CN101208808A - 蓝光发射半导体纳米晶体材料 - Google Patents

蓝光发射半导体纳米晶体材料 Download PDF

Info

Publication number
CN101208808A
CN101208808A CNA2005800147293A CN200580014729A CN101208808A CN 101208808 A CN101208808 A CN 101208808A CN A2005800147293 A CNA2005800147293 A CN A2005800147293A CN 200580014729 A CN200580014729 A CN 200580014729A CN 101208808 A CN101208808 A CN 101208808A
Authority
CN
China
Prior art keywords
nanocrystal
blue light
group
emission
semi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2005800147293A
Other languages
English (en)
Other versions
CN101208808B (zh
Inventor
乔纳森·S·斯特克尔
约翰·P·齐默
塞思·科-沙利文
内森·E·斯托特
弗拉迪米尔·布洛维克
芒吉·G·巴温迪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Massachusetts Institute of Technology
Original Assignee
Massachusetts Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Massachusetts Institute of Technology filed Critical Massachusetts Institute of Technology
Publication of CN101208808A publication Critical patent/CN101208808A/zh
Application granted granted Critical
Publication of CN101208808B publication Critical patent/CN101208808B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G9/00Compounds of zinc
    • C01G9/08Sulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G11/00Compounds of cadmium
    • C01G11/02Sulfides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/56Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing sulfur
    • C09K11/562Chalcogenides
    • C09K11/565Chalcogenides with zinc cadmium
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • C01P2004/84Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/16Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous
    • H01L33/18Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous within the light emitting region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate

Abstract

一种半导体纳米晶体包括含有第一半导体材料的核,以及包含第二半导体材料的外涂层。纳米晶体的单分散群在窄波长范围内发射蓝光,并具有高量子效率。

Description

蓝光发射半导体纳米晶体材料
优先权要求
本申请按照35U.S.C.119(e)要求2004年3月8日提交的美国专利申请60/550,314的权益,并要求2005年3月4日提交的申请名称为″蓝光发射半导体纳米晶体材料″、代理人案号14952.0329的权益,这两篇申请全部引入作为参考。
联邦资助研究或开发
根据与NSF的合同DMR 0213282以及与U.S.Army Research Office的合同DAAD-19-02-0002,美国政府可能在本申请中具有某些权力。
技术领域
本发明涉及蓝光发射半导体纳米晶体。
背景技术
具有小直径的半导体纳米晶体可以具有介于分子和物质的本体形式(bulk forms)之间的性质。例如,基于具有小直径的半导体材料的纳米晶体可以在所有三个维度上显示出电子和空穴的量子限制(quantum confinement),这导致具有降低的纳米晶体大小的材料的有效带隙增加。因此,纳米晶体的光学吸收和发射都随着纳米晶体大小的降低而向蓝色偏移(即,向较高能量偏移)。半导体纳米晶体可以具有窄荧光带,可使用纳米晶体的大小和材料调节其发射波长。
发明内容
颜色显示应用非常需要稳定的蓝光发射材料。发光半导体纳米晶体可以比有机发光化合物更稳定。与有机化合物相比,半导体纳米晶体也可以具有窄发射带宽。
可以制备显示蓝色窄带边缘(band edge)发光的核壳纳米晶体材料。该材料的量子效率为至少10%,至少为30%,或至少为50%,发射带宽的半宽度(full width at half maximum)小于40nm,小于30nm,或小于20nm。
一方面,半导体纳米晶体包括核以及核上的外涂层(overcoating),所述核包括第一半导体材料,外涂层包括第二半导体材料,其中纳米晶体基本不含深井发射位置(deep trap emission sites),纳米晶体激发时发射蓝光。
另一方面,半导体纳米晶体的群(population),群的每个(each)纳米晶体包括含有第一半导体材料的核,以及核上的外涂层,外涂层包括第二半导体材料。每个纳米晶体基本不含深井发射位置。群激发时发射蓝光。
纳米晶体激发时可以发射蓝光,其量子效率为至少10%,至少30%,或至少50%。蓝光的半宽度不大于40nm,不大于30nm,或不大于20nm。蓝光的峰值波长可以短于470nm。第一半导体材料可以为CdS。第二半导体材料可以为ZnS。蓝光的强度可以比深井发射的强度大至少五倍,至少十倍,或至少二十倍。
群可以发射量子效率为至少20%,至少30%,至少40%,或至少50%的光。群可以发射半宽度不大于40nm,不大于30nm,或不大于20nm的光。
在另一方面,发光器件包括含有基体(matrix)的层、与该层相邻的第一电极、与第一电极相对的第二电极以及布置在第一电极和第二电极之间的多个(a plurality of)半导体纳米晶体。半导体纳米晶体基本上不含深井发射位置。纳米晶体激发时发射蓝光。
在发光器件中,半导体纳米晶体可以包括含有第一半导体材料的核以及核上的外涂层,外涂层包括第二半导体材料。该器件能够发射半宽度不大于40nm的光。
在另一方面,制造纳米晶体的方法包括在足以单独外涂覆(individuallyovercoat)纳米晶体的温度下,使半导体纳米晶体的单分散群(monodispersepopulation)与含M化合物、X-供体和胺接触。经外涂覆的纳米晶体基本上不含深井发射位置,和经外涂覆的纳米晶体激发时发射蓝光。
胺可以为链烯基伯胺。胺可以为C2-C20链烯基伯胺。胺可以为油胺。半导体纳米晶体的单分散群可以为CdS纳米晶体的单分散群。
从下面的描述、附图以及权利要求中,本发明的其它发面、目的和优势将显而易见。
附图说明
图1a-1g是描述半导体纳米晶体的吸收光谱图。
图2a和2b是半导体纳米晶体的TEM照片。
图3a-3d是描述半导体纳米晶体的光致发光谱图。
图4是描述半导体纳米晶体的吸收和光致发光谱图。插图(inset)为描述包括半导体纳米晶体的发光器件的光致发光谱图。
图5a-5c是描述半导体纳米晶体的X射线衍射图案的图。
图6a-6c是描述半导体纳米晶体的吸收光谱图。
图7是描述发光器件的性能图。
图8是描述半导体纳米晶体的光致发光稳定性的图。
图9a-9b是描述半导体纳米晶体吸收光谱图。
图10a-10b是描述半导体纳米晶体的光致发光谱图。
图11a-11b是描述半导体纳米晶体的光致发光谱图。
发明详述
具有窄大小分布和高发光效率的半导体纳米晶体在诸如光电器件以及生物荧光标记等应用中是有机分子的可用代替物。参见,例如V.L.Colvin,等人,Nature 1994,370,354;B.O.Dabbousi,等人,Appl.Phys.Lett.1995,66,1316;M.Bruchez Jr.,等人,Science 1998,281,2013;W.C.W.Chan,和S.Nie,Science 1998,281,2016;和H.Mattoussi,等人,J.Am.Chem.Soc.2000,122,12142,将以上参考文献的全部内容引入本文作为参考。与有机分子相比,半导体纳米晶体能够对光氧化更稳定并具有更饱和的发光(即更窄的发射带宽)。它们的大小可调(size-tunable)光学性质(与它们的化学性质无关)与它们的稳定性以及饱和色(saturated color)发射一起使得它们特别适于作为大面积(cm2)杂化有机/无机半导体纳米晶体发光器件(LEDs)的活性材料。参见,例如S.Coe,等人,Nature 2002,420,800;N.Tessler,等人,Science 2002,295,1506;和J.S.Steckel,等人,Adv.Mater 2003,15,1862,将这些参考文献的内容全部引入本文作为参考。有效发射红光和绿光的半导体纳米晶体LED已经使用(CdSe)ZnS核壳纳米晶体而得以实现。平板显示器用LED理想的蓝光发射光谱将具有窄带宽以及波长,使得其在Commission Internationald′Eclairage(CIE)Chromaticity Diagram上的坐标将位于现有NationalTelevision System Committee(NTSC)标准彩色三角(color triangle)之外。对于具有30nm半宽度(FWHM)和最大感知能量(maximized perceived power)的Gaussian发射光谱而言,用于显示器应用的理想蓝光发射波长为~470nm。肉眼难于感知短于470nm(更蓝)的波长,同时长于470nm(更红)的波长的坐标位于标准NTSC彩色三角内部。
CdSe半导体纳米晶体的发射波长跨越可见光光谱。可以从小于2nm的CdSe颗粒获得蓝光发射,该颗粒可能难以以窄大小分布和良好的量子效率来合成。该大小的CdSe颗粒可能难以用较高带隙无机半导体来加工、处理以及外涂覆,该半导体的性质对于结合到固态结构中是理想的。核壳型半导体纳米晶体在固态器件,例如LED中可能是理想的,这是因为它们光致发光和电致发光量子效率高,并且对于制造器件所需加工条件具有更大的耐受性。参见,例如S.Coe-Sullivan,等人,Org.Electron.2003,4,123;M.A.Hines,和P.Guyot-Sionnest,J Plzys.Chem.1996,100,468;和B.O.Dabbousi等人,J.Ploys.Chem.B 1997,101,9463,和U.S专利6,322,901,将这些文献的全部内容引入作为参考。此外,直径小于2nm的半导体纳米晶体可以具有小的吸收截面(absorption cross-section),这导致Forester能量转移半径小。
高品质ZnSe纳米大晶体可以在长达440nm的波长处显示出带边缘荧光。ZnSe的室温体带隙(bulk band gap)为2.7eV,对应于460nm。参见M.A.Hines,和P.Guyot-Sionnest,J.Phys.Chem.B 1998,102,3655,将其全部内容引入作为参考。ZnTe和CdS二者都具有适于形成发射接近470nm的光的纳米晶体的带隙。ZnTe和CdS的带隙分别为2.39eV(519nm)和2.42eV(512nm)。可能难以生长具有窄大小分布的足够大的(大于4.5nm直径)的ZnTe颗粒。裸露的(bare)CdS核会发射深井白光,该白光覆盖(overwhelms)了蓝光发射。参见W.W.Yu和X.Peng,Angew.Chem.Int.Ed.2002,41,2368,将其全部内容在此引入作为参考。深井发光可以由在纳米晶体中的深井处激子复合而获得。外涂覆纳米晶体会降低深井位置的数目并由此降低深井发光的强度。外涂覆CdS纳米晶体的已知方法不能消除经外涂覆的纳米晶体中的深井发射。出乎意料地,在胺存在下外涂覆CdS纳米晶体导致显示发射明亮蓝光的经外涂覆的CdS纳米晶体,而没有深井发射。
制造纳米晶体的方法是胶体生长法(colloidal growth process)。参见,例如U.S.专利6,322,901和6,576,291,将这些文献的全部内容引入作为参考。通过快速注射含M化合物和X供体到热配位溶剂中而出现胶体生长。配位溶剂可以包括胺。含M化合物可以为金属,含M盐,或含M有机金属化合物。注射产生可以以受控方式生长而形成纳米晶体的核。可以温和加热反应混合物以生长纳米晶体并使纳米晶体退火。样品中纳米晶体的平均大小和大小分布二者都基于生长温度。保持稳定生长所需的生长温度随着平均晶粒大小的增加而增加。纳米晶体是纳米晶体群的一员。由于离散成核(discretenucleation)以及受控生长,所得纳米晶体群具有窄、单分散分布的直径。单分散分布的直径也可以称作大小(size)。纳米晶体在配位溶剂中成核之后的受控生长和退火也可以导致均匀的表面衍生作用以及规则的核结构。随着大小分布变窄(sharpens),温度可以升高以保持稳定生长。通过加入更多含M化合物或X供体,可以缩短生长周期。
含M盐为非有机金属化合物,例如不含金属-碳键的化合物。M为镉、锌、镁、汞、铝、镓、铟或铊。含M盐可以为金属卤化物、金属羧酸盐、金属碳酸盐、金属氢氧化物、金属氧化物或金属二酮化物,例如金属乙酰丙酮化物。含M盐比有机金属化合物(例如烷基金属)便宜并使用安全。例如,含M盐在空气中稳定,而烷基金属在空气中通常不稳定。含M盐例如2,4-戊烷二酮化物(即,乙酰丙酮化物(acac))、卤化物、羧酸盐、氢氧化物或碳酸盐在空气中是稳定的,并使得纳米晶体在与相应烷基金属相比较宽松的条件下制造。
合适的含M盐包括乙酰丙酮化镉、碘化镉、溴化镉、氢氧化镉、碳酸镉、乙酸镉、氧化镉、乙酰丙酮化锌、碘化锌、溴化锌、氢氧化锌、碳酸锌、乙酸锌、氧化锌、乙酰丙酮化镁、碘化镁、溴化镁、氢氧化镁、碳酸镁、乙酸镁、氧化镁、乙酰丙酮化汞、碘化汞、溴化汞、氢氧化汞、碳酸汞、乙酸汞、乙酰丙酮化铝、碘化铝、溴化铝、氢氧化铝、碳酸铝、乙酸铝、乙酰丙酮化镓、碘化镓、溴化镓、氢氧化镓、碳酸镓、乙酸镓、乙酰丙酮化铟、碘化铟、溴化铟、氢氧化铟、碳酸铟、乙酸铟、乙酰丙酮化铊、碘化铊、溴化铊、氢氧化铊、碳酸铊、乙酸铊。
烷基是支化或直链饱和烃基,具有1-100碳原子,优选1-30碳原子,例如甲基、乙基、正丙基、异丙基、正丁基、异丁基、叔丁基、辛基、癸基、十四基、十六基、二十基、二十四基等等,以及环烷基,例如环戊基、环己基等等。任选地,烷基可以含有选自-O-、-S-、-M-和-NR-的1-6个连接,其中R为氢、或C1-C8烷基或低级烯基。
