CN101159312B - 具有向周围延伸的存储元件的存储单元器件 - Google Patents

具有向周围延伸的存储元件的存储单元器件 Download PDF

Info

Publication number
CN101159312B
CN101159312B CN200710161895.7A CN200710161895A CN101159312B CN 101159312 B CN101159312 B CN 101159312B CN 200710161895 A CN200710161895 A CN 200710161895A CN 101159312 B CN101159312 B CN 101159312B
Authority
CN
China
Prior art keywords
memory cell
hearth electrode
electrode member
cell device
material layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN200710161895.7A
Other languages
English (en)
Other versions
CN101159312A (zh
Inventor
龙翔澜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Macronix International Co Ltd
Original Assignee
Macronix International Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Macronix International Co Ltd filed Critical Macronix International Co Ltd
Publication of CN101159312A publication Critical patent/CN101159312A/zh
Application granted granted Critical
Publication of CN101159312B publication Critical patent/CN101159312B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/56Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency
    • G11C11/5678Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency using amorphous/crystalline phase transition storage elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/30Resistance change memory devices, e.g. resistive RAM [ReRAM] devices comprising selection components having three or more electrodes, e.g. transistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/021Formation of the switching material, e.g. layer deposition
    • H10N70/026Formation of the switching material, e.g. layer deposition by physical vapor deposition, e.g. sputtering
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/061Patterning of the switching material
    • H10N70/068Patterning of the switching material by processes specially adapted for achieving sub-lithographic dimensions, e.g. using spacers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • H10N70/231Multistable switching devices, e.g. memristors based on solid-state phase change, e.g. between amorphous and crystalline phases, Ovshinsky effect
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/821Device geometry
    • H10N70/826Device geometry adapted for essentially vertical current flow, e.g. sandwich or pillar type devices
    • H10N70/8265Device geometry adapted for essentially vertical current flow, e.g. sandwich or pillar type devices on sidewalls of dielectric structures, e.g. mesa or cup type devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/882Compounds of sulfur, selenium or tellurium, e.g. chalcogenides
    • H10N70/8828Tellurides, e.g. GeSbTe
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/883Oxides or nitrides
    • H10N70/8833Binary metal oxides, e.g. TaOx
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/883Oxides or nitrides
    • H10N70/8836Complex metal oxides, e.g. perovskites, spinels
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0004Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements comprising amorphous/crystalline phase transition cells

Abstract

本发明涉及一种具有可通过施加能量而在电性状态之间切换的存储材料的存储单元器件,其具有底电极构件、顶电极构件以及位于顶电极构件与底电极构件之间的电介质材料。此顶电极以及底电极构件具有彼此大致对准的环绕向外延伸的外表面。存储元件包含存储材料,至少部分环绕且与该底电极构件和该顶电极构件的该外表面电接触,以在该电介质材料中产生存储元件转换区域。在某些实施例中,底电极构件、该顶电极构件以及该电介质材料定义材料堆叠,该材料堆叠具有延伸于该底电极构件和该顶电极构件之间且通过该电介质材料的方向的长度,以及延伸垂直于该长度且具有亚光刻尺寸的宽度。

Description

具有向周围延伸的存储元件的存储单元器件 
技术领域
本发明涉及以可编程电阻材料为基础的高密度存储器件,例如以相变化为基础的存储材料,以及用以制造这种器件的方法。 
背景技术
以相变化为基础的存储材料被广泛地运用于读写光盘中。这些材料包括有至少两种固态相,包括如大部分为非晶态的固态相,以及大体上为结晶态的固态相。激光脉冲用于读写光盘中,以在两种相中切换,并读取这种材料在相变化之后的光学性质。 
如硫属化物及类似材料的这种相变化存储材料,可通过施加幅度适用于集成电路中的电流,而致使晶相变化。这种特性则引发使用可编程电阻材料以形成非易失性存储器电路等兴趣。 
此领域发展的一种方法为致力于在集成电路结构上形成微小孔洞,并使用微量可编程的电阻材料填充这些微小孔洞。致力于这种微小孔洞的专利包括:于1997年11月11日公布的美国专利第5,687,112号“Multibit Single CellMemory Element Having Tapered Contact”、发明人为Ovshinky;于1998年8月4日公布的美国专利第5,789,277号“Method of Making Chalogenide[sic]Memory Device”、发明人为Zahorik等;于2000年11月21日公布的美国专利第6,150,253号“Controllable Ovonic Phase-ChangeSemiconductor Memory Device and Methods of Fabricatingthe Same”、发明人为Doan等。 
在相变化存储器中,数据通过使用电流而致使相变化材料在非晶态以及结晶态中的变化而储存。电流会加热此材料,并导致在此两种态之间的变化。从非晶态转变至结晶态一般为低电流步骤。从结晶态转变至非晶态(以下称为重置(reset))一般为较高电流步骤。理想状态下,致使相变化材料从结晶态转变至非晶态的重置电流幅值应越低越好。欲降低重置所需的重置电流幅值,可通过减低在存储器中的相变化材料器件的尺寸而达成。与相变化存储器件有关的问题之一在于,用以重置操作的电流幅值取决于相变化材料中需要进行相变化部分的体积。因此,使用标准集成电路工艺所制造的单元,将受限于工艺设备的最小特征尺寸。因此,需要一种可提供亚光刻尺寸给存储单元的技术,其可提供大规模、高密度存储器件所需要的一致性或可靠性。 
一种用以在相变化单元中控制活性区域的尺寸的方法,为设计非常微小的电极,以导通电流至相变化材料本体。此微小电极结构将诱使在相变化材料中接点处如蘑菇顶端的一小部分发生相变化。请参见美国专利第6,429,064号、公布于2002/8/6、申请人为Wicker的“Reduced Contact Areasof Sidewall Conductor”;美国专利第6,462,253号、公布于2002/10/8、申请人为Gilgenr的“Method forFabricating a Small Area of Contact BetweenElectrodes”;美国专利第6,501,111号、公布于2002/12/31、申请人为Lowrey的“Three-Dimensional(3D)Programmable Device”;美国专利第6,563,156号、公布于2003/7/1、申请人为Harshfield的“Memory Elements andMethods for Making Same”。 
因此,则有机会设计形成存储单元的方法与结构,此存储单元具有微小的可编程电阻材料活性区域,并使用可靠且可重复的制造技术。 
发明内容
本发明涉及一种具有存储材料可通过施加能量而在电性状态之间切换的存储单元器件。此存储单元器件具有底电极构件、顶电极构件以及电介质材料位于顶电极构件与底电极构件之间。此顶电极构件具有环状向外延伸的外表面。而此顶电极构件在该底电极构件之上,该顶电极构件具有与该底电极构件的该外表面大致对准的环状向外延伸的外表面。存储元件包含存储材料,至少部分环绕且与该底电极构件和该顶电极构件的该外表面电接触,以在该存储元件的中央部分产生存储元件转换区域。在某些实施例中,底电极构件、该顶电极构件以及该电介质材料定义一材料堆叠,该材料堆叠具有延伸于该底电极构件和该顶电极构件之间且通过该电介质材料的方向的长度,以及延伸垂直于该长度且具有亚光刻尺寸的宽度。在某些实施例中,此存储元件为管状。 
制造具有存储材料可通过施加能量而在电性状态之间切换的存储单元器件的方法的一个范例如下。存储单元存取层被形成,其包含底电极以及上表面,该底电极具有底电极表面于该上表面。具有环绕向外延伸的外表面的材料堆叠被形成于该底电极表面上,上导电材料层与下导电材料层之间包含电介质材料层。存储材料层被形成于该外表面,以至少部分环绕该材料堆叠。此存储材料被电介质材料所环绕。顶电极被形成且与该材料堆叠的该上层材料接触。在某些实施例中,此材料堆叠形成步骤包含下列步骤。由第一导电材料形成的第一层被沉积于该存储单元存取层的上表面之上。电介质材料层被沉积于该第一层之上。由第二导电材料形成的第二层被沉积于该电介质材料层之上。掩模被形成于该第二层之上,该掩模与该底电极表面对准。此掩模被图形化以产生亚光刻尺寸图形化掩模。而未被该图形化掩模覆盖的材料被去除,以产生亚光刻尺寸材料堆叠。 
本发明还公开了一种包括有存储阵列的集成电路,其包 括多个具有存取晶体管的这种存储器件,其以高密度的行(column)、列(row)阵列方式安排。此存取晶体管在半导体衬底中包括有源极与漏极区域,且包括沿着存储单元的列方向耦合到字线的栅极。此存储单元形成于此集成电路的晶体管之上的一层中,且具有接触至相对应的存取晶体管的漏极的底电极。位线以一层位于存储单元上的金属层而形成,此存储单元在阵列中沿着存储单元的行方向而接触至此存储器件的顶电极。在一个实施例中,两列存储单元共用源极接点,且源极线耦合到源极接点,并在此阵列中大致上以与字线平行的方向延伸。 
可靠的存储单元结构可利用低电流操作,并可利用标准光刻与沉积工艺制造的。此单元结构特别适用于制造大规模集成电路中的CMOS电路。 
以下详细说明本发明的结构与方法。本发明说明书目的并非在于定义本发明。本发明由权利要求书所定义。本发明的所有实施例、特征、观点及优点等将可通过下列具体实施方式及附图获得充分了解。 
附图说明
图1是根据本发明的一个实施例的存储单元器件的截面图,此存储元件包括环绕电介质材料的环状向外延伸的部分,以及顶电极和底电极延伸部分; 
图2是沿着图1中2-2线的简化剖面图; 
图3是包括有如图1中的存储单元的存储阵列的电路图; 
图4是包括有如图1中的存储单元器件以及其他电路的集成电路器件的方块图; 
图5是本发明的一个实施例中的两个单元阵列结构的剖面图; 
图6-15示出用以制造如图5中的存储单元阵列结构时 的各对应工艺步骤; 
图16和图17显示图1中存储单元器件的某些部分的替代实施例。 
具体实施方式
以下参照附图进行详细说明。优选实施例仅用以说明本发明,而非用以限制其范围,本发明的范围以权利要求书界定。本领域技术人员应能依据下列说明而理解本发明的等效变化。在不同实施例中的相同或类似器件则使用相同或类似的参考标号来表示。 
图1是存储单元器件10的简化截面图。此器件包括底电极或第一电极12,以及顶电极或第二电极14,两者间由环状向外延伸、或可称为管状的存储元件16连接。此存储元件16,在此实施例中,环绕此底电极以及顶电极构件或其延伸部分17和18以及电介质材料20,此电介质材料于两延伸部分17和18之间延伸。此存储元件16,亦被另一电介质材料26环绕。如此,此存储元件16具有依内部的底电极以及顶电极延伸部分17和18支撑,以及电介质材料26。 
此存储元件16的中央部分22作为此存储元件的转换区域。假设此存储元件是如GST(会在之后详述)的相变化材料,这种在不同电性状态之间的转换通常会在中央部分22发生,至少因为较电极12,14更好的热绝缘。 
在此实施例中,此存储元件16为管状,完全环状向外延伸的结构。请参阅图2。然而,在某些实施例以及某些工艺中,存储元件16并未完全环绕整个或一部分的一层或多层电介质材料20,底电极延伸17和顶电极延伸18。使用完全环状向外延伸的存储材料16可以通过减少在不同电性状态之间的转换区域相较于存储材料的整个圆柱状的体积,来增加此存储材料的效率。当此存储元件是相变化材料时,其可降低此相变化材料重置所需的电流及电能。此外,可以提 供在图形化之后(请参阅图9和图10)优选的工艺均匀度也可以通过使用环状向外延伸的存储材料16而实现。 
电介质材料20和26可包括二氧化硅、氮氧化硅、氮化硅、氧化铝、或其他低介电常数(低K,permittivity)的电介质,或为ONO或SONO多层结构。或者,此填充物可包括电绝缘层,其包括选自下列群组的一个以上元素:硅、钛、铝、钽、氮、氧、以及碳。在优选器件中,此填充物具有低导热性,其低于约0.014J/cm*K*sec。在其他优选实施例中,此热绝缘层的导热性低于此相变化材料在非晶态时的导热性,或者低于包含有GST的相变化材料的导热性,亦即0.003J/cm*K*sec。代表性的热绝缘材料包括这些包括有下列元素的组合物材料:硅、碳、氧、氟、以及氢。可作为热绝缘盖帽层的热绝缘材料范例包括:二氧化硅、硅碳氧化物(SiCOH)、聚亚酰胺、聚酰胺、以及氟碳聚合物。其他可作为热绝缘盖帽层的例示材料包括:含氟二氧化硅、硅氧烷(silsesquioxane)、聚亚芳香醚(polyarylene ether)、聚对二甲苯(parylene)、含氟聚合物、含氟非晶碳、类金刚石碳、多孔性二氧化硅、中孔性二氧化硅、多孔性硅氧烷、多孔性聚亚酰胺、以及多孔性聚亚芳香醚。在其他实施例中,此热绝缘结构包括以气体填充的空洞以作为热绝缘。在此电介质材料20和26中的单层或复合层均可提供热绝缘与电绝缘效果。 
图1的存储单元器件10的典型尺寸如下。管状存储元件16最好具有小于30纳米的壁厚,通常是大约10纳米。管状存储元件16最好具有3小于50纳米的内面表面直径,通常是大约30纳米。管状存储元件16最好具有小于100纳米的长度,通常是大约50纳米。直径2和4通常分别是大约40和90纳米。高度6和7通常分别是大约50和40纳米。直径4通常是光刻工艺的最小特征尺寸,而直径3通常是以下图8到图10所述光刻图形化工艺所能达到的亚光刻特征 尺寸。其它的尺寸和尺寸范围也可以被使用。 
此处所描述的存储单元器件10可以使用标准的光刻以及薄膜沉积技术来制造,并不需要特别的步骤来形成亚光刻特征尺寸,而可以达到十分小尺寸的单元区域,其可在编程时真的改变其阻值。在本发明的实施例中,此存储材料包括相变化材料,例如以下所述的Ge2Sb2Te5或其他材料。单元10中进行相变化的区域非常小,因此相变化所需要的重置电流的幅值也相当小。 
存储单元器件10的实例包括以相变化为基础的存储材料,包括以硫属化物(chalcogenide)为基础的材料以及其他材料。硫属化物包括下列四元素的任一者:氧(O)、硫(S)、硒(Se)、以及碲(Te),形成元素周期表上第VI族的部分。硫属化物包括将硫属元素与更为正电性的元素或自由基结合而得。硫属化合物合金包括将硫属化合物与其他物质如过渡金属等结合。硫属化合物合金通常包括一个以上选自元素周期表第六栏的元素,例如锗(Ge)以及锡(Sn)。通常,硫属化合物合金包括下列元素中一个以上的复合物:锑(Sb)、镓(Ga)、铟(In)、以及银(Ag)。许多以相变化为基础的存储材料已经被描述于技术文件中,包括下列合金:镓/锑、铟/锑、铟/硒、锑/碲、锗/碲、锗/锑/碲、铟/锑/碲、镓/硒/碲、锡/锑/碲、铟/锑/锗、银/铟/锑/碲、锗/锡/锑/碲、锗/锑/硒/碲、以及碲/锗/锑/硫。在锗/锑/碲合金家族中,可以尝试大范围的合金成分。此成分可以下列特征式表示:TeaGebSb100-(a+b),其中a与b代表在所有构成元素中的原子百分比。一位研究员描述了最有用的合金为,在沉积材料中所包含的平均碲浓度远低于70%,典型地低于60%,并在一般形态合金中的碲含量范围从最低23%至最高58%,且优选介于48%至58%的碲含量。锗的浓度约高于5%,且其在材料中的平均范围从最低8%至最高30%,一般低于50%。优选地,锗的浓度范围介于8%至40%。在此成分中所剩下的 主要成分则为锑。上述百分比为原子百分比,其为所有组成元素加总为100%。(Ovshinky‘112专利,栏10~11)由另一研究者所评估的特殊合金包括Ge2Sb2Te5、GeSb2Te4、以及GeSb4Te7。(Noboru Yamada,“Potential of Ge-Sb-TePhase-change Optical Disks for High-Data-RateRecording”,SPIE v.3109,pp.28-37(1997))更一般地,过渡金属如铬(Cr)、铁(Fe)、镍(Ni)、铌(Nb)、钯(Pd)、铂(Pt)、以及上述的混合物或合金,可与锗/锑/碲结合以形成相变化合金,其包括有可编程的电阻性质。可使用的存储材料的特殊范例,如Ovshinsky ‘112专利中栏11-13所述,其范例在此列入参考。 
相变化合金可在第一结构态与第二结构态之间切换,其中第一结构态指此材料大体上为非晶固相,而第二结构态指此材料大体上为结晶固相。这些合金至少为双稳态的。此词汇“非晶”用以指称相对较无次序的结构,其较之单晶更无次序性,而带有可检测的特征如比结晶态更高的电阻值。此词汇“结晶”用以指称相对较有次序的结构,其较的非晶态更有次序,因此包括有可检测的特征例如比非晶态更低的电阻值。典型地,相变化材料可电切换至完全结晶态与完全非晶态之间所有可检测的不同状态。其他受到非晶态与结晶态的改变而影响的材料特征包括,原子次序、自由电子密度、以及激活能。此材料可切换成为不同的固态、或可切换成为由两种以上固态所形成的混合物,提供从非晶态至结晶态之间的灰阶部分。此材料中的电性质亦可能随之改变。 
相变化合金可通过施加电脉冲而从一种相态切换至另一相态。先前观察指出,较短、较大幅度的脉冲倾向于将相变化材料的相态改变成大体为非晶态。较长、较低幅度的脉冲倾向于将相变化材料的相态改变成大体为结晶态。在较短、较大幅度脉冲中的能量,够大因此足以破坏结晶结构的键合,同时够短因此可以防止原子再次排列成结晶态。在没 有不适当实验的情形下,可决定特别适用于特定相变化合金的适当脉冲量变曲线。 
接着简单描述四种电阻存储材料。 
1.硫属化物材料 
GexSbyTez,其中x∶y∶z=2∶2∶5, 
或其他成分为x:0~5;y:0~5;z:0~10。 
以氮、硅、钛或其他元素掺杂的GeSbTe也可被使用。 
用以形成硫属化物材料的例示方法,利用PVD溅射或磁电管(Magnetron)溅射方式,其反应气体为氩气、氮气、及/或氦气、压力为1mTorr至100mTorr。此沉积步骤一般在室温下进行。长宽比为1~5的准直器(collimater)可用以改良其填入表现。为了改善其填入表现,亦可使用数十至数百伏特的直流偏压。另一方面,同时合并使用直流偏压以及准直器亦是可行的。 
可以选择性地在真空中或氮气环境中进行沉积后退火处理,以改良硫属化物材料的结晶态。此退火处理的温度典型地介于100℃至400℃,而退火时间则少于30分钟。 
硫属化物材料的厚度随着单元结构的设计而定。一般而言,硫属化物的厚度大于8nm者可以具有相转换特性,使得此材料展现至少双稳态的电阻态。 
2.超巨磁阻(CMR)材料 
PrxCayMnO3,其中x∶y=0.5∶0.5, 
或其他成分为x:0~1;y:0~1。包括有锰氧化物的超巨磁阻材料亦可被使用。 
用以形成超巨磁阻材料的例示方法,利用PVD溅射或磁电管溅射方式,其反应气体为氩气、氮气、氧气及/或氦气、压力为1mTorr至100mTorr。此沉积步骤的温度可介于室温至600℃,视后处理条件而定。长宽比为1~5的准直器可用以改良其填入表现。为了改善其填入表现,亦可使用数十至数百伏特的直流偏压。另一方面,同时合并使用直流偏压 以及准直器亦是可行的。可施加数十高斯至1特司拉(tesla,10,000高斯)之间的磁场,以改良其磁结晶态。 
可以选择性地在真空中或氮气环境中或氧气/氮气混合环境中进行沉积后退火处理,以改良超巨磁阻材料的结晶态。此退火处理的温度典型地介于400℃至600℃,而退火时间则少于2小时。 
超巨磁阻材料的厚度随着存储单元结构的设计而定。厚度介于10nm至200nm的超巨磁阻材料,可被用作核心材料。YBCO(YBACuO3,一种高温超导体材料)缓冲层通常被用以改良超巨磁阻材料的结晶态。此YBCO的沉积在沉积超巨磁阻材料之前进行。YBCO的厚度介于30nm至200nm。 
3.双元素化合物 
NixOy、TixOy、AlxOy、WxOy、ZnxOy、ZrxOy、CuxOy等,其中x∶y=0.5∶0.5, 
或其他成分为x:0~1;y:0~1。 
用以形成此存储材料的例示方法 
1.沉积:利用PVD溅射或磁电管溅射方式,其反应气体为氩气、氮气、氧气、及/或氦气、压力为1mTorr至100mTorr,其标靶金属氧化物为如NixOy、TixOy、AlxOy、WxOy、ZnxOy、ZrxOy、CuxOy等。此沉积步骤一般在室温下进行。长宽比为1~5的准直器可用以改良其填入表现。为了改善其填入表现,亦可使用数十至数百伏特的直流偏压。若有需要时,同时合并使用直流偏压以及准直器亦是可行的。 
可以选择性地在真空中或氮气环境或氧气/氮气混合环境中进行沉积后退火处理,以改良金属氧化物内的氧原子分布。此退火处理的温度典型地介于400℃至600℃,而退火时间则少于2小时。 
2.反应式沉积:利用PVD溅射或磁电管溅射方式,其反应气体为氩气/氧气、氩气/氮气/氧气、纯氧、氦气/氧气、氦气/氮气/氧气等,压力为1mTorr至100mTorr,其标靶 金属氧化物为如Ni、Ti、Al、W、Zn、Zr、Cu等。此沉积步骤一般在室温下进行。长宽比为1~5的准直器可用以改良其填入表现。为了改善其填入表现,亦可使用数十至数百伏特的直流偏压。若有需要时,同时合并使用直流偏压以及准直器亦是可行的。 
可以选择性地在真空中或氮气环境或氧气/氮气混合环境中进行沉积后退火处理,以改良金属氧化物内的氧原子分布。此退火处理的温度典型地介于400℃至600℃,而退火时间则少于2小时。 
3.氧化:使用高温氧化统(例如高温炉管或快速热处理(RTP))进行氧化。此温度介于200℃至700℃、以纯氧或氮气/氧气混合气体,在压力为数mTorr至一大气压下进行。进行时间可从数分钟至数小时。另一氧化方法为等离子体氧化。无线射频或直流电压源等离子体与纯氧或氩气/氧气混合气体、或氩气/氮气/氧气混合气体,在压力为1mTorr至100mTorr下进行金属表面的氧化,例如Ni、Ti、Al、W、Zn、Zr、Cu等。此氧化时间从数秒钟至数分钟。氧化温度从室温至约300℃,视等离子体氧化的程度而定。 
4.聚合物材料 
掺杂有铜、碳六十、银等的TCNQ,或PCBM、TCNQ混合聚合物。 
形成方法 
1.蒸镀:利用热蒸发、电子束蒸发、或分子束外延(MBE)进行蒸发。固态TCNQ以及掺杂物丸在一单独室内进行共蒸发。此固态TCNQ以及掺杂物丸置于钨舟或钽舟或陶瓷舟中。接着施加大电流或电子束,以熔化反应物,使得这些材料混合并沉积于晶圆之上。此处并未使用反应性化学物质或气体。此沉积作用在压力为10-4Torr至10-10Torr下进行。晶圆温度介于室温至200℃。 
可以选择性地在真空中或氮气环境中进行沉积后退火 处理,以改良聚合物材料的成分分布。此退火处理的温度典型地介于室温至300℃,而退火时间则少于1小时。 
2.旋涂:使用旋转涂布机与经掺杂的TCNQ溶液,转速低于1000rpm。在旋转涂布之后,此晶圆静置(典型地在室温下,或低于200℃的温度)足够时间以利固态的形成。此静置时间可介于数分钟至数天,视温度以及形成条件而定。 
如相变化材料等可编程的电阻材料,其有用的特征包括此材料具有可编程的电阻值,且优选以可逆方式进行编程,例如具有可由电流诱发而在可逆地切换的至少两种相态。此至少两种相态包括非晶态以及结晶态。然而,在操作中此可编程电阻材料不一定完全变化成非晶态或结晶态。中间相态或者混合相态可具有可检测的材料特征差异。这两种固态相一般应为双稳态,且具有不同的电性质。此可编程电阻材料可为硫属化物材料。硫属化物材料可包括GST。或者,其可为其他上述相变化材料。一种可使用为本发明的存储单元的材料在此可表示为Ge2Sb2Te5。 
图3示出存储阵列,其可利用本文所述的方式形成。在图3中,共同源极线28、字线23、以及字线24安排为大致上平行于Y轴。位线41,42则安排为大致上平行于X轴。因此,在方块45中的Y解码器与字线驱动器,耦合到字线23,24。而在方块46中的X解码器与一组感测放大器,耦合到位线41,42。共同源极线28耦合到存取晶体管50,51,52,53的源极终端。存取晶体管50的栅极耦合到字线23。存取晶体管51的栅极耦合到字线24。存取晶体管52的栅极耦合到字线23。存取晶体管53的栅极耦合到字线24。存取晶体管50的漏极耦合到管状电极存储单元35的底电极构件32,此管状电极存储单元具有顶电极构件34。此顶电极构件34耦合到位线41。相同地,存取晶体管51的漏极耦合到管状电极存储单元36的底电极构件33,此管状电极存储单元具有顶电极构件37。此顶电极构件37耦合到位线41。 存取晶体管52,53耦合到位于位线42上相对应的管状电极存储单元。如图所示,共同源极线28被两列存储单元共用,其中一列在图中呈现Y轴方向排列。在其他实施例中,此存取晶体管可被二极管或其他用以在读取与写入数据阵列中控制电流至选定装置的结构所取代。 
图4是根据本发明的一个实施例的集成电路的简化方块图。此集成电路75包括存储阵列60,其以管状电极相变化存储单元所形成于半导体衬底上。列解码器61耦合到多条字线62,且在存储阵列60中沿着各列排列。行解码器63耦合到多条位线64,其在存储阵列60中沿着各行排列并用以读取以及对从存储阵列60中的存储单元的侧壁所获得的数据进行编程。位址从总线65提供至行解码器63以及列解码器61。在方块66中的感测放大器以及数据读入(data-in)线路,经由数据总线67而耦合到行解码器63。数据从集成电路衬底75上的输入/输出端口、或从集成电路75的其他内部或外部数据来源,经由数据输入线路71而提供至方块66的数据输入结构。在所述实施例中,此集成电路也包括其他电路74,如通用处理器或专用应用电路、或以薄膜保险相变化存储单元阵列所支持而可提供芯片上系统功能的整合模块。数据从方块66中的感测放大器经由数据输出线路72,而传送至集成电路75的输入/输出端口,或传送至集成电路75内部或外部的其他数据目的。 
在本实施例中使用偏压安排状态机制69的控制器,控制偏压安排供给电压68的应用,例如读取、编程、擦除、擦除确认与编程确认电压等。此控制器可使用公知的专用逻辑电路。在替代实施例中,此控制器包括通用处理器,其可应用于同一集成电路中,此集成电路执行电脑程序而控制此器件的操作。在另一实施例中,此控制器使用了专用逻辑电路以及通用处理器的组合。 
图5示出了一对形成于半导体衬底上的存储单元器件10 的剖面图。图5中的结构包括存储单元存取层56,以及存储单元层58。存储单元层58包括上电极层(位线)59,其搭配顶电极延伸18,共同构成了图1中的顶电极14。隔离结构如浅沟槽隔离(STI)结构(位于图中显示)则分隔了一对存储单元存取存储列。存取晶体管包括了衬底内的共同源极线76,以及漏极区域78和80。多晶硅字线82和84分别作用为存取晶体管的栅极。电介质填充层86被形成于多晶硅字线82和84之上。而接触栓塞结构88和90则与个别存取晶体管的漏极接触,在此例示范例中,共同源极线92沿着此阵列的各列与源极区域接触。在其他的实施例中,共同源极线由衬底中的掺杂区域来构成,如在其表面可选择性地具有金属硅化物的n+掺杂区域。栓塞结构88作为终端,其接触此存储单元器件12的底电极的存取晶体管。而栓塞结构90作为终端,其接触此存储单元器件12的底电极的存取晶体管。 
在代表性的实施例中,此顶与底电极14和12与存储元件16接触的整个或一部分最好包括电极材料,如氮化钛或是其他与相变化材料的存储元件16相容的导体。在图1的实施例中,顶电极14包含顶电极延伸部分18,以及底电极延伸部分17均是由氮化钛构成,而底电极12的其余部分则包含钨。其他可使用于这种结构中的导体类型,包括如铝及铝合金、氮化钛、氮化钽、氮化铝钛、或氮化铝钽。其他可使用的导体包括选自下列群组的一个以上:钛(Ti)、钨(W)、钼(Mo)、铝(Al)、钽(Ta)、铜(Cu)、铂(Pt)、铱(Ir)、镧(La)、镍(Ni)、钌(Ru)、以及氧(O)。在其他的实施例中,例如以下的图16和图17中所示,顶电极和底电极延伸部分18和17的全部或一部分可以包含存储材料,通常是与存储元件16相同的存储材料。 
存储单元器件10及其工艺步骤会在之后的图6-15描述,然后再回到图5。请参阅图6,可以看出存储单元存取 层56具有大致平坦的上表面96。此上表面96的一部分由栓塞88和90的端点表面98所构成。之后,请参阅图7,电极材料层100被沉积于此上表面96之上,然后沉积电介质材料层102,之后再沉积另一电极材料层104。这些层100、102和104分别用来构成底电极延伸17、电介质材料20以及顶电极延伸18。图8则显示了在层104上方沉积与栓塞88和90的电极表面98对准的光刻掩模106之后的结果。栓塞88和90与光刻掩模106两者通常是圆柱截面形态,然而,其他截面形态,标准或非标准多边形以及具有曲面或直线部分的形态亦可适用于其他的实施例中。光刻掩模106的宽度最好是小于其所使用的光刻工艺所能达成的最小光刻尺寸。 
图9显示掩模修整步骤之后的结果,其可减少光刻掩模106的宽度或直径至亚光刻尺寸。此图形化后掩模108的宽度或直径远小于用以产生掩模106的最小光刻特征尺寸。图形化通常是利用光刻胶氧气等离子体图形化工艺然而其他的工艺也可以被使用。举例而言,氧化硅硬式掩模工艺也可以被使用。请参阅,例如,美国专利第6869542号,其公开硬式掩模集成蚀刻工艺。 
图10显示将未被图形化后光刻掩模108所保护的层100、102和104区域蚀刻后的结果,仅保留,在此实施例中,包含底电极延伸17、电介质材料20以及顶电极延伸18的大致为圆柱堆叠的材料。 
图11显示沉积一层存储材料112之后的结果,此存储材料112如同之前所讨论过的,通常是GST,以构成存储元件16。存储材料层112环绕包覆住材料堆叠110的外表面113并向外延伸。图12显示沉积一层电介质材料114于存储材料112上之后的结果。电介质材料26由层114构成。电介质材料26作为热绝缘电介质材料。之后,如图13中所示,作为热绝缘电介质材料26之外的多余电介质材料114利用各向异性反应离子蚀刻除去以保留在侧壁的电介质材料26。 
图14显示在图13结构上利用电介质材料116,通常是二氧化硅,介电层填充步骤之后的结果。两层或以上的电介质材料20、26(层114和116)可以是相同或不同的电介质材料。 
图15显示在图14结构上利用化学机械研磨步骤之后的结果。之后,电极材料沉积于图15结构之上以构成图5结构中的顶电极层59。 
在操作时,电流所流经的路径,包括与栓塞88接触的存取器件的端、经过底电极12、存储元件16和顶电极14。请参阅图1,一般是沿着存储元件16的中央部分22的活性区域120,是由于电流流动所产生的热量而发生的相变化的区域。此活性区域120位于此区域是因为其与作为热导的底电极12和顶电极14分离,同时也因为其与电介质材料20和26热绝缘分离。活性区域120相当微小,因此降低了重置所需要的电流幅值。 
图16和图17显示图1中存储单元器件10的某些部分的替代实施例。图16和图1结构不同的部分是其存储元件16是直的圆柱,而不是在圆柱底部的底电极12有向外延伸的部分。每一个图16结构中的底电极延伸17和顶电极延伸18包括存储材料部分122和氮化钛部分124,以提供存储材料相对于电极部分的热绝缘。在图17中,存储材料部分122包含整个底电极延伸17和顶电极延伸18。在图16和图17的实施例中,一个或两者的存储材料部分122可以是与存储元件16相同的存储材料,但也可以是不同。此存储材料部分122的存储材料最好是具有较之使用于存储元件16侧壁的存储材料为低的热阻。 
上述的叙述可能使用如之上、之下、顶、底、覆盖等词汇。这些词汇仅用以协助了解本发明,而非用以限制本发明。 
虽然本发明已参照优选实施例来加以描述,将为我们所了解的是,本发明并未受限于其详细描述内容。替换方式及 修改样式已于先前描述中所建议,并且其他替换方式及修改样式将为本领域技术人员所想到。特别是,根据本发明的结构与方法,所有具有实质上等同于本发明的构件结合而达成与本发明实质上相同结果的皆不脱离本发明的精神范畴。因此,所有这种替换方式及修改样式将落在本发明在所附权利要求书及其等同物所界定的范畴之中。 
任何在前文中提及的专利申请以及印刷文本,均列为本案的参考。 

Claims (20)

1.一种具有可通过施加能量而在电性状态之间切换的存储材料的存储单元器件,所述存储单元器件包括:
底电极构件,其具有环状向外延伸的外表面;
在所述底电极构件之上的顶电极构件,所述顶电极构件具有与所述底电极构件的所述外表面大致对准的环状向外延伸的外表面;
电介质材料,其位于所述顶电极构件与所述底电极构件之间;以及
存储元件包含存储材料,所述存储元件至少部分环绕且与所述底电极构件和所述顶电极构件的所述外表面电接触,以在所述存储元件的中央部分产生存储元件转换区域;
其中能量通过所述底电极构件和所述顶电极构件时,会被集中在所述存储元件的所述转换区域中,以导致改变所述存储材料的电性状态。
2.如权利要求1所述的存储单元器件,还包含底电极,所述底电极构件为所述底电极的延伸。
3.如权利要求2所述的存储单元器件,其中所述底电极与所述底电极构件为相同材料。
4.如权利要求2所述的存储单元器件,其中所述底电极与所述底电极构件为不同材料。
5.如权利要求1所述的存储单元器件,其中所述底电极构件包含氮化钛以及Ge2Sb2Te5两者至少之一。
6.如权利要求1所述的存储单元器件,其中所述底电极构件和所述顶电极构件以及所述电介质材料定义材料堆叠,所述材料堆叠具有延伸于所述底电极构件和所述顶电极构件之间且通过所述电介质材料的方向的长度,以及延伸垂直于所述长度的宽度,所述宽度具有亚光刻尺寸宽度。
7.如权利要求1所述的存储单元器件,其中所述存储元件包含管状存储元件。
8.如权利要求7所述的存储单元器件,其中所述管状存储元件具有壁,所述壁具有小于30纳米的厚度。
9.如权利要求7所述的存储单元器件,其中所述管状存储元件的壁具有10纳米的厚度。
10.如权利要求7所述的存储单元器件,其中所述管状存储元件具有内表面,所述内表面具有小于50纳米的直径。
11.如权利要求7所述的存储单元器件,其中所述管状存储元件具有内表面,所述内表面具有约30纳米的直径。
12.如权利要求7所述的存储单元器件,其中所述管状存储元件具有一长度,所述长度小于100纳米。
13.如权利要求7所述的存储单元器件,其中所述管状存储元件具有一长度,所述长度为50纳米。
14.如权利要求1所述的存储单元器件,其中所述存储材料包含Ge2Sb2Te5
15.一种制造具有可通过施加能量而在电性状态之间切换的存储材料的存储单元器件的方法,所述方法包括:
形成存储单元存取层,包含底电极以及上表面,所述底电极在所述上表面处具有底电极表面;
在所述底电极表面上形成材料堆叠,所述材料堆叠在上电极材料层与下电极材料层之间包含电介质材料层,所述下电极材料层与所述底电极表面接触,所述材料堆叠具有环状向外延伸的外表面;
在所述外表面上形成存储材料层,以至少部分环绕所述材料堆叠;
利用电介质材料来环绕所述存储材料层;以及形成顶电极,与所述材料堆叠的所述上电极材料层接触。
16.如权利要求15所述的方法,其中所述材料堆叠形成步骤包括形成包含顶电极构件的所述上电极材料层以及包含底电极构件的所述下电极材料层。
17.如权利要求16所述的方法,其中所述材料堆叠形成步骤利用所述底电极和所述底电极构件为不同材料来实现。
18.如权利要求16所述的方法,其中所述材料堆叠形成步骤利用所述底电极包含金属而所述底电极构件包含存储材料来实现。
19.如权利要求16所述的方法,其中所述材料堆叠形成步骤利用所述底电极构件包含邻近于所述电介质材料层的存储材料区域以及介于所述存储材料区域与所述底电极之间的金属材料区域来实现。
20.如权利要求15所述的方法,其中所述材料堆叠形成步骤包含:
沉积由上电极材料形成的所述上电极材料层于所述存储单元存取层的上表面之上;
沉积电介质材料层于所述上电极材料层之上;
沉积由下电极材料形成的所述下电极材料层于所述电介质材料层之上;
形成掩模于所述下电极材料层之上,所述掩模与所述底电极表面对准;
将所述掩模图形化以产生亚光刻尺寸图形化掩模;以及
去除未被所述图形化掩模覆盖的材料,以产生亚光刻尺寸材料堆叠。
CN200710161895.7A 2006-10-04 2007-09-27 具有向周围延伸的存储元件的存储单元器件 Active CN101159312B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/538,677 US7504653B2 (en) 2006-10-04 2006-10-04 Memory cell device with circumferentially-extending memory element
US11/538,677 2006-10-04

Publications (2)

Publication Number Publication Date
CN101159312A CN101159312A (zh) 2008-04-09
CN101159312B true CN101159312B (zh) 2010-12-01

Family

ID=39307300

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200710161895.7A Active CN101159312B (zh) 2006-10-04 2007-09-27 具有向周围延伸的存储元件的存储单元器件

Country Status (3)

Country Link
US (2) US7504653B2 (zh)
CN (1) CN101159312B (zh)
TW (1) TWI315575B (zh)

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7696503B2 (en) * 2005-06-17 2010-04-13 Macronix International Co., Ltd. Multi-level memory cell having phase change element and asymmetrical thermal boundary
US8237140B2 (en) 2005-06-17 2012-08-07 Macronix International Co., Ltd. Self-aligned, embedded phase change RAM
JP4991155B2 (ja) * 2006-01-19 2012-08-01 株式会社東芝 半導体記憶装置
US7812334B2 (en) 2006-04-04 2010-10-12 Micron Technology, Inc. Phase change memory elements using self-aligned phase change material layers and methods of making and using same
US9178141B2 (en) * 2006-04-04 2015-11-03 Micron Technology, Inc. Memory elements using self-aligned phase change material layers and methods of manufacturing same
US7608848B2 (en) 2006-05-09 2009-10-27 Macronix International Co., Ltd. Bridge resistance random access memory device with a singular contact structure
US7732800B2 (en) 2006-05-30 2010-06-08 Macronix International Co., Ltd. Resistor random access memory cell with L-shaped electrode
US7504653B2 (en) * 2006-10-04 2009-03-17 Macronix International Co., Ltd. Memory cell device with circumferentially-extending memory element
US8138028B2 (en) 2007-02-12 2012-03-20 Macronix International Co., Ltd Method for manufacturing a phase change memory device with pillar bottom electrode
US20100038619A1 (en) * 2007-03-28 2010-02-18 Ayuka Tada Variable resistance element, manufacturing method thereof, and electronic device
US7579612B2 (en) * 2007-04-25 2009-08-25 Taiwan Semiconductor Manufacturing Company, Ltd. Resistive memory device having enhanced resist ratio and method of manufacturing same
US7667293B2 (en) * 2007-09-13 2010-02-23 Macronix International Co., Ltd. Resistive random access memory and method for manufacturing the same
US8178386B2 (en) 2007-09-14 2012-05-15 Macronix International Co., Ltd. Phase change memory cell array with self-converged bottom electrode and method for manufacturing
US8158965B2 (en) * 2008-02-05 2012-04-17 Macronix International Co., Ltd. Heating center PCRAM structure and methods for making
US20110180905A1 (en) * 2008-06-10 2011-07-28 Advanced Technology Materials, Inc. GeSbTe MATERIAL INCLUDING SUPERFLOW LAYER(S), AND USE OF Ge TO PREVENT INTERACTION OF Te FROM SbXTeY AND GeXTeY RESULTING IN HIGH Te CONTENT AND FILM CRYSTALLINITY
US20100019215A1 (en) * 2008-07-22 2010-01-28 Macronix International Co., Ltd. Mushroom type memory cell having self-aligned bottom electrode and diode access device
US7888165B2 (en) 2008-08-14 2011-02-15 Micron Technology, Inc. Methods of forming a phase change material
US7834342B2 (en) 2008-09-04 2010-11-16 Micron Technology, Inc. Phase change material and methods of forming the phase change material
US8344348B2 (en) * 2008-10-02 2013-01-01 Ovonyx, Inc. Memory device
US8692310B2 (en) 2009-02-09 2014-04-08 Spansion Llc Gate fringing effect based channel formation for semiconductor device
US8829646B2 (en) * 2009-04-27 2014-09-09 Macronix International Co., Ltd. Integrated circuit 3D memory array and manufacturing method
JP5025696B2 (ja) * 2009-08-11 2012-09-12 株式会社東芝 抵抗変化メモリ
US20110057161A1 (en) * 2009-09-10 2011-03-10 Gurtej Sandhu Thermally shielded resistive memory element for low programming current
TW201132787A (en) * 2010-03-26 2011-10-01 Advanced Tech Materials Germanium antimony telluride materials and devices incorporating same
US8729521B2 (en) * 2010-05-12 2014-05-20 Macronix International Co., Ltd. Self aligned fin-type programmable memory cell
WO2011146913A2 (en) * 2010-05-21 2011-11-24 Advanced Technology Materials, Inc. Germanium antimony telluride materials and devices incorporating same
US8310864B2 (en) 2010-06-15 2012-11-13 Macronix International Co., Ltd. Self-aligned bit line under word line memory array
US9082954B2 (en) 2010-09-24 2015-07-14 Macronix International Co., Ltd. PCRAM with current flowing laterally relative to axis defined by electrodes
US8497182B2 (en) 2011-04-19 2013-07-30 Macronix International Co., Ltd. Sidewall thin film electrode with self-aligned top electrode and programmable resistance memory
US8987700B2 (en) 2011-12-02 2015-03-24 Macronix International Co., Ltd. Thermally confined electrode for programmable resistance memory
US9240548B2 (en) 2012-05-31 2016-01-19 Micron Technology, Inc. Memory arrays and methods of forming an array of memory cells
US8981330B2 (en) 2012-07-16 2015-03-17 Macronix International Co., Ltd. Thermally-confined spacer PCM cells
US8853665B2 (en) * 2012-07-18 2014-10-07 Micron Technology, Inc. Semiconductor constructions, memory cells, memory arrays and methods of forming memory cells
WO2014070682A1 (en) 2012-10-30 2014-05-08 Advaned Technology Materials, Inc. Double self-aligned phase change memory device structure
CN103794718A (zh) * 2012-10-31 2014-05-14 上海华虹宏力半导体制造有限公司 阻变存储器中钨氧化物变阻材料的制备方法
CN103839919B (zh) * 2012-11-23 2018-09-14 中芯国际集成电路制造(上海)有限公司 电极的制造方法、熔丝装置及其制造方法
KR20140077501A (ko) * 2012-12-14 2014-06-24 에스케이하이닉스 주식회사 저항변화 메모리 소자 및 그 제조 방법
US9214351B2 (en) 2013-03-12 2015-12-15 Macronix International Co., Ltd. Memory architecture of thin film 3D array
US8916414B2 (en) 2013-03-13 2014-12-23 Macronix International Co., Ltd. Method for making memory cell by melting phase change material in confined space
CN103219462B (zh) * 2013-03-27 2014-11-05 中国科学院半导体研究所 环形垂直结构相变存储器的制备方法
CN104659205A (zh) * 2013-11-21 2015-05-27 上海华虹宏力半导体制造有限公司 Rram的制造方法
CN104966717B (zh) * 2014-01-24 2018-04-13 旺宏电子股份有限公司 一种存储器装置及提供该存储器装置的方法
US9559113B2 (en) 2014-05-01 2017-01-31 Macronix International Co., Ltd. SSL/GSL gate oxide in 3D vertical channel NAND
US9793323B1 (en) 2016-07-11 2017-10-17 Macronix International Co., Ltd. Phase change memory with high endurance
US10157841B2 (en) * 2017-04-17 2018-12-18 Micron Technology, Inc. Construction of integrated circuitry and a method of forming an elevationally-extending conductor laterally between a pair of structures

Family Cites Families (284)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3271591A (en) * 1963-09-20 1966-09-06 Energy Conversion Devices Inc Symmetrical current controlling device
US3530441A (en) * 1969-01-15 1970-09-22 Energy Conversion Devices Inc Method and apparatus for storing and retrieving information
IL61678A (en) * 1979-12-13 1984-04-30 Energy Conversion Devices Inc Programmable cell and programmable electronic arrays comprising such cells
US4452592A (en) 1982-06-01 1984-06-05 General Motors Corporation Cyclic phase change coupling
JPS60137070A (ja) 1983-12-26 1985-07-20 Toshiba Corp 半導体装置の製造方法
US4719594A (en) * 1984-11-01 1988-01-12 Energy Conversion Devices, Inc. Grooved optical data storage device including a chalcogenide memory layer
US4876220A (en) * 1986-05-16 1989-10-24 Actel Corporation Method of making programmable low impedance interconnect diode element
JP2685770B2 (ja) 1987-12-28 1997-12-03 株式会社東芝 不揮発性半導体記憶装置
JP2606857B2 (ja) * 1987-12-10 1997-05-07 株式会社日立製作所 半導体記憶装置の製造方法
US5166758A (en) 1991-01-18 1992-11-24 Energy Conversion Devices, Inc. Electrically erasable phase change memory
US5534712A (en) * 1991-01-18 1996-07-09 Energy Conversion Devices, Inc. Electrically erasable memory elements characterized by reduced current and improved thermal stability
US5177567A (en) * 1991-07-19 1993-01-05 Energy Conversion Devices, Inc. Thin-film structure for chalcogenide electrical switching devices and process therefor
JP2825031B2 (ja) 1991-08-06 1998-11-18 日本電気株式会社 半導体メモリ装置
US5166096A (en) 1991-10-29 1992-11-24 International Business Machines Corporation Process for fabricating self-aligned contact studs for semiconductor structures
JPH05206394A (ja) * 1992-01-24 1993-08-13 Mitsubishi Electric Corp 電界効果トランジスタおよびその製造方法
US5958358A (en) 1992-07-08 1999-09-28 Yeda Research And Development Co., Ltd. Oriented polycrystalline thin films of transition metal chalcogenides
JP2884962B2 (ja) 1992-10-30 1999-04-19 日本電気株式会社 半導体メモリ
US5515488A (en) 1994-08-30 1996-05-07 Xerox Corporation Method and apparatus for concurrent graphical visualization of a database search and its search history
US5785828A (en) * 1994-12-13 1998-07-28 Ricoh Company, Ltd. Sputtering target for producing optical recording medium
US5831276A (en) 1995-06-07 1998-11-03 Micron Technology, Inc. Three-dimensional container diode for use with multi-state material in a non-volatile memory cell
US5789758A (en) * 1995-06-07 1998-08-04 Micron Technology, Inc. Chalcogenide memory cell with a plurality of chalcogenide electrodes
US6420725B1 (en) * 1995-06-07 2002-07-16 Micron Technology, Inc. Method and apparatus for forming an integrated circuit electrode having a reduced contact area
US5879955A (en) * 1995-06-07 1999-03-09 Micron Technology, Inc. Method for fabricating an array of ultra-small pores for chalcogenide memory cells
US5869843A (en) * 1995-06-07 1999-02-09 Micron Technology, Inc. Memory array having a multi-state element and method for forming such array or cells thereof
US5837564A (en) 1995-11-01 1998-11-17 Micron Technology, Inc. Method for optimal crystallization to obtain high electrical performance from chalcogenides
KR0182866B1 (ko) 1995-12-27 1999-04-15 김주용 플래쉬 메모리 장치
US5687112A (en) * 1996-04-19 1997-11-11 Energy Conversion Devices, Inc. Multibit single cell memory element having tapered contact
US6025220A (en) * 1996-06-18 2000-02-15 Micron Technology, Inc. Method of forming a polysilicon diode and devices incorporating such diode
US5866928A (en) 1996-07-16 1999-02-02 Micron Technology, Inc. Single digit line with cell contact interconnect
US5789277A (en) * 1996-07-22 1998-08-04 Micron Technology, Inc. Method of making chalogenide memory device
US5985698A (en) 1996-07-22 1999-11-16 Micron Technology, Inc. Fabrication of three dimensional container diode for use with multi-state material in a non-volatile memory cell
US6337266B1 (en) 1996-07-22 2002-01-08 Micron Technology, Inc. Small electrode for chalcogenide memories
US5814527A (en) * 1996-07-22 1998-09-29 Micron Technology, Inc. Method of making small pores defined by a disposable internal spacer for use in chalcogenide memories
US5998244A (en) 1996-08-22 1999-12-07 Micron Technology, Inc. Memory cell incorporating a chalcogenide element and method of making same
US5688713A (en) 1996-08-26 1997-11-18 Vanguard International Semiconductor Corporation Method of manufacturing a DRAM cell having a double-crown capacitor using polysilicon and nitride spacers
US6147395A (en) 1996-10-02 2000-11-14 Micron Technology, Inc. Method for fabricating a small area of contact between electrodes
US6087674A (en) * 1996-10-28 2000-07-11 Energy Conversion Devices, Inc. Memory element with memory material comprising phase-change material and dielectric material
US5716883A (en) 1996-11-06 1998-02-10 Vanguard International Semiconductor Corporation Method of making increased surface area, storage node electrode, with narrow spaces between polysilicon columns
US6015977A (en) * 1997-01-28 2000-01-18 Micron Technology, Inc. Integrated circuit memory cell having a small active area and method of forming same
US5952671A (en) * 1997-05-09 1999-09-14 Micron Technology, Inc. Small electrode for a chalcogenide switching device and method for fabricating same
US6031287A (en) * 1997-06-18 2000-02-29 Micron Technology, Inc. Contact structure and memory element incorporating the same
US5933365A (en) 1997-06-19 1999-08-03 Energy Conversion Devices, Inc. Memory element with energy control mechanism
US5902704A (en) 1997-07-02 1999-05-11 Lsi Logic Corporation Process for forming photoresist mask over integrated circuit structures with critical dimension control
US6768165B1 (en) * 1997-08-01 2004-07-27 Saifun Semiconductors Ltd. Two bit non-volatile electrically erasable and programmable semiconductor memory cell utilizing asymmetrical charge trapping
US7023009B2 (en) 1997-10-01 2006-04-04 Ovonyx, Inc. Electrically programmable memory element with improved contacts
US6969866B1 (en) 1997-10-01 2005-11-29 Ovonyx, Inc. Electrically programmable memory element with improved contacts
US6617192B1 (en) * 1997-10-01 2003-09-09 Ovonyx, Inc. Electrically programmable memory element with multi-regioned contact
FR2774209B1 (fr) 1998-01-23 2001-09-14 St Microelectronics Sa Procede de controle du circuit de lecture d'un plan memoire et dispositif de memoire correspondant
US6087269A (en) 1998-04-20 2000-07-11 Advanced Micro Devices, Inc. Method of making an interconnect using a tungsten hard mask
US6372651B1 (en) 1998-07-17 2002-04-16 Advanced Micro Devices, Inc. Method for trimming a photoresist pattern line for memory gate etching
US6141260A (en) 1998-08-27 2000-10-31 Micron Technology, Inc. Single electron resistor memory device and method for use thereof
US6483736B2 (en) 1998-11-16 2002-11-19 Matrix Semiconductor, Inc. Vertically stacked field programmable nonvolatile memory and method of fabrication
US6351406B1 (en) * 1998-11-16 2002-02-26 Matrix Semiconductor, Inc. Vertically stacked field programmable nonvolatile memory and method of fabrication
US6034882A (en) * 1998-11-16 2000-03-07 Matrix Semiconductor, Inc. Vertically stacked field programmable nonvolatile memory and method of fabrication
JP2000164830A (ja) * 1998-11-27 2000-06-16 Mitsubishi Electric Corp 半導体記憶装置の製造方法
US6487106B1 (en) 1999-01-12 2002-11-26 Arizona Board Of Regents Programmable microelectronic devices and method of forming and programming same
US6291137B1 (en) 1999-01-20 2001-09-18 Advanced Micro Devices, Inc. Sidewall formation for sidewall patterning of sub 100 nm structures
US6245669B1 (en) 1999-02-05 2001-06-12 Taiwan Semiconductor Manufacturing Company High selectivity Si-rich SiON etch-stop layer
US6943365B2 (en) 1999-03-25 2005-09-13 Ovonyx, Inc. Electrically programmable memory element with reduced area of contact and method for making same
US6750079B2 (en) 1999-03-25 2004-06-15 Ovonyx, Inc. Method for making programmable resistance memory element
CN1210819C (zh) 1999-03-25 2005-07-13 能源变换设备有限公司 带有改进的接触点的电可编程存储器元件
US6177317B1 (en) * 1999-04-14 2001-01-23 Macronix International Co., Ltd. Method of making nonvolatile memory devices having reduced resistance diffusion regions
US6077674A (en) 1999-10-27 2000-06-20 Agilent Technologies Inc. Method of producing oligonucleotide arrays with features of high purity
US6326307B1 (en) 1999-11-15 2001-12-04 Appllied Materials, Inc. Plasma pretreatment of photoresist in an oxide etch process
US6314014B1 (en) 1999-12-16 2001-11-06 Ovonyx, Inc. Programmable resistance memory arrays with reference cells
US6576546B2 (en) * 1999-12-22 2003-06-10 Texas Instruments Incorporated Method of enhancing adhesion of a conductive barrier layer to an underlying conductive plug and contact for ferroelectric applications
TW586154B (en) 2001-01-05 2004-05-01 Macronix Int Co Ltd Planarization method for semiconductor device
US6927411B2 (en) 2000-02-11 2005-08-09 Axon Technologies Corporation Programmable structure, an array including the structure, and methods of forming the same
US6420216B1 (en) * 2000-03-14 2002-07-16 International Business Machines Corporation Fuse processing using dielectric planarization pillars
US6444557B1 (en) 2000-03-14 2002-09-03 International Business Machines Corporation Method of forming a damascene structure using a sacrificial conductive layer
US6888750B2 (en) * 2000-04-28 2005-05-03 Matrix Semiconductor, Inc. Nonvolatile memory on SOI and compound semiconductor substrates and method of fabrication
US6420215B1 (en) * 2000-04-28 2002-07-16 Matrix Semiconductor, Inc. Three-dimensional memory array and method of fabrication
US6501111B1 (en) 2000-06-30 2002-12-31 Intel Corporation Three-dimensional (3D) programmable device
US6440837B1 (en) * 2000-07-14 2002-08-27 Micron Technology, Inc. Method of forming a contact structure in a semiconductor device
US6563156B2 (en) * 2001-03-15 2003-05-13 Micron Technology, Inc. Memory elements and methods for making same
US6429064B1 (en) * 2000-09-29 2002-08-06 Intel Corporation Reduced contact area of sidewall conductor
US6339544B1 (en) * 2000-09-29 2002-01-15 Intel Corporation Method to enhance performance of thermal resistor device
US6555860B2 (en) * 2000-09-29 2003-04-29 Intel Corporation Compositionally modified resistive electrode
US6567293B1 (en) * 2000-09-29 2003-05-20 Ovonyx, Inc. Single level metal memory cell using chalcogenide cladding
KR100382729B1 (ko) * 2000-12-09 2003-05-09 삼성전자주식회사 반도체 소자의 금속 컨택 구조체 및 그 형성방법
US6569705B2 (en) * 2000-12-21 2003-05-27 Intel Corporation Metal structure for a phase-change memory device
US6271090B1 (en) * 2000-12-22 2001-08-07 Macronix International Co., Ltd. Method for manufacturing flash memory device with dual floating gates and two bits per cell
TW490675B (en) 2000-12-22 2002-06-11 Macronix Int Co Ltd Control method of multi-stated NROM
US6627530B2 (en) * 2000-12-22 2003-09-30 Matrix Semiconductor, Inc. Patterning three dimensional structures
US6534781B2 (en) * 2000-12-26 2003-03-18 Ovonyx, Inc. Phase-change memory bipolar array utilizing a single shallow trench isolation for creating an individual active area region for two memory array elements and one bipolar base contact
KR100574715B1 (ko) 2001-01-30 2006-04-28 가부시키가이샤 히타치세이사쿠쇼 반도체 집적 회로 장치
KR100400037B1 (ko) * 2001-02-22 2003-09-29 삼성전자주식회사 콘택 플러그를 구비하는 반도체 소자 및 그의 제조 방법
US6487114B2 (en) 2001-02-28 2002-11-26 Macronix International Co., Ltd. Method of reading two-bit memories of NROM cell
US6596589B2 (en) 2001-04-30 2003-07-22 Vanguard International Semiconductor Corporation Method of manufacturing a high coupling ratio stacked gate flash memory with an HSG-SI layer
US6730928B2 (en) 2001-05-09 2004-05-04 Science Applications International Corporation Phase change switches and circuits coupling to electromagnetic waves containing phase change switches
US6514788B2 (en) * 2001-05-29 2003-02-04 Bae Systems Information And Electronic Systems Integration Inc. Method for manufacturing contacts for a Chalcogenide memory device
DE10128482A1 (de) 2001-06-12 2003-01-02 Infineon Technologies Ag Halbleiterspeichereinrichtung sowie Verfahren zu deren Herstellung
US6774387B2 (en) 2001-06-26 2004-08-10 Ovonyx, Inc. Programmable resistance memory element
US6613604B2 (en) * 2001-08-02 2003-09-02 Ovonyx, Inc. Method for making small pore for use in programmable resistance memory element
US6589714B2 (en) * 2001-06-26 2003-07-08 Ovonyx, Inc. Method for making programmable resistance memory element using silylated photoresist
US6673700B2 (en) * 2001-06-30 2004-01-06 Ovonyx, Inc. Reduced area intersection between electrode and programming element
US6605527B2 (en) * 2001-06-30 2003-08-12 Intel Corporation Reduced area intersection between electrode and programming element
US6511867B2 (en) * 2001-06-30 2003-01-28 Ovonyx, Inc. Utilizing atomic layer deposition for programmable device
US6643165B2 (en) 2001-07-25 2003-11-04 Nantero, Inc. Electromechanical memory having cell selection circuitry constructed with nanotube technology
US6737312B2 (en) * 2001-08-27 2004-05-18 Micron Technology, Inc. Method of fabricating dual PCRAM cells sharing a common electrode
US6709958B2 (en) 2001-08-30 2004-03-23 Micron Technology, Inc. Integrated circuit device and fabrication using metal-doped chalcogenide materials
US6507061B1 (en) 2001-08-31 2003-01-14 Intel Corporation Multiple layer phase-change memory
US6586761B2 (en) * 2001-09-07 2003-07-01 Intel Corporation Phase change material memory device
US6861267B2 (en) * 2001-09-17 2005-03-01 Intel Corporation Reducing shunts in memories with phase-change material
US7045383B2 (en) 2001-09-19 2006-05-16 BAE Systems Information and Ovonyx, Inc Method for making tapered opening for programmable resistance memory element
US6800563B2 (en) * 2001-10-11 2004-10-05 Ovonyx, Inc. Forming tapered lower electrode phase-change memories
US6566700B2 (en) * 2001-10-11 2003-05-20 Ovonyx, Inc. Carbon-containing interfacial layer for phase-change memory
US6791859B2 (en) 2001-11-20 2004-09-14 Micron Technology, Inc. Complementary bit PCRAM sense amplifier and method of operation
US6545903B1 (en) * 2001-12-17 2003-04-08 Texas Instruments Incorporated Self-aligned resistive plugs for forming memory cell with phase change material
US6512241B1 (en) 2001-12-31 2003-01-28 Intel Corporation Phase change material memory device
US6867638B2 (en) * 2002-01-10 2005-03-15 Silicon Storage Technology, Inc. High voltage generation and regulation system for digital multilevel nonvolatile memory
JP3948292B2 (ja) 2002-02-01 2007-07-25 株式会社日立製作所 半導体記憶装置及びその製造方法
US7151273B2 (en) 2002-02-20 2006-12-19 Micron Technology, Inc. Silver-selenide/chalcogenide glass stack for resistance variable memory
US6972430B2 (en) 2002-02-20 2005-12-06 Stmicroelectronics S.R.L. Sublithographic contact structure, phase change memory cell with optimized heater shape, and manufacturing method thereof
US7122281B2 (en) 2002-02-26 2006-10-17 Synopsys, Inc. Critical dimension control using full phase and trim masks
JP3796457B2 (ja) * 2002-02-28 2006-07-12 富士通株式会社 不揮発性半導体記憶装置
US6579760B1 (en) * 2002-03-28 2003-06-17 Macronix International Co., Ltd. Self-aligned, programmable phase change memory
WO2003085740A1 (fr) 2002-04-09 2003-10-16 Matsushita Electric Industrial Co., Ltd. Memoire non volatile et procede de fabrication
US6864500B2 (en) * 2002-04-10 2005-03-08 Micron Technology, Inc. Programmable conductor memory cell structure
US6605821B1 (en) * 2002-05-10 2003-08-12 Hewlett-Packard Development Company, L.P. Phase change material electronic memory structure and method for forming
US6864503B2 (en) * 2002-08-09 2005-03-08 Macronix International Co., Ltd. Spacer chalcogenide memory method and device
US6850432B2 (en) 2002-08-20 2005-02-01 Macronix International Co., Ltd. Laser programmable electrically readable phase-change memory method and device
JP4133141B2 (ja) 2002-09-10 2008-08-13 株式会社エンプラス 電気部品用ソケット
JP4190238B2 (ja) 2002-09-13 2008-12-03 株式会社ルネサステクノロジ 不揮発性半導体記憶装置
KR20050053750A (ko) 2002-10-11 2005-06-08 코닌클리즈케 필립스 일렉트로닉스 엔.브이. 상변환 물질을 포함하는 전기 장치
US6992932B2 (en) * 2002-10-29 2006-01-31 Saifun Semiconductors Ltd Method circuit and system for read error detection in a non-volatile memory array
JP4928045B2 (ja) 2002-10-31 2012-05-09 大日本印刷株式会社 相変化型メモリ素子およびその製造方法
US6940744B2 (en) 2002-10-31 2005-09-06 Unity Semiconductor Corporation Adaptive programming technique for a re-writable conductive memory device
US6744088B1 (en) * 2002-12-13 2004-06-01 Intel Corporation Phase change memory device on a planar composite layer
US6791102B2 (en) * 2002-12-13 2004-09-14 Intel Corporation Phase change memory
US7589343B2 (en) 2002-12-13 2009-09-15 Intel Corporation Memory and access device and method therefor
US6815266B2 (en) * 2002-12-30 2004-11-09 Bae Systems Information And Electronic Systems Integration, Inc. Method for manufacturing sidewall contacts for a chalcogenide memory device
EP1439583B1 (en) 2003-01-15 2013-04-10 STMicroelectronics Srl Sublithographic contact structure, in particular for a phase change memory cell, and fabrication process thereof
KR100476690B1 (ko) 2003-01-17 2005-03-18 삼성전자주식회사 반도체 장치 및 그 제조방법
KR101009891B1 (ko) 2003-01-31 2011-01-20 엔엑스피 비 브이 자기 저항 메모리 셀, 자기 저항 메모리 셀의 매트릭스,자기 저항 메모리 셀의 매트릭스에 값을 기록하는 방법 및자기 저항 메모리 셀 제조 방법
US7115927B2 (en) 2003-02-24 2006-10-03 Samsung Electronics Co., Ltd. Phase changeable memory devices
KR100486306B1 (ko) * 2003-02-24 2005-04-29 삼성전자주식회사 셀프 히터 구조를 가지는 상변화 메모리 소자
US6936544B2 (en) * 2003-03-11 2005-08-30 Taiwan Semiconductor Manufacturing Co., Ltd. Method of removing metal etching residues following a metal etchback process to improve a CMP process
KR100504698B1 (ko) 2003-04-02 2005-08-02 삼성전자주식회사 상변화 기억 소자 및 그 형성 방법
KR100979710B1 (ko) * 2003-05-23 2010-09-02 삼성전자주식회사 반도체 메모리 소자 및 제조방법
US20060006472A1 (en) 2003-06-03 2006-01-12 Hai Jiang Phase change memory with extra-small resistors
US7067865B2 (en) 2003-06-06 2006-06-27 Macronix International Co., Ltd. High density chalcogenide memory cells
US6838692B1 (en) 2003-06-23 2005-01-04 Macronix International Co., Ltd. Chalcogenide memory device with multiple bits per cell
US20050018526A1 (en) 2003-07-21 2005-01-27 Heon Lee Phase-change memory device and manufacturing method thereof
US7132350B2 (en) 2003-07-21 2006-11-07 Macronix International Co., Ltd. Method for manufacturing a programmable eraseless memory
KR100615586B1 (ko) 2003-07-23 2006-08-25 삼성전자주식회사 다공성 유전막 내에 국부적인 상전이 영역을 구비하는상전이 메모리 소자 및 그 제조 방법
US7893419B2 (en) 2003-08-04 2011-02-22 Intel Corporation Processing phase change material to improve programming speed
US6927410B2 (en) * 2003-09-04 2005-08-09 Silicon Storage Technology, Inc. Memory device with discrete layers of phase change memory material
US6815704B1 (en) 2003-09-04 2004-11-09 Silicon Storage Technology, Inc. Phase change memory device employing thermally insulating voids
KR100505709B1 (ko) 2003-09-08 2005-08-03 삼성전자주식회사 상 변화 메모리 장치의 파이어링 방법 및 효율적인파이어링을 수행할 수 있는 상 변화 메모리 장치
US20050062087A1 (en) * 2003-09-19 2005-03-24 Yi-Chou Chen Chalcogenide phase-change non-volatile memory, memory device and method for fabricating the same
DE10345455A1 (de) 2003-09-30 2005-05-04 Infineon Technologies Ag Verfahren zum Erzeugen einer Hartmaske und Hartmasken-Anordnung
US6910907B2 (en) * 2003-11-18 2005-06-28 Agere Systems Inc. Contact for use in an integrated circuit and a method of manufacture therefor
KR100558548B1 (ko) 2003-11-27 2006-03-10 삼성전자주식회사 상변화 메모리 소자에서의 라이트 드라이버 회로 및라이트 전류 인가방법
US6937507B2 (en) * 2003-12-05 2005-08-30 Silicon Storage Technology, Inc. Memory device and method of operating same
US7928420B2 (en) 2003-12-10 2011-04-19 International Business Machines Corporation Phase change tip storage cell
US7291556B2 (en) * 2003-12-12 2007-11-06 Samsung Electronics Co., Ltd. Method for forming small features in microelectronic devices using sacrificial layers
KR100569549B1 (ko) 2003-12-13 2006-04-10 주식회사 하이닉스반도체 상 변화 저항 셀 및 이를 이용한 불휘발성 메모리 장치
US7038230B2 (en) 2004-01-06 2006-05-02 Macronix Internation Co., Ltd. Horizontal chalcogenide element defined by a pad for use in solid-state memories
JP4124743B2 (ja) 2004-01-21 2008-07-23 株式会社ルネサステクノロジ 相変化メモリ
KR100564608B1 (ko) 2004-01-29 2006-03-28 삼성전자주식회사 상변화 메모리 소자
US6936840B2 (en) * 2004-01-30 2005-08-30 International Business Machines Corporation Phase-change memory cell and method of fabricating the phase-change memory cell
US7858980B2 (en) 2004-03-01 2010-12-28 Taiwan Semiconductor Manufacturing Co., Ltd. Reduced active area in a phase change memory structure
JP4529493B2 (ja) 2004-03-12 2010-08-25 株式会社日立製作所 半導体装置
KR100598100B1 (ko) * 2004-03-19 2006-07-07 삼성전자주식회사 상변환 기억 소자의 제조방법
DE102004014487A1 (de) 2004-03-24 2005-11-17 Infineon Technologies Ag Speicherbauelement mit in isolierendes Material eingebettetem, aktiven Material
KR100532509B1 (ko) 2004-03-26 2005-11-30 삼성전자주식회사 SiGe를 이용한 트렌치 커패시터 및 그 형성방법
US7158411B2 (en) 2004-04-01 2007-01-02 Macronix International Co., Ltd. Integrated code and data flash memory
US7482616B2 (en) 2004-05-27 2009-01-27 Samsung Electronics Co., Ltd. Semiconductor devices having phase change memory cells, electronic systems employing the same and methods of fabricating the same
US6977181B1 (en) 2004-06-17 2005-12-20 Infincon Technologies Ag MTJ stack with crystallization inhibiting layer
KR100639206B1 (ko) 2004-06-30 2006-10-30 주식회사 하이닉스반도체 상변환 기억 소자 및 그 제조방법
US7359231B2 (en) 2004-06-30 2008-04-15 Intel Corporation Providing current for phase change memories
KR100657897B1 (ko) 2004-08-21 2006-12-14 삼성전자주식회사 전압 제어층을 포함하는 메모리 소자
US7365385B2 (en) 2004-08-30 2008-04-29 Micron Technology, Inc. DRAM layout with vertical FETs and method of formation
KR100610014B1 (ko) 2004-09-06 2006-08-09 삼성전자주식회사 리키지 전류 보상 가능한 반도체 메모리 장치
TW200620473A (en) 2004-09-08 2006-06-16 Renesas Tech Corp Nonvolatile memory device
US7443062B2 (en) 2004-09-30 2008-10-28 Reliance Electric Technologies Llc Motor rotor cooling with rotation heat pipes
TWI277207B (en) 2004-10-08 2007-03-21 Ind Tech Res Inst Multilevel phase-change memory, operating method and manufacture method thereof
KR100626388B1 (ko) 2004-10-19 2006-09-20 삼성전자주식회사 상변환 메모리 소자 및 그 형성 방법
US7364935B2 (en) 2004-10-29 2008-04-29 Macronix International Co., Ltd. Common word line edge contact phase-change memory
DE102004052611A1 (de) * 2004-10-29 2006-05-04 Infineon Technologies Ag Verfahren zur Herstellung einer mit einem Füllmaterial mindestens teilweise gefüllten Öffnung, Verfahren zur Herstellung einer Speicherzelle und Speicherzelle
US7238959B2 (en) 2004-11-01 2007-07-03 Silicon Storage Technology, Inc. Phase change memory device employing thermally insulating voids and sloped trench, and a method of making same
US7608503B2 (en) 2004-11-22 2009-10-27 Macronix International Co., Ltd. Side wall active pin memory and manufacturing method
US7202493B2 (en) 2004-11-30 2007-04-10 Macronix International Co., Inc. Chalcogenide memory having a small active region
JP2006156886A (ja) 2004-12-01 2006-06-15 Renesas Technology Corp 半導体集積回路装置およびその製造方法
KR100827653B1 (ko) 2004-12-06 2008-05-07 삼성전자주식회사 상변화 기억 셀들 및 그 제조방법들
US7220983B2 (en) 2004-12-09 2007-05-22 Macronix International Co., Ltd. Self-aligned small contact phase-change memory method and device
TWI260764B (en) 2004-12-10 2006-08-21 Macronix Int Co Ltd Non-volatile memory cell and operating method thereof
US20060131555A1 (en) 2004-12-22 2006-06-22 Micron Technology, Inc. Resistance variable devices with controllable channels
US20060138467A1 (en) 2004-12-29 2006-06-29 Hsiang-Lan Lung Method of forming a small contact in phase-change memory and a memory cell produced by the method
JP4646634B2 (ja) 2005-01-05 2011-03-09 ルネサスエレクトロニクス株式会社 半導体装置
US7419771B2 (en) 2005-01-11 2008-09-02 Taiwan Semiconductor Manufacturing Co., Ltd. Method for forming a finely patterned resist
US20060172067A1 (en) 2005-01-28 2006-08-03 Energy Conversion Devices, Inc Chemical vapor deposition of chalcogenide materials
US7214958B2 (en) 2005-02-10 2007-05-08 Infineon Technologies Ag Phase change memory cell with high read margin at low power operation
US7099180B1 (en) 2005-02-15 2006-08-29 Intel Corporation Phase change memory bits reset through a series of pulses of increasing amplitude
US7229883B2 (en) 2005-02-23 2007-06-12 Taiwan Semiconductor Manufacturing Company, Ltd. Phase change memory device and method of manufacture thereof
JP2006244561A (ja) 2005-03-01 2006-09-14 Renesas Technology Corp 半導体装置
US7154774B2 (en) 2005-03-30 2006-12-26 Ovonyx, Inc. Detecting switching of access elements of phase change memory cells
US7488967B2 (en) 2005-04-06 2009-02-10 International Business Machines Corporation Structure for confining the switching current in phase memory (PCM) cells
US7166533B2 (en) 2005-04-08 2007-01-23 Infineon Technologies, Ag Phase change memory cell defined by a pattern shrink material process
KR100675279B1 (ko) 2005-04-20 2007-01-26 삼성전자주식회사 셀 다이오드들을 채택하는 상변이 기억소자들 및 그제조방법들
US7408240B2 (en) 2005-05-02 2008-08-05 Infineon Technologies Ag Memory device
KR100682946B1 (ko) 2005-05-31 2007-02-15 삼성전자주식회사 상전이 램 및 그 동작 방법
KR100668846B1 (ko) 2005-06-10 2007-01-16 주식회사 하이닉스반도체 상변환 기억 소자의 제조방법
US7321130B2 (en) 2005-06-17 2008-01-22 Macronix International Co., Ltd. Thin film fuse phase change RAM and manufacturing method
US8237140B2 (en) 2005-06-17 2012-08-07 Macronix International Co., Ltd. Self-aligned, embedded phase change RAM
US7598512B2 (en) 2005-06-17 2009-10-06 Macronix International Co., Ltd. Thin film fuse phase change cell with thermal isolation layer and manufacturing method
US7534647B2 (en) 2005-06-17 2009-05-19 Macronix International Co., Ltd. Damascene phase change RAM and manufacturing method
US7514367B2 (en) 2005-06-17 2009-04-07 Macronix International Co., Ltd. Method for manufacturing a narrow structure on an integrated circuit
US7696503B2 (en) 2005-06-17 2010-04-13 Macronix International Co., Ltd. Multi-level memory cell having phase change element and asymmetrical thermal boundary
US7238994B2 (en) 2005-06-17 2007-07-03 Macronix International Co., Ltd. Thin film plate phase change ram circuit and manufacturing method
US7514288B2 (en) 2005-06-17 2009-04-07 Macronix International Co., Ltd. Manufacturing methods for thin film fuse phase change ram
US20060289848A1 (en) 2005-06-28 2006-12-28 Dennison Charles H Reducing oxidation of phase change memory electrodes
US7309630B2 (en) * 2005-07-08 2007-12-18 Nanochip, Inc. Method for forming patterned media for a high density data storage device
US7345907B2 (en) 2005-07-11 2008-03-18 Sandisk 3D Llc Apparatus and method for reading an array of nonvolatile memory cells including switchable resistor memory elements
US20070037101A1 (en) 2005-08-15 2007-02-15 Fujitsu Limited Manufacture method for micro structure
KR100655443B1 (ko) 2005-09-05 2006-12-08 삼성전자주식회사 상변화 메모리 장치 및 그 동작 방법
US7615770B2 (en) 2005-10-27 2009-11-10 Infineon Technologies Ag Integrated circuit having an insulated memory
US7417245B2 (en) * 2005-11-02 2008-08-26 Infineon Technologies Ag Phase change memory having multilayer thermal insulation
US20070111429A1 (en) 2005-11-14 2007-05-17 Macronix International Co., Ltd. Method of manufacturing a pipe shaped phase change memory
US7397060B2 (en) 2005-11-14 2008-07-08 Macronix International Co., Ltd. Pipe shaped phase change memory
US7786460B2 (en) 2005-11-15 2010-08-31 Macronix International Co., Ltd. Phase change memory device and manufacturing method
US7635855B2 (en) 2005-11-15 2009-12-22 Macronix International Co., Ltd. I-shaped phase change memory cell
US7450411B2 (en) 2005-11-15 2008-11-11 Macronix International Co., Ltd. Phase change memory device and manufacturing method
US7394088B2 (en) 2005-11-15 2008-07-01 Macronix International Co., Ltd. Thermally contained/insulated phase change memory device and method (combined)
US7414258B2 (en) 2005-11-16 2008-08-19 Macronix International Co., Ltd. Spacer electrode small pin phase change memory RAM and manufacturing method
US7829876B2 (en) 2005-11-21 2010-11-09 Macronix International Co., Ltd. Vacuum cell thermal isolation for a phase change memory device
US7507986B2 (en) 2005-11-21 2009-03-24 Macronix International Co., Ltd. Thermal isolation for an active-sidewall phase change memory cell
US7449710B2 (en) 2005-11-21 2008-11-11 Macronix International Co., Ltd. Vacuum jacket for phase change memory element
US7479649B2 (en) 2005-11-21 2009-01-20 Macronix International Co., Ltd. Vacuum jacketed electrode for phase change memory element
US7599217B2 (en) 2005-11-22 2009-10-06 Macronix International Co., Ltd. Memory cell device and manufacturing method
US7459717B2 (en) 2005-11-28 2008-12-02 Macronix International Co., Ltd. Phase change memory cell and manufacturing method
US7688619B2 (en) 2005-11-28 2010-03-30 Macronix International Co., Ltd. Phase change memory cell and manufacturing method
US7233054B1 (en) 2005-11-29 2007-06-19 Korea Institute Of Science And Technology Phase change material and non-volatile memory device using the same
US7605079B2 (en) 2005-12-05 2009-10-20 Macronix International Co., Ltd. Manufacturing method for phase change RAM with electrode layer process
US7642539B2 (en) 2005-12-13 2010-01-05 Macronix International Co., Ltd. Thin film fuse phase change cell with thermal isolation pad and manufacturing method
US7531825B2 (en) 2005-12-27 2009-05-12 Macronix International Co., Ltd. Method for forming self-aligned thermal isolation cell for a variable resistance memory array
US8062833B2 (en) 2005-12-30 2011-11-22 Macronix International Co., Ltd. Chalcogenide layer etching method
US20070156949A1 (en) 2005-12-30 2007-07-05 Rudelic John C Method and apparatus for single chip system boot
US7292466B2 (en) 2006-01-03 2007-11-06 Infineon Technologies Ag Integrated circuit having a resistive memory
KR100763908B1 (ko) 2006-01-05 2007-10-05 삼성전자주식회사 상전이 물질, 이를 포함하는 상전이 메모리와 이의 동작방법
US7741636B2 (en) 2006-01-09 2010-06-22 Macronix International Co., Ltd. Programmable resistive RAM and manufacturing method
US7560337B2 (en) 2006-01-09 2009-07-14 Macronix International Co., Ltd. Programmable resistive RAM and manufacturing method
US20070158632A1 (en) 2006-01-09 2007-07-12 Macronix International Co., Ltd. Method for Fabricating a Pillar-Shaped Phase Change Memory Element
US7595218B2 (en) 2006-01-09 2009-09-29 Macronix International Co., Ltd. Programmable resistive RAM and manufacturing method
US7825396B2 (en) 2006-01-11 2010-11-02 Macronix International Co., Ltd. Self-align planerized bottom electrode phase change memory and manufacturing method
US7351648B2 (en) 2006-01-19 2008-04-01 International Business Machines Corporation Methods for forming uniform lithographic features
US7432206B2 (en) 2006-01-24 2008-10-07 Macronix International Co., Ltd. Self-aligned manufacturing method, and manufacturing method for thin film fuse phase change ram
US7456421B2 (en) 2006-01-30 2008-11-25 Macronix International Co., Ltd. Vertical side wall active pin structures in a phase change memory and manufacturing methods
US7956358B2 (en) 2006-02-07 2011-06-07 Macronix International Co., Ltd. I-shaped phase change memory cell with thermal isolation
US7426134B2 (en) 2006-02-24 2008-09-16 Infineon Technologies North America Sense circuit for resistive memory
US7910907B2 (en) 2006-03-15 2011-03-22 Macronix International Co., Ltd. Manufacturing method for pipe-shaped electrode phase change memory
US20070235811A1 (en) 2006-04-07 2007-10-11 International Business Machines Corporation Simultaneous conditioning of a plurality of memory cells through series resistors
US7928421B2 (en) 2006-04-21 2011-04-19 Macronix International Co., Ltd. Phase change memory cell with vacuum spacer
US20070249090A1 (en) 2006-04-24 2007-10-25 Philipp Jan B Phase-change memory cell adapted to prevent over-etching or under-etching
US8129706B2 (en) 2006-05-05 2012-03-06 Macronix International Co., Ltd. Structures and methods of a bistable resistive random access memory
US7608848B2 (en) 2006-05-09 2009-10-27 Macronix International Co., Ltd. Bridge resistance random access memory device with a singular contact structure
US20070267618A1 (en) 2006-05-17 2007-11-22 Shoaib Zaidi Memory device
US7423300B2 (en) 2006-05-24 2008-09-09 Macronix International Co., Ltd. Single-mask phase change memory element
US7473921B2 (en) * 2006-06-07 2009-01-06 International Business Machines Corporation Nonvolatile memory cell with concentric phase change material formed around a pillar arrangement
US7696506B2 (en) 2006-06-27 2010-04-13 Macronix International Co., Ltd. Memory cell with memory material insulation and manufacturing method
US7663909B2 (en) 2006-07-10 2010-02-16 Qimonda North America Corp. Integrated circuit having a phase change memory cell including a narrow active region width
US7785920B2 (en) * 2006-07-12 2010-08-31 Macronix International Co., Ltd. Method for making a pillar-type phase change memory element
US7542338B2 (en) 2006-07-31 2009-06-02 Sandisk 3D Llc Method for reading a multi-level passive element memory cell array
US7504653B2 (en) * 2006-10-04 2009-03-17 Macronix International Co., Ltd. Memory cell device with circumferentially-extending memory element
US7684225B2 (en) 2006-10-13 2010-03-23 Ovonyx, Inc. Sequential and video access for non-volatile memory arrays
US20080225489A1 (en) 2006-10-23 2008-09-18 Teledyne Licensing, Llc Heat spreader with high heat flux and high thermal conductivity
US20080101110A1 (en) 2006-10-25 2008-05-01 Thomas Happ Combined read/write circuit for memory
US20080137400A1 (en) 2006-12-06 2008-06-12 Macronix International Co., Ltd. Phase Change Memory Cell with Thermal Barrier and Method for Fabricating the Same
US7473576B2 (en) 2006-12-06 2009-01-06 Macronix International Co., Ltd. Method for making a self-converged void and bottom electrode for memory cell
US20080165569A1 (en) 2007-01-04 2008-07-10 Chieh-Fang Chen Resistance Limited Phase Change Memory Material
US7515461B2 (en) 2007-01-05 2009-04-07 Macronix International Co., Ltd. Current compliant sensing architecture for multilevel phase change memory
US20080164453A1 (en) 2007-01-07 2008-07-10 Breitwisch Matthew J Uniform critical dimension size pore for pcram application
US7440315B2 (en) 2007-01-09 2008-10-21 Macronix International Co., Ltd. Method, apparatus and computer program product for stepped reset programming process on programmable resistive memory cell
US7456460B2 (en) 2007-01-29 2008-11-25 International Business Machines Corporation Phase change memory element and method of making the same
US7535756B2 (en) 2007-01-31 2009-05-19 Macronix International Co., Ltd. Method to tighten set distribution for PCRAM
US7701759B2 (en) 2007-02-05 2010-04-20 Macronix International Co., Ltd. Memory cell device and programming methods
US7463512B2 (en) 2007-02-08 2008-12-09 Macronix International Co., Ltd. Memory element with reduced-current phase change element
US8138028B2 (en) 2007-02-12 2012-03-20 Macronix International Co., Ltd Method for manufacturing a phase change memory device with pillar bottom electrode
US8008643B2 (en) 2007-02-21 2011-08-30 Macronix International Co., Ltd. Phase change memory cell with heater and method for fabricating the same
US20080265234A1 (en) 2007-04-30 2008-10-30 Breitwisch Matthew J Method of Forming Phase Change Memory Cell With Reduced Switchable Volume
US7906368B2 (en) 2007-06-29 2011-03-15 International Business Machines Corporation Phase change memory with tapered heater
US7745807B2 (en) 2007-07-11 2010-06-29 International Business Machines Corporation Current constricting phase change memory element structure
US7755935B2 (en) 2007-07-26 2010-07-13 International Business Machines Corporation Block erase for phase change memory

Also Published As

Publication number Publication date
TW200820422A (en) 2008-05-01
US7910906B2 (en) 2011-03-22
US20080099791A1 (en) 2008-05-01
US7504653B2 (en) 2009-03-17
CN101159312A (zh) 2008-04-09
US20090140230A1 (en) 2009-06-04
TWI315575B (en) 2009-10-01

Similar Documents

Publication Publication Date Title
CN101159312B (zh) 具有向周围延伸的存储元件的存储单元器件
CN100481389C (zh) 可编程电阻随机存取存储器及其制造方法
CN101345251B (zh) 位于半导体衬底之上的存储单元阵列及其制造方法
CN101197422B (zh) 在制造存储单元时产生微孔开口的方法
US8106376B2 (en) Method for manufacturing a resistor random access memory with a self-aligned air gap insulator
CN101290948B (zh) 存储器结构及其制造方法以及存储单元阵列的制造方法
CN100562985C (zh) 制造存储单元的自对准空洞及底电极的方法
CN100555653C (zh) 可编程电阻随机存取存储器及其制造方法
CN100502083C (zh) 相变化存储器的垂直侧壁有效引脚结构及其制造方法
CN100544016C (zh) 具有绝热衬垫的薄膜保险丝相变化单元及其制造方法
CN100550462C (zh) 具有l型电极的电阻式随机存取存储器单元
CN100563020C (zh) 有金属氧化物的多阶电阻随机存取存储结构及其制造方法
CN101197423B (zh) 制造存储单元中的自收敛存储材料元件的方法
US7397060B2 (en) Pipe shaped phase change memory
CN101246950B (zh) 具有较低电流相变化元件的存储元件
CN101226771B (zh) 使用多存储器层的多层单元存储器结构及其制造方法
CN101419940B (zh) 制造存储单元组合的方法与存储单元组合
CN101083298B (zh) 具有缩减活性面积及接触面积的电阻式随机存取存储单元
CN100563042C (zh) 具有自对准气隙绝缘体的电阻随机存取存储器的制造方法
CN101540368A (zh) 一种存储单元及制造存储单元阵列的方法
CN100573899C (zh) 自我对准的嵌入式相变存储器及其制造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant