CN101180746B - 硒化锡存储装置和制造该存储装置的方法 - Google Patents

硒化锡存储装置和制造该存储装置的方法 Download PDF

Info

Publication number
CN101180746B
CN101180746B CN2006800056053A CN200680005605A CN101180746B CN 101180746 B CN101180746 B CN 101180746B CN 2006800056053 A CN2006800056053 A CN 2006800056053A CN 200680005605 A CN200680005605 A CN 200680005605A CN 101180746 B CN101180746 B CN 101180746B
Authority
CN
China
Prior art keywords
layer
electrode
thickness
chalcogenide layer
storage arrangement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2006800056053A
Other languages
English (en)
Other versions
CN101180746A (zh
Inventor
克里斯蒂·A·坎贝尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Micron Technology Inc
Original Assignee
Micron Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Micron Technology Inc filed Critical Micron Technology Inc
Publication of CN101180746A publication Critical patent/CN101180746A/zh
Application granted granted Critical
Publication of CN101180746B publication Critical patent/CN101180746B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • H10N70/24Multistable switching devices, e.g. memristors based on migration or redistribution of ionic species, e.g. anions, vacancies
    • H10N70/245Multistable switching devices, e.g. memristors based on migration or redistribution of ionic species, e.g. anions, vacancies the species being metal cations, e.g. programmable metallization cells
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0009RRAM elements whose operation depends upon chemical change
    • G11C13/0011RRAM elements whose operation depends upon chemical change comprising conductive bridging RAM [CBRAM] or programming metallization cells [PMCs]
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0069Writing or programming circuits or methods
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/061Patterning of the switching material
    • H10N70/063Patterning of the switching material by etching of pre-deposited switching material layers, e.g. lithography
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/821Device geometry
    • H10N70/826Device geometry adapted for essentially vertical current flow, e.g. sandwich or pillar type devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/882Compounds of sulfur, selenium or tellurium, e.g. chalcogenides
    • H10N70/8825Selenides, e.g. GeSe
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/882Compounds of sulfur, selenium or tellurium, e.g. chalcogenides
    • H10N70/8828Tellurides, e.g. GeSbTe
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0069Writing or programming circuits or methods
    • G11C2013/009Write using potential difference applied between cell electrodes
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/50Resistive cell structure aspects
    • G11C2213/56Structure including two electrodes, a memory active layer and a so called passive or source or reservoir layer which is NOT an electrode, wherein the passive or source or reservoir layer is a source of ions which migrate afterwards in the memory active layer to be only trapped there, to form conductive filaments there or to react with the material of the memory active layer in redox way

Abstract

本发明揭示用于提供可对存储器装置进行有限次数编程的方法和设备。根据示范性实施例,存储器装置及其形成方法提供第一电极、第二电极和位于所述第一电极与所述第二电极之间的含有硫属化物或锗的材料层。所述存储器装置进一步包含位于所述含有硫属化物或锗的材料层与所述第二电极之间的锡硫属化物层。