在结合含M盐以及X供体之前,含M盐可以与配位溶剂接触形成含M前体。通常,配位溶剂包括烷基膦、烷基氧化膦、烷基膦酸或烷基次膦酸,然而其它配位溶剂,例如吡啶、呋喃和胺也可以适用于制造纳米晶体。合适配位溶剂的实例包括吡啶、三正辛基膦(TOP)和三正辛基氧化膦(TOPO)。可以使用工业级的TOPO。配位溶剂可以包含1,2-二醇或醛。1,2-二醇或醛可以促进含M盐和X供体之间的反应并促进生长过程和在该过程中获得的纳米晶体质量。1,2-二醇或醛可以为C6-C20 1,2-二醇或C6-C20醛。合适的1,2-二醇为1,2-十六烷二醇和合适的醛为十二醛。
X供体是能够与含M盐反应形成具有通式MX的材料的化合物。通常,X供体为硫属元素化物供体或磷属元素化物供体,例如硫属元素化膦、双(甲硅烷基)硫属元素化物、双氧、铵盐或三(甲硅烷基)磷属元素化物。合适的X供体包括双氧、元素硫、双(三甲基甲硅烷基)硒化物((TMS)2Se)、三烷基膦硒化物,例如(三正辛基膦)硒化物(TOPSe)或(三正丁基膦)硒化物(TBPSe)、三烷基膦碲化物,例如(三正辛基膦)碲化物(TOPTe)或六丙基膦三酰胺碲化物(HPPTTe)、双(三甲基甲硅烷基)碲化物((TMS)2Te)、硫磺、双(三甲基甲硅烷基)硫化物((TMS)2S)、三烷基膦硫化物,例如(三正辛基膦)硫化物(TOPS)、三(二甲基氨基)胂,铵盐,例如卤化铵(例如NH4Cl)、三(三甲基甲硅烷基)磷化物((TMS)3P)、三(三甲基甲硅烷基)砷化物((TMS)3As),或三(三甲基甲硅烷基)锑化物((TMS)3Sb)。在某些实施方式中,M供体和X供体可以为相同分子内的部分。
当配位溶剂包括胺时,以受控方式生长从含M盐制造的纳米晶体。
配位溶剂中的胺有助于从含M盐和X供体获得的纳米晶体的质量。优选地,配位溶剂为胺和烷基氧化膦的混合物,例如摩尔比10∶90、30∶70或50∶50的混合物。组合的溶剂可以降低大小离散(size dispersion)并改善纳米晶体的光致发光量子产率。优选的胺是烷基伯胺或链烯基伯胺,例如C2-C20烷基胺、C2-C20链烯基胺、优选C8-C18烷基胺或C8-C18链烯基胺。例如用于与三正辛基氧化膦(TOPO)组合的胺包括1-十六烷基胺或油胺。当1,2-二醇或醛和胺与含M盐结合形成纳米晶体群时,光致发光量子效率和纳米晶体的大小分布相比于没有1,2-二醇或醛或胺制造的纳米晶体而言得到了改善。
纳米晶体可以为具有窄大小分布的纳米晶体群的一元。纳米晶体可以为球形、棒型、盘型或其它形状。纳米晶体可以包括半导体材料的核。纳米晶体可以包括具有式MX的核,其中M为镉、锌、镁、汞、铝、镓、铟、铊,或其混合物,和X为氧、硫、硒、碲、氮、磷、砷、锑或其混合物。
纳米晶体激发时可以发光。纳米晶体可以通过照射激发波长的光、通过电激发或通过其它能量转移来激发。来自纳米晶体的发射可以为窄Gaussian发射带,其可以经过光谱的紫外、可见或红外区域的完全波长范围调节(tune),通过改变纳米晶体的大小、纳米晶体的组成或者同时改变两者。例如在可见光区域可以调节CdSe和CdS,在红外区域可以调节InAs。
纳米晶体的群可以具有窄大小分布。群可以为单分散的,并显示纳米晶体的直径小于15%rms偏差,优选小于10%,更优选小于5%。可以观察到在10和100nm半宽度(FWHM)之间窄范围内的光谱发射。以能量表示的FWHM可以为不大于0.05eV,或不大于0.03eV。半导体纳米晶体的发射量子效率可以大于2%、5%、10%、20%、40%、60%、70%,或80%。
形成纳米晶体的核的半导体可以包括族II-VI化合物、族II-V化合物、族III-VI化合物、族III-V化合物、族IV-VI化合物、族I-III-VI化合物、族II-IV-VI化合物和族II-IV-V化合物,例如ZnS、ZnSe、ZnTe、CdS、CdSe、CdTe、HgS、HgSe、HgTe、AlN、AlP、AlAs、AlSb、GaN、GaP、GaAs、GaSb、GaSe、InN、InP、InAs、InSb、TIN、TIP、TIAs、TISb、PbS、PbSe、PbTe、或其混合物。
通过施用第二半导体材料的外涂层增强来自具有第一半导体材料的核的纳米晶体的发射的量子效率,使得第二半导体材料的导带(conduction band)是高于第一半导体材料的能量,以及第二半导体材料的价带是低于第一半导体材料的能量。结果,载流子,即电子和空穴局限在纳米晶体的核中。核在其表面上可以具有外涂层。外涂层可以为组成不同于核的组成的半导体材料,并且可具有大于核的带隙的带隙。半导体材料在纳米晶体表面上的外涂层可以包括族II-VI化合物、族II-V化合物、族III-VI化合物、族III-V化合物、族IV-VI化合物、族I-III-VI化合物、族II-IV VI化合物、和族II-IV V化合物,例如ZnS、ZnSe、ZnTe、CdS、CdSe、CdTe、HgS、HgSe、HgTe、AlN、AlP、AlAs、AlSb、GaN、GaP、GaAs、GaSb、GaSe、InN、InP、InAs、InSb、TIN、TIP、TIAs、TISb、PbS、PbSe、PbTe,或其混合物。
纳米晶体的外表面可以具有来自于生长工艺所用的配位剂的化合物层。表面可以通过重复暴露于过量竞争配位族(competing coordinating group)而改性,而形成外涂层。例如可以用配位有机化合物,例如吡啶处理被覆的(capped)纳米晶体的分散体,产生易于分散在吡啶、甲醇和芳香化合物但是不分散在脂族溶剂中的晶体。这种表面交换工艺可以使用能够配位或者与纳米晶体的外表面结合的任何化合物进行,包括,例如膦、硫醇、胺和磷酸盐。纳米晶体可以暴露于短链聚合物,该聚合物显示出对表面的亲合性并以对悬浮或分散介质具有亲合性的部分来中止。这种亲合性改善了悬浮体的稳定性并抑制了纳米晶体的絮凝(flocculation)。
单齿烷基膦(和氧化膦,术语膦在下面指这两者)可有效钝化纳米晶体。当具有常规单齿配体的纳米晶体被稀释或包埋在非钝化环境中(即不存在过量配体的环境),它们倾向于失去其发光性以及它们初始的化学惰性。通常是发光的突然衰减、聚集和/或相分离。为了克服这些限制,可以使用多齿配体,例如多齿低聚膦配体。多齿配体在配体和纳米晶体表面之间显示了高亲合性。换句话说,它们是更强的配体,如从它们多齿特性的螯合效果所预期的。
低聚物膦对于纳米晶体表面具有不止一个连接位置,这确保了它们对于纳米晶体表面的高亲合性。参见,例如U.S.Ser.No.10/641,292,2003年8月15日申请和U.S.Ser.No.60/403,367,2002年8月15日申请,将它们的全部内容在此引入作为参考。低聚物膦可以从多官能单体膦,例如三羟丙基膦和多官能低聚试剂,例如二异氰酸酯形成。低聚物膦可以与式R′-L-NCO的异氰酸酯接触,其中L为C2-C24链烯基,R′为式
R′为式
Figure A20058001472900122
或R′为氢,其中Ra为氢或C1-C4烷基。
外涂覆工艺描述于例如U.S.专利No.6,322,901,将其全部内容引入作为参考。通过在外涂覆过程中调节反应混合物的温度并监测核的吸收光谱,可以获得具有高发射量子效率和窄大小分布的外涂覆的材料。可替换地,可以通过将具有第一组成和第一平均直径的核纳米晶体暴露于具有第二组成和第二平均直径的纳米晶体群而形成外涂层,其中第二平均直径小于第一平均直径。
在反应的生长阶段的大小分布可以通过监视颗粒的吸收线宽度来估计。对应于颗粒的吸收光谱而改变反应温度能够在生长过程中保持尖锐粒度分布。试剂可以加入到晶体生长过程中的成核溶液中以生长更大的晶体。通过在特定的纳米晶体平均直径下停止生长,可以获得平均纳米晶体直径小于150埃的群。纳米晶体群的平均直径可以为15至125埃。
通过用纳米晶体的不良溶剂,例如美国专利6,322,901描述的甲醇/丁醇进行大小选择性析出(size selective precipitation),可以进一步使粒度分布细化(refined),将该专利全部引入作为参考。例如纳米晶体可以分散在10%丁醇的己烷溶液中。可以向搅拌的溶液中滴加甲醇,直至持续的乳色。离心分离上清液和絮凝物,产生富含样品中的最大晶体的析出物。可以重复该过程直至观察不到光学吸收光谱进一步变尖。可以在多种溶剂/非溶剂对中进行大小选择性析出,包括吡啶/己烷和氯仿/甲醇。大小选择的纳米晶体群可以具有不大于15% rms偏差(偏离平均直径),优选10% rms偏差或更小,更优选5% rms偏差或更小。
透射电镜(TEM)能够提供有关纳米晶体群的大小、形状和分布的信息。粉末X射线衍射(XRD)图像可以提供有关纳米晶体的晶体结构的类型和质量的最完整信息。因为通过X射线相干长度,粒径与峰宽度是呈反比的(inversely related),还可以估计大小。例如,可以通过透射电镜直接测量纳米晶体的直径或者使用例如Scherrer方程从X射线衍射数据估计纳米晶体直径。还可以从UV/Vis吸收光谱估计该直径。
实施例
使用两步合成路径制备(CdS)ZnS核壳纳米晶体。在第一步,如下制备CdS核:将前体溶液快速注射到在250-280℃快速搅拌的含有脱气(真空下在100℃脱气1小时)油胺(7mL,98% Pfaltz & Bauer Inc.)和三辛基膦(TOP)(8mL、97% Strem)的圆底烧瓶中,然后在250℃生长15-30分钟。参见,例如B.K.H.Yen等人Adv.Mater.2003、15、1858,将其全部内容引入作为参考。如下制备前体溶液,混合脱气(在100℃真空脱气1小时)乙酸镉水合物(1-2mmol)、TOP(6mL)和1-2mmol二(2,4,4-三甲基戊基)次膦酸(BTMPPA、作为Cyanex+ 272 Extractant销售,Cytec Canada Inc.,参见美国专利申请公开2002/0144644,将其全部引入作为参考)的混合物和脱气的(在室温真空脱气1小时)元素硫(1-2mmol)的油胺(3mL)溶液。通过改变注射温度、生长时间和前体浓度,同时保持硫比镉比BTMPPA的比例为1∶1∶1来调节大小。
在外涂覆之前,从生长溶液中析出CdS核,然后再从己烷中析出一次以除去未反应的前体和过量的被覆配体。通过将0.4体积的己烷、0.8体积的丁醇和3.0体积的甲醇加入到1.0体积的生长溶液中和离心5分钟将颗粒从生长溶液中絮凝。然后将颗粒分散在0.15体积的己烷中,并通过加入1滴丁醇/1体积的原始生长溶液和0.5体积的甲醇并离心5分钟来絮凝。
图1显示一定大小系列的CdS纳米晶体的光学吸收光谱,证实了它们的窄大小分布。CdS纳米晶体的直径为3.7±0.4nm至5.2±0.4nm。对于光谱(a)的最大波长吸收特征出现在λ=422nm、(b)427nm、(c)432nm、(d)435nm、(e)439nm、(f)444nm和(g)448nm。在448nm具有第一吸收特征的最大颗粒(核直径5.2±0.4nm)仍然显示出第二以及甚至第三吸收特征。
图2a表示了直径4.90±0.4nm裸露CdS纳米晶体的TEM照片。在图2a的插图中可以明显看出核材料的结晶性,其中HRTEM显微照片显示约4.9nm颗粒的原子柱(atom columns)。低分辨率的TEM像片(图2a)说明了相对良好的大小分布和颗粒形态。
在加工后这些CdS纳米晶体的光致发光量子效率为3-6%。CdS核纳米晶体的光致发光含有明显数量的深井发射,导致核材料在用紫外灯激发时的紫色外观。图3中的虚线是裸露CdS纳米晶体的归一化(normalized)光致发光谱。在图3中,深井发射可以看作具有比峰值发射更长的波长的宽特征。
ZnS壳的生长基于预先用于(CdSe)ZnS核壳纳米晶体的外涂覆过程。参见例如M.A.Hines,和P.Guyot-Sionnest,J.Phys.Chem.1996,100,468;B.O.Dabbousi,等人,J.Phys.Chem.B 1997,101,9463;和U.S.专利No.6,207,229,将它们全部引入作为参考。由于ZnS具有大带隙(3.7eV,相应于λ=335nm),选择其作为壳材料,其有助于限制在CdS核上的激发,伴随CdS和ZnS之间相对少量的8%晶格失配。三辛基氧化膦(TOPO)(8-14g,99% Strem)、油胺(3mL)、十六烷基胺(2g,98% Aldrich)和BTMPPA(0.3-2.0mmol)在四颈瓶中在100℃下真空脱气2小时。然后将分散在己烷中的CdS核加入到脱气的溶液中,在80℃下真空除去己烷。在氩气流下,将纳米晶体溶液加热到180℃,以及将ZnS壳前体溶液(二乙基锌(min.95% Strem)和六甲基二硅硫醚(>97% Fluka),溶解在TOP(7mL))滴加到烧瓶中(约1滴/2秒)。在滴加完成后,将溶液在180℃保持5分钟和然后移开,在75℃下搅拌过夜,促进壳的退火。通过使用丁醇和甲醇的混合物进行析出,类似于核加工过程,而获得(CdS)ZnS核壳纳米晶体。
由于锌和硫前体的加入,在外涂覆工艺过程中,弱紫色荧光逐渐变化为亮蓝色发射。图3显示了在外涂覆之前CdS核的发射光谱(虚线)以及相应地在外涂覆后的(CdS)ZnS核壳发射光谱(实线)。图3中的光谱记录了:(a)在450nm发射的CdS纳米晶体(4.7±0.4nm直径核,FWHM=18nm),外涂覆有460nm(FWHM=24nm)发射的~2单层(b)在450nm(4.7±0.4nm直径核,FWHM=18nm)发射的裸露CdS纳米晶体和外涂覆有465nm(FWHM=25nm)发射的~3单层,(c)在454nm(4.9±0.4nm直径核,FWHM=18nm)发射的裸露CdS纳米晶体,外涂覆有469nm(FWHM=27nm)发射的3单层和(d)在463nm(5.2±0.4nm直径核,FWHM=18nm)发射的裸露CdS纳米晶体,和外涂覆有480nm(FWHM=28nm)发射的~4.5单层。
用ZnS壳外涂覆CdS核增加了光致发光稳定性。测量核和核壳纳米晶体的光致发光稳定性,将它们从溶液析出两次,从己烷流延到(drop cast)到玻璃片上。将每个玻璃片置于开放的空气中一共180分钟和每隔30分钟进行扫描。参见图8,其显示了光致发光强度和时间之间的关系。核壳纳米晶体显示了光致发光量子效率为20-30%。光致发光量子效率是通过下面方式确定的:将在稀己烷溶液中的给定纳米晶体样品的积分发射(integratedemission)(光密度为0.1)与在乙醇中的Coumarin 102(Lambda Physik)进行比较。在平均ZnS壳厚度为~3单层(3.1埃/单层)处出现最大量子效率。
将胺加入裸露CdS核不改变核的深井发射。在胺不存在下制备外涂层时,所得(CdS)ZnS纳米晶体仍然显示一定深井发射。参见D.V.Talapin等,Nano Lett.2001,1,207将其全部内容引入作为参考。令人惊异地,外涂覆过程中存在胺能够使ZnS壳受控生长,使得所得纳米晶体不存在深井发射(参见图3)。这些观察使得难以辨别胺如何独立影响壳厚度(将胺浓度始终保持恒定)和量子产率。在核CdS纳米晶体上的较厚ZnS壳与发射FWHM增加有关。CdS核颗粒的谱带边沿发射FWHM为17-19nm。在外涂覆2-3单层后,FWHM增加至大约24-26nm,伴随着发射中大约10nm的红移和大约5nm的第一吸收特征偏移。图6显示核CdS和核壳(CdS)ZnS纳米晶体的吸收光谱。从下面的样品记录光谱:(a)裸露4.7±0.4nm CdS(虚线)和相应的(CdS)ZnS核壳纳米晶体(实线),平均ZnS壳厚度为~2单层;(b)裸露4.9±0.4nm CdS(虚线)和相应的(CdS)ZnS核壳纳米晶体(实线),平均ZnS壳厚度为~3单层;和(c)裸露5.2±0.4nm CdS(虚线)和相应的(CdS)ZnS核壳纳米晶体(实线),平均ZnS壳厚度为~4.5单层。对于用ZnS外涂覆CdSe观察到了吸收中的相似红移,并且是由于激子向壳内的泄漏。对于图2b和5c的样品,波长色散光谱确定了ZnS壳厚度,得到平均元素重量百分比为21.6±0.9% Cd、32.2±00.5% Zn,和46.2±00.7% S。这些数值相应于0.77nm(2.5单层)ZnS壳的理论厚度,其与TEM测量所得实验厚度是一致的。
图4显示5.4±0.4nm(CdS)ZnS核壳纳米晶体的吸收和发射光谱。插图证实了(CdS)ZnS核壳电致发光。分层部件(参见S.Coe,等人,Nature 2002,420,800,将其全部引入作为参考)的结构为ITO/CBP/(CdS)ZnS纳米晶体单层/TAZ/Alq3/Mg:Ag/Ag,并显示出外部量子效率为0.1%(参见图7),其中CBP为4,4′-N,N′-二咔唑基-联苯。在低电流下(图4插图中的圆圈,1mA/cm2,14V)LED光谱峰的FWHM为30nm,中心在468nm,而更高的电流下(图4插图中实线,60mA/cm2,21V),来自有机层的电致发光开始占优势。有机电致发光可以看作UV中的肩部和光谱的绿区(参见图4插图)。有机和纳米晶体发光在工作器件中同时出现,并随着施加更大的电流,纳米晶体和有机发射的比例改变(参见,例如S.Coe-Sullivan,等人,Org.Electron.2003,4,123)。
图7显示了发光器件的外部量子效率与电流密度曲线。插图显示I-V(电流-电压)曲线,两条虚线表示两种不同的电流密度(1mA/cm2,14V和60mA/cm2,21V),其相应于图4插图的电致发光光谱。
图5a显示4.9±0.4nm裸露CdS纳米晶体的X射线粉末图像,其显示为纤锌矿结构,其中锌-闪锌矿沿002方向堆垛层错(stacking faults)。ZnS涂覆率(coverage)为~2单层(图5b)和~3单层(图5c)的核壳纳米晶体的X射线粉末图像显示纤锌矿ZnS壳对于总体衍射图像(overall diffraction pattern)的显著影响。使用TEM或光学波谱看不出小ZnS颗粒的证据,但是即使如此,在制备样品过程中也应该注意以确保XRD和WDS测量不存在ZnS颗粒。
CdS核如上制备,其中反应包括2毫摩尔Cd(OAc)2、2毫摩尔BTMPPA,和2毫摩尔S,在单一反应中得到0.23毫摩尔CdS核。
对元素硫和油胺的混合物短时间脱气可以增加CdS核的单分散性。如上制备CdS核,不同在于对元素硫和油胺的混合物脱气10-15分钟。结果,较少驱动下面的反应趋于完全。因此制备了较少H2S(其作为气体离开)和较少(RHN)2Sn-1(其改变CdS核形成速率)。
2RNH2+Sn→(RNH)2Sn-1+H2S
更快的脱气步骤改变了元素硫(Sn)与(RHN)Sn-1的相对比例,并产生大小更均匀的CdS纳米晶体核(17nm FWHM,与18-20nm FWHM的发射相比)。使用更短硫/胺脱气步骤制备的CdS核在给定反应产率下是更有效的发光体(3-6%至15%)。最终,更高品质(更有效的发光体,更严格的大小分布)的核纳米晶体产生更高品质的核壳材料。在图9A中给出纳米晶体的吸收光谱。下面物质各自使用2毫摩尔进行反应:Cd(OAc)2、BTMPPA和S,得到0.24毫摩尔CdS核,量子产率16%和FWHM为18nm。纳米晶体的吸收光谱示于图9B。
通过在烧瓶中结合CdS核以及TOPO(6g)、BTMPPA(0.5mmol)、油胺(1.5mL)和HDA(1g)进行外涂覆反应。将烧瓶中的内容物加热到170℃,通过滴液漏斗将壳前体溶液以大约每2秒1滴的速率加入。壳前体溶液包括二乙基锌(17mg)和过量2至3倍的六甲基二硅硫醚(141mg)和10-30%(相对于Zn,以摩尔计)二甲基镉(4mg)TOP(7mL)溶液。所得经外涂覆的纳米晶体具有以下发射:FWHM为20nm和量子产率为25%,与通过不存在过量硫前体或二甲基镉的外涂覆反应制备的纳米晶体相比,发射稳定性更大。这些性质可能源于用Cd稍稍掺杂ZnS壳提供了生长时从CdS核至ZnS的更平稳的过渡。在生长ZnS壳时过量硫提供了浓硫环境,提供了更平稳和更晶体性的(more crystalline)壳生长以及更好的界面,在CdS核和ZnS壳之间缺陷少。外涂覆之前的核光致发光谱以及经外涂覆的纳米晶体的光致发光谱示于图10A中。对于外涂覆CdS核使用相同的溶剂系统,但是将壳前体溶液通过注射器泵以58微升/分钟的速率连续加入到烧瓶中,历时2小时。所得纳米晶体的发射如下:FWHM为22nm和QY为43%。外涂覆之前的核光致发光谱以及经外涂覆的纳米晶体的光致发光谱示于图10B中。
通过以下方式外涂覆CdS核:首先在烧瓶中组合核和油胺(7mL)、TOP(8mL)和BTMPPA(1mmol)。在将烧瓶中的内容物加热到170℃后,将壳前体溶液(二乙基锌(86mg)、S(TMS)2(411mg、3倍过量)、Cd(Me)2(11mg、10mol%,相对于二乙基锌)和TOP(7mL))以大约每3秒钟1滴的速率加入。所得涂覆的纳米晶体的发射波长为467nm,FWHM为22nm和QY为37%。外涂覆之前的核光致发光谱以及经外涂覆的纳米晶体的光致发光谱示于图11A中。
通过首先在烧瓶中组合核以及油胺(5mL)、TOP(5mL)和BTMPPA(0.75mmol)涂覆CdS核。在将烧瓶中的内容物加热到170℃后,将壳前体溶液(二乙基锌(41mg)、S(TMS)2(198mg、3倍过量)、Cd(Me)2(7mg、10mol%,相当于二乙基锌)和TOP(5mL))以42微升/分钟的速率通过注射器泵加入,历时2小时。所得外涂覆的纳米晶体的FWHM为32nm和QY为50%。外涂覆之前的核光致发光谱以及经外涂覆的纳米晶体的光致发光谱示于图11B中。
通过Hewlett-Packard 8453二极管阵列光谱计获得光学吸收光谱。使用SPEX Fluorolog-2光谱计以直角收集结构获得光致发光谱。使用通过己烷中稀释生长原样(as-grown)的纳米晶体溶液制备的样品获得核CdS吸收谱,同时所有(CdS)ZnS核壳光学表征都使用从溶液中至少沉淀一次并再分散在己烷中的样品进行。确定壳厚度、结晶性和粒度分布的高分辨率透射电子显微镜测量(HRTEM)使用200kV下操作的JEOL-2010电子显微镜进行。使用在200kV下操作的JEOL 2000FX进行低分辨率TEM。核壳材料的元素分析使用波长色散光谱(WDS)在JEOL JXA-733 Superprobes上进行。粉末X射线衍射(PXRD)图像在Rigaku Ru300 X射线衍射仪上获得。
纳米晶体可适用于多种应用,包括描述于共同未决并共同拥有的美国专利申请1998年9月18日申请的09/156,863、1998年9月24日申请的09/160,454、1998年9月24日申请的09/160,458、1999年7月9日申请的09/350,956、2003年3月28日申请的10/400,908、所有申请的全部内容引入作为参考。例如,纳米晶体可以用于光电器件中,包括电致发光器件,例如发光二极管(LEDs)或交流电薄膜电致发光器件(ACTFELDs)。
其它实施方式也在本发明权利要求的范围内。

Claims (39)

1.半导体纳米晶体,包括:
核,包括第一半导体材料;和
核上的外涂层,外涂层包括第二半导体材料,其中纳米晶体基本不含深井发射位置,以及纳米晶体激发时发射蓝光。
2.权利要求1的纳米晶体,其中纳米晶体激发时发射蓝光,量子效率为至少10%。
3.权利要求1的纳米晶体,其中纳米晶体激发时发射蓝光,量子效率为至少30%。
4.权利要求1的纳米晶体,其中纳米晶体激发时发射蓝光,量子效率为至少50%。
5.权利要求1的纳米晶体,其中蓝光的半宽度不大于40nm。
6.权利要求1的纳米晶体,其中蓝光的半宽度不大于30nm。
7.权利要求6的纳米晶体,其中纳米晶体激发时发射蓝光,量子效率大于20%。
8.权利要求1的纳米晶体,其中蓝光的半宽度不大于20nm。
9.权利要求1的纳米晶体,其中蓝光的峰值波长短于470nm。
10.权利要求1的纳米晶体,其中第一半导体材料为CdS。
11.权利要求10的纳米晶体,其中第二半导体材料为ZnS。
12.权利要求1的纳米晶体,其中蓝光的强度至少比深井发射的强度大5倍。
13.权利要求1的纳米晶体,其中蓝光的强度至少比深井发射的强度大10倍。
14.权利要求1的纳米晶体,其中蓝光的强度至少比深井发射的强度大20倍。
15.半导体纳米晶体群,群的每个纳米晶体包括:
核,包括第一半导体材料;和
核上的外涂层,外涂层包括第二半导体材料,和基本上不含深井发射位置,其中群激发时发射蓝光。
16.权力要求15的群,其中群激发时发射蓝光,量子效率至少为10%。
17.权利要求16的群,其中蓝光的峰值波长短于470nm。
18.权力要求15的群,其中群激发时发射蓝光,量子效率至少为30%。
19.权力要求15的群,其中群激发时发射蓝光,量子效率至少为50%。
20.权力要求15的群,其中蓝光的半宽度不大于40nm。
21.权力要求15的群,其中蓝光的半宽度不大于30nm。
22.权利要求21的群,其中群激发时发射蓝光,量子效率大于20%。
23.权力要求15的群,其中蓝光的半宽度不大于20nm。
24.权力要求15的群,其中蓝光的峰值波长短于470nm。
25.权力要求15的群,其中第一半导体材料为CdS。
26.权利要求24的群,其中第二半导体材料为ZnS。
27.权力要求15的群,其中蓝光的强度至少比深井发射的强度大5倍。
28.权力要求15的群,其中蓝光的强度至少比深井发射的强度大10倍。
29.权力要求15的群,其中蓝光的强度至少比深井发射的强度大20倍。
30.发光器件,包括:
包括基体的层;
与该层相邻的第一电极;
与第一电极相对的第二电极;和
布置在第一电极和第二电极之间的多个半导体纳米晶体,其中半导体纳米晶体基本上不含深井发射位置,和纳米晶体激发时发射蓝光。
31.权利要求30的发光器件,其中半导体纳米晶体包括含有第一半导体材料的核,以及核上的外涂层,所述外涂层包括第二半导体材料。
32.权利要求30的发光器件,其中第一半导体材料为CdS。
33.权利要求32的发光器件,其中第二半导体材料为ZnS。
34.权利要求31的发光器件,其中该器件能够发射半宽度不大于40nm的光。
35.一种制备纳米晶体的方法,包括使半导体纳米晶体的单分散群与含M化合物、X-供体和胺在足以分别外涂覆纳米晶体的温度下接触,其中外涂覆的纳米晶体基本上不含深井发射位置,和外涂覆的纳米晶体激发时发射蓝光。
36.权利要求35的方法,其中胺为链烯基伯胺。
37.权利要求35的方法,其中胺为C2-C20链烯基伯胺。
38.权利要求36的方法,其中胺为油胺。
39.权利要求35的方法,其中半导体纳米晶体的单分散群为CdS纳米晶体的单分散群。
CN2005800147293A 2004-03-08 2005-03-07 蓝光发射半导体纳米晶体材料 Active CN101208808B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US55031404P 2004-03-08 2004-03-08
US60/550,314 2004-03-08
US11/071,244 US7253452B2 (en) 2004-03-08 2005-03-04 Blue light emitting semiconductor nanocrystal materials
US11/071,244 2005-03-04
PCT/US2005/007454 WO2005086782A2 (en) 2004-03-08 2005-03-07 Blue light emitting semiconductor nanocrystal materials

Publications (2)

Publication Number Publication Date
CN101208808A true CN101208808A (zh) 2008-06-25
CN101208808B CN101208808B (zh) 2010-09-29

Family

ID=34976141

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2005800147293A Active CN101208808B (zh) 2004-03-08 2005-03-07 蓝光发射半导体纳米晶体材料

Country Status (6)

Country Link
US (3) US7253452B2 (zh)
EP (1) EP1730783A4 (zh)
JP (2) JP5689575B2 (zh)
KR (1) KR101178410B1 (zh)
CN (1) CN101208808B (zh)
WO (1) WO2005086782A2 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110678990A (zh) * 2017-04-10 2020-01-10 挪威科技大学 纳米结构
CN110746958A (zh) * 2018-07-23 2020-02-04 三星电子株式会社 量子点、其制造方法、以及包括其的组合物、复合物和电子设备

Families Citing this family (100)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2336409B1 (en) * 2002-08-13 2023-05-10 Massachusetts Institute of Technology Coated nanocrystal and method of preparing a coated nanocrystal
DE60334029D1 (de) * 2002-11-26 2010-10-14 Univ Maryland Biotechnology Hochempfindliche assays für die pathogendetektion unterverwendung der metallverstärkten fluoreszenz
US7253452B2 (en) * 2004-03-08 2007-08-07 Massachusetts Institute Of Technology Blue light emitting semiconductor nanocrystal materials
US7773404B2 (en) 2005-01-07 2010-08-10 Invisage Technologies, Inc. Quantum dot optical devices with enhanced gain and sensitivity and methods of making same
US7742322B2 (en) 2005-01-07 2010-06-22 Invisage Technologies, Inc. Electronic and optoelectronic devices with quantum dot films
WO2005101530A1 (en) 2004-04-19 2005-10-27 Edward Sargent Optically-regulated optical emission using colloidal quantum dot nanocrystals
US7746681B2 (en) 2005-01-07 2010-06-29 Invisage Technologies, Inc. Methods of making quantum dot films
US20050258419A1 (en) * 2004-05-05 2005-11-24 California Institute Of Technology System and method for making nanoparticles with controlled emission properties
US20060196375A1 (en) * 2004-10-22 2006-09-07 Seth Coe-Sullivan Method and system for transferring a patterned material
WO2006137924A2 (en) 2004-11-03 2006-12-28 Massachusetts Institute Of Technology Light emitting device
US7799422B2 (en) * 2004-11-03 2010-09-21 Massachusetts Institute Of Technology Absorbing film
WO2006052548A1 (en) 2004-11-05 2006-05-18 University Of Maryland Biotechnology Institute Metal-enhanced fluorescence from plastic substrates
EP2292718A3 (en) * 2004-11-11 2011-06-22 Samsung Electronics Co., Ltd Interfused nanocrystals and method of preparing the same
US9637682B2 (en) 2004-11-11 2017-05-02 Samsung Electronics Co., Ltd. Interfused nanocrystals and method of preparing the same
WO2006137945A2 (en) 2004-11-19 2006-12-28 University Of Maryland Biotechnology Institute Microwave accelerated assays
US8891575B2 (en) * 2004-11-30 2014-11-18 Massachusetts Institute Of Technology Optical feedback structures and methods of making
US8886464B2 (en) 2005-01-03 2014-11-11 University Of Maryland, Baltimore County Microwave-accelerated metal-enhanced detection method
CA2519608A1 (en) 2005-01-07 2006-07-07 Edward Sargent Quantum dot-polymer nanocomposite photodetectors and photovoltaics
EP1864341B1 (en) 2005-02-16 2019-11-13 Massachusetts Institute Of Technology Light emitting device including semiconductor nanocrystals
US9297092B2 (en) * 2005-06-05 2016-03-29 Qd Vision, Inc. Compositions, optical component, system including an optical component, devices, and other products
WO2007103310A2 (en) 2006-03-07 2007-09-13 Qd Vision, Inc. An article including semiconductor nanocrystals
US8718437B2 (en) 2006-03-07 2014-05-06 Qd Vision, Inc. Compositions, optical component, system including an optical component, devices, and other products
US8845927B2 (en) * 2006-06-02 2014-09-30 Qd Vision, Inc. Functionalized nanoparticles and method
CA2655079C (en) 2005-06-15 2013-12-10 University Of Maryland Biotechnology Institute Bioassays using plasmonic scattering from noble metal nanostructures
CA2656004A1 (en) 2005-06-17 2006-12-28 University Of Maryland Biotechnology Institute Metal-enhanced fluorescence-based sensing methods
US8987004B2 (en) * 2005-08-02 2015-03-24 University Of Maryland, Baltimore County Nanostructures for polarized imaging and receptor/ligan quantization: breaking the diffraction limit for imaging
US8835941B2 (en) * 2006-02-09 2014-09-16 Qd Vision, Inc. Displays including semiconductor nanocrystals and methods of making same
KR101625224B1 (ko) * 2006-02-09 2016-05-27 큐디 비젼, 인크. 반도체 나노결정 및 도핑된 유기 물질을 포함하는 층을 포함하는 소자 및 방법
US8008067B2 (en) * 2006-02-13 2011-08-30 University Of Maryland, Baltimore County Microwave trigger metal-enhanced chemiluminescence (MT MEC) and spatial and temporal control of same
JP2009527099A (ja) 2006-02-14 2009-07-23 マサチューセッツ・インスティテュート・オブ・テクノロジー 白色発光デバイス
WO2007143197A2 (en) 2006-06-02 2007-12-13 Qd Vision, Inc. Light-emitting devices and displays with improved performance
US8849087B2 (en) 2006-03-07 2014-09-30 Qd Vision, Inc. Compositions, optical component, system including an optical component, devices, and other products
US9874674B2 (en) 2006-03-07 2018-01-23 Samsung Electronics Co., Ltd. Compositions, optical component, system including an optical component, devices, and other products
WO2008070028A2 (en) * 2006-12-01 2008-06-12 Qd Vision, Inc. Improved composites and devices including nanoparticles
WO2007117698A2 (en) 2006-04-07 2007-10-18 Qd Vision, Inc. Composition including material, methods of depositing material, articles including same and systems for depositing material
US7807265B2 (en) * 2006-05-12 2010-10-05 University Of Central Florida Research Foundation, Inc. Partially passivated quantum dots, process for making, and sensors therefrom
US8980179B2 (en) * 2006-05-17 2015-03-17 University Of Maryland, Baltimore County Angular-dependent metal-enhanced fluorescence
US8941299B2 (en) * 2006-05-21 2015-01-27 Massachusetts Institute Of Technology Light emitting device including semiconductor nanocrystals
US9212056B2 (en) * 2006-06-02 2015-12-15 Qd Vision, Inc. Nanoparticle including multi-functional ligand and method
WO2007143227A2 (en) * 2006-06-10 2007-12-13 Qd Vision, Inc. Materials,thin films,optical filters, and devices including same
WO2008108798A2 (en) 2006-06-24 2008-09-12 Qd Vision, Inc. Methods for depositing nanomaterial, methods for fabricating a device, and methods for fabricating an array of devices
WO2008105792A2 (en) 2006-06-24 2008-09-04 Qd Vision, Inc. Methods for depositing nanomaterial, methods for fabricating a device, methods for fabricating an array of devices and compositions
WO2008111947A1 (en) 2006-06-24 2008-09-18 Qd Vision, Inc. Methods and articles including nanomaterial
US8643058B2 (en) 2006-07-31 2014-02-04 Massachusetts Institute Of Technology Electro-optical device including nanocrystals
WO2008021962A2 (en) 2006-08-11 2008-02-21 Massachusetts Institute Of Technology Blue light emitting semiconductor nanocrystals and devices
WO2008033388A2 (en) * 2006-09-12 2008-03-20 Qd Vision, Inc. A composite including nanoparticles, methods, and products including a composite
WO2008085210A2 (en) 2006-09-12 2008-07-17 Qd Vision, Inc. Electroluminescent display useful for displaying a predetermined pattern
WO2008063658A2 (en) * 2006-11-21 2008-05-29 Qd Vision, Inc. Semiconductor nanocrystals and compositions and devices including same
WO2008133660A2 (en) 2006-11-21 2008-11-06 Qd Vision, Inc. Nanocrystals including a group iiia element and a group va element, method, composition, device and other prodcucts
WO2008063657A2 (en) * 2006-11-21 2008-05-29 Qd Vision, Inc. Light emitting devices and displays with improved performance
WO2008063652A1 (en) 2006-11-21 2008-05-29 Qd Vision, Inc. Blue emitting semiconductor nanocrystals and compositions and devices including same
WO2008063653A1 (en) 2006-11-21 2008-05-29 Qd Vision, Inc. Semiconductor nanocrystals and compositions and devices including same
US8836212B2 (en) 2007-01-11 2014-09-16 Qd Vision, Inc. Light emissive printed article printed with quantum dot ink
US9339485B2 (en) * 2007-03-02 2016-05-17 University Of Maryland, Baltimore County Plasmonic engineering of singlet oxygen and/or superoxide generation
WO2008121793A1 (en) * 2007-03-30 2008-10-09 The Penn State Research Foundation Mist fabrication of quantum dot devices
WO2008151247A1 (en) * 2007-06-04 2008-12-11 University Of Maryland Biotechnology Institute Fluorescence microscope in a microwave cavity
JP5773646B2 (ja) 2007-06-25 2015-09-02 キユーデイー・ビジヨン・インコーポレーテツド ナノ材料を被着させることを含む組成物および方法
WO2009002551A1 (en) * 2007-06-26 2008-12-31 Qd Vision, Inc. Photovoltaic devices including quantum dot down-conversion materials useful for solar cells and materials including quantum dots
US9023372B2 (en) * 2007-07-18 2015-05-05 University Of Maryland Metal-enhanced fluorescence nanoparticles
WO2009014707A2 (en) 2007-07-23 2009-01-29 Qd Vision, Inc. Quantum dot light enhancement substrate and lighting device including same
US8128249B2 (en) 2007-08-28 2012-03-06 Qd Vision, Inc. Apparatus for selectively backlighting a material
WO2009148634A2 (en) * 2008-01-30 2009-12-10 University Of Maryland Biotechnology Institute Conversion of just-continuous metallic films to large particulate substrates for metal-enhanced fluorescence
WO2009099425A2 (en) * 2008-02-07 2009-08-13 Qd Vision, Inc. Flexible devices including semiconductor nanocrystals, arrays, and methods
WO2009134527A2 (en) * 2008-03-03 2009-11-05 University Of Maryland Biotechnology Institute Voltage-gated metal-enhanced fluorescence, chemiluminescence or bioluminescence methods and systems
US9525148B2 (en) 2008-04-03 2016-12-20 Qd Vision, Inc. Device including quantum dots
CN105870345B (zh) 2008-04-03 2019-01-01 三星研究美国股份有限公司 包括量子点的发光器件
JP2011524064A (ja) * 2008-05-06 2011-08-25 キユーデイー・ビジヨン・インコーポレーテツド 量子閉じ込め半導体ナノ粒子を含有する固体照明装置
WO2009137053A1 (en) 2008-05-06 2009-11-12 Qd Vision, Inc. Optical components, systems including an optical component, and devices
US9207385B2 (en) 2008-05-06 2015-12-08 Qd Vision, Inc. Lighting systems and devices including same
WO2009149015A2 (en) * 2008-06-02 2009-12-10 University Of Victoria Innovation And Development Corporation Blue light emitting nanomaterials and synthesis thereof
CA2737048A1 (en) 2008-09-11 2011-03-18 University Of Maryland, Baltimore County Sonication-assisted metal-enhanced fluorescence (samef)-based bioassays
EP2344866B1 (en) 2008-09-17 2019-09-04 University of Maryland, Baltimore County Plasmonic electricity
WO2010096414A2 (en) 2009-02-17 2010-08-26 University Of Maryland Biotechnology Institute Metal-enhanced bioluminescence: an approach for monitoring biological bioluminescent processes
US10024794B2 (en) 2009-02-23 2018-07-17 University Of Maryland, Baltimore County Directional surface plasmon coupled fluorescence and chemiluminescence from thin films of nickel, iron or palladium and uses thereof
EP2424814A4 (en) 2009-04-28 2016-06-01 Qd Vision Inc OPTICAL MATERIALS, OPTICAL COMPONENTS AND METHOD
US8536776B2 (en) * 2009-05-07 2013-09-17 Massachusetts Institute Of Technology Light emitting device including semiconductor nanocrystals
WO2010129889A2 (en) 2009-05-07 2010-11-11 Massachusetts Institute Of Technology Light emitting device including semiconductor nanocrystals
US8106420B2 (en) 2009-06-05 2012-01-31 Massachusetts Institute Of Technology Light emitting device including semiconductor nanocrystals
EP2465147B1 (en) 2009-08-14 2019-02-27 Samsung Electronics Co., Ltd. Lighting devices, an optical component for a lighting device, and methods
JP2013508895A (ja) 2009-10-17 2013-03-07 キユーデイー・ビジヨン・インコーポレーテツド 光学部品、これを含む製品およびこれを作製する方法
WO2011060180A1 (en) 2009-11-11 2011-05-19 Qd Vision, Inc. Device including quantum dots
JP5715154B2 (ja) 2009-12-14 2015-05-07 ユニバーシティ オブ メリーランド,ボルチモア カウンティ プラズモン電気
US9459212B2 (en) 2009-12-17 2016-10-04 University Of Maryland, Baltimore County Mixed-metal substrates for metal-enhanced fluorescence
US9689556B2 (en) * 2010-05-27 2017-06-27 Merck Patent Gmbh Down conversion array comprising quantum dots
WO2012092178A1 (en) 2010-12-28 2012-07-05 Life Technologies Corporation Preparation of nanocrystals with mixtures of organic ligands
US8735175B2 (en) 2011-03-18 2014-05-27 Chris D. Geddes Multicolor microwave-accelerated metal-enhanced fluorescence (M-MAMEF)
WO2013019299A2 (en) * 2011-05-11 2013-02-07 Qd Vision, Inc. Method for processing devices including quantum dots and devices
US8508830B1 (en) 2011-05-13 2013-08-13 Google Inc. Quantum dot near-to-eye display
WO2012158832A2 (en) 2011-05-16 2012-11-22 Qd Vision, Inc. Method for preparing semiconductor nanocrystals
WO2013028253A1 (en) 2011-08-19 2013-02-28 Qd Vision, Inc. Semiconductor nanocrystals and methods
CN102403426B (zh) * 2011-12-09 2014-08-13 江苏康纳思光电科技有限公司 一种制造宽色域白光led的方法
WO2013103440A1 (en) 2012-01-06 2013-07-11 Qd Vision, Inc. Light emitting device including blue emitting quantum dots and method
WO2013123390A1 (en) * 2012-02-16 2013-08-22 Qd Vision, Inc. Method for preparing semiconductor nanocrystals
US10807865B2 (en) * 2012-03-15 2020-10-20 Massachusetts Institute Of Technology Semiconductor nanocrystals
WO2013173409A1 (en) 2012-05-15 2013-11-21 Qd Vision, Inc. Semiconductor nanocrystals and methods of preparation
WO2014085469A1 (en) * 2012-11-27 2014-06-05 Massachusetts Institute Of Technology Deposition of semiconductor nanocrystals for light emitting devices
US20160137916A1 (en) * 2013-06-25 2016-05-19 Konica Minolta, Inc. Optical material, optical film, and light-emitting device
US10294451B2 (en) 2015-04-22 2019-05-21 University Of Maryland, Baltimore County Flow and static lysing systems and methods for ultra-rapid isolation and fragmentation of biological materials by microwave irradiation
JP7195943B2 (ja) * 2019-01-15 2022-12-26 株式会社アルバック 金属窒化物ナノ粒子分散液の製造方法
US10456776B1 (en) * 2019-02-21 2019-10-29 King Saud University Method of fabricating a photocatalyst for water splitting

Family Cites Families (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5147841A (en) 1990-11-23 1992-09-15 The United States Of America As Represented By The United States Department Of Energy Method for the preparation of metal colloids in inverse micelles and product preferred by the method
TW239158B (zh) * 1991-02-15 1995-01-21 Lubrizol Corp
US5505928A (en) 1991-11-22 1996-04-09 The Regents Of University Of California Preparation of III-V semiconductor nanocrystals
US5262357A (en) 1991-11-22 1993-11-16 The Regents Of The University Of California Low temperature thin films formed from nanocrystal precursors
WO1993010564A1 (en) * 1991-11-22 1993-05-27 The Regents Of The University Of California Semiconductor nanocrystals covalently bound to solid inorganic surfaces using self-assembled monolayers
US5515393A (en) 1992-01-29 1996-05-07 Sony Corporation Semiconductor laser with ZnMgSSe cladding layers
CN1025526C (zh) * 1992-12-15 1994-07-20 中国科学院上海技术物理研究所 一种蓝绿色半导体激光器材料及其制备方法
US5293050A (en) 1993-03-25 1994-03-08 International Business Machines Corporation Semiconductor quantum dot light emitting/detecting devices
US6048616A (en) 1993-04-21 2000-04-11 Philips Electronics N.A. Corp. Encapsulated quantum sized doped semiconductor particles and method of manufacturing same
JPH0750448A (ja) 1993-08-04 1995-02-21 Matsushita Electric Ind Co Ltd 半導体レーザおよびその製造方法
US5492080A (en) 1993-12-27 1996-02-20 Matsushita Electric Industrial Co., Ltd. Crystal-growth method and semiconductor device production method using the crystal-growth method
US5422489A (en) 1994-01-24 1995-06-06 Bhargava; Rameshwar N. Light emitting device
US5434878A (en) 1994-03-18 1995-07-18 Brown University Research Foundation Optical gain medium having doped nanocrystals of semiconductors and also optical scatterers
US5448582A (en) 1994-03-18 1995-09-05 Brown University Research Foundation Optical sources having a strongly scattering gain medium providing laser-like action
SE504244C2 (sv) * 1994-03-29 1996-12-16 Sandvik Ab Sätt att tillverka kompositmaterial av hårdämnen i en metallbindefas
US5537000A (en) 1994-04-29 1996-07-16 The Regents, University Of California Electroluminescent devices formed using semiconductor nanocrystals as an electron transport media and method of making such electroluminescent devices
US5677545A (en) 1994-09-12 1997-10-14 Motorola Organic light emitting diodes with molecular alignment and method of fabrication
US5541948A (en) 1994-11-28 1996-07-30 The Regents Of The University Of California Transition-metal doped sulfide, selenide, and telluride laser crystal and lasers
US5985353A (en) 1994-12-01 1999-11-16 University Of Massachusetts Lowell Biomolecular synthesis of quantum dot composites
US5585640A (en) 1995-01-11 1996-12-17 Huston; Alan L. Glass matrix doped with activated luminescent nanocrystalline particles
US5606163A (en) 1995-01-11 1997-02-25 The United States Of America As Represented By The Secretary Of The Navy All-optical, rapid readout, fiber-coupled thermoluminescent dosimeter system
US5747180A (en) 1995-05-19 1998-05-05 University Of Notre Dame Du Lac Electrochemical synthesis of quasi-periodic quantum dot and nanostructure arrays
GB9518910D0 (en) 1995-09-15 1995-11-15 Imperial College Process
US5876480A (en) 1996-02-20 1999-03-02 The United States Of America As Represented By The Secretary Of The Navy Synthesis of unagglomerated metal nano-particles at membrane interfaces
DE19630581A1 (de) 1996-07-30 1998-02-05 Studiengesellschaft Kohle Mbh Verfahren zur Herstellung von Solvens-stabilisierten Metallkolloiden und trägerfixierten Metallclustern
US5908608A (en) 1996-11-08 1999-06-01 Spectra Science Corporation Synthesis of metal chalcogenide quantum
US6103868A (en) 1996-12-27 2000-08-15 The Regents Of The University Of California Organically-functionalized monodisperse nanocrystals of metals
JP4099547B2 (ja) 1997-01-23 2008-06-11 ソニー株式会社 ディジタル信号編集装置及び方法
US6057561A (en) 1997-03-07 2000-05-02 Japan Science And Technology Corporation Optical semiconductor element
JP4071360B2 (ja) 1997-08-29 2008-04-02 株式会社東芝 半導体装置
US6607829B1 (en) 1997-11-13 2003-08-19 Massachusetts Institute Of Technology Tellurium-containing nanocrystalline materials
US6322901B1 (en) 1997-11-13 2001-11-27 Massachusetts Institute Of Technology Highly luminescent color-selective nano-crystalline materials
US5985173A (en) 1997-11-18 1999-11-16 Gray; Henry F. Phosphors having a semiconductor host surrounded by a shell
US5990479A (en) 1997-11-25 1999-11-23 Regents Of The University Of California Organo Luminescent semiconductor nanocrystal probes for biological applications and process for making and using such probes
US6501091B1 (en) 1998-04-01 2002-12-31 Massachusetts Institute Of Technology Quantum dot white and colored light emitting diodes
US6337117B1 (en) 1998-07-01 2002-01-08 Mitsubishi Chemical Corporation Optical memory device
JP4470237B2 (ja) * 1998-07-23 2010-06-02 ソニー株式会社 発光素子,発光装置および表示装置並びに発光素子の製造方法
US6262129B1 (en) 1998-07-31 2001-07-17 International Business Machines Corporation Method for producing nanoparticles of transition metals
US6294401B1 (en) 1998-08-19 2001-09-25 Massachusetts Institute Of Technology Nanoparticle-based electrical, chemical, and mechanical structures and methods of making same
US6306610B1 (en) 1998-09-18 2001-10-23 Massachusetts Institute Of Technology Biological applications of quantum dots
US6251303B1 (en) 1998-09-18 2001-06-26 Massachusetts Institute Of Technology Water-soluble fluorescent nanocrystals
WO2000028598A1 (en) 1998-11-10 2000-05-18 Biocrystal Limited Methods for identification and verification
US6114038A (en) 1998-11-10 2000-09-05 Biocrystal Ltd. Functionalized nanocrystals and their use in detection systems
US6592842B2 (en) 1999-10-01 2003-07-15 Battelle Memorial Institute Nanocrystalline heterojunction materials
US6179912B1 (en) 1999-12-20 2001-01-30 Biocrystal Ltd. Continuous flow process for production of semiconductor nanocrystals
CA2406983A1 (en) 2000-03-14 2001-09-27 Massachusetts Institute Of Technology A gain medium and lasers based on close-packed semiconductor nanocrystals
JP4537528B2 (ja) 2000-03-29 2010-09-01 株式会社東芝 光記録媒体
EP2256834B1 (en) 2000-10-04 2012-09-26 The Board of Trustees of The University of Arkansas Colloidal metal chalcogenide nanocrystals
US6576291B2 (en) 2000-12-08 2003-06-10 Massachusetts Institute Of Technology Preparation of nanocrystallites
US20020083888A1 (en) 2000-12-28 2002-07-04 Zehnder Donald A. Flow synthesis of quantum dot nanocrystals
US6846565B2 (en) 2001-07-02 2005-01-25 Board Of Regents, The University Of Texas System Light-emitting nanoparticles and method of making same
EP2218762A3 (en) 2001-07-20 2010-09-29 Life Technologies Corporation Luminescent nanoparticles and methods for their preparation
WO2003050329A2 (en) * 2001-07-30 2003-06-19 The Board Of Trustees Of The University Of Arkansas High quality colloidal nanocrystals and methods of preparation of the same in non-coordinating solvents
US6794265B2 (en) * 2001-08-02 2004-09-21 Ultradots, Inc. Methods of forming quantum dots of Group IV semiconductor materials
KR100438408B1 (ko) 2001-08-16 2004-07-02 한국과학기술원 금속간의 치환 반응을 이용한 코어-쉘 구조 및 혼합된합금 구조의 금속 나노 입자의 제조 방법과 그 응용
JP2003073449A (ja) * 2001-08-31 2003-03-12 Hitachi Chem Co Ltd プリプレグ用変性エポキシ樹脂組成物、それを用いるプリプレグおよび積層板
WO2003021694A2 (en) 2001-09-04 2003-03-13 Koninklijke Philips Electronics N.V. Electroluminescent device comprising quantum dots
EP1438614B1 (en) * 2001-09-17 2009-05-13 Massachusetts Institute Of Technology Semiconductor nanocrystal composite
JP3709379B2 (ja) * 2002-03-26 2005-10-26 新日本石油株式会社 潤滑油組成物
EP2902464B1 (en) * 2002-03-29 2019-09-18 Massachusetts Institute Of Technology Light emitting device including semiconductor nanocrystals
US7901939B2 (en) * 2002-05-09 2011-03-08 University Of Chicago Method for performing crystallization and reactions in pressure-driven fluid plugs
US7319709B2 (en) * 2002-07-23 2008-01-15 Massachusetts Institute Of Technology Creating photon atoms
US6872450B2 (en) 2002-10-23 2005-03-29 Evident Technologies Water-stable photoluminescent semiconductor nanocrystal complexes and method of making same
US7056471B1 (en) 2002-12-16 2006-06-06 Agency For Science Technology & Research Ternary and quarternary nanocrystals, processes for their production and uses thereof
US20040265622A1 (en) 2003-06-24 2004-12-30 Eastman Kodak Company Light emitting display
KR100657891B1 (ko) 2003-07-19 2006-12-14 삼성전자주식회사 반도체 나노결정 및 그 제조방법
US7253452B2 (en) * 2004-03-08 2007-08-07 Massachusetts Institute Of Technology Blue light emitting semiconductor nanocrystal materials

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110678990A (zh) * 2017-04-10 2020-01-10 挪威科技大学 纳米结构
CN110678990B (zh) * 2017-04-10 2024-02-06 挪威科技大学 纳米结构
CN110746958A (zh) * 2018-07-23 2020-02-04 三星电子株式会社 量子点、其制造方法、以及包括其的组合物、复合物和电子设备

Also Published As

Publication number Publication date
US20120061644A1 (en) 2012-03-15
JP2007528612A (ja) 2007-10-11
JP5689575B2 (ja) 2015-03-25
US20050258418A1 (en) 2005-11-24
US20110229998A1 (en) 2011-09-22
JP2013064141A (ja) 2013-04-11
WO2005086782A3 (en) 2008-01-03
US8080437B2 (en) 2011-12-20
US8541810B2 (en) 2013-09-24
KR20070003916A (ko) 2007-01-05
US7253452B2 (en) 2007-08-07
EP1730783A2 (en) 2006-12-13
CN101208808B (zh) 2010-09-29
KR101178410B1 (ko) 2012-08-30
EP1730783A4 (en) 2010-12-01
WO2005086782A2 (en) 2005-09-22

Similar Documents

Publication Publication Date Title
CN101208808B (zh) 蓝光发射半导体纳米晶体材料
US11174429B2 (en) Semiconductor nanoparticles and method of producing semiconductor nanoparticles
JP7308433B2 (ja) 半導体ナノ粒子およびその製造方法ならびに発光デバイス
US20200200362A1 (en) Quantum dot containing light module
US8784698B2 (en) Surface structures for enhancement of quantum yield in broad spectrum emission nanocrystals
US9212056B2 (en) Nanoparticle including multi-functional ligand and method
JP5295518B2 (ja) 白色発光ダイオードおよびその製造方法
Cho et al. Highly efficient blue-emitting CdSe-derived core/shell gradient alloy quantum dots with improved photoluminescent quantum yield and enhanced photostability
US9236572B2 (en) Enhancement of light emission quantum yield in treated broad spectrum nanocrystals
JP2007528612A5 (zh)
US20090092539A1 (en) Preparation method of white light quantum dot
CN112824478B (zh) 核壳量子点、其制备方法、及含其的光电器件和量子点组合物
Cho et al. Surface coating of gradient alloy quantum dots with oxide layer in white-light-emitting diodes for display backlights
Cao et al. Colloidal Quantum Dots and Their Applications
CN115161026A (zh) 一种核壳量子点发光材料及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant