.根据权利要求123所述的声光调制器控制系统,其中所述偏转角的范围包括相对于所述布拉格角达到至少50毫弧度。
138.根据权利要求123所述的声光调制器控制系统,其中所述第一变换器在第一布拉格角范围响应于高频驱动器,所述第二变换器在第二布拉格角范围响应于低频驱动器,所述第一布拉格角范围大于所述第二布拉格角范围。
139.根据权利要求123所述的声光调制器控制系统,其中所述声光调制器控制系统构成激光系统的一部分。
140.根据权利要求139所述的声光调制器控制系统,其中所述声光调制器适于在所述光束路径与所述工件之间产生第二范围的相对光束导向移动,且所述第一与第二变换器响应于第二移动控制信号来控制所述声光调制器的所述第二范围的相对光束导向移动,所述声光调制器控制系统进一步包含:
慢速定位器,其用于在所述光束路径与所述工件之间产生第一范围的相对移动,所述慢速定位器包含平移平台,所述平移平台能大致沿着平移轴移动;
定位信号处理器,其用于从定位命令导出第一与第二移动控制信号;以及
第一定位器驱动器,其用于响应于所述第一移动控制信号来控制所述平移平台的所述第一范围的相对光束导向移动,以使所述慢速定位器和所述声光调制器的配合偏转所述光束路径而在需要的光束位置冲击所述工件,所述第二范围的相对移动小于所述第一范围的相对移动,且所述声光调制器提供比所述平移平台所提供的相对光束导向移动更快的相对光束导向移动。
141.根据权利要求139所述的声光调制器控制系统,其中所述激光束包含至少不同的第一与第二波长,且所述声光调制器适于使所述第一频率调制所述第一波长,并使所述第二频率调制所述第二波长。
142.根据权利要求141所述的声光调制器控制系统,其中所述第一与第二射频驱动器适于调整所述第一与第二频率,以使所述第一与第二波长产生衍射而大致沿着共同的光束路径传播。
143.根据权利要求142所述的声光调制器控制系统,其中所述第一与第二波长在等于或接近满足布拉格条件的角度被衍射。
144.根据权利要求123所述的声光调制器控制系统,其中所述光束路径相对于光束射入面或所述第一变换器调制区域以等于或接近布拉格角的角度冲击所述声光调制器,施加到所述声光调制器的射频信号频率经过调制,以影响沿着所述光束路径传播到所述工件的的多个连续激光输出脉冲其中指定一个的射出角,且所述射频信号经过调制,以影响所述多个连续激光输出脉冲其中指定一个的振幅或能量,从而补偿由所述光束路径的射出角从所述布拉格角的偏移所造成的布拉格效率偏差。
145.根据权利要求123所述的声光调制器控制系统,其中所述第一变换器响应于第一射频驱动器,所述第一射频驱动器具有对应于第一偏转角范围限制的第一频率限制,所述第二变换器响应于第二射频驱动器,所述第二射频驱动器具有对应于第二偏转角范围限制的第二频率限制,所述第二频率不同于所述第一频率,且所述偏转角大于所述第一与第二偏转角范围限制。
146.根据权利要求145所述的声光调制器控制系统,其中所述第一与第二频率是谐波相关的。
147.根据权利要求123所述的声光调制器控制系统,其中所述第一变换器响应于第一射频驱动器,并且具有对应于第一偏转角分辨率限制的第一频率响应限制,所述第一偏转角分辨率限制是限制由施加所述第一射频信号到所述第一变换器而产生的第一偏转角的第一分辨率,所述第二变换器响应于第二射频驱动器,并且具有对应于第二偏转角分辨率限制的第二频率响应限制,所述第二偏转角分辨率限制限制由施加所述第二射频信号到所述第二变换器而产生的第二偏转角的第二分辨率,所述第一与第二频率不相同或具有不同的相位,且所述偏转角提供比所述第一或第二分辨率更精密的共同分辨率。
148.根据权利要求147所述的声光调制器控制系统,其中所述第一与第二变换器表面平行,其中所述第一与第二变换器调制区域基本重迭,且其中所述第一与第二射频信号的相位经过调整,以对所述偏转角进行微调。
149.根据权利要求147所述的声光调制器控制系统,其中所述第一与第二变换器表面共平面,其中所述第一与第二变换器调制区域未重迭,且其中所述第一与第二频率经过调整,以对所述偏转角进行微调。
150.根据权利要求147所述的声光调制器控制系统,其中所述第一与第二变换器表面平行,其中所述第一与第二变换器调制区域基本重迭,且其中所述第一与第二射频信号具有相同频率且相位已锁定,以提高衍射效率。
151.一种增大声光调制器中的光束偏转角范围的方法,所述声光调制器在第一表面上设置有响应于第一射频驱动器的第一变换器,所述第一变换器具有对应于第一偏转角范围的第一频率限制,所述方法包含:
沿着一光束路径产生激光束,所述光束路径在第一光束位置冲击工件;
使所述激光束传播通过沿所述光束路径设置的所述声光调制器;
控制施加到所述声光调制器上的所述第一变换器的第一射频信号的第一频率;
控制施加到位于所述声光调制器的第二表面上的第二变换器的第二射频信号的第二频率,所述第二表面大致平行于所述第一表面,或与所述第一表面共平面,所述第二变换器响应于第二射频驱动器,所述第二变换器具有对应于第二偏转角范围限制的第二频率限制,且所述第二频率不同于所述第一频率;以及
协调所述第一与第二频率,以利用所述声光调制器使所述激光束偏离所述光束路径及所述工件上的所述第一光束位置,从而在所需光束位置冲击所述工件,所述所需光束位置由超过所述第一与第二偏转角范围限制的共同偏转角引起。
152.一种增强声光调制器中的光束偏转角方向控制的方法,所述声光调制器在第一变换器表面上设置有响应于第一射频驱动器的第一变换器,所述第一变换器具有对应于第一偏转角控制限制的第一频率限制,所述方法包含:
沿着一光束路径产生激光束,所述光束路径在第一光束位置冲击工件;
使所述激光束传播通过沿着所述光束路径设置的所述声光调制器;
控制施加到所述声光调制器上的所述第一变换器的第一射频信号的第一频率;
控制施加到位于所述声光调制器的第二变换器表面上的第二变换器的第二射频信号的第二频率,所述第二变换器表面大致平行于所述第一表面,或与所述第一表面共平面,所述第二变换器响应于第二射频驱动器,所述第二变换器具有对应于第二偏转角控制限制的第二频率限制,且所述第一与第二频率不相同或具有不同的相位;以及
协调所述第一与第二频率,以利用所述声光调制器使所述激光束偏离所述光束路径及所述工件上的所述第一光束位置,从而在所需光束位置冲击所述工件,所述所需光束位置由共同偏转角引起,所述共同偏转角无法独立由所述第一变换器或第二变换器获得。
153.一种增强来自声光调制器的光束定位控制的方法,所述声光调制器适于沿着激光器与工件之间的光束路径设置,所述工件具有第一与第二横向表面轴,所述声光调制器具有一光束射入面、一光束射出面及第一变换器,所述第一变换器设置于所述声光调制器的第一变换器表面上,所述第一变换器表面位于第一平面,所述第一平面横穿所述光束射入面,所述方法包含:
沿着一冲击工件的光束路径产生激光束;
使所述激光束传播通过沿所述光束路径设置的所述声光调制器;
控制施加到所述第一变换器的第一射频信号的第一频率,所述第一变换器在横穿过所述光束路径的第一变换器调制区域内进行调制,以影响沿着所述第一表面轴的光束路径的第一射出角;
控制施加到位于所述声光调制器的第二变换器表面上的第二变换器的第二射频信号的第二频率,所述第二变换器表面位于第二平面中,所述第二平面横穿所述光束射入面及所述第一平面,所述第二变换器在横穿所述第一变换器调制区域及横穿所述光束路径的第二变换器调制区域内进行调制,以影响沿着所述第二表面轴的光束路径的第二射出角;以及
协调所述第一与所述第二频率,以沿着所述第一与第二表面轴偏转所述光束路径,从而在所需光束位置以共同偏转角冲击所述工件,所述共同偏转角由响应于所述第一与第二射频信号的所述第一与第二频率的所述第一与第二变换器提供的所述第一与第二射出角形成。
154.根据权利要求153所述的方法,其中所述第一与第二变换器调制区域大致正交。
155.根据权利要求153所述的方法,其中所述第一与第二变换器调制区域相交。
156.根据权利要求153所述的方法,其中所述第一与第二频率不相同。
157.根据权利要求153所述的方法,其中冲击所述工件的所述光束路径包含自所述声光调制器传播的第一阶光束路径。
158.根据权利要求153所述的方法,其中冲击所述工件的所述光束路径包含自所述声光调制器传播的第零阶光束路径。
159.根据权利要求153所述的方法,其中所述光束路径以大致垂直于所述光束射入面的角度冲击所述声光调制器。
160.根据权利要求153所述的方法,其中所述光束路径相对于所述光束射入面或所述第一变换器调制区域以等于或接近布拉格角的入射角冲击所述声光调制器。
161.根据权利要求160所述的方法,其中所述第一与第二射频信号具有各自的第一与第二振幅,且所述第一及/或第二振幅经过调整,以补偿由所述光束路径的第一及/或第二射出角从所述布拉格角偏移所造成的布拉格效率偏差。
162.根据权利要求153所述的方法,其中第三射频信号的第三频率被施加到设置于所述声光调制器的第三变换器表面上的第三变换器,所述第三变换器表面大致横穿所述光束射入面,且所述第三变换器在第三变换器调制区域内进行调制,所述第三变换器调制区域横穿所述光束路径并影响所述第一射出角,使得所述第一与第三射频信号共同控制所述第一射出角。
163.根据权利要求162所述的方法,其中所述第一与第三变换器调制区域大致平行。
164.根据权利要求162所述的方法,其中所述第一与第三变换器表面共平面。
165.根据权利要求162所述的方法,其中所述第三变换器隔离设置,并相对于所述第一变换器成一倾斜角定向,使得所述第一与第三变换器调制区域不平行且未重迭,其中所述倾斜角小于或等于5度。
166.根据权利要求162所述的方法,其中所述第一与第三频率不相同。
167.根据权利要求162所述的方法,其中所述第一与第三频率相同。
168.根据权利要求163所述的方法,其中所述第一与第三频率大致为谐波相关的。
169.根据权利要求162所述的方法,其中所述第一与第三频率具有不同的相位。
170.根据权利要求163所述的方法,其中所述第一与第二频率大致同相。
171.根据权利要求162所述的方法,其中所述光束路径相对于所述光束射入面或所述第一变换器调制区域以等于或接近布拉格角的入射角冲击所述声光调制器。
172.根据权利要求162所述的方法,其中所述第一与第三射频信号协作,以在超过所述第一或第三变换器所能独自提供的分辨率控制所述第一射出角。
173.根据权利要求162所述的方法,其中所述第一与第三射频信号协作来控制所述第一射出角,从而包括共同偏转角范围,其超过所述第一或第三变换器所能独自提供的偏转角范围。
174.根据权利要求153所述的方法,进一步包含:
提供来自于定位信号处理器的第一和第二移动控制信号;
利用第一定位器驱动器,响应于所述第一移动控制信号,大致沿着平移轴控制一平移平台的第一范围的相对光束导向移动;
利用所述第一及/或第二变换器,响应于所述第二移动控制信号,控制所述声光调制器的第二范围的相对光束导向移动,所述第二范围的相对移动小于所述第一范围的相对移动,且所述声光调制器提供比所述平移平台所提供的相对光束导向移动更快的相对光束导向移动;
在所述光束路径与所述平移平台上的所述工件之间,产生所述第一范围的相对光束导向移动;以及
利用所述声光调制器,在所述光束路径与所述工件之间,产生所述第二范围的相对光束导向移动,从而在需要的光束位置冲击所述工件。
175.根据权利要求174所述的方法,进一步包含:
取得关于所述光束路径与所述需要的光束位置之间差值的误差信息;以及
将所述误差信息传送到所述第一及/或第二变换器,以补偿所述光束路径与所述需要的光束位置之间的差值。
176.根据权利要求174所述的方法,进一步包含:
取得关于沿着扫描线的光束路径与离轴但平行于所述扫描线的需要的光束位置之间差值的离轴信息;以及
将所述离轴信息传送到所述第一及/或第二变换器,以使所述激光束偏转,从而冲击所述工件上方平行于所述扫描线的所述需要的光束位置。
177.一种用于控制声光调制器的声光调制器控制系统,所述声光调制器适于沿着激光器与工件之间的光束路径设置,所述声光调制器具有光束射入面、光束射出面以及设置在第一变换器表面上的第一变换器,所述第一变换器表面位于第一平面中,所述第一平面横穿所述光束射入面,所述第一变换器适于在第一变换器调制区域内进行调制,且所述第一变换器调制区域横穿所述光束路径,所述声光调制器控制系统包含:
第二变换器,其附着到位于第二表面中的第二变换器表面,所述第二表面横穿所述光束射入面,所述第二变换器适于在横穿所述光束路径的第二变换器调制区域内进行调制;
第一射频驱动器,其包含或连通第一可变频率控制器,所述第一可变频率控制器适于将第一射频信号的第一频率施加到所述第一变换器,并在所述第一变换器调制区域内进行调制,以影响所述光束路径沿着第一笛卡尔轴的第一射出角;以及
第二射频驱动器,其包含或连通第二可变频率控制器,以将第二射频信号的第二频率施加到所述第二变换器,从而在横穿所述第一变换器调制区域的第二变换器调制区域内进行调制,以影响所述光束路径沿着第二笛卡尔轴的第二射出角,且所述第二笛卡尔轴横穿所述第一笛卡尔轴,使得同时施加所述第一与第二射频信号产生共同偏转角。
178.根据权利要求177所述的声光调制器控制系统,其中所述第一与第二变换器调制区域大致正交。
179.根据权利要求177所述的声光调制器控制系统,其中所述第一与第二变换器调制区域相交。
180.根据权利要求177所述的声光调制器控制系统,其中所述第一与第二射频驱动器适于提供独立的第一与第二频率。
181.根据权利要求177所述的声光调制器控制系统,进一步包含一光束定位控制器,用以协调所述第一与第二频率,从而利用所述声光调制器使所述激光束从所述光束路径偏转,以在所述共同偏转角造成的所需光束位置冲击所述工件。
182.根据权利要求177所述的声光调制器控制系统,其中所述声光调制器适于被设置成使第一阶光束沿着所述光束路径传播。
183.根据权利要求177所述的声光调制器控制系统,其中所述声光调制器适于被设置成使第零阶光束沿着所述光束路径传播。
184.根据权利要求177所述的声光调制器控制系统,其中所述声光调制器适于被设置成使所述光束路径以大致垂直于所述光束射入面的角度冲击所述声光调制器。
185.根据权利要求177所述的声光调制器控制系统,其中所述声光调制器适于由所述光束路径相对于所述光束射入面或所述第一变换器调制区域以等于或接近布拉格角的入射角冲击所述声光调制器。
186.根据权利要求185所述的声光调制器控制系统,其中所述第一与第二射频驱动器适于调整所述第一射频信号的第一振幅以及所述第二射频信号的第二振幅,以补偿所述光束路径的第一及/或第二射出角从所述布拉格角偏移所造成的布拉格效率偏差。
187.根据权利要求177所述的声光调制器控制系统,进一步包含:
第三变换器,其设置于处于第三平面中的第三变换器表面上,用于在第三变换器调制区域进行调制,所述第三平面大致横穿所述光束射入面;以及
第三射频驱动器,其调制施加到所述第三变换器的第三射频信号的第三频率,从而在所述第三变换器调制区域内进行调制,所述第三变换器调制区域横穿所述光束路径并影响所述第一射出角,使得所述第一与第三射频信号协作来控制所述第一射出角。
188.根据权利要求187所述的声光调制器控制系统,其中所述第一与第三变换器调制区域大致平行。
189.根据权利要求187所述的声光调制器控制系统,其中所述第一与第三变换器表面共平面。
190.根据权利要求187所述的声光调制器控制系统,其中所述第三变换器隔离设置,并相对于所述第一变换器成一倾斜角定向,使得所述第一与第三变换器调制区域不平行且未重迭,其中所述倾斜角小于或等于5度。
191.根据权利要求187所述的声光调制器控制系统,其中所述第一与第三射频驱动器适于提供不同的第一与第三频率。
192.根据权利要求187所述的声光调制器控制系统,其中所述第一与第三频率相同。
193.根据权利要求188所述的声光调制器控制系统,其中所述第一与第三射频驱动器适于提供大致谐波相关的第一与第三频率。
194.根据权利要求187所述的声光调制器控制系统,其中所述第一与第三射频驱动器适于提供相位不同的第一与第三频率。
195.根据权利要求188所述的声光调制器控制系统,其中所述第一与第三射频驱动器适于提供大致为同相的第一与第二频率。
196.根据权利要求187所述的声光调制器控制系统,其中所述声光调制器适于由所述光束路径相对于所述光束射入面或所述第一变换器调制区域以等于或接近布拉格角的入射角冲击所述声光调制器。
197.根据权利要求187所述的声光调制器控制系统,其中所述第一与第三射频信号适于协作来控制所述第一射出角,从而在超过所述第一或第三变换器所能独自提供的分辨率包括共同偏转角。
198.根据权利要求187所述的声光调制器控制系统,其中所述第一与第三射频信号适于协作来控制所述第一射出角,从而包括共同偏转角范围,该范围超过所述第一或第三变换器所能独自提供的偏转角范围。
199.一种增强光束定位控制且来自声光调制器的方法,所述声光调制器适于沿着激光器与工件之间的光束路径设置,所述声光调制器具有一光束射入面、一光束射出面及第一变换器调制区域,所述第一变换器调制区域横穿所述光束路径,并影响沿着第一工件轴的所述光束路径相对于所述工件的表面的偏转,所述方法包含:
沿着一光束路径产生激光束,所述光束路径在标称光束位置冲击工件;
使所述激光束传播通过沿着所述光束路径设置的所述声光调制器的所述射入面,所述光束路径相对于所述声光调制器的所述光束射入面以等于或接近布拉格角的入射角冲击所述声光调制器,且所述光束路径以相对于所述光束射出面的射出角离开所述声光调制器,所述布拉格角与第一布拉格效率相关联,其中将所述光束路径从所述布拉格角偏离会使布拉格效率降低至第二布拉格效率,所述布拉格效率为所述射出角偏移所述布拉格角的角度的函数,所述第二布拉格效率低于所述第一布拉格效率;
控制施加到第一变换器的第一射频信号的第一频率,所述第一变换器设置于所述声光调制器的第一变换器表面上,所述第一变换器表面横穿所述光束射入面,且所述第一变换器在所述第一变换器调制区域内进行调制,以利用所述声光调制器使所述光束路径偏移所述布拉格角;
控制位于所述声光调制器上游的布拉格调整装置,以使所述声光调制器的所述光束射入面的入射角偏移,从而减少由所述射出角的偏移所造成的布拉格效率损失;以及
协调所述入射角的偏移以及所述第一射频信号的所述第一频率,以使所述光束路径从所述工件上的所述标称光束位置转向,从而在所需光束位置冲击所述工件,其中所述所需光束位置由所述布拉格调整装置及所述声光调制器提供的共同偏转角造成,其中整体布拉格效率高于所述第二布拉格效率。
200.根据权利要求199所述的方法,其中所述声光调制器为第一声光调制器,且所述上游的布拉格调整装置包含第二声光调制器,所述方法进一步包含:
控制施加到位于所述第二声光调制器的第二变换器表面上的第二变换器的第二射频信号的第二频率,且所述第二变换器在所述第二变换器调制区域内进行调制,并且影响沿着所述第一工件轴的所述光束路径的偏转;以及
协调所述第一与第二射频信号,使所述激光束偏离所述工件上的所述标称光束位置,从而于所需光束位置冲击所述工件,所述所需光束位置由所述第一与第二射频信号提供的所述共同偏转角所造成。
201.根据权利要求199所述的方法,其中所述上游的布拉格调整装置包含一个或更多个检流计或一个快速操控反射镜。
202.根据权利要求199所述的方法,其中所述上游的布拉格调整装置用于补偿与射出孔的背面焦点的偏移有关的效应。
203.根据权利要求199所述的方法,其中所述上游的布拉格调整装置用于补偿将所述声光调制器定位在某个地方,其不符合所述声光调制器上的射出孔的背面焦点的标准。
204.根据权利要求199所述的方法,其中所述上游的布拉格调整装置用于补偿长期漂移或关于光束定位的校正。
205.根据权利要求199所述的方法,其中所述激光束包含紫外波长。
206.根据权利要求200所述的方法,其中所述激光束包含紫外波长。
207.根据权利要求200所述的方法,其中所述第二声光调制器用于补偿与所述第一声光调制器上的射出孔的背面焦点的偏移有关的效应。
208.根据权利要求200所述的方法,其中所述上游的布拉格第二声光调制器用于将所述声光调制器定位在某个地方,其不符合所述第一声光调制器上的射出孔的背面焦点的标准。
209.根据权利要求200所述的方法,其中所述第一频率与所述第二频率不相同。
210.根据权利要求199所述的方法,其中所述共同偏转角的范围大于100毫弧度。
211.根据权利要求200所述的方法,其中冲击所述工件的所述光束路径包含从所述第一与第二声光调制器传播的第一阶光束路径。
212.根据权利要求200所述的方法,其中所述光束路径相对于所述第二声光调制器的光束射入面以等于或接近布拉格角的入射角冲击所述第二声光调制器。
213.根据权利要求200所述的方法,其中所述第一变换器与第二变换器具有不同尺寸。
214.根据权利要求200所述的方法,其中所述第二变换器在第一光束范围响应于第一频率驱动器,所述第一变换器在第二微调范围响应于第二频率驱动器,所述第一频率驱动器是相对于所述第二频率驱动器的更高频率驱动器,所述第一光束范围大于所述第二微调范围。
215.根据权利要求200所述的方法,其中所述第二变换器以第一振幅响应第一频率驱动器,所述第一变换器以第二振幅响应第二频率驱动器,所述第一振幅高于所述第二振幅。
216.根据权利要求199所述的方法,进一步包含:
提供来自于定位信号处理器的第一和第二移动控制信号;
利用第一定位驱动器,响应于所述第一移动控制信号,大致沿着一平移轴控制一平移平台的第一范围的相对光束导向移动;
利用所述第一及/或第二变换器,响应于所述第二移动控制信号,控制所述声光调制器的第二范围的相对光束导向移动,所述第二范围的相对移动小于所述第一范围的相对移动,且所述声光调制器提供比所述平移平台所提供的相对光束导向移动更快的相对光束导向移动;
在所述光束路径与所述平移平台上的所述工件之间产生所述第一范围的相对光束导向移动;以及
利用所述声光调制器,在所述光束路径与所述工件之间产生所述第二范围的相对光束导向移动,以在需要的光束位置冲击所述工件。
217.根据权利要求216所述的方法,进一步包含:
取得关于所述光束路径与所述需要的光束位置之间差值的误差信息;以及
以直接或间接方式,将所述误差信息传送到所述第一及/或第二变换器,以补偿所述光束路径与所述需要的光束位置之间的差值。
218.根据权利要求216所述的方法,进一步包含:
取得关于沿着扫描线的所述光束路径与离轴但平行于所述扫描线的需要的光束位置之间差值的离轴信息;以及
将所述离轴信息传送到所述第一及/或第二变换器,以使所述激光束偏转,从而在所述工件上方冲击平行于所述扫描线的所述需要的光束位置。
219.根据权利要求200所述的方法,其中所述第一或第二变换器独自无法获得所述共同偏转角。
220.根据权利要求200所述的方法,其中所述激光束包含至少不同的第一与第二波长,且所述第二频率对所述第一波长进行调制,而所述第一频率对所述第二波长进行调制。
221.根据权利要求220所述的方法,其中所述第一与第二频率经过调整,以使所述第一与第二波长产生衍射,从而大致沿着相同的光束路径传播。
222.根据权利要求220所述的方法,其中所述第一与第二波长以满足布拉格条件的角度或接近满足布拉格条件的角度产生衍射。
223.一种声光调制器控制系统,包含:
第一声光调制器,其适于沿着激光器与工件之间的光束路径设置,所述第一声光调制器具有第一光束射入面、第一光束射出面以及第一变换器调制区域,所述第一变换器调制区域适于横穿所述光束路径;
第一变换器,其附着到横穿所述第一光束射入面的第一变换器表面;
第一射频驱动器,其包含或连通第一可变频率控制器,以将第一射频信号的第一频率施加到所述第一变换器,从而在所述第一变换器调制区域内进行调制,其中所述第一频率可影响从所述第一光束射出面射出的光束路径的第一偏转角;
第二声光调制器,其适于沿着所述第一声光调制器与所述工件之间的光束路径设置,所述第二声光调制器具有第二光束射入面、第二光束射出面以及第二变换器调制区域,所述第一变换器调制区域适于横穿所述光束路径;
第二变换器,其附着到第二变换器表面,所述第二变换器表面横穿所述第二光束射入面;以及
第二射频驱动器,其包含或连通第二可变频率控制器,以将第二射频信号的第二频率施加到所述第二变换器,从而在所述第二变换器调制区域内进行调制,其中所述第二频率可影响从所述第二光束射出面射出的光束路径的第二偏转角,其中所述第一与第二声光调制器沿着所述光束路径设置,使得所述第一与第二变换器调制轴影响沿着相对于所述工件表面的共同工件轴的光束路径的偏转,以致于所述第一与第二偏转角协作来为所述光束路径提供共同的偏转角。
224.根据权利要求223所述的声光调制器控制系统,进一步包含一控制器,其用于同时施加所述第一与第二射频信号,而形成所述共同的偏转角。
225.根据权利要求223所述的声光调制器控制系统,其中所述第一声光调制器适于使所述第二声光调制器的第二光束射入面上的光束路径的第二入射角偏移,以降低所述第二偏转角的偏移所造成的布拉格效率损失。
226.根据权利要求225所述的声光调制器控制系统,其中所述光束路径的所述第一与第二入射角被校正为相对于所述声光调制器的光束射入面与光束射出面等于或接近布拉格角,所述布拉格角与第一布拉格效率相关联,其中使所述光束路径偏离所述布拉格角会使布拉格效率降低至第二布拉格效率,所述布拉格效率为各射出角偏移所述布拉格角的偏移角度的函数,所述第二布拉格效率低于所述第一布拉格效率,且其中所述控制系统适于协调所述第二入射角的偏移以及所述第二射频信号的第二频率,以使所述光束路径偏离所述工件上的标称光束位置,从而在所需光束位置冲击所述工件,其中所述所需光束位置由所述第一与第二声光调制器提供的共同偏转角所造成,其中整体布拉格效率高于所述第二布拉格效率。
227.根据权利要求223所述的声光调制器控制系统,其中所述第一与第二射频驱动器不相同。
228.根据权利要求29所述的声光调制器控制系统,其中所述第一与第二频率不相同。
229.根据权利要求223所述的声光调制器控制系统,其中所述共同偏转角的范围大于100毫弧度。
230.根据权利要求223所述的声光调制器控制系统,其中所述声光调制器控制系统构成激光系统的一部分。
231.根据权利要求230所述的声光调制器控制系统,其中冲击所述工件的所述光束路径包含从所述第一与第二声光调制器传播的第一阶光束路径。
232.根据权利要求223所述的声光调制器控制系统,其中所述声光调制器适于在所述光束路径与所述工件之间产生第二范围的相对光束导向移动,且所述第一与第二变换器响应于第二移动控制信号来控制所述声光调制器的所述第二范围的相对光束导向移动,所述系统进一步包含:
慢速定位器,其用于在所述光束路径与所述工件之间产生第一范围的相对移动,所述慢速定位器包含平移平台,所述平移平台能大致沿着平移轴移动;
定位信号处理器,其用于从定位命令导出第一与第二移动控制信号;以及
第一定位器驱动器,其用于响应于所述第一移动控制信号来控制所述平移平台的第一范围的相对光束导向移动,使得所述慢速定位器与所述声光调制器的协调使所述光束路径偏转,以在需要的光束位置冲击所述工件,所述第二范围的相对移动小于所述第一范围的相对移动,且所述声光调制器提供比所述平移平台所提供的相对光束导向移动更快的相对光束导向移动。
233.根据权利要求223所述的声光调制器控制系统,其中所述激光束包含至少不同的第一与第二波长,且所述第一频率调制所述第一波长,所述第二频率调制所述第二波长。
234.根据权利要求233所述的声光调制器控制系统,其中所述第一与第二频率经过调整,使所述第一与第二波长产生衍射,以大致沿着相同的光束路径传播。
235.根据权利要求234所述的声光调制器控制系统,其中所述第一与第二波长以满足布拉格条件的角度或接近满足布拉格条件的角度产生衍射。
236.一种增强声光调制器性能的方法,所述声光调制器适于沿着激光器与工件之间的光束路径设置,所述声光调制器具有一光束射入面、一光束射出面及第一变换器,所述第一变换器设置于所述声光调制器的第一变换器表面上,所述第一变换器表面位于第一平面中,所述第一平面横穿所述光束射入面,所述方法包含:
沿着冲击所述工件的一光束路径产生一激光束;
使所述激光束传播通过沿着所述光束路径设置的所述声光调制器;
控制施加到所述第一变换器的第一射频信号的第一频率的施加,所述第一变换器在横穿所述光束路径的第一变换器调制区域内进行调制,以影响沿着相对于所述工件表面的第一工件轴的光束路径的第一偏转角;
控制施加到位于所述声光调制器的第二变换器表面上的第二变换器的第二射频信号的第二频率的施加,所述第二变换器表面位于横穿所述光束射入面的第二平面中,且所述第二变换器在横穿所述光束路径的第二变换器调制区域内进行调制,以影响沿着所述第一工件轴的光束路径的第二偏转角,所述第二变换器隔离设置,并相对于所述第一变换器成一倾斜角定向,使得所述第一与第二变换器调制区域不平行,其中所述倾斜角小于或等于5度;以及
协调所述第一和/或第二射频信号的施加,以使所述激光光束偏转,从而在需要的光束位置冲击所述工件,所述需要的光束位置由于所述第一与第二频率其中之一或两者的施加而引起,以便提供因施加所述第一与/或第二射频信号所形成的偏转传播方向。
237.根据权利要求236所述的方法,其中所述第一与第二变换器调制区域未重迭。
238.根据权利要求236所述的方法,其中所述第一与第二平面相互横穿,且其中所述光束射入面与所述光束射出面具有不平行的平面,其中所述第一变换器调制区域大致平行于所述光束射入面,且其中所述第二变换器调制区域大致平行于所述光束射出面。
239.根据权利要求236所述的方法,其中所述倾斜角在0.1度至3度之间。
240.根据权利要求239所述的方法,其中所述倾斜角在0.5度至2.5度之间。
241.根据权利要求236所述的方法,其中所述第一与第二频率不相同。
242.根据权利要求236所述的方法,其中所述光束路径相对于所述光束射入面或所述第一变换器调制区域以等于或接近布拉格角的入射角冲击所述声光调制器。
243.根据权利要求242所述的方法,其中所述偏转传播方向的范围包括相对于所述布拉格角达到至少100毫弧度。
244.根据权利要求236所述的方法,其中所述第一变换器在第一布拉格角范围响应于高频驱动器,所述第二变换器则在第二布拉格角范围响应于低频驱动器,所述第一布拉格角范围大于所述第二布拉格角范围。
245.根据权利要求236所述的方法,进一步包含:
提供来自于定位信号处理器的第一和第二移动控制信号;
利用第一定位器驱动器,响应于所述第一移动控制信号,大致沿着一平移轴控制一平移平台的第一范围的相对光束导向移动;
利用所述第一及/或第二变换器,响应于所述第二移动控制信号,控制所述声光调制器的第二范围的相对光束导向移动,所述第二范围的相对移动小于所述第一范围的相对移动,且所述声光调制器提供比所述平移平台所提供的相对光束导向移动更快的相对光束导向移动;
在所述光束路径与所述平移平台上的所述工件之间,产生所述第一范围的相对光束导向移动;以及
利用所述声光调制器,在所述光束路径与所述工件之间,产生所述第二范围的相对光束导向移动,以便在需要的光束位置冲击所述工件。
246.根据权利要求245所述的方法,进一步包含:
取得关于所述光束路径与所述需要的光束位置之间差值的误差信息;以及
以直接或间接方式,将所述误差信息传送到所述第一及/或第二变换器,以补偿所述光束路径与所述需要的光束位置之间的差值。
247.根据权利要求245所述的方法,进一步包含:
取得关于沿着扫描线的光束路径与离轴但平行于所述扫描线的所述需要的光束位置之间差值的离轴信息;以及
将所述离轴信息传送到所述第一及/或第二变换器,以使所述激光束偏转,从而在所述工件上方冲击平行于所述扫描线的所述需要的光束位置。
248.根据权利要求236所述的方法,其中所述偏转传播方向具有大于所述第一或第二偏转角中的任一个的扫描范围,同时限制布拉格效率约束所导致的损耗。
249.根据权利要求236所述的方法,其中所述激光束包含至少不同的第一与第二波长,且所述第一频率对所述第一波长进行调制,而所述第二频率对所述第二波长进行调制。
250.根据权利要求249所述的方法,其中所述第一与第二频率经过调整,以使所述第一与第二波长产生衍射而大致沿着共同的光束路径传播。
251.根据权利要求250所述的方法,其中所述第一与第二波长以满足布拉格条件的角度或接近满足布拉格条件的角度产生衍射。
252.根据权利要求236所述的方法,其中所述第二变换器包含多个各自的变换器其中之一,使得每一个所述各自的变换器响应于施加到位于所述声光调制器的各自变换器表面上的各自变换器的各自射频信号的各自频率,所述各自变换器表面位于横穿所述光束射入面的各自平面中,所述各自变换器设置于各自距离之处,所述各自距离从所述光束射入面增加,且所述各自变换器在各自变换器调制区域内进行调制,所述各自变换器调制区域横穿所述光束路径,以影响所述光束路径沿着所述第一工件轴的各自偏转角,所述各自变换器彼此相隔,并相对于所述第一变换器成各自的倾斜角定向,以使得所述第一与各自变换器调制区域不平行,其中所述各自的倾斜角小于或等于5度。
253.根据权利要求252所述的方法,其中所述各自的倾斜角随着各自距离增加而减小。
254.根据权利要求253所述的方法,其中所述各自频率随着各自距离增加而降低。
255.根据权利要求252所述的方法,进一步包含:
选择所述各自变换器其中之一当作所述第二变换器,以达到需要的偏转传播方向。
256.根据权利要求252所述的方法,其中所述各自的倾斜角中至少两个不相同。
257.根据权利要求256所述的方法,其中在不同倾斜角对准的所述各自变换器由具有不同频率范围的射频驱动器进行驱动。
258.根据权利要求252所述的方法,其中所述各自变换器调制区域其中之一为第二变换器调制区域,其中所述各自变换器调制区域其中之一为第三变换器调制区域,所述第三变换器调制区域由第三变换器的第三倾斜角形成,其中所述第二变换器调制区域设置于所述第一与第三变换器调制区域之间,且其中所述第三倾斜角大于所述第二变换器的所述倾斜角。
259.根据权利要求252所述的方法,其中所述光束射入面与所述光束射出面具有平行的平面。
260.根据权利要求252所述的方法,其中所述光束射出面位于后平面中,所述后平面与所述光束射入面的前平面呈一端面角,且所述端面角为90度与90度±所述各自变换器的倾斜角的各自总和的平均值。
261.根据权利要求252所述的方法,其中所述各自的倾斜角其中之一包含大于其他倾斜角的主倾斜角,其中所述光束射出面位于后平面中,所述后平面与所述光束射入面的前平面呈一端面角,且其中所述端面角小于90度加上所述主倾斜角。
262.根据权利要求236所述的方法,进一步包含:
控制施加到位于所述声光调制器的第三变换器表面上的第三变换器的第三射频信号的第三频率,所述第三变换器表面位于第三平面中,所述第三平面横穿所述光束射入面且横穿所述第一平面,且所述第三变换器在横穿所述光束路径并与所述第一变换器调制区域相交的第三变换器调制区域内进行调制,以影响沿着第二工件轴的光束路径的第三偏转角;
控制施加到位于所述声光调制器的第四变换器表面上的第四变换器的第四射频信号的第四频率,所述第四变换器表面位于第四平面中,所述第四平面横穿所述光束射入面及所述第二平面,且所述第四变换器在横穿所述光束路径并与所述第二变换器调制区域相交的第四变换器调制区域内进行调制,以影响沿着所述第二工件轴的光束路径的第四偏转角,所述第四变换器隔离设置,并相对于所述第三变换器成第二倾斜角定向,使得所述第三与第四变换器调制区域不平行,其中所述第二倾斜角小于或等于5度;以及
协调所述第三与第四射频信号,以使所述激光束偏转,从而在所述需要的光束位置冲击所述工件,所述需要的光束位置由所述偏转传播方向造成,所述偏转传播方向由所述第一、第二、第三和第四射频信号所分别提供的所述第一、第二、第三和第四偏转角形成。
263.根据权利要求262所述的方法,其中所述倾斜角与所述第二倾斜角不相同。
264.根据权利要求262所述的方法,其中所述倾斜角与所述第二倾斜角大约相同。
265.根据权利要求262所述的方法,其中所述第三与第四平面相互横穿,其中所述第三变换器调制区域大致平行于所述光束射入面,且其中所述第四变换器调制区域大致平行于所述光束射出面。
266.根据权利要求236所述的方法,进一步包含:
施加所述第一频率,以产生所述第一偏转角;
施加所述第二频率,以产生所述第二偏转角;以及
协调所述第一与第二射频信号的频率,以使所述激光束以所述第一与第二射频信号提供的第一与第二偏转角所形成的共同偏转角偏转。
267.根据权利要求266所述的方法,其中所述光束路径相对于所述光束射入面或所述第一变换器调制区域以等于或接近布拉格角的入射角冲击所述声光调制器,且其中所述第一与第二频率提供各自第一与第二偏转角,所述各自第一与第二偏转角等于或接近满足布拉格条件的各自第一阶或更高阶的光束路径。
268.根据权利要求252所述的方法,进一步包含:
施加所述第一频率,以产生所述第一偏转角;
施加所述第二频率,以产生所述第二偏转角;以及
协调所述第一与第二射频信号的频率,以使所述激光束以所述第一与第二射频信号提供的第一与第二偏转角所形成的共同偏转角偏转。
269.根据权利要求262所述的方法,进一步包含:
施加所述第一频率,以产生所述第一偏转角;
施加所述第二频率,以产生所述第二偏转角;以及
协调所述第一与第二射频信号的频率,以使所述激光束以所述第一与第二射频信号提供的第一与第二偏转角所形成的共同偏转角偏转。
270.根据权利要求236所述的方法,进一步包含:
施加所述第一射频信号,同时阻止施加所述第二射频信号,以便达到偏转传播方向,或者施加所述第二射频信号,同时阻止施加所述第一射频信号,以便达到偏转传播方向。
271.根据权利要求270所述的方法,其中所述光束路径相对于所述光束射入面或所述第一变换器调制区域以等于或接近布拉格角的入射角冲击所述声光调制器,其中所述第一与第二变换器调制区域共享共同的第零阶光束路径,其中所述第一频率控制所述第一偏转角,使其接近来自所述第一变换器调制区域的第一阶光束路径,且其中所述第二频率控制所述第二偏转角,使其位于或接近来自所述第二变换器调制区域的第一阶光束路径。
272.根据权利要求252所述的方法,进一步包含:
施加所述第一射频信号,同时阻止施加所述第二射频信号,以便达到偏转传播方向,或者施加所述第二射频信号,同时阻止施加所述第一射频信号,以便达到偏转传播方向。
273.根据权利要求272所述的方法,其中所述光束路径相对于所述光束射入面或所述第一变换器调制区域以等于或接近布拉格角的入射角冲击所述声光调制器,其中所述第一与第二变换器调制区域共享共同的第零阶光束路径,其中所述第一频率控制所述第一偏转角,使其接近来自所述第一变换器调制区域的第一阶光束路径,且其中所述第二频率控制所述第二偏转角,使其位于或接近来自所述第二变换器调制区域的第一阶光束路径。
274.根据权利要求262所述的方法,进一步包含:
施加所述第一射频信号,同时阻止施加所述第二射频信号,以便达到偏转传播方向,或者施加所述第二射频信号,同时阻止施加所述第一射频信号,以便达到偏转传播方向。
275.根据权利要求274所述的方法,其中所述光束路径相对于所述光束射入面或所述第一变换器调制区域以等于或接近布拉格角的入射角冲击所述声光调制器,其中所述第一与第二变换器调制区域共享共同的第零阶光束路径,其中所述第一频率控制所述第一偏转角,使其接近来自所述第一变换器调制区域的第一阶光束路径,且其中所述第二频率控制所述第二偏转角,使其位于或接近来自所述第二变换器调制区域的第一阶光束路径。
276.根据权利要求236所述的方法,进一步包含:
施加所述第一频率,以产生所述第一偏转角,同时以具有布拉格效率实质为零的一个或更多个频率施加所述第二频率;或
施加所述第二频率,以产生所述第二偏转角,同时以具有布拉格效率实质为零的一个或更多个频率施加所述第一频率。
277.根据权利要求252所述的方法,进一步包含:
施加所述第一频率,以产生所述第一偏转角,同时以具有布拉格效率实质为零的一个或更多个频率施加所述第二频率;或
施加所述第二频率,以产生所述第二偏转角,同时以具有布拉格效率实质为零的一个或更多个频率施加所述第一频率。
278.根据权利要求262所述的方法,进一步包含:
施加所述第一频率,以产生所述第一偏转角,同时以具有布拉格效率实质为零的一个或更多个频率施加所述第二频率;或
施加所述第二频率,以产生所述第二偏转角,同时以具有布拉格效率实质为零的一个或更多个频率施加所述第一频率。
279.根据权利要求276所述的方法,其中所述第一与第二变换器调制区域未重迭。
280.根据权利要求276所述的方法,其中所述第一与第二平面相互横穿,且其中所述光束射入面与所述光束射出面具有不平行的平面,其中所述第一变换器调制区域大致平行于所述光束射入面,且其中所述第二变换器调制区域大致平行于所述光束射出面。
281.根据权利要求276所述的方法,其中所述倾斜角在0.1度至3度之间。
282.根据权利要求281所述的方法,其中所述倾斜角在0.5度至2.5度之间。
283.根据权利要求276所述的方法,其中所述光束路径相对于所述光束射入面或所述第一变换器调制区域以等于或接近布拉格角的入射角冲击所述声光调制器。
284.根据权利要求283的方法,其中所述偏转传播方向的范围包括相对于所述布拉格角达到至少100毫弧度。
285.根据权利要求276所述的方法,其中所述第一变换器与第二变换器响应于具有不同范围的频率驱动器。
286.一种声光调制器,适于沿着激光器与工件之间的光束路径设置,所述声光调制器具有光束射入面、光束射出面,以及设置在所述声光调制器的第一变换器表面上的第一变换器,所述第一变换器表面位于第一平面中,所述第一平面横穿所述光束射入面,所述第一变换器适于在横穿所述光束路径的第一变换器调制区域内进行调制,以影响沿着第一笛卡尔轴的光束路径的第一偏转角,所述声光调制器包含:
第二变换器,其位于所述声光调制器的第二变换器表面上,所述第二变换器表面位于横穿所述光束射入面的第二平面中,所述第二变换器适于在横穿所述光束路径的第二变换器调制区域内进行调制,以影响沿着所述第一笛卡尔轴的光束路径的第二偏转角,所述第二变换器隔离设置,并相对于所述第一变换器成一倾斜角定向,使得所述第一与第二变换器调制区域不平行。
287.根据权利要求286所述的声光调制器,其中所述第一与第二变换器调制区域未重迭。
288.根据权利要求286所述的声光调制器,其中所述第一与第二平面相互横穿,且其中所述光束射入面与所述光束射出面具有不平行的平面,其中所述第一变换器调制区域大致平行于所述光束射入面,且其中所述第二变换器调制区域大致平行于所述光束射出面。
289.根据权利要求286所述的声光调制器,其中所述倾斜角在0.1度至3度之间。
290.根据权利要求289所述的声光调制器,其中所述倾斜角在0.5度至2.5度之间。
291.根据权利要求286所述的声光调制器,其中所述声光调制器构成声光调制器控制系统的一部分,其进一步包含:
第一射频驱动器,其包含或速通可变频率控制器,以将第一射频信号的第一频率施加到所述第一变换器,从而调制所述第一变换器调制区域,其中所述第一频率可影响从所述第一光束射出面射出的光束路径的偏转传播方向;以及
第二射频驱动器,其包含或连通可变频率控制器,以将第二射频信号的第二频率施加到所述第二变换器,从而调制所述第二变换器调制轴,其中所述第二频率可影响从所述光束射出面射出的激光束的共同偏转角,所述偏转传播方向由同时施加所述第一与第二射频信号造成。
292.根据权利要求291所述的声光调制器,其中所述声光调制器连通一光束定位控制器,以协调所述第一与第二频率,从而利用所述声光调制器使所述光束路径偏转,以在因所述偏转传播方向造成的所需光束位置冲击所述工件。
293.根据权利要求291所述的声光调制器,其中所述第一与第二射频驱动器构成分开的射频驱动器。
294.根据权利要求291所述的声光调制器,其中所述第一与第二射频驱动器包含不同的频率范围。
295.根据权利要求291所述的声光调制器,其中所述第一与第二频率不相同。
296.根据权利要求291所述的声光调制器,其中所述声光调制器构成激光系统的一部分。
297.根据权利要求296所述的声光调制器,其中所述声光调制器适于传播第一阶光束路径作为工作光束路径。
298.根据权利要求296所述的声光调制器,其中所述声光调制器适于由所述光束路径相对于所述光束射入面或所述第一变换器调制区域以等于或接近布拉格角的入射角冲击所述声光调制器。
299.根据权利要求298所述的声光调制器,其中所述偏转角的范围包括相对于所述布拉格角达到至少100毫弧度。
300.根据权利要求286所述的声光调制器,其中所述第一变换器在第一布拉格角范围响应于高频驱动器,所述第二变换器则在第二布拉格角范围响应于低频驱动器,所述第一布拉格角范围大于所述第二布拉格角范围。
301.根据权利要求296所述的声光调制器,其中所述声光调制器适于在所述光束路径与所述工件之间产生第二范围的相对光束导向移动,且所述第一与第二变换器响应于第二移动控制信号来控制所述声光调制器的所述第二范围相对光束导向移动,所述声光调制器进一步包含:
慢速定位器,用于在所述光束路径与所述工件之间产生第一范围的相对移动,所述慢速定位器包含平移平台,所述平移平台能大致沿着平移轴移动;
定位信号处理器,用于从定位命令导出第一与第二移动控制信号;以及
第一定位器驱动器,用于响应于所述第一移动控制信号来控制所述平移平台的第一范围的相对光束导向移动,使得所述慢速定位器和所述声光调制器的协调使所述光束路径偏转,以在所需光束位置冲击所述工件,所述第二范围的相对移动小于所述第一范围的相对移动,且所述声光调制器提供比所述平移平台所提供的相对光束导向移动更快的相对光束导向移动。
302.根据权利要求301所述的声光调制器,其中所述激光束包含至少不同的第一与第二波长,所述第一频率对所述第一波长进行调制,且所述第二频率对所述第二波长进行调制。
303.根据权利要求302所述的声光调制器,其中所述第一与第二频率经过调整,以使所述第一与第二波长分别产生衍射,以大致沿着相同的光束路径传播。
304.根据权利要求303所述的声光调制器,其中所述第一与第二波长以满足布拉格条件的角度或接近满足布拉格条件的角度产生衍射。
305.根据权利要求286所述的声光调制器,其中所述第二变换器包含多个各自变换器其中之一,使得每一个所述各自变换器响应于施加到位于所述声光调制器的各自变换器表面上的各自变换器的各自射频信号的各自频率,所述各自变换器表面位于各自平面中,所述各自平面横穿所述光束射入面,所述各自变换器设置于各自距离之处,所述各自距离从所述光束射入面增加,且所述各自变换器在各自变换器调制区域内进行调制,所述各自变换器调制区域横穿所述光束路径,以影响所述光束路径沿着所述第一工件轴的各自偏转角,所述各自变换器彼此相隔,并相对于所述第一变换器成各自的倾斜角定向,以使得所述第一与各自变换器调制区域不平行,其中所述各自的倾斜角小于或等于5度。
306.根据权利要求305所述的声光调制器,其中所述各自的倾斜角随着所述各自距离增加而减小。
307.根据权利要求306所述的声光调制器,其中所述各自频率随着所述各自距离增加而降低。
308.根据权利要求305所述的声光调制器,其中所述各自的倾斜角中至少两个不相同。
309.根据权利要求308所述的声光调制器,其中在不同倾斜角对准的所述各自变换器由具有不同频率范围的射频驱动器进行驱动。
310.根据权利要求305所述的声光调制器,其中所述各自变换器调制区域其中之一为第二变换器调制区域,其中所述各自变换器调制区域其中之一为第三变换器调制区域,所述第三变换器调制区域由第三变换器的第三倾斜角形成,其中所述第二变换器调制区域设置于所述第一与第三变换器调制区域之间,且其中所述第三倾斜角大于所述第二变换器的所述倾斜角,且所述第三倾斜角小于或等于5度。
311.根据权利要求305所述的声光调制器,其中所述光束射入面与所述光束射出面具有平行的平面。
312.根据权利要求305所述的声光调制器,其中所述光束射出面位于后平面中,所述后平面与所述光束射入面的前平面呈一端面角,且所述端面角为90度与90度±所述各自变换器的倾斜角的各自总和的平均值。
313.根据权利要求305所述的声光调制器,其中所述各自倾斜角其中之一包含大于其他倾斜角的主倾斜角,其中所述光束射出面位于后平面中,所述后平面与所述光束射入面的前平面呈一端面角,且其中所述端面角小于90度加上所述主倾斜角。
314.根据权利要求286所述的声光调制器,进一步包含:
第三变换器,设置于所述声光调制器的第三变换器表面上,所述第三变换器表面位于第三平面中,所述第三平面横穿所述光束射入面,且所述第三变换器适于在横穿所述光束路径并与所述第一变换器调制区域相交的第三变换器调制区域内进行调制,以影响沿着第二笛卡尔轴的光束路径的第三偏转角;以及
第四变换器,设置于所述声光调制器的第四变换器表面上,所述第四变换器表面位于第四平面中,所述第四平面横穿所述光束射入面,且所述第四变换器适于在横穿所述光束路径并与所述第二变换器调制区域相交的第四变换器调制区域内进行调制,以影响沿着所述第二笛卡尔轴的光束路径的第四偏转角,所述第四变换器间隔设置,并相对于所述第三变换器成第二倾斜角定向,使得所述第三与第四变换器调制区域不平行。
315.根据权利要求314所述的声光调制器,其中所述倾斜角与所述第二倾斜角不相同。
316.根据权利要求314所述的声光调制器,其中所述倾斜角与所述第二倾斜角大约相同。
317.根据权利要求314所述的声光调制器,其中所述第三与第四平面相互横穿,其中所述第三变换器调制区域大致平行于所述光束射入面,且其中所述第四变换器调制区域大致平行于所述光束射出面。
318.一种增强声光调制器性能的方法,所述声光调制器适于沿着激光器与工件之间的光束路径设置,所述声光调制器具有一光束射入面、一光束射出面及第一变换器,所述第一变换器设置于所述声光调制器的第一变换器表面上,所述第一变换器表面位于横穿所述光束射入面的第一平面中,所述方法包含:
沿着一冲击工件的光束路径产生激光束;
传播所述激光束通过沿着所述光束路径设置的所述声光调制器;
控制施加到所述第一变换器的第一射频信号的第一频率,所述第一变换器在横穿过所述光束路径的第一变换器调制区域内进行调制,以影响沿着相对于所述工件表面的第一工件轴的光束路径的第一偏转角;
控制施加到位于所述声光调制器的第二变换器表面上的第二变换器的第二射频信号的第二频率,所述第二变换器表面位于第二平面中,所述第二平面横穿所述光束射入面,且所述第二变换器在横穿所述光束路径的第二变换器调制区域内进行调制,以影响沿所述第一工件轴的光束路径的第二偏转角,所述第二变换器间隔设置,并相对于所述第一变换器成倾斜角定向,使得所述第一与第二变换器调制区域不平行,其中所述倾斜角小于或等于5度;以及
协调所述第一与第二射频信号的频率,使所述激光束偏转,以在因共同偏转角造成的所需光束位置冲击所述工件,所述共同偏转角由所述第一与第二射频信号提供的所述第一与第二偏转角形成。
CN2005800233157A 2004-06-07 2005-06-06 用于提高激光系统性能的声光调制器调制技术 Active CN101035647B (zh)

Applications Claiming Priority (15)

Application Number Priority Date Filing Date Title
US57779604P 2004-06-07 2004-06-07
US60/577,796 2004-06-07
US11/138,078 US7027199B2 (en) 2004-06-07 2005-05-25 AOM modulation techniques for facilitating pulse-to-pulse energy stability in laser systems
US11/138,659 US7133188B2 (en) 2004-06-07 2005-05-25 AOM modulation techniques employing an upstream Bragg adjustment device
US11/138,078 2005-05-25
US11/138,662 2005-05-25
US11/138,076 US7133187B2 (en) 2004-06-07 2005-05-25 AOM modulation techniques employing plurality of transducers to improve laser system performance
US11/138,657 US7133182B2 (en) 2004-06-07 2005-05-25 AOM frequency and amplitude modulation techniques for facilitating full beam extinction in laser systems
US11/138,075 2005-05-25
US11/138,659 2005-05-25
US11/138,075 US7133186B2 (en) 2004-06-07 2005-05-25 AOM modulation techniques employing transducers to modulate different axes
US11/138,662 US7019891B2 (en) 2004-06-07 2005-05-25 AOM modulation techniques employing plurality of tilt-angled transducers to improve laser system performance
US11/138,076 2005-05-25
US11/138,657 2005-05-25
PCT/US2005/019775 WO2005121889A2 (en) 2004-06-07 2005-06-06 Aom modulation techniques for improving laser system performance

Publications (2)

Publication Number Publication Date
CN101035647A CN101035647A (zh) 2007-09-12
CN101035647B true CN101035647B (zh) 2012-10-17

Family

ID=38731675

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2005800233157A Active CN101035647B (zh) 2004-06-07 2005-06-06 用于提高激光系统性能的声光调制器调制技术

Country Status (3)

Country Link
US (6) US7019891B2 (zh)
CN (1) CN101035647B (zh)
TW (6) TWI385882B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11971343B2 (en) 2023-05-02 2024-04-30 Becton, Dickinson And Company Dual excitation beams for irradiating a sample in a flow stream and methods for using same

Families Citing this family (118)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7245412B2 (en) 2001-02-16 2007-07-17 Electro Scientific Industries, Inc. On-the-fly laser beam path error correction for specimen target location processing
US8497450B2 (en) 2001-02-16 2013-07-30 Electro Scientific Industries, Inc. On-the fly laser beam path dithering for enhancing throughput
SE0200547D0 (sv) * 2002-02-25 2002-02-25 Micronic Laser Systems Ab An image forming method and apparatus
US6947454B2 (en) * 2003-06-30 2005-09-20 Electro Scientific Industries, Inc. Laser pulse picking employing controlled AOM loading
US20060151704A1 (en) * 2004-12-30 2006-07-13 Cordingley James J Laser-based material processing methods, system and subsystem for use therein for precision energy control
US20060279830A1 (en) * 2005-04-27 2006-12-14 Honeywell International Inc. Ramped RF acousto-optic Q-switch driver
JP5036181B2 (ja) * 2005-12-15 2012-09-26 株式会社ディスコ レーザー加工装置
KR100819872B1 (ko) * 2006-05-17 2008-04-07 삼성전기주식회사 광 변조기 캘리브레이션 장치
US7605343B2 (en) 2006-05-24 2009-10-20 Electro Scientific Industries, Inc. Micromachining with short-pulsed, solid-state UV laser
JP4951282B2 (ja) * 2006-07-11 2012-06-13 株式会社ディスコ レーザー加工装置
US8084706B2 (en) 2006-07-20 2011-12-27 Gsi Group Corporation System and method for laser processing at non-constant velocities
JP4917382B2 (ja) * 2006-08-09 2012-04-18 株式会社ディスコ レーザー光線照射装置およびレーザー加工機
GB0617945D0 (en) * 2006-09-12 2006-10-18 Ucl Business Plc Imaging apparatus and methods
US7817685B2 (en) * 2007-01-26 2010-10-19 Electro Scientific Industries, Inc. Methods and systems for generating pulse trains for material processing
US9029731B2 (en) 2007-01-26 2015-05-12 Electro Scientific Industries, Inc. Methods and systems for laser processing continuously moving sheet material
JP2008207210A (ja) 2007-02-26 2008-09-11 Disco Abrasive Syst Ltd レーザー光線照射装置およびレーザー加工機
US7876498B1 (en) 2007-03-23 2011-01-25 Lockheed Martin Corporation Pulse-energy-stabilization approach and first-pulse-suppression method using fiber amplifier
JP2008254035A (ja) * 2007-04-05 2008-10-23 Disco Abrasive Syst Ltd レーザー加工装置
DE102007017591B4 (de) * 2007-04-13 2018-11-08 Jenoptik Laser Gmbh Laser und Verfahren zur Erzeugung gepulster Laserstrahlung
US7612598B2 (en) * 2007-04-27 2009-11-03 Semiconductor Energy Laboratory Co., Ltd. Clock signal generation circuit and semiconductor device
US8026158B2 (en) * 2007-06-01 2011-09-27 Electro Scientific Industries, Inc. Systems and methods for processing semiconductor structures using laser pulses laterally distributed in a scanning window
US7843635B2 (en) * 2007-06-18 2010-11-30 National Yang-Ming University Device for trapping or stretching microscopic substance and method thereof
US8076605B2 (en) * 2007-06-25 2011-12-13 Electro Scientific Industries, Inc. Systems and methods for adapting parameters to increase throughput during laser-based wafer processing
US20090045178A1 (en) * 2007-08-15 2009-02-19 Che-Kang Hsu Laser engraver
US8379204B1 (en) 2007-08-17 2013-02-19 Gsi Group Corporation System and method for automatic laser beam alignment
WO2009039184A2 (en) * 2007-09-19 2009-03-26 Gsi Group Corporation Link processing with high speed beam deflection
US7982160B2 (en) * 2008-03-31 2011-07-19 Electro Scientific Industries, Inc. Photonic clock stabilized laser comb processing
US8178818B2 (en) * 2008-03-31 2012-05-15 Electro Scientific Industries, Inc. Photonic milling using dynamic beam arrays
US8173931B2 (en) * 2008-06-13 2012-05-08 Electro Scientific Industries, Inc. Automatic recipe management for laser processing a work piece
TW201009525A (en) * 2008-08-18 2010-03-01 Ind Tech Res Inst Laser marking method and laser marking system
US8680430B2 (en) * 2008-12-08 2014-03-25 Electro Scientific Industries, Inc. Controlling dynamic and thermal loads on laser beam positioning system to achieve high-throughput laser processing of workpiece features
TWI523720B (zh) 2009-05-28 2016-03-01 伊雷克托科學工業股份有限公司 應用於雷射處理工件中的特徵的聲光偏轉器及相關雷射處理方法
US8160113B2 (en) * 2009-07-21 2012-04-17 Mobius Photonics, Inc. Tailored pulse burst
US8933374B2 (en) * 2009-08-03 2015-01-13 Toshiba Kikai Kabushiki Kaisha Pulse laser machining apparatus and pulse laser machining method
KR20120113245A (ko) * 2009-12-30 2012-10-12 지에스아이 그룹 코포레이션 고속 빔 편향을 이용한 링크 처리
US8992815B2 (en) * 2010-02-10 2015-03-31 Imra America, Inc. Production of organic compound nanoparticles with high repetition rate ultrafast pulsed laser ablation in liquids
CN101794958B (zh) * 2010-04-01 2012-01-25 天津奇谱光电技术有限公司 可调谐激光器
GB201006679D0 (en) 2010-04-21 2010-06-09 Ucl Business Plc Methods and apparatus to control acousto-optic deflectors
US9023461B2 (en) 2010-10-21 2015-05-05 Electro Scientific Industries, Inc. Apparatus for optically laser marking articles
KR20220046706A (ko) * 2010-10-22 2022-04-14 일렉트로 싸이언티픽 인더스트리이즈 인코포레이티드 빔 디더링 및 스카이빙을 위한 레이저 처리 시스템 및 방법
GB2485985B (en) 2010-11-30 2015-07-22 Powerphotonic Ltd Laser pulse generation method and apparatus
CN102141692B (zh) * 2011-03-10 2014-08-13 浙江大学 一种激光腔外功率稳定装置和锁定方法
GB201106787D0 (en) 2011-04-20 2011-06-01 Ucl Business Plc Methods and apparatus to control acousto-optic deflectors
KR102138223B1 (ko) 2011-07-05 2020-07-28 일렉트로 싸이언티픽 인더스트리이즈 인코포레이티드 사용 중 음향-광학 빔 편향기와 음향-광학 변조기에 온도 안정성을 제공하기 위한 시스템 및 방법
US8767291B2 (en) * 2012-03-16 2014-07-01 Kla-Tencor Corporation Suppression of parasitic optical feedback in pulse laser systems
US8848277B2 (en) * 2012-05-31 2014-09-30 Asml Netherlands B.V. System and method for protecting a seed laser in an EUV light source with a Bragg AOM
WO2014066251A1 (en) 2012-10-22 2014-05-01 Electro Scientific Industries, Inc. Method and apparatus for marking an article
CN103042305B (zh) * 2012-12-25 2015-09-23 武汉帝尔激光科技有限公司 分时分光系统
CN104903044B (zh) 2013-01-11 2018-01-12 伊雷克托科学工业股份有限公司 激光脉冲能量控制系统及方法
CN103149873B (zh) * 2013-02-19 2015-07-15 江苏和利普激光科技有限公司 全自动激光调频系统
WO2014152526A1 (en) * 2013-03-15 2014-09-25 Electro Scientific Industries, Inc. Laser systems and methods for aod tool settling for aod travel reduction
CN105102169B (zh) 2013-03-15 2017-05-03 伊雷克托科学工业股份有限公司 用于声光偏转器击溃处理的激光系统和方法
KR102212359B1 (ko) * 2013-03-15 2021-02-03 마이크로닉 아베 음향광학 변조기 및 변조 원리를 위한 드라이버
KR102166134B1 (ko) * 2013-03-15 2020-10-16 일렉트로 싸이언티픽 인더스트리이즈 인코포레이티드 빔 포지셔너의 레이저 방출-기반 제어
EP3033198A4 (en) 2013-08-16 2017-06-28 Electro Scientific Industries, Inc. Laser systems and methods for internally marking thin layers, and articles produced thereby
CN103441425B (zh) * 2013-08-23 2016-01-13 西安电子科技大学 中波红外激光功率稳定系统
US9414498B2 (en) * 2013-09-20 2016-08-09 Coherent, Inc. Via-hole drilling in a printed circuit board using a carbon monoxide laser
SI24532A (sl) * 2013-11-05 2015-05-29 Nela, Razvojni Center Za Elektroindustrijo In Elektroniko, D.O.O. Adaptivo lasersko spajanje statorskih in rotorskih lamel
WO2015079269A1 (en) * 2013-11-28 2015-06-04 Femtonics Kft. Acousto-optic deflector comprising multiple electro-acoustic transducers
KR102100930B1 (ko) * 2013-12-09 2020-04-14 삼성전자주식회사 음향광학 소자, 음향광학 소자 어레이 및 음향광학 소자 어레이를 이용한 디스플레이 장치
EP3080663B1 (en) * 2013-12-10 2018-03-21 Dolby Laboratories Licensing Corp. Acousto-optic beam steering modulator for a projection system
CN103722291B (zh) * 2014-01-02 2015-09-02 江苏大学 一种真空环境下冲击角度连续可调的激光冲击焊接装置
US9435964B2 (en) 2014-02-26 2016-09-06 TeraDiode, Inc. Systems and methods for laser systems with variable beam parameter product
US10914902B2 (en) 2014-02-26 2021-02-09 TeraDiode, Inc. Methods for altering properties of a radiation beam
US9594937B2 (en) 2014-02-28 2017-03-14 Electro Scientific Industries, Inc. Optical mark reader
US9269035B2 (en) 2014-02-28 2016-02-23 Electro Scientific Industries, Inc. Modified two-dimensional codes, and laser systems and methods for producing such codes
EP4253936A3 (en) 2014-03-18 2024-03-20 The Regents of The University of California Parallel flow cytometer using radiofrequency mulitplexing, and method
US20150338718A1 (en) * 2014-05-22 2015-11-26 Intel Corporation Acousto-optic deflector with multiple transducers for optical beam steering
WO2015200271A1 (en) * 2014-06-25 2015-12-30 TeraDiode, Inc. Systems and methods for laser systems with variable beam parameter product
DE102014013567B3 (de) * 2014-09-18 2015-10-08 Iai Industrial Systems B.V. Gütegeschaltetes CO2-Laser-Materialbearbeitungssystem mit akustooptischen Modulatoren
JP6487184B2 (ja) * 2014-11-10 2019-03-20 株式会社ディスコ レーザー発振機構
WO2016075681A1 (en) * 2014-11-12 2016-05-19 Orbotech Ltd. Acousto-optic deflector with multiple output beams
EP3241034A1 (en) 2014-12-29 2017-11-08 Electro Scientific Industries, Inc. Adaptive part profile creation via independent side measurement with alignment features
CN107405724B (zh) 2015-02-27 2020-05-05 伊雷克托科学工业股份有限公司 用于横轴微机械加工的快速射束操纵
WO2016144290A1 (en) * 2015-03-06 2016-09-15 Intel Corporation Acousto-optics deflector and mirror for laser beam steering
CN107849687B (zh) 2015-07-09 2020-01-14 奥博泰克有限公司 对激光诱导正向转移喷射角度的控制
DE102015213468A1 (de) * 2015-07-17 2017-01-19 Trumpf Laser Gmbh Strahlmodulator mit Frequenzkonversion sowie zugehöriges Verfahren und Laserbearbeitungsmaschine
JP6817716B2 (ja) * 2015-09-03 2021-01-20 ビアメカニクス株式会社 レーザ加工装置及びレーザ加工方法
JP6921057B2 (ja) * 2015-09-09 2021-08-18 エレクトロ サイエンティフィック インダストリーズ インコーポレーテッド レーザ処理装置、ワークピースをレーザ処理する方法及び関連する構成
EP3362778B1 (en) 2015-10-13 2022-08-03 Omega Biosystems Incorporated Multi-modal fluorescence imaging flow cytometry system
US10274806B2 (en) * 2015-11-06 2019-04-30 Coherent, Inc. Pulse-dividing method and apparatus for a pulsed carbon monoxide laser
CN105572653A (zh) * 2016-01-12 2016-05-11 中国科学院半导体研究所 保护探测器光敏面的方法
CN105471505B (zh) * 2016-01-25 2018-03-23 中国人民解放军信息工程大学 一种信号调制方法、装置及可见光通信系统
KR102527830B1 (ko) 2016-03-17 2023-05-02 벡톤 디킨슨 앤드 컴퍼니 고효율 형광 유세포 분석기를 사용하는 세포 선별
EP3455608A1 (en) 2016-05-12 2019-03-20 BD Biosciences Fluorescence imaging flow cytometry with enhanced image resolution
US10175424B2 (en) * 2016-05-31 2019-01-08 Advanced Optowave Corporation Multiple channel fiber pigtailed acousto-optic device and the method of making the same
US10423047B2 (en) * 2016-07-27 2019-09-24 Coherent, Inc. Laser machining method and apparatus
EP3513167B1 (en) * 2016-09-13 2023-05-24 Becton, Dickinson and Company Flow cytometer with optical equalization
US9915851B1 (en) * 2016-11-03 2018-03-13 Harris Corporation Multi-channel phase-capable acousto-optic modulator (AOM) and related methods
US10509245B2 (en) 2016-11-03 2019-12-17 Harris Corporation Multi-channel laser system including an acousto-optic modulator (AOM) with beam stabilizer and related methods
US10495943B2 (en) * 2016-11-03 2019-12-03 Harris Corporation Multi-channel phase-capable acousto-optic modulator (AOM) including beam stabilizer and related methods
US10754223B2 (en) 2016-11-03 2020-08-25 Harris Corporation Multi-channel laser system including an acoustic-optic modulator (AOM) with atom trap and related methods
DE102016125630B4 (de) * 2016-12-23 2022-07-28 Leica Microsystems Cms Gmbh Optische Anordnung und Verfahren zur Beeinflussung der Strahlrichtung mindestens eines Lichtstrahls
CN110139727B (zh) 2016-12-30 2022-04-05 伊雷克托科学工业股份有限公司 用于延长镭射处理设备中的光学器件生命期的方法和系统
WO2019060590A1 (en) * 2017-09-22 2019-03-28 Electro Scientific Industries, Inc. ACOUSTO-OPTICAL SYSTEM WITH REFLECTOR WITH PHASE
JP7066368B2 (ja) * 2017-10-24 2022-05-13 住友重機械工業株式会社 レーザ加工機の制御装置、レーザ加工方法、及びレーザ加工機
CN107908023A (zh) * 2017-11-15 2018-04-13 福建师范大学 一种衍射光相位不会被超声调制的声光装置
US11927735B2 (en) * 2018-01-15 2024-03-12 Leica Microsystems Cms Gmbh Acousto-optical device and method
CN108471043A (zh) * 2018-04-27 2018-08-31 国科世纪激光技术(天津)有限公司 声光调q固体激光器以及控制方法
US20210362277A1 (en) 2018-06-05 2021-11-25 Electro Scientific Industries, Inc. Laser-processing apparatus, methods of operating the same, and methods of processing workpieces using the same
CN109143250B (zh) * 2018-07-09 2023-04-07 上海肖可雷电子科技有限公司 一种基于激光定位的系统与方法
CN109374554B (zh) * 2018-12-08 2020-11-06 山西大学 一种激光频率扫描装置及方法
TW202114308A (zh) * 2019-05-21 2021-04-01 日商索尼股份有限公司 被動q開關雷射裝置、控制方法及雷射加工裝置
US11374375B2 (en) * 2019-08-14 2022-06-28 Kla Corporation Laser closed power loop with an acousto-optic modulator for power modulation
CN114631054A (zh) * 2019-11-05 2022-06-14 奥宝科技有限公司 声光装置的热稳定化
JP7462219B2 (ja) * 2020-05-08 2024-04-05 パナソニックIpマネジメント株式会社 レーザ加工装置
JP2023527306A (ja) 2020-05-19 2023-06-28 ベクトン・ディキンソン・アンド・カンパニー レーザービームの強度プロファイルを変調するための方法及びそのシステム
CN111725697B (zh) * 2020-06-22 2021-09-28 中国航空工业集团公司北京长城计量测试技术研究所 一种多波长激光束产生方法及装置
US11680889B2 (en) 2020-06-26 2023-06-20 Becton, Dickinson And Company Dual excitation beams for irradiating a sample in a flow stream and methods for using same
CN112108775A (zh) * 2020-09-09 2020-12-22 湖南鼎一致远科技发展有限公司 一种并行控制激光的装置、方法及激光打标机
CN112422192B (zh) * 2020-11-10 2022-05-24 北京航空航天大学 用于小型原子自旋惯性测量装置的检测光功率调制系统
CN112688155A (zh) * 2020-12-25 2021-04-20 武汉奇致激光技术股份有限公司 一种激光光强度的控制方法及控制系统
US20220350022A1 (en) * 2021-04-29 2022-11-03 Deepsight Technology, Inc. Modularized acoustic probe
WO2023126106A1 (en) * 2021-12-28 2023-07-06 Asml Netherlands B.V. Laser beam steering system and method
US11874163B2 (en) 2022-01-14 2024-01-16 Ophir Optronics Solutions, Ltd. Laser measurement apparatus having a removable and replaceable beam dump
KR102646315B1 (ko) * 2022-05-04 2024-03-11 한국표준과학연구원 레이저 주파수 스윕 시스템 및 이의 동작 방법
EP4287422A1 (en) * 2022-05-31 2023-12-06 NKT Photonics A/S Pulsed laser system
CN117086683B (zh) * 2023-10-19 2024-01-05 山东滨州鲁丰不锈钢制品有限公司 一种金属构件加工的切削机床减小噪声方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5171964A (en) * 1990-07-23 1992-12-15 International Business Machines Corporation High accuracy, high flexibility, energy beam machining system
US5523543A (en) * 1994-09-09 1996-06-04 Litel Instruments Laser ablation control system and method
US5837962A (en) * 1996-07-15 1998-11-17 Overbeck; James W. Faster laser marker employing acousto-optic deflection
US5890789A (en) * 1996-11-18 1999-04-06 Minolta Co., Ltd. Multi-beam emitting device having an acoustooptic element
US5981903A (en) * 1997-03-28 1999-11-09 International Business Machines Corporation Laser system for simultaneous texturing of two sides of a substrate
US6285493B1 (en) * 2000-07-31 2001-09-04 Tasc, Inc. Electro-acoustic-optical apparatus and method of calibrating same
US6563844B1 (en) * 1998-10-21 2003-05-13 Neos Technologies, Inc. High loss modulation acousto-optic Q-switch for high power multimode laser
US6706999B1 (en) * 2003-02-24 2004-03-16 Electro Scientific Industries, Inc. Laser beam tertiary positioner apparatus and method

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US117481A (en) * 1871-07-25 Improvement in blacking-box holders
US86447A (en) * 1869-02-02 Improvement in globe-calves for steam and other enginery
US4532402A (en) 1983-09-02 1985-07-30 Xrl, Inc. Method and apparatus for positioning a focused beam on an integrated circuit
US5197074A (en) 1991-12-26 1993-03-23 Electro Scientific Industries, Inc. Multi-function intra-resonator loss modulator and method of operating same
US5751585A (en) 1995-03-20 1998-05-12 Electro Scientific Industries, Inc. High speed, high accuracy multi-stage tool positioning system
US5847960A (en) 1995-03-20 1998-12-08 Electro Scientific Industries, Inc. Multi-tool positioning system
US5789015A (en) * 1996-06-26 1998-08-04 Innotech, Inc. Impregnation of plastic substrates with photochromic additives
US6339604B1 (en) 1998-06-12 2002-01-15 General Scanning, Inc. Pulse control in laser systems
US6172325B1 (en) * 1999-02-10 2001-01-09 Electro Scientific Industries, Inc. Laser processing power output stabilization apparatus and method employing processing position feedback
US6341029B1 (en) 1999-04-27 2002-01-22 Gsi Lumonics, Inc. Method and apparatus for shaping a laser-beam intensity profile by dithering
CN100437407C (zh) * 2000-01-11 2008-11-26 电子科学工业公司 阿贝误差校正系统及方法
TW445369B (en) * 2000-04-18 2001-07-11 Cheng Jou Heterodyne interferometer phase measurement system
US6407363B2 (en) * 2000-03-30 2002-06-18 Electro Scientific Industries, Inc. Laser system and method for single press micromachining of multilayer workpieces
US6816294B2 (en) * 2001-02-16 2004-11-09 Electro Scientific Industries, Inc. On-the-fly beam path error correction for memory link processing
JP2007509368A (ja) * 2003-10-17 2007-04-12 ジーエスアイ・ルモニクス・コーポレーション 柔軟な走査範囲

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5171964A (en) * 1990-07-23 1992-12-15 International Business Machines Corporation High accuracy, high flexibility, energy beam machining system
US5523543A (en) * 1994-09-09 1996-06-04 Litel Instruments Laser ablation control system and method
US5837962A (en) * 1996-07-15 1998-11-17 Overbeck; James W. Faster laser marker employing acousto-optic deflection
US5890789A (en) * 1996-11-18 1999-04-06 Minolta Co., Ltd. Multi-beam emitting device having an acoustooptic element
US5981903A (en) * 1997-03-28 1999-11-09 International Business Machines Corporation Laser system for simultaneous texturing of two sides of a substrate
US6563844B1 (en) * 1998-10-21 2003-05-13 Neos Technologies, Inc. High loss modulation acousto-optic Q-switch for high power multimode laser
US6285493B1 (en) * 2000-07-31 2001-09-04 Tasc, Inc. Electro-acoustic-optical apparatus and method of calibrating same
US6706999B1 (en) * 2003-02-24 2004-03-16 Electro Scientific Industries, Inc. Laser beam tertiary positioner apparatus and method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JP特开2002-273592A 2002.09.25
JP特开2003-136270A 2003.05.14

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11971343B2 (en) 2023-05-02 2024-04-30 Becton, Dickinson And Company Dual excitation beams for irradiating a sample in a flow stream and methods for using same

Also Published As

Publication number Publication date
TW200605459A (en) 2006-02-01
US20060028710A1 (en) 2006-02-09
TW200617558A (en) 2006-06-01
US7133188B2 (en) 2006-11-07
TW200613874A (en) 2006-05-01
TW200604697A (en) 2006-02-01
US7019891B2 (en) 2006-03-28
US20050279808A1 (en) 2005-12-22
TW200607194A (en) 2006-02-16
TWI395045B (zh) 2013-05-01
TWI396921B (zh) 2013-05-21
TWI396920B (zh) 2013-05-21
US7133182B2 (en) 2006-11-07
US20050279807A1 (en) 2005-12-22
US20050270629A1 (en) 2005-12-08
TWI396922B (zh) 2013-05-21
TWI385882B (zh) 2013-02-11
CN101035647A (zh) 2007-09-12
US7133187B2 (en) 2006-11-07
TWI384712B (zh) 2013-02-01
US20050270630A1 (en) 2005-12-08
US20050270631A1 (en) 2005-12-08
US7133186B2 (en) 2006-11-07
TW200604696A (en) 2006-02-01
US7027199B2 (en) 2006-04-11

Similar Documents

Publication Publication Date Title
CN101035647B (zh) 用于提高激光系统性能的声光调制器调制技术
JP5492763B2 (ja) レーザシステム性能を改善するためのaom変調技術
US10507544B2 (en) Fast beam manipulation for cross-axis miromaching
CN1813339B (zh) 采用受控声光调制器负载的激光脉冲选取
CN101541470B (zh) 用于在x-y高速钻孔系统中采用谐振扫描仪的系统与方法
KR101420703B1 (ko) 고속 빔 편향 링크 가공
US8395083B2 (en) Multiple beam drilling system
US20060114948A1 (en) Workpiece processing system using a common imaged optical assembly to shape the spatial distributions of light energy of multiple laser beams
KR20120113245A (ko) 고속 빔 편향을 이용한 링크 처리
KR102245812B1 (ko) Aod 이동 저감을 위한 aod 툴 정착을 위한 레이저 시스템 및 방법
US20220121082A1 (en) High-Speed Dynamic Beam Shaping
CN102481664A (zh) 应用于介电质或其它材料的激光处理中的声光偏转器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant