CN101151402B - 低翘曲度、弯曲度和ttv的75毫米碳化硅晶片 - Google Patents

低翘曲度、弯曲度和ttv的75毫米碳化硅晶片 Download PDF

Info

Publication number
CN101151402B
CN101151402B CN2006800108857A CN200680010885A CN101151402B CN 101151402 B CN101151402 B CN 101151402B CN 2006800108857 A CN2006800108857 A CN 2006800108857A CN 200680010885 A CN200680010885 A CN 200680010885A CN 101151402 B CN101151402 B CN 101151402B
Authority
CN
China
Prior art keywords
wafer
silicon carbide
high quality
less
sic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2006800108857A
Other languages
English (en)
Other versions
CN101151402A (zh
Inventor
艾德里安·鲍威尔
威廉·H.·布里克休斯
罗伯特·T.·里奥纳多
戴维斯·M.·麦克卢尔
迈克尔·P.·劳纳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wofu Semiconductor Co ltd
Original Assignee
Cree Research Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cree Research Inc filed Critical Cree Research Inc
Publication of CN101151402A publication Critical patent/CN101151402A/zh
Application granted granted Critical
Publication of CN101151402B publication Critical patent/CN101151402B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/66068Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02378Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02428Structure
    • H01L21/0243Surface structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers
    • H01L21/02008Multistep processes
    • H01L21/0201Specific process step
    • H01L21/02024Mirror polishing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System
    • H01L29/1608Silicon carbide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10T117/10Apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10T117/10Apparatus
    • Y10T117/1004Apparatus with means for measuring, testing, or sensing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10T117/10Apparatus
    • Y10T117/102Apparatus for forming a platelet shape or a small diameter, elongate, generally cylindrical shape [e.g., whisker, fiber, needle, filament]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/21Circular sheet or circular blank

Abstract

本发明公开一种高质量的SiC单晶片。该晶片具有至少约3英寸的直径、小于约5μm的翘曲度、小于约5μm的弯曲度、以及小于约2.0μm的TTV。

Description

低翘曲度、弯曲度和TTV的75毫米碳化硅晶片
技术领域
本发明涉及低缺陷的碳化硅晶片及其用作用于半导体目的的前体,以用引晶升华法生长大的高质量的碳化硅单晶以及在这种低缺陷的晶片上进行高质量的外延生长。
本发明还涉及下面共同未审的共同转让的美国专利申请公开No.20050145164、No.20050022724、No.20050022727、No.20050164482、No.20060032434和No.20050126471。
背景技术
近年来已经发现碳化硅用作用于各种电子器件和目的的半导体材料。碳化硅由于其物理强度和高抗化学侵蚀性而尤其有用。碳化硅还具有优异的电子性质,包括耐辐射性、高击穿场、较宽带隙、高饱和电子漂移速度、高温工作以及对蓝色、紫色和紫外光谱区域中的高能光子的吸收和发射。
碳化硅是难以工作的材料,因为它可以以150以上的多型形式结晶,其中的一些以非常小的热力学性质差异而相互不同。而且,由于碳化硅的高熔点(在高压下2700℃以上),使用碳化硅的很多过程,包括外延膜沉积,常常需要在比其它半导体材料中的类似反应更高的温度下进行。
如相关领域中的普通技术人员所广泛地认可的那样,由给定半导体材料制成或者包含给定的半导体材料的器件的电子性能取决于该器件的结构,材料的物理特性(例如,带隙限制可产生的光的最高频率波长)以及晶体的质量。换句话来说,尽管一些电子器件可以用多晶半导体材料成功地形成,但是更多的电子器件需要具有高晶体质量并产生良好性能的单晶半导体部分。以另一方式来说,包括碳化硅在内的给定的半导体材料除非且直到可以以有用的质量和数量生产,否则该材料的理论能力在功能上仍然是没有意义的。
单晶碳化硅通常通过引晶升华法生长过程来制造。在典型的碳化硅生长技术中,籽晶和源粉末都以在源和边缘较冷籽晶之间产生热梯度的方式放置在反应坩埚中,该反应坩埚被加热至源的升华温度。热梯度促进材料从源到籽晶的汽相运动,然后在籽晶上凝结,从而进行体型晶体生长。该方法也称为物理汽相传输(PVT)。
在典型的碳化硅生长技术中,坩埚由石墨制成,并且通过感应或者电阻加热,其中的相关线圈和绝缘体设置成建立和控制所需的热梯度。源粉末是碳化硅,籽晶也是。坩埚竖直地定向,源粉末设置在下部,籽晶设置在上部,通常在籽晶夹持器上,参见美国专利No.4,866,005(再公告为No.Re 34,861)。这些源是示例性地而不是限制性地描述现代的引晶升华法生长技术。
在体型晶体生长之后,常常将晶体切成具有预定形状的块,在外围进行打磨,然后设置在切片机中。在切片机中,通过高速旋转刀片将晶体块切成具有预定厚度的晶片。
通常,切刀片典型地是内径锯,该锯通过下述方式来制得:将薄的不锈钢片切成环形,并沉积Ni电镀层,其中,金刚石磨料嵌入在成形的不锈钢片的内边缘上。
由于各种条件,例如,施加在切刀片上的张力,金刚石磨料对刀片的内边缘的粘附性以及切片机的旋转轴的尺寸精确度,通过以这样的方式切割晶锭而得到的晶片很可能在厚度和平坦度上有所偏差。如果切片条件不合适,则从表面延伸的加工损伤层会深入发展到所切的晶片的内部。
该切片操作也可以通过使用线锯来实现,其中,使用丝线来替代切割刀片。在这种情况下,磨料嵌入在丝线中,或者包含在浆液中,该浆液在紧接切片操作之前喷射在线上。在这种情况下,观察到相似的厚度和平坦度的变化。
由于切片所引起的这些不良的偏差可以通过研磨所切的晶片来减少。
参照图1(a)和图1(b),在常规的研磨方法中,多个晶片2设置在托架(carrier)4上,并且以这样的方式定位在下研磨板6上,使得晶片2均匀地分布在下研磨板6上。降低上研磨板8以接触晶片2,将磨料进送到下研磨板6和上研磨板8之间的间隙中,并且,旋转和转动晶片2。在旋转和转动的过程中,用磨料研磨晶片2。通过将作为磨料的具有约10μm的粒径的金刚石或者氮化硼颗粒悬浮在适量的水或者其它溶剂中,来制备常用的浆液。
传统的研磨和切片技术的一个缺点是在所切的晶片中引入翘曲、弯曲和总厚度变化(TTV)。“翘曲度”定义为从参考平面所测的晶片表面的最小值和最大值之间的差。偏差包括凸凹变化。翘曲是体缺陷(即,影响整个晶片的缺陷,而不仅仅是晶片表面部分)。“弯曲度”是从晶片的中心所测的晶片的凹度或者变形,与任何厚度变化无关。“总厚度变化”定义为晶片的最厚部分和最薄部分之间的绝对厚度差。
由于若干原因,具有高翘曲度、弯曲度和TTV的晶片可能是不希望的。例如,在外延生长过程中,高的翘曲度、弯曲度和TTV水平导致在晶片和基座(susceptor)之间的不均匀的接触。在外延生长过程中,这种不均匀的接触可以引起整个籽晶上的热变化。此外,在器件制造步骤中,由于当晶片被吸于真空吸盘时所引起的应力,高翘曲度值可以提高晶片破裂的风险。
因此,在由在升华法引晶系统(seeded sublimation system)中形成的晶体所切成的晶片中产生具有低翘曲度、弯曲度和TTV水平的大的更高质量的碳化硅仍是不变的商业技术目标。
发明内容
在一个方面,本发明是高质量的SiC单晶片,该晶片具有至少约75毫米(3英寸)的直径、小于约0.5μm的翘曲度、小于约0.5μm的弯曲度、以及小于约1.0μm的TTV。
在另一方面中,本发明是具有至少约75毫米(3英寸)的直径、小于约0.4μm的翘曲度、小于约0.4μm的弯曲度和小于约0.9μm的TTV的SiC半导体晶片。
在另一方面中,本发明是在高质量的SiC单晶片上外延生长SiC或者III-V材料的方法,该晶片具有至少约75毫米(3英寸)的直径、小于约0.5μm的翘曲度、小于约0.5μm的弯曲度、以及小于约1.0μm的TTV。
在另一方面中,本发明是在SiC单晶衬底上建立的多个功率、微波和LED器件,该衬底具有至少约75毫米(3英寸)的直径、小于约0.5μm的翘曲度、小于约0.5μm的弯曲度、以及小于约1.0μm的TTV。
附图说明
图1(a)和图1(b)示意性地示出根据本发明所用的常规双面研磨机;
图2是根据本发明的半导体晶片;
图3是根据本发明的多个半导体前体器件;
图4是根据本发明的升华法引晶系统的示意剖视图;
图5是根据本发明的金属氧化物半导体场效应晶体管的示意剖视图;以及
图6是根据本发明的金属半导体场效应晶体管的示意剖视图。
具体实施方式
本发明结合了用于改善高质量碳化硅晶片的几种技术。
在一个方面中,本发明是高质量的SiC单晶片,该晶片具有至少约75毫米(3英寸)的直径、小于约0.5μm(较优选地小于约0.4μm,更优选地小于约0.3μm)的翘曲度、小于约0.5μm(较优选地小于约0.4μm,更优选地小于约0.3μm)的弯曲度、以及小于约2.0μm(较优选地小于约0.9μm,更优选地小于约0.8μm)的TTV。单晶SiC的多型优选地是3C、4H、6H、2H或者15R。
在考虑籽晶的直径和厚度的成比例尺寸时,不管表示为百分率、分数还是表示为比值,也应该理解,在由本发明提供改善的背景下,这些比例在此处所述的更大直径的籽晶的背景下具有创造性的含义。
因此,在一些实施例中,在这里以这样的方式描述和要求保护本发明,使得本发明包括晶体的绝对尺寸,通常,就直径而言,2英寸、3英寸和100mm直径的单晶是优选的。
在另一方面,本发明是高质量半导体晶片。该晶片是4H多型的碳化硅晶片,具有至少约75毫米(3英寸)的直径、约0.05μm和约0.5μm之间的翘曲度、约0.01μm和约0.3μm之间的弯曲度、以及约0.5μm和1.0μm之间的TTV。
在另一方面,本发明是高质量半导体晶片。该晶片是4H多型的碳化硅晶片,具有至少约75毫米(3英寸)的直径和小于约0.5μm的翘曲度。
在另一方面,本发明是高质量半导体晶片。该晶片是4H多型的碳化硅晶片,具有至少约75毫米(3英寸)的直径和小于约0.5μm的弯曲度。
在另一方面,本发明是高质量半导体晶片。该晶片是4H多型的碳化硅晶片,具有至少约75毫米(3英寸)的直径和小于约1.0μm的TTV。
在另一方面,如图2所示意性地示出的那样,本发明是高质量碳化硅半导体晶片10,具有4H多型、至少约75毫米(3英寸)的直径、小于约0.5μm的翘曲度、小于约0.5μm的弯曲度、以及小于约1.0μm之间的TTV。另外,该晶片附加地具有位于表面上的第三族氮化物外延层12。第三族(Group III)氮化物12优选地是GaN、AlGaN、AlN、AlInGaN、InN和AlInN中的一个或者多个。
在本领域中一般充分理解了第三族氮化物的生长和电子特性。在碳化硅衬底上的第三族氮化物层是一些类型的发光二极管(LED)的基本特征。在理想的因素中尤其是,第三族元素的原子分数(例如InxGayN1-x-y)调节合成物的带隙(在限制内)以类似地调节所得到的发射频率,从而调节LED的颜色。
就图3而言,本发明是在SiC籽晶16上的多个碳化硅半导体器件前体14,该籽晶16具有至少约75毫米(3英寸)的直径、小于约0.5μm的翘曲度、小于约0.5μm的弯曲度、以及小于约1.0μm的TTV。该晶片附加地具有在晶片的一些部分上的多个相应的第三族氮化物外延层18。优选的第三族氮化物外延层单独地选自GaN、AlGaN、AlN、AlInGaN、InN和AlInN中。
图4是用于碳化硅的引晶升华法生长的升华系统的横截面示意图。该系统泛泛地表示为20。与大多数的典型的系统一样,系统20包括石墨基座22和多个感应线圈24,当施加电流经过线圈24时,线圈24加热基座22。另一可选的方式是,一些系统结合电阻加热。熟识这些晶体生长技术的那些人将会理解,该系统还可以包括在一些环境中,例如,在用水冷却的石英器皿中。另外,与基座22相通的至少一个进气口和出气口(未图示)包括在升华法引晶系统20中。基座22通常被绝缘体26包围,其中的几个部分示于图4中。基座22包括包含碳化硅粉末源28的一个或者多个部分。这种粉末源28十分常用于(但是,不是专用于)碳化硅的引晶升华法生长技术中。碳化硅表示为30,通常设置在基座22的上部中。籽晶30优选地是单晶SiC籽晶,其具有至少约75毫米(3英寸)的直径、小于约0.5μm的翘曲度、小于约0.5μm的弯曲度、以及小于约1.0μm的TTV。在引晶升华法生长过程中,生长晶体34沉积在籽晶30上。籽晶夹持器32通常将籽晶30保持在适当的位置上,其中,籽晶夹持器32以合适的方式附着在基座22上。这可以包括本领域的技术人员所知的各种布置方式。
在另一方面中,本发明是在升华法引晶系统中产生碳化硅的高质量体单晶的方法,改善之处包括生长具有至少约75毫米(3英寸)的直径的SiC晶梨(boule),然后将SiC晶梨(优选,机械地)切成晶片,其中,每一个晶片在表面上具有小于约0.5μm的翘曲度、小于约0.5μm的弯曲度、以及小于约1.0μm的TTV。所述晶片优选地是约0.5mm厚。
在优选实施例中,对所切的晶片进行处理,使得在每一侧上的表面和表面下的损伤程度与由前面讨论的研磨机所引起的损伤程度相当。在双面研磨机上,开始进行研磨过程,使用比弯曲晶片所需的力小的向下力。例如,对于75毫米(3英寸)直径、600μm厚的晶片,等于约200g的力很可能适合。所得到的晶片具有所引起的弯曲,所引起的弯曲不是由于不同的损伤所引起的,并且可以用标准的双面或者单面抛光来处理,以产生具有低的翘曲度、弯曲度和TTV的晶片。
可以优选的是,然后抛光和蚀刻SiC晶片。优选的抛光是化学-机械抛光,优选的蚀刻是熔融KOH蚀刻。为突出表面上的缺陷,进行蚀刻,作为质量控制技术。该蚀刻并不必要(且不希望)作为先驱步骤来促进SiC或者III-V生长。因此,通常在没有被蚀刻的抛光籽晶上进行生长。
如本领域所知,优选地,SiC晶梨在升华法引晶系统中生长。在将晶梨切成晶片之后,然后,这些晶片又可以用作单晶碳化硅的引晶升华法生长中的籽晶。
如本说明书的背景技术部分中所提及的那样,多年来,碳化硅的引晶升华法生长的一般方面通常很好地建立了。而且,熟知晶体生长(尤其在诸如碳化硅之类的比较难的材料系统中)的那些人将会认识到,给定技术的细节通常可以根据相关环境而有目的地改变。因此,本文所给出的描述从普通的示意性的意义上来说相当合适,应当认识到,本领域的技术人员基于本文的公开内容能够执行本发明的改进,而无需过度的实验。
在描述本发明的过程中,应该理解,公开了很多技术。这些技术中的每一项都具有独立的益处,每一项技术还可以与所公开的其它技术中的一项或者多项或者(在一些情况中)全部结合使用。因此,为了清楚起见,该描述没有以不必要的方式重复对各个步骤的每一种可能的组合。然而,应该这样理解本说明书和权利要求书,这些组合完全在本发明和权利要求的范围内。
如背景技术中所普遍提及的那样,随着各种器件部分的晶体质量提高,电子器件的性能通常得以改善。因此,本发明的晶片的减少缺陷特性类似地提供改善的器件。具体地说,当翘曲度、弯曲度和TTV降低到5μm或者更低时,更高功率、更高电流的器件变得日益可用。
因此,在另一方面中,本发明是在低缺陷的75毫米(3英寸)碳化硅晶片上形成的多个场效应晶体管,该晶片具有小于约0.5μm的翘曲度、小于约0.5μm的弯曲度、以及小于约1.0μm的TTV。
在另一方面中,本发明是在低缺陷的75毫米(3英寸)碳化硅衬底44上形成的多个金属氧化物半导体场效应晶体管(MOSFET)42,该衬底44具有小于约0.5μm的翘曲度、小于约0.5μm的弯曲度、以及小于约1.0μm的TTV。图5是基本的MOSFET结构的示意性的剖视图。体单晶衬底44包括彼此相对的相应的第一表面48和第二表面50。衬底上的外延层具有相应的源极52、沟道56和漏极54部分,其中,沟道56通过氧化层62被栅极触点64控制。源极触点58和漏极触点60分别在源极部分52和漏极部分54上。MOSFET的结构和工作、以及MOSFET的组合和变型在本领域中很好地被理解,因此,图5及其描述是示例性的,而不是限制所要求保护的发明。
参照图6,在另一方面,本发明是在低缺陷的75毫米(3英寸)碳化硅晶片68上形成的多个金属半导体场效应晶体管(MESFET),该晶片具有小于约0.5μm的翘曲度、小于约0.5μm的弯曲度、以及小于约1.0μm的TTV。衬底68包括彼此相对的相应的第一表面70和第二表面72。导电沟道74位于衬底68的第一表面70上。欧姆源极76和漏极78触点位于导电沟道74上。金属栅极触点80位于导电沟道74上的源极76和漏极78之间,以便在施加偏压给金属栅极触点80时形成有源沟道。
如本领域所知,根据本发明,一种以上类型的器件可以定位在碳化硅晶片上。可包含在内的其它器件是结型场效应晶体管、异质场效应晶体管和本领域所知的其它器件。这些(以及其它)器件在本领域中很好理解,可以使用本文所描述和要求保护的衬底来实施,而无需过度的实验。
实例
根据本发明形成一系列的三英寸直径且约一毫米厚的SiC晶片。这些晶片中的每一个的翘曲度、弯曲度和TTV示于表1中。
表1:SiC晶片的翘曲度、弯曲度和TTV
    晶片  翘曲度(μm)    弯曲度(μm)     TTV(μm)
    1  0.222    -0.116     0.623
    2  0.147    -0.018     0.673
    3  0.0846    0.0267     0.739
在本说明书和附图中,公开了本发明的典型的实施例。特定术语仅仅以通用的描述性的含义使用,而不是为了限制的目的。本发明的范围在下面的权利要求中进行阐述。

Claims (22)

1.一种高质量SiC单晶片,该单晶片具有至少75毫米的直径、小于5μm的翘曲度、小于5μm的弯曲度、以及小于2.0μm的TTV。
2.根据权利要求1所述的高质量SiC单晶片,其中,所述翘曲度小于2μm。
3.根据权利要求1所述的高质量SiC单晶片,其中,所述翘曲度小于1μm。
4.根据权利要求1所述的高质量SiC单晶片,其中,所述弯曲度小于2μm。
5.根据权利要求1所述的高质量SiC单晶片,其中,所述弯曲度小于1μm。
6.根据权利要求1所述的高质量SiC单晶片,其中,所述TTV小于1.5μm。
7.根据权利要求1所述的高质量SiC单晶片,其中,所述TTV小于1μm。
8.根据权利要求1所述的高质量SiC单晶片,其中,所述晶体具有选自由3C、4H、6H、2H和15R多型构成的组中的多型。
9.根据权利要求1所述的高质量SiC单晶片,所述晶片具有4H多型;并且
所述晶片具有0.05μm和5μm之间的翘曲度、0.05μm和5μm之间的弯曲度、以及0.5μm和2.0μm之间的TTV。
10.一种器件前体晶片,包括:
由根据权利要求1所述的高质量单晶制成的碳化硅衬底;以及
在所述碳化硅晶片的所述表面上的至少一个第三族氮化物外延层。
11.根据权利要求10所述的器件前体晶片,其中,所述第三族氮化物层选自由GaN、AlGaN、AlN、AlInGaN、InN、AlInN及其组合构成的组中。
12.一种器件前体晶片,包括:
由根据权利要求1所述的高质量单晶制成的碳化硅衬底,其具有彼此相对的各个第一表面和第二表面;以及
在所述碳化硅衬底上的多个器件,每一个所述器件包括:
位于所述衬底上的外延层,所述层具有一定浓度的适合使所述外延层成为第一导电性类型的掺杂原子,并且具有相应的源极、沟道和漏极部分;
在所述沟道部分上的金属氧化物层;以及
在所述金属氧化物层上的金属栅极触点,以便当施加偏压给所述金属栅极触点时形成有源沟道。
13.一种器件前体晶片,包括:
由根据权利要求1所述的高质量单晶制成的碳化硅衬底,其具有彼此相对的各个第一表面和第二表面,以及
在所述碳化硅衬底上的多个器件,每一个所述器件包括:
在所述衬底上的导电沟道;
在所述导电沟道上的源极和漏极;以及
在所述导电沟道上的所述源极和所述漏极之间的金属栅极触点,以便在施加偏压给所述金属栅极触点时形成有源沟道。
14.一种器件前体晶片,包括:
由根据权利要求1所述的高质量单晶制成的碳化硅衬底,其具有彼此相对的各个第一表面和第二表面;以及
设置在所述单晶碳化硅衬底上的多个结型场效应晶体管。
15.一种器件前体晶片,包括:
由根据权利要求1所述的高质量单晶制成的碳化硅衬底,其具有彼此相对的各个第一表面和第二表面;以及
设置在所述单晶碳化硅衬底上的多个异质场效应晶体管。
16.一种器件前体晶片,包括:
由根据权利要求1所述的高质量单晶制成的碳化硅衬底,其具有彼此相对的各个第一表面和第二表面;以及
设置在所述单晶碳化硅衬底上的多个二极管。
17.一种制造如权利要求1所述的高质量碳化硅晶片的方法,包括:
在升华法引晶系统中制造高质量碳化硅体单晶,其中生长具有至少75毫米的直径的SiC晶梨;
将所述SiC晶梨切成至少一个晶片;以及
然后,研磨所述晶片,同时将所述研磨向下力限制到比弯曲所述晶片的向下力小的量,并且,使得在所述晶片的每一侧上所述表面下损伤基本上相同。
18.根据权利要求17所述的方法,还包括抛光所述SiC晶片。
19.根据权利要求17所述的方法,其中,生长SiC晶梨的步骤包括引晶升华法生长SiC。
20.根据权利要求19所述的方法,其中,所述引晶升华法生长SiC包括单个多型引晶升华法生长。
21.根据权利要求17所述的方法,其中,生长SiC晶梨的步骤包括生长具有选自由3C、4H、6H、2H和15R多型构成的组中的多型的晶梨。
22.根据权利要求18所述的方法,还包括在已抛光的晶片上生长选自由碳化硅和第三族氮化物构成的组中的至少一个外延层。
CN2006800108857A 2005-04-07 2006-04-07 低翘曲度、弯曲度和ttv的75毫米碳化硅晶片 Active CN101151402B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11/101,110 2005-04-07
US11/101,110 US7422634B2 (en) 2005-04-07 2005-04-07 Three inch silicon carbide wafer with low warp, bow, and TTV
PCT/US2006/013757 WO2006108191A2 (en) 2005-04-07 2006-04-07 Seventy five millimeter silicon carbide wafer with low warp, bow, and ttv

Publications (2)

Publication Number Publication Date
CN101151402A CN101151402A (zh) 2008-03-26
CN101151402B true CN101151402B (zh) 2012-05-30

Family

ID=37027682

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2006800108857A Active CN101151402B (zh) 2005-04-07 2006-04-07 低翘曲度、弯曲度和ttv的75毫米碳化硅晶片

Country Status (6)

Country Link
US (1) US7422634B2 (zh)
EP (1) EP1871927B1 (zh)
JP (2) JP2008535761A (zh)
CN (1) CN101151402B (zh)
TW (1) TWI330206B (zh)
WO (1) WO2006108191A2 (zh)

Families Citing this family (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7422634B2 (en) * 2005-04-07 2008-09-09 Cree, Inc. Three inch silicon carbide wafer with low warp, bow, and TTV
US7405430B2 (en) * 2005-06-10 2008-07-29 Cree, Inc. Highly uniform group III nitride epitaxial layers on 100 millimeter diameter silicon carbide substrates
CN102257190B (zh) * 2009-04-15 2014-04-16 住友电气工业株式会社 衬底、具有薄膜的衬底、半导体器件和半导体器件的制造方法
JP5398492B2 (ja) * 2009-11-27 2014-01-29 昭和電工株式会社 炭化珪素単結晶の製造方法
US20120161157A1 (en) 2009-12-25 2012-06-28 Sumitomo Electric Industries, Ltd. Silicon carbide substrate
US8647171B2 (en) 2010-03-12 2014-02-11 Wayne O. Duescher Fixed-spindle floating-platen workpiece loader apparatus
US8647172B2 (en) 2010-03-12 2014-02-11 Wayne O. Duescher Wafer pads for fixed-spindle floating-platen lapping
US8500515B2 (en) 2010-03-12 2013-08-06 Wayne O. Duescher Fixed-spindle and floating-platen abrasive system using spherical mounts
US8641476B2 (en) 2011-10-06 2014-02-04 Wayne O. Duescher Coplanar alignment apparatus for rotary spindles
US8696405B2 (en) 2010-03-12 2014-04-15 Wayne O. Duescher Pivot-balanced floating platen lapping machine
US8758088B2 (en) 2011-10-06 2014-06-24 Wayne O. Duescher Floating abrading platen configuration
US8602842B2 (en) 2010-03-12 2013-12-10 Wayne O. Duescher Three-point fixed-spindle floating-platen abrasive system
US8647170B2 (en) 2011-10-06 2014-02-11 Wayne O. Duescher Laser alignment apparatus for rotary spindles
US8740668B2 (en) 2010-03-12 2014-06-03 Wayne O. Duescher Three-point spindle-supported floating abrasive platen
US8337280B2 (en) 2010-09-14 2012-12-25 Duescher Wayne O High speed platen abrading wire-driven rotary workholder
US8430717B2 (en) 2010-10-12 2013-04-30 Wayne O. Duescher Dynamic action abrasive lapping workholder
US9227295B2 (en) * 2011-05-27 2016-01-05 Corning Incorporated Non-polished glass wafer, thinning system and method for using the non-polished glass wafer to thin a semiconductor wafer
JP2013008769A (ja) * 2011-06-23 2013-01-10 Sumitomo Electric Ind Ltd 炭化珪素基板の製造方法
JP2013027960A (ja) 2011-07-29 2013-02-07 Sumitomo Electric Ind Ltd 炭化珪素基板の製造方法および炭化珪素基板
CN105755534B (zh) 2011-08-05 2019-01-08 住友电气工业株式会社 衬底、半导体器件及其制造方法
US8860040B2 (en) 2012-09-11 2014-10-14 Dow Corning Corporation High voltage power semiconductor devices on SiC
CN104641453B (zh) 2012-10-12 2018-03-30 住友电气工业株式会社 Iii族氮化物复合衬底及其制造方法以及制造iii族氮化物半导体器件的方法
US9018639B2 (en) * 2012-10-26 2015-04-28 Dow Corning Corporation Flat SiC semiconductor substrate
US9039488B2 (en) 2012-10-29 2015-05-26 Wayne O. Duescher Pin driven flexible chamber abrading workholder
US9011207B2 (en) 2012-10-29 2015-04-21 Wayne O. Duescher Flexible diaphragm combination floating and rigid abrading workholder
US9604339B2 (en) 2012-10-29 2017-03-28 Wayne O. Duescher Vacuum-grooved membrane wafer polishing workholder
US9233452B2 (en) 2012-10-29 2016-01-12 Wayne O. Duescher Vacuum-grooved membrane abrasive polishing wafer workholder
US8998677B2 (en) 2012-10-29 2015-04-07 Wayne O. Duescher Bellows driven floatation-type abrading workholder
US9199354B2 (en) 2012-10-29 2015-12-01 Wayne O. Duescher Flexible diaphragm post-type floating and rigid abrading workholder
US8845394B2 (en) 2012-10-29 2014-09-30 Wayne O. Duescher Bellows driven air floatation abrading workholder
US8998678B2 (en) 2012-10-29 2015-04-07 Wayne O. Duescher Spider arm driven flexible chamber abrading workholder
US9738991B2 (en) 2013-02-05 2017-08-22 Dow Corning Corporation Method for growing a SiC crystal by vapor deposition onto a seed crystal provided on a supporting shelf which permits thermal expansion
US9797064B2 (en) 2013-02-05 2017-10-24 Dow Corning Corporation Method for growing a SiC crystal by vapor deposition onto a seed crystal provided on a support shelf which permits thermal expansion
US9017804B2 (en) 2013-02-05 2015-04-28 Dow Corning Corporation Method to reduce dislocations in SiC crystal growth
US8940614B2 (en) 2013-03-15 2015-01-27 Dow Corning Corporation SiC substrate with SiC epitaxial film
US9919972B2 (en) 2013-05-02 2018-03-20 Melior Innovations, Inc. Pressed and self sintered polymer derived SiC materials, applications and devices
US9657409B2 (en) 2013-05-02 2017-05-23 Melior Innovations, Inc. High purity SiOC and SiC, methods compositions and applications
US11091370B2 (en) 2013-05-02 2021-08-17 Pallidus, Inc. Polysilocarb based silicon carbide materials, applications and devices
US10322936B2 (en) 2013-05-02 2019-06-18 Pallidus, Inc. High purity polysilocarb materials, applications and processes
JP6197461B2 (ja) 2013-08-06 2017-09-20 住友電気工業株式会社 炭化珪素半導体基板およびその製造方法、ならびに炭化珪素半導体装置の製造方法
JP6136732B2 (ja) 2013-08-06 2017-05-31 住友電気工業株式会社 炭化珪素半導体基板およびその製造方法、ならびに炭化珪素半導体装置の製造方法
JP6136731B2 (ja) 2013-08-06 2017-05-31 住友電気工業株式会社 炭化珪素半導体基板およびその製造方法、ならびに炭化珪素半導体装置の製造方法
JP2015063429A (ja) * 2013-09-25 2015-04-09 住友電気工業株式会社 炭化珪素半導体基板および炭化珪素半導体基板を備えた炭化珪素半導体装置
JP6233058B2 (ja) 2013-09-25 2017-11-22 住友電気工業株式会社 炭化珪素半導体基板の製造方法
JP6241254B2 (ja) * 2013-12-17 2017-12-06 住友電気工業株式会社 単結晶の製造方法
JP5839069B2 (ja) * 2014-03-28 2016-01-06 住友電気工業株式会社 炭化珪素単結晶基板、炭化珪素エピタキシャル基板およびこれらの製造方法
US9279192B2 (en) * 2014-07-29 2016-03-08 Dow Corning Corporation Method for manufacturing SiC wafer fit for integration with power device manufacturing technology
US10753010B2 (en) * 2014-09-25 2020-08-25 Pallidus, Inc. Vapor deposition apparatus and techniques using high puritiy polymer derived silicon carbide
CN104538508B (zh) * 2014-12-09 2018-11-23 上海申和热磁电子有限公司 GaN外延用硅衬底材料的翘曲度控制方法
DE112016002124T5 (de) * 2015-05-11 2018-01-25 Sumitomo Electric Industries Ltd. Siliziumkarbid-Einkristallsubstrat, Siliziumkarbid-Halbleitervorrichtung und Verfahren zur Herstellung der Siliziumkarbid-Halbleitervorrichtung
JP5975200B1 (ja) * 2015-05-11 2016-08-23 住友電気工業株式会社 炭化珪素単結晶基板、炭化珪素半導体装置および炭化珪素半導体装置の製造方法
JP6755524B2 (ja) * 2015-09-30 2020-09-16 国立研究開発法人産業技術総合研究所 p型4H−SiC単結晶及びp型4H−SiC単結晶の製造方法
JP6964388B2 (ja) * 2015-10-15 2021-11-10 住友電気工業株式会社 炭化珪素エピタキシャル基板
WO2017090279A1 (ja) * 2015-11-24 2017-06-01 住友電気工業株式会社 炭化珪素単結晶基板、炭化珪素エピタキシャル基板および炭化珪素半導体装置の製造方法
DE112017000725T5 (de) * 2016-02-09 2018-10-31 Sumitomo Electric Industries, Ltd. Siliziumkarbit-Einkristallsubstrat
JP6930640B2 (ja) * 2017-03-08 2021-09-01 住友電気工業株式会社 炭化珪素単結晶基板、炭化珪素エピタキシャル基板および炭化珪素半導体装置の製造方法
JP2017108179A (ja) * 2017-03-08 2017-06-15 住友電気工業株式会社 炭化珪素単結晶基板、炭化珪素エピタキシャル基板および炭化珪素半導体装置の製造方法
EP3382067B1 (en) * 2017-03-29 2021-08-18 SiCrystal GmbH Silicon carbide substrate and method of growing sic single crystal boules
EP3382068B1 (en) 2017-03-29 2022-05-18 SiCrystal GmbH Silicon carbide substrate and method of growing sic single crystal boules
US10926378B2 (en) 2017-07-08 2021-02-23 Wayne O. Duescher Abrasive coated disk islands using magnetic font sheet
TWI660076B (zh) * 2017-10-06 2019-05-21 環球晶圓股份有限公司 碳化矽晶體及其製造方法
TWI677271B (zh) * 2018-08-31 2019-11-11 欣興電子股份有限公司 線路基板及其製作方法
CN111074338B (zh) * 2018-10-22 2022-09-20 赛尼克公司 具有保护膜的籽晶及其制备方法和附着方法、采用该籽晶的晶锭的制备方法
CN114026672A (zh) * 2019-06-13 2022-02-08 住友电气工业株式会社 碳化硅衬底和碳化硅衬底的制造方法
US11691241B1 (en) * 2019-08-05 2023-07-04 Keltech Engineering, Inc. Abrasive lapping head with floating and rigid workpiece carrier
CN113046825B (zh) * 2019-12-27 2022-04-12 北京天科合达半导体股份有限公司 一种高质量SiC单晶片及其制备方法
WO2021133626A1 (en) * 2019-12-27 2021-07-01 Cree, Inc. Large diameter silicon carbide wafers
TWI745001B (zh) * 2020-07-24 2021-11-01 環球晶圓股份有限公司 接合用晶片結構及其製造方法
JP7057014B2 (ja) 2020-08-31 2022-04-19 セニック・インコーポレイテッド 炭化珪素インゴットの製造方法及びそれによって製造された炭化珪素インゴット
TWI762364B (zh) * 2021-06-29 2022-04-21 環球晶圓股份有限公司 晶錠評估方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5199055A (en) * 1991-08-05 1993-03-30 Shin-Etsu Chemical Co., Ltd. X-ray lithographic mask blank with reinforcement

Family Cites Families (78)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL87348C (zh) 1954-03-19 1900-01-01
US2938136A (en) 1958-08-26 1960-05-24 Gen Electric Electroluminescent lamp
US4752893A (en) * 1985-11-06 1988-06-21 Texas Instruments Incorporated Graphics data processing apparatus having image operations with transparent color having a selectable number of bits
US5373171A (en) 1987-03-12 1994-12-13 Sumitomo Electric Industries, Ltd. Thin film single crystal substrate
US4866005A (en) 1987-10-26 1989-09-12 North Carolina State University Sublimation of silicon carbide to produce large, device quality single crystals of silicon carbide
US4865685A (en) 1987-11-03 1989-09-12 North Carolina State University Dry etching of silicon carbide
DE68920365T2 (de) * 1988-06-28 1995-06-08 Mitsubishi Material Silicon Verfahren zur Polierung eines Halbleiter-Plättchens.
GB8815984D0 (en) 1988-07-05 1988-08-10 Univ Brunel Probes
GB8816632D0 (en) 1988-07-13 1988-08-17 Raychem Ltd Electrical device
US5006914A (en) 1988-12-02 1991-04-09 Advanced Technology Materials, Inc. Single crystal semiconductor substrate articles and semiconductor devices comprising same
US5030583A (en) 1988-12-02 1991-07-09 Advanced Technolgy Materials, Inc. Method of making single crystal semiconductor substrate articles and semiconductor device
US5119540A (en) 1990-07-24 1992-06-09 Cree Research, Inc. Apparatus for eliminating residual nitrogen contamination in epitaxial layers of silicon carbide and resulting product
US5210051A (en) 1990-03-27 1993-05-11 Cree Research, Inc. High efficiency light emitting diodes from bipolar gallium nitride
JPH03295267A (ja) 1990-04-13 1991-12-26 Seiko Epson Corp 薄膜装置
US5311055A (en) 1991-11-22 1994-05-10 The United States Of America As Represented By The Secretary Of The Navy Trenched bipolar transistor structures
GB9206086D0 (en) 1992-03-20 1992-05-06 Philips Electronics Uk Ltd Manufacturing electronic devices comprising,e.g.tfts and mims
DE4323814A1 (de) 1992-09-25 1994-03-31 Siemens Ag MIS-Feldeffekttransistor
US5709745A (en) 1993-01-25 1998-01-20 Ohio Aerospace Institute Compound semi-conductors and controlled doping thereof
US5611955A (en) 1993-10-18 1997-03-18 Northrop Grumman Corp. High resistivity silicon carbide substrates for high power microwave devices
US5422901A (en) 1993-11-15 1995-06-06 Motorola, Inc. Semiconductor device with high heat conductivity
US5393993A (en) 1993-12-13 1995-02-28 Cree Research, Inc. Buffer structure between silicon carbide and gallium nitride and resulting semiconductor devices
US5679152A (en) 1994-01-27 1997-10-21 Advanced Technology Materials, Inc. Method of making a single crystals Ga*N article
DE69526129T2 (de) * 1994-05-23 2002-08-22 Sumitomo Electric Industries Verfahren und Vorrichtung zum Herstellen eines mit hartem Material bedeckten Halbleiters durch Polieren
DE69531654T2 (de) * 1994-06-15 2004-07-29 Seiko Epson Corp. Verfahren zur herstellung eines dünnschicht-halbleiter-transistors
US5523589A (en) 1994-09-20 1996-06-04 Cree Research, Inc. Vertical geometry light emitting diode with group III nitride active layer and extended lifetime
US5563428A (en) 1995-01-30 1996-10-08 Ek; Bruce A. Layered structure of a substrate, a dielectric layer and a single crystal layer
US5661312A (en) 1995-03-30 1997-08-26 Motorola Silicon carbide MOSFET
US6670693B1 (en) 1996-12-05 2003-12-30 Nathaniel R. Quick Laser synthesized wide-bandgap semiconductor electronic devices and circuits
US5718760A (en) 1996-02-05 1998-02-17 Cree Research, Inc. Growth of colorless silicon carbide crystals
US5872415A (en) 1996-08-16 1999-02-16 Kobe Steel Usa Inc. Microelectronic structures including semiconductor islands
JPH10135164A (ja) * 1996-10-29 1998-05-22 Komatsu Electron Metals Co Ltd 半導体ウェハの製造方法
US6533874B1 (en) 1996-12-03 2003-03-18 Advanced Technology Materials, Inc. GaN-based devices using thick (Ga, Al, In)N base layers
US6119540A (en) * 1997-05-14 2000-09-19 Techco Corporation Yoke apparatus for rack and pinion
US6150239A (en) 1997-05-31 2000-11-21 Max Planck Society Method for the transfer of thin layers monocrystalline material onto a desirable substrate
US6201342B1 (en) 1997-06-30 2001-03-13 The United States Of America As Represented By The Secretary Of The Navy Automatically sharp field emission cathodes
TW358764B (en) 1997-07-07 1999-05-21 Super Silicon Crystal Res Inst A method of double-side lapping a wafer and an apparatus therefor
US6396864B1 (en) 1998-03-13 2002-05-28 Jds Uniphase Corporation Thermally conductive coatings for light emitting devices
US6316793B1 (en) 1998-06-12 2001-11-13 Cree, Inc. Nitride based transistors on semi-insulating silicon carbide substrates
EP1105555B1 (de) 1998-07-13 2002-04-24 Siemens Aktiengesellschaft VERFAHREN ZUR ZÜCHTUNG VON SiC-EINKRISTALLEN
JP2000174166A (ja) 1998-10-02 2000-06-23 Sumitomo Electric Ind Ltd 半導体搭載パッケ―ジ
US6744800B1 (en) 1998-12-30 2004-06-01 Xerox Corporation Method and structure for nitride based laser diode arrays on an insulating substrate
US6218680B1 (en) 1999-05-18 2001-04-17 Cree, Inc. Semi-insulating silicon carbide without vanadium domination
US6396080B2 (en) 1999-05-18 2002-05-28 Cree, Inc Semi-insulating silicon carbide without vanadium domination
JP3314921B2 (ja) 1999-06-08 2002-08-19 三菱住友シリコン株式会社 半導体材料の切断・加工方法
US6448642B1 (en) 2000-01-27 2002-09-10 William W. Bewley Pressure-bonded heat-sink system
US6586781B2 (en) 2000-02-04 2003-07-01 Cree Lighting Company Group III nitride based FETs and HEMTs with reduced trapping and method for producing the same
AU2001239182A1 (en) 2000-02-15 2001-08-27 Osram Opto Semiconductors Gmbh Semiconductor component which emits radiation, and method for producing the same
US20010024877A1 (en) * 2000-03-17 2001-09-27 Krishna Vepa Cluster tool systems and methods for processing wafers
US6599815B1 (en) 2000-06-30 2003-07-29 Memc Electronic Materials, Inc. Method and apparatus for forming a silicon wafer with a denuded zone
DE10032838B4 (de) 2000-07-06 2015-08-20 Osram Opto Semiconductors Gmbh Strahlung emittierender Halbleiterchip und Verfahren zu dessen Herstellung
FR2817395B1 (fr) 2000-11-27 2003-10-31 Soitec Silicon On Insulator Procede de fabrication d'un substrat notamment pour l'optique, l'electronique ou l'optoelectronique et substrat obtenu par ce procede
FR2835096B1 (fr) 2002-01-22 2005-02-18 Procede de fabrication d'un substrat auto-porte en materiau semi-conducteur monocristallin
AU2002219978A1 (en) 2000-11-30 2002-06-11 Kyma Technologies, Inc. Method and apparatus for producing miiin columns and miiin materials grown thereon
US6548333B2 (en) 2000-12-01 2003-04-15 Cree, Inc. Aluminum gallium nitride/gallium nitride high electron mobility transistors having a gate contact on a gallium nitride based cap segment
US6497763B2 (en) 2001-01-19 2002-12-24 The United States Of America As Represented By The Secretary Of The Navy Electronic device with composite substrate
JP2002220299A (ja) 2001-01-19 2002-08-09 Hoya Corp 単結晶SiC及びその製造方法、SiC半導体装置並びにSiC複合材料
US6956250B2 (en) 2001-02-23 2005-10-18 Nitronex Corporation Gallium nitride materials including thermally conductive regions
US6699770B2 (en) 2001-03-01 2004-03-02 John Tarje Torvik Method of making a hybride substrate having a thin silicon carbide membrane layer
JP2002265296A (ja) 2001-03-09 2002-09-18 Kobe Steel Ltd ダイヤモンド薄膜及びその製造方法
US6686676B2 (en) 2001-04-30 2004-02-03 General Electric Company UV reflectors and UV-based light sources having reduced UV radiation leakage incorporating the same
US6507046B2 (en) 2001-05-11 2003-01-14 Cree, Inc. High-resistivity silicon carbide substrate for semiconductor devices with high break down voltage
US6849882B2 (en) 2001-05-11 2005-02-01 Cree Inc. Group-III nitride based high electron mobility transistor (HEMT) with barrier/spacer layer
US6706114B2 (en) 2001-05-21 2004-03-16 Cree, Inc. Methods of fabricating silicon carbide crystals
JP2003037074A (ja) 2001-07-26 2003-02-07 Toshiba Corp 半導体装置およびその製造方法
US6634770B2 (en) 2001-08-24 2003-10-21 Densen Cao Light source using semiconductor devices mounted on a heat sink
US6849874B2 (en) 2001-10-26 2005-02-01 Cree, Inc. Minimizing degradation of SiC bipolar semiconductor devices
US6670283B2 (en) 2001-11-20 2003-12-30 International Business Machines Corporation Backside protection films
US7030428B2 (en) 2001-12-03 2006-04-18 Cree, Inc. Strain balanced nitride heterojunction transistors
US7220313B2 (en) 2003-07-28 2007-05-22 Cree, Inc. Reducing nitrogen content in silicon carbide crystals by sublimation growth in a hydrogen-containing ambient
US7147715B2 (en) 2003-07-28 2006-12-12 Cree, Inc. Growth of ultra-high purity silicon carbide crystals in an ambient containing hydrogen
US6814801B2 (en) 2002-06-24 2004-11-09 Cree, Inc. Method for producing semi-insulating resistivity in high purity silicon carbide crystals
EP1516369A1 (en) 2002-06-26 2005-03-23 Cambridge Semiconductor Limited Lateral semiconductor device
JP4054243B2 (ja) * 2002-10-10 2008-02-27 新日本製鐵株式会社 炭化珪素単結晶ウェハの製造方法、および炭化珪素単結晶ウェハ
US20040134418A1 (en) 2002-11-08 2004-07-15 Taisuke Hirooka SiC substrate and method of manufacturing the same
JP4148105B2 (ja) * 2002-11-08 2008-09-10 日立金属株式会社 SiC基板の製造方法
US6964917B2 (en) 2003-04-08 2005-11-15 Cree, Inc. Semi-insulating silicon carbide produced by Neutron transmutation doping
US7025665B2 (en) * 2004-03-30 2006-04-11 Solaicx, Inc. Method and apparatus for cutting ultra thin silicon wafers
US7422634B2 (en) * 2005-04-07 2008-09-09 Cree, Inc. Three inch silicon carbide wafer with low warp, bow, and TTV

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5199055A (en) * 1991-08-05 1993-03-30 Shin-Etsu Chemical Co., Ltd. X-ray lithographic mask blank with reinforcement

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Ellison A et al..Wafer warpage,crystal bending and interface properties of 4H-SiC epi-wafers.<<Diamond and related materials>>.1997,第6卷(第10期),1369-1373. *
EllisonAetal..Waferwarpage crystal bending and interface properties of 4H-SiC epi-wafers.<<Diamond and related materials>>.1997

Also Published As

Publication number Publication date
WO2006108191A8 (en) 2007-05-31
EP1871927A2 (en) 2008-01-02
CN101151402A (zh) 2008-03-26
JP2012214376A (ja) 2012-11-08
TW200702500A (en) 2007-01-16
WO2006108191A2 (en) 2006-10-12
WO2006108191A3 (en) 2007-03-15
US7422634B2 (en) 2008-09-09
US20060225645A1 (en) 2006-10-12
TWI330206B (en) 2010-09-11
JP2008535761A (ja) 2008-09-04
EP1871927B1 (en) 2020-01-01

Similar Documents

Publication Publication Date Title
CN101151402B (zh) 低翘曲度、弯曲度和ttv的75毫米碳化硅晶片
US10934634B2 (en) Polycrystalline SiC substrate and method for manufacturing same
US7393790B2 (en) Method of manufacturing carrier wafer and resulting carrier wafer structures
JP5304713B2 (ja) 炭化珪素単結晶基板、炭化珪素エピタキシャルウェハ、及び薄膜エピタキシャルウェハ
KR20150074176A (ko) 평탄한 SiC 반도체 기판
CN101591810A (zh) 制造ⅲ族氮化物结晶、ⅲ族氮化物结晶衬底以及半导体器件的方法
CA2581856A1 (en) Low micropipe 100 mm silicon carbide wafer
JP5569112B2 (ja) 炭化珪素単結晶ウェハの製造方法及びこの方法で得られた炭化珪素単結晶ウェハ
US9431489B2 (en) β-Ga2O3-based single crystal substrate
CN104878449B (zh) β-Ga2O3基单晶基板
US20170191183A1 (en) Method of manufacturing silicon carbide ingot, silicon carbide seed substrate, silicon carbide substrate, semiconductor device and method of manufacturing semiconductor device
KR20210110547A (ko) Ga2O3계 단결정 기판
JP2017065986A (ja) 低抵抗率炭化珪素単結晶基板の製造方法
JP2021091590A (ja) リン化インジウム基板、半導体エピタキシャルウエハ、及びリン化インジウム基板の製造方法
RU2162902C1 (ru) Монокристаллический карбид кремния sic и способ его получения (варианты)
US11795576B2 (en) Production method of silicon carbide wafer, production method of semiconductor substrate, and production method of silicon carbide semiconductor device
US20220084820A1 (en) Gan substrate wafer and production method for same
CN116949577A (zh) 一种高精度大尺寸氮化镓单晶衬底的加工方法
JP2010006700A (ja) 薄型サファイヤ基板

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CP01 Change in the name or title of a patent holder

Address after: North Carolina USA

Patentee after: Wofu Semiconductor Co.,Ltd.

Address before: North Carolina USA

Patentee before: CREE, Inc.

CP01 Change in the name or title of a patent holder