Description

硒化锡存储装置和制造该存储装置的方法
技术领域
本发明涉及存储器装置的领域,且特定来说涉及可编程有限次数的存储器装置。
背景技术
已经研究了包含可编程导电随机存取存储器(PCRAM)元件的电阻可变存储器元件作为半易失性和非易失性随机存取存储器元件的适用性。转让给Micron Technology,Inc.的第6,348,365号美国专利中揭示了示范性PCRAM装置。
PCRAM装置通常包含硫属化物玻璃作为活性切换材料。将例如银的导电材料并入硫属化物玻璃从而产生导电通道。在装置的操作期间,导电通道可接收和排出金属离子(例如,银离子)以通过后续编程电压(例如写入和擦除电压)来对存储器元件的特定电阻状态(例如,较高或较低电阻状态)进行编程。在移除编程电压之后,经编程的电阻状态可保持完整历时一段时间,通常在数小时到数周的范围内。由此,典型的基于硫属化物玻璃的PCRAM装置充当具有定义两个相应逻辑状态的至少两个电阻状态的可变电阻存储器。
一个示范性PCRAM装置使用硒化锗(即,GexSe100-x)硫属化物玻璃作为主要部分以及银(Ag)和硒化银(Ag2+/-xSe)。例如参见转让给Micron Technology,Inc.的第2004/0038432号美国专利申请公开案。
尽管银硫属化物材料适合于辅助穿过硫属化物玻璃层形成导电通道以供银离子移动进入,但由于与银的使用相关联的某些缺点,其它非基于银的硫属化物材料可能是符合期望的。举例来说,使用例如Ag2Se的含银化合物/合金可能导致PCRAM装置成层时的凝聚问题,且基于银硫属化物的装置不能承受较高的处理温度,例如接近260℃和更高。锡(Sn)与银相比在GexSe100-x中具有减小的热移动性,且锡硫属化物的毒性小于银硫属化物。
已经对在膜上施加电压电位下使用SnSe(硒化锡)作为切换装置方面进行了研究。已经发现,当通过形成富含Sn材料(例如,树突)而施加5-15V的电位时,
Figure DEST_PATH_G200680005605301D00011
SnSe膜展示出在较高电阻状态(以兆欧姆测量)与较低电阻状态(以千欧姆测量)之间的非易失性切换。同样,已经发现,向作为硫属化物玻璃的GexSe100-x玻璃添加Sn会在足够高的电位(例如,>40V)施加于硫属化物玻璃上时产生存储器切换。然而,此切换电位对于可变存储器装置来说太高。
一次可编程(OTP)存储器单元是已知的且具有许多应用。典型的OTP存储器单元可充当熔断器或抗熔断器。在存储器装置应用中,此熔断器或抗熔断器可连接在列线与行线之间。在具有熔断器的存储器单元中,通过列线发送的电荷将通过单元中的完整熔断器到达接地行线,从而指示值1。为了将单元的值改变为0,将特定量的电流施加到单元以烧断熔断器。在具有抗熔断器的单元中,初始未编程状态为0,且单元被编程为1状态。一旦常规的OTP单元经编程,那么其就无法被擦除或再编程。
因此,需要有一种可充当OTP或类似于OTP的存储器单元的电阻可变存储器元件。另外,需要一种可在初始编程之后至少再编程一次的存储器元件。
发明内容
本发明的示范性实施例提供用于提供可编程有限次数的存储器装置的方法和设备。根据示范性实施例,存储器装置及其形成方法提供第一电极、第二电极和位于所述第一电极与所述第二电极之间的含有硫属化物或锗的材料层。所述存储器装置进一步包含位于所述含有硫属化物或锗的材料层与所述第二电极之间的锡硫属化物层。
通过结合附图提供的以下详细描述将更好地理解本发明的以上和其它特征和优点。
附图说明
通过下文参考附图提供的示范性实施例的详细描述将更容易明了本发明的上述和其它优点和特征,其中:
图1说明根据本发明示范性实施例的存储器元件的横截面图;
图2A-2D说明在不同的处理阶段中图1的存储器元件的横截面图;
图3说明根据本发明另一示范性实施例的存储器元件的横截面图;
图4说明根据本发明另一示范性实施例的存储器元件的横截面图;
图5说明根据本发明另一示范性实施例的存储器元件的横截面图;以及
图6说明根据本发明示范性实施例的处理器系统。
具体实施方式
在以下具体实施方式中,参考本发明的各种特定实施例。以充分的细节描述这些实施例以使所属领域的技术人员能够实践本发明。应了解,可采用其它实施例,且可在不脱离本发明的精神或范围的情况下做出各种结构、逻辑和电的改变。
以下描述中使用的术语“衬底”可包含任意支撑结构,包含(但不限于)具有暴露衬底表面的半导体衬底。半导体衬底应理解为包含绝缘体上硅(SOI)、蓝宝石上硅(SOS)、掺杂和未掺杂半导体、由基底半导体基础支撑的硅的外延层和其它半导体结构。当以下描述中参考半导体衬底或晶片时,可利用先前的过程步骤在基底半导体或基础之中或之上形成区域或结。衬底不需要是基于半导体的,而是可为任何适于支撑集成电路的支撑结构,包含(但不限于)金属、合金、玻璃、聚合物、陶瓷和此项技术中已知的任何其它支撑性材料。
术语“锡”意欲不仅包含元素锡,而且包含具有其它痕量金属或与半导体工业中已知的其它金属的各种合金组合的锡,只要此锡合金导电,且只要锡的物理和电性质保持不变即可。
术语“锡硫属化物”意欲包含锡和硫属化物(例如,硫(S)、硒(Se)、碲(Te)、钋(Po)和氧(O))的各种合金、化合物和混合物,包含具有稍微过量或不足的锡的一些物质。举例来说,作为锡硫属化物物质的硒化锡可由通式Sn1+/-xSe表示。虽然不受Sn与Se之间的特定化学计量比的限制,但本发明的装置通常包括Sn1+/-xSe物质,其中x的范围在约1与约0之间。
术语“硫属化物材料”、“硫属化物玻璃”或“晶体硫属化物”意欲包含包括周期表的VIA族(或16族)的元素的材料,包含玻璃或晶体材料。也称为硫属化物的VIA族元素包含硫(S)、硒(Se)、碲(Te)、钋(Po)和氧(O)。硫属化物材料的实例包含GeTe、GeSe、GeS、InSe和SbSe,其全部具有各种化学计量。
现在参看附图解释本发明,附图说明示范性实施例,且图中类似参考标号指示类似特征。图1展示根据本发明构造的存储器元件100的示范性实施例。图1所示的元件100由衬底10支撑。在衬底10上(但并不一定直接在其上)的是导电地址线12,其用作所示元件100和所示元件100是其一部分的存储器阵列的多个其它类似装置的互连件。可在衬底10与地址线12之间并入可选的绝缘层11,且这在衬底10基于半导体时可能是优选的。导电地址线12可为此项技术中已知的可用于提供互连线的任何材料,例如掺杂的多晶硅、银(Ag)、金(Au)、铜(Cu)、钨(W)、镍(Ni)、铝(Al)、铂(Pt)、钛(Ti)和其它材料。在地址线12上的是第一电极16,其被界定在同样在地址线12上的绝缘层14内。此电极16可为任何将不会迁移到下文所述的层18内的导电材料,但优选为钨(W)。绝缘层14可为(例如)氮化硅(Si3N4)、低介电常数材料、绝缘玻璃或绝缘聚合物,但不限于此类材料。如图1所示,可选的绝缘层11可位于地址线12与衬底10之间。
存储器元件100(即,存储信息的部分)形成于第一电极16上。在图1所示的实施例中,例如硒化锗(GexSe100-x)的硫属化物材料层18提供在第一电极16上。硒化锗的化学计量范围可在约Ge33Se67到约Ge60Se40内。硫属化物材料层18可为约
Figure S06805605320070823D000041
与约1000
Figure S06805605320070823D000042
之间厚,例如约
Figure S06805605320070823D000043
厚。层18无需为单一层,而是也可包含具有相同或不同化学计量的多个硫属化物子层。硫属化物材料层18与下伏电极16电接触。或者存储器元件100可包含无需包括硫属化物材料的含锗层来代替硫属化物材料层18。
在硫属化物材料层18(或含锗层)上的是锡硫属化物层20,例如硒化锡(Sn1+/-xSe,其中x在约1与0之间)。也可能其它硫属化物材料可代替硒,例如硫、氧或碲。锡硫属化物层20可为约
Figure S06805605320070823D000044
到约
Figure S06805605320070823D000045
厚,然而其厚度部分取决于下伏硫属化物材料层18的厚度。锡硫属化物层20的厚度与下伏硫属化物材料层18的厚度之比应小于约4:3,例如在约1:3与约4:3之间。随着锡硫属化物层20的厚度与下伏硫属化物材料层18的厚度之比减小(即,锡硫属化物层20与硫属化物材料层18相比变得较薄),存储器元件100可更加类似于OTP单元而起作用。
仍参看图1,可选的金属层22提供在锡硫属化物层20上,其中银(Ag)为示范性金属。此金属层22为约
Figure S06805605320070823D000046
厚。在金属层22上的是第二电极24。第二电极24可由与第一电极16相同的材料制成,但不需要如此。在图1所示的示范性实施例中,第二电极24优选为钨(W)。装置可由绝缘层26隔离。
尽管本发明不限于任何特定理论,但相信一旦施加调节电压,来自锡硫属化物层20的金属离子就在硫属化物材料层18内形成一个或一个以上导电通道。具体来说,调节步骤包括在装置100的存储器元件结构上施加电位,以便将来自锡硫属化物层20的材料并入硫属化物玻璃层18,借此形成穿过硫属化物玻璃层18的导电通道。来自层20的离子在后续编程期间移动进入或退出所述导电通道会形成导电路径,其导致存储器装置100上的可检测的电阻改变。
而且,在本发明的这个和其它实施例中使用例如层20的锡硫属化物层为所得的装置100提供改进的温度稳定性。举例来说,根据本发明的并入锡硫属化物层的装置已展示在约200℃的温度下起作用,且可具有超过约300℃的温度容限,利用硫属化物玻璃和含银层的装置不能承受此温度。
在图1的示范性实施例中,调节电压将硫属化物层18的电阻状态从高阻态改变为中间阻态。后续施加的具有低于调节电压的能量的能量的写入电压接着可将硫属化物层编程为较低阻态。写入电压的施加导致可用的金属离子移动进入导电通道,所述金属离子在写入电压移除之后仍在该处保留,从而形成导电路径。
根据本发明示范性实施例的存储器元件(例如,存储器元件100)作为OTP或类似OTP的存储器元件而操作。也就是说,存储器元件100可仅编程一次且无法擦除,或者其可编程和擦除有限次数(例如,约20或更少次数)。
如上所述,随着锡硫属化物层20的厚度与下伏硫属化物材料(或锗)层18的厚度之比减小,存储器元件100可更加类似于OTP单元而起作用。相信此情况发生的一个原因是来自金属层22的金属(例如,银)与来自锡硫属化物层20的锡反应。所得的合金保持导电,借此促进存储器元件100的低阻态。
图2A-2D是描绘根据本发明示范性方法实施例的存储器元件100的形成的在各个制造阶段中晶片的横截面图。对于此处描述的动作中的任一者不需要任何特定次序,除非是逻辑上需要先前动作的结果的动作。因此,尽管以下动作描述为以一般次序执行,但次序仅是示范性的,且可在需要时改变。尽管展示单一存储器元件100的形成,但应了解存储器元件100可为可同时形成的存储器元件阵列中的一个存储器元件。
如图2A所示,初始提供衬底10。如上文指示,衬底10可为基于半导体的或可为用作支撑结构的另一材料。在需要时,可选的绝缘层11可形成于衬底10上。可选的绝缘层11可为氧化硅、氮化硅或其它绝缘材料。在衬底10(和可选的绝缘层11,如果需要的话)上,通过沉积导电材料(例如,掺杂多晶硅、铝、铂、银、金、镍、钛,但优选为钨)来形成导电地址线12。导电材料例如用光刻技术图案化并经蚀刻以界定地址线12。可通过此项技术中已知的任何技术,例如溅镀、化学气相沉积、等离子增强化学气相沉积、蒸发或电镀来沉积导电材料。
绝缘层14形成于地址线12上。绝缘层14可为氮化硅、低介电常数材料或此项技术中已知的其它绝缘体,且可通过任何已知的方法形成。优选地,绝缘层14(例如,氮化硅)不允许锡离子迁移。例如通过光刻和蚀刻技术制成绝缘层14中的开口14a,从而暴露下伏地址线12的一部分。通过在绝缘层14上和开口14a中形成导电材料层,第一电极16形成于开口14a内。执行化学机械抛光(CMP)步骤以从绝缘层14上移除导电材料。希望第一电极16由钨形成,但可使用将不会迁移到层18中的任何合适的导电材料。
如图2B中所示,硫属化物材料层18形成于第一电极16和绝缘层14上。可通过任何合适的方法,例如通过溅镀来完成硫属化物材料层18的形成。硫属化物材料层18形成为(例如)约
Figure S06805605320070823D000051
与约
Figure S06805605320070823D000052
之间的厚度,例如约
Figure S06805605320070823D000053
厚。
存储器单元100可替代地包含无需包括硫属化物材料的含锗层来代替硫属化物材料层18。在此情况下,可通过任何已知的技术(例如通过溅镀)来形成含锗层。
锡硫属化物层20形成于硫属化物材料层18上。可通过任何合适的方法,例如物理气相沉积、化学气相沉积、共蒸发、溅镀等技术,来形成锡硫属化物层20。锡硫属化物层20形成为例如约
Figure S06805605320070823D000061
到约
Figure S06805605320070823D000062
厚的厚度,然而其厚度部分地取决于下伏硫属化物材料层18的厚度。锡硫属化物层20的厚度与下伏硫属化物材料层18的厚度之比最好小于约4:3,例如在约1:3与约4:3之间。
视需要,金属层22形成于锡硫属化物层20上。金属层22优选为银(Ag),或至少含银,且形成为约
Figure S06805605320070823D000063
到约
Figure S06805605320070823D000064
的优选厚度。可通过此项技术中已知的任何技术来沉积金属层22。
在金属层22上沉积导电材料以形成第二电极24。类似于第一电极16,用于第二电极24的导电材料可为适用于导电电极的任何材料。在一个示范性实施例中,第二电极24为钨。
参看图2C,光致抗蚀剂层30沉积在第二电极24层上,经掩模与图案化以界定存储器元件100的堆叠33。使用蚀刻步骤以移除层18、20、22、24的部分,其中绝缘层14用作蚀刻停止物,从而留下堆叠33,如图2C所示。移除光致抗蚀剂30,从而留下图2D所示的结构。
绝缘层26形成于堆叠33和绝缘层14上以实现图1所示的结构。此隔离步骤之后可为形成从界定的存储器单元电极16、24到存储器单元100为其一部分的集成电路(例如,逻辑电路、读出放大器等)的其它电路的连接。
图3展示根据本发明示范性实施例的存储器元件300。对于存储器元件300,地址线12也可充当第一电极16。在此情况下,省略单独第一电极16的形成。
图4说明根据本发明另一示范性实施例的存储器元件400。存储器元件400主要由第二电极24的位置界定。存储器元件400的层18、20、22是形成于组合地址线与电极结构12/16上的覆盖层。或者,可使用与下伏地址线12分离的第一电极16,如同存储器元件100(图1)。在图4中,第二电极24展示为垂直于纸页平面,且地址线和电极结构12/16展示为平行于纸页平面。
第二电极24直接在地址线和电极结构12/16上的位置界定在存储器元件400操作期间形成的导电路径的位置。由此,第二电极24界定存储器元件400的位置。
图5表示根据本发明另一示范性实施例的存储器元件500。在所说明的存储器元件500中,硫属化物材料(或锗)、锡硫属化物和可选金属层18、20、22形成于通路28中。通路28形成于地址线和电极结构12/16上的绝缘层14中。层18、20以及第二电极24共形地沉积在绝缘层14上和通路28内。层18、20、22、24经图案化以在通路28上界定堆叠,所述堆叠经蚀刻以形成完成的存储器元件500。或者,可使用与下伏地址线12分离的第一电极16。此单独电极16可在硫属化物材料(或锗)层18形成之前形成于通路28中。
以上描述的实施例涉及可能为存储器阵列的一部分的根据本发明的仅几个可能的电阻可变存储器元件结构的形成。然而应了解,本发明预期在本发明精神内形成其它存储器结构,所述其它存储器结构可制造为存储器阵列且以存储器元件存取电路操作。
图6说明包含采用根据本发明的电阻可变存储器元件(例如,元件100、300、400和/或500)的存储器电路648(例如存储器装置)的处理器系统600。可例如为计算机系统的处理器系统600通常包括中央处理单元(CPU)644,例如微处理器、数字信号处理器或其它可编程数字逻辑装置,其经由总线652与输入/输出(I/O)装置646通信。存储器电路648通常通过存储器控制器经由总线652与CPU644通信。
在计算机系统的情况下,处理器系统600可包含例如软磁盘驱动器654和紧密光碟(CD)ROM驱动器656的外围装置,其也经由总线652与CPU644通信。存储器电路648优选构造为集成电路,其包含一个或一个以上电阻可变存储器元件,例如元件100(图1)。在需要时,存储器电路648可与处理器(例如CPU644)组合在单一集成电路中。
以上描述和附图仅视为说明实现本发明特征和优点的示范性实施例。在不脱离本发明精神和范围的情况下可做出对特定过程条件和结构的修改和替代。因此,本发明不应视为由上述描述内容和附图所限制,而是仅由所附权利要求书的范围所限制。

