CN101138091A - 用于生长平坦半极性氮化镓的技术 - Google Patents

用于生长平坦半极性氮化镓的技术 Download PDF

Info

Publication number
CN101138091A
CN101138091A CNA2006800076945A CN200680007694A CN101138091A CN 101138091 A CN101138091 A CN 101138091A CN A2006800076945 A CNA2006800076945 A CN A2006800076945A CN 200680007694 A CN200680007694 A CN 200680007694A CN 101138091 A CN101138091 A CN 101138091A
Authority
CN
China
Prior art keywords
growth
gan
substrate
nitride film
polarity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2006800076945A
Other languages
English (en)
Other versions
CN101138091B (zh
Inventor
特洛伊·J·贝克
本杰明·A·哈斯克尔
保罗·T·菲尼
史蒂文·P·登巴尔斯
詹姆斯·S·斯佩克
中村修二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
University of California
Original Assignee
University of California
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of California filed Critical University of California
Publication of CN101138091A publication Critical patent/CN101138091A/zh
Application granted granted Critical
Publication of CN101138091B publication Critical patent/CN101138091B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • C30B29/406Gallium nitride
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02433Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02658Pretreatments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S438/00Semiconductor device manufacturing: process
    • Y10S438/938Lattice strain control or utilization

Abstract

本发明提供一种用于在斜切尖晶石衬底上生长平坦半极性氮化物薄膜的方法,其中大面积的所述平坦半极性氮化物薄膜与所述衬底的表面平行。所述平坦薄膜和衬底为:(1)生长于沿特定方向斜切的{100}尖晶石衬底上的{1011}氮化镓(GaN),(2)生长于{110}尖晶石衬底上的{1013}氮化镓(GaN),(3)生长于{1100}蓝宝石衬底上的{1122}氮化镓(GaN),和(4)生长于{1100}蓝宝石衬底上的{1013}氮化镓(GaN)。

Description

用于生长平坦半极性氮化镓的技术
相关申请案的交叉参考
本申请案依据35 U.S.C.119(e)部分主张以下共同待决和共同受让的美国专利申请案的权益:
Troy J.Baker,Benjamin A.Haskell,Paul T.Fini,Steven P.DenBaars,James S.Speck和Shuji Nakamura于2005年3月10日申请的标题为“TECHNIQUE FOR THE GROWTH OFPLANAR SEMI-POLAR GALLIUM NITRIDE”的美国临时专利申请案第60/660,283号,代理人案号第30794.128-US-P1号;
所述申请案是以引用的方式并入本文中。
本申请案涉及以下共同待决和共同受让的申请案:
Robert M.Farrell,Troy J.Baker,Arpan Chakraborty,Benjamin A.Haskell,P.MorganPattison,Rajat Sharma,Umesh K.Mishra,Steven P.DenBaars,James S.Speck和ShujiNakamura于2005年6月1日申请的标题为“TECHNIQUE FOR THE GROWTH ANDFABRICATION OF SEMIPOLAR(Ga,Al,In,B)N THIN FILMS,HETEROSTRUCTURES,AND DEVICES”的美国临时专利申请案第60/686,244号,代理人案号第30794.140-US-P1(2005-668)号;
Troy J.Baker,Benjamin A.Haskell,James S.Speck和Shuji Nakamura于2005年7月13日申请的标题为“LATERAL GROWTH METHOD FOR DEFECT REDUCTION OFSEMIPOLAR NITRIDE FILMS”的美国临时专利申请案第60/698,749号,代理人案号第30794.141-US-P1(2005-672)号;
Michael Iza,Troy J.Baker,Benjamin A.Haskell,Steven P.DenBaars和Shuji Nakamura于2005年9月9日申请的标题为“METHOD FOR ENHANCING GROWTH OFSEMIPOLAR(Al,In,Ga,B)N VIA METALORGANIC CHEMICAL VAPOR DEPOSITION”的美国临时专利申请案第60/715,491号,代理人案号第30794.144-US-P1(2005-722)号;
John F.Kaeding,Michael Iza,Troy J.Baker,Hitoshi Sato,Benjamin A.Haskell,James S.Speck,Steven P. DenBaars和Shuji Nakamura于2006年1月20日申请的标题为“METHODFOR IMPROVED GROWTH OF SEMIPOLAR(Al,In,Ga,B)N”的美国临时专利申请案第60/760,739号,代理人案号第30794.150-US-P1(2006-126)号;
Hitoshi Sato,John F.Keading,Michael Iza,Troy J.Baker,Benjamin A.Haskell,StevenP.DenBaars和Shuji Nakamura于2006年1月20日申请的标题为“METHOD FORENHANCING GROWTH OF SEMIPOLAR(Al,In,Ga,B)N VIA METALORGANICCHEMICAL VAPOR DEPOSITION”的美国临时专利申请案第60/760,628号,代理人案号第30794.159-US-P1(2006-178)号;
John F.Kaeding,Hitoshi Sato,Michael Iza,Hirokuni Asamizu,Hong Zhong,Steven P.DenBaars和Shuji Nakamura于2006年2月10日申请的标题为“METHOD FORCONDUCTIVITY CONTROL OF SEMIPOLAR(Al,In,Ga,B)N”的美国临时专利申请案第60/772,184号,代理人案号第30794.166-US-P1(2006-285)号;
Hong Zhong,John F.Kaeding,Rajat Sharma,James S.Speck,Steven P.DenB aars和Shuji Nakamura于2006年2月17日申请的标题为“METHOD FOR GROWTH OFSEMIPOLAR(Al,In,Ga,B)N OPTOELECTRONICS DEVICES”的美国临时专利申请案第60/774,467号,代理人案号第30794.173-US-P1(2006-422)号;
Benjamin A.Haskell,Michael D.Craven,Paul T.Fini,Steven P.DenBaars,James S.Speck和Shuji Nakamura于2005年6月6日申请的标题为“GROWTH OF REDUCEDDISLOCATION DENSITY NON-POLAR GALLIUM NITRIDE BY HYDRIDE VAPORPHASE EPITAXY”的美国发明专利申请案第10/537,644号,代理人案号第30794.93-US-WO(2003-224-2)号,所述申请案依据35 U.S.C.365(c)部分主张Benjamin A.Haskell,Michael D.Craven,Paul T.Fini,Steven P DenBaars,James S.Speck和ShujiNakamura于2003年7月15日申请的标题为“GROWTH OF REDUCED DISLOCATIONDENSITY NON-POLAR GALLIUM NITRIDE BY HYDRIDE VAPOR PHASE EPITAXY”的国际专利申请案第PCT/US03/21918号(代理人案号第30794.93-WO-U1(2003-224-2)号)的权益,所述申请案依据35 U.S.C.119(e)部分主张Benjamin A.Haskell,Michael D.Craven,Paul T.Fini,Steven P.DenBaars,James S.Speck和Shuji Nakamura于2002年12月16日申请的标题为“GROWTH OF REDUCED DISLOCATION DENSITY NON-POLARGALLIUM NITRIDE BY HYDRIDE VAPOR PHASE EPITAXY”的美国临时专利申请案第60/433,843号(代理人案号第30794.93-US-P1(2003-224-1)号)的权益;
Benjamin A.Haskell,Paul T.Fini,Shigemasa Matsuda,Michael D.Craven,Steven P.DenBaars,James S.Speck和Shuji Nakamura于2005年6月3日申请的标题为“GROWTHOF PLANAR.NON-POLAR A-PLANE GALLIUM NITRIDE BY HYDRIDE VAPORPHASE EPITAXY”的美国发明专利申请案第10/537,385号,代理人案号第30794.94-US-WO(2003-225-2)号,所述申请案依据35 U.S.C.365(c)部分主张Benjamin A.Haskell,Paul T.Fini,Shigemasa Matsuda,Michael D.Craven,Steven P.DenBaars,James S.Speck和Shuji Nakamura于2003年7月15日申请的标题为“GROWTH OF PLANAR,NON-POLAR A-PLANE GALLIUM NITRIDE BY HYDRIDE VAPOR PHASE EPITAXY”的国际专利申请案第PCT/US03/21916号(代理人案号第30794.94-WO-U1(2003-225-2)号)的权益,所述申请案依据35 U.S.C.119(e)部分主张Benjamin A.Haskell,Paul T.Fini,Shigemasa Matsuda,Michael D.Craven,Steven P.DenBaars,James S.Speck和ShujiNakamura于2002年12月16日申请的标题为“TECHNIQUE FOR THE GROWTH OFPLANAR.NON-POLAR A-PLANE GALLIUM NITRIDE BY HYDRIDE VAPOR PHASEEPITAXY”的美国临时专利申请案第60/433,844号(代理人案号第30794.94-US-P1(2003-225-1)号)的权益;
Michael D.Craven和James S.Speck于2003年4月15日申请的标题为“NON-POLARA-PLANE GALLIUM NITRIDE THIN FILMS GROWN BY METALORGANIC CHEMICALVAPOR DEPOSITION”的美国发明专利申请案第10/413,691号,代理人案号第30794.100-US-U1(2002-294-2)号,所述申请案依据35 U.S.C.119(e)部分主张Michael D.Craven,Stacia Keller,Steven P DenBaars,Tal Margalith,James S.Speck,Shuji Nakamura和Umesh K.Mishra于2002年4月15日申请的标题为“NON-POLAR GALLIUM NITRIDEBASED THIN FILMS AND HETEROSTRUCTURE MATERIALS”的美国临时专利申请案第60/372,909号(代理人案号第30794.95-US-P1(2002-294/301/303)号)的权益;
Michael D.Craven,Stacia Keller,Steven P DenBaars,Tal Margalith,James S.Speck,ShujiNakamura和Umesh K.Mishra于2003年4月15日申请的标题为“NON-POLAR(Al,B,In,Ga)N QUANTUM WELL AND HETEROSTRUCTURE MATERIALS ANDDEVICES”的美国发明专利申请案第10/413,690号,代理人案号第30794.101-US-Ul(2002-301-2)号,所述申请案依据35 U.S.C.119(e)部分主张Michael D.Craven,StaciaKeller,Steven P.DenBaars,Tal Margalith,James S.Speck,Shuji Nakamura和Umesh K.Mishra于2002年4月15日申请的标题为“NON-POLAR GALLIUM NITRIDE BASEDTHIN FILMS AND HETEROSTRUCTURE MATERIALS”的美国临时专利申请案第60/372,909号(代理人案号第30794.95-US-P1(2002-294/301/303)号)的权益;
Michael D.Craven,Stacia Keller,Steven P DenBaars,Tal Margalith,James S.Speck,Shuji Nakamura和Umesh K.Mishra于2003年4月15日申请的标题为“DISLOCATIONREDUCTION IN NON-POLAR GALLIUM NITRIDE THIN FILMS”的美国发明专利申请案第10/413,913号,代理人案号第30794.102-US-U1(2002-303-2)号,所述申请案依据35U.S.C.119(e)部分主张Michael D.Craven,Stacia Keller,Steven P.DenBaars,Tal Margalith,James S.Speck,Shuji Nakamura和Umesh K.Mishra于2002年4月15日申请的标题为“NON-POLAR GALLIUM NITRIDE BASED THIN FILMS AND HETEROSTRUCTUREMATERIALS”的美国临时专利申请案第60/372,909号(代理人案号第30794.95-US-P1号)的权益;
Michael D.Craven和Steven P.DenBaars于2003年12月11日申请的标题为“NONPOLAR(Al,B,In,Ga)N QUANTUM WELLS”的国际专利申请案第PCT/US03/39355号,代理人案号第30794.104-WO-01(2003-529-1)号,所述申请案为上文所述的专利申请案第PCT/US03/21918(30794.93-WO-U1)号、第PCT/US03/21916(30794.94-WO-U1)号、第10/413,691(30794.100-US-U1)号、第10/413,690(30794.101-US-U1)号、第10/413,913(30794.102-US-U1)号的部分接续申请案;
所有所述申请案都是以引用的方式并入本文中。
技术领域
本发明涉及一种用于生长平坦半极性氮化镓的技术。
背景技术
已充分确定氮化镓(GaN)和其并入铝和铟的三元与四元化合物(AlGaN、InGaN、AlInGaN)用于制造可见光和紫外线光电子装置和高功率电子装置的有用性。这些装置通常是使用包括分子束外延(MBE)、金属有机化学气相沉积(MOCVD)和氢化物气相外延(HVPE)在内的生长技术而得以外延式生长。
GaN和其合金处于六边形纤锌型晶体结构(hexagonal würtzite crystal structure)时最为稳定,其中所述结构是通过彼此(a轴)旋转120°的两个(或三个)等效基面轴加以说明,所有轴都垂直于独特的c轴。III族和氮原子占据沿晶体c轴的交替c平面。纤锌型结构中所包括的对称元素表明III族氮化物拥有沿此c轴的整体自发极化(bulkspontaneous polarization),并且纤锌型结构呈现出压电极化。
用于电子装置和光电子装置的当前氮化物技术使用沿极性c方向生长的氮化物薄膜。然而,以III族氮化物为基础的光电子装置和电子装置中的常规c平面量子阱结构因存在强压电及自发极化而遭受不合需要的量子局限史塔克效应(quantum-confined Starkeffect,QCSE)。沿c方向的强内建电场引起电子与电洞的空间分离,所述电子和电洞的空间分离又引起受限的载流子重组效率、减小的振子强度和红移发射(red-shiftedemission)。
消除GaN光电子装置中的自发极化和压电极化效应的一种方法是在晶体的非极性平面上生长装置。所述平面含有等数量的Ga和N原子并且呈电中性。此外,随后的非极性层彼此相当,从而使块晶(bulk crystal)不会沿生长方向极化。GaN中的两个此类对称等效非极性平面族为统称为a平面的{1120}族,和统称为m平面的{1100}族。遗憾的是,尽管加利福尼亚大学的研究员已取得进展(例如,如以上交叉参考的申请案中所述),但是非极性GaN的生长仍存在问题并且尚未广泛被III族氮化物行业所采用。
