CN101145599B - 具有宽广相变化元素与小面积电极接点的存储器装置 - Google Patents

具有宽广相变化元素与小面积电极接点的存储器装置 Download PDF

Info

Publication number
CN101145599B
CN101145599B CN2007101472866A CN200710147286A CN101145599B CN 101145599 B CN101145599 B CN 101145599B CN 2007101472866 A CN2007101472866 A CN 2007101472866A CN 200710147286 A CN200710147286 A CN 200710147286A CN 101145599 B CN101145599 B CN 101145599B
Authority
CN
China
Prior art keywords
layer
width
hole
cavity
dielectric fill
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2007101472866A
Other languages
English (en)
Other versions
CN101145599A (zh
Inventor
龙翔澜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Macronix International Co Ltd
Original Assignee
Macronix International Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Macronix International Co Ltd filed Critical Macronix International Co Ltd
Publication of CN101145599A publication Critical patent/CN101145599A/zh
Application granted granted Critical
Publication of CN101145599B publication Critical patent/CN101145599B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • H10N70/231Multistable switching devices, e.g. memristors based on solid-state phase change, e.g. between amorphous and crystalline phases, Ovshinsky effect
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/56Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency
    • G11C11/5678Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency using amorphous/crystalline phase transition storage elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/30Resistance change memory devices, e.g. resistive RAM [ReRAM] devices comprising selection components having three or more electrodes, e.g. transistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/061Patterning of the switching material
    • H10N70/063Patterning of the switching material by etching of pre-deposited switching material layers, e.g. lithography
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/821Device geometry
    • H10N70/826Device geometry adapted for essentially vertical current flow, e.g. sandwich or pillar type devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/841Electrodes
    • H10N70/8413Electrodes adapted for resistive heating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/882Compounds of sulfur, selenium or tellurium, e.g. chalcogenides
    • H10N70/8825Selenides, e.g. GeSe
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/882Compounds of sulfur, selenium or tellurium, e.g. chalcogenides
    • H10N70/8828Tellurides, e.g. GeSbTe
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/884Other compounds of groups 13-15, e.g. elemental or compound semiconductors
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0004Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements comprising amorphous/crystalline phase transition cells
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/70Resistive array aspects
    • G11C2213/79Array wherein the access device being a transistor

Abstract

一种存储器单元装置,这种装置包括存储材料,可通过施加能量在第一与第二(顶部与底部)电极,改变电性;其中该顶部电极包括较大的主体部分与作用部。该存储材料以层状沉积在底部电极层之上,同时顶部电极的作用部基底与存储材料的表面小区域具有电接触。制作上述装置的方法也在其中描述。