Claims (50)

1.一种存储器装置,其包括:
第一电极;
第二电极;
晶体硫属化物或半金属材料的材料层,其位于所述第一电极与所述第二电极之间;以及
锡硫属化物层,其位于所述材料层与所述第二电极之间,所述锡硫属化物层的厚度与所述材料层的厚度之比小于4∶3。
2.根据权利要求1所述的存储器装置,其中所述材料层是锗层。
3.根据权利要求1所述的存储器装置,其进一步包括位于所述锡硫属化物层与所述第二电极之间的金属层。
4.根据权利要求3所述的存储器装置,其中所述金属层包括银。
5.根据权利要求1所述的存储器装置,其中所述锡硫属化物层包括Sn1+/-xSe,其中x 在1与0之间。
6.根据权利要求1所述的存储器装置,其中所述锡硫属化物层包括碲化锡。
7.根据权利要求1所述的存储器装置,其中所述第一和第二电极中的至少一者包括钨。
8.根据权利要求1所述的存储器装置,其中所述第二电极是在所述锡硫属化物层上且包括银。
9.根据权利要求1所述的存储器装置,其中所述材料层和所述锡硫属化物层提供在绝缘层中的通路内。
10.根据权利要求1所述的存储器装置,其中所述材料层和所述锡硫属化物层是衬底上的覆盖层,且其中所述第二电极界定存储器元件的位置。
11.根据权利要求1所述的存储器装置,其中所述材料层的厚度和所述锡硫属化物层的厚度使得所述存储器装置可编程有限次数。
12.根据权利要求1所述的存储器装置,其中所述材料层的厚度和所述锡硫属化物层的厚度使得一旦所述存储器装置经编程,其就不可擦除。
13.根据权利要求1所述的存储器装置,其中所述材料层的厚度为
Figure FA20192542200680005605301C00011
且所述锡硫属化物层的厚度在
Figure FA20192542200680005605301C00013
之间。
14.根据权利要求13所述的存储器装置,其进一步包括位于所述锡硫属化物层与所述第二电极之间的金属层,所述金属层具有
Figure FA20192542200680005605301C00021
Figure FA20192542200680005605301C00022
的厚度。
15.根据权利要求1所述的存储器装置,其中所述材料层的厚度在
Figure FA20192542200680005605301C00023
Figure FA20192542200680005605301C00024
之间。
16.根据权利要求1所述的存储器装置,其中所述锡硫属化物层的厚度与所述材料层的厚度之比在1∶3与4∶3之间。
17.一种存储器装置,其包括:
衬底;
导电地址线,其在所述衬底上;
第一电极,其在所述导电地址线上;
晶体硫属化物材料层,其在所述第一电极上;
锡硫属化物层,其在所述晶体硫属化物材料层上;以及
第二电极,其在所述锡硫属化物层上,所述锡硫属化物层的厚度与所述晶体硫属化物材料层的厚度之比小于4∶3。
18.根据权利要求17所述的存储器装置,其进一步包括位于所述锡硫属化物层与所述第二电极之间的金属层。
19.根据权利要求17所述的存储器装置,其中所述晶体硫属化物材料层的厚度和所述锡硫属化物层的厚度使得所述存储器装置可编程有限次数。
20.一种存储器装置,其包括:
衬底;
导电地址线,其在所述衬底上;
第一电极,其在所述导电地址线上;
锗层,其在所述第一电极上;
锡硫属化物层,其在所述锗层上;以及
第二电极,其在所述锡硫属化物层上,所述锡硫属化物层的厚度与所述锗层的厚度之比小于4∶3。
21.根据权利要求20所述的存储器装置,其进一步包括位于所述锡硫属化物层与所述第二电极之间的金属层。
22.根据权利要求20所述的存储器装置,其中所述锗层的厚度和所述锡硫属化物层的厚度使得所述存储器装置可编程有限次数。
23.一种处理器系统,其包括:
处理器;以及
存储器装置,其经配置以可编程有限次数,所述存储器装置包括:
第一电极;
第二电极;
晶体硫属化物或半金属材料的材料层,其位于所述第一电极与所述第二电极之间;以及
锡硫属化物层,其位于所述材料层与所述第二电极之间,所述锡硫属化物层的厚度与所述材料层的厚度之比小于4∶3。
24.根据权利要求23所述的处理器系统,其中所述材料层是锗层。
25.根据权利要求23所述的处理器系统,其进一步包括位于所述锡硫属化物层与所述第二电极之间的金属层。
26.根据权利要求25所述的处理器系统,其中所述金属层包括银。
27.一种形成存储器装置的方法,所述方法包括以下动作:
提供衬底;
在所述衬底上形成第一电极;
在所述衬底上形成第二电极;
在所述第一电极与所述第二电极之间形成晶体硫属化物或半金属材料的材料层;
以及
在所述材料层与所述第二电极之间形成锡硫属化物层,将所述材料层和所述锡硫属化物层形成为使得所述锡硫属化物层的厚度与所述材料层的厚度之比小于4∶3。
28.根据权利要求27所述的方法,其中形成所述材料层包括形成锗层。
29.根据权利要求27所述的方法,其进一步包括形成位于所述锡硫属化物层与所述第二电极之间的金属层。
30.根据权利要求29所述的方法,其中形成所述金属层包括形成含银层。
31.根据权利要求27所述的方法,其中形成所述锡硫属化物层包括形成Sn1+/-xSe层,其中x在1与0之间。
32.根据权利要求27所述的方法,其中形成所述锡硫属化物层包括形成包括碲化锡的层。
33.根据权利要求27所述的方法,其中将所述第一和第二电极中的至少一者形成为包括钨。
34.根据权利要求27所述的方法,其中形成所述材料层和所述锡硫属化物层的动作包括形成具有使得所述存储器装置可编程有限次数的厚度的所述材料层和所述锡硫属化物层。
35.根据权利要求27所述的方法,其中形成所述材料层和所述锡硫属化物层的动作包括形成具有使得一旦所述存储器装置经编程其就不可擦除的厚度的所述材料层和所述锡硫属化物层。
36.根据权利要求27所述的方法,其中将所述材料层形成为具有为
Figure FA20192542200680005605301C00041
的厚度,且将所述锡硫属化物层形成为具有在
Figure FA20192542200680005605301C00042
Figure FA20192542200680005605301C00043
之间的厚度。
37.根据权利要求36所述的方法,其进一步包括在所述锡硫属化物层与所述第二电极之间形成银层,将所述银层形成为具有
Figure FA20192542200680005605301C00044
Figure FA20192542200680005605301C00045
的厚度。
38.根据权利要求27所述的方法,其中将所述材料层形成为具有在
Figure FA20192542200680005605301C00046
Figure FA20192542200680005605301C00047
之间的厚度。
39.根据权利要求27所述的方法,其中将所述锡硫属化物层和所述材料层形成为使得所述锡硫属化物层的厚度与所述材料层的厚度之比在1∶3与4∶3之间。
40.根据权利要求27所述的方法,其进一步包括提供与所述第一电极电连接的地址线。
41.根据权利要求27所述的方法,其中形成所述第一电极的动作包括形成组合的地址线/电极结构。
42.根据权利要求27所述的方法,其中形成所述材料层和所述锡硫属化物层的动作包括覆盖沉积形成所述材料层和所述锡硫属化物层。
43.根据权利要求42所述的方法,其进一步包括蚀刻形成所述材料层和所述锡硫属化物层以形成垂直堆叠的动作。
44.根据权利要求27所述的方法,其进一步包括在绝缘层内形成通路,其中形成所述材料层和所述锡硫属化物层的动作包括在所述通路内形成所述材料层和所述锡硫属化物层。
45.一种形成存储器元件的方法,所述方法包括以下动作:
提供衬底;
在所述衬底上形成导电层;
在所述导电层上形成第一电极;
在所述导电层和所述衬底上形成第一绝缘层;
在所述第一绝缘层中形成开口以在所述开口中暴露所述第一电极的一部分;
在所述开口中和所述第一电极上形成材料层,所述材料层为晶体硫属化物材料或锗;
在所述开口中和所述材料层上形成锡硫属化物层,将所述材料层和所述锡硫属化物层形成为使得所述锡硫属化物层的厚度与所述材料层的厚度之比小于4∶3;
在所述锡硫属化物层上形成第二电极层;
在所述第二电极层上提供掩模;
蚀刻所述材料层、所述锡硫属化物层和所述第二电极以形成堆叠。
46.根据权利要求45所述的方法,其中形成所述材料层和所述锡硫属化物层的动作包括形成具有使得所述存储器装置可编程有限次数的厚度的所述材料层和所述锡硫属化物层。
47.一种形成存储器装置的方法,所述方法包括以下动作:
提供衬底;
在所述衬底上形成第一电极;
在所述衬底上形成第二电极;
在所述第一电极与所述第二电极之间形成晶体硫属化物材料层;
在所述晶体硫属化物材料层与所述第二电极之间形成锡硫属化物层,及其中将所述锡硫属化物层和所述晶体硫属化物材料层形成为使得所述锡硫属化物层的厚度与所述晶体硫属化物材料层的厚度之比小于4∶3;以及
在所述锡硫属化物层与所述第二电极之间形成银层。
48.根据权利要求47所述的方法,其中将所述晶体硫属化物材料层和所述锡硫属化物层形成为具有使得所述存储器装置可编程有限次数的厚度。
49.一种形成存储器装置的方法,所述方法包括以下动作:
提供衬底;
在所述衬底上形成第一电极;
在所述衬底上形成第二电极;
在所述第一电极与所述第二电极之间形成锗层;
在所述锗层与所述第二电极之间形成锡硫属化物层,及其中将所述锡硫属化物层和所述锗层形成为使得所述锡硫属化物层的厚度与所述锗层的厚度之比小于4∶3;以及
在所述锡硫属化物层与所述第二电极之间形成银层。
50.根据权利要求49所述的方法,其中将所述锗层和所述锡硫属化物层形成为具有使得所述存储器装置可编程有限次数的厚度。
CN2006800056053A 2005-02-23 2006-02-17 硒化锡存储装置和制造该存储装置的方法 Active CN101180746B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11/062,436 US7317200B2 (en) 2005-02-23 2005-02-23 SnSe-based limited reprogrammable cell
US11/062,436 2005-02-23
PCT/US2006/005618 WO2006091480A1 (en) 2005-02-23 2006-02-17 Snse-based limited reprogrammable cell

Publications (2)

Publication Number Publication Date
CN101180746A CN101180746A (zh) 2008-05-14
CN101180746B true CN101180746B (zh) 2010-09-15

Family

ID=36570573

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2006800056053A Active CN101180746B (zh) 2005-02-23 2006-02-17 硒化锡存储装置和制造该存储装置的方法

Country Status (7)

Country Link
US (2) US7317200B2 (zh)
EP (1) EP1851809B1 (zh)
JP (1) JP5327576B2 (zh)
KR (1) KR100918168B1 (zh)
CN (1) CN101180746B (zh)
DE (1) DE602006019061D1 (zh)
WO (1) WO2006091480A1 (zh)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7190048B2 (en) * 2004-07-19 2007-03-13 Micron Technology, Inc. Resistance variable memory device and method of fabrication
US7326950B2 (en) 2004-07-19 2008-02-05 Micron Technology, Inc. Memory device with switching glass layer
WO2006132813A1 (en) * 2004-07-19 2006-12-14 Micron Technology, Inc. Memory device with switching glass layer
US8098521B2 (en) * 2005-03-31 2012-01-17 Spansion Llc Method of providing an erase activation energy of a memory device
US7332735B2 (en) * 2005-08-02 2008-02-19 Micron Technology, Inc. Phase change memory cell and method of formation
WO2008088599A2 (en) * 2006-10-19 2008-07-24 Boise State University Forced ion migration for chalcogenide phase change memory device
FR2922368A1 (fr) * 2007-10-16 2009-04-17 Commissariat Energie Atomique Procede de fabrication d'une memoire cbram ayant une fiabilite amelioree
EP2203799A4 (en) 2007-10-22 2017-05-17 Mobileaccess Networks Ltd. Communication system using low bandwidth wires
US8175649B2 (en) 2008-06-20 2012-05-08 Corning Mobileaccess Ltd Method and system for real time control of an active antenna over a distributed antenna system
KR100979348B1 (ko) * 2008-03-13 2010-08-31 주식회사 하이닉스반도체 반도체 소자의 퓨즈 및 그 제조 방법
US8238146B2 (en) * 2008-08-01 2012-08-07 Boise State University Variable integrated analog resistor
US8467236B2 (en) 2008-08-01 2013-06-18 Boise State University Continuously variable resistor
US7825479B2 (en) 2008-08-06 2010-11-02 International Business Machines Corporation Electrical antifuse having a multi-thickness dielectric layer
US20110079709A1 (en) * 2009-10-07 2011-04-07 Campbell Kristy A Wide band sensor
JP5549333B2 (ja) 2010-04-07 2014-07-16 富士通株式会社 偏波変動補償装置および光通信システム
US8284590B2 (en) 2010-05-06 2012-10-09 Boise State University Integratable programmable capacitive device
US8828788B2 (en) * 2010-05-11 2014-09-09 Micron Technology, Inc. Forming electrodes for chalcogenide containing devices
US8735862B2 (en) * 2011-04-11 2014-05-27 Micron Technology, Inc. Memory cells, methods of forming memory cells and methods of forming memory arrays
EP2829152A2 (en) 2012-03-23 2015-01-28 Corning Optical Communications Wireless Ltd. Radio-frequency integrated circuit (rfic) chip(s) for providing distributed antenna system functionalities, and related components, systems, and methods
KR101431656B1 (ko) * 2013-04-05 2014-08-21 한국과학기술연구원 저머늄 및 셀레늄을 이용한 칼코지나이드 스위칭 소자 및 그 제조방법
US9184960B1 (en) 2014-09-25 2015-11-10 Corning Optical Communications Wireless Ltd Frequency shifting a communications signal(s) in a multi-frequency distributed antenna system (DAS) to avoid or reduce frequency interference
US10002922B1 (en) * 2016-12-14 2018-06-19 Taiwan Semiconductor Manufacturing Company Process to etch semiconductor materials
US11316484B2 (en) * 2017-05-25 2022-04-26 Boise State University Optically gated transistor selector for variable resistive memory device
US10700226B2 (en) * 2017-05-25 2020-06-30 Boise State University Optically activated transistor, switch, and photodiode

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101019191A (zh) * 2004-07-19 2007-08-15 微米技术有限公司 电阻可变存储装置和制造方法

Family Cites Families (194)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3271591A (en) 1963-09-20 1966-09-06 Energy Conversion Devices Inc Symmetrical current controlling device
US3622319A (en) 1966-10-20 1971-11-23 Western Electric Co Nonreflecting photomasks and methods of making same
US3868651A (en) 1970-08-13 1975-02-25 Energy Conversion Devices Inc Method and apparatus for storing and reading data in a memory having catalytic material to initiate amorphous to crystalline change in memory structure
US3743847A (en) 1971-06-01 1973-07-03 Motorola Inc Amorphous silicon film as a uv filter
US4267261A (en) 1971-07-15 1981-05-12 Energy Conversion Devices, Inc. Method for full format imaging
US3961314A (en) 1974-03-05 1976-06-01 Energy Conversion Devices, Inc. Structure and method for producing an image
US3966317A (en) 1974-04-08 1976-06-29 Energy Conversion Devices, Inc. Dry process production of archival microform records from hard copy
US4177474A (en) 1977-05-18 1979-12-04 Energy Conversion Devices, Inc. High temperature amorphous semiconductor member and method of making the same
JPS5565365A (en) 1978-11-07 1980-05-16 Nippon Telegr & Teleph Corp <Ntt> Pattern forming method
DE2901303C2 (de) 1979-01-15 1984-04-19 Max Planck Gesellschaft Zur Foerderung Der Wissenschaften E.V., 3400 Goettingen Festes Ionenleitermaterial, seine Verwendung und Verfahren zu dessen Herstellung
US4312938A (en) 1979-07-06 1982-01-26 Drexler Technology Corporation Method for making a broadband reflective laser recording and data storage medium with absorptive underlayer
US4269935A (en) 1979-07-13 1981-05-26 Ionomet Company, Inc. Process of doping silver image in chalcogenide layer
US4316946A (en) 1979-12-03 1982-02-23 Ionomet Company, Inc. Surface sensitized chalcogenide product and process for making and using the same
US4499557A (en) 1980-10-28 1985-02-12 Energy Conversion Devices, Inc. Programmable cell for use in programmable electronic arrays
US4405710A (en) 1981-06-22 1983-09-20 Cornell Research Foundation, Inc. Ion beam exposure of (g-Gex -Se1-x) inorganic resists
US4737379A (en) 1982-09-24 1988-04-12 Energy Conversion Devices, Inc. Plasma deposited coatings, and low temperature plasma method of making same
US4545111A (en) 1983-01-18 1985-10-08 Energy Conversion Devices, Inc. Method for making, parallel preprogramming or field programming of electronic matrix arrays
US4608296A (en) 1983-12-06 1986-08-26 Energy Conversion Devices, Inc. Superconducting films and devices exhibiting AC to DC conversion
US4795657A (en) 1984-04-13 1989-01-03 Energy Conversion Devices, Inc. Method of fabricating a programmable array
US4668968A (en) 1984-05-14 1987-05-26 Energy Conversion Devices, Inc. Integrated circuit compatible thin film field effect transistor and method of making same
US4670763A (en) 1984-05-14 1987-06-02 Energy Conversion Devices, Inc. Thin film field effect transistor
US4673957A (en) 1984-05-14 1987-06-16 Energy Conversion Devices, Inc. Integrated circuit compatible thin film field effect transistor and method of making same
US4769338A (en) 1984-05-14 1988-09-06 Energy Conversion Devices, Inc. Thin film field effect transistor and method of making same
US4843443A (en) 1984-05-14 1989-06-27 Energy Conversion Devices, Inc. Thin film field effect transistor and method of making same
US4678679A (en) 1984-06-25 1987-07-07 Energy Conversion Devices, Inc. Continuous deposition of activated process gases
US4646266A (en) 1984-09-28 1987-02-24 Energy Conversion Devices, Inc. Programmable semiconductor structures and methods for using the same
US4664939A (en) 1985-04-01 1987-05-12 Energy Conversion Devices, Inc. Vertical semiconductor processor
US4637895A (en) 1985-04-01 1987-01-20 Energy Conversion Devices, Inc. Gas mixtures for the vapor deposition of semiconductor material
US4710899A (en) 1985-06-10 1987-12-01 Energy Conversion Devices, Inc. Data storage medium incorporating a transition metal for increased switching speed
US4671618A (en) 1986-05-22 1987-06-09 Wu Bao Gang Liquid crystalline-plastic material having submillisecond switch times and extended memory
US4766471A (en) 1986-01-23 1988-08-23 Energy Conversion Devices, Inc. Thin film electro-optical devices
US4818717A (en) 1986-06-27 1989-04-04 Energy Conversion Devices, Inc. Method for making electronic matrix arrays
US4728406A (en) 1986-08-18 1988-03-01 Energy Conversion Devices, Inc. Method for plasma - coating a semiconductor body
US4809044A (en) 1986-08-22 1989-02-28 Energy Conversion Devices, Inc. Thin film overvoltage protection devices
US4845533A (en) 1986-08-22 1989-07-04 Energy Conversion Devices, Inc. Thin film electrical devices with amorphous carbon electrodes and method of making same
US4788594A (en) 1986-10-15 1988-11-29 Energy Conversion Devices, Inc. Solid state electronic camera including thin film matrix of photosensors
US4853785A (en) 1986-10-15 1989-08-01 Energy Conversion Devices, Inc. Electronic camera including electronic signal storage cartridge
US4847674A (en) 1987-03-10 1989-07-11 Advanced Micro Devices, Inc. High speed interconnect system with refractory non-dogbone contacts and an active electromigration suppression mechanism
US4800526A (en) 1987-05-08 1989-01-24 Gaf Corporation Memory element for information storage and retrieval system and associated process
US4775425A (en) 1987-07-27 1988-10-04 Energy Conversion Devices, Inc. P and n-type microcrystalline semiconductor alloy material including band gap widening elements, devices utilizing same
US4891330A (en) 1987-07-27 1990-01-02 Energy Conversion Devices, Inc. Method of fabricating n-type and p-type microcrystalline semiconductor alloy material including band gap widening elements
US5272359A (en) 1988-04-07 1993-12-21 California Institute Of Technology Reversible non-volatile switch based on a TCNQ charge transfer complex
GB8910854D0 (en) 1989-05-11 1989-06-28 British Petroleum Co Plc Semiconductor device
US5159661A (en) 1990-10-05 1992-10-27 Energy Conversion Devices, Inc. Vertically interconnected parallel distributed processor
US5314772A (en) 1990-10-09 1994-05-24 Arizona Board Of Regents High resolution, multi-layer resist for microlithography and method therefor
JPH0770731B2 (ja) 1990-11-22 1995-07-31 松下電器産業株式会社 電気可塑性素子
US5534711A (en) 1991-01-18 1996-07-09 Energy Conversion Devices, Inc. Electrically erasable, directly overwritable, multibit single cell memory elements and arrays fabricated therefrom
US5341328A (en) 1991-01-18 1994-08-23 Energy Conversion Devices, Inc. Electrically erasable memory elements having reduced switching current requirements and increased write/erase cycle life
US5296716A (en) 1991-01-18 1994-03-22 Energy Conversion Devices, Inc. Electrically erasable, directly overwritable, multibit single cell memory elements and arrays fabricated therefrom
US5536947A (en) 1991-01-18 1996-07-16 Energy Conversion Devices, Inc. Electrically erasable, directly overwritable, multibit single cell memory element and arrays fabricated therefrom
US5166758A (en) 1991-01-18 1992-11-24 Energy Conversion Devices, Inc. Electrically erasable phase change memory
US5596522A (en) 1991-01-18 1997-01-21 Energy Conversion Devices, Inc. Homogeneous compositions of microcrystalline semiconductor material, semiconductor devices and directly overwritable memory elements fabricated therefrom, and arrays fabricated from the memory elements
US5414271A (en) 1991-01-18 1995-05-09 Energy Conversion Devices, Inc. Electrically erasable memory elements having improved set resistance stability
US5335219A (en) 1991-01-18 1994-08-02 Ovshinsky Stanford R Homogeneous composition of microcrystalline semiconductor material, semiconductor devices and directly overwritable memory elements fabricated therefrom, and arrays fabricated from the memory elements
US5534712A (en) 1991-01-18 1996-07-09 Energy Conversion Devices, Inc. Electrically erasable memory elements characterized by reduced current and improved thermal stability
US5406509A (en) 1991-01-18 1995-04-11 Energy Conversion Devices, Inc. Electrically erasable, directly overwritable, multibit single cell memory elements and arrays fabricated therefrom
US5128099A (en) 1991-02-15 1992-07-07 Energy Conversion Devices, Inc. Congruent state changeable optical memory material and device
US5219788A (en) 1991-02-25 1993-06-15 Ibm Corporation Bilayer metallization cap for photolithography
US5177567A (en) 1991-07-19 1993-01-05 Energy Conversion Devices, Inc. Thin-film structure for chalcogenide electrical switching devices and process therefor
US5359205A (en) 1991-11-07 1994-10-25 Energy Conversion Devices, Inc. Electrically erasable memory elements characterized by reduced current and improved thermal stability