减小或可能消除GaN光电子装置中的极化效应的另一种方法是在晶体的半极性平面上生长装置。术语“半极性平面”可用以指各种平面,其拥有两个非零h、i或k米勒指数(Miller indices)和一个非零1米勒指数。c平面GaN异质外延中半极性平面的某些常见实例包括{1122}、{1011}和{1013}平面,其可见于陷阱的刻面中。这些平面还可能为与发明者以平坦薄膜形式生长的平面相同的平面。纤锌型晶体结构中的半极性平面的其它实例包括(但不限于){1012}、{2021}和{1014}平面。氮化物晶体的极化矢量不位于此类平面内或垂直于此类平面,而是与平面表面的法线倾斜成某个角度。举例来说,{1011}和{1013}平面分别与c平面成62.98°和32.06°角。
引起极化的另一原因为压电极化。这出现在材料经历压缩应变或拉伸应变时,如同当在氮化物异质结构中生长具有不同组成(且因此具有不同的晶格常数)的(Al,In,Ga,B)N层时可以出现一样。举例来说,GaN模板上的薄AlGaN层将具有平面内拉伸应变,并且GaN模板上的薄InGaN层将具有平面内压缩应变,二者都是由与GaN匹配的晶格引起。因此,对于GaN上的InGaN量子阱而言,压电极化将指向与InGaN和GaN的自发极化方向相对的方向。对于晶格与GaN匹配的AlGaN层而言,压电极化将指向与AlGaN和GaN的自发极化方向相同的方向。
使用半极性平面优于c平面氮化物的优点在于总极化将会减少。对于特定平面上的特定合金组成而言甚至可能存在零极化。此类方案将在将来的科技论文中进行详细论述。要点在于与c平面氮化物结构的极化相比,所述极化将会减少。
GaN的块晶无法使用,因此不可能简单地切割晶体来呈现供随后装置再生长的表面。通常,GaN薄膜最初是以异质外延方式生长,即在提供与GaN的合理晶格匹配的外来衬底上生长。
已证实半极性GaN平面在图案化c平面定向条纹的侧壁上。Nishizuka等人已通过这项技术生长{1122}InGaN量子阱。(参看Nishizuka,K.,Applied Physics Letters,第85卷,第15号,2004年10月11日。)他们还证实半极性平面{1122}的内部量子效率高于c平面的内部量子效率,这是由极化减少引起。
然而,这种产生半极性平面的方法完全不同于本发明的方法;其为由横向外延过度生长(ELO)得到的结果。ELO可用于减少GaN和其它半导体中的缺陷。其涉及到光罩材料(对于GaN来说通常为SiO2)的图案化条纹。GaN是从光罩之间的开放窗口生长且接着在光罩上生长。为形成连续薄膜,接着通过横向生长来接合GaN。可通过生长参数来控制这些条纹的刻面。如果生长在条纹接合之前停止,那么可以暴露半极性平面的少量区域。表面区域的宽度最佳可为10μm。此外,半极性平面将不与衬底表面平行。另外,表面区域太小而无法加工成半极性LED。而且,在倾斜刻面上形成装置结构比在垂直平面上形成这些结构要困难许多。
本发明描述用于生长半极性氮化物平坦薄膜的技术,其中大面积的(Al、In、Ga)N与衬底表面平行。举例来说,与先前经证实用于生长半极性氮化物的数微米宽的区域相比,通常在10mm×10mm或2英寸直径的衬底上生长样本。
发明内容
本发明描述一种用于使半极性氮化物生长为平坦薄膜(诸如,{1011}、{1013}和{1122}GaN平坦薄膜)的方法。半极性氮化物半导体的生长将提供一种减少纤锌型结构III族氮化物装置结构中的极化效应的方式。
附图说明
现参考图式,在所述图式中类似的参考数字表示相应部分:
图1A、1B和1C为具有图1A(无斜切)、图1B(沿<010>方向斜切)和图1C(沿<011>方向斜切)的衬底斜切的(100)尖晶石上的GaN的光学显微图。
图2为说明本发明的优选实施例的加工步骤的流程图。
图3为在通过HVPE生长的{1011}GaN模板上通过MOCVD生长的LED的照片。
具体实施方式
在下文对优选实施例的描述中,将参考形成本发明的一部分的附图,并且其中经由说明对可实施本发明的特定实施例予以展示。应了解,可利用其它实施例并且可在不偏离本发明的范围的情况下对结构作出改变。
综述
半极性氮化物半导体的生长(例如,{1011}、{1013}和{1122}GaN平面)可提供一种减少纤锌型结构III族氮化物装置结构中的极化效应的方式。半导体术语氮化物是指(Ga,Al,In,B)N和这些半导体的任何合金组成。目前的氮化物装置是在极性[0001]c方向上生长,这将导致电荷在垂直装置中沿主要传导方向分离。所获得的极化场对于当前工艺水平下光电子装置的性能是有害的。这些装置沿半极性方向生长可通过减少沿传导方向的内建电场而显著改进装置性能。
直到现在,尚不存在用于生长适于在装置生长中用作装置层、模板或衬底的大面积、高品质半极性氮化物薄膜的方式。本发明的新颖特征在于,确立可以生长为平坦薄膜的半极性氮化物。作为证据,发明者已生长{1011}、{1013}和{1122}GaN平坦薄膜。然而,这种想法的范围并不仅限于这些实例。这种想法涉及所有半极性氮化物平坦薄膜。
技术说明
本发明包含一种用于生长平坦氮化物薄膜的方法,其中大面积的半极性氮化物与衬底表面平行。其实例为{1011}和{1013}GaN薄膜。在此特定实施例中,将MgAl2O4尖晶石衬底用于生长过程中。在适当方向上斜切尖晶石以生长{1011}GaN显得至关重要。同轴并且朝<001>方向斜切的{100}尖晶石上生长的{1011}GaN将具有彼此成90°的两个区域。这在分别绘示于图1A(无斜切)和图1B(沿<010>方向斜切)中的(100)尖晶石上的GaN的光学显微图中将显而易见。
然而,如图1C(沿<011>方向斜切)中的(100)尖晶石上的GaN的光学显微图所示,{1011}单晶GaN生长于沿<011>方向斜切的{100}尖晶石上。使用X射线衍射(XRD)验证在具有朝<011>方向斜切的(100)尖晶石上生长的薄膜为单晶,并且同轴生长或朝<010>方向斜切的(100)尖晶石上生长的薄膜具有两个区域。
{1013}单晶GaN是生长于标称同轴(缺少有意进行的斜切){110}尖晶石上。使用XRD验证{1013}GaN为单晶。
此外,已在m平面蓝宝石(即{1100}Al2O3)上生长{1122}GaN和{1013}GaN平坦薄膜。在半导体生长中一般不使用一个衬底生长两个具有相同外延材料的不同平面。然而,可以在GaN生长之前通过在不同温度下使氨流动来可重复地选择平面。再次使用XRD证实薄膜的单晶特性。
因此,已采用实验方法证明四个平坦半极性氮化物薄膜的实例:
1)以特定方向(<001>、<010>和<011>)斜切的{100}尖晶石上的{1011}GaN,
2){110}尖晶石上的{1013}GaN,
3){1100}蓝宝石上的{1122}GaN,和
4){1100}蓝宝石上的{1013}GaN。
使用University of California,Santa Barbara的Shuji Nakamura实验室中的HVPE系统生长这些薄膜。用于{1011}和{1013}的生长参数概要为介于10托(torr)与1000托之间的压力和介于900℃与1200℃之间的温度。所述较大范围的压力表明,这些平面当生长于指定衬底上时将极为稳定。不管反应器为何种类型,外延关系都应有效。然而,用于生长这些平面的反应器条件将依据个别反应器和生长方法(例如,HVPE、MOCVD和MBE)而变化。
加工步骤
图2为说明本发明的优选实施例的加工步骤的流程图。具体来说,这些加工步骤包含生长平坦半极性氮化物薄膜的方法,其中大面积的平坦半极性氮化物薄膜与衬底表面平行。
方块10表示制造衬底的可选步骤。举例来说,所述制造可涉及对衬底进行斜切。为生长{1011}GaN,可使用沿<011>方向(其包括<010>和<011>)斜切的(100)尖晶石衬底。为生长{1013}GaN,可使用同轴(110)尖晶石衬底。(110)尖晶石可具有或可不具有沿任何方向的斜切,但当要在(100)尖晶石上生长{1011}GaN时无需进行斜切。
方块12表示将衬底载入HVPE反应器中的步骤。将反应器抽空到至少9E-2托以移除氧气,接着用氮气回填所述反应器。
方块14表示在促进衬底表面氮化的条件下开启加热炉并逐渐升高反应器温度的步骤。
方块16表示进行气体流动的步骤。所述过程一般是在大气压力下使氮、氢和/或氨在衬底上流动。
方块18表示降低反应器中的压力的步骤。加热炉温度设定值为1000℃,并且当其达到此温度时,将反应器的压力降低到62.5托。
方块20表示进行GaN生长的步骤。在降低压力之后,将氨流量设定为1.0 slpm(每分钟标准升),并且起始Ga(镓)上75 sccm(每分钟标准立方厘米)的HCl(氯化氢)流动以开始GaN的生长。
方块22表示冷却反应器的步骤。在20到60分钟的GaN生长时间之后,停止HCl流动,并且在氨气流动的同时将反应器冷却以保存GaN薄膜。
这些步骤的最终结果包含平坦半极性氮化物薄膜,其中所述平坦半极性氮化物薄膜的大表面区域(至少10 mm×10 mm或2英寸直径)与衬底的表面平行。
虽然已结合尖晶石衬底描述加工步骤,但也可使用m平面蓝宝石生长{1122}GaN或{1013}GaN。除一处不同之外,所述过程与上文所述的过程相同。为生长{1122}GaN,在使加热炉逐渐升高到生长温度的同时使氨气流动,因此会在低温下发生氮化。为选择{1013}GaN,可在逐渐升高温度步骤中仅使氢气和氮气流动。接着应使衬底在生长温度下于氨气流动的情况下经历高温氮化。
在已使用HVPE系统生长半极性薄膜之后,方块24表示使用MOCVD或MBE在衬底上生长装置层的步骤。这一步骤通常涉及用n型和p型掺杂物掺杂氮化物层,和在再生长层中生长一个或数个量子阱。可在这一步骤中使用标准LED加工方法在洁净室中制造LED。
图3为在通过HVPE生长的{1011}GaN模板上通过MOCVD生长的绿光LED的照片。具体说来,通过先前描述的HVPE生长过程来生长模板,并且通过MOCVD生长LED结构。这是第一个{1011}GaN LED。
可能的修改和变更
本发明的范围涵盖超出刚刚所引用的特定实例以外的内容。这种想法与任何半极性平面上的所有氮化物相关。举例来说,可在斜切(100)尖晶石衬底上生长{1011}AlN、InN、AlGaN、InGaN或AlInN。另一实例为,如果发现适当的衬底,那么可生长{1012}氮化物。这些实例和其它可能性仍可引起平坦半极性薄膜的所有益处。
在University of California,Santa Barbara的Shuji Nakamura实验室中进行的研究是使用HVPE完成;然而,使用MOCVD和MBE直接生长半极性氮化物平面应该也是可能的。对于大多数生长方法而言,外延关系应该是相同的,但如可从m平面蓝宝石上的GaN的实例中了解,其也可变化。举例来说,使用MOCVD生长的{1011}GaN LED可以直接生长于斜切(100)尖晶石上而无需HVPE模板。这种想法涵盖产生平坦半极性氮化物薄膜的任何生长技术。
反应器条件将随反应器类型和设计而变化。本文所述的生长仅为对已发现的用于生长半极性GaN的有用条件中一组条件的说明。还发现,这些薄膜将在较宽参数范围的压力、温度、气体流量等(其都将产生平坦半极性氮化物薄膜)下生长。
存在可在生长过程中变化的其它步骤。已发现成核层并非反应器条件所必需;然而,其它反应器中使用成核层可能必需或可能不必要,这是GaN薄膜生长中的惯例。还发现,将衬底氮化可改进某些薄膜的表面形态,并且确定针对其它薄膜所生长的实际平面。然而,这对于任何特定生长技术而言可能有必要或可能没必要。
优势和改进
现行惯例为在c平面垂直于表面的状况下生长GaN。这一平面具有对装置性能有害的自发极化和压电极化作用。半极性氮化物薄膜优于c平面氮化物薄膜的优势在于某些装置的极化作用减少和内部量子效率伴随增加。
非极性平面可用于完全消除装置中的极化效应。然而,这些平面极难生长,因此目前非极性氮化物装置未付诸生产。半极性氮化物薄膜优于非极性氮化物薄膜的优势在于易于生长。已发现,半极性平面具有其将在其中生长的较大参数范围。举例来说,非极性平面将不会在大气压力下生长,而据实验证实,半极性平面可在62.5托到760托的压力下生长,而且很可能具有比所述范围更宽的范围。{1100}GaN是在低压下生长,但当压力增加到760托,而所有其它参数都相同时,将产生c平面GaN。这很可能与两个平面的晶胞的轮廓有关。{112}GaN的另一难题在于InGaN装置中In的并入。结果发现并入In对于{1011}GaN相当有益。
平坦半极性薄膜优于ELO侧壁的优势在于存在可加工成LED或其它装置的较大表面区域。另一优势在于生长表面与衬底表面平行,这与ELO侧壁半极性平面不同。
总的来说,本发明确立可生长平坦半极性氮化物薄膜。这已采用实验方法于四种单独情况中得以证实。先前所论述的优势将涉及所有平坦半极性薄膜。
参考文献
下列参考文献是以引用的方式并入本文中:
[1]Takeuchi,Tetsuya,Japanese Journal of Applied Physics,第39卷,(2000),第413至416页。此论文为有关半极性GaN薄膜的极性的理论研究。
[2]Nishizuka,K.,Applied Physics Letters,第85卷,第15号,2004年10月11日。此论文为关于ELO材料的{1122}GaN侧壁的研究。
[3]T.J.Baker,B.A.Haskell,F.Wu,J.S.Speck和S.Nakamura,″Characterization ofPlanar Semipolar Gallium Nitride Films on Spinel Substrates,″Japanese Journal of AppliedPhysics,第44卷,第29号,(2005),L920。
[4]A.Chakraborty,T.J.Baker,B.A.Haskell,F. Wu,J.S.Speck,S.P Denbaars,S.Nakamura和U.K.Mishra,″Milliwatt Power Blue InGaN/GaN Light-Emitting Diodes onSemipolar GaN Templates,″Japanese Journal of Applied Physics,第44卷,第30号(2005),L945。
[5]R.Sharma,P.M.Pattison,H.Masui,R.M.Farrell,T.J.Baker,B.A.Haskell,F.Wu,S.P.Denbaars,J.S.Speck和S.Nakamura,″Demonstration of a Semipolar(10-1-3)InGaN/GaN Green Light Emitting Diode,″Appl.Phys.Lett.87,231110(2005)。
[6]T.J.Baker,B.A.Haskell,F.Wu,J.S.Speck和S.Nakamura,″Characterization ofPlanar Semipolar Gallium Nitride Films on Sapphire Substrates,″Japanese Journal of AppliedPhysics,第45卷,第6号,(2006),L154。
结论
这一部分对本发明的优选实施例的描述作出结论。已出于说明和描述的目的提供对本发明的一个或一个以上实施例的以上描述。其并不打算为详尽的或将本发明限于所揭示的精确形式。根据上述教示可能进行许多修改和变更。预期本发明的范围不受具体实施方式的限制,而是受随附权利要求的限制。

Claims (18)

1.一种生长氮化物薄膜的方法,其包含:
在衬底上生长平坦半极性氮化物薄膜,其中所述平坦半极性氮化物薄膜是与所述衬底的表面平行生长。
2.根据权利要求1所述的方法,其中所述平坦半极性氮化物薄膜的至少10mm×10mm的表面区域与所述衬底的表面平行。
3.根据权利要求1所述的方法,其中所述平坦半极性氮化物薄膜的具有至少2英寸直径的表面区域与所述衬底的表面平行。
4.根据权利要求1所述的方法,其中所述平坦半极性氮化物薄膜为在沿特定方向斜切的{100}尖晶石衬底上生长的
Figure A2006800076940002C1
氮化镓(GaN)。
5.根据权利要求4所述的方法,其中所述特定方向包含<001>、<010>和<011>。
6.根据权利要求1所述的方法,其中所述平坦半极性氮化物薄膜为在沿特定方向斜切的(100)尖晶石衬底上生长的
Figure A2006800076940002C2
AlN、InN、AlGaN、InGaN或AlInN。
7.根据权利要求6所述的方法,其中所述特定方向包含<001>、<010>和<011>。
8.根据权利要求1所述的方法,其中所述平坦半极性氮化物薄膜为生长于{110}尖晶石衬底上的氮化镓(GaN)。
9.根据权利要求1所述的方法,其中所述平坦半极性氮化物薄膜为生长于
Figure A2006800076940002C4
蓝宝石衬底上的
Figure A2006800076940002C5
氮化镓(GaN)。
10.根据权利要求1所述的方法,其中所述平坦半极性氮化物薄膜为生长于
Figure A2006800076940002C6
蓝宝石衬底上氮化镓(GaN)。
11.根据权利要求1所述的方法,其另外包含以下步骤:
将所述衬底载入反应器中,其中所述反应器经抽空以移除氧气,且随后用氮气回填所述反应器;
在促进所述衬底的表面氮化的条件下开启加热炉并逐渐升高所述反应器的温度;
在大气压力下,使氮气、氢气或氨气在所述衬底上进行气体流动;
当所述加热炉达到设定值温度时降低所述反应器的压力;
在降低所述反应器的压力之后,通过使氨气流动并在镓(Ga)上起始氯化氢(HCl)的流动以开始GaN的生长来进行所述氮化镓(GaN)在所述衬底上的生长;及
在所述GaN生长之后冷却所述反应器,其中停止所述HCl的流动,并且在使氨气流动的同时将所述反应器冷却以保存所述GaN。
12.根据权利要求11所述的方法,其中所述衬底是在被载入所述反应器中之前经斜切。
13.根据权利要求11所述的方法,其中,为生长
Figure A2006800076940003C1
GaN,在将所述加热炉逐渐升高到所述生长温度的同时使氨气流动,使得在低温下会发生氮化。
14.根据权利要求11所述的方法,其中,为生长
Figure A2006800076940003C2
GaN,在所述温度逐渐升高步骤中仅使氢气和氮气流动,并且接着在所述生长温度下于氨气流动的情况下使所述衬底经历高温氮化。
15.根据权利要求1所述的方法,其另外包含,在已生长所述平坦半极性氮化物薄膜之后,于所述平坦半极性氮化物薄膜上生长一个或一个以上装置层。
16.根据权利要求15所述的方法,其中所述在所述平坦半极性氮化物薄膜上生长所述装置层的步骤包括用n型和p型掺杂物掺杂所述装置层,和在再生长层中生长一个或一个以上量子阱。
17.根据权利要求16所述的方法,其另外包含由所述装置层制造发光二极管。
18.一种平坦半极性氮化物薄膜,其是使用权利要求1所述的方法生长而成。
CN2006800076945A 2005-03-10 2006-03-10 用于生长平坦半极性氮化镓的技术 Active CN101138091B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US66028305P 2005-03-10 2005-03-10
US60/660,283 2005-03-10
PCT/US2006/008595 WO2006099138A2 (en) 2005-03-10 2006-03-10 Technique for the growth of planar semi-polar gallium nitride

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN201010111379A Division CN101845670A (zh) 2005-03-10 2006-03-10 用于生长平坦半极性氮化镓的技术

Publications (2)

Publication Number Publication Date
CN101138091A true CN101138091A (zh) 2008-03-05
CN101138091B CN101138091B (zh) 2010-05-19

Family

ID=36992267

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201010111379A Pending CN101845670A (zh) 2005-03-10 2006-03-10 用于生长平坦半极性氮化镓的技术
CN2006800076945A Active CN101138091B (zh) 2005-03-10 2006-03-10 用于生长平坦半极性氮化镓的技术

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201010111379A Pending CN101845670A (zh) 2005-03-10 2006-03-10 用于生长平坦半极性氮化镓的技术

Country Status (8)

Country Link
US (4) US7220324B2 (zh)
EP (2) EP1869707B1 (zh)
JP (2) JP5706601B2 (zh)
KR (2) KR101145753B1 (zh)
CN (2) CN101845670A (zh)
HK (1) HK1112109A1 (zh)
TW (2) TWI453813B (zh)
WO (1) WO2006099138A2 (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102119243A (zh) * 2008-07-16 2011-07-06 奥斯坦多科技公司 利用氢化物气相外延(HVPE)生长平面非极性的{1-100}m面和半极性的{11-22}氮化镓
CN102422391A (zh) * 2009-11-12 2012-04-18 松下电器产业株式会社 氮化物半导体元件的制造方法
CN102449737A (zh) * 2009-03-02 2012-05-09 加利福尼亚大学董事会 生长于非极性或半极性(Ga,Al,In,B)N衬底上的装置
CN102549778A (zh) * 2009-08-27 2012-07-04 首尔Opto仪器股份有限公司 倾斜基底上的高质量非极性/半极性半导体器件及其制造方法
US8629065B2 (en) 2009-11-06 2014-01-14 Ostendo Technologies, Inc. Growth of planar non-polar {10-10} M-plane gallium nitride with hydride vapor phase epitaxy (HVPE)
US8759814B2 (en) 2012-08-10 2014-06-24 National Taiwan University Semiconductor light-emitting device and manufacturing method thereof
CN105702562A (zh) * 2010-11-08 2016-06-22 韩国光技术院 使用化学剥离方法的iii族氮化物基板的制备方法
CN105824179A (zh) * 2009-05-29 2016-08-03 天空激光二极管有限公司 一种投影系统
CN104112803B (zh) * 2014-04-14 2016-08-17 中国科学院半导体研究所 半极性面氮化镓基发光二极管及其制备方法
US11594862B2 (en) 2018-12-21 2023-02-28 Kyocera Sld Laser, Inc. Fiber delivered laser induced white light system
US11788699B2 (en) 2018-12-21 2023-10-17 Kyocera Sld Laser, Inc. Fiber-delivered laser-induced dynamic light system

Families Citing this family (149)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7504274B2 (en) 2004-05-10 2009-03-17 The Regents Of The University Of California Fabrication of nonpolar indium gallium nitride thin films, heterostructures and devices by metalorganic chemical vapor deposition
US9011598B2 (en) * 2004-06-03 2015-04-21 Soitec Method for making a composite substrate and composite substrate according to the method
US9130119B2 (en) * 2006-12-11 2015-09-08 The Regents Of The University Of California Non-polar and semi-polar light emitting devices
TWI453813B (zh) * 2005-03-10 2014-09-21 Univ California 用於生長平坦半極性的氮化鎵之技術
JP5743127B2 (ja) 2005-06-01 2015-07-01 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア 半極性(Ga,Al,In,B)N薄膜、ヘテロ構造およびデバイスの成長と作製のための方法及び装置
US8148713B2 (en) * 2008-04-04 2012-04-03 The Regents Of The University Of California Method for fabrication of semipolar (Al, In, Ga, B)N based light emitting diodes
WO2007009035A2 (en) * 2005-07-13 2007-01-18 The Regents Of The University Of California Lateral growth method for defect reduction of semipolar nitride films
TWI404122B (zh) * 2005-09-09 2013-08-01 Univ California 增進半-極性(Al,In,Ga,B)N藉由金屬有機化學氣相沈積生長之方法
KR20080098039A (ko) * 2006-01-20 2008-11-06 더 리전츠 오브 더 유니버시티 오브 캘리포니아 금속유기 화학 기상 증착을 통한 준극성 (Al,In,Ga,B)N의 성장을 향상시키기 위한 방법
US7691658B2 (en) 2006-01-20 2010-04-06 The Regents Of The University Of California Method for improved growth of semipolar (Al,In,Ga,B)N
US20120161287A1 (en) * 2006-01-20 2012-06-28 Japan Science And Technology Agency METHOD FOR ENHANCING GROWTH OF SEMI-POLAR (Al,In,Ga,B)N VIA METALORGANIC CHEMICAL VAPOR DEPOSITION
JP5684455B2 (ja) * 2006-02-10 2015-03-11 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア 成長中にp型ドーパントがドープされたp型半極性III窒化物半導体を使用して、該III窒化物デバイスまたはIII窒化物半導体を製造する方法、半極性III窒化物半導体、および、p型III窒化物半導体を製造する方法
WO2007098215A2 (en) * 2006-02-17 2007-08-30 The Regents Of The University Of California Method for growth of semipolar (al,in,ga,b)n optoelectronic devices
EP2087507A4 (en) * 2006-11-15 2010-07-07 Univ California METHOD FOR THE HETEROEPITAXIAL GROWTH OF QUALITATIVELY HIGH-QUALITY N-SIDE-GAN, INN AND AIN AND THEIR ALLOYS THROUGH METALLORGANIC CHEMICAL IMMUNE
US8193020B2 (en) * 2006-11-15 2012-06-05 The Regents Of The University Of California Method for heteroepitaxial growth of high-quality N-face GaN, InN, and AlN and their alloys by metal organic chemical vapor deposition
US9064706B2 (en) * 2006-11-17 2015-06-23 Sumitomo Electric Industries, Ltd. Composite of III-nitride crystal on laterally stacked substrates
JP2010512661A (ja) * 2006-12-11 2010-04-22 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア 高特性無極性iii族窒化物光デバイスの有機金属化学気相成長法(mocvd)による成長
JP2010518625A (ja) * 2007-02-12 2010-05-27 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア 半極性{11−2n}バルク窒化ガリウム基板上で成長したへき開型ファセットの(Ga,Al,In)N端面放射型レーザダイオード
WO2008100502A1 (en) 2007-02-12 2008-08-21 The Regents Of The University Of California Al(x)ga(1-x)n-cladding-free nonpolar iii-nitride based laser diodes and light emitting diodes
JP4462289B2 (ja) * 2007-05-18 2010-05-12 ソニー株式会社 半導体層の成長方法および半導体発光素子の製造方法
US20080314311A1 (en) * 2007-06-24 2008-12-25 Burrows Brian H Hvpe showerhead design
CN100583475C (zh) * 2007-07-19 2010-01-20 富士迈半导体精密工业(上海)有限公司 氮化物半导体发光元件及其制作方法
JP2010536181A (ja) * 2007-08-08 2010-11-25 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア ミスカット基板上に成長した平面型非極性m平面iii族窒化物薄膜
JP2010539732A (ja) * 2007-09-19 2010-12-16 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア 無極性および半極性の窒化物基板の面積を増加させる方法
US20090149008A1 (en) * 2007-10-05 2009-06-11 Applied Materials, Inc. Method for depositing group iii/v compounds
KR100972977B1 (ko) * 2007-12-14 2010-07-29 삼성엘이디 주식회사 반극성 질화물 단결정 박막의 성장 방법 및 이를 이용한질화물 반도체 발광소자의 제조 방법
WO2009097611A1 (en) 2008-02-01 2009-08-06 The Regents Of The University Of California Enhancement of optical polarization of nitride light-emitting diodes by wafer off-axis cut
KR101488452B1 (ko) * 2008-05-28 2015-02-02 서울반도체 주식회사 편광 광원, 그것을 채택한 백라이트 유닛 및 액정디스플레이 모듈
WO2009124317A2 (en) * 2008-04-04 2009-10-08 The Regents Of The University Of California Mocvd growth technique for planar semipolar (al, in, ga, b)n based light emitting diodes
TW200950162A (en) 2008-04-04 2009-12-01 Univ California Method for fabrication of semipolar (Al, In, Ga, B)N based light emitting diodes
US8847249B2 (en) * 2008-06-16 2014-09-30 Soraa, Inc. Solid-state optical device having enhanced indium content in active regions
US20100006873A1 (en) * 2008-06-25 2010-01-14 Soraa, Inc. HIGHLY POLARIZED WHITE LIGHT SOURCE BY COMBINING BLUE LED ON SEMIPOLAR OR NONPOLAR GaN WITH YELLOW LED ON SEMIPOLAR OR NONPOLAR GaN
US8259769B1 (en) 2008-07-14 2012-09-04 Soraa, Inc. Integrated total internal reflectors for high-gain laser diodes with high quality cleaved facets on nonpolar/semipolar GaN substrates
US8805134B1 (en) 2012-02-17 2014-08-12 Soraa Laser Diode, Inc. Methods and apparatus for photonic integration in non-polar and semi-polar oriented wave-guided optical devices
JP5252061B2 (ja) * 2008-10-07 2013-07-31 住友電気工業株式会社 窒化ガリウム系レーザダイオード
US8247886B1 (en) 2009-03-09 2012-08-21 Soraa, Inc. Polarization direction of optical devices using selected spatial configurations
US8252662B1 (en) 2009-03-28 2012-08-28 Soraa, Inc. Method and structure for manufacture of light emitting diode devices using bulk GaN
US8299473B1 (en) 2009-04-07 2012-10-30 Soraa, Inc. Polarized white light devices using non-polar or semipolar gallium containing materials and transparent phosphors
US8568529B2 (en) 2009-04-10 2013-10-29 Applied Materials, Inc. HVPE chamber hardware
US8183132B2 (en) * 2009-04-10 2012-05-22 Applied Materials, Inc. Methods for fabricating group III nitride structures with a cluster tool
US8242522B1 (en) 2009-05-12 2012-08-14 Soraa, Inc. Optical device structure using non-polar GaN substrates and growth structures for laser applications in 481 nm
DE112010001615T5 (de) 2009-04-13 2012-08-02 Soraa, Inc. Stuktur eines optischen Elements unter Verwendung von GaN-Substraten für Laseranwendungen
US8254425B1 (en) 2009-04-17 2012-08-28 Soraa, Inc. Optical device structure using GaN substrates and growth structures for laser applications
US8634442B1 (en) 2009-04-13 2014-01-21 Soraa Laser Diode, Inc. Optical device structure using GaN substrates for laser applications
US8294179B1 (en) 2009-04-17 2012-10-23 Soraa, Inc. Optical device structure using GaN substrates and growth structures for laser applications
US8837545B2 (en) 2009-04-13 2014-09-16 Soraa Laser Diode, Inc. Optical device structure using GaN substrates and growth structures for laser applications
US8416825B1 (en) 2009-04-17 2013-04-09 Soraa, Inc. Optical device structure using GaN substrates and growth structure for laser applications
WO2010124261A2 (en) * 2009-04-24 2010-10-28 Applied Materials, Inc. Substrate pretreatment for subsequent high temperature group iii depositions
US8110889B2 (en) * 2009-04-28 2012-02-07 Applied Materials, Inc. MOCVD single chamber split process for LED manufacturing
JP2012525718A (ja) * 2009-04-29 2012-10-22 アプライド マテリアルズ インコーポレイテッド HVPEにおいてその場プレ−GaN堆積層を形成する方法
US8509275B1 (en) 2009-05-29 2013-08-13 Soraa, Inc. Gallium nitride based laser dazzling device and method
US9250044B1 (en) 2009-05-29 2016-02-02 Soraa Laser Diode, Inc. Gallium and nitrogen containing laser diode dazzling devices and methods of use
US9800017B1 (en) 2009-05-29 2017-10-24 Soraa Laser Diode, Inc. Laser device and method for a vehicle
US8427590B2 (en) 2009-05-29 2013-04-23 Soraa, Inc. Laser based display method and system
US8247887B1 (en) 2009-05-29 2012-08-21 Soraa, Inc. Method and surface morphology of non-polar gallium nitride containing substrates
US9829780B2 (en) 2009-05-29 2017-11-28 Soraa Laser Diode, Inc. Laser light source for a vehicle
US10108079B2 (en) 2009-05-29 2018-10-23 Soraa Laser Diode, Inc. Laser light source for a vehicle
US20100309943A1 (en) * 2009-06-05 2010-12-09 The Regents Of The University Of California LONG WAVELENGTH NONPOLAR AND SEMIPOLAR (Al,Ga,In)N BASED LASER DIODES
JP5446622B2 (ja) 2009-06-29 2014-03-19 住友電気工業株式会社 Iii族窒化物結晶およびその製造方法
JP4905514B2 (ja) 2009-07-15 2012-03-28 住友電気工業株式会社 窒化物系半導体発光素子
JP4978667B2 (ja) * 2009-07-15 2012-07-18 住友電気工業株式会社 窒化ガリウム系半導体レーザダイオード
US8153475B1 (en) 2009-08-18 2012-04-10 Sorra, Inc. Back-end processes for substrates re-use
WO2011022730A1 (en) 2009-08-21 2011-02-24 The Regents Of The University Of California Anisotropic strain control in semipolar nitride quantum wells by partially or fully relaxed aluminum indium gallium nitride layers with misfit dislocations
US20110056429A1 (en) * 2009-08-21 2011-03-10 Soraa, Inc. Rapid Growth Method and Structures for Gallium and Nitrogen Containing Ultra-Thin Epitaxial Structures for Devices
TW201138149A (en) * 2009-08-21 2011-11-01 Univ California Anisotropic strain control in semipolar nitride quantum wells by partially or fully relaxed aluminum indium gallium nitride layers with misfit dislocations
US9000466B1 (en) 2010-08-23 2015-04-07 Soraa, Inc. Methods and devices for light extraction from a group III-nitride volumetric LED using surface and sidewall roughening
US8575471B2 (en) * 2009-08-31 2013-11-05 Alliance For Sustainable Energy, Llc Lattice matched semiconductor growth on crystalline metallic substrates
US8961687B2 (en) * 2009-08-31 2015-02-24 Alliance For Sustainable Energy, Llc Lattice matched crystalline substrates for cubic nitride semiconductor growth
US8207554B2 (en) 2009-09-11 2012-06-26 Soraa, Inc. System and method for LED packaging
US8314429B1 (en) 2009-09-14 2012-11-20 Soraa, Inc. Multi color active regions for white light emitting diode
US8355418B2 (en) * 2009-09-17 2013-01-15 Soraa, Inc. Growth structures and method for forming laser diodes on {20-21} or off cut gallium and nitrogen containing substrates
US8750342B1 (en) 2011-09-09 2014-06-10 Soraa Laser Diode, Inc. Laser diodes with scribe structures
WO2011035265A1 (en) 2009-09-18 2011-03-24 Soraa, Inc. Power light emitting diode and method with current density operation
US9293644B2 (en) 2009-09-18 2016-03-22 Soraa, Inc. Power light emitting diode and method with uniform current density operation
US9293667B2 (en) 2010-08-19 2016-03-22 Soraa, Inc. System and method for selected pump LEDs with multiple phosphors
US8933644B2 (en) 2009-09-18 2015-01-13 Soraa, Inc. LED lamps with improved quality of light
US9583678B2 (en) 2009-09-18 2017-02-28 Soraa, Inc. High-performance LED fabrication
US20110186887A1 (en) * 2009-09-21 2011-08-04 Soraa, Inc. Reflection Mode Wavelength Conversion Material for Optical Devices Using Non-Polar or Semipolar Gallium Containing Materials
US8269245B1 (en) 2009-10-30 2012-09-18 Soraa, Inc. Optical device with wavelength selective reflector
US8575642B1 (en) 2009-10-30 2013-11-05 Soraa, Inc. Optical devices having reflection mode wavelength material
US8507365B2 (en) * 2009-12-21 2013-08-13 Alliance For Sustainable Energy, Llc Growth of coincident site lattice matched semiconductor layers and devices on crystalline substrates
US20110215348A1 (en) * 2010-02-03 2011-09-08 Soraa, Inc. Reflection Mode Package for Optical Devices Using Gallium and Nitrogen Containing Materials
US8905588B2 (en) 2010-02-03 2014-12-09 Sorra, Inc. System and method for providing color light sources in proximity to predetermined wavelength conversion structures
US8740413B1 (en) 2010-02-03 2014-06-03 Soraa, Inc. System and method for providing color light sources in proximity to predetermined wavelength conversion structures
US10147850B1 (en) 2010-02-03 2018-12-04 Soraa, Inc. System and method for providing color light sources in proximity to predetermined wavelength conversion structures
US20110186874A1 (en) 2010-02-03 2011-08-04 Soraa, Inc. White Light Apparatus and Method
US8445890B2 (en) * 2010-03-09 2013-05-21 Micron Technology, Inc. Solid state lighting devices grown on semi-polar facets and associated methods of manufacturing
DE102010011895B4 (de) 2010-03-18 2013-07-25 Freiberger Compound Materials Gmbh Verfahren zur Herstellung eines semipolaren Gruppe III-Nitrid-Kristalls, Substrat, freistehendes semipolares Substrat und Verwendung der Substrate
US9927611B2 (en) 2010-03-29 2018-03-27 Soraa Laser Diode, Inc. Wearable laser based display method and system
US20110256692A1 (en) 2010-04-14 2011-10-20 Applied Materials, Inc. Multiple precursor concentric delivery showerhead
US8451876B1 (en) 2010-05-17 2013-05-28 Soraa, Inc. Method and system for providing bidirectional light sources with broad spectrum
US8293551B2 (en) 2010-06-18 2012-10-23 Soraa, Inc. Gallium and nitrogen containing triangular or diamond-shaped configuration for optical devices
US9450143B2 (en) 2010-06-18 2016-09-20 Soraa, Inc. Gallium and nitrogen containing triangular or diamond-shaped configuration for optical devices
US8803452B2 (en) 2010-10-08 2014-08-12 Soraa, Inc. High intensity light source
US8816319B1 (en) 2010-11-05 2014-08-26 Soraa Laser Diode, Inc. Method of strain engineering and related optical device using a gallium and nitrogen containing active region
US8975615B2 (en) 2010-11-09 2015-03-10 Soraa Laser Diode, Inc. Method of fabricating optical devices using laser treatment of contact regions of gallium and nitrogen containing material
US9048170B2 (en) 2010-11-09 2015-06-02 Soraa Laser Diode, Inc. Method of fabricating optical devices using laser treatment
US8541951B1 (en) 2010-11-17 2013-09-24 Soraa, Inc. High temperature LED system using an AC power source
US8896235B1 (en) 2010-11-17 2014-11-25 Soraa, Inc. High temperature LED system using an AC power source
WO2012074523A1 (en) 2010-12-01 2012-06-07 Alliance For Sustainable Energy, Llc Methods of producing free-standing semiconductors using sacrificial buffer layers and recyclable substrates
US9425249B2 (en) 2010-12-01 2016-08-23 Alliance For Sustainable Energy, Llc Coincident site lattice-matched growth of semiconductors on substrates using compliant buffer layers
US9318875B1 (en) 2011-01-24 2016-04-19 Soraa Laser Diode, Inc. Color converting element for laser diode
US9595813B2 (en) 2011-01-24 2017-03-14 Soraa Laser Diode, Inc. Laser package having multiple emitters configured on a substrate member
US8786053B2 (en) 2011-01-24 2014-07-22 Soraa, Inc. Gallium-nitride-on-handle substrate materials and devices and method of manufacture
US9025635B2 (en) 2011-01-24 2015-05-05 Soraa Laser Diode, Inc. Laser package having multiple emitters configured on a support member
US9093820B1 (en) 2011-01-25 2015-07-28 Soraa Laser Diode, Inc. Method and structure for laser devices using optical blocking regions
US8525396B2 (en) * 2011-02-11 2013-09-03 Soraa, Inc. Illumination source with direct die placement
US10036544B1 (en) 2011-02-11 2018-07-31 Soraa, Inc. Illumination source with reduced weight
US8618742B2 (en) * 2011-02-11 2013-12-31 Soraa, Inc. Illumination source and manufacturing methods
US8643257B2 (en) 2011-02-11 2014-02-04 Soraa, Inc. Illumination source with reduced inner core size
US8324835B2 (en) * 2011-02-11 2012-12-04 Soraa, Inc. Modular LED lamp and manufacturing methods
TWI534291B (zh) 2011-03-18 2016-05-21 應用材料股份有限公司 噴淋頭組件
US8686431B2 (en) 2011-08-22 2014-04-01 Soraa, Inc. Gallium and nitrogen containing trilateral configuration for optical devices
US8884517B1 (en) 2011-10-17 2014-11-11 Soraa, Inc. Illumination sources with thermally-isolated electronics
US8912025B2 (en) 2011-11-23 2014-12-16 Soraa, Inc. Method for manufacture of bright GaN LEDs using a selective removal process
JP2012109624A (ja) * 2012-03-06 2012-06-07 Sumitomo Electric Ind Ltd Iii族窒化物発光素子、及びiii族窒化物系半導体発光素子を作製する方法
DE202013012940U1 (de) 2012-05-04 2023-01-19 Soraa, Inc. LED-Lampen mit verbesserter Lichtqualität
US8992684B1 (en) 2012-06-15 2015-03-31 Ostendo Technologies, Inc. Epitaxy reactor internal component geometries for the growth of superior quality group III-nitride materials
US9023673B1 (en) 2012-06-15 2015-05-05 Ostendo Technologies, Inc. Free HCL used during pretreatment and AlGaN growth to control growth layer orientation and inclusions
US9577143B1 (en) 2012-06-15 2017-02-21 Ostendo Technologies, Inc. Backflow reactor liner for protection of growth surfaces and for balancing flow in the growth liner
US20140183579A1 (en) * 2013-01-02 2014-07-03 Japan Science And Technology Agency Miscut semipolar optoelectronic device
TWI620340B (zh) 2013-03-15 2018-04-01 傲思丹度科技公司 增強效能主動式像素陣列及用於達成其之磊晶成長方法
US9166372B1 (en) 2013-06-28 2015-10-20 Soraa Laser Diode, Inc. Gallium nitride containing laser device configured on a patterned substrate
US9368939B2 (en) 2013-10-18 2016-06-14 Soraa Laser Diode, Inc. Manufacturable laser diode formed on C-plane gallium and nitrogen material
US9520695B2 (en) 2013-10-18 2016-12-13 Soraa Laser Diode, Inc. Gallium and nitrogen containing laser device having confinement region
US9379525B2 (en) 2014-02-10 2016-06-28 Soraa Laser Diode, Inc. Manufacturable laser diode
US9362715B2 (en) 2014-02-10 2016-06-07 Soraa Laser Diode, Inc Method for manufacturing gallium and nitrogen bearing laser devices with improved usage of substrate material
WO2015120192A1 (en) 2014-02-05 2015-08-13 Soraa, Inc. High-performance led fabrication
US9209596B1 (en) 2014-02-07 2015-12-08 Soraa Laser Diode, Inc. Manufacturing a laser diode device from a plurality of gallium and nitrogen containing substrates
US9871350B2 (en) 2014-02-10 2018-01-16 Soraa Laser Diode, Inc. Manufacturable RGB laser diode source
US9520697B2 (en) 2014-02-10 2016-12-13 Soraa Laser Diode, Inc. Manufacturable multi-emitter laser diode
US9564736B1 (en) 2014-06-26 2017-02-07 Soraa Laser Diode, Inc. Epitaxial growth of p-type cladding regions using nitrogen gas for a gallium and nitrogen containing laser diode
US9246311B1 (en) 2014-11-06 2016-01-26 Soraa Laser Diode, Inc. Method of manufacture for an ultraviolet laser diode
US9666677B1 (en) 2014-12-23 2017-05-30 Soraa Laser Diode, Inc. Manufacturable thin film gallium and nitrogen containing devices
US9653642B1 (en) 2014-12-23 2017-05-16 Soraa Laser Diode, Inc. Manufacturable RGB display based on thin film gallium and nitrogen containing light emitting diodes
US11437774B2 (en) 2015-08-19 2022-09-06 Kyocera Sld Laser, Inc. High-luminous flux laser-based white light source
US10938182B2 (en) 2015-08-19 2021-03-02 Soraa Laser Diode, Inc. Specialized integrated light source using a laser diode
US11437775B2 (en) 2015-08-19 2022-09-06 Kyocera Sld Laser, Inc. Integrated light source using a laser diode
US10879673B2 (en) 2015-08-19 2020-12-29 Soraa Laser Diode, Inc. Integrated white light source using a laser diode and a phosphor in a surface mount device package
US9787963B2 (en) 2015-10-08 2017-10-10 Soraa Laser Diode, Inc. Laser lighting having selective resolution
US11287563B2 (en) 2016-12-01 2022-03-29 Ostendo Technologies, Inc. Polarized light emission from micro-pixel displays and methods of fabrication thereof
US10771155B2 (en) 2017-09-28 2020-09-08 Soraa Laser Diode, Inc. Intelligent visible light with a gallium and nitrogen containing laser source
US10222474B1 (en) 2017-12-13 2019-03-05 Soraa Laser Diode, Inc. Lidar systems including a gallium and nitrogen containing laser light source
US10551728B1 (en) 2018-04-10 2020-02-04 Soraa Laser Diode, Inc. Structured phosphors for dynamic lighting
US11884202B2 (en) 2019-01-18 2024-01-30 Kyocera Sld Laser, Inc. Laser-based fiber-coupled white light system
TWI698915B (zh) * 2019-01-18 2020-07-11 國立交通大學 雲母片上異質磊晶半導體材料之製程方法
US11228158B2 (en) 2019-05-14 2022-01-18 Kyocera Sld Laser, Inc. Manufacturable laser diodes on a large area gallium and nitrogen containing substrate
US10903623B2 (en) 2019-05-14 2021-01-26 Soraa Laser Diode, Inc. Method and structure for manufacturable large area gallium and nitrogen containing substrate
TWI725908B (zh) * 2020-08-18 2021-04-21 合晶科技股份有限公司 半極性氮化鎵的製作方法

Family Cites Families (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2704181B2 (ja) * 1989-02-13 1998-01-26 日本電信電話株式会社 化合物半導体単結晶薄膜の成長方法
US6440823B1 (en) * 1994-01-27 2002-08-27 Advanced Technology Materials, Inc. Low defect density (Ga, Al, In)N and HVPE process for making same
JP3548654B2 (ja) * 1996-09-08 2004-07-28 豊田合成株式会社 半導体発光素子
CA2258080C (en) * 1997-04-11 2007-06-05 Nichia Chemical Industries, Ltd. Nitride semiconductor growth method, nitride semiconductor substrate, and nitride semiconductor device
JP3119200B2 (ja) 1997-06-09 2000-12-18 日本電気株式会社 窒化物系化合物半導体の結晶成長方法および窒化ガリウム系発光素子
US6218280B1 (en) 1998-06-18 2001-04-17 University Of Florida Method and apparatus for producing group-III nitrides
JP2000156544A (ja) * 1998-09-17 2000-06-06 Matsushita Electric Ind Co Ltd 窒化物半導体素子の製造方法
JP3592553B2 (ja) * 1998-10-15 2004-11-24 株式会社東芝 窒化ガリウム系半導体装置
WO2000033388A1 (en) * 1998-11-24 2000-06-08 Massachusetts Institute Of Technology METHOD OF PRODUCING DEVICE QUALITY (Al)InGaP ALLOYS ON LATTICE-MISMATCHED SUBSTRATES
JP2000216497A (ja) * 1999-01-22 2000-08-04 Sanyo Electric Co Ltd 半導体素子およびその製造方法
US6403451B1 (en) * 2000-02-09 2002-06-11 Noerh Carolina State University Methods of fabricating gallium nitride semiconductor layers on substrates including non-gallium nitride posts
JP3946427B2 (ja) 2000-03-29 2007-07-18 株式会社東芝 エピタキシャル成長用基板の製造方法及びこのエピタキシャル成長用基板を用いた半導体装置の製造方法
US6586819B2 (en) * 2000-08-14 2003-07-01 Nippon Telegraph And Telephone Corporation Sapphire substrate, semiconductor device, electronic component, and crystal growing method
US7053413B2 (en) * 2000-10-23 2006-05-30 General Electric Company Homoepitaxial gallium-nitride-based light emitting device and method for producing
US6635901B2 (en) * 2000-12-15 2003-10-21 Nobuhiko Sawaki Semiconductor device including an InGaAIN layer
US6599362B2 (en) * 2001-01-03 2003-07-29 Sandia Corporation Cantilever epitaxial process
US7501023B2 (en) * 2001-07-06 2009-03-10 Technologies And Devices, International, Inc. Method and apparatus for fabricating crack-free Group III nitride semiconductor materials
US20030015708A1 (en) * 2001-07-23 2003-01-23 Primit Parikh Gallium nitride based diodes with low forward voltage and low reverse current operation
US7105865B2 (en) * 2001-09-19 2006-09-12 Sumitomo Electric Industries, Ltd. AlxInyGa1−x−yN mixture crystal substrate
JP4031628B2 (ja) * 2001-10-03 2008-01-09 松下電器産業株式会社 半導体多層膜結晶、およびそれを用いた発光素子、ならびに当該半導体多層膜結晶の成長方法
CA2464083C (en) 2001-10-26 2011-08-02 Ammono Sp. Z O.O. Substrate for epitaxy
US7057211B2 (en) 2001-10-26 2006-06-06 Ammono Sp. Zo.O Nitride semiconductor laser device and manufacturing method thereof
JP4307113B2 (ja) * 2002-03-19 2009-08-05 宣彦 澤木 半導体発光素子およびその製造方法
AU2003223563A1 (en) * 2002-04-15 2003-11-03 The Regents Of The University Of California NON-POLAR (A1,B,In,Ga) QUANTUM WELL AND HETEROSTRUCTURE MATERIALS AND DEVICES
US20060138431A1 (en) 2002-05-17 2006-06-29 Robert Dwilinski Light emitting device structure having nitride bulk single crystal layer
JP4201541B2 (ja) 2002-07-19 2008-12-24 豊田合成株式会社 半導体結晶の製造方法及びiii族窒化物系化合物半導体発光素子の製造方法
US7427555B2 (en) * 2002-12-16 2008-09-23 The Regents Of The University Of California Growth of planar, non-polar gallium nitride by hydride vapor phase epitaxy
US7186302B2 (en) 2002-12-16 2007-03-06 The Regents Of The University Of California Fabrication of nonpolar indium gallium nitride thin films, heterostructures and devices by metalorganic chemical vapor deposition
US6847057B1 (en) * 2003-08-01 2005-01-25 Lumileds Lighting U.S., Llc Semiconductor light emitting devices
US7009215B2 (en) * 2003-10-24 2006-03-07 General Electric Company Group III-nitride based resonant cavity light emitting devices fabricated on single crystal gallium nitride substrates
US7504274B2 (en) * 2004-05-10 2009-03-17 The Regents Of The University Of California Fabrication of nonpolar indium gallium nitride thin films, heterostructures and devices by metalorganic chemical vapor deposition
US7432142B2 (en) * 2004-05-20 2008-10-07 Cree, Inc. Methods of fabricating nitride-based transistors having regrown ohmic contact regions
US20080163814A1 (en) * 2006-12-12 2008-07-10 The Regents Of The University Of California CRYSTAL GROWTH OF M-PLANE AND SEMIPOLAR PLANES OF (Al, In, Ga, B)N ON VARIOUS SUBSTRATES
US9130119B2 (en) * 2006-12-11 2015-09-08 The Regents Of The University Of California Non-polar and semi-polar light emitting devices
US9011598B2 (en) * 2004-06-03 2015-04-21 Soitec Method for making a composite substrate and composite substrate according to the method
TWI453813B (zh) * 2005-03-10 2014-09-21 Univ California 用於生長平坦半極性的氮化鎵之技術
TW200703463A (en) * 2005-05-31 2007-01-16 Univ California Defect reduction of non-polar and semi-polar III-nitrides with sidewall lateral epitaxial overgrowth (SLEO)
JP5743127B2 (ja) * 2005-06-01 2015-07-01 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア 半極性(Ga,Al,In,B)N薄膜、ヘテロ構造およびデバイスの成長と作製のための方法及び装置
US8148713B2 (en) * 2008-04-04 2012-04-03 The Regents Of The University Of California Method for fabrication of semipolar (Al, In, Ga, B)N based light emitting diodes
TWI404122B (zh) * 2005-09-09 2013-08-01 Univ California 增進半-極性(Al,In,Ga,B)N藉由金屬有機化學氣相沈積生長之方法
US7691658B2 (en) * 2006-01-20 2010-04-06 The Regents Of The University Of California Method for improved growth of semipolar (Al,In,Ga,B)N
JP5684455B2 (ja) * 2006-02-10 2015-03-11 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア 成長中にp型ドーパントがドープされたp型半極性III窒化物半導体を使用して、該III窒化物デバイスまたはIII窒化物半導体を製造する方法、半極性III窒化物半導体、および、p型III窒化物半導体を製造する方法
WO2007098215A2 (en) * 2006-02-17 2007-08-30 The Regents Of The University Of California Method for growth of semipolar (al,in,ga,b)n optoelectronic devices
CN101553701B (zh) * 2006-03-30 2011-04-06 康奈尔研究基金会股份有限公司 在快速冷却小型生物学样品中提高冷却速度的系统和方法
US7568863B2 (en) * 2006-07-13 2009-08-04 Denardo Joseph N Panel forms
US20080224268A1 (en) * 2007-03-13 2008-09-18 Covalent Materials Corporation Nitride semiconductor single crystal substrate
JP2008235804A (ja) * 2007-03-23 2008-10-02 Rohm Co Ltd 発光素子
US7727874B2 (en) * 2007-09-14 2010-06-01 Kyma Technologies, Inc. Non-polar and semi-polar GaN substrates, devices, and methods for making them
US7915802B2 (en) * 2007-11-12 2011-03-29 Rohm Co., Ltd. Surface light emitting device and polarization light source
JP2009130364A (ja) * 2007-11-23 2009-06-11 Samsung Electro-Mechanics Co Ltd 窒化物半導体発光素子及びその製造方法
CN101897029B (zh) * 2007-12-10 2015-08-12 特兰斯夫公司 绝缘栅e模式晶体管
KR100972977B1 (ko) * 2007-12-14 2010-07-29 삼성엘이디 주식회사 반극성 질화물 단결정 박막의 성장 방법 및 이를 이용한질화물 반도체 발광소자의 제조 방법

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8673074B2 (en) 2008-07-16 2014-03-18 Ostendo Technologies, Inc. Growth of planar non-polar {1 -1 0 0} M-plane and semi-polar {1 1 -2 2} gallium nitride with hydride vapor phase epitaxy (HVPE)
CN102119243A (zh) * 2008-07-16 2011-07-06 奥斯坦多科技公司 利用氢化物气相外延(HVPE)生长平面非极性的{1-100}m面和半极性的{11-22}氮化镓
CN102449737A (zh) * 2009-03-02 2012-05-09 加利福尼亚大学董事会 生长于非极性或半极性(Ga,Al,In,B)N衬底上的装置
US8795430B2 (en) 2009-03-02 2014-08-05 The Regents Of The University Of California Method of improving surface morphology of (Ga,Al,In,B)N thin films and devices grown on nonpolar or semipolar (Ga,Al,In,B)N substrates
CN105824179B (zh) * 2009-05-29 2018-01-30 天空激光二极管有限公司 一种投影系统
CN105824179A (zh) * 2009-05-29 2016-08-03 天空激光二极管有限公司 一种投影系统
CN102549778A (zh) * 2009-08-27 2012-07-04 首尔Opto仪器股份有限公司 倾斜基底上的高质量非极性/半极性半导体器件及其制造方法
US8629065B2 (en) 2009-11-06 2014-01-14 Ostendo Technologies, Inc. Growth of planar non-polar {10-10} M-plane gallium nitride with hydride vapor phase epitaxy (HVPE)
CN102422391B (zh) * 2009-11-12 2013-11-27 松下电器产业株式会社 氮化物半导体元件的制造方法
CN102422391A (zh) * 2009-11-12 2012-04-18 松下电器产业株式会社 氮化物半导体元件的制造方法
CN105702562A (zh) * 2010-11-08 2016-06-22 韩国光技术院 使用化学剥离方法的iii族氮化物基板的制备方法
US8759814B2 (en) 2012-08-10 2014-06-24 National Taiwan University Semiconductor light-emitting device and manufacturing method thereof
CN104112803B (zh) * 2014-04-14 2016-08-17 中国科学院半导体研究所 半极性面氮化镓基发光二极管及其制备方法
US11594862B2 (en) 2018-12-21 2023-02-28 Kyocera Sld Laser, Inc. Fiber delivered laser induced white light system
US11788699B2 (en) 2018-12-21 2023-10-17 Kyocera Sld Laser, Inc. Fiber-delivered laser-induced dynamic light system

Also Published As

Publication number Publication date
JP2014222780A (ja) 2014-11-27
US20070111531A1 (en) 2007-05-17
HK1112109A1 (en) 2008-08-22
US20100133663A1 (en) 2010-06-03
TW200735203A (en) 2007-09-16
KR101145753B1 (ko) 2012-05-16
KR20070120982A (ko) 2007-12-26
CN101138091B (zh) 2010-05-19
US8128756B2 (en) 2012-03-06
TW201443990A (zh) 2014-11-16
WO2006099138A2 (en) 2006-09-21
EP1869707B1 (en) 2012-06-13
US20060205199A1 (en) 2006-09-14
US20120119222A1 (en) 2012-05-17
KR101145755B1 (ko) 2012-05-16
TWI453813B (zh) 2014-09-21
EP2315253A1 (en) 2011-04-27
JP2008533723A (ja) 2008-08-21
US7704331B2 (en) 2010-04-27
US7220324B2 (en) 2007-05-22
JP5706601B2 (ja) 2015-04-22
CN101845670A (zh) 2010-09-29
KR20110044332A (ko) 2011-04-28
EP1869707A4 (en) 2009-02-25
EP1869707A2 (en) 2007-12-26
WO2006099138A3 (en) 2006-11-23
US8524012B2 (en) 2013-09-03

Similar Documents

Publication Publication Date Title
CN101138091B (zh) 用于生长平坦半极性氮化镓的技术
KR101251443B1 (ko) 수소화물 기상 에피택시법에 의한 평면의, 전위 밀도가 감소된 m-면 질화갈륨의 성장
JP5838523B2 (ja) 半極性(Al,In,Ga,B)NまたはIII族窒化物の結晶
US7956360B2 (en) Growth of planar reduced dislocation density M-plane gallium nitride by hydride vapor phase epitaxy
JP5252465B2 (ja) ハイドライド気相成長法による平坦な無極性a面窒化ガリウムの成長
US8283239B2 (en) Process for growth of low dislocation density GaN
US7208393B2 (en) Growth of planar reduced dislocation density m-plane gallium nitride by hydride vapor phase epitaxy
JP5099763B2 (ja) 基板製造方法およびiii族窒化物半導体結晶
US8405128B2 (en) Method for enhancing growth of semipolar (Al,In,Ga,B)N via metalorganic chemical vapor deposition
JP2009501843A (ja) 半極性窒化物薄膜の欠陥低減のための横方向成長方法
JP2012209586A (ja) 半極性窒化物を備え、窒化物核生成層又はバッファ層に特徴を有するデバイス構造

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
ASS Succession or assignment of patent right

Owner name: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA; APPL

Free format text: FORMER OWNER: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA

Effective date: 20080516

C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20080516

Address after: California, USA

Applicant after: Board of directors of University of California

Co-applicant after: Independent Administrative Corporation Japan Science & Tech Corp.

Address before: American California

Applicant before: The Regents of the University of California

REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1112109

Country of ref document: HK

C14 Grant of patent or utility model
GR01 Patent grant
REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1112109

Country of ref document: HK