Description

具有宽广相变化元素与小面积电极接点的存储器装置
技术领域
本发明涉及高密度存储器装置,该装置采用相变化材料,包含硫属化物(chalcogenide)材料与其他材料,同时包括制造上述装置的方法。
背景技术
相变化存储器材料,已广泛运用于可读写光盘之中。这种材料至少具有两种固态相,例如,包含通常的非晶(generally amorphous)固态相与通常的结晶(crystalline)固态相。可读写光盘利用激光脉冲(laser-pulse)以改变相态,同时由此读取相变化后的材料光学性质。
采用硫属化物或其他相似材料的相变化存储器材料,也可通过集成电路施以适当强度的电流,来改变相位。通常的非晶态的电阻率高于通常的结晶态;这种电阻差异易于检测,即可代表不同数据内容。这种物质特性引发研究动机,希望利用可控制的电阻材料,制作非易失、并且可随机读写的存储器电路。
非晶态转换至结晶态的过程,通常采用较低的操作电压。由结晶态转换为非晶态的过程,则通常需要较高的操作电压;因为这一过程需要短时间且高密度的电流脉冲,以熔化或破坏结晶结构,随后快速冷却相变化材料,经淬火处理,将至少一部分的相变化结构稳定为非晶态。此后称此过程为“重置”(reset)。这一过程,通过重置电流将相变化材料由结晶态转变为非晶态,而人们希望尽量降低重置电流的强度。重置电流的强度可以通过降低存储器单元中的相变化材料元件尺寸,或者降低电极与相变化材料的接触区域大小来减少,因此较高的电流密度可以在较小的绝对电流值穿过相变化材料元件的情况下实现。
在集成电路结构中制作小孔洞(pores),为此项技术发展方向之一;同时,还采用少量的程序可控电阻材料填充该小孔洞。公开该小孔洞发展的专利包括:Ovshinsky,“Multibit Single Cell MemoryElement Having Tapered Contact”,U.S.Pat,No.5,687,112,专利发证日期1997年11月11日;Zahorik et al.,“Method of MakingChalogenide[sic]Memory Device”,U.S.Pat.No.5,789,277,专利发证日期1998年8月4日;Doan et al.,“ControllableOvonic Phase-Change Semiconductor Memory Device and Methods ofGabracting the Same,”U.S,Pat.No.6,150,253,专利发证日期2000年11月21日。
然而,为制造极小尺寸的上述装置,并促使工艺参数的变化能符合大型存储器装置所需的严谨规格,衍生出许多问题。因此必须发展具有小尺寸、与低重置电流的存储器结构,同时发展此种存储器结构的制作方法。
发明内容
一般而言,本发明的特征,包括一种可利用能量,促使可变存储器材料改变电的存储器单元装置,该材料位于第一与第二(“底部”与“顶部”)电极之间。本发明就存储器单元装置的实施例中,顶部电极包括较大的主体部分与一个作用部。存储器材料层沉积于底部电极层之上,同时顶部电极的一个作用部基底,与存储器材料表面的小区域产生电接触。电接触区域由靠近基底的电极作用大小所决定,而并非由尺寸显然较大的存储器材料大小所决定。电极顶部的作用部大小,以及作用底部与存储器材料接触区域的大小,得依据本发明变得非常小,且不需依赖掩模技术。
本发明的一个目的为提供一种存储器装置,包括:衬底;电极,其位于所述衬底之上;存储元素,其与所述电极有电接触;电介质填充层,其位于所述存储元素、所述电极与所述衬底之上,所述电介质填充层包括空洞,所述空洞延伸至所述存储元素,并具有一宽度;蚀刻停止层,其位于所述电介质填充层上,所述蚀刻停止层具有一开口,该开口位于空洞正上方,并且开口与空洞相邻且连通,所述开口具有一宽度,所述宽度小于所述电介质填充层空洞宽度,所以一开口边缘突出到所述电介质填充层中的空洞的正上方;以及第二电极,其位于所述电介质填充层空洞中,所述第二电极包括主体部分与作用部,其中所述作用部的基底与所述存储元素的表面的一小区域电接触。本发明的另一目的为提供一种形成存储器单元的电极的方法,包括:在存储元素上提供电介质填充层;在所述电介质填充层上提供蚀刻停止层;形成通孔穿越所述电介质填充层与开口穿越所述蚀刻停止层,其中所述蚀刻停止层开口的边缘,突出一刃边在所述电介质填充通孔之上;在所述通孔中沉积电介质种类材料,其中在所述电介质种类材料中形成空洞;各向异性蚀刻所述电介质种类材料以在所述种类材料中形成孔隙,且暴露所述存储元素的表面的一小区域;以及在所述孔隙中沉积电极材料。
本发明的另一目的为提供一种制造存储器单元装置的方法,包括:提供衬底;在所述衬底的表面上形成底部电极层;在所述底部电极层之上形成存储器材料层;将所述存储器材料层与所述底部电极层图案化以形成存储元素与底部电极;在所述存储元素、所述底部电极与所述衬底之上形成电介质填充层;在该电介质填充层上形成蚀刻停止层;形成通孔,所述通孔穿越所述蚀刻停止层与所述电介质填充层,以暴露所述存储元素的一区域,而所述通孔还包括在所述蚀刻停止层中的开口;从该通孔的内壁去除一定数量的所述电介质填充层以形成空洞,以及在所述蚀刻停止层的所述开口边缘下方生成下方侧削区;在所述空洞中的所述存储器材料层之上沉积绝热材料,其中在所述绝热材料之中形成空隙;各向异性蚀刻所述绝热材料以暴露所述存储元素的表面的一小区域,并形成孔隙在所述绝热材料中邻近所述存储元素处,以及较宽空洞在所述绝热材料中;以及在所述孔隙与所述较宽空洞中沉积电极材料以形成顶部电极。
依据本发明,掩模阶段可在存储器单元通孔上方的氮化硅层建立开口。其余的工艺即属自动对准,并具高度重复性。顶部电极与存储器材料之间的接触区域,由顶部电极的作用部宽度所决定,而该宽度又受到各向异性蚀刻的条件、以及绝热材料空隙的尺寸与形状所影响,前述条件均可轻易地重复控制。
附图说明
图1为依据本发明的一种实施例,显示一种存储器单元装置的示意图;
图2、图3、图4、图5、图6、图7、图8、图9、与图10,为依据本发明所的一种实施例,显示一种相变化存储器单元工艺步骤的剖面示意图;
图11A与图11B为依据本发明的一种实施例,显示一种存储器阵列的一部分的剖面图;图11B显示编程电流的流动路径;
图12为采用相变化存储元件的存储器阵列示意图;
图13显示存储器阵列的布局图或平面图,其显示采用相变化存储元件的存储器阵列的一部分。
具体实施方式
此处将依据附图,更详细说明本发明的内容,同时展示本发明的另一实施例。此附图仅为概略图,显示本发明的特征与这种特征和其他特征与结构的关系,故也未按比例制作。为使说明书的内容更加容易明了,显示本发明实施例的附图中,对应其他附图中特征的特征元件,即使可轻易在所有附图中辨别,均未加以重新编号。
请参阅图1,为根据本发明的一个实施例的存储器单元结构10的示意图。存储器单元结构10包括重叠在存储元素14之下的底部电极12、与内含主体部分19及作用部17的顶部电极18。顶部电极18的作用部17经由小面积接点13与存储器材料层14的表面15接触。此外还可选择在电极顶部加入一核心部分21与一内衬(加热)部分23。顶部电极18的周围由绝热材料16所包围。顶部电极与周边的绝热材料,形成在层间电介质填充层的通孔中,或形成在分隔层(separation layer)11中,而分隔层11,为电绝缘层20所覆盖。
存储器结构10形成在半导体衬底之上,包含存取晶体管、以及顶部电极18的电连结表面22,均由图案金属化制造,如下列参考图11A的例子。
存储器单元中的传导路径,由顶部电极18的表面22穿过顶部电极的主体部分19与顶部电极的作用部17,随后穿越作用部17底部的接触区域13,至存储元素14,再穿越该存储元件,达到底部电极12。
本发明的存储单元结构提供几种优势特征。顶部电极与周边电介质填充物的绝热良好,顶部电极与存储器材料的接触区域甚小,故可降低重置程序的电流。顶部电极与存储器材料的接触区域由顶部电极的作用部宽度决定,而该宽度乃受到各向异性蚀刻条件、与绝热层中的空隙尺寸及形状的影响。绝热层空隙的大小,由电绝缘层开口边缘的下方侧削区域320宽度决定,前述条件均可轻易地重复控制。
存储单元装置10的实施例,利用包括硫属化物在内的材料与其他的材料,作为存储器材料14。相变化合金可在两种结构状态间进行变换,第一结构状态通常为非晶固态相,而第二结构则通常为结晶固态相,并在存储器单元的主动通道区域,按其局部晶向排列。这种合金区域至少有两种稳定态;“非晶”指较之单晶而言,较无固定晶向的结构,例如较结晶相具有更高的电阻率等特性。“结晶”则指相对于非晶结构而言,较有固定晶向的结构,例如较非晶相具有更低的电阻率等特性。通常而言,可在完全非晶态与完全结晶态之间,利用电流变换相变化材料的相态。非晶态与结晶态转换所影响的其他材料性质,还包含原子排列、自由电子密度与活化能。这种材料可转换为两种相异的固态相,还可转换为两种固态相的组合,故可在大致非晶相与大致结晶相之间,形成灰色地带,材料的电子性质亦将随之转换。
相变化合金可利用电脉冲改变相态。就过去的观察,得知波长较短、振幅较大的脉冲,较倾向将相变化材料转为通常的非晶态。波长较长、而振幅较低的脉冲,则易将相变化材料转为通常的结晶态。波长短、振幅高的脉冲,能量较高,足以破坏结晶态的键合,同时短波长可防止原子重新排列为结晶态。无须大量实验,即可获得适当的脉冲参数,以应用于特定的相变化合金。就此公开的,相变化材料指GST等,同时应理解仍可采用其他相变化材料。在此,供存储器装置制作所用的材料,为Ge2Sb2Te5
再度参照图1,可运用如图12所示的存取电路(accesscircuitry),将其与第一电极12和第二电极18连结,利用各种组态设定的变化,控制存储器单元的运作;由此即可利用电脑程序,控制相变化材料14,重复在存储器材料中进行两种固态相之间的转换。例如,利用硫属化物相变化存储器材料,可将存储器单元设定在相对高电阻的状态;其中,至少一部分的电流路径桥(bridge)属于结晶态。又例如,一种电脉冲的应用,具有适当的短波长高振幅特性,即可能造成相变化材料14局部改变(locally change)为通常非晶态,如图1的29所示。
存储器单元装置10的工艺说明,请参考图2至图10,其中说明示范工艺的各个阶段代表图。
参考图2,一种适于作为底部电极的材料层212形成在衬底210的表面211之上;底部电极材料层212之上,形成一层相变化存储器材料214;以及,相变化存储器材料层214之上,形成一层保护覆盖层材料226。
底部电极材料层212,可采用薄膜沉积等技术制作,例如,以溅射法或原子层沉积法,令其附着在衬底210的表面211上。适当的底部电极层212可能包括两层以上的材料,并依据其性质,选择附着在连接层的材料上。例如,底部电极层212可能包含一层钛薄膜,再在钛薄膜的表面形成一层氮化钛薄膜。钛与下方的半导体衬底(例如硅化物)具有良好的附着性,同时氮化钛与上方的GST相变化材料也具良好附着性。此外,氮化钛可作为优良的扩散屏障。底部电极可采用多种材料,例如,包含Ta、TaN、TiAIN、TaAIN;至于底部电极的材料,则可由Ti、W、Mo、Al、Ta、Cu、Pt、Ir、La、Ni、与Ru等元素族与合金中选择搭配,也可加入陶瓷。沉积工艺的条件,必须得以提供电极层材料所需的适当厚度与涵盖范围(coverage),同时提供良好的绝热性质。衬底表面的底部电极厚度范围约在200nm至400nm之间。
底部电极层212上的相变化存储器材料层214,可采用溅射法或原子沉积法等薄膜沉积工艺制作。沉积工艺的条件,需要提供底部电极上方相变化材料层足够的厚度。衬底上的底部电极表面的相变化材料层,厚度范围约在20-200nm之间。
保护覆盖层226在随后的工艺中保护下方的相变化存储器材料。适于保护覆盖层226的材料包含,例如氮化硅、SiO2、Al2O3、Ta2O5,而该覆盖层可能采用CVD或PVD工艺制作。保护覆盖层226的厚度范围约为5nm至50nm。底部电极层、相变化存储器层、与保护覆盖层的结构种类,即如图2。
随后,利用掩模与蚀刻工艺,在存储器单元30上制作如图3所示的结构,其中底部电极12的上方,还有相变化材料14与覆盖层326。覆盖层326的表面315,可在光刻胶与蚀刻工艺中保护相变化材料元件;此外,更可在某些实施例中,在除去(剥除)光刻胶步骤中保护相变化材料元件。
此时,层间电介质填充层形成在衬底表面之上,同时亦形成在图案化的底部电极、存储元件、与覆盖层之上,而层间电介质填充层之上又再形成蚀刻停止层。层间电介质填充层可能包括如低电介质常数的电介质材料,例如二氧化硅、氮氧化硅、氮化硅、Al2O3、或其他低电介质常数的电介质物质。此外,层间电介质填充层的材料亦可能包括Si、Ti、Al、Ta、N、O与C等族群中的一种或多种元素组合。蚀刻终止层的材料,则可能包含氮化硅等。通孔,则利用掩模与蚀刻工艺制作,穿越蚀刻停止层与电介质填充物。图4展示依此制作的存储器单元通孔200,其位于蚀刻停止层20与电介质填充物层211之上。该通孔直达覆盖层326的表面315,而该覆盖层位于相变化材料元件14之上。此时,可利用诸如氢氟酸浸渍等湿蚀刻技术,以在下方侧削电介质填充材料,同时在电介质填充物11中扩大空洞300,如图5所示。
完成存储器单元的尺寸,将受到存储器单元通孔尺寸的部分影响,尤其受到下方侧削程度的影响,诸如图6与图7所示。