US5238862A (en) 1992-03-18 1993-08-24 Micron Technology, Inc. Method of forming a stacked capacitor with striated electrode
JPH0653613A (ja) * 1992-07-29 1994-02-25 Mitsubishi Electric Corp 半導体素子
US5512328A (en) 1992-08-07 1996-04-30 Hitachi, Ltd. Method for forming a pattern and forming a thin film used in pattern formation
US5350484A (en) 1992-09-08 1994-09-27 Intel Corporation Method for the anisotropic etching of metal films in the fabrication of interconnects
US5818749A (en) 1993-08-20 1998-10-06 Micron Technology, Inc. Integrated circuit memory device
US5363329A (en) * 1993-11-10 1994-11-08 Eugeniy Troyan Semiconductor memory device for use in an electrically alterable read-only memory
BE1007902A3 (nl) 1993-12-23 1995-11-14 Philips Electronics Nv Schakelelement met geheugen voorzien van schottky tunnelbarriere.
US5500532A (en) 1994-08-18 1996-03-19 Arizona Board Of Regents Personal electronic dosimeter
JP2643870B2 (ja) 1994-11-29 1997-08-20 日本電気株式会社 半導体記憶装置の製造方法
US5543737A (en) 1995-02-10 1996-08-06 Energy Conversion Devices, Inc. Logical operation circuit employing two-terminal chalcogenide switches
US5751012A (en) 1995-06-07 1998-05-12 Micron Technology, Inc. Polysilicon pillar diode for use in a non-volatile memory cell
US5789758A (en) 1995-06-07 1998-08-04 Micron Technology, Inc. Chalcogenide memory cell with a plurality of chalcogenide electrodes
US5879955A (en) 1995-06-07 1999-03-09 Micron Technology, Inc. Method for fabricating an array of ultra-small pores for chalcogenide memory cells
WO1996041381A1 (en) 1995-06-07 1996-12-19 Micron Technology, Inc. A stack/trench diode for use with a multi-state material in a non-volatile memory cell
US5869843A (en) 1995-06-07 1999-02-09 Micron Technology, Inc. Memory array having a multi-state element and method for forming such array or cells thereof
US6420725B1 (en) 1995-06-07 2002-07-16 Micron Technology, Inc. Method and apparatus for forming an integrated circuit electrode having a reduced contact area
US5714768A (en) 1995-10-24 1998-02-03 Energy Conversion Devices, Inc. Second-layer phase change memory array on top of a logic device
US5694054A (en) 1995-11-28 1997-12-02 Energy Conversion Devices, Inc. Integrated drivers for flat panel displays employing chalcogenide logic elements
US5591501A (en) 1995-12-20 1997-01-07 Energy Conversion Devices, Inc. Optical recording medium having a plurality of discrete phase change data recording points
US6653733B1 (en) 1996-02-23 2003-11-25 Micron Technology, Inc. Conductors in semiconductor devices
US5687112A (en) 1996-04-19 1997-11-11 Energy Conversion Devices, Inc. Multibit single cell memory element having tapered contact
US5852870A (en) 1996-04-24 1998-12-29 Amkor Technology, Inc. Method of making grid array assembly
US5851882A (en) 1996-05-06 1998-12-22 Micron Technology, Inc. ZPROM manufacture and design and methods for forming thin structures using spacers as an etching mask
US5761115A (en) 1996-05-30 1998-06-02 Axon Technologies Corporation Programmable metallization cell structure and method of making same
US5814527A (en) 1996-07-22 1998-09-29 Micron Technology, Inc. Method of making small pores defined by a disposable internal spacer for use in chalcogenide memories
US5789277A (en) 1996-07-22 1998-08-04 Micron Technology, Inc. Method of making chalogenide memory device
US5998244A (en) 1996-08-22 1999-12-07 Micron Technology, Inc. Memory cell incorporating a chalcogenide element and method of making same
US5825046A (en) 1996-10-28 1998-10-20 Energy Conversion Devices, Inc. Composite memory material comprising a mixture of phase-change memory material and dielectric material
US6087674A (en) 1996-10-28 2000-07-11 Energy Conversion Devices, Inc. Memory element with memory material comprising phase-change material and dielectric material
US5846889A (en) 1997-03-14 1998-12-08 The United States Of America As Represented By The Secretary Of The Navy Infrared transparent selenide glasses
US5998066A (en) 1997-05-16 1999-12-07 Aerial Imaging Corporation Gray scale mask and depth pattern transfer technique using inorganic chalcogenide glass
US6031287A (en) 1997-06-18 2000-02-29 Micron Technology, Inc. Contact structure and memory element incorporating the same
US5933365A (en) 1997-06-19 1999-08-03 Energy Conversion Devices, Inc. Memory element with energy control mechanism
US6051511A (en) 1997-07-31 2000-04-18 Micron Technology, Inc. Method and apparatus for reducing isolation stress in integrated circuits
AU751949C (en) 1997-12-04 2003-08-21 Arizona Board Of Regents On Behalf Of The University Of Arizona, The Programmable sub-surface aggregating metallization structure and method of making same
US6011757A (en) 1998-01-27 2000-01-04 Ovshinsky; Stanford R. Optical recording media having increased erasability
US6297170B1 (en) 1998-06-23 2001-10-02 Vlsi Technology, Inc. Sacrificial multilayer anti-reflective coating for mos gate formation
US5912839A (en) 1998-06-23 1999-06-15 Energy Conversion Devices, Inc. Universal memory element and method of programming same
US6141241A (en) 1998-06-23 2000-10-31 Energy Conversion Devices, Inc. Universal memory element with systems employing same and apparatus and method for reading, writing and programming same
US6469364B1 (en) 1998-08-31 2002-10-22 Arizona Board Of Regents Programmable interconnection system for electrical circuits
US6388324B2 (en) 1998-08-31 2002-05-14 Arizona Board Of Regents Self-repairing interconnections for electrical circuits
US6825489B2 (en) 2001-04-06 2004-11-30 Axon Technologies Corporation Microelectronic device, structure, and system, including a memory structure having a variable programmable property and method of forming the same
US6635914B2 (en) 2000-09-08 2003-10-21 Axon Technologies Corp. Microelectronic programmable device and methods of forming and programming the same
US6487106B1 (en) 1999-01-12 2002-11-26 Arizona Board Of Regents Programmable microelectronic devices and method of forming and programming same
US6177338B1 (en) 1999-02-08 2001-01-23 Taiwan Semiconductor Manufacturing Company Two step barrier process
US6072716A (en) 1999-04-14 2000-06-06 Massachusetts Institute Of Technology Memory structures and methods of making same
US6143604A (en) 1999-06-04 2000-11-07 Taiwan Semiconductor Manufacturing Company Method for fabricating small-size two-step contacts for word-line strapping on dynamic random access memory (DRAM)
US6350679B1 (en) 1999-08-03 2002-02-26 Micron Technology, Inc. Methods of providing an interlevel dielectric layer intermediate different elevation conductive metal layers in the fabrication of integrated circuitry
US20030107105A1 (en) 1999-08-31 2003-06-12 Kozicki Michael N. Programmable chip-to-substrate interconnect structure and device and method of forming same
US6423628B1 (en) 1999-10-22 2002-07-23 Lsi Logic Corporation Method of forming integrated circuit structure having low dielectric constant material and having silicon oxynitride caps over closely spaced apart metal lines
US6914802B2 (en) 2000-02-11 2005-07-05 Axon Technologies Corporation Microelectronic photonic structure and device and method of forming the same
US6865117B2 (en) 2000-02-11 2005-03-08 Axon Technologies Corporation Programming circuit for a programmable microelectronic device, system including the circuit, and method of forming the same
US6501111B1 (en) 2000-06-30 2002-12-31 Intel Corporation Three-dimensional (3D) programmable device
US6440837B1 (en) 2000-07-14 2002-08-27 Micron Technology, Inc. Method of forming a contact structure in a semiconductor device
US6563156B2 (en) 2001-03-15 2003-05-13 Micron Technology, Inc. Memory elements and methods for making same
US6563164B2 (en) 2000-09-29 2003-05-13 Ovonyx, Inc. Compositionally modified resistive electrode
US6429064B1 (en) 2000-09-29 2002-08-06 Intel Corporation Reduced contact area of sidewall conductor
US6404665B1 (en) 2000-09-29 2002-06-11 Intel Corporation Compositionally modified resistive electrode
US6339544B1 (en) 2000-09-29 2002-01-15 Intel Corporation Method to enhance performance of thermal resistor device
US6555860B2 (en) 2000-09-29 2003-04-29 Intel Corporation Compositionally modified resistive electrode
US6567293B1 (en) 2000-09-29 2003-05-20 Ovonyx, Inc. Single level metal memory cell using chalcogenide cladding
JP4025527B2 (ja) * 2000-10-27 2007-12-19 松下電器産業株式会社 メモリ、書き込み装置、読み出し装置およびその方法
US6950331B2 (en) * 2000-10-31 2005-09-27 The Regents Of The University Of California Organic bistable device and organic memory cells
US6653193B2 (en) 2000-12-08 2003-11-25 Micron Technology, Inc. Resistance variable device
US6649928B2 (en) 2000-12-13 2003-11-18 Intel Corporation Method to selectively remove one side of a conductive bottom electrode of a phase-change memory cell and structure obtained thereby
US6696355B2 (en) 2000-12-14 2004-02-24 Ovonyx, Inc. Method to selectively increase the top resistance of the lower programming electrode in a phase-change memory
US6569705B2 (en) 2000-12-21 2003-05-27 Intel Corporation Metal structure for a phase-change memory device
US6437383B1 (en) 2000-12-21 2002-08-20 Intel Corporation Dual trench isolation for a phase-change memory cell and method of making same
US6646297B2 (en) 2000-12-26 2003-11-11 Ovonyx, Inc. Lower electrode isolation in a double-wide trench
US6534781B2 (en) 2000-12-26 2003-03-18 Ovonyx, Inc. Phase-change memory bipolar array utilizing a single shallow trench isolation for creating an individual active area region for two memory array elements and one bipolar base contact
US6531373B2 (en) 2000-12-27 2003-03-11 Ovonyx, Inc. Method of forming a phase-change memory cell using silicon on insulator low electrode in charcogenide elements
US6687427B2 (en) 2000-12-29 2004-02-03 Intel Corporation Optic switch
US6638820B2 (en) 2001-02-08 2003-10-28 Micron Technology, Inc. Method of forming chalcogenide comprising devices, method of precluding diffusion of a metal into adjacent chalcogenide material, and chalcogenide comprising devices
US6727192B2 (en) 2001-03-01 2004-04-27 Micron Technology, Inc. Methods of metal doping a chalcogenide material
US6348365B1 (en) 2001-03-02 2002-02-19 Micron Technology, Inc. PCRAM cell manufacturing
US6818481B2 (en) 2001-03-07 2004-11-16 Micron Technology, Inc. Method to manufacture a buried electrode PCRAM cell
US6734455B2 (en) 2001-03-15 2004-05-11 Micron Technology, Inc. Agglomeration elimination for metal sputter deposition of chalcogenides
US6473332B1 (en) 2001-04-04 2002-10-29 The University Of Houston System Electrically variable multi-state resistance computing
WO2002091384A1 (en) 2001-05-07 2002-11-14 Advanced Micro Devices, Inc. A memory device with a self-assembled polymer film and method of making the same
US7102150B2 (en) 2001-05-11 2006-09-05 Harshfield Steven T PCRAM memory cell and method of making same
US6480438B1 (en) 2001-06-12 2002-11-12 Ovonyx, Inc. Providing equal cell programming conditions across a large and high density array of phase-change memory cells
US6613604B2 (en) 2001-08-02 2003-09-02 Ovonyx, Inc. Method for making small pore for use in programmable resistance memory element
US6589714B2 (en) 2001-06-26 2003-07-08 Ovonyx, Inc. Method for making programmable resistance memory element using silylated photoresist
US6570784B2 (en) 2001-06-29 2003-05-27 Ovonyx, Inc. Programming a phase-change material memory
US6487113B1 (en) 2001-06-29 2002-11-26 Ovonyx, Inc. Programming a phase-change memory with slow quench time
US6462984B1 (en) 2001-06-29 2002-10-08 Intel Corporation Biasing scheme of floating unselected wordlines and bitlines of a diode-based memory array
US6511867B2 (en) 2001-06-30 2003-01-28 Ovonyx, Inc. Utilizing atomic layer deposition for programmable device
US6511862B2 (en) 2001-06-30 2003-01-28 Ovonyx, Inc. Modified contact for programmable devices
US6605527B2 (en) 2001-06-30 2003-08-12 Intel Corporation Reduced area intersection between electrode and programming element
US6673700B2 (en) 2001-06-30 2004-01-06 Ovonyx, Inc. Reduced area intersection between electrode and programming element
US6514805B2 (en) 2001-06-30 2003-02-04 Intel Corporation Trench sidewall profile for device isolation
US6642102B2 (en) 2001-06-30 2003-11-04 Intel Corporation Barrier material encapsulation of programmable material
US6951805B2 (en) 2001-08-01 2005-10-04 Micron Technology, Inc. Method of forming integrated circuitry, method of forming memory circuitry, and method of forming random access memory circuitry
US6590807B2 (en) 2001-08-02 2003-07-08 Intel Corporation Method for reading a structural phase-change memory
US6737312B2 (en) 2001-08-27 2004-05-18 Micron Technology, Inc. Method of fabricating dual PCRAM cells sharing a common electrode
US6955940B2 (en) 2001-08-29 2005-10-18 Micron Technology, Inc. Method of forming chalcogenide comprising devices
US6784018B2 (en) * 2001-08-29 2004-08-31 Micron Technology, Inc. Method of forming chalcogenide comprising devices and method of forming a programmable memory cell of memory circuitry
US6881623B2 (en) 2001-08-29 2005-04-19 Micron Technology, Inc. Method of forming chalcogenide comprising devices, method of forming a programmable memory cell of memory circuitry, and a chalcogenide comprising device
US6709958B2 (en) 2001-08-30 2004-03-23 Micron Technology, Inc. Integrated circuit device and fabrication using metal-doped chalcogenide materials
US6646902B2 (en) 2001-08-30 2003-11-11 Micron Technology, Inc. Method of retaining memory state in a programmable conductor RAM
US20030047765A1 (en) 2001-08-30 2003-03-13 Campbell Kristy A. Stoichiometry for chalcogenide glasses useful for memory devices and method of formation
US6507061B1 (en) 2001-08-31 2003-01-14 Intel Corporation Multiple layer phase-change memory
WO2003021589A1 (en) 2001-09-01 2003-03-13 Energy Conversion Devices, Inc. Increased data storage in optical data storage and retrieval systems using blue lasers and/or plasmon lenses
US6545287B2 (en) 2001-09-07 2003-04-08 Intel Corporation Using selective deposition to form phase-change memory cells
US6586761B2 (en) 2001-09-07 2003-07-01 Intel Corporation Phase change material memory device
US6690026B2 (en) 2001-09-28 2004-02-10 Intel Corporation Method of fabricating a three-dimensional array of active media
AU2002362662A1 (en) 2001-10-09 2003-04-22 Axon Technologies Corporation Programmable microelectronic device, structure, and system, and method of forming the same
US6566700B2 (en) 2001-10-11 2003-05-20 Ovonyx, Inc. Carbon-containing interfacial layer for phase-change memory
WO2003036736A2 (en) 2001-10-26 2003-05-01 Axon Technologies Corp. Tunable cantilever apparatus and method for making same
US6545907B1 (en) 2001-10-30 2003-04-08 Ovonyx, Inc. Technique and apparatus for performing write operations to a phase change material memory device
US6576921B2 (en) 2001-11-08 2003-06-10 Intel Corporation Isolating phase change material memory cells
US6815818B2 (en) 2001-11-19 2004-11-09 Micron Technology, Inc. Electrode structure for use in an integrated circuit
US6791859B2 (en) 2001-11-20 2004-09-14 Micron Technology, Inc. Complementary bit PCRAM sense amplifier and method of operation
US6873538B2 (en) 2001-12-20 2005-03-29 Micron Technology, Inc. Programmable conductor random access memory and a method for writing thereto
US6625054B2 (en) 2001-12-28 2003-09-23 Intel Corporation Method and apparatus to program a phase change memory
US6667900B2 (en) 2001-12-28 2003-12-23 Ovonyx, Inc. Method and apparatus to operate a memory cell
US6512241B1 (en) 2001-12-31 2003-01-28 Intel Corporation Phase change material memory device
US6909656B2 (en) 2002-01-04 2005-06-21 Micron Technology, Inc. PCRAM rewrite prevention
US20030143782A1 (en) 2002-01-31 2003-07-31 Gilton Terry L. Methods of forming germanium selenide comprising devices and methods of forming silver selenide comprising structures
US6867064B2 (en) 2002-02-15 2005-03-15 Micron Technology, Inc. Method to alter chalcogenide glass for improved switching characteristics
US6791885B2 (en) 2002-02-19 2004-09-14 Micron Technology, Inc. Programmable conductor random access memory and method for sensing same
US7151273B2 (en) 2002-02-20 2006-12-19 Micron Technology, Inc. Silver-selenide/chalcogenide glass stack for resistance variable memory
US6849868B2 (en) * 2002-03-14 2005-02-01 Micron Technology, Inc. Methods and apparatus for resistance variable material cells
TWI224403B (en) 2002-03-15 2004-11-21 Axon Technologies Corp Programmable structure, an array including the structure, and methods of forming the same
US6864500B2 (en) * 2002-04-10 2005-03-08 Micron Technology, Inc. Programmable conductor memory cell structure
US6671710B2 (en) 2002-05-10 2003-12-30 Energy Conversion Devices, Inc. Methods of computing with digital multistate phase change materials
US6918382B2 (en) 2002-08-26 2005-07-19 Energy Conversion Devices, Inc. Hydrogen powered scooter
US7163837B2 (en) * 2002-08-29 2007-01-16 Micron Technology, Inc. Method of forming a resistance variable memory element
CN100341060C (zh) * 2002-09-13 2007-10-03 松下电器产业株式会社 信息记录介质及其制造方法
US6795338B2 (en) * 2002-12-13 2004-09-21 Intel Corporation Memory having access devices using phase change material such as chalcogenide
US6967344B2 (en) * 2003-03-10 2005-11-22 Energy Conversion Devices, Inc. Multi-terminal chalcogenide switching devices
JP4254293B2 (ja) * 2003-03-25 2009-04-15 株式会社日立製作所 記憶装置
KR100504700B1 (ko) * 2003-06-04 2005-08-03 삼성전자주식회사 고집적 상변환 램
US7354793B2 (en) * 2004-08-12 2008-04-08 Micron Technology, Inc. Method of forming a PCRAM device incorporating a resistance-variable chalocogenide element

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101019191A (zh) * 2004-07-19 2007-08-15 微米技术有限公司 电阻可变存储装置和制造方法

Also Published As

Publication number Publication date
JP2008532285A (ja) 2008-08-14
WO2006091480A1 (en) 2006-08-31
EP1851809A1 (en) 2007-11-07
US8101936B2 (en) 2012-01-24
EP1851809B1 (en) 2010-12-22
US20080067489A1 (en) 2008-03-20
US20060186394A1 (en) 2006-08-24
KR100918168B1 (ko) 2009-09-17
US7317200B2 (en) 2008-01-08
KR20070114156A (ko) 2007-11-29
JP5327576B2 (ja) 2013-10-30
CN101180746A (zh) 2008-05-14
DE602006019061D1 (de) 2011-02-03

Similar Documents

Publication Publication Date Title
CN101180746B (zh) 硒化锡存储装置和制造该存储装置的方法
CN101789489B (zh) 相变存储器单元及形成的方法
US7220982B2 (en) Amorphous carbon-based non-volatile memory
EP1769507B1 (en) Resistance variable memory device and method of fabrication
US7393798B2 (en) Resistance variable memory with temperature tolerant materials
US7619247B2 (en) Structure for amorphous carbon based non-volatile memory
US7289349B2 (en) Resistance variable memory element with threshold device and method of forming the same
CN1965418A (zh) 分层电阻可变存储装置和制造方法
US7304368B2 (en) Chalcogenide-based electrokinetic memory element and method of forming the same
CN101233625A (zh) 具有切换玻璃层的存储器装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant