CN101124235B - 烯烃聚合催化剂体系及其使用方法 - Google Patents

烯烃聚合催化剂体系及其使用方法 Download PDF

Info

Publication number
CN101124235B
CN101124235B CN2005800250909A CN200580025090A CN101124235B CN 101124235 B CN101124235 B CN 101124235B CN 2005800250909 A CN2005800250909 A CN 2005800250909A CN 200580025090 A CN200580025090 A CN 200580025090A CN 101124235 B CN101124235 B CN 101124235B
Authority
CN
China
Prior art keywords
propylene
preferred
group
polymerization
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2005800250909A
Other languages
English (en)
Other versions
CN101124235A (zh
Inventor
F·C·里克斯
S·卡克尔
S·达塔
赵锐
V·R·埃斯瓦兰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ExxonMobil Chemical Patents Inc
Original Assignee
Exxon Chemical Patents Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Exxon Chemical Patents Inc filed Critical Exxon Chemical Patents Inc
Publication of CN101124235A publication Critical patent/CN101124235A/zh
Application granted granted Critical
Publication of CN101124235B publication Critical patent/CN101124235B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F17/00Metallocenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/04Monomers containing three or four carbon atoms
    • C08F10/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/04Polymerisation in solution
    • C08F2/06Organic solvent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/04Monomers containing three or four carbon atoms
    • C08F110/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/04Monomers containing three or four carbon atoms
    • C08F210/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65912Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an organoaluminium compound
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S526/00Synthetic resins or natural rubbers -- part of the class 520 series
    • Y10S526/943Polymerization with metallocene catalysts

Abstract

本发明涉及用通式(I)表示的化合物,其中各变量具有在说明书和权利要求书中给出的值。本发明进一步涉及使用上述组合物聚合不饱和单体的方法。

Description

烯烃聚合催化剂体系及其使用方法
发明领域
本发明涉及新型过渡金属化合物以及使用这些过渡金属化合物聚合或低聚不饱和单体的方法和由此制备的聚合物或低聚物。
发明背景
有各种方法和催化剂用于不饱和单体的均聚或共聚,尤其烯烃的聚合。对于许多应用来说,希望聚烯烃具有高重均分子量,同时具有相对窄的分子量分布。已经有人使用手性双茚基金属茂催化剂来制备高度结晶全同立构聚丙烯和丙烯与其它单体的共聚物(Resconi,L.Chem.Rev.2000,100,1253)。还已经制备了非手性金属茂催化剂,获得了无规立构聚丙烯和共聚物(Resconi,L.,Metallocene BasedPolyolefins,Eds.J.Schiers,W.Kaminsky;Wiley;NY,2000;467)。虽然,具有在这些极端之间运行的手性催化剂,获得了结晶度低于高结晶度、但超过无定形的聚丙烯,通常这些手性催化剂提供了低分子量聚合物。使用这些体系由丙烯和其它单体制备的共聚物的情况也是这样。
US6,051,522描述了作为用于烯烃聚合的催化剂的桥连手性金属茂。WO2002/01745,US2002/0004575A1,WO2002/083753A1和US6,525,157披露了使用手性金属茂rac-Me2Si(1-茚基)2HfMe2和电离活化剂制备在丙烯序列内含有立构规整度的丙烯/乙烯共聚物的方法。US6,057,408披露了使用手性双茚基金属茂制备在丙烯序列中具有高结晶度的高分子量丙烯/乙烯共聚物的方法。获得最高分子量共聚物的催化剂是rac-Me2Si(2-Me-4-(1-萘基)-1-茚基)2ZrCl2
S.Collins及其同事报道了(Organometallics 1992,11,2115)5,6-位上的取代基对系列手性乙烯桥连金属茂rac-(CH2CH2)(5,6-X2-1-茚基)2ZrCl2,溶液乙烯和丙烯聚合的效应的研究。比较X=H和X=Me,在聚乙烯(X=H,Mn=145Kg/mol;X=Me,Mn=127Kg/mol)和聚丙烯(X=H,Mn=15.7Kg/mol;X=Me,Mn=16Kg/mol)的制备中发现了类似的分子量。同样,在US5,455,365中,披露了在5和6位上含有甲基的手性双茚基金属茂和在5或6位上含有苯基的金属茂。在液体丙烯中在70℃下的聚合获得了适中结晶的聚丙烯,如由132-147℃的聚合物熔点所证明的。这些材料的分子量(Mw)是100-200Kg/mol。使用rac-Me2Si(2,5,6-Me3-1-茚基)ZrCl2/MAO的丙烯与乙烯的共聚获得了2.8wt%乙烯、97.2wt%丙烯共聚物,其具有如由特性粘度从155mL/g(Mw=143Kg/mol)下降到98mL/g(Mw没有记录)所证明的显著更低的分子量。该共聚还导致了熔点从132℃下降到123℃。
在US6,084,115中,公开了含有在5和6位上连接的环状四甲基化环己基环的手性双茚基金属茂。据报道,该金属茂rac-Me2Si(5,6,7,8-四氢-2,5,5,8,8-五甲基-苯并[f]茚基)2Zr(1,4-二苯基丁二烯)为+2氧化态。丙烯聚合特性在链烷烃溶液(24wt%丙烯)中在一定氢分压下在70℃下报道。所获得的分子量是大约60Kg/mol,聚合物熔点是144.8-147℃。这些分子量低于在5和6位上具有H的类似配合物,rac-Me2Si(2-Me-1-茚基)Zr(1,4-二苯基丁二烯),Mw=79Kg/mol。用这两种催化剂的乙烯/辛烯聚合中发现了类似的结果。没有报道不含H2的溶液聚合。在该专利中还检验了担载催化剂,然而宽分子量分布(>3.5)使得在催化剂之间比较变得困难。这些结果表明,在5和6位上具有庞大基团的催化剂预计不具有分子量优点。因此,前面的这些取代不能获得有意义的聚合物分子量增加。
WO 2004/050724公开了丁烯用甲基铝氧烷和二氯·二甲基甲硅烷基双[2-甲基-5,6-(四甲基环三亚甲基)茚基]合锆的聚合,还描述了具有环状六元环的某些茚基型化合物;然而,WO 2004/050724不能在较高温度下获得高分子量。
因此,本领域对于能够提供具有高分子量以及良好结晶度的聚合物、优选在比其它催化剂体系更高温度和生产率下制备的催化剂体系存在着需求。
US6,479,424公开了用于生产丙烯聚合物的非桥连物质二氯·双(2-(3,5-二叔丁基苯基)-5,5,8,8-四甲基-5,6,7,8-四氢苯并(f)茚基)合铪,二氯·双(2-(3,5-二叔丁基苯基)-5,5,8,8-四甲基-5,6,7,8-四氢苯并(f)茚基)合锆,二氯·双(2-(4-叔丁基苯基)-5,5,8,8-四甲基-5,6,7,8-四氢苯并(f)茚基)合铪和二氯·双(2-(4-叔丁基苯基)-5,5,8,8-四甲基-5,6,7,8-四氢苯并(f)茚基)合锆的制备。
其它有意义的参考文献包括:1)US 6,034,022(尤其实施例17);2)US6,268,444(尤其实施例2);3)US6,469,188;和4)EP 1 138687(尤其实施例8和9)。
此外,本领域需要提供在较高温度下,优选用溶液聚合方法,制备具有较高分子量的丙烯型聚合物的方法。同样,本领域也需要提供在较高温度下用采用非配位阴离子活化剂的溶液方法制备具有较高分子量的丙烯型聚合物的方法,其中原料中的丙烯浓度是较低的。
发明概述
本发明涉及用通式1表示的过渡金属催化剂化合物:
Figure G05825090920070129D000041
其中
M是选自周期表4族中的过渡金属;
各R1独立地选自氢、烃基、取代烃基和官能团,任何两个R1基团可以连在一起;
各R2独立地选自甲基、乙基、丙基、丁基、戊基、己基和它们的异构体,前提是当R3和R6和/或R12和R15一起形成5碳环时,那么各R2独立地选自乙基、丙基、丁基、戊基、己基和它们的异构体;
R3是碳或硅;
R4是氢、烃基、取代烃基或官能团;
a是0、1或2;
R5是氢、烃基、取代烃基或官能团,R4和R5可以连在一起形成环,并且R5和R3可以连在一起形成环;
b是0、1或2;
R6是碳或硅;R4和R6可以连在一起形成环;
各R7是氢;
各R8独立地选自氢、甲基、乙基、丙基、丁基、戊基、己基和它们的异构体;
各R9独立地选自氢、烃基、取代烃基和官能团;两个R9基团可以连在一起形成环,R9和R8可以连在一起形成环,R9和R16可以连在一起形成环,R9和R11可以连在一起形成环;
c是0、1或2;
R10是-M2(R16)h-,其中M2是B、Al、N、P、Si或Ge,h是1-2的整数,使得M2的化合价被满足,R16是氢、烃基、取代烃基或官能团,两个R16基团可以连在一起形成环;
d是0、1或2;
各R11独立地选自氢、烃基、取代烃基和官能团,两个R11基团可以连在一起形成环,R11和R8可以连在一起形成环,R11和R16可以连在一起形成环;
e是0、1或2;
其中c、d和e的总和是1、2或3;
R12是碳或硅;
R13是氢、烃基、取代烃基或官能团,R13和R14可以连在一起形成环,以及当g是0时,R13和R15可以连在一起形成环;
f是0、1或2;
R14是氢、烃基、取代烃基或官能团,以及当f是0时,R14和R12可以连在一起形成环;
g是0、1或2;和
R15是碳或硅;
前提是如果两个R1基团连在一起,那么在M是Zr时它们不形成丁二烯基团。
本发明进一步涉及使用任选与活化剂结合的以上组分聚合不饱和单体的方法。
详述
本发明涉及一类新型催化剂化合物,它们可以与一种或多种活化剂结合以聚合任何不饱和单体。
对于本发明和所附权利要求书来说,当提到聚合物包括单体时,存在于聚合物中的单体为单体的聚合形式。对于本发明和所附权利要求书来说,当提到聚合物包括烯烃时,存在于聚合物中的烯烃是烯烃的聚合形式。在本说明书中,过渡金属催化剂化合物可以被描述为催化剂前体、前催化剂化合物、过渡金属配合物或催化剂化合物,这些术语可以互换使用。催化剂体系是过渡金属催化剂化合物和活化剂的结合物。活化剂也可互换地被称为助催化剂。另外,反应器是发生化学反应的任何容器。
这里所使用的周期表族的编号方案是如在CHEMICAL ANDENGINEERING NEWS,63(5),27(1985)中所述的新表示法。
此外,对于本发明来说,Me是甲基,Ph是苯基,Et是乙基,Pr是丙基,iPr是异丙基,n-Pr是正丙基,Bu是丁基,iBu是异丁基,tBu是叔丁基,p-tBu是对-叔丁基,Ph是苯基,TMS是三甲基甲硅烷基。
本发明涉及使用含有特定取代的茚基配体的手性金属茂(例如用以上通式1表示的那些)与活化剂和任选的其它助催化剂的结合物以溶液、淤浆或气相方法制备聚烯烃的方法。在本发明的一个实施方案中,制备聚α-烯烃。在另一个实施方案中,制备基本上不含二烯的烯烃共聚物。在本发明的一个优选实施方案中,制备具有中等结晶度和高分子量的聚丙烯(中等结晶度被定义为具有如由下述DSC工序测定的15-35%的结晶度,而高分子量被定义为如使用聚苯乙烯标准通过GPC测定的高于100,000的Mw)。此类聚合物优选用于诸如增塑剂和润滑剂配制料、热熔型粘合剂应用、涂料、密封、绝缘、模塑组合物或隔音材料之类的应用。本发明的另一个优选实施方案是制备如在WO2002/01745、US 2002/0004575 A1、WO2002/083753A1、US 6525157B2中所述的在丙烯序列内含有立构规整度的丙烯/乙烯共聚物。此类丙烯/乙烯共聚物可用作热塑性弹性体,抗冲改性剂,热塑性聚烯烃中的增容剂,弹性纤维和薄膜,动态硫化性合金,固化性弹性体,粘合剂,PVC替代物和粘度改性剂。还有,此类共聚物与聚丙烯的共混物经过取向获得了显著提高的弹性回复和拉伸强度。包括用通式1表示的金属茂、活化剂和任选的其它助催化剂的优选催化剂体系尤其适合于在工业上有效的温度下制备高分子量的聚烯烃。
使用TA Instruments 2920型机器获得差示扫描量热(DSC)示踪数据。将重约7-10mg的样品在铝样品盘内密封。通过首先将样品冷却到-50℃,然后以10℃/min的速度逐渐加热到200℃来记录DSC数据。在进行第二个冷却-加热周期之前,将样品在200℃下保持5分钟。记录第一和第二周期热事件。测定熔融曲线下面积,用于测定熔化热和结晶度。采用式[曲线下面积(J/g)/B(J/g)]*100来计算结晶度,其中B是主单体组分的均聚物的熔化热。这些B值由John Wiley and Sons出版的“聚合物手册”,第四版,New York 1999获得。使用189J/g(B)的值作为聚丙烯的熔化热。
本发明进一步涉及制备不饱和单体例如极性单体和/或烯烃的低聚物和/或聚合物的方法,包括让(如本文所述的)过渡金属化合物和任选的活化剂与单体接触。本发明还涉及使用在通式1中表示的含有特定取代茚基配体的金属茂制备烯烃聚合物和共聚物的方法:
Figure G05825090920070129D000081
其中:
M是选自周期表4族中的过渡金属,优选Zr或Hf,最优选Hf;
各R1独立地选自氢、烃基、取代烃基和官能团,优选地,R1是氢、烃或卤离子(halide),优选,R1是氢负离子(hydride),还更优选R1选自甲基、乙基、三甲基甲硅烷基甲基、三甲基甲硅烷基、苯基、萘基、烯丙基和苄基;还更优选,R1是甲基,并且R1可以连接,以及R1基团可以是相同或不同的;
各R2独立地选自甲基、乙基、丙基、丁基、戊基、己基和它们的异构体,前提是当R3和R6和/或R12和R15一起形成5碳环时,那么各R2独立地选自乙基、丙基、丁基、戊基、己基和它们的异构体,优选地,R2是甲基、乙基或丙基,更优选地,R2是甲基,R2基团可以是相同或不同的;
R3是碳或硅;
R4是氢、烃基、取代烃基或官能团,
优选地,R4是CH2,R4和R5可以连在一起形成环,和/或R4和R6可以连在一起形成环;
a是等于0、1或2的整数;
R5是氢、烃基、取代烃基或官能团,优选地,R5是CH2,R5和R3可以连在一起形成环;
b是等于0、1或2的整数;
R6是碳或硅;
各R7是氢;
各R8独立地选自氢、甲基、乙基、丙基、丁基、戊基、己基和它们的异构体,优选地,R8是氢、甲基、乙基或丙基,更优选,R8是氢或甲基,R8基团可以是相同或不同的;
各R9独立地选自氢、烃基、取代烃基和官能团,优选地,R9是氢、甲基、乙基、丙基或苯基,更优选,R9是氢,R9基团可以是相同或不同的;任何两个R9基团可以连在一起形成环,R9和R8可以连在一起形成环,R9和R16可以连在一起形成环,R9和R11可以连在一起形成环;
R10是-M2(R16)h-,其中M2是B、Al、N、P、Si或Ge,h是1-2的整数,使得M2的化合价被满足,R16是氢、烃基、取代烃基或官能团,优选芳烃,各R16基团可以是相同或不同的,任何两个R16基团可以连在一起形成环,优选地,R10是SiMe2,Si(CH2)2,Si(CH2)3,SiPh2,Si(联苯基)1,Si(联苯基)2,Si(邻甲苯基)2,更优选,R10是SiMe2或SiPh2
各R11独立地选自氢、烃基、取代烃基和官能团,优选地,R11是氢、甲基、乙基、丙基或苯基,更优选,R11是氢,R11基团可以是相同或不同的,两个R11基团可以连在一起形成环,R11和R8可以连在一起形成环,R11和R16可以连在一起形成环;
c是0、1或2的整数;
d是0、1或2的整数;
e是0、1或2的整数;
其中c、d和e的总和是1、2或3,优选地,c、d和e的总和是1或2,更优选,c、d和e的总和是1;
R12是碳或硅;
R13是氢、烃基、取代烃基或官能团,优选CH2,R13和R14可以连在一起形成环,以及当g是0时,R13和R15可以连在一起形成环;
R14是氢、烃基、取代烃基或官能团,优选CH2,以及当f是0时,R14和R12可以连在一起形成环;
R15是碳或硅;
f是0、1或2的整数;
g是0、1或2的整数;
前提是如果两个R1基团连在一起,那么在M是Zr时它们不形成丁二烯基团。
在一个优选实施方案中,R3和R6不形成5碳环。在一个替代实施方案中,和/或R12和R15不形成5碳环。在一个替代实施方案中,R3和R6和R12和R15不形成5碳环。
在一个优选实施方案中,当M是Zr时,R3和R6不形成5碳环。在一个替代实施方案中,当M是Zr时,和/或R12和R15不形成5碳环。在一个替代实施方案中,当M是Zr时,R3和R6和R12和R15不形成5碳环。
在一个优选实施方案中,当M是Hf时,R3和R6形成5碳环且连接于该5碳环的至少一个R2基团不是甲基,优选地,至少两个R2基团不是甲基,优选地,至少三个R2基团不是甲基,优选地,连接于该5碳环的所有四个R2基团不是甲基。
在一个替代实施方案中,当M是Hf时,R12和R15形成5碳环。且连接于该5碳环的至少一个R2基团不是甲基,优选至少两个R2基团不是甲基,优选地,至少三个R2基团不是甲基,优选地,连接于该5碳环的所有四个R2基团不是甲基。
在另一个优选实施方案中,M是Hf,两个R1基团都是甲基。
取代烃基团(也称为取代烃基)是其中至少一个烃氢原子已经被至少一个杂原子或含杂原子的基团取代的基团。
在整个文件中,术语“烃基团”有时与“烃基”互换使用。对于本公开来说,“烃基”包括含有碳、氢和任选的硅原子,优选1-100个碳原子、氢和任选的硅的基团。这些基团可以是线性的、支化的或环状的,包括多环。这些基团可以是饱和的、部分不饱和的或完全不饱和的,并且当为环状时,可以是芳族或非芳族的。
烃基可以是芳烃。芳烃是取代或未取代芳族烃。芳烃可以是单环、多环、烃集合环或稠环体系。芳烃可以是取代或未取代的。取代烃基可以是含有官能团的芳烃。这样,取代烃基可以是杂环、多杂环、杂环集合环或稠合杂环体系。
在一些实施方案中,烃基选自甲基、乙基、丙基、丁基、戊基、己基、庚基、辛基、壬基、癸基、十一烷基、十二烷基、十三烷基、十四烷基、十五烷基、十六烷基、十七烷基、十八烷基、十九烷基、二十烷基、二十一烷基、二十二烷基、二十三烷基、二十四烷基、二十五烷基、二十六烷基、二十七烷基、二十八烷基、二十九烷基、三十烷基、乙烯基、丙烯基、丁烯基、戊烯基、己烯基、庚烯基、辛烯基、壬烯基、癸烯基、十一碳烯基、十二碳烯基、十三碳烯基、十四碳烯基、十五碳烯基、十六碳烯基、十七碳烯基、十八碳烯基、十九碳烯基、二十碳烯基、二十一碳烯基、二十二碳烯基、二十三碳烯基、二十四碳烯基、二十五碳烯基、二十六碳烯基、二十七碳烯基、二十八碳烯基、二十九碳烯基、三十碳烯基、丙炔基、丁炔基、戊炔基、己炔基、庚炔基、辛炔基、壬炔基、癸炔基、十一碳炔基、十二碳炔基、十三碳炔基、十四碳炔基、十五碳炔基、十六碳炔基、十七碳炔基、十八碳炔基、十九碳炔基、二十碳炔基、二十一碳炔基、二十二碳炔基、二十三碳炔基、二十四碳炔基、二十五碳炔基、二十六碳炔基、二十七碳炔基、二十八碳炔基、二十九碳炔基或三十碳炔基异构体。对于本公开来说,当列举一个基团时,它表示该基团类型和当该基团类型进行以上定义的取代时所形成的所有其它基团。所列举的烷基、烯基和炔基包括所有异构体,包括适当情况下的环状异构体,例如,丁基包括正丁基、2-甲基丙基、1-甲基丙基、叔丁基和环丁基(和类似取代的环丙基);戊基包括正戊基、环戊基、1-甲基丁基、2-甲基丁基、3-甲基丁基、1-乙基丙基和新戊基(和类似取代的环丁基和环丙基);丁烯基包括1-丁烯基、2-丁烯基、3-丁烯基、1-甲基-1-丙烯基、1-甲基-2-丙烯基、2-甲基-1-丙烯基和2-甲基-2-丙烯基(以及环丁烯基和环丙烯基)的E和Z形式。具有取代的环状化合物包括所有异构体形式,例如,甲基苯基包括邻甲基苯基,间甲基苯基和对甲基苯基;二甲基苯基包括2,3-二甲基苯基,2,4-二甲基苯基,2,5-二甲基苯基,2,6-二甲基苯基,3,4-二甲基苯基和3,5-二甲基苯基。
官能团是单独或通过共价键或其它相互作用例如离子、范德华力或氢键键合连接于其它元素的周期表1-17族的杂原子。官能团的实例包括氟、氯、溴、碘、羧酸、酰卤、羧酸酯、羧酸盐、羧酸酐、醛和它们的硫属元素(14族)类似物,醇和酚,醚,过氧化物和氢过氧化物,羧酰胺,酰肼和酰亚胺,脒和酰胺的其它氮类似物,腈,胺和亚胺,偶氮,硝基,其它氮化合物,硫酸类,硒酸类,硫醇类,硫化物,亚砜类,砜类,膦类,磷酸酯类,其它磷化合物,硅烷类,硼烷类,硼酸酯类,铝烷类,铝酸酯类。官能团还可以广义地包括有机聚合物载体或无机载体材料例如氧化铝和硅石。
在一个优选实施方案中,这里使用的催化剂化合物可以用通式2表示:
Figure G05825090920070129D000131
其中:
M是选自周期表4族中的过渡金属,优选Zr或Hf,最优选Hf;
各R1独立地选自氢、烃基、取代烃基和官能团,优选地,R1是氢、烃或卤离子,更优选,R1是氢负离子、甲基、乙基、三甲基甲硅烷基甲基、三甲基甲硅烷基、苯基、萘基、烯丙基或苄基,还更优选,R1是甲基,两个R1基团可以是相同或不同的,两个R1可以连接;
各R2独立地选自甲基、乙基、丙基、丁基、戊基、己基和它们的异构体,前提是当R3和R6和/或R12和R15一起形成5碳环时,那么各R2独立地选自乙基、丙基、丁基、戊基、己基和它们的异构体,优选地,R2是甲基、乙基或丙基,更优选地,R2是甲基,并且R2基团可以是相同或不同的;
各R7是氢;
各R8独立地选自氢、甲基、乙基、丙基、丁基、戊基、己基和它们的异构体,优选地,R8是氢、甲基、乙基或丙基,更优选,R8是氢或甲基,R8基团可以是相同或不同的;
各R9独立地选自氢、烃基、取代烃基和官能团,优选地,R9是氢、甲基、乙基、丙基或苯基,更优选,R9是氢,R9基团可以是相同或不同的,任何两个R9基团可以连在一起形成环,R9和R8可以连在一起形成环,R9和R11可以连在一起形成环;
R10是-M2(R16)h-,其中M2是B、Al、N、P、Si或Ge,h是1-2的整数,使得M2的化合价被满足,R16是氢、烃基、取代烃基或官能团,优选芳烃,各R16基团可以是相同或不同的,任何两个R16基团可以连在一起形成环,优选地,R10是SiMe2,Si(CH2)2,Si(CH2)3,SiPh2,Si(联苯基)1,Si(联苯基)2,Si(邻甲苯基)2,更优选,R10是SiMe2或SiPh2
各R11独立地选自氢、烃基、取代烃基和官能团,优选地,R11是氢、甲基、乙基、丙基或苯基,更优选,R11是氢,R11基团可以是相同或不同的,R11基团可以连在一起形成环,R11和R8可以连在一起形成环;
c是0、1或2的整数;
d是0、1或2的整数;
e是0、1或2的整数;
c、d和e的总和是1、2或3,优选地,c、d和e的总和是1或2,更优选,c、d和e的总和是1;
前提是如果两个R1基团连在一起,那么在M是Zr时它们不形成丁二烯基团。
在一个替代实施方案中,当M是Hf时,连接于6碳环的至少一个R2基团不是甲基,优选至少两个R2基团不是甲基,优选地,至少三个R2基团不是甲基,优选地,连接于6碳环的所有四个R2基团不是甲基。
在另一个优选实施方案中,M是Hf,两个R1基团都是甲基。
在一个优选实施方案中,这里使用的催化剂化合物用通式3表示:
Figure G05825090920070129D000151
其中:
M是选自周期表4族中的过渡金属,优选Zr或Hf,最优选Hf;
各R1独立地选自氢、烃基、取代烃基和官能团,优选地,R1是氢、烃或卤离子,更优选,R1是氢负离子、甲基、乙基、三甲基甲硅烷基甲基、三甲基甲硅烷基、苯基、萘基、烯丙基或苄基,还更优选,R1是甲基,两个R1基团可以是相同或不同的,两个R1可以连接,前提是如果两个R1连接,那么当M是Zr时,它们不形成丁二烯基团;
Me是甲基;
各R8独立地选自氢、烃基、取代烃基和官能团,优选地,R8是氢、甲基、乙基或丙基,更优选,R8是氢或甲基,并且R8基团可以是相同或不同的;和
各R16可以是相同或不同的,并且R16基团可以连在一起形成环,优选地,各R16独立地是甲基、乙基、苯基、联苯基、邻甲苯基或芳烃,优选地,R16是甲基、乙基、苯基或芳烃。
在任何以上通式的任何一个优选实施方案中,R8不是苯基和/或取代苯基。
在另一个优选实施方案中,如果两个R1基团连接,那么当M是Ti时它们不形成丁二烯基团。
在另一个优选实施方案中,如果两个R1基团连接,那么当M是Hf时它们不形成丁二烯基团。
在一个优选实施方案中,这里使用的催化剂化合物用以下化学式表示:
Figure G05825090920070129D000161
其中Me是甲基,Hf是铪,Ph是苯基,和Si是硅。
在另一个实施方案中,本发明的催化剂化合物以+4形式氧化态存在。在另一个实施方案中,本发明的催化剂化合物不以+2形式氧化态存在。这里使用的形式氧化态的命名法在下文中有详细描述:Hegedus,L.S.Transition Metals in the Synthesis of Complex OrganicMolecules,第二版,University Science Press,1999,Sausalito,CA.和Collman,J.P.等人,Principles and Applications ofOrganotransition Metal Chemistry,University Science Press,1987,Sausalito,CA。
在另一个优选实施方案中,这里所述的催化剂化合物可以与其它聚合和/或低聚催化剂结合使用。在一个优选实施方案中,这些催化剂化合物与在任何以下参考文献及其引用的参考文献中所述的催化剂化合物结合使用:
Hlatky,G.G.Chem.Rev.2000,100,1347;Alt,H.;Koppl,A.Chem.Rev.2000,100,1205;Resconi,L.;Cavallo,L.;Fait,A.;Piermontesi,F.Chem.Rev.2000,100,1253;Bryntzinger,H.H.等人,Angew.Chem.Int.Ed.Engl.1995,34,1143;Ittel,S.D.;Johnson,L.K.;Brookhart,M.Chem.Rev.2000,100,1169;Gibson,V.C.;Spitzmesser,S.K.Chem.Rev.2003,103,283.;Skupinska,J.Chem.Rev.1991,91,613;Carter,A.等人,Chem.Commun.2002,858;McGuinness,D.S.等人,J.Am.Chem.Soc.2003,125,5272;McGuiness,D.S.Chem.Commun.2003,334。
用于催化剂化合物的活化剂和活化方法
根据本发明的桥连金属茂化合物可以按足以允许配位或阳离子聚合的任何方式活化,以用于聚合催化。当一个配体能够被夺取和另一个允许插入不饱和单体或者同样可被夺取,以便用允许插入不饱和单体的配体(不稳定配体)例如烷基、甲硅烷基或氢负离子置换时,这能够实现以用于配位聚合。配位聚合领域的常规活化剂是适合的,它们通常包括路易斯酸例如铝氧烷化合物,以及夺取一个配体,以便将桥连金属茂金属中心电离为阳离子并且提供抗衡非配位离子的电离阴离子前体化合物。
烷基铝氧烷和改性烷基铝氧烷适合作为催化剂活化剂,尤其作为其中R1=卤离子或其它官能团的本发明金属化合物的活化剂。烷基铝氧烷和改性烷基铝氧烷也适合作为其中R1=烃基或取代烃基的本发明金属化合物的催化剂。在一个实施方案中,采用一种或多种铝氧烷作为本发明的催化剂组合物中的活化剂。铝氧烷(alumoxane),有时在本领域中被称为铝氧烷(aluminoxane),一般是含有-Al(R)-O-亚单元的低聚化合物,其中R是烷基。铝氧烷的例子包括甲基铝氧烷(MAO),改性甲基铝氧烷(MMAO),乙基铝氧烷和异丁基铝氧烷。烷基铝氧烷和改性烷基铝氧烷适合作为催化剂活化剂,尤其当可夺取的配体是卤离子时。还可以使用不同铝氧烷和改性铝氧烷的混合物。关于进一步的说明,参见US专利Nos.4,665,208,4,952,540,5,041,584,5,091,352,5,206,199,5,204,419,4,874,734,4,924,018,4,908,463,4,968,827,5,329,032,5,248,801,5,235,081,5,157,137,5,103,031,EP 0 561 476A1,EP 0 279 586B1,EP 0 516476A,EP 0 594 218A1以及WO 94/10180。
当活化剂是铝氧烷(改性或非改性)时,一些实施方案选择相对于催化剂前体(每一金属催化位点)的最大量的活化剂,为5000倍摩尔过量的Al/M。最小活化剂与催化剂前体的摩尔比通常为1∶1。
铝氧烷可以通过相应的三烷基铝化合物的水解来制备。MMAO可以通过三甲基铝和更高级三烷基铝化合物如三异丁基铝的水解来制备。MMAO通常在脂族溶剂中具有更高的溶解度和在贮存过程中更稳定。有许多种制备铝氧烷和改性铝氧烷的方法,它们的非限制性实例描述在U.S.专利Nos.4,665,208,4,952,540,5,091,352,5,206,199,5,204,419,4,874,734,4,924,018,4,908,463,4,968,827,5,308,815,5,329,032,5,248,801,5,235,081,5,157,137,5,103,031,5,391,793,5,391,529,5,693,838,5,731,253,5,731,451,5,744,656,5,847,177,5,854,166,5,856,256和5,939,346;欧洲公开EP 0 561 476,EP 0 279 586,EP 0 594 218和EP-B1-0 586 665;以及PCT公开WO 94/10180和WO99/15534中,所有这些专利在此全面引入供参考。可以优选使用视觉透明的甲基铝氧烷。可以过滤浑浊或胶化铝氧烷,以形成透明溶液,或者可以从浑浊溶液中滗析出透明铝氧烷。另一优选铝氧烷是3A型改性甲基铝氧烷(MMAO)助催化剂(以3A型改性甲基铝氧烷的商品名从AkzoChemicals,Inc.商购,受专利号US 5,041,584的保护)。
可以用作活化剂(或清除剂)的烷基铝或有机铝化合物的例子包括三甲基铝,三乙基铝,三异丁基铝,三正己基铝,三正辛基铝等。
使用中性或离子型的电离或化学计量活化剂(stoichiometricactivator),如四(五氟苯基)硼三正丁基铵,三全氟苯基硼准金属前体或三全氟萘基硼准金属前体,多卤化杂硼烷阴离子(WO98/43983),硼酸(US专利No.5,942,459)或它们的组合是在本发明的范围内的。中性或离子活化剂单独使用或与铝氧烷或改性铝氧烷活化剂结合使用也在本发明范围内。
中性化学计量活化剂的实例包括三取代硼、碲、铝、镓和铟或它们的混合物。三个取代基可以各自独立选自烷基,链烯基,卤素,取代烷基,芳基,卤化芳基,烷氧基和卤离子。优选,该三个基团独立选自卤素,单或多环(包括卤代)芳基,烷基和链烯基化合物以及它们的混合物,优选的是具有1-20个碳原子的链烯基,具有1-20个碳原子的烷基,具有1-20个碳原子的烷氧基和具有3-20个碳原子的芳基(包括取代芳基)。更优选的是,该三个基团是具有1-4个碳原子的烷基,苯基,萘基或它们的混合物。还更优选的是,该三个基团是卤化,优选氟化芳基。最优选的是,中性化学计量活化剂是三全氟苯基硼或三全氟萘基硼。
离子化学计量活化剂化合物可以含有活性质子,或与该电离化合物的剩余离子缔合、但不配位于或仅松弛地配位于该电离化合物的剩余离子的一些其它阳离子。这些化合物和类似化合物描述在欧洲公开EP-A-0 570 982,EP-A-0 520 732,EP-A-0 495 375,EP-B1-0 500 944,EP-A-0 277 003和EP-A-0 277 004,US专利Nos.5,153,157,5,198,401,5,066,741,5,206,197,5,241,025,5,384,299和5,502,124以及1994年8月3日提出的US专利申请序号08/285,380中;所有这些专利在此全面引入供参考。
优选的活化剂包括阳离子和阴离子组分,并且可以用下式表示:
(St+)u(NCAv-)w
St+是具有电荷t+的阳离子组分,
NCAv-是具有电荷v-的非配位阴离子,
t是1-3的整数,
v是1-3的整数,
u和v受关系式:(u)×(t)=(v)×(w)的限制。
阳离子组分(St+)可以包括布朗斯台德酸例如能够质子化或夺取类似金属茂或含15族原子的过渡金属催化剂前体中的结构部分例如烷基或芳基,获得阳离子过渡金属物种的质子或质子化路易斯碱或可还原的路易斯酸。
在一个优选实施方案中,活化剂包括阳离子和阴离子组分,并且可以用下式表示:
(LB-Ht+)u(NCAv-)w
其中LB是中性路易斯碱;
H是氢;
NCAv-是具有电荷v-的非配位阴离子,
t是1-3的整数,
v是1-3的整数,
u和v受关系式:(u)×(t)=(v)×(w)的限制。
活化阳离子(St+)可以是布朗斯台德酸(LB-Ht+),它能够将质子给予过渡金属催化前体,获得过渡金属阳离子,包括铵,氧鎓,鏻,甲硅烷鎓和它们的混合物,优选甲胺、苯胺、二甲胺、二乙胺、N-甲基苯胺、二苯胺、三甲胺、三乙胺、N,N-二甲基苯胺、甲基二苯基胺、吡啶、对-溴-N,N-二甲基苯胺和对-硝基-N,N-二甲基苯胺的铵;由三乙基膦,三苯基膦和二苯基膦获得的鏻;由醚如二甲醚,二乙醚,四氢呋喃和二噁烷获得的氧鎓;由硫醚,如二乙基硫醚和四氢噻吩获得的锍,以及它们的混合物。
活化阳离子(St+)还可以是夺取结构部分,如银,碳鎓(carbonium),
Figure G05825090920070129D000211
鎓,碳鎓(carbenium),二茂铁鎓和它们的混合物,优选碳鎓和二茂铁鎓。最优选(St+)是三苯基碳鎓或N,N-二甲基苯胺鎓。
阴离子组分(NCAv-)包括具有通式(Tx+Qy)v-的那些,其中x是1-3的整数;y是2-6的整数;y-x=v;T是选自元素周期表的13或15族中的元素,优选硼或铝;和Q独立是氢负离子,桥连或非桥连二烷基氨基,卤离子,烷氧基,芳氧基,烃基,取代烃基,卤烃基(halocarbyl),取代卤烃基和卤素取代烃基基团,所述Q具有至多20个碳原子,前提是Q是卤离子的情况不超过一次。优选,各Q是具有1-20个碳原子的氟化烃基;更优选各Q是氟化芳基,和最优选各Q是五氟芳基。适合的(NCAv-)的实例还包括如在U.S.专利No.5,447,895中公开的二硼化合物,该专利在此全面引入供参考。适合的阴离子的另一实例是具有三个邻位取代的氟芳基配体和一个炔配体的硼酸根。适合的阴离子的另一例子是含有携带极性取代基例如胺、醚、甲硅烷基和它们的衍生物的氟芳基的硼酸根。
其它适合的阴离子在本领域中是已知的,并且适合在本发明的催化剂中使用。尤其参见专利US 5,278,119,WO2002102857,WO2002051884,WO200218452,WO2000037513,WO2000029454,WO2000004058,WO9964476,WO2003049856,WO2003051892,WO2003040070,WO2003000740,WO2002036639,WO2002000738,WO2002000666,WO2001081435,WO2001042249,WO2000004059。还参见S.H.Strauss的评论文章,“The Search for Larger and MoreWeakly Coordinating Anions”,Chem.Rev.,93,927-942(1993)和C.A.Reed,“Carboranes:A New Class of Weakly CoordinatingAnions for Strong Electrophiles,Oxidants and Superacids”,Acc.Chem.Res.,31,133-139(1998)。
可以在本发明的改进催化剂的制备中用作活化助催化剂的硼化合物的示例而非限制性实例是三取代的铵盐,例如:四苯基硼酸三甲基铵,四苯基硼酸三乙基铵,四苯基硼酸三丙基铵,四苯基硼酸三(正丁基)铵,四苯基硼酸三(叔丁基)铵,四苯基硼酸N,N-二甲基苯胺鎓,四苯基硼酸N,N-二乙基苯胺鎓,四苯基硼酸N,N-二甲基-(2,4,6-三甲基苯胺鎓),四(五氟苯基)硼酸三甲基铵,四(五氟苯基)硼酸三乙基铵,四(五氟苯基)硼酸三丙基铵,四(五氟苯基)硼酸三(正丁基)铵,四(五氟苯基)硼酸三(仲丁基)铵,四(五氟苯基)硼酸N,N-二甲基苯胺鎓,四(五氟苯基)硼酸N,N-二乙基苯胺鎓,四(五氟苯基)硼酸N,N-二甲基-(2,4,6-三甲基苯胺鎓),四(七氟萘基)硼酸三甲基铵,四(七氟萘基)硼酸三乙基铵,四(七氟萘基)硼酸三丙基铵,四(七氟萘基)硼酸三(正丁基)铵,四(七氟萘基)硼酸三(仲丁基)铵,四(七氟萘基)硼酸N,N-二甲基苯胺鎓,四(七氟萘基)硼酸N,N-二乙基苯胺鎓,(2-全氟联苯基)3(全氟苯基炔基)硼酸三甲基铵,(2-全氟联苯基)3(全氟苯基炔基)硼酸三乙基铵,(2-全氟联苯基)3(全氟苯基炔基)硼酸三丙基铵,(2-全氟联苯基)3(全氟苯基炔基)硼酸三(正丁基)铵,(2-全氟联苯基)3(全氟苯基炔基)硼酸三(仲丁基)铵,(2-全氟联苯基)3(全氟苯基炔基)硼酸N,N-二甲基苯胺鎓,(2-全氟联苯基)3(全氟苯基炔基)硼酸N,N-二乙基苯胺鎓,四-(2,3,4,6-四氟苯基)硼酸三甲基铵,四-(2,3,4,6-四氟苯基)硼酸三乙基铵,四-(2,3,4,6-四氟苯基)硼酸三丙基铵,四-(2,3,4,6-四氟苯基)硼酸三(正丁基)铵,四-(2,3,4,6-四氟苯基)硼酸二甲基(叔丁基)铵,四-(2,3,4,6-四氟苯基)硼酸N,N-二甲基苯胺鎓,四-(2,3,4,6-四氟苯基)硼酸N,N-二乙基苯胺鎓,四-(2,3,4,6-四氟苯基)硼酸N,N-二甲基-(2,4,6-三甲基苯胺鎓);二烷基铵盐,例如:四(五氟苯基)硼酸二-(异丙基)铵,和四(五氟苯基)硼酸二环己基铵;和其它三取代鏻盐,例如四(五氟苯基)硼酸三苯基鏻,四(五氟苯基)硼酸三(邻甲苯基)鏻和四(五氟苯基)硼酸三(2,6-二甲基苯基)鏻;非布朗斯台德酸例如四(五氟苯基)硼酸三苯基碳鎓,四(七氟萘基)硼酸三苯基碳鎓,(2-全氟联苯基)3(全氟苯基炔基)硼酸三苯基碳鎓,三全氟苯基硼烷和三全氟萘基硼烷。
最优选的是,离子化学计量活化剂是四(全氟苯基)硼酸N,N-二甲基苯胺鎓和/或四(全氟苯基)硼酸三苯基碳鎓。
在一个实施方案中,使用不含活性质子、但能够产生类似金属茂催化剂阳离子和它们的非配位阴离子的电离离子化合物的活化方法也被考虑在内,并且在EP-A-0 426 637,EP-A-0 573 403和US专利No.5,387,568中有述,这些专利在此全面引入供参考。
术语“非配位阴离子”(NCA)是指不配位于所述阳离子或仅微弱地配位于所述阳离子,从而保持非常容易被中性路易斯碱置换的阴离子。“相容的”非配位阴离子是在初始形成的配合物分解时不降级为中性的那些。根据本发明使用的非配位阴离子是相容的,在平衡其离子电荷的意义上稳定该金属阳离子,然而在聚合过程中又十分容易被烯属或炔属不饱和单体所置换的那些非配位阴离子。这些类型的助催化剂有时使用三异丁基铝或三辛基铝作为清除剂。
本发明方法还可以使用起初为中性路易斯酸,但在与本发明化合物反应时形成阳离子金属配合物和非配位阴离子、或两性离子配合物的助催化剂化合物或活化剂化合物。例如,三(五氟苯基)硼或铝用于夺取烃基或氢负离子配体,以获得本发明阳离子金属配合物并稳定非配位阴离子,关于类似4族金属茂化合物的说明,参见EP-A-0 427697和EP-A-0 520 732。还有,参见EP-A-0 495 375的方法和化合物。关于使用类似4族化合物形成两性离子配合物,参见US专利5,624,878;5,486,632;和5,527,929。
其它中性路易斯酸在本领域中是已知的,并且适合于夺取阴离子配体。尤其参见E.Y.-X.Chen和TJ.Marks的评论文章,“Cocatalystsfor Metal-Catalyzed Olefin Polymerization:Activators,Activation Processes,and Structure-Activity Relationships”,Chem.Rev.,100,1391-1434(2000)。
当R1是官能团配体例如氯离子、氨基或烷氧基配体,以及该官能团配体不能用电离阴离子前体化合物独立电离夺取时,这些官能团配体可通过已知的与有机金属化合物例如氢化锂或氢化铝或烷基锂或烷基铝、烷基铝氧烷、格利雅试剂等的烷基化反应来转化。关于描述了在添加活化非配位阴离子前体化合物之前或期间烷基铝化合物与类似二卤代金属茂化合物的反应的类似方法,参见EP-A-0 500 944,EP-A1-0 570 982和EP-A1-0 612768。
当非配位阴离子前体的阳离子是布朗斯台德酸例如质子或质子化路易斯碱(不包括水)或可还原的路易斯酸例如二茂铁鎓或银阳离子,或碱金属或碱土金属阳离子例如钠、镁或锂的那些阳离子时,催化剂前体与活化剂的摩尔比可以是任何比率。所述活化剂化合物的组合也可用于活化。例如,三(全氟苯基)硼可以与甲基铝氧烷一起使用。
一般,结合的金属化合物和活化剂以大约1000∶1到大约0.5∶1的比率结合。在一个优选实施方案中,金属化合物和活化剂以大约300∶1到大约1∶1,优选大约150∶1到大约1∶1的比率结合;对于硼烷、硼酸酯、铝酸酯等,该比率优选是大约1∶1到大约10∶1,对于烷基铝化合物(例如二乙基氯化铝与水结合),该比率优选是大约0.5∶1到大约10∶1。
在一个优选实施方案中,第一催化剂与第二或其它催化剂的比率是5∶95到95∶5,优选25∶75到75∶25,还更优选40∶60到60∶40。
在另一个实施方案中,这里所使用的活化剂不是铝氧烷。或者,这里使用的催化剂体系包括低于0.1wt%的铝氧烷。
在另一个实施方案中,本发明的催化剂组合物包括载体材料或担体。例如,一种或多种催化剂组分和/或一种或多种活化剂可以沉积在一种或多种载体或担体上,与一种或多种载体或担体接触,与一种或多种载体或担体一起汽化,结合于一种或多种载体或担体,引入到一种或多种载体或担体内,在一种或多种载体或担体内或在一种或多种载体或担体上吸附或吸收。
载体材料可以是任何常规载体材料。优选地,载体材料是多孔载体材料,例如滑石、无机氧化物和无机氯化物。其它载体材料包括树脂载体材料如聚苯乙烯,官能化或交联有机载体,如聚苯乙烯,二乙烯基苯,聚烯烃或聚合物,沸石,粘土,或任何其它有机或无机载体材料等,或它们的混合物。
优选的载体材料是无机氧化物,包括那些2、3、4、5、13或14族金属氧化物。优选的载体包括硅石(脱水或未脱水),热解法硅石,氧化铝(WO 99/60033),硅石-氧化铝和它们的混合物。其它有用的载体包括氧化镁,二氧化钛,氧化锆,氯化镁(US专利No.5,965,477),蒙脱石(欧洲专利EP-B1 0 511 665),页状硅酸盐,沸石,滑石,粘土(US专利No.6,034,187)等。还有,可以使用这些载体材料的组合,例如硅石-铬,硅石-氧化铝,硅石-二氧化钛等。其它载体材料可以包括在EP 0 767 184 B1中所述的那些多孔丙烯酸系聚合物,该专利在此引入供参考。另外的载体材料包括如在WO 99/47598中所述的纳米复合材料,如在WO 99/48605中所述的气溶胶,如在U.S.专利No.5,972,510中所述的球粒和如在WO 99/50311中所述的聚合物珠粒,所述专利在此全面引入供参考。
优选的是,载体材料、最优选无机氧化物具有大约10到大约700m2/g的表面积,大约0.1到大约4.0cc/g的孔体积和大约5到大约500μm的平均粒度。更优选,载体材料的表面积为大约50到大约500m2/g,孔体积为大约0.5到大约3.5cc/g和平均粒度为大约10到大约200μm。最优选,载体材料的表面积为大约100到大约400m2/g,孔体积为大约0.8到大约3.0cc/g和平均粒度为大约5到大约100μm。本发明的载体的平均孔径一般是在
Figure G05825090920070129D000251
优选50-大约
Figure G05825090920070129D000252
和最优选75-大约的范围内。
单体
在一个优选实施方案中,本发明的过渡金属化合物用于聚合或低聚任何一种或多种不饱和单体。优选的单体包括C2-C100烯烃,优选C2-C60烯烃,优选C2-C40烯烃,优选C2-C20烯烃,优选C2-C12烯烃。在一些实施方案中,优选的单体包括线性、支化或环状α-烯烃,优选C2-C100α-烯烃,优选C2-C60α-烯烃,优选C2-C40α-烯烃,优选C2-C20α-烯烃,优选C2-C12α-烯烃。优选的烯烃单体可以是乙烯,丙烯,丁烯,戊烯,己烯,庚烯,辛烯,壬烯,癸烯,十二碳烯,4-甲基-戊烯-1,3-甲基戊烯-1,3,5,5-三甲基己烯-1和5-乙基-1-壬烯中的一种或多种。
在另一个实施方案中,这里生产的聚合物是能够通过立体有择和非立体有择催化剂的任何一种聚合的一种或多种线性或支化C3-C30前手性α-烯烃或者含有C5-C30环的烯烃或者它们的组合的共聚物。本文所使用的前手性是指当使用立体有择催化剂聚合时有利于形成全同立构或间同立构聚合物的单体。
优选的单体还可以包括含有至多30个碳原子的含芳族基团的单体。适合的含芳族基团的单体包括至少一芳族结构,优选1-3个芳族结构,更优选苯基、茚基、芴基或萘基结构部分。含芳族基团的单体进一步包括至少一可聚合双键,使得在聚合之后,芳族结构侧挂于聚合物骨架。含芳族基团的单体可以进一步被一个或多个烃基取代,包括、但不限于C1-C10烷基。另外,两个相邻取代可以连接成环结构。优选的含芳族基团的单体含有附于可聚合烯属结构部分的至少一芳族结构。尤其优选的芳族单体包括苯乙烯、α-甲基苯乙烯、对烷基苯乙烯类、乙烯基甲苯类、乙烯基萘、烯丙基苯和茚,尤其苯乙烯、对甲基苯乙烯、4-苯基-1-丁烯和烯丙基苯。
含有非芳族环基的单体在这里也是有用的。这些单体可以含有至多30个碳原子。适合的含非芳族环基的单体优选具有在环状结构上侧挂或者属于环状结构的一部分的至少一个可聚合烯属基团。该环状结构还可以进一步被一个或多个烃基,比如、但不限于C1-C10烷基取代。优选的含非芳族环基的单体包括乙烯基环己烷,乙烯基环己烯,乙烯基降冰片烯,乙叉基降冰片烯,环戊二烯,环戊烯,环己烯,环丁烯,乙烯基金刚烷等。
可用于本发明的优选的二烯烃单体包括具有至少两个不饱和键的任何烃结构,优选C4-C30,其中不饱和键的至少一个(通常两个)易于通过立体有择或非立体有择催化剂引入到聚合物中。进一步优选的是,二烯烃单体从α,ω-二烯单体(即二乙烯基单体)中选择。更优选地,二烯烃单体是线性二乙烯基单体,最优选含有4-30个碳原子的那些。优选的二烯的实例包括丁二烯,戊二烯,己二烯,庚二烯,辛二烯,壬二烯,癸二烯,十一碳二烯,十二碳二烯,十三碳二烯,十四碳二烯,十五碳二烯,十六碳二烯,十七碳二烯,十八碳二烯,十九碳二烯,二十碳二烯,二十一碳二烯,二十二碳二烯,二十三碳二烯,二十四碳二烯,二十五碳二烯,二十六碳二烯,二十七碳二烯,二十八碳二烯,二十九碳二烯,三十碳二烯,尤其优选的二烯包括1,6-庚二烯,1,7-辛二烯,1,8-壬二烯,1,9-癸二烯,1,10-十一碳二烯,1,11-十二碳二烯,1,12-十三碳二烯,1,13-十四碳二烯,以及低分子量聚丁二烯(Mw低于1000g/mol)。优选的环状二烯包括在各个环位置有或无取代的环戊二烯,乙烯基降冰片烯,降冰片二烯,乙叉基降冰片烯,二乙烯基苯,二环戊二烯或含有更高级环的二烯烃。
可用于本发明的优选的极性不饱和单体的非限制性实例包括6-硝基-1-己烯,N-甲基烯丙基胺,N-烯丙基环戊基胺,N-烯丙基-己胺,甲基乙烯基酮,乙基乙烯基酮,5-己烯-2-酮,2-乙酰基-5-降冰片烯,7-顺式甲氧基甲基-5-降冰片烯-2-酮,丙烯醛,2,2-二甲基-4-戊烯醛,十一碳烯醛,2,4-二甲基-2,6-庚二烯醛,丙烯酸,乙烯基乙酸,4-戊烯酸,2,2-二甲基-4-戊烯酸,6-庚烯酸,反式-2,4-戊二烯酸,2,6-庚二烯酸,九氟-1-己烯,烯丙醇,7-辛烯-1,2-二醇,2-甲基-3-丁烯-1-醇,5-降冰片烯-2-腈,5-降冰片烯-2-甲醛,5-降冰片烯-2-羧酸,顺式-5-降冰片烯-内-2,3-二羧酸,5-降冰片烯-2,2,-二甲醇,顺式-5-降冰片烯-内-2,3-二羧酸酐,5-降冰片烯-2-内-3-内-二甲醇,5-降冰片烯-2-内-3-外-二甲醇,5-降冰片烯-2-甲醇,5-降冰片烯-2-醇,5-降冰片烯-2-基乙酸酯,1-[2-(5-降冰片烯-2-基)乙基]-3,5,7,9,11,13,15-七环戊基五环[9.5.1.13,9.15,15.17,13]八硅氧烷,2-苯甲酰基-5-降冰片烯,烯丙基1,1,2,2,-四氟乙基醚,丙烯醛二甲基缩醛,一氧化丁二烯,1,2-环氧基-7-辛烯,1,2-环氧基-9-癸烯,1,2-环氧基-5-己烯,2-甲基-2-乙烯基环氧乙烷,烯丙基缩水甘油醚,2,5-二氢呋喃,2-环戊烯-1-酮乙二醇缩酮,烯丙基二硫化物,丙烯酸乙酯,丙烯酸甲酯。本领域技术人员会认识到,在聚合方法中使用极性单体需要使用路易斯酸助催化剂,例如烷基铝化合物或用于进行聚合的替代保护方法(Boffa,L.S.;Novak,B.M.Chem.Rev.2000,1479和其中引用的参考文献)。
对于本发明和所附权利要求书来说,术语低聚物是指具有2-75个单体单元的组合物,术语聚合物是指具有76或更多个单体单元的组合物。单体单元被定义为初始对应于在低聚或聚合反应中使用的烯烃的低聚物或聚合物的单元。例如,聚乙烯的单体单元是乙烯。
在这里的一个实施方案中,本文所述的方法用于制备以上列举的任何单体的低聚物。优选的低聚物包括任何C2-C20烯烃,优选C2-C12α-烯烃的低聚物,最优选制备包括乙烯、丙烯和/或丁烯的低聚物。用于该低聚方法的优选原料是α-烯烃乙烯。但其它α-烯烃,包括、但不限于丙烯和1-丁烯,也可以单独或与乙烯结合使用。优选的α-烯烃包括任何C2-C40α-烯烃,优选C2-C20α-烯烃,优选任何C2-C12α-烯烃,优选乙烯、丙烯和丁烯,最优选乙烯。在这里所述的方法中可以使用二烯,优选α,ω-二烯单独或与单-α-烯烃结合使用。
聚合方法
优选的聚合是在充分混合的连续进料聚合反应器中进行的单段、稳态的聚合。该聚合可以在溶液中进行,但还能够使用满足单段聚合和连续进料反应器的要求的其它聚合工序,例如气相或淤浆聚合。所述方法可以被描述为连续、非间歇方法,在其稳态操作中,可以作为例证的是单位时间所制备的聚合物的量基本上等于单位时间从反应容器中排出的聚合物的量。所谓“基本上等于”是指这样的量,单位时间制备的聚合物和单位时间排出的聚合物的相互的比率是0.9∶1;或0.95∶1;或0.97∶1;或1∶1。在这种反应器内,优选具有基本上均匀的单体分布。同时,聚合在基本上单一步骤或阶段或单一反应器中完成,与多段或多个反应器(两个或更多)相反。其中每个反应器是以上描述的反应器的多个反应器在此也是有用的。
优选的使用本文所述的聚合催化剂制备聚合物的方法包括以下步骤:a)将溶剂和一组预定比例的单体进给到聚合反应器中,b)将可溶性金属茂催化剂加入到所述反应器中,c)在溶液中聚合该组单体,形成含有聚合物的流出物,其中第一和第二组单体选自丙烯、乙烯、α-烯烃、非共轭二烯。同样,聚合物可以通过在添加金属茂催化剂的串联连接的至少两个连续流搅拌釜反应器(CFSTR)设备组中的溶液聚合来制备。每一个反应器应该能够独立地进给单体和溶剂。为了除去起催化剂毒物作用的极性化合物,理想地用本领域已知的分子筛、氧化铝床或其它吸收剂纯化所有溶剂和单体进料。反应器的除热是用本领域公知的方法例如自动制冷、进料预冷却(绝热反应器)、冷却盘管、或这些技术的各种组合来进行的。用预冷却进料的绝热反应器是优选的。压力优选足以在反应器温度下将反应器内容物保持在溶液中。聚合可以在-20℃或更低到200℃或更高,优选0-160℃的温度下进行。最优选地,聚合在55-140℃的范围内进行。每一反应器的停留时间保持在1-180分钟,优选5-30分钟。反应器流出物中的聚合物浓度保持在1-20wt%和更优选3-12wt%的范围内。总聚合速率通过催化剂和单体进料速率来设定。聚合物组成通过调节反应器的单体进料速率来控制。聚合物分子量通过选择反应器温度(MW随温度升高而降低)、单体浓度(MW随单体浓度增加而提高)和任选添加链转移剂例如氢气来设定。聚合物产物通常可以通过用非溶剂例如异丙醇、丙酮或正丁醇凝聚而从流出物中回收,或者聚合物可以通过用热或蒸汽汽提溶剂或其它介质来回收。一种或多种常规添加剂例如抗氧化剂能够在回收工序期间引入到聚合物中。有用的抗氧化剂包括苯基-β-萘基胺,二叔丁基氢醌,磷酸三苯酯,庚基化二苯基胺,2,2’-亚甲基-双(4-甲基-6-叔丁基)苯酚和2,2,4-三甲基-6-苯基-1,2-二氢喹啉。
聚合可以通过本领域已知的任何聚合工序来进行,然而,在一个优选实施方案中,聚合在各组分完全处于溶液中的条件下以溶液聚合进行。这些聚合条件通过选择足够量的两种聚合组分所共有的溶剂作为聚合介质在适合的反应条件下(包括温度和压力)来获得,使得聚合物混合物的所有组分保持在溶液中。可用于本发明的溶剂包括烃类例如脂族、脂环族和芳族烃类。优选的溶剂是C12或更低级直链或支链饱和烃类以及C5-C9饱和脂环族或芳族烃类。此类溶剂或反应介质的实例是己烷,丁烷,戊烷,庚烷,环戊烷,环己烷,环庚烷,甲基环戊烷,甲基环己烷,异辛烷,苯,甲苯,二甲苯,其中己烷是优选的。
通常,让一种或多种过渡金属化合物、一种或多种活化剂和一种或多种单体接触,形成聚合物。各种组分可以在溶液、本体、气体或淤浆聚合方法或它们的组合中,优选溶液相或本体相聚合方法中接触。
一般,过渡金属化合物和活化剂以大约1∶10,000到大约1∶1的比率结合,在其它实施方案中,结合的过渡金属化合物和活化剂以1∶1到100∶1的比率合并。当使用铝氧烷或烷基铝活化剂时,结合的前催化剂与活化剂摩尔比是1∶5000到10∶1,或者1∶1000到10∶1;或者1∶500到2∶1;或1∶300到1∶1。当使用电离活化剂时,结合的前催化剂与活化剂摩尔比是10∶1到1∶10;5∶1到1∶5;2∶1到1∶2;或1.2∶1到1∶1。可以使用多种活化剂,包括使用铝氧烷或烷基铝与电离活化剂的混合物。
在本发明中可以使用串联或并联的一个或多个反应器。催化剂组分和活化剂可以作为溶液或淤浆或者单独输送到反应器中,刚好在反应器之前在管道内(in-line)活化,或者预先活化并且作为活化溶液或淤浆泵抽到反应器中。优选的操作是在管道内活化的两种溶液。聚合在单一反应器操作中进行(其中将单体、共聚单体、催化剂/活化剂、清除剂和任选的改性剂连续加入到单一反应器),或者在串联反应器操作中进行(其中将以上组分加入到串联连接的两个或多个反应器的每一个中)。催化剂组分可以加入到串联的第一个反应器中。催化剂组分还可以加入到两个反应器中,其中一种组分加入到第一反应中,另一种组分加入到其它反应器中。
采用本发明的催化剂由常规溶液方法或通过将乙烯气体引入到采用α-烯烃或环烯烃或它们与其它单体(可聚合或不能聚合)的混合物作为催化剂悬浮液悬浮于其中的聚合稀释剂的淤浆中,可以制备高分子量和低结晶度的乙烯-α-乙烯(包括乙烯-环烯烃和乙烯-α-烯烃-二烯烃)聚合物。典型乙烯压力是10-1000psig(69-6895kPa),聚合稀释剂温度一般是-10℃到160℃。该方法可以在搅拌釜反应器或管式反应器,或者串联或并联运行的一个以上的反应器中进行。关于通常工艺条件,参见US专利5,001,205的一般性公开。所有文件的关于聚合方法、离子活化剂和有用的清除化合物的描述引入供参考。
气相聚合
本文所述的催化剂化合物可以在气相聚合方法中使用。一般,在用于制备聚合物的气相流化床方法中,含有一种或多种单体的气流在催化剂的存在下在反应条件下通过流化床连续循环。该气流从流化床中排出,并再循环回到反应器中。同时,从反应器中排出聚合物产物,并且添加新鲜单体,以代替聚合的单体(例如参阅US专利Nos.4,543,399,4,588,790,5,028,670,5,317,036,5,352,749,5,405,922,5,436,304,5,453,471,5,462,999,5,616,661和5,668,228,所有这些专利在此引入供参考)。在气相方法中的反应器压力可以在大约10psig(69kPa)到大约500psig(3448kPa),优选在大约100psig(690kPa)到大约500psig(3448kPa),优选在大约200psig(1379kPa)到大约400psig(2759kPa)的范围内,更优选在大约250psig(1724kPa)到大约350psig(2414kPa)的范围内变化。气相方法中的反应器温度可以在大约30℃到大约120℃,优选大约60℃到大约115℃,更优选在大约70℃到110℃的范围内,和最优选在大约70℃到大约95℃的范围内。在另一个实施方案中,当需要高密度聚乙烯时,那么反应器温度通常是70-105℃。
催化剂或催化剂体系在气相体系中的生产率受主要单体的分压的影响。主要单体乙烯或丙烯,优选乙烯的优选摩尔百分率是大约25到90mol%,共聚单体分压是在大约138kPa到大约517kPa,优选大约517kPa到大约2069kPa的范围内,它们是气相聚合方法中的典型条件。还有,在一些体系中,共聚单体的存在能够提高生产率。
在一个优选实施方案中,用于本发明的反应器能够生产出大于500lbs/hr(227kg/hr)到大约200,000lbs/hr(90,900kg/hr)或更多,优选大于1000lbs/hr(455kg/hr),更优选大于10,000lbs(4540kg/hr),还更优选大于25,000lbs(11,300kg/hr),还更优选大于35,000lbs/hr(15,900kg/hr),进一步更优选大于50,000lbs/hr(22,700kg/hr)和优选大于65,000lbs/hr(29,000kg/hr)到大于100,000lbs/hr(45,500kg/hr),最优选大于100,000lbs/hr(45,500kg/hr)的聚合物。
本发明的方法所考虑的其它气相方法包括在US专利Nos.5,627,242,5,665,818和5,677,375,以及欧洲专利公开EP-A-0794 200,EP-A-0 802 202和EP-B-634 421中所述的那些,所有这些专利在此全面引入供参考。
在另一个优选实施方案中,催化剂体系是液体形式,并且被引入到气相反应器内的树脂颗粒贫乏区。关于如何将液体催化剂体系引入到流化床聚合的颗粒贫乏区的信息,请参阅US5,693,727,该专利在此引入供参考。
淤浆相聚合
本文所述的催化剂化合物可以在淤浆相聚合方法中使用。淤浆聚合方法一般在1到大约50个大气压(15psi到735psi,103kPa到5068kPa)或更高的压力和0℃到大约120℃的温度下操作。在淤浆聚合中,在添加了单体和共聚单体与催化剂的液体聚合稀释介质中形成固体颗粒聚合物的悬浮液。从反应器中间歇或连续排出包含稀释剂的悬浮液,其中从聚合物中分离出挥发性组分,并且将该挥发性组分任选在蒸馏之后,再循环到反应器中。在聚合介质中使用的液体稀释剂一般是具有3-7个碳原子的链烷烃,优选支化链烷烃。所用介质应该在聚合条件下是液体,并且是相对惰性的。当使用丙烷介质时,所述方法必须在反应稀释剂临界温度和压力以上操作。优选,使用己烷或异丁烷介质。
在一个实施方案中,可用于本发明的优选聚合技术被称为颗粒形成聚合,或其中温度保持在聚合物进入溶液的温度以下的淤浆方法。这种技术在本领域中是公知的,并且例如在US专利No.3,248,179中有述(该专利在此全面引入供参考)。颗粒形成方法的优选温度是在大约85℃到大约110℃的范围内。用于淤浆方法的两种优选聚合方法是使用环路反应器的那些和利用串联、并联或它们的组合的多个搅拌反应器的那些。淤浆方法的非限制性实例包括连续环路或搅拌釜方法。还有,淤浆方法的其它实例在US专利No.4,613,484中有述(该专利在此全面引入供参考)。
在另一个实施方案中,淤浆方法在环路反应器中连续进行。催化剂(作为在异丁烷中的淤浆或作为干燥、自由流动的粉末)规律地注入到反应器环路中,该反应器环路本身填充了生长聚合物颗粒在含有单体和共聚单体的异丁烷稀释剂中的循环淤浆。任选地,可以添加作为分子量控制剂的氢气。取决于所需的聚合物熔融特性,反应器保持在3620kPa到4309kPa的压力和大约60℃到大约104℃的温度下。反应热通过环路壁除去,因为大部分的反应器为双夹套管的形式。让淤浆按规律的间隔或连续从反应器排出到按序的加热低压闪蒸容器、转筒干燥机和氮气吹洗塔,用于除去异丁烷稀释剂和所有未反应的单体和共聚单体。然后对所得到的不含烃的粉末进行配混,用于各种应用。
在另一个实施方案中,在本发明的淤浆方法中使用的反应器和本发明的方法生产出大于2000lbs/hr(907kg/hr),更优选大于5000lbs/hr(2268kg/kr),最优选大于10,000lbs/hr(4540kg/hr)的聚合物。在另一个实施方案中,在本发明的方法中使用的淤浆反应器生产出大于15,000lbs/hr(6804kg/hr),优选大于25,000lbs/hr(11,340kg/hr)到100,000lbs/hr(45,500kg/hr)的聚合物。
在另一个实施方案中,在本发明的淤浆方法中,总反应器压力是400psig(2758kPa)到800psig(5516kPa),优选450psig(3103kPa)到大约700psig(4827kPa),更优选500psig(3448kPa)到大约650psig(4482kPa),最优选大约525psig(3620kPa)到625psig(4309kPa)。
在又一个实施方案中,在本发明的淤浆方法中,主要单体在反应器液体介质中的浓度为大约1到10wt%,优选大约2到大约7wt%,更优选大约2.5到大约6wt%,最优选大约3到大约6wt%。
本发明的另一种方法是其中该方法(优选淤浆或气相方法)在没有或基本没有任何清除剂,如三乙基铝、三甲基铝、三异丁基铝和三正己基铝以及氯化二乙基铝、二丁基锌等的情况下操作的方法。该方法描述在PCT公开WO 96/08520及US专利No.5,712,352中,所述专利在此全面引入供参考。
在另一个实施方案中,所述方法在清除剂的情况下运行。典型的清除剂包括三甲基铝,三异丁基铝和过量的铝氧烷或改性铝氧烷。
均相或溶液相聚合
本文所述的催化剂可以有利地用于均相和/或溶液方法。通常,这包括在连续反应器中的聚合,其中将所形成的聚合物以及所供给的起始单体和催化剂材料搅拌,以减小或避免浓度梯度。适合的方法在聚合物的熔点以上在高压1-3000巴(10-30,000MPa)下操作,其中单体用作稀释剂,或者使用溶剂进行溶液聚合。
反应器中的温度控制通过用反应器冷却平衡聚合热来获得,其中反应器冷却包括用反应器夹套或冷却盘管冷却反应器内容物、自冷却、预冷却进料、液体介质(稀释剂、单体或溶剂)或所有三种的结合物的蒸发。还可以使用用预冷却进料的绝热反应器。反应器温度取决于所使用的催化剂。一般,反应器温度优选可以为大约0℃到大约160℃,更优选大约10℃到大约140℃,最优选大约40℃到大约120℃。在串联操作中,第二反应器温度优选高于第一反应器温度。在并联反应器操作中,两个反应器的温度是独立的。压力可以为大约1mmHg到2500巴(25,000MPa),优选0.1巴到1600巴(1-16,000MPa),最优选1.0巴到500巴(10-5000MPa)。
这些方法的每一种还可以在单一反应器、并联或串联反应器构型中使用。液体方法包括让烯烃单体与上述催化剂体系在适合的稀释剂或溶剂中接触,让所述单体反应足够时间,以形成所需聚合物。烃溶剂是适合的,包括脂族和芳族。链烷烃,例如己烷、戊烷、异戊烷和辛烷是优选的。
所述方法可以在连续搅拌釜反应器、间歇反应器或活塞流反应器、或者串联或并联运行的一个以上的反应器中进行。这些反应器可以具有或没有内部冷却,单体进料可以冷冻或不冷冻。关于通常工艺条件,参见US专利5,001,205的一般性公开。还参见国际申请WO 96/33227和WO 97/22639。
在一个特别优选的实施方案中,使用连续溶液聚合方法与本发明的催化剂化合物(优选二甲基二甲基甲硅烷基双(2-(甲基)-5,5,8,8-四甲基-5,6,7,8-四氢苯并(f)茚基)合铪,二甲基·二苯基甲硅烷基双(2-(甲基)-5,5,8,8-四甲基-5,6,7,8-四氢苯并(f)茚基)合铪,二甲基二苯基甲硅烷基双(5,5,8,8-四甲基-5,6,7,8-四氢苯并(f)茚基)合铪,二氯·二苯基甲硅烷基双(2-(甲基)-5,5,8,8-四甲基-5,6,7,8-四氢苯并(f)茚基)合锆,和二甲基·环丙基甲硅烷基双(2-(甲基)-5,5,8,8-四甲基-5,6,7,8-四氢苯并(f)茚基)合铪)中的一种或多种,以制备乙烯/辛烯或乙烯/丙烯的共聚物,或乙烯/丙烯/二烯的三元共聚物,优选丙烯和1-20wt%乙烯的共聚物。(所谓连续是指运行(或意图运行)没有间断或停止的系统。例如,生产聚合物的连续方法是将反应剂连续引入到一个或多个反应器中并且连续排出聚合物产物的方法。)有机铝化合物(即,三正辛基铝)可以作为清除剂加入引入到聚合方法中之前的单体原料流中。为了生产更高结晶性的聚合物,催化剂优选与四(五氟苯基)硼酸二甲基苯胺鎓结合使用。优选地,溶液聚合在单一或任选两个串联连接的连续搅拌釜反应器中进行,其中使用己烷作为溶剂。另外,可以添加甲苯以便提高助催化剂的溶解度。将所述进料转移到第一反应器中,其中放热聚合反应在大约50℃到大约220℃的反应温度下绝热进行。还可以将氢气作为另一分子量调节剂加入到反应器中。如果需要,然后将聚合物产物转移到第二反应器中,该第二反应器也在大约50℃到200℃的温度下绝热操作。可以将附加单体、溶剂、金属茂催化剂和活化剂进给到第二反应器中。离开第二反应器的聚合物含量优选是8-22wt%。换热器然后将聚合物溶液加热到大约220℃的温度。然后将聚合物溶液引入到最低临界溶解温度(LCST)液-液相分离器中,其使该聚合物溶液分离为两个液相-一个上部贫相和一个下部富含聚合物的相。上部贫相含有大约70wt%的溶剂,而下部富含聚合物的相含有大约30wt%的聚合物。聚合物溶液然后进入在大约150℃的温度和4-10barg(400-1000Pa)的压力下运行的低压分离容器,并且闪蒸下部富含聚合物的相,以除去挥发物和增加聚合物含量至大约76wt%。闪蒸容器底部的齿轮泵驱动富含聚合物的溶液进入List脱挥发分装置内。将挤出机偶联于List脱挥发分装置的端部,从而将聚合物材料转移到齿轮泵,其推动该聚合物材料通过过滤网组合。然后,将聚合物切割为粒料并进给到水浴中。旋转式干燥器干燥聚合物粒料,该聚合物粒料具有低于大约0.5wt%的最终溶剂含量。
在一个优选实施方案中,单体(优选丙烯)以基于进料重量的≤50wt%,优选5-40wt%,优选5-30wt%,优选5-25wt%的量存在于进给到反应器的进料中。优选地,单体与溶剂(例如丁烷、异丁烯、戊烷、己烷、辛烷等,优选己烷)刚好在进入反应器之前合并。在一个优选实施方案中,以引入到反应器中的单体的重量为基准计,催化剂体系将至少20wt%,优选至少30wt%,优选至少35wt%,优选至少40wt%,优选至少50wt%的单体转化为聚合物。在一个优选实施方案中,以引入到反应器中的丙烯的重量为基准计,催化剂体系将至少20wt%,优选至少30wt%,优选至少35wt%,优选至少40wt%,优选至少50wt%的丙烯转化为聚丙烯。
聚合物
在一个优选实施方案中,这里所述的方法可以用于生产均聚物或共聚物。(对于本发明和所附权利要求书来说,共聚物可以包括两种、三种、四种或更多种不同单体单元。)这里生产的优选的聚合物包括任何以上单体的均聚物或共聚物。在一个优选实施方案中,聚合物是任何C2-C12α-烯烃的均聚物。优选地,聚合物是乙烯的均聚物或丙烯的均聚物。在另一个实施方案中,聚合物是包括乙烯和一种或多种任何以上列举的单体的共聚物。在另一个实施方案中,聚合物是包括丙烯和一种或多种任何以上列举的单体的共聚物。在另一个优选实施方案中,共聚物包括一种或多种二烯烃共聚单体,优选一种或多种C2-C40二烯烃。
除了以上具体描述的那些以外的其它烯属不饱和单体,例如苯乙烯,烷基取代苯乙烯,异丁烯和其它双取代的烯烃,乙叉基降冰片烯,降冰片二烯,二环戊二烯和其它烯属不饱和单体,包括其它环状烯烃,例如环戊烯,降冰片烯,烷基取代降冰片烯和能够配位聚合的含乙烯基的极性单体,可以使用根据本发明的催化剂聚合。例如,参阅US专利Nos.5,635,573,5,763,556和WO 99/30822。另外,至多1000个单体单元或更多的α-烯属大分子单体也可以通过共聚引入,获得含支化的烯烃聚合物。
乙烯聚合物
线性聚乙烯,包括高和超过分子量聚乙烯,包括均聚物和乙烯与其它α-烯烃单体、α-烯属和/或非共轭二烯烃,例如C3-C20烯烃,二烯烃或环烯烃的共聚物,可以通过在低压(通常<50巴)和40-250℃的典型温度下将乙烯和任选的一种或多种其它单体加入到具有用溶剂例如己烷或甲苯制成淤浆的本发明催化剂的反应容器内来制备。聚合热通常通过冷却来去除。气相聚合例如可以在2000-3000kPa和60-160℃下操作的连续流化床气相反应器中使用反应改性剂氢气(100-200PPM)、C4-C8共聚单体原料流(0.5-1.2mol%)和C2原料流(25-35mol%)进行。参见US专利Nos.4,543,399,4,588,790,5,028,670,5,405,922和5,462,999,所有这些专利为了US专利实施的目的引入供参考。
在另一个优选实施方案中,这里生产的聚合物是乙烯和一种或多种C3-C20线性、支化或环状单体,优选一种或多种C3-C12线性、支化或环状α-烯烃的共聚物。优选地,这里生产的聚合物是乙烯与丙烯、丁烯、戊烯、己烯、庚烯、辛烯、壬烯、癸烯、十二碳烯、4-甲基-戊烯-1、3-甲基戊烯-1和3,5,5-三甲基己烯-1中的一种或多种的共聚物。
高分子量和低结晶度的乙烯-α-烯烃(包括乙烯-环烯烃和乙烯-α-烯烃-二烯烃)弹性体可以采用本发明的催化剂经传统溶液聚合方法制备,或者通过将乙烯气体引入到采用α-烯烃或环烯烃或它们与其它单体(可聚合和不可聚合)的混合物作为聚合稀释剂、本发明催化剂悬浮于其中的淤浆中来制备。典型乙烯压力是10-1000psig(69-6895kPa),聚合稀释剂温度通常是40-160℃。所述方法可以在一个搅拌釜反应器或一个以上的串联或并联运行的反应器中进行。关于通常工艺条件,参见US专利No.5,001,205的一般性公开。还参阅国际申请WO96/33227和WO97/22639。所有文件的关于聚合方法、金属茂选择和有用的清除化合物的描述引入供参考。
丙烯共聚物
在另一个优选实施方案中,这里生产的聚合物是丙烯和一种或多种C2或C4到C20线性、支化或环状单体,优选一种或多种C2或C4到C20线性、支化或环状α-烯烃的共聚物。优选地,这里生产的聚合物是丙烯与乙烯、丁烯、戊烯、己烯、庚烯、辛烯、壬烯、癸烯、十二碳烯、4-甲基-戊烯-1、3-甲基戊烯-1和3,5,5-三甲基己烯-1中的一种或多种的共聚物。
在另一个优选实施方案中,这里生产的聚合物是丙烯和乙烯以及任选的一种或多种C4到C20线性、支化或环状单体,优选一种或多种C2或C4到C20线性、支化或环状α-烯烃的共聚物。
在另一个优选实施方案中,这里生产的聚合物是丙烯和乙烯的共聚物,该共聚物包括下限为3wt%或5wt%或6wt%或8wt%或10wt%到上限为20wt%或25wt%乙烯衍生的单元,和下限为75wt%或80wt%到上限为95wt%或94wt%或92wt%或90wt%丙烯衍生的单元,所述wt%以丙烯-和乙烯-衍生的单元的总重量为基准计。在这些范围内,这些共聚物如由差示扫描量热法(DSC)测定的具有适度的结晶度,并且格外柔软,同时还基本保持拉伸强度和弹性。在乙烯组分低于以上共聚物的界限时,此类聚合物一般是结晶的,类似于结晶全同立构聚丙烯,并且虽然具有优异的拉伸强度,但它们不具有有利的柔软性和弹性。在乙烯组分高于以上共聚物组分的界限时,共聚物是基本上无定形的。聚合物的乙烯组成如下测定。在大约150℃或更高的温度下压制薄而均匀的膜,然后固定在Perkin Elmer PE1760红外分光光度计上。记录从600cm-1到4000cm-1的样品的全部光谱,乙烯的单体重量百分率可以根据以下方程式计算:乙烯wt%=82.585-111.987X+30.045X2,其中X是在1155cm-1下的峰高和在722cm-1或732cm-1(无论哪一个更高)下的峰高的比率。
在一个实施方案中,聚合物是具有窄组成分布的无规丙烯共聚物。该共聚物被描述为无规的,因为对于包括丙烯、共聚单体和任选的二烯的聚合物,共聚单体残基的数目和分布与单体的无规统计学聚合一致。在立构嵌段结构中,彼此相邻的任何一类嵌段单体残基的数目高于由具有类似组成的无规共聚物中的统计学分布预期的数目。具有立构嵌段结构的历史乙烯-丙烯共聚物的乙烯残基的分布与这些嵌段结构一致,而非在该聚合物中的单体残基的无规统计学分布。
在各种实施方案中,共聚物的特征包括一些或全部的以下特性,其中从所列举的任何上限到所列举的任何下限的范围被考虑在内:
(i)上限低于110℃,或低于90℃,或低于80℃,或低于70℃到下限高于25℃,或高于35℃,或高于40℃,或高于45℃的熔点;
(ii)下限高于1.0焦/克(J/g),或高于1.5J/g,或高于4.0J/g,或高于6.0J/g,或高于7.0J/g到上限低于125J/g,或低于100J/g,或低于75J/g,或低于60J/g,或低于50J/g,或低于40J/g,或低于30J/g的熔化热;
(iii)如由C-13核磁共振(C13NMR)测定的高于75%,或高于80%,或高于85%,或高于90%的三单元组立构规整度;
(iv)下限4或5或6到上限8或10或12的立构规整度指数m/r;
(v)使得至少Xwt%的共聚物可溶于以8℃的增量在己烷中进行的热分馏的两个相邻温度级分中的分子间立构规整度,其中X是75,或80,或85,或90,或95,或97,或99;
(vi)低于1.5,或低于1.3,或低于1.0,或低于0.8的竞聚率乘积r1r2
(vii)下限1.5或1.8到上限40或20或10或5或3的分子量分布Mw/Mn;
(viii)15,000-5,000,000的分子量;
(ix)低于30%,或低于20%,或低于10%,或低于8%,或低于5%的如本文所定义的弹性;和/或
(x)高于0.5MPa,或高于0.8MPa,或高于1.0MPa,或高于2.0MPa的500%拉伸模量。
熔点、结晶度(%)和熔化热
熔点(第二熔融)、结晶度(%)和熔化热根据以下DSC工序测定:使用TA Instruments 2920型机器获得差示扫描量热(DSC)示踪数据。将重约7-10mg的样品在铝样品盘内密封。通过首先将样品冷却到-50℃,然后以10℃/min的速率逐渐加热到200℃来记录DSC数据。在进行第二个冷却-加热周期之前,将样品在200℃下保持5分钟。记录第一和第二周期热事件。测定熔融曲线下面积,用于测定熔化热和结晶度。采用式[曲线下面积(J/g)/B(J/g)]*100来计算结晶度(%),其中B是主单体组分的均聚物的熔化热。这些B值由John Wiley and Sons出版的“Polymer Handbook”,第四版,New York 1999获得。使用189J/g(B)的值作为聚丙烯的熔化热。
三单元组立构规整度
说明本发明的实施方案的丙烯单元的立构规整度的辅助程序是使用三单元组立构规整度。聚合物的三单元组立构规整度是三个相邻丙烯单元的序列(由头-尾键合组成的链)的相对立构规整度,表示为m和r序列的二元组合。对于本发明的共聚物,它通常表示为规定的立构规整度的单元数与共聚物中的所有丙烯三单元组的比率。
丙烯共聚物的三单元组立构规整度(mm分数)可以由丙烯共聚物的13C NMR谱和下式来测定:
Figure G05825090920070129D000411
其中PPP(mm),PPP(mr)和PPP(rr)表示由头-尾键合组成的以下三个丙烯单元链中的第二单元的甲基获得的峰面积:
Figure G05825090920070129D000412
测定丙烯共聚物的13C NMR谱,三单元组立构规整度如在US专利No.5,504,172及其中的参考文献所述测定。本发明的实施方案的丙烯共聚物具有高于75%,或高于80%,或高于82%,或高于85%,或高于90%的如由13C NMR测定的三种丙烯单元的mm三单元组立构规整度。
立构规整度指数
立构规整度指数,这里表示为“m/r”,通过13C核磁共振(NMR)测定。立构规整度指数m/r如在H.N.Cheng,Macromolecules,17,1950(1984)中所规定的那样计算。符号“m”或“r”描述了成对的邻接丙烯基团的立体化学性,“m”是指内消旋,而“r”是指外消旋。1.0的m/r比率通常描述了间同立构聚合物,而2.0的m/r比率描述了无规立构材料。全同立构材料理论上可以具有接近无限大的比率,许多副产物无规立构聚合物具有获得大于50的比率的充分的全同立构含量。本发明的实施方案的共聚物可以具有下限4或6到上限8或12的立构规整度指数(m/r)。
分子间立构规整度
分子结构:均匀分布:
均匀分布被定义为在共聚物的组成和聚合丙烯的立构规整度上的统计学无意义的分子间差别。对于具有均匀分布的共聚物,它必须满足两个独立试验的要求:(i)立构规整度的分子间分布;和(ii)以下所述的组成的分子间分布。这些试验分别是聚合的丙烯的立构规整度和共聚物的组成的统计学无意义的分子间差别的衡量标准。
立构规整度的分子间分布:
所生产的优选聚合物在不同链(分子间)之间聚合丙烯的立构规整度无统计学意义的分子间差别。这通过在系列缓慢升高的温度下控制通常在单一溶剂中的溶解的热分馏来确定。典型的溶剂是饱和烃,例如己烷或庚烷。这些控制的溶解程序通常用于分离由于全同立构丙烯序列的差异而具有不同结晶度的类似聚合物,如在Macromolecules,第26卷,第2064页(1993)中的文章所指出的。
在本发明的实施方案中,至少75w%,或至少80wt%,或至少85wt%,或至少90wt%,或至少95wt%,或至少97wt%,或至少99wt%的聚合物可溶于单一温度级分,或两个相邻温度级分中,剩余部分的聚合物可溶于紧接着在先或在后温度级分中。这些百分率是例如在己烷中在23℃下开始的级分,后续级分是在23℃以上,大约8℃的增量。满足这种分级要求意味着聚合物具有聚合丙烯的立构规整度的统计学无意义的分子间差异。
组成的分子间分布:
这里生产的优选聚合物具有组成的统计学无意义的分子间差别,该组成是不同链之间(分子间)丙烯与乙烯的比率。该组成分析通过用上述控制的热溶解工序所获得的聚合物级分的红外光谱法进行。
组成的统计学无意义的分子间差别的衡量标准是,这些级分的每一个的组成(wt%乙烯含量)为与整个聚合物的平均wt%乙烯含量差别小于1.5wt%(绝对)或小于1.0wt%(绝对)或小于0.8wt%(绝对)。满足这种分级要求意味着聚合物具有组成(它是丙烯与共聚单体(例如乙烯)的比率)的统计学无意义的分子间差别。
为了生产具有所需无规度和窄组成的共聚物,有益的是(1)使用仅允许第一和第二单体序列的单一统计学添加模式的单中心金属茂催化剂和(2)该共聚物在连续流搅拌釜聚合反应器中充分混合,其为基本上所有的共聚物的聚合物链提供仅一种聚合环境。
分子量和分子量分布
使用含有填充了多孔珠粒的柱子、洗脱溶剂和检测器的仪器测定Mw、Mn、Mz和Mw/Mn,以便分离不同尺寸的聚合物分子。乙烯-丙烯共聚物的分子量通过凝胶渗透色谱法使用(1)装有差示折射指数(DRI)和粘度检测器以及18度角光散射检测器的Alliance 2000GPC3D或(2)装有DRI、粘度计和3度角光散射检测器的Polymer Labs 220GPC3D来测定。检测器使用聚苯乙烯标准样品校准,使用串联的三根PolymerLaboratories PC Gel mixed B LS柱子在1,2,4-三氯苯(135℃)中通过。由这些标准获得的聚苯乙烯保留体积与所测试的聚合物的保留体积的相互关系获得了该聚合物分子量。
平均分子量M可以由以下表达式计算:
M = Σ i N i M i n + 1 Σ i N i M i n
其中Ni是具有分子量Mi的分子的数量。当n=0时,M是数均分子量Mn。当n=1时,M是重均分子量Mw。当n=2时,M是Z均分子量Mz。所需的MWD函数(例如Mw/Mn或Mz/Mw)是相应的M值的比率。M和MWD的测定在本领域中是已知的,例如在Slade,P.E.编辑,PolymerMolecular Weights Part II,Marcel Dekker,Inc.,NY,(1975)287-368;Rodriguez,F.,Principles of Polymer Systems,第3版,Hemisphere Pub.Corp.,NY,(1989)155-160;US专利No.4,540,753;Verstrate等人,Macromolecules,第21卷,(1988)3360;和其中引用的参考文献中有详细描述。
这里生产的优选聚合物具有上限为5,000,000g/mol,1,000,000g/mol或500,000g/mol和下限为10,000g/mol,20,000g/mol或80,000g/mol的重均分子量(Mw),以及下限为1.5、1.8或2.0到上限为40、20、10、5或4.5的分子量分布Mw/Mn(MWD),有时称为“多分散性指数”(PDI)。
在一个实施方案中,这里生产的聚合物具有≤100,≤75,≤60,或≤30的门尼粘度ML(1+4)@125℃。除非另有规定,这里使用的门尼粘度可以根据ASTM D1646作为ML(1+4)@125℃测定。
弹性
弹性根据ASTM D790如在US 6,525,157的第17栏第19行到第49行中所述来测定。
拉伸模量
如在US 6,525,157的第17栏第1到17行中所述使用哑铃型材在20英寸/分钟(51cm/min)下根据ASTM D638测定拉伸模量。
熔体指数
在本发明的实施方案中,这里生产的聚合物具有≤20dg/min,≤7dg/min,≤5dg/min,或≤2dg/min,或<2dg/min的熔体指数(MI)。聚合物的熔体指数根据ASTM D1238(230℃,2.16kg)工序A测定。在该方法的这种变型中,收集并称重在试验期间挤出的一部分样品。这通常被称为试验工序的变型1。样品分析在190℃下进行,对样品预热1分钟以便在试验期间提供稳定温度。
丙烯插入的立体和区域误差:2,1和1,3插入
在手性金属茂催化剂的存在下由≥3个碳原子的α-烯烃的聚合制备的聚烯烃中,除了通常的1,2-插入以外,还发生2,1-插入或1,3-插入,这样在烯烃聚合物分子中形成了反插入的单元例如2,1-插入或1,3-插入(参见Macromolecular Chemistry Rapid Communication,第8卷,第305页(1987),K.Soga,T.Shiono,S.Takemura和W.Kaminski)。因此,丙烯的插入可以发生少量的2,1(尾-尾)或1,3-插入(端-端)(end to end)。丙烯弹性体中的2,1-插入与所有丙烯插入的比例通过Tsutsui,T.等人,Polymer,1989,30,1350描述的方法来计算。1,3-插入的程度根据US 5,504,172中所述的工序来测定。在一个优选实施方案中,根据13C NMR测定,以在所有丙烯插入中丙烯单体的2,1-插入为基准计,这里生产的聚合物的反插入丙烯单元的比例高于0.5%,或高于0.6%;根据13C NMR测定,以丙烯单体的1,3-插入为基准计,该比例高于0.05%,或高于0.06%,或高于0.07%,或高于0.08%,或高于0.085%。
在一个优选实施方案中,这里生产的聚合物是丙烯和乙烯的无规共聚物,其具有根据差示扫描量热法(DSC)测定的低于50J/g的熔化热,低于5dg/min的熔体指数(MI),并且含有有规立构丙烯结晶度。优选地,聚合物是丙烯和至少一种选自乙烯、C4-C12α-烯烃和它们的组合中的共聚单体的无规共聚物,优选地,聚合物包括2-25wt%的聚合乙烯单元,以该聚合物的总重量为基准计。
在另一个优选实施方案中,这里生产的聚合物包括:
40-95mol%,优选50-90mol%,优选60-80mol%的第一单体,
5-40mol%,优选10-60mol%,更优选20-40mol%的共聚单体,和
0-10mol%,优选0.5-5mol%,更优选1-3mol%的第三单体。
优选地,第一单体包括任何C3-C8线性、支化或环状α-烯烃中的一种或多种,包括丙烯,丁烯(和它们的所有异构体),戊烯(和它的所有异构体),己烯(和它的所有异构体),庚烯(和它的所有异构体),和辛烯(和它的所有异构体)。优选的单体包括丙烯,1-丁烯,1-己烯,1-辛烯,环己烯,环辛烯,己二烯,环己二烯等。优选地,共聚单体包括任何C2-C40线性、支化或环状α-烯烃中的一种或多种(前提是如果存在乙烯,它的量为≤5mol%),包括乙烯,丙烯,丁烯,戊烯,己烯,庚烯,辛烯,壬烯,癸烯,十一碳烯,十二碳烯,十六碳烯,丁二烯,己二烯,庚二烯,戊二烯,辛二烯,壬二烯,癸二烯,十二碳二烯,苯乙烯,3,5,5-三甲基己烯-1,3-甲基戊烯-1,4-甲基戊烯-1,环戊二烯和环己烯。优选地,第三单体包括任何C2-C40线性、支化或环状α-烯烃中的一种或多种(前提是如果存在乙烯,它的量为≤5mol%),包括乙烯,丙烯,丁烯,戊烯,己烯,庚烯,辛烯,壬烯,癸烯,十一碳烯,十二碳烯,十六碳烯,丁二烯,己二烯,庚二烯,戊二烯,辛二烯,壬二烯,癸二烯,十二碳二烯,苯乙烯,3,5,5-三甲基己烯-1,3-甲基戊烯-1,4-甲基戊烯-1,环戊二烯和环己烯。在一个优选实施方案中,这里描述的共聚物包括至少50mol%的第一单体和至多50mol%的其它单体。
在归因于这里生产的一些聚合物的性能的测量中,优选基本上不存在第二(secondary)或第三(tertiary)聚合物或形成共混物的聚合物。所谓“基本上不存在”是指低于10wt%,或低于5wt%,或低于2.5wt%,或低于1wt%,或0wt%。
共混物
如上所述,本发明的催化剂组合物可以用于配位聚合,或可以与其它已知的烯烃聚合催化剂化合物混合来制备聚合物共混物。通过选择单体、配位催化剂化合物的共混物,可以在类似于使用单独的催化剂组合物的聚合条件下制备聚合物共混物。因此可以获得具有增大的MWD的聚合物,这种增大的MWD可以带来可由用混合催化剂体系制备的聚合物获得的改进加工利益和其它传统利益。
通常认为,就地共混提供了更均匀的产物,并且允许共混物可在一个步骤中制备。用于就地共混的混合催化剂体系的使用包括在同一反应器中合并一种以上的催化剂,以同时形成多种不同聚合物产品。该方法要求另外的催化剂合成,各种催化剂组分必须与它们的活性、它们在特定条件下产生的聚合物产物和它们对聚合条件改变的响应匹配。在一个优选实施方案中,这里生产的聚合物可以是由大量的丙烯与少量的乙烯或具有4-20个碳原子的其它α-烯烃组成的热塑性聚合物组合物。这些聚合物组合物包括线性、单一均匀大分子共聚物结构。这些聚合物具有归因于相邻的全同立构丙烯单元的有限的结晶度,并且具有25-110℃的熔点。它们优选通常在立构规整度和共聚单体组成上无任何显著的分子间不均一性。它们还在分子间组成分布上无任何显著不均一性。另外,这些热塑性聚合物组合物是柔软且有弹性的。
在包括、但不限于乙烯聚合物、乙烯共聚物、丙烯聚合物、其它聚合物和共混物的所有先前实施方案中,上述聚合物可以进一步包括至多16wt%,优选下限为0.00001wt%,优选下限为0.002wt%,优选下限为0.3wt%,优选0.5wt%,还更优选0.75wt%到上限为1.0wt%,上限为3wt%,和上限为7wt%和上限为15wt%的一种或多种二烯,以该组合物的总重量为基准计。所有这些百分率以共聚物的重量为基准以wt%计。二烯的存在与否通常可以通过本领域技术人员公知的红外技术来测定。二烯源包括加入到乙烯和丙烯的聚合中的二烯单体,或在催化剂中使用的二烯。用作共聚单体的非共轭二烯优选是直链烃二烯烃或环烯基取代的烯烃,具有6-15个碳原子,例如:(a)直链无环二烯,例如1,4-己二烯和1,6-辛二烯;(b)支链无环二烯,例如5-甲基-1,4-己二烯;3,7-二甲基-1,6-辛二烯;3,7-二甲基-1,7-辛二烯;和二氢-月桂烯与二氢-罗勒烯(ocinene)的混合异构体;(c)单环脂环族二烯,例如CID 1,3-环戊二烯,1,4-环己二烯;1,5-环辛二烯和1,5-环十二碳二烯;(d)多环脂环族稠合和桥连环二烯,例如四氢茚;降冰片二烯;甲基四氢茚;二环戊二烯(DCPD);双环-(2.2.1)-庚-2,5-二烯;链烯基-、烷叉基-、环烯基-和环烷叉基-降冰片烯类,例如5-亚甲基-2-降冰片烯(NM),5-丙烯基-2-降冰片烯,5-异丙叉基-2-降冰片烯,5-(4-环戊烯基)-2-降冰片烯,5-环己叉基-2-降冰片烯,和5-乙烯基-2-降冰片烯(VNB);(e)环烯基取代的烯烃,例如烯丙基环己烯,乙烯基环辛烯,烯丙基环癸烯,乙烯基环十二碳烯。在通常使用的非共轭二烯中,优选的二烯是二环戊二烯,1,4-己二烯,5-亚甲基-2-降冰片烯,5-乙叉基-2-降冰片烯,和四环(A-11,12)5,8-十二碳烯。尤其优选的二烯烃是5-乙叉基-2-降冰片烯(ENB),1,4-己二烯,二环戊二烯(DCPD)和5-乙烯基-2-降冰片烯(VNB)。
本发明所生产的任何聚合物或低聚物可以官能化。优选的官能团包括马来酸和马来酸酐。所谓官能化是指该聚合物与不饱和酸或酸酐接触。优选的不饱和酸或酸酐包括含有至少一个双键和至少一个羰基的任何不饱和有机化合物。代表性酸包括羧酸,酸酐,酯和它们的盐(金属和非金属的)。优选地,该有机化合物含有与羰基(-C=O)共轭的烯属不饱和键。实例包括马来酸,富马酸,丙烯酸,甲基丙烯酸,衣康酸,巴豆酸,α-甲基巴豆酸,和肉桂酸以及它们的酸酐、酯和盐衍生物。马来酸酐是尤其优选的。不饱和酸或酸酐优选以大约0.1wt%到大约10wt%,优选大约0.5wt%到大约7wt%,还更优选大约1wt%到大约4wt%的量存在,以烃树脂和不饱和酸或酸酐的重量为基准计。
实施例
以下示出了本发明和对比金属茂C1-C5,Comp1-Comp5和活化剂A1-A3(其中Me是甲基,Ph是苯基)。给出了C1-C5的制备方法。金属茂Comp1-Comp3和活化剂A1、A3由商业来源获得。活化剂A2根据WO 2003049856制备。
Figure G05825090920070129D000481
Figure G05825090920070129D000491
丙烯聚合物在实施例A、B和L中制备。使用在US6475391中公开的高通过量凝胶渗透色谱测量技术,以聚苯乙烯为标准,测定分子量(重均分子量(Mw)和数均分子量(Mn)以及多分散性指数(Mw/Mn))。如所指出的,热分析使用TA Instruments DSC(2920型)通过首先以10℃/min将样品从-50℃加热到220℃,在220℃下恒温10分钟,然后以10℃/min从150℃冷却到-100℃,最后再次以10℃/min加热到150℃来进行。报告第二次加热结果。
在实施例C-K中制备的乙烯-丙烯共聚物的分子量通过凝胶渗透色谱法使用(1)装有差示折射指数(DRI)和粘度检测器以及18度角光散射检测器的用聚苯乙烯标准校准的Alliance 2000GPC3D或(2)装有DRI、粘度计和3度角光散射检测器的Polymer Labs 220GPC3D来测定。样品用串联的三根Polymer Laboratories PC Gel mixed B LS柱子在1,2,4-三氯苯(135℃)中通过。
在实施例C-K中制备的乙烯-丙烯共聚物使用从美国PerkinElmer Instruments获得的附带软件的Pyris 1仪器进行热分析。熔化热(表中的ΔHfus)通过差示扫描量热法(DSC)用ASTM E-794-95工序来测定。所有测量对已经在200℃下模塑并且在室温下退火大约7天的样品在-100℃和+150℃之间的第一加热周期中进行。第一加热周期以20/min的温度上升速率进行。熔化热由在室温到105℃的范围内的峰曲线下的总面积测定。这里报道的熔融温度是由第二次熔融获得的峰熔融温度(除非另有规定)。对于显示了多峰熔融特性的聚合物,较高的熔融峰被视为主熔点。
在实施例C-J中制备的乙烯-丙烯共聚物的组成用Perkin ElmerPE 1760FTIR分光光度计测量。在大约150℃或更高的温度下压制该共聚物的薄而均匀的膜,然后固定在分光光度计上。记录从600cm-1到4000cm-1的样品的全部光谱,乙烯的单体重量百分率可以根据以下方程式计算:乙烯wt%=82.585-111.987X+30.045X2,其中X是在1155cm-1处的峰高和在722cm-1或732cm-1(无论哪一个更高)处的峰高的比率。
对于实施例K,使用有和没有质子去耦的13C NMR测量法来测定组成、丙烯三单元组立构规整度([mm])、区域误差含量、竞聚率乘积(r1r2)和m/r比率。测定这些值的方法可在以下文献中找到:Randall,J.Macromolecules 1978,11,33;Cozewith,C.Macromolecules1987,20,1237;Tsutsui,T.等人,Polymer,1989,30,1350;US5,504,172和其中的参考文献。
对于实施例K,将用于13C NMR光谱法的聚合物样品溶于d2-1,1,2,2-四氯乙烷中,使用75或100MHz的NMR光谱仪在125℃下对样品进行记录。聚合物共振峰以mmmm=21.8ppm为参照。在聚合物用NMR的表征中涉及的计算按照F.A.Bovey在“Polymer Conformationand Configuration”(Academic Press,New York 1969)中和J.Randall在“Polymer Sequence Determination,13C-NMR Method”(Academic Press,New York,1977)中的工作来进行。长度为2的亚甲基序列的百分率,%(CH2)2,如下计算:在14-18ppm之间的甲基碳的积分(它们在浓度上等于长度为2的序列中的亚甲基数)除以在45-49ppm之间的长度为1的亚甲基序列的积分和在14-18ppm之间的甲基碳的积分的总和,再乘以100。这是在2或2以上的序列中含有的亚甲基的量的最小计算值,因为大于2的亚甲基序列已经被排除。指配以H.N.Cheng和J.A.Ewen,Makromol.Chem.1989,190,1931为基础。
催化剂合成实施例
5,6,7,8-四氢-2,5,5,8,8-五甲基-苯并[f]茚根据公开报告(WO99/46270)制备,并通过用溶于戊烷的丁基锂处理而转化为5,6,7,8-四氢-2,5,5,8,8-五甲基-苯并[f]茚基锂。
实施例1 rac-Me 2 Si(5,6,7,8-四氢-2,5,5,8,8-五甲基-苯并[f] 茚基) 2 HfMe 2 (C1)的制备
实施例1a.Me 2 Si(5,6,7,8-四氢-2,5,5,8,8-五甲基-苯并[f]茚) 的制备
将主要为固体的5,6,7,8-四氢-2,5,5,8,8-五甲基-苯并[f]茚基锂(6g,24.4mmol)加入到Me2SiCl2(1.57g,12.2mmol)和乙醚(150mL)的冷(-30℃)溶液中。颜色变黄。搅拌过夜后,反应是不完全的。添加THF(大约1mL),将反应搅拌总共6天。再先后用多孔玻璃滤器和0.45μm acrodisc过滤溶液。通过氮气吹扫除去溶剂,然后将产物在真空中干燥。产量是6.31g。
实施例1b.rac-Me 2 Si(5,6,7,8-四氢-2,5,5,8,8-五甲基-苯并[f] 茚基) 2 HfCl 2 的制备
Me2Si(5,6,7,8-四氢-2,5,5,8,8-五甲基-苯并[f]茚)(6.31g,11.75mmol)和乙醚(325mL)的溶液用丁基锂在己烷中的1.6M溶液(14.7mL,23.52mmol)处理。颜色变为橙色。搅拌过夜后,将该淤浆冷却到-30℃(冷冻装置),然后快速搅拌,同时添加HfCl4(3.75g,11.7mmol)固体。颜色变为浓黄色。在搅拌大约1天后,将该混合物过滤,获得含有LiCl的产物。用CH2Cl2(总共750mL)反复萃取获得外消旋形式的产物。产量2.72g。
实施例1c.rac-Me 2 Si(5,6,7,8-四氢-2,5,5,8,8-五甲基-苯并[f] 茚基) 2 HfMe 2 (C1)的制备
将MeMgBr在乙醚中的3.0M溶液(0.33mL,1mmol)和大约1mL乙醚加入到rac-Me2Si(5,6,7,8-四氢-2,5,5,8,8-五甲基-苯并[f]茚基)2HfCl2(0.288g,0.39mmol)和苯(50mL)的溶液中。将反应搅拌过夜,然后添加附加的格利雅试剂(0.5mL,1.5mmol)。将该混合物搅拌整个周末,然后加热到回流过夜。该混合物然后用Me3SiCl(0.2mL,1.57mmol)、1,2-二甲氧基乙烷(0.25mL,2.4mmol)处理,过滤,随后干燥。产量0.189g。
实施例2.rac-Ph 2 Si(5,6,7,8-四氢-2,5,5,8,8-五甲基-苯并[f] 茚基) 2 HfMe 2 (C2)的制备
实施例2a.Ph 2 Si(5,6,7,8-四氢-2,5,5,8,8-五甲基-苯并[f]茚) 2 的制备
将5,6,7,8-四氢-2,5,5,8,8-五甲基-苯并[f]茚基锂(45.1g,183mmol)加入到Ph2Si(OSO2CF3)2(44.0g,91.6mmol)和乙醚(500mL)的溶液中。使用少量的乙醚冲洗含有锂试剂的烧瓶。在搅拌3天后,反应物用水(2×50mL)洗涤。乙醚层用MgSO4干燥,过滤,然后除去溶剂,获得白色固体产物。产量59.6g(其中0.6wt%是乙醚)。
实施例2b.Ph 2 Si(5,6,7,8-四氢-2,5,5,8,8-五甲基-苯并[f]茚 基锂) 2 ·OEt 2 的制备
将丁基锂在己烷中的1.6M溶液(112mL,179.2mmol)加入到溶于乙醚(1L)的Ph2Si(5,6,7,8-四氢-2,5,5,8,8-五甲基-苯并[f]茚)2(59.27g,89.7mmol)中。颜色由黄色变为红色。在将反应搅拌过夜后,用氮气吹扫除去溶剂。剩余固体用戊烷(200mL)制成淤浆,在多孔玻璃滤器上收集,然后用戊烷冲洗,直至固体为黄色粉末,然后干燥。产量63.85g。
实施例2c.rac-Ph 2 Si(5,6,7,8-四氢-2,5,5,8,8-五甲基-苯并[f] 茚基) 2 HfCl 2 与LiCl的混合物的制备
将由Ph2Si(5,6,7,8-四氢-2,5,5,8,8-五甲基-苯并[f]茚基锂)2·OEt2(10g,13.4mmol)和乙醚(500mL)制备的溶液冷却到-30℃,然后用HfCl4(4.17g,13.0mmol)处理。在搅拌2天后,将该黄色淤浆过滤,固体用乙醚(3×30mL)冲洗,然后干燥。产量5.22g。
实施例2d.rac-Ph 2 Si(5,6,7,8-四氢-2,5,5,8,8-五甲基-苯并[f] 茚基) 2 HfMe 2 (C2)的制备
将MeMgBr在乙醚中的3.0M溶液(2.6mL,7.8mmol)加入到由rac-Ph2Si(5,6,7,8-四氢-2,5,5,8,8-五甲基-苯并[f]茚基)2HfCl2(78wt%)与LiCl(22wt%)的混合物(2.58g混合物,2.01grac-Ph2Si(5,6,7,8-四氢-2,5,5,8,8-五甲基-苯并[f]茚基)2HfCl2,1.91mmol)和苯(200mL)制备的淤浆中。将反应搅拌2小时,然后过滤(0.45μm),用Me3SiCl(0.60mL,4.7mmol)处理。在搅拌过夜后,所得灰色混合物用1,4-二噁烷(1.7g,19.3mmol)处理。搅拌1小时后,将浑浊的混合物过滤(4-8μm),获得透明黄色滤液。除去苯,固体与甲苯(20mL)混合,然后干燥该混合物,除去过量1,4-二噁烷。固体用少量的戊烷(5mL)冲洗,在真空中干燥,获得浅黄色粉末状产物。产量1.31g。
实施例3.rac-(CH 2 ) 3 Si(5,6,7,8-四氢-2,5,5,8,8-五甲基-苯并 [f]茚基) 2 HfMe 2 (C3)的制备
实施例3a.(CH 2 ) 3 Si(5,6,7,8-四氢-2,5,5,8,8-五甲基-苯并[f] 茚) 2 的制备
将5,6,7,8-四氢-2,5,5,8,8-五甲基-苯并[f]茚基锂(5g,20.5mmol)加入到(CH2)3SiCl2(1.45g,10.3mmol)和乙醚(200mL)的溶液中。在搅拌过夜后,除去溶剂,固体用戊烷(3×50mL)萃取,过滤,然后在真空中干燥,获得白色固体。产量5.06g。
实施例3b.(CH 2 ) 3 Si(5,6,7,8-四氢-2,5,5,8,8-五甲基-苯并[f] 茚基锂) 2 ·Et 2 O的制备
将丁基锂在己烷中的1.6M溶液(11.6mL,18.56mmol)加入在乙醚(100mL)中的(CH2)3Si(5,6,7,8-四氢-2,5,5,8,8-五甲基-苯并[f]茚)2(5.06g,9.29mmol)中。初始透明黄色溶液变为橙色淤浆。搅拌过夜后,将混合物过滤,浅黄色固体用戊烷(2×20mL)洗涤,然后干燥。产量4.28g。
实施例3c.rac-(CH 2 ) 3 Si(5,6,7,8-四氢-2,5,5,8,8-五甲基-苯并 [f]茚基) 2 HfCl 2 的制备
将HfCl4(2.17g,6.77mmol)加入到由(CH2)3Si(5,6,7,8-四氢-2,5,5,8,8-五甲基-苯并[f]茚基锂)2·Et2O(4.28g,6.77mmol)和乙醚(100mL)制备的淤浆中。颜色变为浓黄色。在搅拌过夜后,将该混合物过滤,固体用乙醚(2×20mL)冲洗,然后用戊烷(3×10mL)冲洗。固体干燥过夜。产量2.74g。
实施例3d.rac-(CH 2 ) 3 Si(5,6,7,8-四氢-2,5,5,8,8-五甲基-苯并 [f]茚基) 2 HfMe 2 (C3)的制备
将溴化甲基镁在乙醚中的3M溶液(2.75mL,8.25mmol)加入到rac-(CH2)3Si(5,6,7,8-四氢-2,5,5,8,8-五甲基-苯并[f]茚基)2HfCl2(2.05g,2.03mmol)和甲苯(100mL)的混合物中。搅拌过夜后,混合物用Me3SiCl(0.54mL,4.25mmol)处理,搅拌过夜,然后用1,4-二噁烷(1.91g,21.7mmol)处理。搅拌4小时后,将该混合物过滤,剩余固体用甲苯(5mL)进一步洗涤。对滤液进行干燥然后用戊烷(10mL)洗涤,随后干燥。产量1.1g。
实施例4.rac-Ph 2 Si(5,6,7,8-四氢-5,5,8,8-四甲基-苯并[f]茚 基) 2 HfMe 2 (C4)的制备
实施例4a.5,6,7,8-四氢-5,5,8,8-四甲基-苯并[f]茚满-2-酮的 制备
在1L装配有机械搅拌器和250mL加料漏斗的三颈烧瓶内添加AlCl3(80.8g,0.606mol),再添加无水二氯甲烷(370mL)。将该淤浆冷却到-20℃并搅拌。然后在加料漏斗中添加(在反应过程中分两份)2-茚满酮(40.0g,0.303mol){注:Aldrich牌号的2-茚满酮用乙醚冲洗,以便除去褐色杂质},2,5-二氯-2,5-二甲基己烷(55.4g,0.303mol)和无水二氯甲烷(180mL)的溶液。在50分钟的过程中将该溶液滴入到冷的、搅拌的AlCl3淤浆中。在添加结束后搅拌2.5小时,之后添加2,5-二氯-2,5-二甲基己烷(13g,0.071mol)和无水二氯甲烷(42mL)的溶液。在搅拌另外1小时后,将反应混合物倒入冰(1L)中,用乙醚(500mL)处理。分离有机层,含水层用乙醚(2×200mL)萃取。合并的有机层用2.5M NaCl(aq)(3×75mL)洗涤,然后用水(25mL)洗涤,再用MgSO4干燥。将干燥的有机溶液过滤到3L烧瓶内,在溶液表面用氮气吹扫来缓慢除去溶剂。保留的固体用冷戊烷洗涤,通过过滤分离固体。从少量的含有产物的块状油性固体和杂质中手工分离产物,该产物为细的结晶材料。产量21g。
实施例4b.5,6,7,8-四氢-5,5,8,8-四甲基-苯并[f]茚满-2-对甲 苯磺酰腙的制备
在500mL烧瓶内添加对甲苯磺酰肼(7.68g,41.3mmol),5,6,7,8-四氢-5,5,8,8-四甲基-苯并[f]茚满-2-酮(10.0g,1当量)和无水乙醚,然后在氮气下机械搅拌过夜。将淤浆过滤,用冷乙醚冲洗,然后干燥。产量13.85g。
实施例4c.5,6,7,8-四氢-5,5,8,8-四甲基-苯并[f]茚和 5,6,7,8-四氢-5,5,8,8-四甲基-苯并[f]茚基锂·0.83DME的制备
在1L烧瓶内先后添加5,6,7,8-四氢-5,5,8,8-四甲基-苯并[f]茚满-2-对甲苯磺酰腙(13.85g,33.7mmol),无水1,2-二甲氧基乙烷(500mL)(1,2-二甲氧基乙烷=DME)和1.77M BuLi(在己烷中)(38mL,2当量)。颜色变暗。该混合物在回流下加热60分钟,然后冷却到室温过夜。将在浅紫红色溶液中的所形成的淤浆(白色沉淀物)的一部分过滤,从滤液中除去1,2-二甲氧基乙烷,在用戊烷反复洗涤后,留下带有痕量紫色的白色固体状产物5,6,7,8-四氢-5,5,8,8-四甲基-苯并[f]茚基锂·0.83DME。产量1.76g。
剩余的溶液用水(20mL)骤冷,然后用4M NaCl(3×100mL)洗涤。然后用MgSO4干燥有机层,随后浓缩为褐色固体。产量5.5g。该产物通过使用真空泵在75℃下升华来进一步提纯。获得了4.1g白色固体状的5,6,7,8-四氢-5,5,8,8-四甲基-苯并[f]茚。
实施例4d.5,6,7,8-四氢-5,5,8,8-四甲基-苯并[f]茚的制备
在1L烧瓶内先后添加5,6,7,8-四氢-5,5,8,8-四甲基-苯并[f]茚满-2-对甲苯磺酰腙(12.81g,31.2mmol),无水1,2-二甲氧基乙烷(500mL)和1.64M BuLi(在己烷中)(38mL,2当量)。颜色变暗。将该混合物在回流下加热75分钟,然后冷却到室温过夜。该混合物用水(20mL)处理,然后用4M NaCl(3×100mL)洗涤。然后用MgSO4干燥有机层,随后浓缩为褐色固体。产量7.23g。该产物通过升华进一步提纯。
实施例4e.Ph 2 Si(5,6,7,8-四氢-5,5,8,8-四甲基-苯并[f]茚) 2 的制备
5,6,7,8-四氢-5,5,8,8-四甲基-苯并[f]茚基锂·0.83DME(1.76g,5.73mmol)和乙醚(50mL)的搅拌淤浆用Ph2Si(OSO2CF3)2(1.39g,1/2当量)和乙醚(60mL)处理。在搅拌2小时后,混合物用2M NaCl(3×10mL)处理,用MgSO4干燥,然后浓缩为固体。产量1.76g。
实施例4f.rac-Ph 2 Si(5,6,7,8-四氢-5,5,8,8-四甲基-苯并[f] 茚基) 2 HfCl 2 的制备
Ph2Si(5,6,7,8-四氢-5,5,8,8-四甲基-苯并[f]茚)2(1.76g,2.78mmol)和乙醚(40mL)用1.77M BuLi(在己烷中)(3.2mL,5.66mmol)处理,搅拌过夜。添加另外1.77M BuLi(在己烷中)(0.35mL,0.62mmol)。该混合物用1.0M Me3SnCl(5.8mL,5.8mmol)处理,然后过滤,除去LiCl。在真空中除去乙醚,将玻璃状固体溶于甲苯中,过滤(0.45μm)到HfCl4(0.89g,2.78mmol)和甲苯(20mL)的淤浆上。颜色变红。1H NMR显示了宽共振和外消旋金属茂的清楚形状。过滤,去除甲苯,在乙醚中结晶的尝试没有成功。脱除乙醚,然后用戊烷(5×10mL)洗涤,以除去杂质。然后将该材料溶解在苯(25mL)中,过滤,在真空中干燥。产量554mg。
实施例4g.rac-Ph 2 Si(5,6,7,8-四氢-5,5,8,8-四甲基-苯并[f] 茚基) 2 HfMe 2 (C4)的制备
将MeMgBr在乙醚中的3.0M溶液(1.15mL,3.45mmol)加入到rac-Ph2Si(5,6,7,8-四氢-5,5,8,8-四甲基-苯并[f]茚基)2HfCl2(0.5g,0.568mmol)和甲苯(50mL)的溶液中。将反应物搅拌过夜,然后加热到75℃,保持2小时,然后冷却到室温,然后用Me3SiCl(0.30mL,2.36mmol)处理。在搅拌过夜后,该混合物用1,4-二噁烷(0.77g,8.74mmol)处理。搅拌4小时后,将该混合物过滤,然后用甲苯(2×50mL)洗涤固体。除去溶剂,将残留物溶于戊烷中,过滤(0.45μm)。除去戊烷,获得玻璃状固体rac-Ph2Si(5,6,7,8-四氢-5,5,8,8-四甲基-苯并[f]茚基)2HfMe2。产量0.27g。
实施例5.rac-Ph 2 Si(5,6,7,8-四氢-2,5,5,8,8-五甲基-苯并[f] 茚基) 2 ZrCl 2 (C5)MAO/硅石催化剂的制备
实施例5a.rac-Ph 2 Si(5,6,7,8-四氢-2,5,5,8,8-五甲基-苯并[f] 茚基) 2 ZrCl 2 (C5)的制备
向冷(-30℃)Ph2Si(5,6,7,8-四氢-2,5,5,8,8-五甲基-苯并[f]茚基锂)2(2g,3mmol)和乙醚(100mL)的淤浆中添加ZrCl4(0.7g,3mmol),该混合物变得均匀,然后观察到了沉淀。在搅拌过夜后,除去溶剂,混合物用戊烷(12×20mL)洗涤。外消旋异构体与盐一起保留在多孔玻璃滤器上。产量0.88g(大约71wt%金属茂)。该混合物的样品(0.2g)用CH2Cl2萃取,获得不含盐的金属茂。
实施例5b.担载于硅石上的rac-Ph 2 Si(5,6,7,8-四氢 -2,5,5,8,8-五甲基-苯并[f]茚基) 2 ZrCl 2 和MAO的制备
将30wt%MAO甲苯溶液(983mg,16.2mmol)和甲苯(10mL)的混合物加入到rac-Ph2Si(5,6,7,8-四氢-2,5,5,8,8-五甲基-苯并[f]茚基)2ZrCl2(15.7mg,0.0191mmol)和甲苯(5mL)的混合物中。将该绿色溶液加入到硅石(1.01g)中。颜色变红。在搅拌15分钟后,将混合物过滤。将担载的催化剂在真空中干燥过夜。
聚合实施例
实施例A1-A66.半间歇丙烯聚合
在内衬有玻璃试验管的高压釜中(反应器的内部体积=23.5mL)进行聚合。在高压釜内添加AlOCt3的1mM己烷溶液(0.1mL,1μmol),己烷(用量参见表1),PhNMe2H+B(C6F5)4 -的200μM甲苯溶液(0.1mL,0.02μmol),在表中所示的温度下用丙烯加压。然后,将催化剂的200μM溶液(0.1mL,0.02μmol)加入到高压釜中。在聚合过程中让丙烯流入到高压釜内。通过将O2/Ar气体混合物加入到管内来停止聚合。然后使反应器放空和冷却。在真空中除去溶剂后,分离出聚合物。聚合数据报告于表1-3中。
实施例B1-B67.间歇丙烯聚合
聚合在氮气手套箱的惰性气氛中在装配有机械搅拌器、温度控制用外部加热器、隔膜入口和氮气、乙烯和丙烯的调节供给装置的玻璃衬里的22.5mL反应器内进行。将反应器干燥,在115℃下脱气5小时,然后在室温下用氮气吹扫另外5小时。最后用50psig的丙烯气体吹扫。在室温下添加己烷、清除剂(2μmol三正辛基铝)和丙烯。在800rpm下搅拌的同时将反应器加热到工艺温度。在工艺条件下注入活化剂和催化剂,各20μmol,在0.1mL甲苯中。反应进行预定时间(43秒,除非另有规定),在结束时,用5mol%氧(在氩气中)猝灭。然后冷却反应器,放空和通过真空离心反应混合物来回收聚合物。聚合数据报告于表4-6中。
表4中报告了既定反应温度的反应器中己烷和丙烯的量。
实施例C-J.用于连续乙烯/丙烯共聚的通用工序
聚合在980mL连续给料搅拌釜聚合反应器内进行。通过限制聚合反应器的流出量将反应器压力保持在320psi,用双三叶倾斜螺旋桨式搅拌器在大约550rpm下搅拌。以表7-14中所示的流量将反应器进料(己烷、乙烯、丙烯和三(正辛基)铝(TNOA)在烃中的溶液)连续进给到反应器中。这些进料在引入到反应器之前进行冷却以便保持聚合温度。通过将催化剂和活化剂在甲苯中混合所制备的催化剂溶液以表7a-14a中所示的流量独立地进给到反应器中。聚合是快速的,在稳态下4个停留时间后收集代表样品。将聚合物样品干燥,它们的质量用于计算聚合速率,与其它聚合物表征数据一起报告于表7b-14b中。
实施例C1-C9.使用C1/A1共聚
由C1(0.105g,1.41×10-4mol),A1(0.115g,1.43×10-4mol)和无水的脱氧甲苯(900mL)制备催化剂溶液。TNOA溶液是三(正辛基)铝(TNOA)在烃(3.155g庚烷,527.2g己烷)中的0.198wt%溶液。聚合条件和结果分别报告于表7a和7b中。
实施例D1-D3.使用C2/A1共聚
由C2(0.122g,1.41×10-4mol),A1(0.115g,1.43×10-4mol)和无水的脱氧甲苯(900mL)制备催化剂溶液。TNOA溶液是三(正辛基)铝(TNOA)在烃(3.155g庚烷,527.2g己烷)中的0.198wt%溶液。聚合条件和结果分别报告于表8a和8b中。
实施例E1-E8.使用C2/A1共聚
由C2(0.062g,7.1×10-5mol),A1(0.057g,7.1×10-5mol)和无水的脱氧甲苯(900mL)制备催化剂溶液。TNOA溶液是三(正辛基)铝(TNOA)在烃(3.155g庚烷,527.2g己烷)中的0.198wt%溶液。聚合条件和结果分别报告于表9a和9b中。
实施例F1-F4.使用C1/A3共聚
由C1(0.052g,7.0×10-5mol),A3(0.079g,6.9×10-5mol)和无水的脱氧甲苯(900mL)制备催化剂溶液。TNOA溶液是三(正辛基)铝(TNOA)在烃(3.155g庚烷,527.2g己烷)中的0.198wt%溶液。聚合条件和结果分别报告于表10a和10b中。
实施例G1-G3.使用C1/A3共聚
由C1(0.026g,3.5×10-5mol),A3(0.04g,3.5×10-5mol)和无水的脱氧甲苯(900mL)制备催化剂溶液。TNOA溶液是三(正辛基)铝(TNOA)在烃(3.155g庚烷,527.2g己烷)中的0.198wt%溶液。聚合条件和结果分别报告于表11a和11b中。
实施例H1-H8.使用C2/A3共聚
由C2(0.062g,7.1×10-5mol),A3(0.082g,7.2×10-5mol)和无水的脱氧甲苯(900mL)制备催化剂溶液。TNOA溶液是三(正辛基)铝(TNOA)在烃(3.155g庚烷,527.2g己烷)中的0.198wt%溶液。聚合条件和结果分别报告于表12a和12b中。
实施例I1-I2.使用C4/A1共聚
由C4(0.0574g,7.60×10-5mol),A1(0.06g,7.49×10-5mol)和无水的脱氧甲苯(900mL)制备催化剂溶液。烷基铝溶液由AlOct3(1.0515g)和无水的脱氧甲苯(800mL)制备。聚合条件和结果分别报告于表13a和13b中。
实施例I3.使用C4/A1共聚
由C4(0.1g,1.32×10-4mol),A1(0.098g,1.22×10-4mol)和无水的脱氧甲苯(900mL)制备催化剂溶液。烷基铝溶液由AlOct3(1.0515g)和无水的脱氧甲苯(800mL)制备。聚合条件和结果分别报告于表13a和13b中。
实施例J1.使用C3/A1共聚
由C3(0.1g,1.15×10-4mol),A1(0.097g,1.21×10-4mol)和无水的脱氧甲苯(900mL)制备催化剂溶液。烷基铝溶液由AlOct3(1.0515g)和无水的脱氧甲苯(800mL)制备。聚合条件和结果分别报告于表14a和14b中报告。
实施例J2-J4.使用C3/A1共聚
由C3(0.138g,1.59×10-4mol),A1(0.097g,1.68×10-4mol)和无水的脱氧甲苯(900mL)制备催化剂溶液。烷基铝溶液由AlOct3(1.0515g)和无水的脱氧甲苯(800mL)制备。聚合条件和结果分别报告于表14a和14b中。
实施例K1-K11.使用C2/A1的连续乙烯-丙烯共聚
聚合在用双三叶倾斜螺旋桨式搅拌器在700rpm下搅拌的27L连续进料搅拌釜聚合反应器中进行。反应器压力保持在1600psig,使得聚合区中的所有区域充满液体,并且在整个聚合过程中具有相同的组成。将己烷、乙烯、丙烯、0.3wt%三(正辛基)铝(TNOA)的己烷溶液连续进给到反应器中。单独地,将通过在无氧、无水甲苯(4L)中混合C2(1.35g,1.56mmol)和A1(1.5g,1.87mmol)所制备的催化剂溶液进给到反应器中。用于共聚的进料条件报告于表15a中。聚合在60-140℃的温度下进行。通过添加预冷却己烷除去聚合热。在稳态运行期间从反应器直接取少量聚合物样品并进行分析。聚合物生产量、催化剂效率和聚合物样品的性能报告于表15b中。在用水的己烷溶液骤冷聚合反应之后,通过两段溶剂去除方法来回收所生产的聚合物。首先,在最低临界溶解温度方法中除去70%溶剂,然后在LIST脱挥发分挤出机内除去剩余溶剂。让第一阶段中除去的溶剂通过填充了和Selexsorb CD分子筛的柱子,以便进行干燥,并且再循环回到反应器中。在第二阶段中除去的溶剂被排放。将聚合物加工成主轴大约1/8到1/4英寸的粒料。
实施例L1-L16.用担载催化剂的丙烯聚合
聚合在氮气手套箱的惰性气氛中在装配了机械搅拌器、温度控制用外部加热器、隔膜进口和氮气、氢气/氮气混合物(20/80)和丙烯的调节供给装置的干燥玻璃衬里的22.5mL反应器内进行。将该反应器干燥,然后添加氢气/氮气混合物(20H2∶80N2),然后添加丙烯、0.1MAlOct3和己烷。将该反应器加热到70℃,然后将梯度为0.69wt%的担载于硅石/MAO上的催化剂在甲苯中的淤浆注入到反应器。这些实验的进料条件报告于表16a中。在30分钟后停止聚合,然后用5mol%氧(在氩气中)猝灭。然后冷却反应器、放空并且通过真空离心反应混合物来回收聚合物。该聚合物用GPC(聚苯乙烯标准)表征。聚合数据报告于表16b中。
在连续溶液共聚中制备的EP共聚物的应力应变特性
将在连续溶液聚合中制备的聚合物(≥72g)在Brabender强力混合机内在控制于180-220℃的温度下均化3分钟。使用高剪切辊式叶片来混合,将大约0.4g Irganox-1076(购自Novartis Corporation的抗氧化剂)加入到该共混物中。在混合结束后,排出混合物,在215℃下在6″×6″模具内压制3-5分钟,形成0.25″厚的衬垫。在此之后,将该衬垫冷却2.5分钟,退火40-48小时。由该衬垫切取所需哑铃形几何结构的试样,用Instron试验机评价,获得表17中所示的数据。根据ASTM D638测定杨氏模量、极限伸长率和极限拉伸强度,并记录根据ASTM D638进行的试验的在50%、100%、200%和500%时的模量数据。
在连续溶液共聚中制备的EP共聚物的组成分布测定
如下所述测定上述聚合物的组成分布。将大约30g的第二聚合物组分切割为边长大约1/8″的小立方体。将它与50mg的Irganox 1076(购自Ciba-Geigy Corporation的抗氧化剂)一起引入到用螺帽密封的厚壁玻璃瓶内。然后,将425mL的己烷(主要是正和异-异构体的混合物)加入到该瓶的内容物中,将密封的瓶在大约23℃下保持24小时。在此之后,将溶液滗析,残留物用另外的己烷处理另外24小时。在此之后,将两种己烷溶液合并、蒸发,获得在23℃下可溶的聚合物残留物。向该残留物中添加足够的己烷,以便使体积达到425mL,将该瓶在带盖的循环水浴中在大约31℃下保持24小时。滗析可溶性聚合物,添加附加量的己烷,在大约31℃下保持另外24小时,之后滗析。这样,获得了在40、48、55和62℃下可溶的第二聚合物组分的级分,其中各段之间具有大约8℃的温度增加。此外,对于约60℃以上的所有温度来说,可以允许温度增高到95℃(如果使用庚烷代替己烷作为溶剂的话)。将可溶性聚合物干燥,称重并通过上述IR技术分析组成(wt%乙烯含量)。在相邻温度增加中获得的可溶性级分是在以上说明书中的相邻级分。结果报告于表18中。
表1.实施例A.单体进料条件a
  T(℃)   40   75
  己烷(mL)   2.127   1.997
  甲苯(mL)   0.2   0.2
  丙烯压力(psig)   37   85
  催化剂(微摩尔)   0.02   0.02
  Al(Oct)<sub>3</sub>(微摩尔)   1   1
a在聚合开始时高压釜内的试剂总量。
表2.实施例A1-A66.半间歇丙烯聚合数据
  实施例   金属茂/活化剂   Mw   Mw/Mn   温度(℃)   产量   聚合物Tm
  A-1   Comp2/A1   1360181   1.69   40   0.0182
  A-2   Comp2/A1   1232499   1.66   40   0.0165
  A-3   Comp2/A1   1137802   1.66   40   0.0211
  A-4   Comp2/A1   935247   1.77   40   0.0738
  A-5   Comp2/A1   689884   1.79   40   0.0988
  A-6   Comp2/A1   1255412   1.52   40   0.0315
  A-7   Comp2/A1   1314435   1.65   40   0.0415   164.09,154.34
  A-8   Comp2/A1   1262111   1.75   40   0.0526
  A-9   Comp2/A1   1033984   1.72   40   0.0528
  A-10   Comp2/A1   1011980   1.74   40   0.0281
  A-11   Comp2/A1   1083342   1.76   40   0.0617
  A-12   Comp2/A1   999616   1.69   40   0.0309
  A-13   Comp2/A1   1073986   1.71   40   0.0411
  A-14   Comp2/A1   1185897   1.73   40   0.0264
  A-15   Comp2/A1   1188284   1.67   40   0.0315
  A-16   Comp2/A1   1100556   1.74   40   0.0271
  A-17   Comp2/A1   218840   1.62   75   0.0356
  A-18   Comp2/A1   187897   1.71   75   0.0796
  A-19   Comp2/A1   175380   1.64   75   0.0837
  A-20   Comp2/A1   152318   1.60   75   0.1359
  A-21   Comp2/A1   155605   1.56   75   0.1265
  A-22   Comp1/A1   525429   1.70   40   0.0933
  A-23   Comp1/A1   528591   1.67   40   0.0852
  A-24   Comp1/A1   514103   1.70   40   0.1242
  A-25   Comp1/A1   476069   1.81   40   0.151
  A-26   Comp1/A1   469304   1.83   40   0.171
  A-27   Comp1/A1   523090   1.65   40   0.1699
  A-28   Comp1/A1   669610   1.56   40   0.0789   139.42
  A-29   Comp1/A1   624085   1.56   40   0.0918
  A-30   Comp1/A1   733533   1.76   40   0.0228
  A-31   Comp1/A1   587852   1.75   40   0.0719
  A-32   Comp1/A1   575723   1.67   40   0.1044
  A-33   Comp1/A1   551901   1.72   40   0.0741
  A-34   Comp1/A1   666727   1.69   40   0.0296
  A-35   Comp1/A1   411251   1.72   40   0.1051
  A-36   Comp1/A1   565723   1.65   40   0.0773
  A-37   Comp1/A1   582961   1.66   40   0.0837
  A-38   Comp1/A1   543852   1.70   40   0.0829
  A-39   Comp1/A1   131368   1.61   75   0.0868
  A-40   Comp1/A1   147248   1.70   75   0.0988
  A-41   Comp1/A1   113230   1.56   75   0.1143
  A-42   Comp1/A1   106186   1.54   75   0.1549   126.97
  A-43   Comp1/A1   107889   1.57   75   0.1657
  A-44   C1/A1   967297   1.68   40   0.2163
  A-45   C1/A1   985383   1.66   40   0.2007
  A-46   C1/A1   902080   1.74   40   0.2664
  A-47   C1/A1   751598   1.82   40   0.218
  A-48   C1/A1   851656   1.93   40   0.256
  A-49   C1/A1   902545   1.97   40   0.2567
  A-50   C1/A1   1047008   1.66   40   0.2063   136.6
  A-51   C1/A1   1204014   1.62   40   0.1705
  A-52   C1/A1   986381   1.70   40   0.2442
  A-53   C1/A1   1092381   1.78   40   0.182
  A-54   C1/A1   1190085   1.81   40   0.1653
  A-55   C1/A1   1040966   1.85   40   0.2469
  A-56   C1/A1   1320134   1.75   40   0.128
  A-57   C1/A1   1006150   1.88   40   0.2048
  A-58   C1/A1   1250139   1.80   40   0.1936
  A-59   C1/A1   1310244   1.79   40   0.1809
  A-60   C1/A1   1273133   1.68   40   0.1796
  A-61   C1/A1   269748   1.85   75   0.1824
  A-62   C1/A1   257174   1.88   75   0.2253
  A-63   C1/A1   250578   1.86   75   0.2084
  A-64   C1/A1   223473   1.98   75   0.2442
  A-65   C1/A1   291737   1.70   75   0.1807   132.39
  A-66   C1/A1   264872   1.72   75   0.2418
表3.实施例A.半间歇丙烯聚合数据的总结
  金属茂/活化剂   温度(℃)   平均Mw(g/mol)   Mw标准偏差(g/mol)   实验号
  C1/A1   40   1063600   140580   17
  Comp1/A1   40   561753   60257   17
  Comp2/A1   40   1116576   125502   16
  C1/A1   75   259597   15855   6
  Comp1/A1   75   121184   14499   5
  Comp2/A1   75   178008   20288   5
表4.实施例B.间歇丙烯聚合的单体进料条件
  反应温度   己烷(mL)   丙烯(mL)
  40℃   3.965   0.628
  70℃   3.805   0.704
  100℃   3.690   0.795
表5.实施例B1-B87.间歇丙烯聚合数据
  实施例   金属茂/活化剂   温度(℃)   产量(g)   Mw(g/mol)   Mw/Mn   Tm(℃)   Hf(J/g)
  B-1   Comp1/A1   40   0.0151   648330   1.5
  B-2   Comp1/A1   40   0.0168   682091   1.4
  B-3   Comp1/A1   40   0.0171   647855   1.5
  B-4   Comp1/A1   40   0.0155   682145   1.5
  B-5   Comp2/A1   40   0.0142   1237555   1.5
  B-6   C2/A1   40   0.0128   2132896   1.3
  B-7   C2/A1   40   0.0135   2166262   1.3
  B-8   C2/A1   40   0.0101   2032035   1.3
  B-9   C2/A1   40   0.0126   2549407   1.3
  B-10   C1/A1   40   0.0126   2105520   1.4
  B-11   Comp1/A1   70   0.0215   214255   1.4
  B-12   Comp1/A1   70   0.0337   201936   1.5
  B-13   Comp1/A1   70   0.0216   215022   1.4
  B-14   Comp1/A1   70   0.031   204352   1.5
  B-15   Comp1/A1   70   0.0257   223219   1.4
  B-16   Comp1/A1   70   0.0246   214879   1.4
  B-17   Comp1/A1   70   0.0339   195381   1.4
  B-18   Comp1/A1   70   0.0374   190041   1.4   135   76
  B-19   Comp1/A1   70   0.0394   217926   1.4
  B-20   Comp1/A1   70   0.0339   222444   1.4
  B-21   Comp1/A1   70   0.034   205137   1.4
  B-22   Comp1/A1   70   0.0359   198796   1.4
  B-23   Comp1/A1   70   0.0174   206379   1.4
  B-24   Comp1/A1   70   0.0399   211205   1.4
  B-25   Comp2/A1   70   0.0248   265047   1.5
  B-26   Comp2/A1   70   0.0283   256103   1.5
  B-27   Comp2/A1   70   0.0263   278984   1.5
  B-28   Comp2/A1   70   0.0236   253721   1.5
  B-29   C2/A1   70   0.0287   1005952   1.5
  B-30   C2/A1   70   0.0245   996420   1.5
  B-31   C2/A1   70   0.0228   1022520   1.5
  B-32   C2/A1   70   0.0216   941040   1.5
  B-33   C1/A1   70   0.0298   741315   1.5
  B-34   C1/A1   70   0.0359   687730   1.5   134   70
  B-35   C1/A1   70   0.034   818005   1.5   136   75
  B-36   C1/A1   70   0.0357   818694   1.5   133   76
  B-37   C1/A3   70   0.0112   1241379   1.4
  B-38   C1/A3   70   0.0103   1220134   1.4
  B-39   C2/A3   70   0.0123   1001408   1.4
  B-40   C2/A3   70   0.0128   1006577   1.5
  B-41   C2/A3   70   0.0109   896320   1.5
  B-42   C1/A2   70   0.0353   696371   1.5
  B-43   C1/A2   70   0.036   722538   1.5
  B-44   C1/A2   70   0.0461   666835   1.5
  B-45   C1/A2   70   0.0425   723357   1.6
  B-46   C2/A2   70   0.029   813853   1.5
  B-47   C2/A2   70   0.0253   831702   1.5
  B-48   C2/A2   70   0.0244   881734   1.5
  B-49   C2/A2   70   0.0274   948407   1.5
  B-50   Comp1/A1   100   0.0354   46933   1.4
  B-51   Comp1/A1   100   0.0168   52225   1.4
  B-52   Comp1/A1   100   0.0283   49153   1.4
  B-53   Comp1/A1   100   0.0451   46804   1.4
  B-54   Comp1/A1   100   0.0445   48045   1.4
  B-55   Comp1/A1   100   0.0329   47905   1.4   122   40
  B-56   Comp1/A1   100   0.0307   50826   1.4
  B-57   Comp1/A1   100   0.0395   45812   1.4
  B-58   Comp2/A1   100   0.0398   62064   1.4   148   80
  B-59   Comp2/A1   100   0.0554   55896   1.5   151   106
  B-60   Comp2/A1   100   0.0685   56767   1.5
  B-61   Comp2/A1   100   0.069   53370   1.5
  B-62   C2/A1   100   0.0161   155070   1.5
  B-63   C2/A1   100   0.0192   199260   1.5
  B-64   C2/A1   100   0.0266   173242   1.4
  B-65   C1/A1   100   0.0254   195451   1.4
  B-66   C1/A1   100   0.0344   183654   1.4   128   70
  B-67   C1/A1   100   0.0349   168068   1.4   126   69
表6.实施例B.间歇丙烯聚合数据的总结
  金属茂/活化剂   温度(℃)   平均Mw(g/mol)   Mw标准偏差(g/mol)   实验号
  C1/A1   40   2105520   1
  C2/A1   40   2220150   226800   4
  Comp1/A1   40   665105   19646   4
  Comp2/A1   40   1237555   1
  C1/A1   70   766436   63812   4
  C1/A2   70   702275   26745   4
  C1/A3   70   1230756   15022   2
  C2/A1   70   991483   35315   4
  C2/A2   70   868924   60277   4
  C2/A3   70   968102   62218   3
  Comp1/A1   70   208641   10025   14
  Comp2/A1   70   263464   11438   4
  C1/A1   100   182391   13735   3
  C2/A1   100   175857   22211   3
  Comp1/A1   100   48463   2165   8
  Comp2/A1   100   57024   3656   4
表7A.实施例C1-C9.使用C1/A1的共聚的进料条件
实施例 C1 C2 C3 C4 C5 C6 C7 C8 C9
  己烷(mL/min)   90   90   90   90   90   90   90   90   90
  乙烯(g/min)   0.895   1.12   1.12   0.783   0.94   1.436   1.35   1.25   1.5
  丙烯(g/min)   13.52   13.52   13.52   9.47   9.47   13.52   13.52   13.52   16.23
  温度(℃)   90   90   90   90   120   90   90   90   90
  催化剂(mL/min)   0.75   0.75   0.75   0.75   0.75   0.6   0.45   0.35   0.35
  TNOA(mL/min)   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5
实施例7b.实施例C1-C9.使用C1/A1的共聚的聚合结果
  实施例   C1   C2   C3   C4   C5   C6   C7   C8   C9
  聚合速率(g/h)   453.6   507.9   418.4   346.2   383.7   478.4   449.3   469.0   562.4
  C2含量(wt%)   10.21   12.45   13.09   11.64   11.6   16.56   15.71   14.88   14.31
  浓度<sup>a</sup>(wt%)   12.49   12.38   11.67   8.42   10.99   11.93   11.84   11.43   13.62
  Mn(g/mol)   36556   34935   56225   46493   15398   47647   43892   42204   40660
  Mw(g/mol)   72674   56755   88920   70119   31654   85523   76746   75516   72532
  dHf<sup>b</sup>(J/g)   26.8   25.3   23.6   31.5   7.7   6.3   13.3   19.8   18.2
  Tm(℃)   43   43   43   43   45   48   47   45   44
a溶剂中的聚合物浓度。b熔化热。
表8A.实施例D1-D3.使用C2/A1的共聚的进料条件
  实施例   D1   D2   D3
  己烷(mL/min)   90   90   90
  乙烯(g/min)   0.895   1.12   1.12
  丙烯(g/min)   13.525   13.525   13.525
  温度(℃)   90   90   60
  催化剂(mL/min)   0.75   0.75   0.75
  TNOA(mL/min)   1.5   1.5   1.5
实施例8b.实施例D1-D3.使用C2/A1的共聚的聚合结果
  实施例   D1   D2   D3
  聚合速率(g/h)   431.4   429.4   351.2
  C2含量(wt%)   10.53   12.97   13.33
  浓度<sup>a</sup>(wt%)   11.67   10.63   9.78
  Mn(g/mol)   58191   55007   94382
  Mw(g/mol)   96793   96062   157313
  dHf<sup>b</sup>(J/g)   39.3   20.5   23.1
  Tm(℃)   43   44   43
a溶剂中的聚合物浓度。b熔化热。
表9A.实施例E1-E8.使用C2/A1的共聚的进料条件
  实施例   E1   E2   E3   E4   E5   E6   E7   E8
  己烷(mL/min)   90   90   90   90   90   90   90   90
  乙烯(g/min)   1.44   1.35   1.25   1.52   1.44   1.35   1.25   1.35
  丙烯(g/min)   13.53   13.53   13.53   16.23   13.53   13.53   13.53   16.23
  温度(℃)   90   90   90   90   70   70   70   70
  催化剂(mL/min)   1.2   0.9   0.7   0.7   1.2   0.9   0.7   0.7
  TNOA(mL/min)   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5
实施例9b.实施例E1-E8.使用C2/A1的共聚的聚合结果
  实施例   E1   E2   E3   E4   E5   E6   E7   E8
  聚合速率(g/h)   453.9   422.6   325.5   341.82   389.4   323.9   254.3   355.07
  C2含量(wt%)   16.11   16.02   16.57   19.72   17.11   17.65   17.73   15.15
  浓度<sup>a</sup>(wt%)   11.23   11.79   9.83   8.86   10.93   9.09   7.14   9.96
  Mn(g/mol)   55595   60736   64667   66848   100133   79530   84668   89135
  Mw(g/mol)   108773   112539   117315   117138   209073   146609   154093   160616
  dHf<sup>b</sup>(J/g)   7.6   8.2   7.6   1.0   4.2   1.3   0.98   11.5
  Tm(℃)   46   47   47   48   47   47   49   45
a溶剂中的聚合物浓度。b熔化热。
表10A.实施例F1-F4.使用C1/A3的共聚的进料条件
  实施例   F1   F2   F3   F4
  己烷(mL/min)   90   90   90   90
  乙烯(g/min)   1.436   1.35   1.25   1.6
  丙烯(g/min)   13.525   13.525   13.525   16.23
  温度(℃)   90   90   90   90
  催化剂(mL/min)   1.2   0.9   0.7   0.7
  TNOA(mL/min)   1.5   1.5   1.5   1.5
实施例10B.实施例F1-F4.使用C1/A3的共聚的聚合结果
  实施例   F1   F2   F3   F4
  聚合速率(g/h)   485.2   455.7   381.2   475.3
  C2含量(wt%)   16.23   16.38   16.32   16.52
  浓度<sup>a</sup>(wt%)   14.13   12.70   10.81   14.37
  Mn(g/mol)   49984   53889   55427   55951
  Mw(g/mol)   91650   97287   100107   100309
  dHf<sup>b</sup>(J/g)   10   12.5   11.4   8.6
  Tm(℃)   48   47   46   50
a溶剂中的聚合物浓度。熔化热。
表11A.实施例G1-G3.使用C1/A3的共聚的进料条件
  实施例   G1   G2   G3
  己烷(mL/min)   90   90   90
  乙烯(g/min)   1.52   1.45   1.35
  丙烯(g/min)   16.23   16.23   16.23
  温度(℃)   90   90   90
  催化剂(mL/min)   1.2   0.9   0.7
  TNOA(mL/min)   1.5   1.5   1.5
实施例11b.实施例G1-G3.使用C1/A3的共聚的聚合结果
  实施例   G1   G2   G3
  聚合速率(g/h)   333.58   218.94   167.72
  C2含量(wt%)   18.59   20.82   20.76
  浓度<sup>a</sup>(wt%)   10.07   7.21   5.53
  Mn(g/mol)   64877   67506   70690
  Mw(g/mol)   139060   147172   153268
  dHf<sup>b</sup>(J/g)   3.6   1   1.9
  Tm(℃)   47   47   47
a溶剂中的聚合物浓度。b熔化热。
表12A.实施例H1-H8.使用C2/A3的共聚的进料条件
  实施例   H1   H2   H3   H4   H5   H6   H7   H8
  己烷(mL/min)   90   90   90   90   90   90   90   90
  乙烯(g/min)   1.436   1.35   1.25   1.6   1.436   1.35   1.25   1.35
  丙烯(g/min)   13.525   13.525   13.525   16.23   13.525   13.525   13.525   16.23
  温度(℃)   90   90   90   90   70   70   70   70
  催化剂(mL/min)   1.2   0.9   0.7   0.7   1.2   0.9   0.7   0.7
  TNOA(mL/min)   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5
实施例12b.实施例H1-H8.使用C2/A3的共聚的聚合结果
  实施例   H1   H2   H3   H4   H5   H6   H7   H8
  聚合速率(g/h)   400.3   373.9   301.9   362.92   404.8   286.1   277.3   258.39
  C2含量(wt%)   17.08   16.91   16.99   18.51   18.85   0.75   18.93   18.56
  浓度<sup>a</sup>(wt%)   11.73   11.68   9.345   10.87   7.43   48.5   7.22   6.76
  Mn(g/mol)   65852   64015   68412   73549   116409   93779   102761   109127
  Mw(g/mol)   119694   121598   160803   165140   205548   150839   160747   166821
  dHf<sup>b</sup>(J/g)   7.6   8.2   7.6   1   22.95   0.52   0.48   2.94
  Tm(℃)   48   48   48   48   43.1   48   48.5   49.7
a溶剂中的聚合物浓度。b熔化热。
表13a.使用C4/A1的共聚的进料条件
  实施例   I1   I2   I3
  己烷(mL/min)   90   90   90
  乙烯(g/min)   1.44   1.43   1.44
  丙烯(g/min)   14.38   14.8238   16.88
  温度(℃)   70   70   90
  催化剂(mL/min)   1.94   2.0   1.75
  TNOA(mL/min)   1.5   1.5   1.5
实施例13b.实施例I1-I3.使用C4/A1的共聚的聚合结果
  实施例   I1   I2   I3
  聚合速率(g/h)   588   458   319
  C2含量(wt%)   19.2   19.5   21.6
  浓度<sup>a</sup>(wt%)   14.2   11.38   8.23
  Mn(g/mol)   low   low   low
  Mw(g/mol)   low   low   low
  dHf<sup>b</sup>(J/g)   1   1   na
  Tm(℃)   48   48   na
a溶剂中的聚合物浓度。b熔化热。
表14a.实施例J1-J4.使用C3/A1的共聚的进料条件
  实施例   J1   J2   J3   J4
  己烷(mL/min)   90   90   90   90
  乙烯(g/min)   1.077   1.35   1.35   1.35
  丙烯(g/min)   13.53   15.01   14.58   16.23
  温度(℃)   70   70   70   70
  催化剂(mL/min)   2.0   1.5   1.9   2.4
  TNOA(mL/min)   1.5   1.5   1.5   1.5
实施例14b.实施例J1-J4.使用C3/A1的共聚的聚合结果
  实施例   J1   J2   J3   J4
  聚合速率(g/h)   319   380   351   419
  C2含量(wt%)   20.03   23.3   22.7   21.99
  浓度<sup>a</sup>(wt%)   8.23   9.64   8.98   10.54
  Mn(g/mol)   low   low   low   low
  Mw(g/mol)   low   low   low   low
  dHf<sup>b</sup>(J/g)   na   1   na   na
  Tm(℃)   na   48   na   na
a溶剂中的聚合物浓度。b熔化热。
表15a.实施例K1-K11.使用C2/A1的连续乙烯-丙烯共聚的进料条件
  实施例   聚合温度(℃)   C2速率(Kg/h)   C3速率(Kg/h)   C6速率(Kg/h)  催化剂/活化剂(mol/mol)   清除剂/催化剂(mol/mol)
  K1   142.0   10.50   5.94   74.42  1.0   11.3
  K2   141.4   10.50   6.88   74.42  1.0   17.7
  K3   141.6   10.00   11.76   76.35  1.0   18.5
  K4   66.0   2.10   24.98   90.10  1.0   16.1
  K5   66.0   1.89   26.63   90.24  1.0   19.0
  K6   66.0   1.58   27.82   90.36  1.0   19.0
  K7   67.0   1.99   18.84   89.67  1.0   22.4
  K8   67.0   2.76   27.90   90.04  1.0   38.5
  K9   66.0   2.88   27.84   89.96  1.0   36.9
  K10   70.0   2.06   24.20   90.03  1.0   26.3
  K11   70.0   2.75   18.90   89.93  1.0   28.2
表15b.实施例K1-K11.使用C2/A1的连续乙烯-丙烯共聚的聚合结果
Figure G05825090920070129D000711
Figure G05825090920070129D000721
a13C{1H}NMR测量法测定。b使用光散射检测器测定。c使用差示折射指数检测器测定。
表16a.担载的丙烯聚合的进料条件
  实施例   金属茂   条件   H<sub>2</sub>/N<sub>2</sub>(psig)   丙烯(mL)   己烷(mL)   TNOAL(mL)   催化剂淤浆(mL)
  L1   C5   A   54.7   4.3   0.7   0.04   0.03
  L2   C5   B   54.7   4.3   0.7   0.04   0.04
  L3   C5   C   54.7   4.3   0.7   0.04   0.05
  L4   C5   D   54.7   4.3   0.7   0.04   0.06
  L5   C5   E   54.7   4.3   0.7   0.04   0.07
  L6   C5   F   54.7   4.3   0.7   0.04   0.08
  L7   C5   G   54.7   4.3   0.7   0.04   0.09
  L8   C5   H   54.7   4.3   0.7   0.04   0.1
  L9   Comp3   A   54.7   4.3   0.7   0.04   0.03
  L10   Comp3   B   54.7   4.3   0.7   0.04   0.04
  L11   Comp3   C   54.7   4.3   0.7   0.04   0.05
  L12   Comp3   D   54.7   4.3   0.7   0.04   0.06
  L13   Comp3   E   54.7   4.3   0.7   0.04   0.07
  L14   Comp3   F   54.7   4.3   0.7   0.04   0.08
  L15   Comp3   G   54.7   4.3   0.7   0.04   0.09
  L16   Comp3   H   54.7   4.3   0.7   0.04   0.1
表16b.担载的丙烯聚合数据
  实施例   金属茂   条件   产量(g)   Mw(g/mol)   Mn(g/mol)   Mw/Mn
  L1   C5   A   0.018   512844   246721   2.08
  L2   C5   B   0.0224   578900   312660   1.85
  L3   C5   C   0.0354   534760   296029   1.81
  L4   C5   D   0.0419   560049   313920   1.78
  L5   C5   E   0.0205   934851   446849   2.09
  L6   C5   F   0.0321   662337   374585   1.77
  L7   C5   G   0.0325   626450   356518   1.76
  L8   C5   H   0.0445   568224   319236   1.78
  L9   Comp3   A   0.0391   473241   206032   2.30
  L10   Comp3   B   0.0673   220344   115631   1.91
  L11   Comp3   C   0.0954   183047   102653   1.78
  L12   Comp3   D   0.174   209586   113992   1.84
  L13   Comp3   E   0.2088   266103   138948   1.92
  L14   Comp3   F   0.224   230346   129264   1.78
  L15   Comp3   G   0.2338   228364   125242   1.82
  L16   Comp3   H   0.2519   294877   167917   1.76
表17.在连续溶液共聚中制备的EP共聚物的应力应变特性
  样品   杨氏模量   50%模量   100%模量   200%模量   500%模量   极限伸长率   极限拉伸强度
实施例 psi psi psi psi psi psi
  C1   335596.2   785.06   690.67   669.82   1010.04   913.96   1774.11
  C2   93104.45   447.94   479.27   479.11   646.25   945.4   1322.57
  C3   60267.47   430.12   461.72   468.5   749.89   857.26   1681.33
  C6   42483.11   153.87   172.29   194.37   264.55   976.99   481.15
  C7   45406.24   192.62   220.82   251.81   336.84   976.35   620.7
  C8   44453.35   242.35   279.26   311.28   406.8   962.46   793.66
  D2   33615.43   325.41   364.29   392.2   618.02   844.29   1408.99
  D3   23626.48   355.89   392.11   418.27   854.01   742.17   2108.61
  E1   57684.18   127.91   138.82   143.39   180.36   953.31   373.38
  E3   41496.2   129.53   141.22   145.1   183.61   926.93   408.98
  E4   71708.91   49.52   49.13   67.91   51.17
  F2   30811.26   215.9   245.19   274.34   420.31   882.47   882.71
  G1   49528.21   93.45   99.28   96.52   99.17   1013.42   167.55
  C3   32559.32   66.24   68.97   61.72   43.57   83.21   69.51
  H2   42393.24   126.03   137.23   141.59   185.86   903.63   413.28
表18.在连续溶液共聚中制备的EP共聚物的组成分布测定
Figure G05825090920070129D000731
本文所述的全部文件在此引入供参考,包括优先权文件和/或试验工序。从以上一般说明和具体实施方案可以看出,虽然举例说明和描述了本发明的几种形式,但可以在不偏离本发明的精神和范围的情况下做出许多改变。因此,本发明不限于以上的具体实施方案。

Claims (3)

1.一种用于聚合烯烃的连续溶液聚合方法,该方法使用选自三甲基铝、三乙基铝、三异丁基铝、三正己基铝和三正辛基铝的清除剂在70-150℃下进行,包括使乙烯和丙烯、电离阴离子前体化合物和具有选自如下通式表示的化合物混合,
Figure FSB00000162943400011
其中Me是甲基,Hf是铪,Ph是苯基,和Si是硅;以及
该电离阴离子前体化合物使桥连金属茂金属中心电离为阳离子并提供抗衡非配位阴离子;
得到具有5wt%乙烯下限和25wt%乙烯上限的丙烯和乙烯的共聚物,以乙烯和丙烯衍生单元的总重量为基准计。
2.如权利要求1所述的方法,其中进一步使用活化剂,所述活化剂用下式表示:
(St+)u(NCAv-)w
St+是具有电荷t+的阳离子组分;
NCAv-是具有电荷v-的非配位阴离子;
t是1-3的整数;
v是1-3的整数;
u和v受关系式:(u)×(t)=(v)×(w)的限制;其中St+是能够离子化或夺取结构部分的布朗斯台德酸或可还原的路易斯酸。
3.如权利要求1所述的方法,其中进一步使用活化剂,所述活化剂选自四(全氟苯基)硼酸N,N-二甲基苯胺鎓和四(全氟苯基)硼酸三苯基碳鎓。
CN2005800250909A 2004-07-08 2005-07-08 烯烃聚合催化剂体系及其使用方法 Expired - Fee Related CN101124235B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US58646504P 2004-07-08 2004-07-08
US60/586,465 2004-07-08
PCT/US2005/024708 WO2006010139A2 (en) 2004-07-08 2005-07-08 Olefin polymerization catalyst system and process for use thereof

Publications (2)

Publication Number Publication Date
CN101124235A CN101124235A (zh) 2008-02-13
CN101124235B true CN101124235B (zh) 2010-12-15

Family

ID=34956137

Family Applications (2)

Application Number Title Priority Date Filing Date
CN2005800250909A Expired - Fee Related CN101124235B (zh) 2004-07-08 2005-07-08 烯烃聚合催化剂体系及其使用方法
CN2005800297572A Expired - Fee Related CN101010705B (zh) 2004-07-08 2005-07-08 在超临界条件下生产聚合物

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN2005800297572A Expired - Fee Related CN101010705B (zh) 2004-07-08 2005-07-08 在超临界条件下生产聚合物

Country Status (9)

Country Link
US (2) US7601666B2 (zh)
EP (2) EP1774485B1 (zh)
JP (2) JP4988568B2 (zh)
KR (1) KR20070039930A (zh)
CN (2) CN101124235B (zh)
BR (1) BRPI0513057A (zh)
CA (1) CA2576840A1 (zh)
DE (1) DE602005010255D1 (zh)
WO (2) WO2006010139A2 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022228260A1 (zh) 2021-04-25 2022-11-03 中国石油化工股份有限公司 丙烯基共聚物、其制备方法和用途和包含其的聚丙烯组合物

Families Citing this family (98)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0205455D0 (en) 2002-03-07 2002-04-24 Molecular Sensing Plc Nucleic acid probes, their synthesis and use
US7807769B2 (en) * 2002-09-20 2010-10-05 Exxonmobil Chemical Patents Inc. Isotactic polypropylene produced from supercritical polymerization process
US20080153997A1 (en) * 2006-12-20 2008-06-26 Exxonmobil Research And Engineering Polymer production at supercritical conditions
JP2006500470A (ja) * 2002-09-20 2006-01-05 エクソンモービル・ケミカル・パテンツ・インク 超臨界重合方法およびこれにより製造したポリマー
US8008412B2 (en) * 2002-09-20 2011-08-30 Exxonmobil Chemical Patents Inc. Polymer production at supersolution conditions
US6877246B1 (en) * 2003-12-30 2005-04-12 Kimberly-Clark Worldwide, Inc. Through-air dryer assembly
JP4988568B2 (ja) * 2004-07-08 2012-08-01 エクソンモービル・ケミカル・パテンツ・インク オレフィン重合触媒系およびその使用方法
US8022142B2 (en) * 2008-12-15 2011-09-20 Exxonmobil Chemical Patents Inc. Thermoplastic olefin compositions
US20090203041A1 (en) * 2006-04-21 2009-08-13 Wei Shi Bmp4 inhibitors
EP1921200A3 (en) * 2006-11-08 2010-07-21 LG Electronics Inc. Exhaust structure for clothes dryer in apartment building
US8143352B2 (en) * 2006-12-20 2012-03-27 Exxonmobil Research And Engineering Company Process for fluid phase in-line blending of polymers
CN101563374B (zh) * 2006-12-20 2012-09-05 埃克森美孚化学专利公司 用于超临界聚合方法的相分离器和单体再循环
US8242237B2 (en) * 2006-12-20 2012-08-14 Exxonmobil Chemical Patents Inc. Phase separator and monomer recycle for supercritical polymerization process
US7872086B2 (en) 2008-01-17 2011-01-18 Tonen Chemical Corporation Polymeric material and its manufacture and use
US8080610B2 (en) * 2007-03-06 2011-12-20 Exxonmobil Research And Engineering Company Monomer recycle process for fluid phase in-line blending of polymers
JP2010529253A (ja) * 2007-06-04 2010-08-26 エクソンモービル・ケミカル・パテンツ・インク 非常に均一なプロピレンの溶液重合法
EP2195349B1 (en) * 2007-09-13 2012-07-11 ExxonMobil Research and Engineering Company In-line process for producing plasticized polymers and plasticized polymer blends
CN101855250B (zh) * 2007-09-13 2013-01-02 埃克森美孚研究工程公司 增塑剂与基础聚合物的在线共混
US7868104B2 (en) 2007-10-26 2011-01-11 Exxonmobil Chemical Patents Inc. Crystallizable propylene copolymers
EP2070953A1 (en) * 2007-12-11 2009-06-17 Total Petrochemicals Research Feluy Activating supports based on phosphonium complexes
US8431661B2 (en) 2010-10-21 2013-04-30 Exxonmobil Chemical Patents Inc. Polyethylene and process for production thereof
US8436114B2 (en) 2010-10-21 2013-05-07 Exxonmobil Chemical Patents Inc. Polyethylene and process for production thereof
WO2009082463A1 (en) * 2007-12-20 2009-07-02 Exxonmobil Research And Engineering Company In-line process to produce pellet-stable polyolefins
EP2231772B1 (en) * 2007-12-20 2014-04-16 ExxonMobil Research and Engineering Company Polypropylene ethylene-propylene copolymer blends and in-line process to produce them
US7910679B2 (en) * 2007-12-20 2011-03-22 Exxonmobil Research And Engineering Company Bulk homogeneous polymerization process for ethylene propylene copolymers
US8318875B2 (en) * 2008-01-18 2012-11-27 Exxonmobil Chemical Patents Inc. Super-solution homogeneous propylene polymerization and polypropylenes made therefrom
US8067512B2 (en) 2008-04-10 2011-11-29 Exxonmobil Research And Engineering Company Monomer/solvent separation and recycle process for propylene containing polymers
US7939610B2 (en) 2008-05-22 2011-05-10 Exxonmobil Research And Engineering Company Polymerization processes for broadened molecular weight distribution
US8580902B2 (en) 2008-08-01 2013-11-12 Exxonmobil Chemical Patents Inc. Catalyst system, process for olefin polymerization, and polymer compositions produced therefrom
US8399586B2 (en) 2008-09-05 2013-03-19 Exxonmobil Research And Engineering Company Process for feeding ethylene to polymerization reactors
US8710148B2 (en) 2011-12-02 2014-04-29 Exxonmobil Chemical Patents Inc. Polymer compositions and nonwoven compositions prepared therefrom
US9498932B2 (en) 2008-09-30 2016-11-22 Exxonmobil Chemical Patents Inc. Multi-layered meltblown composite and methods for making same
US9168718B2 (en) * 2009-04-21 2015-10-27 Exxonmobil Chemical Patents Inc. Method for producing temperature resistant nonwovens
US10161063B2 (en) 2008-09-30 2018-12-25 Exxonmobil Chemical Patents Inc. Polyolefin-based elastic meltblown fabrics
US8664129B2 (en) 2008-11-14 2014-03-04 Exxonmobil Chemical Patents Inc. Extensible nonwoven facing layer for elastic multilayer fabrics
CN101721277A (zh) * 2008-10-22 2010-06-09 3M创新有限公司 医用胶带及由其制成的医用制品
KR101348060B1 (ko) 2009-02-27 2014-01-03 엑손모빌 케미칼 패턴츠 인코포레이티드 다층 부직 동일-공정계 라미네이트 및 이의 제조 방법
JP5625056B2 (ja) 2009-07-16 2014-11-12 ダウ グローバル テクノロジーズ エルエルシー オレフィン系ポリマーのための重合方法
US8602103B2 (en) * 2009-11-24 2013-12-10 Conocophillips Company Generation of fluid for hydrocarbon recovery
US8668975B2 (en) 2009-11-24 2014-03-11 Exxonmobil Chemical Patents Inc. Fabric with discrete elastic and plastic regions and method for making same
ES2627915T5 (es) 2010-02-19 2021-09-29 Exxonmobil Chemical Patents Inc Mezclas de polímeros elastoméricos y procedimientos para su producción
BR112012031626B1 (pt) * 2010-06-18 2018-12-11 Coloplast A/S composição adesiva sensível à pressão para aplicação na pele, construção adesiva com camada, e, dispositivo médico
US8383848B2 (en) 2010-06-29 2013-02-26 Sumitomo Chemical Company, Limited Transition metal compound and catalyst for olefin polymerization
KR101821026B1 (ko) 2010-10-21 2018-01-22 유니베이션 테크놀로지즈, 엘엘씨 폴리에틸렌 및 그의 제조 방법
US20120123374A1 (en) 2010-11-09 2012-05-17 Richeson Galen C Meltblown Nonwoven Compositions and Methods for Making Them
WO2012064469A1 (en) 2010-11-09 2012-05-18 Exxonmobil Chemical Patents Inc. Bicomponent fibers and methods for making them
EP2495264B1 (en) 2011-03-04 2013-05-08 Borealis AG Exterior automotive article with reduced paintability failure
WO2012134688A1 (en) 2011-03-30 2012-10-04 Exxonmobil Chemical Patents Inc. Polyalphaolefins by oligomerization and isomerization
WO2012170202A2 (en) * 2011-06-08 2012-12-13 Exxonmobil Chemical Patents Inc. Catalyst systems comprising multiple non-coordinating anion activators and methods for polymerization therewith
US8658556B2 (en) 2011-06-08 2014-02-25 Exxonmobil Chemical Patents Inc. Catalyst systems comprising multiple non-coordinating anion activators and methods for polymerization therewith
US9260635B2 (en) 2011-06-17 2016-02-16 Exxonmobil Chemical Patents Inc. Polyolefin adhesive compositions and methods for preparing the same
KR101564159B1 (ko) 2011-06-17 2015-10-28 엑손모빌 케미칼 패턴츠 인코포레이티드 반결정성 중합체의 냉각 및 펠렛화 방법
EP2723927B1 (en) 2011-06-21 2016-11-23 ExxonMobil Chemical Patents Inc. Elastic nonwoven materials comprising propylene-based and ethylene-based polymers
US10059081B2 (en) 2011-12-22 2018-08-28 Exxonmobil Chemical Patents Inc. Fibers and nonwoven materials prepared therefrom
EP2823011B1 (en) 2012-03-09 2017-01-18 ExxonMobil Chemical Patents Inc. Polyolefin adhesive compositions
US9238763B2 (en) 2013-10-18 2016-01-19 Exxonmobil Chemical Patents Inc. Tackified polyolefin adhesive compositions
CN103665217B (zh) * 2012-09-21 2016-02-24 中国石油化工股份有限公司 一种连续聚合方法
ES2726819T3 (es) * 2012-09-24 2019-10-09 Exxonmobil Chemical Patents Inc Producción de polietileno terminado en vinilo
CN104640889A (zh) * 2012-09-24 2015-05-20 埃克森美孚化学专利公司 使用担载的催化剂体系生产乙烯基封端的聚乙烯
US9434795B2 (en) 2012-09-24 2016-09-06 Exxonmobil Chemical Patents Inc. Production of vinyl terminated polyethylene using supported catalyst system
WO2014070655A1 (en) * 2012-10-31 2014-05-08 Exxonmobil Chemical Patents Inc. Supported metallocene catalyst systems and methods of preparation thereof
JP6142085B2 (ja) 2013-06-18 2017-06-07 エクソンモービル ケミカル パテンツ インコーポレイテッド 繊維及びこれから調製された不織材料
US11549201B2 (en) 2013-06-18 2023-01-10 Exxonmobil Chemicals Patents Inc. Fibers and nonwoven materials prepared therefrom
CN105358589B (zh) * 2013-07-17 2018-07-03 埃克森美孚化学专利公司 金属茂和由其衍生的催化剂组合物
SG10201802959WA (en) 2013-07-17 2018-05-30 Exxonmobil Chemical Patents Inc Cyclopropyl substituted metallocene catalysts
US9553867B2 (en) * 2013-08-01 2017-01-24 Bitglass, Inc. Secure application access system
US9376518B2 (en) 2013-08-28 2016-06-28 Exxonmobil Chemical Patents Inc. Racemo selective metallation process
US10442962B2 (en) 2013-10-18 2019-10-15 Exxonmobil Chemical Patents Inc. High polymer load polyolefin adhesive compositions
KR102323279B1 (ko) * 2014-02-11 2021-11-08 유니베이션 테크놀로지즈, 엘엘씨 폴리에틸렌의 제조 방법 및 그의 폴리에틸렌
US10040884B2 (en) 2014-03-28 2018-08-07 Mitsui Chemicals, Inc. Ethylene/α-olefin copolymers and lubricating oils
US20170073556A1 (en) 2014-04-22 2017-03-16 Exxonmobil Chemical Patents Inc. Hydrocarbon Tackifiers for Adhesive Compositions
US10336921B2 (en) 2014-04-22 2019-07-02 Exxonmobil Chemical Patents Inc. Adhesive compositions for nonwoven applications
US10106676B2 (en) 2014-06-10 2018-10-23 Exxonmobil Chemical Patents Inc. Propylene-based polymers having improved stability and methods for producing the same
WO2016036466A2 (en) 2014-09-05 2016-03-10 Exxomobil Chemical Patents Inc. Polymer compositions and nonwoven materials prepared therefrom
WO2016069089A1 (en) 2014-10-29 2016-05-06 Exxonmobil Chemical Patents Inc. Polyolefin adhesive compositions for elastic applications
EP3029101B1 (en) 2014-12-04 2017-02-15 ExxonMobil Chemical Patents Inc. Multi-modal polymer blend, hot melt adhesive comprising same and use thereof
US9909038B2 (en) 2014-12-19 2018-03-06 Exxonmobil Chemical Patents Inc. Adhesive compositions made from propylene-based polymers for elastic attachments
CN107109000B (zh) 2014-12-19 2021-04-27 埃克森美孚化学专利公司 由含有基于丙烯的聚合物的共混物制造的热活化的织物
CN107109158B (zh) 2015-01-14 2019-11-12 埃克森美孚化学专利公司 由基于丙烯的聚合物和结晶c2/c3均聚物制成的粘结剂组合物
CN105047295A (zh) * 2015-07-02 2015-11-11 傅宇晓 耐酸碱工业用电缆
WO2018022263A1 (en) 2016-07-29 2018-02-01 Exxonmobil Chemical Patents Inc. Polymerization processes using high molecular weight polyhydric quenching agents
CN106845796B (zh) * 2016-12-28 2018-04-13 中南大学 一种加氢裂化流程产品质量在线预测方法
JP6921563B2 (ja) * 2017-03-07 2021-08-18 出光興産株式会社 遷移金属化合物及びオレフィン系重合体の製造方法
US11001657B2 (en) 2017-10-25 2021-05-11 Exxonmobil Chemical Patents Inc. Unbridged indacenyl metallocenes
CN111225927A (zh) * 2017-10-25 2020-06-02 埃克森美孚化学专利公司 非桥连的引达省基茂金属
WO2019240896A1 (en) 2018-06-15 2019-12-19 Exxonmobil Chemical Patents Inc. Process for producing polymers
EP3844329A1 (en) 2018-08-30 2021-07-07 ExxonMobil Chemical Patents Inc. Bicomponent polymeric fibers
US11377560B2 (en) 2018-12-18 2022-07-05 ExxonMobil Technology and Engineering Company Modified asphalts and methods for producing the same
WO2020242912A1 (en) 2019-05-24 2020-12-03 Eastman Chemical Company Blend small amounts of pyoil into a liquid stream processed into a gas cracker
WO2021025903A1 (en) * 2019-08-02 2021-02-11 Exxonmobil Chemical Patents Inc. Non-coordinating anion type activators for use with polyolefin polymerization catalysts
US11472828B2 (en) 2019-10-11 2022-10-18 Exxonmobil Chemical Patents Inc. Indacene based metallocene catalysts useful in the production of propylene polymers
US11945998B2 (en) 2019-10-31 2024-04-02 Eastman Chemical Company Processes and systems for making recycle content hydrocarbons
EP4054997A4 (en) 2019-11-07 2024-02-21 Eastman Chem Co ALPHA-OLEFINS AND FAT ALCOHOLS WITH RECYCLING CONTENT
CN115485320A (zh) * 2020-05-22 2022-12-16 株式会社吴羽 聚亚芳基硫醚的制造方法
CN113046130B (zh) * 2021-04-16 2023-04-04 华东理工大学 一种窄分布、低粘度和高粘度指数的pao基础油及其制备方法
CN113337311A (zh) * 2021-04-16 2021-09-03 华东理工大学 一种超高粘度指数聚α-烯烃基础油及其制备方法和应用
CN115232236A (zh) * 2021-04-25 2022-10-25 中国石油化工股份有限公司 一种丙烯基共聚物及其制备方法和应用和聚丙烯组合物
KR20230069618A (ko) * 2021-11-12 2023-05-19 주식회사 에스피씨아이 초고분자량 폴리올레핀 중합용 메탈로센 화합물 및 이를 이용한 초고분자량 폴리올레핀 중합체의 제조방법

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19823168A1 (de) * 1998-05-23 1999-11-25 Aventis Res & Tech Gmbh & Co Katalysatorsystem
WO2000012565A1 (en) * 1998-08-26 2000-03-09 Exxon Chemical Patents Inc. Highly active supported catalyst compositions
WO2000026266A1 (en) * 1998-11-02 2000-05-11 Exxon Chemical Patents Inc. Supported ionic catalyst compositions
WO2000025916A1 (en) * 1998-11-02 2000-05-11 Exxon Chemical Patents Inc. Polymeric supported catalysts
US6084115A (en) * 1998-03-11 2000-07-04 The Dow Chemical Company Diene complexes of group 4 metals and process of preparation
WO2002044260A2 (en) * 2000-11-30 2002-06-06 Exxonmobil Chemical Patents Inc. Polypropylene for precision injection molding applications
US6576306B2 (en) * 1996-09-04 2003-06-10 Exxonmobil Chemical Patents Inc. Propylene polymers for films
WO2004050724A1 (en) * 2002-12-04 2004-06-17 Basell Polyolefine Gmbh Process for preparing 1-butene polymers

Family Cites Families (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE420895A (zh) 1936-02-04 1900-01-01
US2852501A (en) 1954-10-05 1958-09-16 Monsanto Chemicals Polymerization of ethylene
US3725378A (en) 1958-12-17 1973-04-03 Monsanto Co Polymerization of ethylene
US3294772A (en) 1963-06-17 1966-12-27 Phillips Petroleum Co Supercritical polymerization
US4153774A (en) 1976-02-17 1979-05-08 Basf Aktiengesellschaft Manufacture of high pressure polyethylene
US4135044A (en) 1977-08-08 1979-01-16 Exxon Research & Engineering Co. Process for achieving high conversions in the production of polyethylene
US5324800A (en) 1983-06-06 1994-06-28 Exxon Chemical Patents Inc. Process and catalyst for polyolefin density and molecular weight control
US4530914A (en) 1983-06-06 1985-07-23 Exxon Research & Engineering Co. Process and catalyst for producing polyethylene having a broad molecular weight distribution
ZA844157B (en) 1983-06-06 1986-01-29 Exxon Research Engineering Co Process and catalyst for polyolefin density and molecular weight control
IN172494B (zh) 1986-12-19 1993-09-04 Exxon Chemical Patents Inc
EP0239843B1 (de) 1986-03-24 1990-10-24 Siemens Aktiengesellschaft Kernbrennstoffsinterkörper und Verfahren zu seiner Herstellung
DE3615563A1 (de) 1986-05-09 1987-11-12 Basf Ag Verfahren zur herstellung von copolymerisaten des ethylens mit vinylestern in einem roehrenreaktor bei druecken oberhalb 500 bar
US4740550A (en) 1986-06-18 1988-04-26 Shell Oil Company Multistage copolymerization process
US5543394A (en) 1986-07-01 1996-08-06 Genetics Institute, Inc. Bone morphogenetic protein 5(BMP-5) compositions
US5084534A (en) 1987-06-04 1992-01-28 Exxon Chemical Patents, Inc. High pressure, high temperature polymerization of ethylene
CA1284549C (en) 1986-09-26 1991-05-28 Fathi David Hussein Process for the polymerization of propylene
US5408017A (en) 1987-01-30 1995-04-18 Exxon Chemical Patents Inc. High temperature polymerization process using ionic catalysts to produce polyolefins
DE3743321A1 (de) 1987-12-21 1989-06-29 Hoechst Ag 1-olefinpolymerwachs und verfahren zu seiner herstellung
JPH0216916A (ja) 1988-07-01 1990-01-19 Iseki & Co Ltd 普通型コンバイン
US5382631A (en) 1988-09-30 1995-01-17 Exxon Chemical Patents Inc. Linear ethylene interpolymer blends of interpolymers having narrow molecular weight and composition distributions
US5382630A (en) 1988-09-30 1995-01-17 Exxon Chemical Patents Inc. Linear ethylene interpolymer blends of interpolymers having narrow molecular weight and composition distribution
DE3904468A1 (de) 1989-02-15 1990-08-16 Hoechst Ag Polypropylenwachs und verfahren zu seiner herstellung
DE3929693A1 (de) 1989-09-07 1991-03-14 Hoechst Ag Verfahren zur herstellung eines polyolefinwachses
US5504169A (en) 1989-09-13 1996-04-02 Exxon Chemical Patents Inc. Process for producing amorphous poly-α-olefins with a monocyclopentadienyl transition metal catalyst system
US5026798A (en) 1989-09-13 1991-06-25 Exxon Chemical Patents Inc. Process for producing crystalline poly-α-olefins with a monocyclopentadienyl transition metal catalyst system
US5036034A (en) * 1989-10-10 1991-07-30 Fina Technology, Inc. Catalyst for producing hemiisotactic polypropylene
US5324799A (en) 1990-03-06 1994-06-28 Akihiro Yano Polyethylene and process of production thereof
WO1991017194A1 (en) 1990-05-07 1991-11-14 Exxon Chemical Patents Inc. UNSATURATED α-OLEFIN COPOLYMERS AND METHOD FOR PREPARATION THEREOF
PL166690B1 (pl) 1990-06-04 1995-06-30 Exxon Chemical Patents Inc Sposób wytwarzania polimerów olefin PL
US5272236A (en) 1991-10-15 1993-12-21 The Dow Chemical Company Elastic substantially linear olefin polymers
DE4030379A1 (de) 1990-09-26 1992-04-02 Basf Ag Polymerwachse des propylens mit hoher haerte und kristallinitaet
FI86867C (fi) 1990-12-28 1992-10-26 Neste Oy Flerstegsprocess foer framstaellning av polyeten
FI89929C (fi) 1990-12-28 1993-12-10 Neste Oy Foerfarande foer homo- eller sampolymerisering av eten
IT1246614B (it) 1991-06-03 1994-11-24 Himont Inc Procedimento per la polimerizzazione in fase gas delle olefine
DE4130299A1 (de) * 1991-09-12 1993-03-18 Basf Ag Verfahren zur herstellung von polypropylen unter hochdruck
JPH0625357A (ja) 1991-10-23 1994-02-01 Mitsui Toatsu Chem Inc 新規なプロピレン系共重合体およびその製造方法
TW309523B (zh) 1991-11-30 1997-07-01 Hoechst Ag
GB9125934D0 (en) 1991-12-05 1992-02-05 Exxon Chemical Patents Inc Process for polymerising olefinic feeds under pressure
EP0552945B1 (en) * 1992-01-23 1997-05-07 Mitsui Petrochemical Industries, Ltd. Process for the preparation of polyolefin
TW285680B (zh) 1992-03-31 1996-09-11 Hoechst Ag
ES2100388T3 (es) 1992-05-26 1997-06-16 Hoechst Ag Procedimiento para preparar ceras de poliolefina.
TW294669B (zh) 1992-06-27 1997-01-01 Hoechst Ag
ATE165832T1 (de) 1992-08-03 1998-05-15 Targor Gmbh Verfahren zur herstellung eines olefinpolymers unter verwendung von metallocenen mit speziell substituierten indenylliganden
TW303368B (zh) 1992-08-08 1997-04-21 Hoechst Ag
EP0667359B1 (en) 1992-10-28 2004-03-31 Idemitsu Kosan Company Limited Olefin copolymers and process for producing the same
CA2125247C (en) 1993-06-07 2001-02-20 Daisuke Fukuoka Transition metal compound, olefin polymerization catalyst component comprising said compound, olefin polymerization catalyst containing said catalyst component, process for olefinpolymerization using said catalyst , propylene homopolymer, propylene copolymer and propylene elastomer
JPH0790035A (ja) 1993-07-27 1995-04-04 Ube Ind Ltd プロピレンブロック共重合体の製造方法
DE4333128A1 (de) 1993-09-29 1995-03-30 Hoechst Ag Verfahren zur Herstellung von Polyolefinen
DE59409642D1 (de) 1993-11-24 2001-03-01 Targor Gmbh Metallocene, Verfahren zu ihrer Herstellung und ihrer Verwendung als Katalysatoren
NO178790C (no) 1993-12-13 1996-06-05 Borealis Holding As Fremgangsmåte ved fremstilling av olefinpolymerer i en autoklavrektor
DE4406963A1 (de) 1994-03-03 1995-09-07 Basf Ag Metallocenkomplexe mit heterofunktionellen Gruppen am Cyclopentadienylsystem
US5552489A (en) 1994-07-22 1996-09-03 Exxon Chemical Patents Inc. Tackifiers and a process to obtain tackifiers
US6300451B1 (en) 1994-10-24 2001-10-09 Exxon Chemical Patents Inc. Long-chain branched polymers and their production
CA2162946C (en) 1994-11-21 2004-01-06 Kazuyuki Watanabe Propylene block copolymer and process for producing the same
TW383314B (en) 1994-12-20 2000-03-01 Mitsui Petrochemical Ind Ethylene-alpha-olefin-nonconjugated polyene random copolymer, rubber composition, and process for preparing the random copolymer
US5880241A (en) 1995-01-24 1999-03-09 E. I. Du Pont De Nemours And Company Olefin polymers
JPH08208535A (ja) 1995-02-03 1996-08-13 Mitsui Toatsu Chem Inc アルキルベンゼンの製造方法
US6143682A (en) 1995-06-07 2000-11-07 Exxon Chemical Patents Inc. Bimetallocyclic transition metal catalyst systems
US5882750A (en) 1995-07-03 1999-03-16 Mobil Oil Corporation Single reactor bimodal HMW-HDPE film resin with improved bubble stability
ES2142615T3 (es) 1995-10-10 2000-04-16 Borealis As Procedimiento para fabricar homopolimeros o copolimeros de propileno.
FI105820B (fi) 1995-10-10 2000-10-13 Borealis Tech Oy Prosessi propeenin homo- tai kopolymeerien valmistamiseksi
EP0868440B1 (de) 1995-10-14 2001-12-12 Basell Polyolefine GmbH Verfahren zur herstellung von ethylen-copolymerisaten unter hochdruck
DE19544828A1 (de) 1995-12-01 1997-06-05 Hoechst Ag Hochmolekulare Copolymere
IT1283630B1 (it) 1996-05-09 1998-04-23 Enichem Spa Procedimento per la preparazione di copolimeri elastomerici ep(d)m
AU718884B2 (en) 1996-06-17 2000-04-20 Exxon Chemical Patents Inc. Mixed transition metal catalyst systems for olefin polymerization
ATE276263T1 (de) 1996-08-08 2004-10-15 Dow Global Technologies Inc Metallkomplexe enthaltend ein an position 3 substituierte cyclopentadienylgruppe und ein olefinpolymerisationsverfahren
US6583227B2 (en) 1996-09-04 2003-06-24 Exxonmobil Chemical Patents Inc. Propylene polymers for films
CA2263081A1 (en) * 1996-09-24 1998-04-02 Exxon Chemical Patents, Inc. Improved method for preparing supported metallocene catalyst systems
JP3421202B2 (ja) 1996-10-09 2003-06-30 三菱化学株式会社 プロピレンの重合方法及びそれを用いて得られるプロピレン系重合体
DE69704031T2 (de) 1996-11-07 2001-06-13 Oklahoma Med Res Found Test zur diagnose eines erhöhten brustkrebs-risikos
DE19648895A1 (de) 1996-11-26 1998-05-28 Clariant Gmbh Polar modifizierte Polypropylen-Wachse
DE69722902T2 (de) 1996-12-09 2004-05-19 Mitsubishi Chemical Corp. Katalysator für Alpha-Olefinpolymerisation
US5965756A (en) 1996-12-19 1999-10-12 The Dow Chemical Company Fused ring substituted indenyl metal complexes and polymerization process
US6160072A (en) 1997-05-02 2000-12-12 Ewen; John A. Process for polymerizing tactioselective polyolefins in condensed phase using titanocenes
WO1998055520A1 (fr) 1997-06-06 1998-12-10 Idemitsu Petrochemical Co., Ltd. Polymere olefinique
FI111847B (fi) 1997-06-24 2003-09-30 Borealis Tech Oy Menetelmä propeenin kopolymeerien valmistamiseksi
US6525157B2 (en) 1997-08-12 2003-02-25 Exxonmobile Chemical Patents Inc. Propylene ethylene polymers
JP3846193B2 (ja) 1997-09-04 2006-11-15 チッソ株式会社 プロピレン系共重合体およびその製造方法
DE19804970A1 (de) 1998-02-07 1999-08-12 Aventis Res & Tech Gmbh & Co Katalysatorsystem
DE19808253A1 (de) * 1998-02-27 1999-09-02 Aventis Res & Tech Gmbh & Co Katalysatorsystem, Verfahren zu seiner Herstellung und seine Verwendung zur Polymerisation von Olefinen
AU2801899A (en) 1998-03-04 1999-09-20 Exxon Chemical Patents Inc. Noncoordinating anions for olefin polymerization
US6225285B1 (en) 1998-03-11 2001-05-01 Exelixis Pharmaceuticals, Inc. Semaphorin K1
WO2000012572A1 (en) 1998-08-26 2000-03-09 Exxon Chemical Patents Inc. Branched polypropylene compositions
US6479424B1 (en) 1998-12-14 2002-11-12 Bp Corporation North America Inc. Fluxional catalysts and related ligands containing bulky substituents
US6469188B1 (en) 1999-01-20 2002-10-22 California Institute Of Technology Catalyst system for the polymerization of alkenes to polyolefins
EP1083183A1 (en) 1999-09-10 2001-03-14 Fina Research S.A. Process for producing polyolefins
CN100434433C (zh) 1999-10-08 2008-11-19 三井化学株式会社 茂金属化合物及制备方法、烯烃聚合催化剂、聚烯烃及制备方法
US20020013440A1 (en) 1999-12-10 2002-01-31 Agarwal Pawan Kumar Propylene diene copolymers
KR100374154B1 (ko) 2000-06-24 2003-02-26 장학선 전원신호 및 데이터신호를 송수신하기 위한 시스템
EP1195391A1 (en) 2000-10-05 2002-04-10 ATOFINA Research Production of polypropylene
ATE337341T1 (de) 2000-10-25 2006-09-15 Exxonmobil Chem Patents Inc Verfahren und vorrichtung zur kontinuierlichen lösungspolymerisation
SK6682003A3 (en) 2000-12-04 2004-02-03 Univation Tech Llc Polymerization process
JP2004527617A (ja) 2001-04-12 2004-09-09 エクソンモービル・ケミカル・パテンツ・インク プロピレン−エチレンコポリマー
GB0111020D0 (en) 2001-05-04 2001-06-27 Borealis Tech Oy Process
JP2006500470A (ja) * 2002-09-20 2006-01-05 エクソンモービル・ケミカル・パテンツ・インク 超臨界重合方法およびこれにより製造したポリマー
WO2004046214A2 (en) * 2002-10-15 2004-06-03 Exxonmobil Chemical Patents Inc. Multiple catalyst system for olefin polymerization and polymers produced therefrom
WO2004037871A1 (en) 2002-10-24 2004-05-06 Exxonmobil Chemical Patents Inc. Branched crystalline polypropylene
US7589160B2 (en) * 2002-12-04 2009-09-15 Basell Polyolefine Gmbh Process for preparing 1-butene polymers
JP4988568B2 (ja) * 2004-07-08 2012-08-01 エクソンモービル・ケミカル・パテンツ・インク オレフィン重合触媒系およびその使用方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6143686A (en) * 1994-08-03 2000-11-07 Exxon Chemical Patents, Inc. Supported ionic catalyst compositions
US6576306B2 (en) * 1996-09-04 2003-06-10 Exxonmobil Chemical Patents Inc. Propylene polymers for films
US6228795B1 (en) * 1997-06-05 2001-05-08 Exxon Chemical Patents, Inc. Polymeric supported catalysts
US6084115A (en) * 1998-03-11 2000-07-04 The Dow Chemical Company Diene complexes of group 4 metals and process of preparation
DE19823168A1 (de) * 1998-05-23 1999-11-25 Aventis Res & Tech Gmbh & Co Katalysatorsystem
WO2000012565A1 (en) * 1998-08-26 2000-03-09 Exxon Chemical Patents Inc. Highly active supported catalyst compositions
WO2000026266A1 (en) * 1998-11-02 2000-05-11 Exxon Chemical Patents Inc. Supported ionic catalyst compositions
WO2000025916A1 (en) * 1998-11-02 2000-05-11 Exxon Chemical Patents Inc. Polymeric supported catalysts
WO2002044260A2 (en) * 2000-11-30 2002-06-06 Exxonmobil Chemical Patents Inc. Polypropylene for precision injection molding applications
WO2004050724A1 (en) * 2002-12-04 2004-06-17 Basell Polyolefine Gmbh Process for preparing 1-butene polymers

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022228260A1 (zh) 2021-04-25 2022-11-03 中国石油化工股份有限公司 丙烯基共聚物、其制备方法和用途和包含其的聚丙烯组合物

Also Published As

Publication number Publication date
US7279536B2 (en) 2007-10-09
KR20070039930A (ko) 2007-04-13
EP1774485A2 (en) 2007-04-18
US7601666B2 (en) 2009-10-13
EP1765841A2 (en) 2007-03-28
EP1765841B1 (en) 2008-10-08
WO2006010139A3 (en) 2006-03-16
EP1774485B1 (en) 2016-05-04
JP4988568B2 (ja) 2012-08-01
US20060009595A1 (en) 2006-01-12
WO2006010139A2 (en) 2006-01-26
WO2006025949A2 (en) 2006-03-09
DE602005010255D1 (de) 2008-11-20
CN101010705A (zh) 2007-08-01
JP2008505932A (ja) 2008-02-28
BRPI0513057A (pt) 2008-04-22
WO2006025949A3 (en) 2006-08-31
CN101124235A (zh) 2008-02-13
US20060293474A1 (en) 2006-12-28
CA2576840A1 (en) 2006-03-09
JP2008506018A (ja) 2008-02-28
JP5268087B2 (ja) 2013-08-21
CN101010705B (zh) 2011-03-23

Similar Documents

Publication Publication Date Title
CN101124235B (zh) 烯烃聚合催化剂体系及其使用方法
EP2203486B1 (en) Racemoselective synthesis of ansa-metallocene compounds, ansa-metallocene compounds, catalysts comprising them, process for producing an olefin polymer by use of the catalysts, and olefin homo- and copolymers
RU2470035C2 (ru) Металлоценовые соединения, катализаторы, их содержащие, способ получения олефинового полимера в результате использования катализаторов и олефиновые гомо- и сополимеры
EP0720627B1 (en) Catalysts and processes for the polymerization of olefins
CN101679561B (zh) 乙烯-α-烯烃共聚物
RU2232766C2 (ru) Связанные мостиками металлоцены, способ полимеризации
US20070260026A1 (en) Catalyst for Olefin Polymerization Process for Producing Olefin Polymer, Olefin Copolymer, Novel Transition Metal Compound, and Process for Producing Transition Metal Compound
CA2257177A1 (en) Metallocenes and catalysts for polymerization of olefins
CN101263148A (zh) 氟苯基硼酸盐及其作为烯烃聚合用催化剂体系中的活化剂的用途
EP1632506A1 (en) Propylene polymer
JP3946282B2 (ja) プロピレンのエチレンとのアモルファスコポリマー
JP2002535339A (ja) オレフィン重合用触媒成分としてのメタロセン化合物
KR20060133960A (ko) 헤테로페이스 프로필렌 공중합체의 제조를 위한 다단계공정
EP2235071A2 (en) Metallocene compounds, catalysts comprising them, process for producing an olefin polymer by use of the catalysts, and olefin homo and copolymers
JP2002530286A (ja) オレフィン重合触媒としてのビス(テトラヒドロ−インデニル)メタロセン
CN101023105A (zh) 金属茂化合物、它们制备中使用的配体,1-丁烯聚合物的制备和由此得到的1-丁烯聚合物
EP3321293B1 (en) High-stiffness and energy-reducing polypropylene for foaming
JP7309256B2 (ja) リガンド化合物、遷移金属化合物及びこれを含む触媒組成物
KR20060135606A (ko) 헤테로페이스 프로필렌 공중합체의 제조를 위한 다단계공정
US20210332075A1 (en) Novel Transition Metal Compound and Method of Preparing Polypropylene Using the Same
CN114206951A (zh) 用于烯烃聚合催化剂的过渡金属化合物、含其的烯烃聚合催化剂及用该催化剂聚合的聚烯烃

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20101215

Termination date: 20170708