层间电介质填充层的厚度可能约为100nm至300nm,而氮化硅层的厚度范围则约为10nm至40nm。通孔200的宽度范围约为30nm至300nm。穿越氮化硅层的开口220,则可能随通孔200所采用的特定光刻工艺设计方式,而有所变化(通常+/-20nm)。氮化硅层上的开口直径220通常为环状,例如直径220约为200nm+/-约20nm。蚀刻终止层20的材料,需选用相对于电介质填充材料具有蚀刻选择性的;亦即,用以去除电介质材料,以形成下方侧削区域320的湿蚀刻工艺,不可对蚀刻终止层20产生影响。其中二氧化硅为电介质填充材料,例如氮化硅即为适当的蚀刻终止层材料。下方削除的程度,可由湿蚀刻的时间控制,例如,其通常变化范围为+/-1.5nm。湿蚀刻的条件,必须能在氮化硅层的开口边缘下方,提供宽度321范围约为5nm至50nm的下方侧削区,造成宽度为311的空缺300,其宽度约为氮化硅层的开口宽度总值220加上下方侧削区320的宽度321的两倍。
保护覆盖层326,可在制作通孔200的蚀刻工艺与拓展电介质填充物空洞300所运用的湿蚀刻工艺中,保护下方的相变化存储元件14。
此时可在图5的结构上形成适合的绝热材料,并在通孔中利用如化学气相沉积(CVD)等顺形沉积工艺,形成如图6所示的结构。下方侧削的几何结构,以及沉积工艺的条件,均会影响绝热材料600中空洞610的种类。空洞610大概位于存储器单元通孔的中心位置。空洞的形状与宽度613(或直径,因空洞通常为圆形,例如环状)与下方侧削区域320的宽度相关;例如,若蚀刻终止层20的开口通常为环状,通常则可预期空洞亦为环状,同时可预测其直径613约为下方侧削区321宽度的两倍。
适当的绝热材料600,包括电介质材料,也可能为氧化物,如二氧化硅。可能有其他更佳的绝热材料,而绝热材料的选择,同时需将层间电介质填充层的材料纳入部分考量;尤其,较之层间电介质填充层11,绝热材料600为更佳的绝热材料,效能至少提升10%。因此,若层间电介质层包括二氧化硅,绝热层600的导热数“kappa”最好小于该二氧化硅的0.014J/cm*K*sec。低介电常数材料属于绝热层600所需的代表性材料之一,其中包括由硅(Si)、碳(C)、氧(O)、氟(F)、与氢(H)所构成的组合。其他适于绝热材料600的选择,包含SiCOH、聚亚酰胺(polyimide)、聚酰胺(polyamide)以及氟碳聚合物。至于其他可用在绝热层600的材料例子则为氟化SiO2、硅酸盐、芳香醚、聚对二甲苯(parylene)、聚合氟化物、非晶氟化碳、类金刚石碳、多孔二氧化硅、中孔二氧化硅(mesoporous silica)、多孔硅酸盐、多孔聚亚酰胺与多孔芳香醚。单一层或多层结构的组合,均可提供绝热功能。其他具体实施例中,绝热材料的导热系数均需小于非晶态的相变化材料GST,即小于0.003J/cm*K*sec。
稍后施以各向异性蚀刻(例如反应离子蚀刻),以去除部分的绝热材料。蚀刻工艺需持续至覆盖层316的表面暴露为止,并需暴露相变化元素14的表面15上的区域13,方可停止。某些具体实施例中,第一次蚀刻条件为去除绝热材料,而第二次蚀刻条件则为除去覆盖层部分(例如,可能利用不同的蚀刻化学品)。图7显示由此建立的结构。蚀刻停止层20上的所有绝热材料均遭去除;同时,部分存储器单元空隙的绝热材料亦遭去除,并在相变化材料表面附近形成孔隙712;该孔隙界定出顶部电极的作用部;此外,较宽的空缺710将划分顶部电极的主体部分。下方侧削区320保护其下的绝热材料,留下剩余部分720,邻近于空隙侧壁与空隙侧壁旁的相邻相变化材料。当相变化材料表面的小区域13暴露在孔隙712的底部时,蚀刻即停止;蚀刻停止后仍保留剩余部分722,而此部分将决定孔隙712的形状与大小。顶部电极作用部的大小,以及顶部电极与相变化材料接触面积的大小,均有部分受到空隙位置和尺寸的影响,以及受到绝热材料600的的沉积均匀程度影响。尤其,孔隙712底部的相变化材料14上,所露出的小区域13的宽度(例如,若为环状则为直径),即与蚀刻条件一样,也受到空隙形状和尺寸的影响。如前述,空隙的宽度(或直径)与下方侧削区的宽度有关,而并非受到通孔宽度的影响;通常空隙的宽度,大约为下方侧削区宽度的两倍。空隙的位置(以及孔隙712)大约位于通孔的中央,同时由在存储器材料元素具有一较大的区域,故无须将通孔精确对准于存储器材料元素。
暴露的小区域13不须为任何特定形状,例如,通常可能为圆形(如环状)、或其他形状、亦可能为不规则形状。若该小区域为环状,小区域13半径约可为10nm至100nm,例如20nm至50nm,或约30nm。利用此处所记载的条件,就下方侧削区的宽度的估计的尺寸大小约为5nm至50nm,例如10nm至25nm,或约15nm。
此时可在存储器单元空洞中,形成顶部电极。如图示的实施例中,顶部电极包含由内衬(加热)部分所包围的核心。就本实施例而言,该内衬在图7的构造上,沉积适当的内衬材料,形成如图8的构造。内衬材料可填充孔隙712,形成顶部电极的作用部17;同时也在其他结构表面上形成薄膜723。适当的内衬材料包含氮化钽、氮化钛、氮化钨、TiW。沉积工艺的条件必须能够提供电极层材料适当的厚度与足够的覆盖率。随后即可在图7的结构上,沉积适当的材料在空缺之中,形成顶部电极的核心,如图9中的900所示。该核心材料可采用化学器相沉积(CVD)等沉积方法。而顶部电极900,则可能为钨等材料。此外尚有其他适合作为顶部电极核心的材料,就金属而言,可采用铜、白金、钌、铱、以及其合金。
顶部电极可采用多种材料,例如包含Ta、TaN、TiAIN、TaAIN;或者,顶部电极材料亦可包括由Ti、W、Mo、Al、Ta、Cu、Pt、Ir、La、Ni与Ru等族群中,选择一种或多种元素,制成合金,或加入陶瓷。
随后,以平坦化工艺去除上方材料,直达氮化硅层20的表面922,以形成完整的存储器单元结构如图10。
图11A显示本发明的二相变化随机存取存储器单元100、102的代表图。该单元100、102形成在半导体衬底110之上。诸如浅沟槽绝缘(STI)电介质沟槽112等绝缘结构,作为两行存储器单元存取晶体管的绝缘体。存取晶体管由衬底110上的共同源极区域116与衬底112上的漏极区域115与117所形成。多晶硅中布有字线113与114,此二者组成存取晶体管的栅极。共同源极线119形成在源极区域116之上,而第一电介质层111则沉积在衬底110之上,并覆盖前述多晶硅字线与共同源极线。接触拴塞103、104(例如钨)形成在填充层111的通孔中,而该通孔位于存储器单元100与102的漏极区域115、117之上。一般而言,存储器单元100与102的制作,通常可依据前述图2至图10的方法;同时存储器单元101与102的结构,通常会与第一图中的存储器单元10相同。随后,底部电极材料层沉积在第一电介质填充层之上,存储器材料层沉积在底部电极材料层之上,而保护覆盖材料层也沉积在底部电极材料层之上。上述各层均已图案化(patterned),以形成底部电极,用以连接底部电极上的接触插座、存储元件、和存储元件上的覆盖层。第二电介质填充层121则沉积在前述结构之上,而第二电介质填充层之上又沉积蚀刻停止层,蚀刻停止层与第二电介质填充层再经过掩模与蚀刻工艺,形成通孔,之后再利用湿蚀刻技术,制作空洞;该空洞位于蚀刻终止层的开口边缘处,并具有下方侧削区域。此时在空洞之中沉积绝热材料(形成空隙),并在该绝热材料与覆盖层之上施以各向异性蚀刻,形成空缺,并暴露存储元素表面的一块小区域,而顶部电极则形成在该空洞之中。该结构的上层表面经平坦化程序,同时位线(bit line)141形成在存储器单元之上,与顶部电极的上层表面产生接触。
图11B显示编程的电流路径(箭头129),如本发明的图1与图11A所述,穿越存储器单元。该电流由M1共同源极线119流向源极区域116,随后进入漏极区域115,再由漏极区域115穿越接触拴塞103,进入存储器单元110,并穿越存储器单元100至位线141。
图12为存储器阵列的代表图,其操作方法如下。依据图2所示,一共同源极线128、一字线123、与一字线124以通常的Y轴平行方向排列;位线141与142则以通常的X轴平行方向排列。因此,区块145中的一Y解码器(decoder)与一排线驱动器即与字线123和124耦合。区块146中的一X解码器与一组感应扩大器(sense amplifier)即与位线141和142耦合。共同源极导线128与存取晶体管150、151、152、和153的源极终端(source terminals)耦合,存取晶体管150的栅极与字线123耦合、存取晶体管151与字线124耦合、存取晶体管152与字线123耦合、而存取晶体管153则与字线124耦合。存取晶体管150的漏极与存储器单元135的底部电极单元(member)132耦合,而其顶部电极单元则为134,与位线141耦合。同样地,存取晶体管151的漏极与存储器单元136的底部电极单元133耦合,其顶部电极137则与位线141耦合。存取晶体管152与153的相对应存储器单元,同样地与位线142进行耦合。在此示意图中,共同源极线128由两排存储器单元所共享,其中一排的排列方式即如图所示,为Y轴方向。其他实施例中,可以二极体取代存取晶体管,而如有其他可在读写数据阵列之中控制电流流向的结构,亦可适用。
图13图13图13为依据图12存储器阵列示意图,所展示之一布局图或平面图,其内容显示图11A中,半导体衬底层110之下的结构。其中省略某些特征,或以空白代表。字线123与124与源极导线28平行排列,金属位线141与142则布置在其上,与字线垂直。存储器单元装置135的位置,位于所述金属位线之下,但未显示在本图之中。
存储器单元10的实施例,包含相变化存储器材料,该存储器材料14所采用的内容物包含硫属化物材料与其他材料。硫属化物可能包括氧(O)、硫(S)、硒(Se)、碲(Te)等四种元素,为元素周期表第六族的一部分。硫属化物包括硫族元素的化合物,以及一种正电性较强的元素或化合物基(radical);硫属化物合金则包括硫族元素与其他元素的组合,例如过渡金属。硫属化物合金通常包括一种以上的元素周期表第六族元素,例如锗(Ge)和锡(Sn)。通常,硫属化物合金中包括一种以上的锑(Sb)、镓(Ga)、铟(In)、与银(Ag)元素。文献中已有许多种类的相变化存储器材料,例如下列合金:Ga/Sb、In/Sb、In/Se、Sb/Te、Ge/Te、Ge/Sb/Te、In/Sb/Te、Ga/Se/Te、Sn/Sb/Te、In/Sb/Ge、Ag/In/Sb/Te、Ge/Sn/Sb/Te、Ge/Sb/Se/Te、以及Te/Ge/Sb/S。Ge/Sb/Te的合金家族中,许多合金组合均可作为相变化存储器材料,此类组合可特定为TeaGebSb100-(a+b)。已有研究人员指出,效能最佳的合金,其沉积材料中的Te平均浓度均低于70%,通常低于60%,而其范围多为23%至58%之间,最佳浓度又为48%至58%的Te。Ge的浓度则为5%以上,范围约为8%至30%之间,通常低于50%。最优选实施例中,Ge的浓度范围约为8%至40%。该组成中,最后一项主要组成元素为Sb。上述百分比,指原子百分比,而总原子百分比100%即为组成元素的总和。(Ovshinsky’112 patent,columns 10-11)。另一研究人员所评估的特定合金包括Ge2Sb2Te5、GeSb2Te4、与GeSb4Te7(NoboruTamada,“Potential of Ge-Sb-Te Phase-Change Optical Disks forHigh-Data-Rate-Recording”,SPIE v.3109,pp.28-37(1997))。就更为普遍的面向,过渡金属,例如铬(Cr)、铁(Fe)、镍(Ni)、铌(Nb)、钯(Pd)、铂(Pt),与上述元素的合金,均可能与Ge/Sb/Te组成相变化合金,并使其具备程序可编程电阻的性质。可作为存储器材料的特定例子,见于Ovshinsky’112 at column 11-13,此处的所记载的例子即为参考上述文献所作出的组合。
本发明的说明如上,并附带说明相变化材料。然而,仍有其他可编程材料,可作为存储器材料。就本应用而言,存储器材料指可施加能量以改变电性(例如电阻)的材料,而此种改变可为阶梯状区间、或为连续变化、亦可为两者的组合。其他实施例中,还可采用他种可编程电阻存储器材料,包含掺杂N2的GST、GexSby、或其他利用晶相变化决定电阻的;也可采用PrxCayMnO3、PrSrMnO、ZrOx或其他以电脉冲改变电阻的材料;7,7,8,8-tetracyanoquinodimethane(TCNQ)、methanofullerene 6,、6-phenyl C61-butyric acid methyl ester(PCBM)、TCNQ-PCBM、Cu-TCNQ、Ag-TCNQ、C60-TCNQ、TCNQ掺杂其他金属、或其他具有双重或多种稳定电阻状态,并可由电脉冲控制的高分子材料。其他可编程电阻存储器材料的例子,包含GeSbTe、GeSb、NiO、Nb-SrTiO3、Ag-GeTe、PrCaMnO、ZnO、Nb2O5、Cr-SrTiO3
若需更多关在制造、组成材料、使用与操作相变化随机存取存储器装置的信息,请见美国专利申请号11/155,067,申请日2005年,专利申请名为“Thin film fuse phase change RAM andmanufacturing method”。
其他实施例也属于本发明的范畴。

Claims (24)

1.存储器装置,包括:
衬底;
电极,其位于所述衬底之上;
存储元素,其与所述电极有电接触;
电介质填充层,其位于所述存储元素、所述电极与所述衬底之上,所述电介质填充层包括空洞,所述空洞延伸至所述存储元素,并具有一宽度;
蚀刻停止层,其位于所述电介质填充层上,所述蚀刻停止层具有一开口,该开口位于空洞正上方,并且开口与空洞相邻且连通,所述开口具有一宽度,所述宽度小于所述电介质填充层空洞宽度,所以一开口边缘突出到所述电介质填充层中的空洞的正上方;以及
第二电极,其位于所述电介质填充层空洞中,所述第二电极包括主体部分与作用部,其中所述作用部的基底与所述存储元素的表面的一小区域电接触。
2.如权利要求1所述的存储器装置,其中所述小区域具有约为在所述蚀刻停止层中的所述开口边缘突出部分的宽度的两倍的宽度。
3.如权利要求1所述的存储器装置,其中所述第二电极位于所述电介质填充层空洞中,并为绝热材料所包围。
4.如权利要求3所述的存储器装置,其中所述第二电极的所述作用部位于所述绝热材料的孔隙之中。
5.如权利要求4所述的存储器装置,其中所述孔隙具有约为在所述蚀刻停止层中的所述开口边缘突出部分的宽度的两倍的宽度。
6.一种形成存储器单元的电极的方法,包括:
在存储元素上提供电介质填充层;
在所述电介质填充层上提供蚀刻停止层;
形成通孔穿越所述电介质填充层与开口穿越所述蚀刻停止层,其中所述蚀刻停止层开口的边缘,突出一刃边在所述电介质填充通孔之上;
在所述通孔中沉积电介质种类材料,其中在所述电介质种类材料中形成空洞;
各向异性蚀刻所述电介质种类材料以在所述种类材料中形成孔隙,且暴露所述存储元素的表面的一小区域;以及
在所述孔隙中沉积电极材料。
7.如权利要求6所述的方法,其中所述电介质种类材料包括绝热材料。
8.如权利要求6所述的方法,其中形成所述通孔的步骤,包括去除一部分位于所述蚀刻停止层开口边缘之下的所述电介质种类材料。
9.如权利要求6所述的方法,其中所述空洞的宽度约为突出的刃边的宽度的两倍。
10.如权利要求6所述的方法,其中所述存储元素的所述表面的所述小区域的宽度,约为突出的刃边的宽度的两倍。
11.一种制造存储器单元装置的方法,包括:
提供衬底;
在所述衬底的表面上形成底部电极层;
在所述底部电极层之上形成存储器材料层;
将所述存储器材料层与所述底部电极层图案化以形成存储元素与底部电极;
在所述存储元素、所述底部电极与所述衬底之上形成电介质填充层;
在该电介质填充层上形成蚀刻停止层;
形成通孔,所述通孔穿越所述蚀刻停止层与所述电介质填充层,以暴露所述存储元素的一区域,而所述通孔还包括在所述蚀刻停止层中的开口;
从该通孔的内壁去除一定数量的所述电介质填充层以形成空洞,以及在所述蚀刻停止层的所述开口边缘下方生成下方侧削区;
在所述空洞中的所述存储器材料层之上沉积绝热材料,其中在所述绝热材料之中形成空隙;
各向异性蚀刻所述绝热材料以暴露所述存储元素的表面的一小区域,并形成孔隙在所述绝热材料中邻近所述存储元素处,以及较宽空洞在所述绝热材料中;以及
在所述孔隙与所述较宽空洞中沉积电极材料以形成顶部电极。
12.如权利要求11所述的方法,其中形成所述存储器材料层的步骤,包括沉积至少具有两种固态相的材料。
13.如权利要求12所述的方法,其中形成所述存储器材料层的步骤,包括沉积至少具有两种固态相的材料,所述固态相可通过施加穿越所述底部电极与顶部电极的电压,可逆地改变相态。
14.如权利要求12所述的方法,其中形成所述存储器材料层的步骤,包括沉积至少具有两种固态相的材料,所述固态相包括通常的非晶态与通常的结晶态。
15.如权利要求12所述的方法,其中形成所述存储器材料层的步骤,包括沉积合金,所述合金的材料包括Ge、Sb、Te组成的组合。
16.如权利要求12所述的方法,其中形成所述存储器材料层的步骤,包括沉积合金,所述合金的材料包括由两种或以上Ge、Sb、Te、Se、In、Ti、Ga、Bi、Sn、Cu、Pd、Pb、Ag、S与Au元素组成的组合。
17.如权利要求11所述的方法,其中形成所述通孔穿越所述蚀刻停止层与所述电介质填充层的步骤,包括掩模与蚀刻步骤。
18.如权利要求11所述的方法,其中去除一定数量所述电介质填充层的步骤,包括湿蚀刻工艺。
19.如权利要求11所述的方法,其中形成所述顶部电极的步骤,包括在所述孔隙与所述较宽空洞中形成内衬,同时包括在所述内衬之上形成核心。
20.如权利要求11所述的方法,其中从所述通孔内壁去除一定数量所述电介质填充层的步骤,包括形成下方侧削区,其具有为5nm至50nm的宽度。
21.如权利要求11所述的方法,其中从所述通孔内壁去除一定数量所述电介质填充层的步骤,包括形成下方侧削区,其具有为10nm至25nm的宽度。
22.如权利要求11所述的方法,其中从所述通孔内壁去除一定数量所述电介质填充层的步骤,包括形成下方侧削区,其具有为15nm的宽度。
23.如权利要求11所述的方法,其中所述孔隙的宽度为所述下方侧削区宽度的两倍。
24.如权利要求11所述的方法,其中所述存储元素的所述表面的所述小区域的宽度,为所述下方侧削区的宽度的两倍。
CN2007101472866A 2006-09-11 2007-09-06 具有宽广相变化元素与小面积电极接点的存储器装置 Active CN101145599B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/530,625 2006-09-11
US11/530,625 US7772581B2 (en) 2006-09-11 2006-09-11 Memory device having wide area phase change element and small electrode contact area

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN201010589519XA Division CN102097587B (zh) 2006-09-11 2007-09-06 具有宽广相变化元素与小面积电极接点的存储器装置

Publications (2)

Publication Number Publication Date
CN101145599A CN101145599A (zh) 2008-03-19
CN101145599B true CN101145599B (zh) 2012-05-23

Family

ID=39168677

Family Applications (2)

Application Number Title Priority Date Filing Date
CN2007101472866A Active CN101145599B (zh) 2006-09-11 2007-09-06 具有宽广相变化元素与小面积电极接点的存储器装置
CN201010589519XA Active CN102097587B (zh) 2006-09-11 2007-09-06 具有宽广相变化元素与小面积电极接点的存储器装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201010589519XA Active CN102097587B (zh) 2006-09-11 2007-09-06 具有宽广相变化元素与小面积电极接点的存储器装置

Country Status (3)

Country Link
US (2) US7772581B2 (zh)
CN (2) CN101145599B (zh)
TW (1) TWI323939B (zh)

Families Citing this family (106)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7511984B2 (en) * 2006-08-30 2009-03-31 Micron Technology, Inc. Phase change memory
US20080128675A1 (en) * 2006-11-30 2008-06-05 Michele Magistretti Phase change memory cell having a tapered microtrench
KR20080050098A (ko) * 2006-12-01 2008-06-05 주식회사 하이닉스반도체 상변환 기억 소자의 제조방법
US7476587B2 (en) * 2006-12-06 2009-01-13 Macronix International Co., Ltd. Method for making a self-converged memory material element for memory cell
US20080164453A1 (en) * 2007-01-07 2008-07-10 Breitwisch Matthew J Uniform critical dimension size pore for pcram application
US7888719B2 (en) * 2007-05-23 2011-02-15 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor memory structures
US8410607B2 (en) * 2007-06-15 2013-04-02 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor memory structures
US7932167B2 (en) * 2007-06-29 2011-04-26 International Business Machines Corporation Phase change memory cell with vertical transistor
US7485487B1 (en) * 2008-01-07 2009-02-03 International Business Machines Corporation Phase change memory cell with electrode
US7879645B2 (en) * 2008-01-28 2011-02-01 Macronix International Co., Ltd. Fill-in etching free pore device
US8080439B2 (en) * 2008-02-28 2011-12-20 Freescale Semiconductor, Inc. Method of making a vertical phase change memory (PCM) and a PCM device
US8097870B2 (en) * 2008-11-05 2012-01-17 Seagate Technology Llc Memory cell with alignment structure
US8022547B2 (en) * 2008-11-18 2011-09-20 Seagate Technology Llc Non-volatile memory cells including small volume electrical contact regions
WO2010079816A1 (ja) 2009-01-09 2010-07-15 日本電気株式会社 半導体装置及びその製造方法
US8283650B2 (en) * 2009-08-28 2012-10-09 International Business Machines Corporation Flat lower bottom electrode for phase change memory cell
US8012790B2 (en) * 2009-08-28 2011-09-06 International Business Machines Corporation Chemical mechanical polishing stop layer for fully amorphous phase change memory pore cell
US8283202B2 (en) 2009-08-28 2012-10-09 International Business Machines Corporation Single mask adder phase change memory element
US7985654B2 (en) * 2009-09-14 2011-07-26 International Business Machines Corporation Planarization stop layer in phase change memory integration
US8129268B2 (en) 2009-11-16 2012-03-06 International Business Machines Corporation Self-aligned lower bottom electrode
US7943420B1 (en) 2009-11-25 2011-05-17 International Business Machines Corporation Single mask adder phase change memory element
JP2011146632A (ja) * 2010-01-18 2011-07-28 Toshiba Corp 不揮発性記憶装置及びその製造方法
WO2011090152A1 (ja) * 2010-01-21 2011-07-28 日本電気株式会社 半導体装置及びその製造方法
US8946046B1 (en) 2012-05-02 2015-02-03 Crossbar, Inc. Guided path for forming a conductive filament in RRAM
US9601692B1 (en) 2010-07-13 2017-03-21 Crossbar, Inc. Hetero-switching layer in a RRAM device and method
US9570678B1 (en) 2010-06-08 2017-02-14 Crossbar, Inc. Resistive RAM with preferental filament formation region and methods
US9012307B2 (en) * 2010-07-13 2015-04-21 Crossbar, Inc. Two terminal resistive switching device structure and method of fabricating
CN103081093B (zh) 2010-06-11 2015-06-03 科洛斯巴股份有限公司 存储器件的柱结构以及方法
US8441835B2 (en) 2010-06-11 2013-05-14 Crossbar, Inc. Interface control for improved switching in RRAM
US8374018B2 (en) 2010-07-09 2013-02-12 Crossbar, Inc. Resistive memory using SiGe material
US8947908B2 (en) 2010-11-04 2015-02-03 Crossbar, Inc. Hetero-switching layer in a RRAM device and method
US8467227B1 (en) 2010-11-04 2013-06-18 Crossbar, Inc. Hetero resistive switching material layer in RRAM device and method
US8569172B1 (en) 2012-08-14 2013-10-29 Crossbar, Inc. Noble metal/non-noble metal electrode for RRAM applications
US8884261B2 (en) 2010-08-23 2014-11-11 Crossbar, Inc. Device switching using layered device structure
US8168506B2 (en) 2010-07-13 2012-05-01 Crossbar, Inc. On/off ratio for non-volatile memory device and method
US8404553B2 (en) 2010-08-23 2013-03-26 Crossbar, Inc. Disturb-resistant non-volatile memory device and method
US8492195B2 (en) 2010-08-23 2013-07-23 Crossbar, Inc. Method for forming stackable non-volatile resistive switching memory devices
US9401475B1 (en) 2010-08-23 2016-07-26 Crossbar, Inc. Method for silver deposition for a non-volatile memory device
US8889521B1 (en) 2012-09-14 2014-11-18 Crossbar, Inc. Method for silver deposition for a non-volatile memory device
CN102376883B (zh) * 2010-08-24 2016-01-06 中芯国际集成电路制造(上海)有限公司 相变存储器的制造方法
US8558212B2 (en) 2010-09-29 2013-10-15 Crossbar, Inc. Conductive path in switching material in a resistive random access memory device and control
US8391049B2 (en) 2010-09-29 2013-03-05 Crossbar, Inc. Resistor structure for a non-volatile memory device and method
USRE46335E1 (en) 2010-11-04 2017-03-07 Crossbar, Inc. Switching device having a non-linear element
US8502185B2 (en) 2011-05-31 2013-08-06 Crossbar, Inc. Switching device having a non-linear element
US8088688B1 (en) 2010-11-05 2012-01-03 Crossbar, Inc. p+ polysilicon material on aluminum for non-volatile memory device and method
US8930174B2 (en) 2010-12-28 2015-01-06 Crossbar, Inc. Modeling technique for resistive random access memory (RRAM) cells
US8791010B1 (en) 2010-12-31 2014-07-29 Crossbar, Inc. Silver interconnects for stacked non-volatile memory device and method
US9153623B1 (en) 2010-12-31 2015-10-06 Crossbar, Inc. Thin film transistor steering element for a non-volatile memory device
US8815696B1 (en) 2010-12-31 2014-08-26 Crossbar, Inc. Disturb-resistant non-volatile memory device using via-fill and etchback technique
US8816314B2 (en) 2011-05-13 2014-08-26 Adesto Technologies Corporation Contact structure and method for variable impedance memory element
US8450710B2 (en) 2011-05-27 2013-05-28 Crossbar, Inc. Low temperature p+ silicon junction material for a non-volatile memory device
US8394670B2 (en) 2011-05-31 2013-03-12 Crossbar, Inc. Vertical diodes for non-volatile memory device
US9620206B2 (en) 2011-05-31 2017-04-11 Crossbar, Inc. Memory array architecture with two-terminal memory cells
US8619459B1 (en) 2011-06-23 2013-12-31 Crossbar, Inc. High operating speed resistive random access memory
US8659929B2 (en) 2011-06-30 2014-02-25 Crossbar, Inc. Amorphous silicon RRAM with non-linear device and operation
US9166163B2 (en) 2011-06-30 2015-10-20 Crossbar, Inc. Sub-oxide interface layer for two-terminal memory
US9564587B1 (en) 2011-06-30 2017-02-07 Crossbar, Inc. Three-dimensional two-terminal memory with enhanced electric field and segmented interconnects
US9627443B2 (en) 2011-06-30 2017-04-18 Crossbar, Inc. Three-dimensional oblique two-terminal memory with enhanced electric field
US8946669B1 (en) 2012-04-05 2015-02-03 Crossbar, Inc. Resistive memory device and fabrication methods
US9252191B2 (en) 2011-07-22 2016-02-02 Crossbar, Inc. Seed layer for a p+ silicon germanium material for a non-volatile memory device and method
US10056907B1 (en) 2011-07-29 2018-08-21 Crossbar, Inc. Field programmable gate array utilizing two-terminal non-volatile memory
US8674724B2 (en) 2011-07-29 2014-03-18 Crossbar, Inc. Field programmable gate array utilizing two-terminal non-volatile memory
US9729155B2 (en) 2011-07-29 2017-08-08 Crossbar, Inc. Field programmable gate array utilizing two-terminal non-volatile memory
US8519482B2 (en) * 2011-09-28 2013-08-27 Globalfoundries Singapore Pte. Ltd. Reliable contacts
US9685404B2 (en) 2012-01-11 2017-06-20 International Business Machines Corporation Back-end electrically programmable fuse
US8716098B1 (en) 2012-03-09 2014-05-06 Crossbar, Inc. Selective removal method and structure of silver in resistive switching device for a non-volatile memory device
US9087576B1 (en) 2012-03-29 2015-07-21 Crossbar, Inc. Low temperature fabrication method for a three-dimensional memory device and structure
US9685608B2 (en) 2012-04-13 2017-06-20 Crossbar, Inc. Reduced diffusion in metal electrode for two-terminal memory
US8658476B1 (en) 2012-04-20 2014-02-25 Crossbar, Inc. Low temperature P+ polycrystalline silicon material for non-volatile memory device
US8796658B1 (en) 2012-05-07 2014-08-05 Crossbar, Inc. Filamentary based non-volatile resistive memory device and method
US8765566B2 (en) 2012-05-10 2014-07-01 Crossbar, Inc. Line and space architecture for a non-volatile memory device
US8691622B2 (en) * 2012-05-25 2014-04-08 Micron Technology, Inc. Memory cells and methods of forming memory cells
US9583701B1 (en) 2012-08-14 2017-02-28 Crossbar, Inc. Methods for fabricating resistive memory device switching material using ion implantation
US10096653B2 (en) 2012-08-14 2018-10-09 Crossbar, Inc. Monolithically integrated resistive memory using integrated-circuit foundry compatible processes
US8946673B1 (en) 2012-08-24 2015-02-03 Crossbar, Inc. Resistive switching device structure with improved data retention for non-volatile memory device and method
US9312483B2 (en) 2012-09-24 2016-04-12 Crossbar, Inc. Electrode structure for a non-volatile memory device and method
US9576616B2 (en) 2012-10-10 2017-02-21 Crossbar, Inc. Non-volatile memory with overwrite capability and low write amplification
US11068620B2 (en) 2012-11-09 2021-07-20 Crossbar, Inc. Secure circuit integrated with memory layer
US8982647B2 (en) 2012-11-14 2015-03-17 Crossbar, Inc. Resistive random access memory equalization and sensing
US9256126B2 (en) 2012-11-14 2016-02-09 Irresistible Materials Ltd Methanofullerenes
US9412790B1 (en) 2012-12-04 2016-08-09 Crossbar, Inc. Scalable RRAM device architecture for a non-volatile memory device and method
US9431604B2 (en) * 2012-12-14 2016-08-30 Taiwan Semiconductor Manufacturing Company, Ltd. Resistive random access memory (RRAM) and method of making
KR20140083561A (ko) * 2012-12-26 2014-07-04 에스케이하이닉스 주식회사 상변화 메모리 소자의 제조방법
US9406379B2 (en) 2013-01-03 2016-08-02 Crossbar, Inc. Resistive random access memory with non-linear current-voltage relationship
US9331277B2 (en) * 2013-01-21 2016-05-03 Taiwan Semiconductor Manufacturing Company, Ltd. One transistor and one resistive random access memory (RRAM) structure with spacer
US9324942B1 (en) 2013-01-31 2016-04-26 Crossbar, Inc. Resistive memory cell with solid state diode
US9112145B1 (en) 2013-01-31 2015-08-18 Crossbar, Inc. Rectified switching of two-terminal memory via real time filament formation
US8934280B1 (en) 2013-02-06 2015-01-13 Crossbar, Inc. Capacitive discharge programming for two-terminal memory cells
US8963114B2 (en) * 2013-03-06 2015-02-24 Taiwan Semiconductor Manufacturing Company, Ltd. One transistor and one resistive (1T1R) random access memory (RRAM) structure with dual spacers
TW201532327A (zh) * 2013-11-19 2015-08-16 Univ Rice William M 用於改良SiOx切換元件之效能的多孔SiOx材料
US9172036B2 (en) * 2013-11-22 2015-10-27 Taiwan Semiconductor Manufacturing Co., Ltd. Top electrode blocking layer for RRAM device
US10290801B2 (en) 2014-02-07 2019-05-14 Crossbar, Inc. Scalable silicon based resistive memory device
FR3022393B1 (fr) 2014-06-11 2016-07-01 Commissariat Energie Atomique Dispositif de memoire vive resistive
FR3022392B1 (fr) 2014-06-12 2018-01-26 Commissariat A L'energie Atomique Et Aux Energies Alternatives Dispositif de memoire vive resistive
KR20160006544A (ko) * 2014-07-09 2016-01-19 에스케이하이닉스 주식회사 반도체 장치 및 그 제조방법
CN105826464A (zh) * 2015-01-06 2016-08-03 中芯国际集成电路制造(上海)有限公司 导电桥接随机存储器的形成方法
CN107833873A (zh) * 2015-04-20 2018-03-23 江苏时代全芯存储科技有限公司 记忆体结构与其制备方法
US20170069832A1 (en) * 2015-09-03 2017-03-09 Yong-Jae Kim Magnetoresistive memory devices and methods of manufacturing the same
US9653682B1 (en) * 2016-02-05 2017-05-16 Taiwan Semiconductor Manufacturing Company Ltd. Resistive random access memory structure
US10535558B2 (en) * 2016-02-09 2020-01-14 Taiwan Semiconductor Manufacturing Company, Ltd. Method of forming trenches
US10374010B2 (en) * 2017-10-24 2019-08-06 Taiwan Semiconductor Manufacturing Company Ltd. Phase change memory structure and manufacturing method for the same
US11038101B2 (en) * 2017-11-21 2021-06-15 Taiwan Semiconductor Manufacturing Company Ltd. Semiconductor structure having a phase change memory device
US11737286B2 (en) 2018-11-21 2023-08-22 The Research Foundation For The State University Of New York Selector devices for a memory cell
US20220013719A1 (en) * 2018-11-21 2022-01-13 The Research Foundation For The State University Of New York Resistive random access memory device
US11201083B2 (en) * 2019-12-31 2021-12-14 Micron Technology, Inc. Methods for forming memory devices, and associated devices and systems
US11289649B2 (en) * 2020-04-13 2022-03-29 Globalfoundries Singapore Pte. Ltd. Non-volatile memory elements with a narrowed electrode
US11682471B2 (en) * 2020-05-28 2023-06-20 International Business Machines Corporation Dual damascene crossbar array for disabling a defective resistive switching device in the array

Family Cites Families (227)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3271591A (en) 1963-09-20 1966-09-06 Energy Conversion Devices Inc Symmetrical current controlling device
US3530441A (en) 1969-01-15 1970-09-22 Energy Conversion Devices Inc Method and apparatus for storing and retrieving information
IL61678A (en) * 1979-12-13 1984-04-30 Energy Conversion Devices Inc Programmable cell and programmable electronic arrays comprising such cells
US4719594A (en) * 1984-11-01 1988-01-12 Energy Conversion Devices, Inc. Grooved optical data storage device including a chalcogenide memory layer
US4894664A (en) * 1986-04-28 1990-01-16 Hewlett-Packard Company Monolithic thermal ink jet printhead with integral nozzle and ink feed
US4876220A (en) 1986-05-16 1989-10-24 Actel Corporation Method of making programmable low impedance interconnect diode element
JP2685770B2 (ja) 1987-12-28 1997-12-03 株式会社東芝 不揮発性半導体記憶装置
JP2606857B2 (ja) * 1987-12-10 1997-05-07 株式会社日立製作所 半導体記憶装置の製造方法
US5166758A (en) 1991-01-18 1992-11-24 Energy Conversion Devices, Inc. Electrically erasable phase change memory
US5534712A (en) * 1991-01-18 1996-07-09 Energy Conversion Devices, Inc. Electrically erasable memory elements characterized by reduced current and improved thermal stability
US6019457A (en) * 1991-01-30 2000-02-01 Canon Information Systems Research Australia Pty Ltd. Ink jet print device and print head or print apparatus using the same
US5177567A (en) * 1991-07-19 1993-01-05 Energy Conversion Devices, Inc. Thin-film structure for chalcogenide electrical switching devices and process therefor
JP2825031B2 (ja) * 1991-08-06 1998-11-18 日本電気株式会社 半導体メモリ装置
US5166096A (en) 1991-10-29 1992-11-24 International Business Machines Corporation Process for fabricating self-aligned contact studs for semiconductor structures
JPH05206394A (ja) 1992-01-24 1993-08-13 Mitsubishi Electric Corp 電界効果トランジスタおよびその製造方法
US5958358A (en) 1992-07-08 1999-09-28 Yeda Research And Development Co., Ltd. Oriented polycrystalline thin films of transition metal chalcogenides
JP2884962B2 (ja) * 1992-10-30 1999-04-19 日本電気株式会社 半導体メモリ
US5515488A (en) 1994-08-30 1996-05-07 Xerox Corporation Method and apparatus for concurrent graphical visualization of a database search and its search history
US5785828A (en) 1994-12-13 1998-07-28 Ricoh Company, Ltd. Sputtering target for producing optical recording medium
US5789758A (en) 1995-06-07 1998-08-04 Micron Technology, Inc. Chalcogenide memory cell with a plurality of chalcogenide electrodes
US6420725B1 (en) 1995-06-07 2002-07-16 Micron Technology, Inc. Method and apparatus for forming an integrated circuit electrode having a reduced contact area
US5879955A (en) 1995-06-07 1999-03-09 Micron Technology, Inc. Method for fabricating an array of ultra-small pores for chalcogenide memory cells
US5831276A (en) 1995-06-07 1998-11-03 Micron Technology, Inc. Three-dimensional container diode for use with multi-state material in a non-volatile memory cell
US5869843A (en) * 1995-06-07 1999-02-09 Micron Technology, Inc. Memory array having a multi-state element and method for forming such array or cells thereof
US5837564A (en) 1995-11-01 1998-11-17 Micron Technology, Inc. Method for optimal crystallization to obtain high electrical performance from chalcogenides
US5706041A (en) * 1996-03-04 1998-01-06 Xerox Corporation Thermal ink-jet printhead with a suspended heating element in each ejector
US5687112A (en) * 1996-04-19 1997-11-11 Energy Conversion Devices, Inc. Multibit single cell memory element having tapered contact
US6025220A (en) * 1996-06-18 2000-02-15 Micron Technology, Inc. Method of forming a polysilicon diode and devices incorporating such diode
US5866928A (en) * 1996-07-16 1999-02-02 Micron Technology, Inc. Single digit line with cell contact interconnect
US5985698A (en) 1996-07-22 1999-11-16 Micron Technology, Inc. Fabrication of three dimensional container diode for use with multi-state material in a non-volatile memory cell
US5789277A (en) 1996-07-22 1998-08-04 Micron Technology, Inc. Method of making chalogenide memory device
US5814527A (en) 1996-07-22 1998-09-29 Micron Technology, Inc. Method of making small pores defined by a disposable internal spacer for use in chalcogenide memories
US5998244A (en) * 1996-08-22 1999-12-07 Micron Technology, Inc. Memory cell incorporating a chalcogenide element and method of making same
US6147395A (en) * 1996-10-02 2000-11-14 Micron Technology, Inc. Method for fabricating a small area of contact between electrodes
US6087674A (en) * 1996-10-28 2000-07-11 Energy Conversion Devices, Inc. Memory element with memory material comprising phase-change material and dielectric material
US6015977A (en) 1997-01-28 2000-01-18 Micron Technology, Inc. Integrated circuit memory cell having a small active area and method of forming same
US5952671A (en) 1997-05-09 1999-09-14 Micron Technology, Inc. Small electrode for a chalcogenide switching device and method for fabricating same
US6031287A (en) * 1997-06-18 2000-02-29 Micron Technology, Inc. Contact structure and memory element incorporating the same
US5933365A (en) 1997-06-19 1999-08-03 Energy Conversion Devices, Inc. Memory element with energy control mechanism
US5902704A (en) * 1997-07-02 1999-05-11 Lsi Logic Corporation Process for forming photoresist mask over integrated circuit structures with critical dimension control
US6557977B1 (en) * 1997-07-15 2003-05-06 Silverbrook Research Pty Ltd Shape memory alloy ink jet printing mechanism
US6416168B1 (en) * 1997-07-15 2002-07-09 Silverbrook Research Pty Ltd Pump action refill ink jet printing mechanism
US6768165B1 (en) * 1997-08-01 2004-07-27 Saifun Semiconductors Ltd. Two bit non-volatile electrically erasable and programmable semiconductor memory cell utilizing asymmetrical charge trapping
US6617192B1 (en) 1997-10-01 2003-09-09 Ovonyx, Inc. Electrically programmable memory element with multi-regioned contact
US7023009B2 (en) 1997-10-01 2006-04-04 Ovonyx, Inc. Electrically programmable memory element with improved contacts
US6969866B1 (en) 1997-10-01 2005-11-29 Ovonyx, Inc. Electrically programmable memory element with improved contacts
US6087269A (en) * 1998-04-20 2000-07-11 Advanced Micro Devices, Inc. Method of making an interconnect using a tungsten hard mask
US6372651B1 (en) * 1998-07-17 2002-04-16 Advanced Micro Devices, Inc. Method for trimming a photoresist pattern line for memory gate etching
US6141260A (en) * 1998-08-27 2000-10-31 Micron Technology, Inc. Single electron resistor memory device and method for use thereof
US6483736B2 (en) 1998-11-16 2002-11-19 Matrix Semiconductor, Inc. Vertically stacked field programmable nonvolatile memory and method of fabrication
US6351406B1 (en) * 1998-11-16 2002-02-26 Matrix Semiconductor, Inc. Vertically stacked field programmable nonvolatile memory and method of fabrication
US6034882A (en) * 1998-11-16 2000-03-07 Matrix Semiconductor, Inc. Vertically stacked field programmable nonvolatile memory and method of fabrication
JP2000164830A (ja) * 1998-11-27 2000-06-16 Mitsubishi Electric Corp 半導体記憶装置の製造方法
US6487106B1 (en) * 1999-01-12 2002-11-26 Arizona Board Of Regents Programmable microelectronic devices and method of forming and programming same
DE19903325B4 (de) 1999-01-28 2004-07-22 Heckler & Koch Gmbh Verriegelter Verschluß für eine Selbstlade-Handfeuerwaffe, mit einem Verschlußkopf und Verschlußträger und einem federnden Sperring mit Längsschlitz
US6245669B1 (en) 1999-02-05 2001-06-12 Taiwan Semiconductor Manufacturing Company High selectivity Si-rich SiON etch-stop layer
US6943365B2 (en) 1999-03-25 2005-09-13 Ovonyx, Inc. Electrically programmable memory element with reduced area of contact and method for making same
US6750079B2 (en) * 1999-03-25 2004-06-15 Ovonyx, Inc. Method for making programmable resistance memory element
US6177317B1 (en) * 1999-04-14 2001-01-23 Macronix International Co., Ltd. Method of making nonvolatile memory devices having reduced resistance diffusion regions
US6075719A (en) 1999-06-22 2000-06-13 Energy Conversion Devices, Inc. Method of programming phase-change memory element
US6077674A (en) 1999-10-27 2000-06-20 Agilent Technologies Inc. Method of producing oligonucleotide arrays with features of high purity
US6314014B1 (en) 1999-12-16 2001-11-06 Ovonyx, Inc. Programmable resistance memory arrays with reference cells
US6576546B2 (en) * 1999-12-22 2003-06-10 Texas Instruments Incorporated Method of enhancing adhesion of a conductive barrier layer to an underlying conductive plug and contact for ferroelectric applications
TW586154B (en) * 2001-01-05 2004-05-01 Macronix Int Co Ltd Planarization method for semiconductor device
US6927411B2 (en) * 2000-02-11 2005-08-09 Axon Technologies Corporation Programmable structure, an array including the structure, and methods of forming the same
US6420216B1 (en) * 2000-03-14 2002-07-16 International Business Machines Corporation Fuse processing using dielectric planarization pillars
US6888750B2 (en) * 2000-04-28 2005-05-03 Matrix Semiconductor, Inc. Nonvolatile memory on SOI and compound semiconductor substrates and method of fabrication
US6420215B1 (en) * 2000-04-28 2002-07-16 Matrix Semiconductor, Inc. Three-dimensional memory array and method of fabrication
US6501111B1 (en) 2000-06-30 2002-12-31 Intel Corporation Three-dimensional (3D) programmable device
US6563156B2 (en) * 2001-03-15 2003-05-13 Micron Technology, Inc. Memory elements and methods for making same
US6440837B1 (en) 2000-07-14 2002-08-27 Micron Technology, Inc. Method of forming a contact structure in a semiconductor device
KR100413678B1 (ko) * 2000-07-24 2003-12-31 삼성전자주식회사 그레이 스케일이 가능한 버블 젯 방식의 잉크 젯 프린트헤드의 히터 및 그 제조방법
US6566860B1 (en) * 2000-09-14 2003-05-20 Delphi Technologies, Inc. Method for temperature compensation for the output of an angular position sensor
US6512263B1 (en) 2000-09-22 2003-01-28 Sandisk Corporation Non-volatile memory cell array having discontinuous source and drain diffusions contacted by continuous bit line conductors and methods of forming
US6555860B2 (en) * 2000-09-29 2003-04-29 Intel Corporation Compositionally modified resistive electrode
US6429064B1 (en) 2000-09-29 2002-08-06 Intel Corporation Reduced contact area of sidewall conductor
US6567293B1 (en) * 2000-09-29 2003-05-20 Ovonyx, Inc. Single level metal memory cell using chalcogenide cladding
US6339544B1 (en) 2000-09-29 2002-01-15 Intel Corporation Method to enhance performance of thermal resistor device
DE10050076C2 (de) * 2000-10-10 2003-09-18 Infineon Technologies Ag Verfahren zur Herstellung einer ferromagnetischen Struktur und ferromagnetisches Bauelement
US6555858B1 (en) * 2000-11-15 2003-04-29 Motorola, Inc. Self-aligned magnetic clad write line and its method of formation
KR100382729B1 (ko) * 2000-12-09 2003-05-09 삼성전자주식회사 반도체 소자의 금속 컨택 구조체 및 그 형성방법
US6569705B2 (en) 2000-12-21 2003-05-27 Intel Corporation Metal structure for a phase-change memory device
US6627530B2 (en) 2000-12-22 2003-09-30 Matrix Semiconductor, Inc. Patterning three dimensional structures
US6271090B1 (en) 2000-12-22 2001-08-07 Macronix International Co., Ltd. Method for manufacturing flash memory device with dual floating gates and two bits per cell
TW490675B (en) 2000-12-22 2002-06-11 Macronix Int Co Ltd Control method of multi-stated NROM
US6534781B2 (en) * 2000-12-26 2003-03-18 Ovonyx, Inc. Phase-change memory bipolar array utilizing a single shallow trench isolation for creating an individual active area region for two memory array elements and one bipolar base contact
KR100625129B1 (ko) * 2001-01-30 2006-09-18 가부시키가이샤 히타치세이사쿠쇼 반도체 집적 회로 장치의 제조 방법
KR100400037B1 (ko) 2001-02-22 2003-09-29 삼성전자주식회사 콘택 플러그를 구비하는 반도체 소자 및 그의 제조 방법
US6487114B2 (en) 2001-02-28 2002-11-26 Macronix International Co., Ltd. Method of reading two-bit memories of NROM cell
US6730928B2 (en) 2001-05-09 2004-05-04 Science Applications International Corporation Phase change switches and circuits coupling to electromagnetic waves containing phase change switches
US6514788B2 (en) * 2001-05-29 2003-02-04 Bae Systems Information And Electronic Systems Integration Inc. Method for manufacturing contacts for a Chalcogenide memory device
US6613604B2 (en) 2001-08-02 2003-09-02 Ovonyx, Inc. Method for making small pore for use in programmable resistance memory element
US6774387B2 (en) 2001-06-26 2004-08-10 Ovonyx, Inc. Programmable resistance memory element
US6589714B2 (en) * 2001-06-26 2003-07-08 Ovonyx, Inc. Method for making programmable resistance memory element using silylated photoresist
US6673700B2 (en) * 2001-06-30 2004-01-06 Ovonyx, Inc. Reduced area intersection between electrode and programming element
US6511867B2 (en) * 2001-06-30 2003-01-28 Ovonyx, Inc. Utilizing atomic layer deposition for programmable device
US6605527B2 (en) 2001-06-30 2003-08-12 Intel Corporation Reduced area intersection between electrode and programming element
US6643165B2 (en) * 2001-07-25 2003-11-04 Nantero, Inc. Electromechanical memory having cell selection circuitry constructed with nanotube technology
US6737312B2 (en) * 2001-08-27 2004-05-18 Micron Technology, Inc. Method of fabricating dual PCRAM cells sharing a common electrode
US6709958B2 (en) 2001-08-30 2004-03-23 Micron Technology, Inc. Integrated circuit device and fabrication using metal-doped chalcogenide materials
US6507061B1 (en) * 2001-08-31 2003-01-14 Intel Corporation Multiple layer phase-change memory
US6764894B2 (en) * 2001-08-31 2004-07-20 Ovonyx, Inc. Elevated pore phase-change memory
US6586761B2 (en) * 2001-09-07 2003-07-01 Intel Corporation Phase change material memory device
US6861267B2 (en) * 2001-09-17 2005-03-01 Intel Corporation Reducing shunts in memories with phase-change material
US6800563B2 (en) 2001-10-11 2004-10-05 Ovonyx, Inc. Forming tapered lower electrode phase-change memories
US6566700B2 (en) * 2001-10-11 2003-05-20 Ovonyx, Inc. Carbon-containing interfacial layer for phase-change memory
US6543879B1 (en) * 2001-10-31 2003-04-08 Hewlett-Packard Company Inkjet printhead assembly having very high nozzle packing density
US6791859B2 (en) 2001-11-20 2004-09-14 Micron Technology, Inc. Complementary bit PCRAM sense amplifier and method of operation
US6545903B1 (en) * 2001-12-17 2003-04-08 Texas Instruments Incorporated Self-aligned resistive plugs for forming memory cell with phase change material
US6512241B1 (en) * 2001-12-31 2003-01-28 Intel Corporation Phase change material memory device
US6867638B2 (en) * 2002-01-10 2005-03-15 Silicon Storage Technology, Inc. High voltage generation and regulation system for digital multilevel nonvolatile memory
US6972430B2 (en) 2002-02-20 2005-12-06 Stmicroelectronics S.R.L. Sublithographic contact structure, phase change memory cell with optimized heater shape, and manufacturing method thereof
US7151273B2 (en) * 2002-02-20 2006-12-19 Micron Technology, Inc. Silver-selenide/chalcogenide glass stack for resistance variable memory
US7122281B2 (en) 2002-02-26 2006-10-17 Synopsys, Inc. Critical dimension control using full phase and trim masks
JP3796457B2 (ja) 2002-02-28 2006-07-12 富士通株式会社 不揮発性半導体記憶装置
US6579760B1 (en) * 2002-03-28 2003-06-17 Macronix International Co., Ltd. Self-aligned, programmable phase change memory
US6620715B1 (en) 2002-03-29 2003-09-16 Cypress Semiconductor Corp. Method for forming sub-critical dimension structures in an integrated circuit
US6670628B2 (en) * 2002-04-04 2003-12-30 Hewlett-Packard Company, L.P. Low heat loss and small contact area composite electrode for a phase change media memory device
CN1639868A (zh) * 2002-04-09 2005-07-13 松下电器产业株式会社 非易失性存储器及其制造方法
US6864500B2 (en) * 2002-04-10 2005-03-08 Micron Technology, Inc. Programmable conductor memory cell structure
KR100437458B1 (ko) * 2002-05-07 2004-06-23 삼성전자주식회사 상변화 기억 셀들 및 그 제조방법들
US6605821B1 (en) 2002-05-10 2003-08-12 Hewlett-Packard Development Company, L.P. Phase change material electronic memory structure and method for forming
US6864503B2 (en) 2002-08-09 2005-03-08 Macronix International Co., Ltd. Spacer chalcogenide memory method and device
US6850432B2 (en) 2002-08-20 2005-02-01 Macronix International Co., Ltd. Laser programmable electrically readable phase-change memory method and device
JP4190238B2 (ja) 2002-09-13 2008-12-03 株式会社ルネサステクノロジ 不揮発性半導体記憶装置
US6992932B2 (en) * 2002-10-29 2006-01-31 Saifun Semiconductors Ltd Method circuit and system for read error detection in a non-volatile memory array
JP4928045B2 (ja) 2002-10-31 2012-05-09 大日本印刷株式会社 相変化型メモリ素子およびその製造方法
US7314776B2 (en) * 2002-12-13 2008-01-01 Ovonyx, Inc. Method to manufacture a phase change memory
US6791102B2 (en) 2002-12-13 2004-09-14 Intel Corporation Phase change memory
US6744088B1 (en) * 2002-12-13 2004-06-01 Intel Corporation Phase change memory device on a planar composite layer
US6815266B2 (en) * 2002-12-30 2004-11-09 Bae Systems Information And Electronic Systems Integration, Inc. Method for manufacturing sidewall contacts for a chalcogenide memory device
EP1439583B1 (en) 2003-01-15 2013-04-10 STMicroelectronics Srl Sublithographic contact structure, in particular for a phase change memory cell, and fabrication process thereof
US7277317B2 (en) 2003-01-31 2007-10-02 Nxp B.V. MRAM architecture for low power consumption and high selectivity
KR100486306B1 (ko) * 2003-02-24 2005-04-29 삼성전자주식회사 셀프 히터 구조를 가지는 상변화 메모리 소자
US7115927B2 (en) 2003-02-24 2006-10-03 Samsung Electronics Co., Ltd. Phase changeable memory devices
US6936544B2 (en) 2003-03-11 2005-08-30 Taiwan Semiconductor Manufacturing Co., Ltd. Method of removing metal etching residues following a metal etchback process to improve a CMP process
KR100979710B1 (ko) * 2003-05-23 2010-09-02 삼성전자주식회사 반도체 메모리 소자 및 제조방법
US7067865B2 (en) 2003-06-06 2006-06-27 Macronix International Co., Ltd. High density chalcogenide memory cells
US20050018526A1 (en) * 2003-07-21 2005-01-27 Heon Lee Phase-change memory device and manufacturing method thereof
US7132350B2 (en) * 2003-07-21 2006-11-07 Macronix International Co., Ltd. Method for manufacturing a programmable eraseless memory
KR100615586B1 (ko) * 2003-07-23 2006-08-25 삼성전자주식회사 다공성 유전막 내에 국부적인 상전이 영역을 구비하는상전이 메모리 소자 및 그 제조 방법
US7893419B2 (en) * 2003-08-04 2011-02-22 Intel Corporation Processing phase change material to improve programming speed
US6927410B2 (en) 2003-09-04 2005-08-09 Silicon Storage Technology, Inc. Memory device with discrete layers of phase change memory material
US6815704B1 (en) 2003-09-04 2004-11-09 Silicon Storage Technology, Inc. Phase change memory device employing thermally insulating voids
US20050062087A1 (en) * 2003-09-19 2005-03-24 Yi-Chou Chen Chalcogenide phase-change non-volatile memory, memory device and method for fabricating the same
DE10345455A1 (de) 2003-09-30 2005-05-04 Infineon Technologies Ag Verfahren zum Erzeugen einer Hartmaske und Hartmasken-Anordnung
US6910907B2 (en) * 2003-11-18 2005-06-28 Agere Systems Inc. Contact for use in an integrated circuit and a method of manufacture therefor
US6808991B1 (en) 2003-11-19 2004-10-26 Macronix International Co., Ltd. Method for forming twin bit cell flash memory
US7485891B2 (en) * 2003-11-20 2009-02-03 International Business Machines Corporation Multi-bit phase change memory cell and multi-bit phase change memory including the same, method of forming a multi-bit phase change memory, and method of programming a multi-bit phase change memory
US6937507B2 (en) 2003-12-05 2005-08-30 Silicon Storage Technology, Inc. Memory device and method of operating same
US7928420B2 (en) * 2003-12-10 2011-04-19 International Business Machines Corporation Phase change tip storage cell
US7265050B2 (en) * 2003-12-12 2007-09-04 Samsung Electronics Co., Ltd. Methods for fabricating memory devices using sacrificial layers
US7291556B2 (en) 2003-12-12 2007-11-06 Samsung Electronics Co., Ltd. Method for forming small features in microelectronic devices using sacrificial layers
JP4124743B2 (ja) 2004-01-21 2008-07-23 株式会社ルネサステクノロジ 相変化メモリ
KR100564608B1 (ko) 2004-01-29 2006-03-28 삼성전자주식회사 상변화 메모리 소자
US6936840B2 (en) * 2004-01-30 2005-08-30 International Business Machines Corporation Phase-change memory cell and method of fabricating the phase-change memory cell
US7858980B2 (en) 2004-03-01 2010-12-28 Taiwan Semiconductor Manufacturing Co., Ltd. Reduced active area in a phase change memory structure
JP4529493B2 (ja) 2004-03-12 2010-08-25 株式会社日立製作所 半導体装置
KR100598100B1 (ko) 2004-03-19 2006-07-07 삼성전자주식회사 상변환 기억 소자의 제조방법
DE102004014487A1 (de) 2004-03-24 2005-11-17 Infineon Technologies Ag Speicherbauelement mit in isolierendes Material eingebettetem, aktiven Material
KR100657897B1 (ko) * 2004-08-21 2006-12-14 삼성전자주식회사 전압 제어층을 포함하는 메모리 소자
US7365385B2 (en) * 2004-08-30 2008-04-29 Micron Technology, Inc. DRAM layout with vertical FETs and method of formation
KR100626388B1 (ko) * 2004-10-19 2006-09-20 삼성전자주식회사 상변환 메모리 소자 및 그 형성 방법
DE102004052611A1 (de) * 2004-10-29 2006-05-04 Infineon Technologies Ag Verfahren zur Herstellung einer mit einem Füllmaterial mindestens teilweise gefüllten Öffnung, Verfahren zur Herstellung einer Speicherzelle und Speicherzelle
US20060108667A1 (en) 2004-11-22 2006-05-25 Macronix International Co., Ltd. Method for manufacturing a small pin on integrated circuits or other devices
KR100827653B1 (ko) * 2004-12-06 2008-05-07 삼성전자주식회사 상변화 기억 셀들 및 그 제조방법들
US7220983B2 (en) * 2004-12-09 2007-05-22 Macronix International Co., Ltd. Self-aligned small contact phase-change memory method and device
JP4848633B2 (ja) * 2004-12-14 2011-12-28 ソニー株式会社 記憶素子及び記憶装置
US7419771B2 (en) 2005-01-11 2008-09-02 Taiwan Semiconductor Manufacturing Co., Ltd. Method for forming a finely patterned resist
US7214958B2 (en) 2005-02-10 2007-05-08 Infineon Technologies Ag Phase change memory cell with high read margin at low power operation
US7488967B2 (en) * 2005-04-06 2009-02-10 International Business Machines Corporation Structure for confining the switching current in phase memory (PCM) cells
US7166533B2 (en) 2005-04-08 2007-01-23 Infineon Technologies, Ag Phase change memory cell defined by a pattern shrink material process
KR100668846B1 (ko) 2005-06-10 2007-01-16 주식회사 하이닉스반도체 상변환 기억 소자의 제조방법
US7388273B2 (en) * 2005-06-14 2008-06-17 International Business Machines Corporation Reprogrammable fuse structure and method
US8237140B2 (en) 2005-06-17 2012-08-07 Macronix International Co., Ltd. Self-aligned, embedded phase change RAM
US7696503B2 (en) 2005-06-17 2010-04-13 Macronix International Co., Ltd. Multi-level memory cell having phase change element and asymmetrical thermal boundary
US7514288B2 (en) 2005-06-17 2009-04-07 Macronix International Co., Ltd. Manufacturing methods for thin film fuse phase change ram
US7238994B2 (en) 2005-06-17 2007-07-03 Macronix International Co., Ltd. Thin film plate phase change ram circuit and manufacturing method
US7534647B2 (en) 2005-06-17 2009-05-19 Macronix International Co., Ltd. Damascene phase change RAM and manufacturing method
US7321130B2 (en) 2005-06-17 2008-01-22 Macronix International Co., Ltd. Thin film fuse phase change RAM and manufacturing method
US7514367B2 (en) 2005-06-17 2009-04-07 Macronix International Co., Ltd. Method for manufacturing a narrow structure on an integrated circuit
US7598512B2 (en) 2005-06-17 2009-10-06 Macronix International Co., Ltd. Thin film fuse phase change cell with thermal isolation layer and manufacturing method
TWI290369B (en) * 2005-07-08 2007-11-21 Ind Tech Res Inst Phase change memory with adjustable resistance ratio and fabricating method thereof
US7309630B2 (en) 2005-07-08 2007-12-18 Nanochip, Inc. Method for forming patterned media for a high density data storage device
US7337746B2 (en) * 2005-07-12 2008-03-04 Peg Clark Small animal feeding station
US20070037101A1 (en) * 2005-08-15 2007-02-15 Fujitsu Limited Manufacture method for micro structure
TWI273703B (en) * 2005-08-19 2007-02-11 Ind Tech Res Inst A manufacture method and structure for improving the characteristics of phase change memory
US7381982B2 (en) * 2005-08-26 2008-06-03 Macronix International Co., Ltd. Method for fabricating chalcogenide-applied memory
US20070045606A1 (en) * 2005-08-30 2007-03-01 Michele Magistretti Shaping a phase change layer in a phase change memory cell
JP5073933B2 (ja) * 2005-09-27 2012-11-14 オンセミコンダクター・トレーディング・リミテッド 半導体装置及びその製造方法
US7417245B2 (en) * 2005-11-02 2008-08-26 Infineon Technologies Ag Phase change memory having multilayer thermal insulation
US7397060B2 (en) 2005-11-14 2008-07-08 Macronix International Co., Ltd. Pipe shaped phase change memory
US20070111429A1 (en) 2005-11-14 2007-05-17 Macronix International Co., Ltd. Method of manufacturing a pipe shaped phase change memory
US7786460B2 (en) 2005-11-15 2010-08-31 Macronix International Co., Ltd. Phase change memory device and manufacturing method
US7450411B2 (en) 2005-11-15 2008-11-11 Macronix International Co., Ltd. Phase change memory device and manufacturing method
US7635855B2 (en) 2005-11-15 2009-12-22 Macronix International Co., Ltd. I-shaped phase change memory cell
US7394088B2 (en) 2005-11-15 2008-07-01 Macronix International Co., Ltd. Thermally contained/insulated phase change memory device and method (combined)
US7414258B2 (en) 2005-11-16 2008-08-19 Macronix International Co., Ltd. Spacer electrode small pin phase change memory RAM and manufacturing method
US7507986B2 (en) 2005-11-21 2009-03-24 Macronix International Co., Ltd. Thermal isolation for an active-sidewall phase change memory cell
US7479649B2 (en) 2005-11-21 2009-01-20 Macronix International Co., Ltd. Vacuum jacketed electrode for phase change memory element
US7829876B2 (en) 2005-11-21 2010-11-09 Macronix International Co., Ltd. Vacuum cell thermal isolation for a phase change memory device
US7449710B2 (en) 2005-11-21 2008-11-11 Macronix International Co., Ltd. Vacuum jacket for phase change memory element
US7599217B2 (en) 2005-11-22 2009-10-06 Macronix International Co., Ltd. Memory cell device and manufacturing method
US7688619B2 (en) 2005-11-28 2010-03-30 Macronix International Co., Ltd. Phase change memory cell and manufacturing method
US7459717B2 (en) 2005-11-28 2008-12-02 Macronix International Co., Ltd. Phase change memory cell and manufacturing method
US7233054B1 (en) * 2005-11-29 2007-06-19 Korea Institute Of Science And Technology Phase change material and non-volatile memory device using the same
US7605079B2 (en) 2005-12-05 2009-10-20 Macronix International Co., Ltd. Manufacturing method for phase change RAM with electrode layer process
US7642539B2 (en) 2005-12-13 2010-01-05 Macronix International Co., Ltd. Thin film fuse phase change cell with thermal isolation pad and manufacturing method
US7531825B2 (en) * 2005-12-27 2009-05-12 Macronix International Co., Ltd. Method for forming self-aligned thermal isolation cell for a variable resistance memory array
US8062833B2 (en) 2005-12-30 2011-11-22 Macronix International Co., Ltd. Chalcogenide layer etching method
US7560337B2 (en) 2006-01-09 2009-07-14 Macronix International Co., Ltd. Programmable resistive RAM and manufacturing method
US7741636B2 (en) 2006-01-09 2010-06-22 Macronix International Co., Ltd. Programmable resistive RAM and manufacturing method
US20070158632A1 (en) 2006-01-09 2007-07-12 Macronix International Co., Ltd. Method for Fabricating a Pillar-Shaped Phase Change Memory Element
US7595218B2 (en) 2006-01-09 2009-09-29 Macronix International Co., Ltd. Programmable resistive RAM and manufacturing method
US7825396B2 (en) 2006-01-11 2010-11-02 Macronix International Co., Ltd. Self-align planerized bottom electrode phase change memory and manufacturing method
US7351648B2 (en) * 2006-01-19 2008-04-01 International Business Machines Corporation Methods for forming uniform lithographic features
US7432206B2 (en) 2006-01-24 2008-10-07 Macronix International Co., Ltd. Self-aligned manufacturing method, and manufacturing method for thin film fuse phase change ram
US7456421B2 (en) 2006-01-30 2008-11-25 Macronix International Co., Ltd. Vertical side wall active pin structures in a phase change memory and manufacturing methods
US20070235811A1 (en) 2006-04-07 2007-10-11 International Business Machines Corporation Simultaneous conditioning of a plurality of memory cells through series resistors
US7928421B2 (en) 2006-04-21 2011-04-19 Macronix International Co., Ltd. Phase change memory cell with vacuum spacer
US7514705B2 (en) * 2006-04-25 2009-04-07 International Business Machines Corporation Phase change memory cell with limited switchable volume
US8129706B2 (en) 2006-05-05 2012-03-06 Macronix International Co., Ltd. Structures and methods of a bistable resistive random access memory
US7608848B2 (en) 2006-05-09 2009-10-27 Macronix International Co., Ltd. Bridge resistance random access memory device with a singular contact structure
US7423300B2 (en) 2006-05-24 2008-09-09 Macronix International Co., Ltd. Single-mask phase change memory element
US7696506B2 (en) 2006-06-27 2010-04-13 Macronix International Co., Ltd. Memory cell with memory material insulation and manufacturing method
US7785920B2 (en) * 2006-07-12 2010-08-31 Macronix International Co., Ltd. Method for making a pillar-type phase change memory element
US20080090400A1 (en) * 2006-10-17 2008-04-17 Cheek Roger W Self-aligned in-contact phase change memory device

Also Published As

Publication number Publication date
CN101145599A (zh) 2008-03-19
US20100261329A1 (en) 2010-10-14
TWI323939B (en) 2010-04-21
CN102097587A (zh) 2011-06-15
TW200820425A (en) 2008-05-01
US7772581B2 (en) 2010-08-10
CN102097587B (zh) 2013-08-28
US7964437B2 (en) 2011-06-21
US20080061341A1 (en) 2008-03-13

Similar Documents

Publication Publication Date Title
CN101145599B (zh) 具有宽广相变化元素与小面积电极接点的存储器装置
CN1967896B (zh) 隔离的相变存储器单元及其制造方法
CN100563040C (zh) 相变化存储单元及其制造方法
CN100583484C (zh) 管状电极相变化存储器的制造方法
CN100463209C (zh) 具有真空夹层的相变存储器元件
CN100550461C (zh) 具有真空侧壁子的相变存储单元
CN101197317B (zh) 具有热障的相变化存储单元及其制造方法
CN100501920C (zh) 一种以自对准方式制造薄膜熔丝相变化随机存取存储器的方法
CN100573898C (zh) 自对准并平坦化的下电极相变化存储器及其制造方法
CN101237026B (zh) 一种存储装置及其制造方法
CN1967897B (zh) 管型相变化存储器形成方法
CN100544016C (zh) 具有绝热衬垫的薄膜保险丝相变化单元及其制造方法
CN101369597B (zh) 具有相变化元件及非对称热边界的多级存储单元
US7879692B2 (en) Programmable resistive memory cell with self-forming gap
TWI451569B (zh) 一種包含熱保護底電極的相變化記憶胞與其製作方法
US7879643B2 (en) Memory cell with memory element contacting an inverted T-shaped bottom electrode
CN101236985A (zh) 一种具有共平面电极表面的存储单元装置及其制造方法
CN100573899C (zh) 自我对准的嵌入式相变存储器及其制造方法
CN100583483C (zh) 相变化存储单元及其制造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant