CN101222882B - 通过机械微创外科手术过程中联合传感器和/或照相机导出数据实现3-d刀具跟踪的系统 - Google Patents

通过机械微创外科手术过程中联合传感器和/或照相机导出数据实现3-d刀具跟踪的系统 Download PDF

Info

Publication number
CN101222882B
CN101222882B CN2006800259132A CN200680025913A CN101222882B CN 101222882 B CN101222882 B CN 101222882B CN 2006800259132 A CN2006800259132 A CN 2006800259132A CN 200680025913 A CN200680025913 A CN 200680025913A CN 101222882 B CN101222882 B CN 101222882B
Authority
CN
China
Prior art keywords
cutter
cutting tool
state
endoscope
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2006800259132A
Other languages
English (en)
Other versions
CN101222882A (zh
Inventor
B·D·霍夫曼
D·Q·拉金
G·普里斯科
G·G·张
R·库马尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Intuitive Surgical Operations Inc
Original Assignee
Intuitive Surgical Operations Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Intuitive Surgical Operations Inc filed Critical Intuitive Surgical Operations Inc
Priority to CN201811067183.3A priority Critical patent/CN109077699B/zh
Priority to CN201310054782.2A priority patent/CN103211563B/zh
Publication of CN101222882A publication Critical patent/CN101222882A/zh
Application granted granted Critical
Publication of CN101222882B publication Critical patent/CN101222882B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • A61B1/00193Optical arrangements adapted for stereoscopic vision
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • A61B1/00194Optical arrangements adapted for three-dimensional imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/313Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor for introducing through surgical openings, e.g. laparoscopes
    • A61B1/3132Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor for introducing through surgical openings, e.g. laparoscopes for laparoscopy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B34/37Master-slave robots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/06Devices, other than using radiation, for detecting or locating foreign bodies ; determining position of probes within or on the body of the patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/06Devices, other than using radiation, for detecting or locating foreign bodies ; determining position of probes within or on the body of the patient
    • A61B5/061Determining position of a probe within the body employing means separate from the probe, e.g. sensing internal probe position employing impedance electrodes on the surface of the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • A61B2034/101Computer-aided simulation of surgical operations
    • A61B2034/102Modelling of surgical devices, implants or prosthesis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2065Tracking using image or pattern recognition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/08Accessories or related features not otherwise provided for
    • A61B2090/0818Redundant systems, e.g. using two independent measuring systems and comparing the signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B2090/364Correlation of different images or relation of image positions in respect to the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/06Devices, other than using radiation, for detecting or locating foreign bodies ; determining position of probes within or on the body of the patient
    • A61B5/061Determining position of a probe within the body employing means separate from the probe, e.g. sensing internal probe position employing impedance electrodes on the surface of the body
    • A61B5/062Determining position of a probe within the body employing means separate from the probe, e.g. sensing internal probe position employing impedance electrodes on the surface of the body using magnetic field
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/725Details of waveform analysis using specific filters therefor, e.g. Kalman or adaptive filters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/361Image-producing devices, e.g. surgical cameras
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/39Markers, e.g. radio-opaque or breast lesions markers

Abstract

在机械微创外科手术中实现刀具跟踪的方法和系统。使用三角测量技术或贝叶斯滤波器,从非内窥镜导出刀具状态信息和内窥镜导出刀具状态信息中的两者或任意一个或者从非视觉导出刀具状态信息和视觉导出刀具状态信息中的两者或任意一个,来确定刀具状态。所述非内窥镜导出刀具状态信息从传感器数据中导出,所述传感器数据由与用来操纵刀具的机构有关的传感器提供,或由能够检测从刀具发射或反射并指示其位置的可识别信号的传感器提供,或由用来观测从身体延伸出的刀具的末端的外部照相机提供。所述内窥镜导出刀具状态信息从图像数据中导出,所述图像数据由插入在身体中以观测刀具的内窥镜提供。

Description

通过机械微创外科手术过程中联合传感器和/或照相机导出数据实现3-D刀具跟踪的系统
本发明是在美国政府的支持下根据由美国国家标准与技术研究所(NIST)授予的70NANB1H3048号合作协议进行的。美国政府对本发明拥有一定权力。 
技术领域
【0001】本发明主要涉及微创外科手术,且具体地说涉及利用机械微创外科手术过程中传感器和/或照相机导出数据(例如刀具位置、速度)的联合实现3-D刀具跟踪的方法与系统。 
发明背景 
【0002】微创外科手术技术旨在减少在诊断或手术过程中破坏的外源组织的数量,从而缩短患者康复时间,减轻不适感,降低毒副作用。因此,使用微创外科手术技术,可以使标准外科手术的医院驻留平均时长显著缩短。同样地,微创外科手术也可以降低患者康复时间和离开工作的时间,减轻患者不适,降低手术副作用。 
【0003】微创外科手术的常见形式是内窥镜检查,内窥镜的常见形式是腹腔镜检查,其为对腹腔内部的微创检查和外科手术。在标准腹腔镜检查手术中,向患者的腹部注入气体,通过小(大约1/2英寸或更小)切口传递套袖来提供腹腔镜手术器械的入口。 
【0004】腹腔镜检查手术器械主要包含腹腔镜或内窥镜(用于观测手术区域)以及工作刀具。所述工作刀具与用于传统(开腹)手术的刀具相似,区别是,每个刀具的工作端或末端执行器与其把手用延长管分离开。在这里使用的术语“末端执行器”是指手术器械的实际工作部分且可以包含例如夹子、抓紧器、剪刀、订书机、图像采集透镜以及测针夹持器。 
【0005】要完成手术,外科医生将这些工作刀具或器械通过套袖传递到内部手术部位并从腹部外操纵它们。外科医生利用监视器来观测过手术,所述监视器显示腹腔镜所拍摄的手术部位的图像。相似的内窥镜检查技术应用于例如关节镜检查、后腹膜腔镜检查、骨盆镜检查、肾镜检查、膀胱镜检查、脑镜检查(cister否scopy)、鼻内窥镜检查(si否scopy)、子宫镜检查、尿道镜检查等类似检查技术。 
【0006】微创远程外科机械系统正被开发以提高外科医生在内部手术部位工作的灵活性,也允许外科医生在较远的地方对患者进行手术。在远程外科系统中,经常在计算机工作站将手术部位的图像提供给外科医生。当在观察器或显示器观测手术部位的三维图像时,外科医生通过控制主输入或工作站控制设备来完成对患者的手术。每个主输入设备都控制自动控制装置运行的手术器械的运动。在手术过程中,远程外科系统可以提供含有末端执行器的各种手术器械或刀具的机械驱动和控制,所述末端执行器为手术执行各种功能,例如把持或推动针、抓紧血管或解剖组织或者类似功能以响应主输入设备的控制。 
【0007】然而,在手术过程中,外科医生可以操纵刀具以使得其末端执行器移到内窥镜的视野之外,或者所述末端执行器可能因为流体或其他干涉物的阻塞而变得不易看到。在这些情况下,能够在定位和/或识别工作站的显示屏上的末端执行器方面给外科医生提供帮助,将是有用的。 
【0008】各种用于识别照相机图像中刀具的技术已被开发。例如,一种这样的技术在Guo-Qing Wei、Klaus Arbter和Gerd Hizinger的“Real-Time Visual Servoing for Laparoscopic Surgery,”IEEE Engineeringin Medicine and Biology,Vol.16,否.1,pp.40-45,1997中描述,其中颜色标记用来识别照相机中的刀具,以便照相机可以被自动操作,从而保持刀具位于器视觉图像的中间。再例如,另一种这样的机构在Xiaoli Zhang和Shahram Payandeh的“Application of Visual Tracking for Robot-AssistedLaparoscopic Surgery,”Journal of Robotics Systems,Vol.19,否.7,pp.315-328,2002中描述,其中有条纹的标记用于识别照相机中的刀具及其深度,以使得照相机可以被自动操作以直观地跟踪刀具。 
【0009】然而,当末端执行器在内窥镜的视野之外时或当其被流体或某物体阻塞时,这些技术一般就没用了。在这两种中的任何一种情况下,这种标志都不能被发现,刀具不可能被识别。第二,简单的颜色标记和其他置于刀具上的方向独立标记都不便确定刀具方向和位姿。第三,识别和跟踪刀具标记的计算复杂性可使得实时跟踪困难。具体地,处理每个视频采集画面所增加的时间将会降低视频采集发生的频率,可能导致从一个图像突然转移到另一个图像。第四,未校正的照相机校准和/或其他系统测量误差在根据照相机的视觉图像确定刀具位置和方向时可能引起误差。 
发明内容
【0010】要使多种刀具中的每一种对于外科医生在工作站显示屏上和对于患者旁边的工作人员容易区分,则可使用许多计算机辅助技术,例如: 
预测刀具的位置和方向,并将刀具的计算机辅助设计(“CAD”)模型,或其他虚拟标记或指示器,覆盖在显示屏中刀具的预测位置和方向; 
预测刀具的位置和方向,并惟一标识每个刀具在其预测位置和方向以使其在显示屏上可与其他刀具区别开来;以及 
预测刀具的位置和方向,并且当以某种方式突出显示刀具的末端执行器以便末端执行器在显示屏上看上去浮动并突出时,擦除或刷除掉刀具的轴。 
【0011】例如,惟一标识每个刀具在其预测位置和方向使其在显示屏上可于其他刀具区别开来的一个优势,是其: 
a)使外科医生(只看见身体内的刀具)更易于与患者一侧的工作人员(只看见身体外的刀具)就具体刀具进行交流, 
b)确保外科医生意识到可能在视野之外的刀具。当有多于两个刀具时,这是特别重要的,因为外科医生只可能看到两个,假定那两个是他用两只手控制的两个,而实际上他在视野之外控制(即移动)着另一个刀具,潜在地破坏着组织。 
【0012】同样地,例如,预测刀具的位置和方向并在以某种方式突出显示刀具的末端执行器以便末端执行器在显示屏上看上去浮动并突出显示时擦除或刷除掉刀具的轴,这样的一个优势是它使更多的潜在组织能被外科医生观测到。然而,注意,这种潜在组织的视图是定义合成的,因为组织的当前状态被刀具弄得模糊。因此擦除刀具的轴需要存储手术部位的先前图像,以便模糊的区域或许以一种昏暗或变灰的方式(又叫战争雾)可被该区域的最后可知的不模糊视图替代,以指示数据不是当前的。 
【0013】刀具跟踪是指刀具状态随时间的确定。刀具状态一般包括其在参考系中的位置和方向以及其他相关参数例如其平动和转动速度。在优选实施例中,刀具跟踪在照相机参考系中完成。刀具跟踪使得在刀具在内窥镜视图中不可见或阻塞时的时间点上有助于刀具位置和方向的预测,这是利用刀具可见或可识别时的先前时间的位置和方向、和/或使用在那个时间点及之前的时间从内窥镜源导出的位置和方向估计实现的。 
【0014】对刀具位置和方向的确定,除对刀具在工作站的显示屏上定位之外,还有很多方面的用处。例如,刀具位置和方向信息可用来生成图形覆盖,其包含外科医生所关心的信息。这些覆盖可包含:动态或静态视频图象(telestration)、刀具间的距离、刀具与患者解剖之间的距离、在照相机参考系中解剖构造的测量、或在另一参考系中解剖结构的测量。此外,刀具的位置和方向可用来根据在固定或世界参考系中提供的术前或计划数据,对齐当前的刀具和照相机位置,或大体提高操纵刀具的机械机构的安全性和可控性。 
【0015】但对于又一个示例,对刀具位置和方向的确定,也对在外科手术过程中从传感器收集的数据的注册有用,所述传感器安装在刀具本身,例如超声传感器。在这种情况下,如果支持传感器的刀具的位置和方向公知在照相机参考系中(即内窥镜的参考系),那么从安装在刀具上的超声传感器收集的任何数据的位置和方向可被显示在工作站显示屏,完全根据外科手术图像来注册,以在外科手术过程中协助外科医生。 
【0016】在这些特定注册示例中,有必要在固定(或世界)参考系 中确定刀具的位置和方向。所以,如果内窥镜的位置和方向公知在固定参考系中,那么内窥镜观测的刀具位置和方向可从照相机参考系转换到固定参考系。或者,如果刀具的位置和方向在固定参考系中独立确定,所述独立确定不仅避免这种参考系转换过程,而且它也提供在参考系中确定内窥镜位置和方向的另一种方法。 
【0017】因此,本发明所涉及方面的目的是,提供在微创外科手术过程中,即使在一部分甚至整个刀具在内窥镜视图之内或之外被阻塞时,实现刀具跟踪的方法和系统。 
【0018】本发明所涉及方面的又一个目的是,提供实现刀具跟踪的方法和系统,所述刀具跟踪包括,使用方向相关的标记来进行视觉跟踪,以便确定刀具的位姿。 
【0019】本发明所涉及方面的又一个目的是,提供实现准确、可靠和/或计算快捷的刀具跟踪的方法和系统。 
【0020】本发明所涉及方面的又一个目的是,提供实现刀具跟踪的方法和系统,所述刀具跟踪在确定后的刀具位置和方向上实时运行并最小化突然的转移,以提供刀具的光滑跟踪。 
【0021】本发明所涉及方面的又一个目的是,提供实现刀具跟踪的方法和系统,所述刀具跟踪校正或补偿校准误差。 
【0022】这些以及附加的目的由本发明所涉及的各个方面实现,其中简要地叙述,一个方面是刀具跟踪方法,其包括:通过处理非内窥镜导出刀具状态信息和内窥镜导出刀具状态信息来跟踪刀具,其中所述两种刀具状态信息在刀具通过在身体中的微创切口被插入并正被操纵时生成。 
【0023】通过使用这种复合式方法,当刀具在来自被插入进患者身体以观测手术部位的内窥镜的视频帧中完全被阻塞时,其状态(例如其位置、方向以及平动和转动速度)仍然可以根据非内窥镜导出刀具位置信息来确定,所述非内窥镜导出刀具位置信息例如由以下方式生成:使用来自正在操纵刀具的机械机构的关节位置的系统运动学;使用电磁、声学或从刀具(或者操纵刀具的机械机构)发射或反射以确定其位置的其他种类的检测信号;使用由外部照相机生成的图像,所述外部照相机 观测从患者身体延伸出来的刀具的末端。 
【0024】同样地,假如非内窥镜导出刀具位置信息在抽样速率持续可用,对非内窥镜导出刀具位置信息以及内窥镜导出刀具位置信息在确定位置和方向中的附加的使用,趋向于最小化或至少显著减小图像信息的参考系之间的确定后的位置和方向的任何突然的转移。进一步,内窥镜导出刀具位置信息以及非内窥镜导出刀具位置信息的用途,提供用于确定刀具状态的信息的冗余源,这可被利用以确定刀具的位置和方向随时间的更多精确刀具跟踪。 
【0025】又一个方面是刀具跟踪方法,其包括:接收传感器信息,其在刀具通过在身体中切口被插入时,指示刀具的位置和方向;接收刀具的图像信息;以及使用传感器和图像信息来确定刀具的位置和方向。 
【0026】又一个方面是具有刀具跟踪的微创机械外科手术系统,其包含: 
一个或更多非内窥镜设备,其提供数据,在刀具通过身体中的切口被插入并正在被机械操纵时根据所述数据生成非内窥镜导出刀具状态信息; 
内窥镜采集的图像,在刀具插入到身体里时根据所述采集图像为身体内的区域生成内窥镜导出刀具状态信息;以及 
处理器,所述处理器被配置成处理用于跟踪所述刀具的状态的非内窥镜以及内窥镜导出刀具状态信息。 
【0027】又一个方面是具有刀具跟踪的微创机械外科手术系统,其包含: 
一个或更多传感器,其提供传感器数据,在刀具通过身体中的切口被插入并正在被机械操纵时根据所述传感器数据生成刀具的非视觉导出刀具状态信息; 
至少一个照相机,其在所述刀具插入进去时采集所述刀具图像信息;以及 
处理器,所述处理器被配置成处理用于跟踪所述刀具的状态的所述非视觉导出刀具状态信息和图像信息。 
【0028】又一个方面是刀具跟踪方法,其包括: 
确定刀具的计算机模型; 
接收包含所述刀具的视图的采集图像; 
根据所述采集图像确定所述刀具的估计位置和方向,按照关于所述采集图像的估计位置和方向给所述计算机模型定位置和方向;以及 
参照在所述采集图像中的刀具的图像,修改所述计算机模型的估计位置和方向,直到所述计算机模型近似覆盖所述图像,从而为所述采集图像校正所述刀具的估计位置和方向。 
【0029】又一个方面是刀具跟踪方法,其包括: 
确定指示刀具状态的传感器数据是否在时间点可用; 
确定指示所述刀具状态的图像数据是否在所述时间点可用;以及 
确定所述刀具状态,其方式为如果所述传感器数据和所述图像数据都在所述时间点可用则使用此两者,如果只有传感器数据可用则只使用传感器数据,如果只有图像数据可用则只使用图像数据。 
【0030】又一个方面是刀具跟踪方法,其包括: 
使用指示在时间点的刀具状态的第一传感器数据,确定有关时间点的界标的第一估计刀具状态; 
使用指示在所述时间点的所述照相机状态的第二传感器数据,确定与所述时间点的所述界标有关的估计照相机状态; 
使用由所述照相机生成的且指示在所述时间点的所述刀具状态的图像数据,确定有关所述时间点的所述照相机的第二估计刀具状态; 
转换所述第一估计刀具状态,以使其与所述照相机有关而不是与所述界标有关;以及 
计算所述第一与第二估计刀具状态之间的误差转换,使得在后续时间点如果指示在后续时间点所述刀具状态的图像数据不可用,则所述刀具状态通过应用所述误差转换到第三估计刀具状态来确定,所述第三估计刀具状态使用传感器数据来确定,所述传感器数据指示在所述后续时间点的所述转换后刀具状态,以使其与所述照相机有关而不是与所述界标有关。 
【0031】又一个方面是刀具跟踪方法,其包括: 
确定在给定时间的刀具的非内窥镜导出估计状态信息; 
确定在所述给定时间的所述刀具的内窥镜估计的状态信息;以及 
提供所述非内窥镜导出估计状态信息和内窥镜导出估计状态信息到贝 叶斯滤波器,所述贝叶斯滤波器被配置以生成所述刀具的状态的最优估计。 
【0032】又一个方面是刀具跟踪和校准方法,其包括: 
根据从观测刀具的照相机接收的图像数据,生成视觉导出状态信息; 
通过将一组照相机参数的初始值与所述视觉导出状态信息组合,来生成状态向量信息;以及 
提供所述状态向量信息到贝叶斯滤波器用于处理,以生成所述刀具的状态的最优估计和该组照相机参数的校正值。 
【0033】又一个方面是照相机跟踪方法,其包括: 
根据非视觉导出刀具状态信息,确定在固定参考系中刀具的位置,所述非视觉导出刀具状态信息根据指示所述刀具位置的传感器数据生成; 
使用视觉导出刀具状态信息,来确定在可随照相机移动的照相机参考系中所述刀具的位置,所述视觉导出刀具状态信息根据所述照相机在观测所述刀具时所提供图像数据生成;以及 
使用在所述固定参考系中所述刀具的位置和在可移动照相机参考系中所述刀具的位置,来确定在所述固定参考系中所述照相机的位置。 
【0034】又一个方面是刀具跟踪方法,其包括: 
根据非视觉导出照相机状态信息,确定在固定参考系中照相机的位置,所述非视觉导出照相机状态信息根据指示所述照相机位置的传感器数据生成; 
使用视觉导出刀具状态信息,来确定在可随照相机移动的照相机参考系中刀具的位置,所述视觉导出刀具状态信息根据所述照相机在观测所述刀具时所提供的图像数据生成;以及 
使用在所述固定参考系中的所述照相机位置和所述可移动照相机参考系中所述刀具的位置,来确定在所述固定参考系中所述刀具的位置。 
【0035】又一个方面是刀具跟踪,其包括: 
当所述刀具通过身体中的切口被插入并正被操纵时,生成多个时间点中每个点的多个估计刀具状态;以及 
通过使用贝叶斯技术来处理所述多个估计刀具状态,来确定所述多个时间点中每个点的最优估计刀具状态。 
【0036】本发明所涉及的各方面的附加的目的、特点和优势,将随 着以下其优选实施例的描述变得明显,这些描述应与附图一起参考。 
附图说明
【0037】图1利用本发明所涉及的方面,说明微创机械外科手术系统。 
【0038】图2利用本发明所涉及的方面,说明与微创机械外科手术系统相关的三维参考系。 
【0039】图3利用本发明所涉及的方面,说明一种刀具跟踪方法的流程图,所述刀具跟踪方法用刀具传感器和刀具图像数据中的任一个或两者来确定刀具状态。 
【0040】图4利用本发明所涉及的方面,说明一种刀具跟踪方法的流程图,所述刀具跟踪方法用刀具传感器和刀具图像数据来确定刀具状态。 
【0041】图5利用本发明所涉及的方面,说明用于确定刀具状态的卡尔曼滤波器刀具跟踪方法的功能框图。 
【0042】图6说明用于使三维空间中位置与三维像面中对应位置相关联的立体式投影。 
【0043】图7说明刚性体上三维点的投影。 
【0044】图8利用本发明所涉及的方面,说明用于实现刀具跟踪的方向相关的第一刀具标记。 
【0045】图9利用本发明所涉及的方面,说明用于实现刀具跟踪的方向相关的第二刀具标记。 
【0046】图10利用本发明所涉及的方面,说明计算机模型刀具跟踪方法的流程图。 
具体实施方式
【0047】图1说明作为示例的微创机械外科手术(MIRS)系统100,其包含一个控制台(“C”),在对躺在手术台(“O”)上的患者(“P”)完成微创诊断或手术时,所述控制台被外科医生(“S”)利用,所述诊断或手术通常需要一个或更多助手(“A”)的帮助来进行。 
【0048】控制台包含支架102、向外科医生显示手术部位图像的监视器104以及一个或更多控制设备108。控制设备108可包含多种输入设备中的任何一种或更多种,例如操纵杆、手套、触发枪、手动控制器、语音识别设备等。 
【0049】外科医生通过操纵若干个控制设备108来完成手术,在外科医生通过监视器104观测手术部位时,所述控制设备108轮流引起机械机构114通过所述患者身体中的微创切口操纵它们各自的可摘除耦合器械或刀具组件110(以下简单称作“刀具”)。同时使用的外科手术刀具110的数量并因此在系统100中使用的机械机构114的数量,一般将取决于(除其它因素外)诊断或手术程序以及手术室内的空间限制。如果有必要改变用于手术过程中的一个或更多的刀具110中,则所述助手可从其机械机构114摘除此时不再使用的刀具110,并用手术室里的盘(“T”)中的另一个刀具100替换它。 
【0050】外科医生的控制台通常与患者位于同一间屋,以便外科医生可以直接监视手术,如果必要可亲自上阵,以及直接向助手说话而不是通过电话或其他通信媒介。然而,需要理解的是,外科医生也可以在不同的屋、完全不同的楼或需要考虑遥控外科手术的远离患者其他位置。 
【0051】优选地,控制设备108将被提供与其相关刀具110相同的自由度,从而提供给外科医生临场感或如下感知:即控制设备108与刀具110形成一体以便外科医生对直接控制刀具110有强烈的感觉。为此,位置、力和触觉型反馈传感器(图中未显示)优选地被应用在刀具100上,从而在外科医生运行控制设备108时,将位置、力和触觉型感觉从刀具110传回到他/她的手。 
【0052】监视器104适当耦合到观测视野组件112,包含一个或更多照相机,经过处理器101,并定位在控制台的支架102上,以便手术部位的图像能被提供到外科医生的手边。优选地,监视器104将在显示器106上显示倒转的图像,所述显示器106如图确定方向,以便外科医生感觉他或她实际上正在直接俯视手术部位。为此,刀具110的图像显得基本就在手术员的双手所在的位置,即使观察点(即内窥镜或观测照像机)可能并不来自所述图像的视图的点。 
【0053】此外,实时图像优选地变换为透视图像,以便手术员可以操纵刀具110的末端执行器,通过刀具的对应控制设备108,就像基本真实在场观测工作空间一样。对于真实在场,指的是图像呈现的是真实的透视图像,所述真实的透视图像模拟亲身操作刀具110的手术员的观点。因此,处理器101(或控制台中另一个处理器)将刀具110的坐标变换到能感知到的位置,以使得如果观测视野组件112直接位于刀具110的后面,所述透视图像就是我们将看到的图像。 
【0054】处理器101完成系统100中的各种功能。优选地,它被用来将控制设备108的机械运动,经由例如CS1和CS2的控制信号,转换到与刀具110连接的机械机构114。此外,它还优选地被用来实现刀具跟踪方法,所述刀具跟踪方法可轮流地用于经由信号CS3来控制观测视野组件112运动通过其机械机构115,以便其跟踪一个或更多的刀具110以及其他目的,例如那些前述的。处理器101可与机械机构114和115分离或被适当集成进机械机构114和115,或者它可被整个地或部分地集成进所述控制台,作为其处理器或其处理器的协处理器的 
【0055】处理器101也优选地将来自刀具110的力和力矩反馈提供给手动控制设备108。此外,它优选地实现安全性监视功能,所述安全性监视功能冻结或至少阻止所有机械运动以响应识别条件,例如过多的力施加在患者身上或机械机构114或115的“失控”。 
【0056】虽然被描述为处理器,但需要理解的是,处理器101实际上可以通过硬件、软件和固件的任何组合实现。同样地,这里描述的其功能可以被一个装置或分成不同的组件完成,所述不同组件中的每一个都可以轮流被硬件、软件和固件的任何组合实现。 
【0057】系统100关于其对刀具110的操作和控制的一般操作和结构的附加细节作为示例被描述在名为“Multi-Component TelepresenceSystem and Method”的共有美国专利第6,346,072号中,其通过引用参考被并入于此。 
【0058】图2作为示例说明了与微创机械外科手术系统100相关的各种参考系。世界参考系201是固定参考系,此固定参考系其以例如微创诊断或手术正在发生的手术室中的固定点(即界标)为中心。另一方 面,刀具参考系202是移动参考系,此移动参考戏以例如例如所述刀具上的固定点为中心,并因此随所述刀具移动。相似地,照相机参考系203也是移动参考系,此移动参考系以例如照相机上的固定点为中心,并因此随所述照相机移动。所述刀具参考系202和所述照相机参考系203相对于所述世界参考系201的位置和方向,优选地根据传感器数据确定,所述传感器数据与用于操纵它们各自位置和方向的机械机构相关联。 
【0059】又一个刀具参考系204表示根据照相机参考系203确定的刀具参考系的位置和方向。在没有系统误差的情况下,刀具参考系202和204会精确重合。患者参考系205是半固定参考系,此半固定参考系以例如患者身上的固定点为中心,并因此当患者移动时,随该点移动。 
【0060】所述照相机定义的照相机参考系203,优选地是立体式照相机,其被校准以便在其左右像面的每一对对应点都映射到其照相机参考系208中的三维点。由所述照相机感知的刀具的位置(例如所述刀具参考系204),可以以如下方式被确定,例如先识别所述照相机的左右像面中的刀具,再使用校准信息来确定照相机参考系203中的刀具位置。 
【0061】一般地,照相机参考系203与内窥镜相关联,所述内窥镜被插入在手术部位,以便能够在手术过程中观测到刀具的执行器端。如上所示,在这种情况下,所述内窥镜优选地是立体式内窥镜。第二照相机参考系(图中未显示)也可以被定义并与位于所述患者身体外的外部照相机装置相关联,但要在足够邻近的位置,以便能够观测到在手术过程中从患者身体延伸出的刀具的后端。所述外部照相机装置也优选地是立体式照相机,从而使3-D确定变得容易。 
【0062】如前所描述,所述刀具和内窥镜都优选地通过所述患者身体中的切口、使用机械机构从而被操纵。每个这样的机械机构都包含关节和连杆,所述关节和连杆允许其各自的刀具或内窥镜以五或六自由度运动。 
【0063】刀具(如刀具参考系202的位置和方向所描述)和内窥镜(如照相机参考系的位置和方向所描述)的位置和方向,可以通过将传感器附在它们各自的机械机构的关节和/或连杆来感觉它们的运动,被确定在世界参考系201。这种技术在机械中众所周知,还伴随着一个事实, 即它们的结果取决于所述机械机构独特的构建和运行。附加的细节可以例如在John J.Craig的“Introduction to Robotics-Mechanics and Control”第二版,Addison Wesley Longman,1986中找到。 
【0064】又一个用于在世界参考系201中确定刀具和内窥镜位置和方向的方法,包括感觉电磁、声学或从刀具或内窥镜发射或正被反射以便指示其位置和方向的其他可识别信号。又一个在世界参考系201中确定刀具和内窥镜位置和方向的方法,包括对上述外部立体式内窥镜的使用,这可以观测从患者身体延伸出的刀具和内窥镜的后端,并通过基于其左右像面的计算来确定其位置和方向。 
【0065】通过确定由世界参考系中的传感器所确定的内窥镜(如照相机参考系203描述)和刀具(由刀具参考系202描述)的位置和方向,在世界参考系201中刀具位置和方向的确定可以使用传统三角测量技术被检验,所述传统三角测量技术使用在世界参考系201中确定的内窥镜位置和方向以及在内窥镜的照相机参考系203中确定的刀具位置和方向(如刀具参考系204描述)。反之,在世界参考系201中内窥镜位置和方向(如照相机参考系203描述)的确定可以使用传统三角测量技术被检验,所述传统三角测量技术使用在世界参考系201中确定的刀具位置和方向(如刀具参考系202描述)以及在内窥镜的照相机参考系203中确定的刀具位置和方向(如刀具参考系204描述)。含有用于确定刀具和内窥镜位置和方向的附加装置,可提供更多检查它们各自位置和方向的途径,并提供更准确的确定。 
【0066】图3说明作为示例一种刀具跟踪方法的流程图,所述刀具跟踪方法通过处理刀具的可用传感器和图像数据来跟踪刀具,所述数据在刀具通过身体中的微创切口被插入并正被操纵时生成。在这种情况下,所述传感器数据来自位置传感器,例如用来检测在操纵刀具的机械机构中的关节位置的传感器,或者用来检测电磁、声学或从刀具发射或正被反射以便指示其位置的其他可识别信号的传感器。为了适当地一起处理所述数据,传感器和图像数据都优选地以某种方式记时打印,以便与相同时间点相关联的数据可以被互相处理。 
【0067】在301中,确定是否刀具目前在用户的活动控制之下,例 如受由用户打开的对应控制设备控制。如果在301中的确定是否,则该方法保持周期性循环,直到在301中的确定结果为是,此时,在302中就做出确定是否指示刀具状态的传感器数据可用。如果在302中的确定是否,则在303中做出确定是否指示刀具状态的图像数据可用。如果在303中的确定也是否,则没有信息在此时可用于确定刀具状态,该方法跳回到301以在另一时间再次开始此过程。另一方面,如果在303中的确定为是,则在304中刀具的状态只使用此时的图像数据被确定,在这样的确定之后,该方法跳回到301以在另一时间重新开始此过程。 
【0068】如果在302中的确定为是,但其指示传感器数据可用,则在305中,确定是否刀具的位置从其上次确定以来改变过。此时进行该确定是有优势的,因为该确定实现起来相对容易和快捷,如果刀具没有移动,它避免确定新的刀具位置和方向的不必要计算。 
【0069】作为用来实现在305中确定的一种技术的示例:(i)关节速度根据传感器被确定,所述传感器使用在正操纵刀具的机械机构的关节,(ii)所述关节速度每个都是平方的,(iii)所述平方关节速度被相加在一起,(iv)所得到的值与门限值进行比较,使得仅当得到的值大于门限值时,刀具被确定移动过。 
【0070】如果在305中的确定是否,则该方法跳回到301以在另一时间再次开始此过程。另一方面,如果在305中的确定为是,则在306中做出确定是否指示刀具状态的图像数据可用。如果在306中的确定是否,则在308中刀具的状态在此时只使用传感器数据被确定,在这样的确定之后,该方法就跳回到301以在另一时间重新开始此过程。然而,如果在306中的确定为是,则在307中刀具的状态在此时使用传感器和图像数据被确定,在这样的确定之后,该方法就跳回到301以在另一时间重新开始此过程。 
【0071】在参照图3如上描述的方法中,没有关于所述传感器或图像数据的可用性做出假设。所以,这里描述的方法独立检验是否两种数据都可用,并因此确定刀具的位置。虽然传感器数据的可用性在此方法中检验图像数据的可用性之前被检验,但需要理解的是,此检验过程可逆,并且仍在本发明此方面的范围之内。 
【0072】所述传感器数据可从如下传感器或编码器接收,所述传感器或编码器位于在手术过程中操纵刀具的机械机构上的关节和/或连杆上,或者所述传感器数据可从如下传感器接收,所述传感器检测电磁、声学或从刀具发射或正被反射以指示其位置的其他可识别信号。所述图像数据可从如下内窥镜接收,所述内窥镜观测患者身体内的刀具的执行器端,或者所述图像数据可从如下外部照相机接收,所述外部照相机观测在手术过程中延伸出患者身体以外的刀具的暴露端。 
【0073】图4说明作为示例的刀具跟踪方法,其使用刀具传感器和可用的刀具图像数据来确定刀具状态。在该方法中,一般在手术之前离线完成401和402,在手术过程中在线完成403-410。 
【0074】在401中,离线校准立体式内窥镜,以便可在其左右2-D像面和所述3-D照相机系203之间完成点映射。在这种情况下校准包括,确定本征照相机参数,例如立体式像对的每个照相机的焦距(例如,见图6中长度“F”)、主点、歪斜和畸变。此外,立体式像对中两个照相机之间的转动和平动可以被确定。 
【0075】可以完成一次照相机校准,例如在微创机械外科手术系统100的初始建立过程中,或者可以周期性完成照相机校准,例如只在完成微创诊断或手术之前。一种完成校准的技术是在多个位置和方向采集若干校准网格图像。这些图像可以馈入商业可用的(或自家种植的)校准包,所述校准包在所属校准网格图像中提取角位置,完成校准/优化过程以获得所需参数。 
【0076】在402中,误差转换的初始值在每个手术开始时被确定。误差转换被定义为在第一估计刀具状态(如刀具参考系202所描述)的参考系中第二估计刀具状态(如刀具参考系204所描述)的位置和方向,所述第一估计刀具状态在世界参考系201中根据传感器被确定并被转换到立体式照相机的照相机参考系203,所述第二估计刀具状态在照相机参考系203中根据立体式照相机的左右像面被确定。根据之前引用的“Introduction to Robotics-Mechanics and Control”中定义的变换表示法,这可以被表示为 
【0077】此过程开始于例如通过根据传感器数据来应用初始转换到 刀具位置,以便此转换后的刀具位置的立体式投影以左右像面为中心。用户将刀具移动到立体式图像的四角,点击在左右图像中的2D刀具位置。将初始转换、刀具的3-D传感器位置和刀具的2-D图像位置组合,这给出根据传感器确定的刀具位置(例如刀具参考系202所描述)与根据立体式图像确定的刀具位置(例如刀具参考系204所描述)之间的误差转换 
Figure S2006800259132D00161
的初始值。在它们确定之后,所述初始值正好在开始403-410之前被装入短期存储器中。 
【0078】在403中,在世界参考系201中的刀具状态根据所述传感器数据被确定。对于刀具状态只由位置和方向构成的标称情况,这可以被表示为所述变换 
Figure S2006800259132D00162
(详见“Introduction to Robotics-Mechanics andControl”)。这可以以如下方式被确定,例如,根据系统运动学,使用根据与操纵刀具的机械机构相关联的关节或连杆位置传感器来提供的数据来确定,或者通过计算在世界参考系201中的刀具位置,使用从刀具发射或正被反射并指示其位置的信号来确定。虽然两个示例都提供状态信息,但对系统运动学的使用是完成此功能的优选,因为它一般比指示刀具位置的信号提供更多刀具状态信息。 
【0079】在404中,在世界参考系201中的照相机状态也根据所述传感器数据被确定。对于刀具状态只由位置和方向构成的标称情况,这可以被表示为所述变换 
Figure S2006800259132D00163
(详见“Introduction to Robotics-Mechanics andControl”)。正如在403中的刀具状态的确定的情况,这可以以如下方式被确定,例如,根据系统运动学,使用根据与操纵照相机的机械机构相关联的关节或连杆位置传感器来提供的数据来确定,或者通过计算在世界参考系201中的照相机位置,使用从照相机发射或正被反射并指示其位置的信号来确定。 
【0080】在405中,使用传统参考系转换技术,将在403中确定的估计状态信息从世界参考系201转换到照相机的照相机参考系203,所述传统参考系转换技术使用在404中确定的估计照相机状态(在世界参考系201中)。 
T 202 203 = T - 1 203 201 T 202 201 - - - ( 1 )
【0081】在406中,做出确定是否刀具的图像数据在对应时间点可 用,在所述对应时间点刀具状态在403中被确定。如果图像不被对应时间点的照相机采集,或者刀具在被对应时间点的照相机所采集的图像中不可识别,则所述图像数据可能不可用。当由于手术过程中外科医生操纵刀具而使刀具移入或移出照相机视图时,后一种情况可能发生。为了在采集图像中协助识别刀具,各种刀具识别技术可被使用,包括对这里描述的特殊标记进行使用。 
【0082】作为上述的细化,即使刀具在图像数据中可识别,其可被识别为异常值,所以如果其状态落到最佳拟合曲线的容许范围之外,则其被丢弃,所述最佳拟合曲线是根据先前确定的在之前时间点的刀具状态生成。 
【0083】如果在406中的确定为是,则在407中,在照相机参考系203中的刀具状态(例如刀具参考系204所描述)的估计直接被确定。对于刀具状态只由位置和方向构成的标称情况,这可以被表示为所述变换 
Figure S2006800259132D00171
作为用于完成此任务的一种技术的示例,控制点在从立体式照相机接收的左右2-D像面中的刀具上被识别,之后该点在3-D照相机参考系203中的对应位置使用先前生成的校准数据被确定。 
【0084】作为所述控制点如何在所述两像面中被识别的示例,包含所述控制点的小窗可在左图像中被选择,并与右图像中的小窗交叉相关,从而以最高相关因数确定该图像中的窗,这就导致对该图像中的控制点的匹配和识别。 
【0085】在407中确定刀具状态之后,修改后的误差转换 
Figure S2006800259132D00172
在408中被计算为在405中确定的刀具状态与在407中确定的刀具状态之间的变换,并被存储到短期存储器中,替换其中存储的任何初始值。在407中确定的估计刀具状态在409中被确定为该时间点的刀具状态。该方法跳回到403,在照相机参考系203中为另一时间点确定刀具状态。 
T 204 202 = T - 1 202 203 T 204 203 - - - ( 2 )
【0086】另一方面,如果在406中的确定是否,则在410中,在照相机参考系203中的刀具状态(例如刀具参考系204所描述)就被确定为,在405中确定的、被对应在402中确定的刀具状态的误差转换所调节的估计刀具状态。在这种情况下,所述误差转换未被更新。该方法跳 回到403,在照相机参考器203中为另一时间点确定刀具状态。 
T 204 203 = T 202 203 T 204 202 - - - ( 3 )
【0087】注意,所述误差转换可在完成任务408中的手术过程中被更新,因为所述误差转换由于多种因素可随时间缓慢变动,所述多种因素例如在所述初始误差转换估计、初始关联、系统运动学或照相机校准中的误差,也有其他因素例如应用到刀具或其操纵的机械机构的外力或者机械机构中的磁滞或其他非线性。 
【0088】图5说明作为示例的另一刀具跟踪方法的功能框图。在这种情况下的所述刀具跟踪方法使用扩展的卡尔曼滤波器(“EKF”),其有如下目的,即通过将例如zNV1-k和zNV2-k(通过处理与刀具相关联的传感器和/或外部照相机数据,分别在方框501和502中被生成)的一个或更多非内窥镜导出刀具状态信息与例如zV1-k、zV2-k和zV3-k(通过处理从使用对应视觉算法的立体式内窥镜接收的刀具的图像信息,分别在方框511、512和513中生成)的一个或更过内窥镜导出刀具状态信息组合,并使用系统动力学模型,来产生正被跟踪的刀具状态的最优估计。 
【0089】在此方法中,对是否非内窥镜导出或内窥镜导出刀具状态信息可用的确定并不必要(例如在图3中在302和306中为传感器数据和图像数据所完成),因为如果任意一种信息在计算时间不可用,则这种情况通过包含保持先前值(即不在此时被更新)的测量值的不可用信息进行考虑。由于这个和其他原因,参照图5描述的该方法被认为是用于确定刀具状态的优选技术。 
【0090】注意,虽然EKF用于此示例,但其他贝叶斯滤波器或技术例如卡尔曼滤波器或粒子滤波器也可被使用,并完全仔细考虑它们在本发明的范围之内。贝叶斯滤波器是指基于贝叶斯估计技术的统计滤波器一族。 
【0091】同样地,注意,被称为传感器数据、外部照相机数据或内窥镜图像数据的所有输入可被认为是测量,其中被测量的数量是在对应传感器、外部照相机或内窥镜参考系中的刀具状态(一般是位置和方向)的某子集。一般地,刀具状态的所有传感器测量包括一定量的处理,例如,一般需要前向运动学计算来计算来自机械关节位置传感器的刀具状 态。进一步,所有测量一般都是异步的,但通过时间戳称为绝对时钟。 
【0092】每个测量一般都被例如零均值噪声的某随机误差恶化,并可能在某时间点(确失)不可用或可能完全错误(异常值)。因此所述EKF减弱刀具状态估计上的测量噪声效应。每个传感器、外部照相机或内窥镜参考系之间的额定变化被用于融合所述测量。 
【0093】功能方框501根据传感器数据生成非内窥镜导出刀具状态信息zNV1-k并将所述非内窥镜导出刀具状态信息提供到EKF加以处理。如前所描述,所述非内窥镜导出刀具状态信息可来自关节位置传感器、刀具位置信号检测器或外部照相机。附加的功能方块,例如功能方框502,可以非必要地被包含,从而根据相同的或其他传感器数据或外部照相机来生成附加的非内窥镜导出刀具状态信息并将所述附加的非内窥镜导出刀具状态信息提供到EKF 521加以处理。 
【0094】另一方面,功能方框511根据内窥镜图像数据来生成内窥镜导出刀具状态信息zV1-k,并将所述内窥镜导出刀具状态提供到EKF 521加以处理。如前所描述,所述内窥镜图像数据可以是来自立体式内窥镜左右像面。附加的功能方框,例如功能方框512和513,可以非必要地被包含,从而一般根据相同的内窥镜图像数据来生成附加的内窥镜导出刀具状态信息并将所述附加的内窥镜导出刀具状态信息提供到EKF 521加以处理。 
【0095】功能方框501-502和511-513完成一些普遍任务以及它们各体的特殊处理,以生成它们各自的刀具状态信息。作为示例,每个功能方框都跟踪置于其接收的传感器或图像数据的时间戳,这指示数据在什么时候被感测或采集,从而使在任何给定时间由功能方框提供到EKF 521的所有刀具状态信息都大体与时间戳上指示的相同时间对应。作为示例,每个功能方框优选地在其接收的传感器或图像数据中滤去噪声,以使得被提供到EKF 521的刀具状态信息大体具有零均值噪声。 
【0096】以下是EKF 521如何在微创诊断或手术过程中被用于刀具跟踪的简化示例。一般对于EKF的更深入描述,例如,见Greg Welch和Gary Bishop的“Introduction to the Kalman Filter,”TR 95-041,Departmentof Computer Science,University of North Carolina at Chapel Hill,April 5, 2004。 
【0097】众所周知,EKF框架由两个明显的阶段,被称为“时间更新”(或“预测”)阶段和“测量更新”(或“校正”)阶段。 
【0098】在卡尔曼滤波器更新循环的第一阶段,来自滤波器先前迭代的状态估计用来基于系统动力学的(可能)非线性模型f和施力函数uk-1,根据如下方程式(4),产生对该循环 的新状态估计的预测: 
x ^ k - = f ( x ^ k - 1 , u k - 1 , 0 ) - - - ( 4 )
其中方程式(4)中的‘0’是用于产生预测后的状态估计的过程噪声估计。 
【0099】关于点 
Figure S2006800259132D00203
线性化非线性系统模型f,获得被线性化的状态转移矩阵A。之后,使用来自滤波器先前迭代的误差协方差矩阵Pk-1,根据如下方程式(5),对此循环产生对新误差协方差矩阵的预测Pk -, 
P k - = A k P k - 1 A k T + W k Q k - 1 W k T - - - ( 5 )
其中所述矩阵W表示关于所述过程噪声的系统动力学的雅可比行列式w,Q是可调增益矩阵。 
【0100】物理地思考,如果矩阵P描述具有许多与系统状态秩相等的维度的误差椭圆,则通过应用方程式(5),所述误差椭圆的大小可使用我们的系统动力学模型来扩展,所述系统动力学模型在被线性化的状态转移矩阵A和过程噪声的尺度估计中被编码,这表示系统动力学模型中的不确定度。扩大所述误差椭圆等同于说明在系统状态的估计中有更大的不确定度。 
【0101】在卡尔曼滤波器更新循环的第二阶段中,预测过的状态估计和预测过的误差协方差矩阵可以通过对系统进行一个或更多测量来校正。 
【0102】此时卡尔曼增益被计算出。本质上,卡尔曼增益加权来自一个或更多测量的贡献(基值),以便它们对新状态估计的影响反映对它们可靠性的当前估计。此外,它允许对模型相比测量的可靠性进行加权。换句话说,来自可靠测量的贡献(基值)可被更多地加权,来自不可靠测量的贡献(基值)可被较少地加权。要做到这点,应用如下方程 式(6)。 
K k = P k - H k T ( H k P k - H k T + V k R k V k T ) - 1 - - - ( 6 )
【0103】解释方程式(6),首先提出有函数h,其公知为测量函数,这将可在系统中被测量的(被观察的)数量z与实际系统状态x联系起来。 
【0104】在方程式(6)中,由方程式(5)得到的新误差协方差矩阵的估计Pk -被使用。矩阵H是关于系统状态x的所述‘测量’函数h的雅可比行列式。本质上,H矩阵描述正被测量的数量中的变化将如何改变实际系统状态。 
【0105】矩阵V表示测量噪声的估计,其包含传感器噪声和所述测量噪声h中的不确定度。R矩阵是可调增益。 
【0106】一旦卡尔曼增益是根据方程式(6)计算得到的,系统状态的估计就可以使用预测过的系统状态估计 
Figure S2006800259132D00212
和所述测量来被更新。在这种情况下,所属预测过的系统状态估计由实际测量zk与预测过的测量 
Figure S2006800259132D00213
之间的卡尔曼增益加权误差根据如下方程式(7)来进行调节。 
x ^ k = x ^ k - + K k ( z k - h ( x ^ k - , 0 ) ) - - - ( 7 )
【0107】最后,误差协方差的估计根据如下方程式(8)被更新。 
P k = ( I - K k H k ) P k - - - - ( 8 )
【0108】Pk的值应以与测量相对于预测被信任的程度成比例的速率减小。实际上,这意味着在附加测量被获得时,围住系统状态估计的误差椭圆收缩。 
【0109】既然EKF框架已被描述,其关于本申请的公式表示就被详述。具体地,系统状态x、系统状态函数f、系统转移矩阵A、测量z、测量函数h和测量雅可比行列式H被定义。 
【0110】系统的状态是如方程式(9)所示的腹腔镜检查刀具末端执行器的位置、方向、平动速度和转动速度。这样,转动刚性体的状态被描述。 
x = x y z θ x θ y θ z θ w x · y · z · ω x ω y ω z 13 × 1 T - - - ( 9 )
【0111】注意,末端执行器的方向Θ是使用四元数符号而不是作为 旋转矩阵被表示的。这使角速度的光滑积分以获得新刚性体的方向变得容易,正如系统状态更新方程式所需要的那样。 
【0112】对于系统更新函数f,在自由空间中的刚性体被描述,而没有施力函数的输入。状态传播由方程式集合(10)描述。然而,注意,在优选实施例中,那些速度是被抽样之间的ΔT左乘以获得位置三角的,并在方程式(10)中被简单相加。 
【0113】这里,做了一个没有施力函数的假设,因为时间步长非常小,赋予刚性体的任何加速度可被模拟为所述系统模型中的噪声。 
Figure S2006800259132D00221
【0114】方向状态的状态传播Θ由于使用四元数而更复杂一点。首先,计算出四元数导数,其为当前方向和角速度的函数。要做到这点,角速度四元数q1和方向四元数q2如方程式集合(11)所示被描述。 
q 1 = ω ^ x k - 1 ω ^ y k - 1 ω ^ z k - 1 0 4 × 1 T
q 2 = θ ^ x k - 1 θ ^ y k - 1 θ ^ z k - 1 θ ^ w k - 1 4 × 1 T (11) 
【0115】那么四元数导数根据方程式(12)被计算: 
dq = 1 2 q 2 * q 1 - - - ( 12 )
其中‘*’运算符表示四元数乘法。一旦计算出来四元数导数,经方程式(13)完成积分。 
Θ ^ k - = θ ^ x k - 1 + dq x ΔT θ ^ y k - 1 + dq y ΔT θ ^ z k - 1 + dq z ΔT θ ^ w k - 1 + dq w ΔT 4 × 1 - - - ( 13 )
【0116】在积分之后,得到的四元数通过将 归一化而强制为单位长度。定义系统状态函数f后,卡尔曼滤波器更新循环的方程式(4)可被计算。 
【0117】要满足卡尔曼滤波器更新循环的方程式(5),系统状态雅可比矩阵A必须被定义。在本情况中,如果上述讨论被以矩阵形式重写,则所需矩阵结果如方程式(14)所示。 
A = I 3 × 3 0 3 × 4 ΔT · I 3 × 3 0 3 × 3 0 4 × 3 A q 0 4 × 3 0 4 × 3 0 3 × 3 0 3 × 4 I 3 × 3 0 3 × 3 0 3 × 3 0 3 × 4 0 3 × 3 I 3 × 3 13 × 13 - - - ( 14 )
【0118】矩阵0m×n是一个全0的m×n矩阵。在方程式(15)中显示的矩阵Aq是四元数ω矩阵,其将在方程式(12)中描述的四元数乘法运算符‘*’编码。 
A q = 0 - ω ^ z k - 1 ω ^ y k - 1 ω ^ x k - 1 ω ^ z k - 1 0 - ω ^ x k - 1 ω ^ y k - 1 - ω ^ y k - 1 ω ^ x k - 1 0 ω ^ z k - 1 - ω ^ x k - 1 - ω ^ y k - 1 - ω ^ z k - 1 0 4 × 4 - - - ( 15 )
【0119】定义系统状态雅可比矩阵A后,卡尔曼滤波器循环更新的方程式(5)现可被计算。 
【0120】在本系统中,多个测量源被提供。第一测量如由功能方框501提供,在这种情况下来自机械运动学(编码器或位置传感器),并直接关于状态,如方程式(16)中所示。 
z NV 1 - k = x y z θ x θ y θ z θ w x · y · z · ω x ω y ω z 13 × 1 T - - - ( 16 )
【0121】注意,末端执行器方向已被从旋转矩阵转换成四元数,以符合在这种框架中。同样地,注意,当来自机械运动学的测量是参考除所述内窥镜的照相机参考系之外的一个参考系时,方程式(16)将需要 被修改以向所述照相机参考系提供变换。 
【0122】第二测量如由功能511提供,其通过处理立体式内窥镜所提供的左右图像被获得。坐标(ul,vl)和(ur,vr)分别是在左右像面中的末端执行器的位置。 
z V 1 - k = u l v l u r v r 4 × 1 T - - - ( 17 )
【0123】在根据下面的方程式(18)将非内窥镜导出刀具状态信息和内窥镜导出刀具状态信息组合之前,首先校验内窥镜导出刀具状态的估计不是异常值是有用的。 
【0124】假定它们不是异常值,要形成全测量向量,两种测量就如方程式(18)中所示那样叠加。 
z k = z NV 1 - k z V 1 - k 17 × 1 - - - ( 18 )
【0125】注意,附加的非内窥镜处理算法可以被运行,例如在方框502中,每个算法都引发一组测量,例如zNV2-k;以及内窥镜图像上的附加的内窥镜处理算法可以被运行,例如在方框512和513中,每个算法都引发一组测量,例如zV2-k和zV3-k,所有算法可以在测量向量中轮流被叠加。 
【0126】要满足卡尔曼滤波器更新循环的方程式(7),测量函数h必须被定义,这将系统状态x与被测量的(被观察的)数量z联系起来。 
【0127】正如先前注意的,在本系统中有多个测量源。因此,在每个源都需要测量函数h。 
【0128】当运动学(编码器或位置传感器)测量直接关于状态时,测量函数hNV1-k是恒等函数,但一种情况除外,即对于末端执行器方向从旋转矩阵转换成四元数。 
【0129】来自内窥镜图像的第二测量是左右像面中内窥镜末端执行器的位置(u,v)。在这种情况下,测量函数是立体式投影函数,这将3-D空间中的位置与图像空间中的位置联系起来,如图6中所示。 
【0130】如果点P被假定在带有坐标(x,y,z)的(所述内窥镜的)照相机参考系中,则其使用针孔照相机模型的投影由方程式(19)给出。 
                    ucam=x/z 
                    vcam=y/z 
                                    (19) 
【0131】如果照相机被允许有径向透镜畸变,则畸变的(u,v)坐标由方程式(20)给出,其中 r 2 = ( x z ) 2 + ( y z ) 2 和kn是照相机校准的径向畸变系数。 
u cam = x z ( 1 + k 1 r 2 + k 2 r 4 + k 3 r 6 )
v cam = y z ( 1 + k 1 r 2 + k 2 r 4 + k 3 r 6 ) (20) 
【0132】那么到像素坐标的转换就通过与像素中表示的焦距f相乘来被实现,其中c是光心,如方程式(21)给出。 
                    u=fxucam+cx
                    v=fyvcam+cy
                                        (21) 
【0133】下标x或y表示焦距或光心的x或y分量。注意,在这种讨论中,切向贡献(基值)或偏斜畸变已被忽略,这会给上述方程式增加额外的条件。 
【0134】定义测量函数h后,求h关于状态的偏导以满足卡尔曼滤波器更新循环的方程式(7)。 
【0135】正如先前所描述,运动学测量是直接关于状态的。所以,运动学测量的测量雅可比行列式是13×13的单位矩阵,(22)。 
                    HNV1-k=I13×13                    (22) 
【0136】求视觉测量函数关于状态的偏导,获得图像雅可比行列式,这将末端执行器的平动和转动速度与像面空间速度联系起来。 
【0137】作为介绍,在3-D空间中移动的点的方程可以见方程式(23)中。 
u · = f x x · z - f x x z · z 2
v · = f y y · z - f y y z · z 2 (23) 
【0138】当扩展到立体式视觉系统时,获得方程式集合(24),在所述立体式视觉系统中,被观察的点在转动中心的轴外。对于此方程式 集合的出处,见例如Bijoy K.Ghosh,Ning Xi,T.J.Tarn的“Control inRobotics and Automation:Sensor Based Integration”,Academic Press,SanDiego,1999。 
H V 1 - k = 0 4 × 7 H visk 1,8 H visk 1,9 H visk 1,10 H visk 1,11 H visk 1 , 12 H visk 1,13 H visk 2,8 H visk 2,9 H visk 2,10 H visk 2,11 H visk 2,12 H visk 2,13 H visk 3,8 H visk 3,9 H visk 3,10 H visk 3,11 H visk 3,12 H visk 3,13 H visk 4,8 H visk 4,9 H visk 4,10 H visk 4,11 H visk 4,12 H visk 4,13 4 × 13 - - - ( 24 )
其中: 
Hvisk1,8=fx1/Zc  Hvisk2,8=0 
Hvisk1,9=0 H visk 2,9 = f y 1 Z c
H visk 1,10 = - f x 1 ( X c + b / 2 ) Z c 2 H visk 2,10 = - f y 1 Y c Z c 2
H visk 1,11 = - f x 1 ( X c + b / 2 ) Y t Z c 2 H visk 2,11 = - f y 1 Z t Z c - f y 1 Y c Y t Z c 2 - - - ( 25 )
H visk 1,12 = f x 1 Z t Z c + f x 1 ( X c + b / 2 ) ( X t + b / 2 ) Z c 2 H visk 2,12 = f y 1 Y c ( X t + b / 2 ) Z c 2
H visk 1,13 = - f x 1 Y t Z c H visk 2,13 = f y 1 ( X t + b / 2 ) Z c
以及 
Hvisk3,8=fxr/Zc   Hvisk4,8=0 
Hvisk3,9=0 H visk 4,9 = f yr Z c
H visk 3,10 = - f xr ( X c - b / 2 ) Z c 2 H visk 4,10 = - f yr Y c Z c 2
H visk 3,11 = - f xr ( X c - b / 2 ) Y t Z c 2 H visk 4,11 = - f yr Z t Z c - f yr Y c Y t Z c 2 - - - ( 26 )
H visk 3,12 = f xr Z t Z c + f xr ( X c - b / 2 ) ( X t - b / 2 ) Z c 2 H visk 4,12 = f yr Y c ( X t - b / 2 ) Z c 2
H visk 3,13 = - f xr Y t Z c H visk 4,13 = f yr ( X t - b / 2 ) Z c
【0139】在上述方程式(25)和(26)中,变量‘b’是指内窥镜的若干立体式照相机之间的基线距离。下标‘l’或‘r’分别指左或右照相机。Xc、Yc、Zc是指坐标系的原点,刚性体正在绕所述原点旋转,Xt、Yt、 Zt是指相对于附在刚性体上的旋转原点所关心的点,如图7中所示,其中Xc、Yc、Z是中心点PC的X、Y、Z坐标,Xt、Yt、Zt是点PT的X、Y、Z坐标。 
【0140】参照图7,点PC是穿过刀具U形夹的针的中心。例如,U形夹表面可以被绘成绿色,得到的颜色斑点的质心可以被跟踪。此斑点的质心将是图7中的点PT。 
【0141】基于末端执行器Y轴与内窥镜视图向量的点积,U形夹的哪一面正被呈现给照相机可被确定,距离Yt的符号可被适当调节。 
【0142】因此,可以通过将方程式(24)与状态估计预测相乘来获得像面速度,如在方程式(27)中所示。 
u · l v · l u · r v · r 4 × 1 = H V 1 - k x ^ k - - - - ( 27 )
【0143】要获得卡尔曼滤波器更新循环的方程式(3)和(5)中用到的全H矩阵,所述两种测量雅可比行列式被叠加,如方程式(28)中所示。 
H k = H NV 1 - k H V 1 - k 17 × 13 - - - ( 28 )
【0144】正如在图5中可见,卡尔曼滤波器的体系结构考虑到若干扩展,如图中虚线所示。 
【0145】首先,多个内窥镜视频处理算法可被用于获得对在内窥镜生成的图像中刀具位置的若干估计,例如由方框511-513所示。这些可以叠加进测量向量,如方程式(18)中所示。 
【0146】如图5中所画的内窥镜视觉处理算法通过强力在图像中找到刀具。然而,优选地,内窥镜视觉处理算法的输出可被反馈,以通过首先察看刀具先前被找到的区域来减小搜索空间。 
【0147】EKF 521的状态估计输出,与内窥镜视频处理输出一起或单独地被使用,以便以相似的方式减小搜索空间。另一方面,内窥镜视频处理算法可简单利用原运动学输入代替。 
【0148】最后,内窥镜视频处理算法可以利用误差协方差矩阵,以基于真实刀具位置中的置信度来动态地度量搜索区域。这可以通过利用由误差协方差矩阵提供的误差椭圆来限制刀具跟踪的搜索区域,来增强刀具跟踪的性能。 
【0149】在相反的方向中,如果所述视觉处理系统能够关于其测量提供定性度量,增益矩阵R可以被更新。相似地,如果刀具或其机械机构的臂具有安装在其上或嵌入其中的力传感器,则通过观察实际与指令位置之间的误差,运动学信息的定性度量可以被确定。如果所应用的力导致刀具和/或其机械机构的臂发生偏转,则在这种情况中的运动学状态测量中的误差可能出现。那么此定性度量可被用于动态调节EKF 521中的增益,以便适当加权运动学状态测量的贡献到状态估计。 
【0150】注意,用公式表达的EKF 521工作于照相机参考系203。然而,不需要这样。实际上,使用世界参考系201可能有利,尤其如果期望的是将术前或其他合成图像数据与照相机图像数据对齐则更是如此。 
【0151】同样注意,在上述公式表述中,所述立体式内窥镜的立体式几何清晰地表示在HV1-k矩阵(其确实为立体式投影操作的偏导)中。或者,立体式相关性可在所述两个图像之间被实现,3-D中的刀具位置和方向可被提取,测量可直接被反馈进EKF 521。这种情况中的结果应该与作为“恒等”的新测量函数hV1-k等价。 
【0152】以下是上述公式表述的扩展,其考虑到同步刀具跟踪和照相机校准。在上述EKF公式表述中,照相机参数被假定为公知的或先前被校准的。对3-D中刀具末端执行器位置的估计是基于这些参数的知识,通过视觉测量函数hV1-k的,如以下方程式所示: 
                  zV1-k=hV1-k(xk)+noise                (29) 
其中xk是待被估计的状态,即,所述刀具的3-D位置、速度、方向和角速度,如以下方程式所示: 
x k = x y z θ 1 θ 2 θ 3 θ 4 x · y · z · ω x ω y ω z T - - - ( 30 )
【0153】视觉测量zV1-k通过处理左右像面来获得,以提取刀具的(u,v) 坐标,如以下方程式所示: 
                  zV1-k=[ul vl ur vr]T              (31) 
【0154】在先前描述的公式表述中,本征照相机参数例如: 
K1...n:径向畸变系数(左和右), 
fx,fy:焦距(左和右), 
cx,cy:照相机光心(左和右), 
以及 
R,T:两照相机的相对位置/方向,其中R是方向的四元数表示法 
这些参数中的误差都导致刀具跟踪中的误差。 
【0155】这些参数的校准可通过认出物体在视场中的实际3-D位置来完成,该物体例如刀具末端执行器其本身。当然,这些认识不幸地不可用,因为它正是要被估计的。 
【0156】以下方法基于一种想法完成同步刀具跟踪和照相机校准,所述想法是,视觉测量zV1-k的序列将被以最佳方式解释,即,含有随时间的最小统计误差,利用真实照相机参数和真实刀具状态的组合。 
【0157】此方法的实际执行可以如下再次被实现:使用扩展卡尔曼滤波器并扩大状态向量以包含未知的照相机参数(或需被估计的子集), 
          xcam=[k1l,r…knl,r fxl,r fyl,r cxl,r cyl,r R T]T    (32) 
且方程式(29)中的刀具状态xk,其在此处被称为xtoolk: 
x k = x tool k x cam k T - - - ( 33 )
【0158】照相机状态的状态转移函数是常量,即: 
x cam k = x cam k - 1 - - - ( 34 )
【0159】视觉测量函数hV1-k是不变化的,但要使其对照相机参数的依赖较明显,以便hV1-k关于在卡尔曼滤波器更新中被使用的状态的偏导是: 
HV1-k=[
Figure 2006800259132_0
hV1-k/xtool 
Figure 2006800259132_2
hV1-k/
Figure 2006800259132_3
xcam]               (35) 
【0160】使用方程式(32)和(34),EKF可以以前述的某方法被计算。相对于连续或离散更新选择的所有相同的扩展仍然适用。xcam的初 始值将被设置为最佳可用猜测,若干增益矩阵应将xcam状态按比例加权到所述猜测中的不确定度。 
【0161】以下是上述公式表述的扩展,其考虑到在根据机械运动学与照相机参考系的刀具状态测量之间的变换中存在缓慢变化的系统误差。在上述EKF的公式表述中,来自机械位置传感器和来自内窥镜的测量被假定为在相同的参考系中表示,或者每个测量(Rerr,Terr)的参考系之间的变换被假设为公知的。在这个后一种情况中,如以下方程式中所示的测量函数hNV1-k
                        zNV1-k=hNV1-k(xk)+noise                     (36) 
此测量函数hNV1-k通过对比以下表达式而被容易地获得, 
                        zNV1-k=Uxk+[Tx Ty Tz 01×10]                (37) 
其中 
U = R err 3 × 3 0 3 × 4 0 3 × 3 0 3 × 3 0 4 × 3 A err 0 4 × 3 0 4 × 3 0 3 × 3 0 3 × 4 R err 3 × 3 0 3 × 3 0 3 × 3 0 3 × 4 0 3 × 3 R err 3 × 3 13 × 13 - - - ( 38 )
含有Aerr,其为与Rerr和Terr=(Tx,Ty,Tz)相关联的四元数ω矩阵。 
【0162】由于(Rerr,Terr)的初始估计,计算一种变换是可能的,所述变换在一个特定初始化时间将刀具未知的立体式视觉测量变换到由机械运动学提供的刀具位置。 
【0163】以下方法基于一种想法完成同步刀具跟踪和对(Rerr,Terr)的更新,所述想法是内窥镜视觉测量zV1-k将被以最佳方式解释,即,含有随时间变化的最小统计误差,利用相干测量和真实刀具状态的组合。 
【0164】此方法的实际执行可以如下再次被实现:使用扩展卡尔曼滤波器并扩大状态向量以包含未知的变换(Rerr,Terr)的参数(或需被估计的子集), 
                    xerr=[Rerr Terr]T                              (39) 
含有Rerr,其为变换旋转矩阵的四元数表示法,且含有方程式(36)中的刀具状态xk,其被称为xtoolk: 
x k = x tool k x err k T - - - ( 40 )
【0165】所述xerr状态的状态转移函数是常量,即: 
x er r k = x err k - 1 - - - ( 41 )
【0166】如在方程式(36)中,测量函数hNV1-k是不变化的,但要使其对参数(Rerr,Terr)的依赖较明显,以便hNV1-k关于在卡尔曼滤波器更新中被使用的状态的偏导是: 
HNV1-k=[
Figure 2006800259132_4
hNV1-k/
Figure 2006800259132_5
xtool 
Figure 2006800259132_6
hNV1-k/
Figure 2006800259132_7
xerr]               (42) 
【0167】用于在如图2中所示的当前刀具位置将运动学估计注册进照相机参考系的初始变换被存储在离线预备的长期存储器中。此变换被复制进短期存储器并根据方程式(40)不断随时间被更新。因为此变换根据刀具位置而变化,所以整个内窥镜和刀具操作空间被切割成多个立方单元,一个变换于每个立方单元相关联。因为刀具可以移动到有不同关节/连接组合的位置,所以所述变换通过考虑到这一点、根据从目标单元中的多个连接组合收集来的数据被优化。 
【0168】如先前所提到的,要协助在采集图像中识别刀具,各种刀具识别技术可被使用,包括特殊标记的使用。图8和图9示出作为示例的两个方向相关的、用于完成刀具跟踪的刀具标记。这些刀具标记的独特的特性是它们是方向相关的,不像先前公开的用于跟踪照相机和(若干)刀具的标记。所以,如果刀具已绕其轴旋转,这些刀具标记就被设计以指示刀具的这种新的方向。 
【0169】优选地,画或形成所述标记于刀具的末端执行器上。在图8中,四条条纹801-804被画在刀具的末端执行器上。四条线段811-814也被画于穿过对应的条纹处并围绕刀具的轴以90度被间隔开,以便当刀具绕轴旋转时,旋转可以利用此时能看见哪条线段被确定。相似地,在图9中,四条条纹901-904也被画于刀具的末端执行器的末端上。然而在这种情况下,四个凹痕911-914被形成于穿过对应条纹处并围绕刀具的轴以90度被分隔开,以便当刀具绕轴旋转时,旋转可以利用此时能看见哪个凹痕被确定。 
【0170】图10示出计算机模型刀具跟踪方法的流程图。此方法的相对其他方法的优势是此方法在面对部分阻塞时一般更实用/鲁棒,所述表面例如在外科手术中经常遇到,其中环境大部分非结构化。例如,在手术中,刀具可能被组织、血液或烟尘弄得不清晰;刀具可能完全离开视野;照明条件可能随时间变化很大;以及镜面高光可能使刀具的正常颜色失真。所述方法可被单独用于刀具跟踪的目的或者作为用作参照图5所描述的卡尔曼滤波器的输入的视觉算法之一。 
【0171】在1001中,刀具的三维计算机模型以例如使用众所周知的计算机辅助设计工具和技术的方式被生成。在1002中,手术部位的三维空间中的刀具的初始位置和方向以例如根据运动学信息的方式被确定,所述运动学信息由一个或更多耦合到机械机构的编码器提供,所述机械机构用于在手术过程中操纵刀具。 
【0172】在1003中,从观测手术部位的照相装置接收图像信息的帧。在这种情况中的帧表示所述照相装置所拍摄的手术部位区域的视景或快照,这可包含例如单一的照相机(平面镜的)或一对校准照相机(立体式镜的)。 
【0173】在1004中,在将计算机模型投影到视图上之后,计算机模型的轮廓在接收帧的二维视图中被确定。在这种情况下,轮廓可以例如通过视图矢量与边缘邻近多边形的多边形面法线的点积的符合变化进行确定。在1005中,轮廓边缘的基本集被处理,以使用任何一种传统隐线去除技术来去除隐藏在给定刀具配置中的边缘。 
【0174】在1006中,使用例如任何一种传统边缘检测技术,来从图像信息的接收帧中的刀具图像识别或提取边缘/轮廓。 
【0175】在1007中,计算机模型的轮廓与帧中刀具图像的边缘及其位置和方向作比较,所述位置和方向被修改,直到修改后的轮廓与刀具图像的检测后的边缘之间的差异被最小化。例如,定性度量/测量可被定义为:从图像信息提取的刀具边缘与距它们的最近的轮廓边缘之间的绝对差异的总和,轮廓的位置和方向可被移动穿过图像中的很多位置和方向,以找到所述定性度量最小的位置和方向。 
【0176】在1008中,由1007产生的计算机模型的修改后的位置和 方向被提供为对刀具位置和方向的当前估计,本方法有效地跳回到1003以在其可用时接收图像信息的下一帧,并使用每种情况中的计算机模型的修改后的位置和方向作为计算机模型的初始位置、通过上述的1003-1008来处理所述帧。 
【0177】虽然本发明的各方面已关于优选实施例被描述,但需要理解的是,本发明在附加权力要求中的全部范围内被授予全面的保护。 

Claims (33)

1.一种具有刀具跟踪的微创机械外科手术系统,其包含:
提供数据的一个或更多非内窥镜设备,当刀具通过身体中的切口被插入并被机械操纵时,由所述数据生成非内窥镜导出刀具状态信息;
采集图像的内窥镜,当所述刀具插入到所述身体里时,对于所述身体内的区域,由所述图像来生成内窥镜导出刀具状态信息;以及
处理器,其被配置成处理由所述一个或更多非内窥镜设备提供的所述数据以生成所述非内窥镜导出刀具状态信息,处理来自所述内窥镜的所采集的图像以生成所述内窥镜导出刀具状态信息,以及处理所述非内窥镜导出刀具状态信息和所述内窥镜导出刀具状态信息以跟踪所述刀具的状态。
2.根据权利要求1所述的系统,其中所述内窥镜是立体式内窥镜。
3.根据权利要求1所述的系统,其进一步包含一种用于通过所述身体中的所述切口操纵所述刀具的机构,其中该一个或更多非内窥镜设备包含一个或更多传感器,其提供传感器数据,所述传感器数据表示根据这种操纵的运动学信息。
4.根据权利要求3所述的系统,其中所述传感器数据包含可识别信号的数字化样点,其从所述刀具发射或反射以指示所述刀具的位置。
5.根据权利要求1所述的系统,其中该一个或更多非内窥镜设备包含照相机,其观测从所述身体延伸出的所述刀具的末端。
6.根据权利要求1所述的系统,其中所述处理器通过如下方式进一步被配置成跟踪所述刀具的状态:
根据所述非内窥镜导出刀具状态信息,确定一个或更多非内窥镜估计的刀具状态;
根据所述内窥镜导出刀具状态信息,确定一个或更多内窥镜估计的刀具状态;以及
处理该一个或更多非内窥镜估计的刀具状态和一个或更多内窥镜估计的刀具状态以生成所述刀具的状态。
7.根据权利要求6所述的系统,其中所述处理器进一步被配置成使用贝叶斯滤波器来处理该一个或更多非内窥镜估计的刀具状态和一个或更多内窥镜估计的刀具状态以生成所述刀具的状态。
8.根据权利要求7所述的系统,其中所述贝叶斯滤波器是卡尔曼滤波器。
9.根据权利要求8所述的系统,其中所述卡尔曼滤波器是扩展卡尔曼滤波器。
10.根据权利要求7所述的系统,其中所述贝叶斯滤波器是粒子滤波器。
11.根据权利要求1所述的系统,其中所述处理器进一步被配置成从所述内窥镜采集的图像中识别所述刀具上的标记,并且用所述标记来确定所述刀具的方向同时跟踪所述刀具的状态。
12.根据权利要求1所述的系统,其中所述处理器进一步被配置以生成所述刀具的计算机模型,所述刀具被定位和定向在像面内,所述像面在内窥镜所采集的图像中定义,并且被配置以修改所述计算机模型相对于所述像面中所述刀具的图像的位置和方向,直到所述计算机模型基本覆盖所述图像。
13.根据权利要求12所述的系统,其中所述处理器进一步被配置成从所述计算机模型的修改后的位置和方向导出所述计算机模型在所述像面中的位置和方向,所述计算机模型的修改后的位置和方向由所述处理器为时间在先的像面确定。
14.根据权利要求12所述的系统,其中所述处理器进一步被配置成从与所述像面在时间上对应的至少所述非内窥镜导出刀具状态信息中导出在所述像面中所述计算机模型的位置和方向。
15.一种具有刀具跟踪的微创机械外科手术系统,其包含:
一个或更多传感器,其提供传感器数据,当刀具通过身体中的切口被插入并被机械操纵时,由所述传感器数据生成所述刀具的非视觉导出刀具状态信息;
至少一个照相机,其采集所述刀具的图像信息,由所述图像信息生成所述刀具的视觉导出刀具状态信息;以及
处理器,其被配置成处理所述非视觉导出刀具状态信息和所述视觉导出刀具状态信息以跟踪所述刀具的状态。
16.根据权利要求15所述的系统,进一步包含一种用来通过所述身体的所述切口操纵所述刀具的机构,其中所述传感器数据表示根据这种操纵的运动学信息。
17.根据权利要求15所述的系统,其中所述传感器数据包含可识别信号的数字化样点,所述可识别信号从所述刀具发射或反射并指示所述刀具的位置。
18.根据权利要求15所述的系统,其中所述至少一个照相机包含在一个或更多内窥镜中,其被定位以便观测插入在所述身体中的所述刀具的末端。
19.根据权利要求15所述的系统,其中所述至少一个照相机由包含在立体式内窥镜中的两个照相机构成。
20.根据权利要求15所述的系统,其中所述处理器通过如下方式进一步被配置成跟踪所述刀具的状态:
根据所述非视觉导出刀具状态信息,确定所述刀具的一个或更多非视觉估计的状态;
根据所述图像信息,确定所述刀具的一个或更多视觉估计的状态;以及
处理该一个或更多非视觉估计的状态和该一个或更多视觉估计的状态以生成所述刀具的状态。
21.根据权利要求20所述的系统,其中所述处理器进一步被配置成:
根据所述刀具的一对相应的所述非视觉和视觉估计的状态,确定误差转换;以及
通过在后续时间使用所述误差转换来校正所述刀具的所述非视觉或视觉估计的状态中的一个选定状态,为所述后续时间生成所述刀具的状态。
22.根据权利要求21所述的系统,其中与所述处理器接收所述非视觉导出刀具状态信息相比,所述处理器较不频繁地接收所述图像信息来处理。
23.根据权利要求22所述的系统,其中该一个或更多非视觉估计的状态从由该一个或更多传感器提供的时间采样信息中导出,而该一个或更多视觉估计的状态从由一个或更多照相机提供的时间采样图像中导出。
24.根据权利要求21所述的系统,其中所述处理器进一步被配置成使用贝叶斯滤波器来处理该一个或更多非视觉估计的状态和该一个或更多视觉估计的状态以生成所述刀具的状态。
25.根据权利要求24所述的系统,其中所述贝叶斯滤波器是卡尔曼滤波器。
26.根据权利要求25所述的系统,其中所述卡尔曼滤波器是扩展卡尔曼滤波器。
27.根据权利要求24所述的系统,其中所述贝叶斯滤波器是粒子滤波器。
28.根据权利要求24所述的系统,其中与所述处理器接收所述非视觉导出刀具状态信息相比,所述处理器较不频繁地接收所述图像信息来处理。
29.根据权利要求28所述的系统,其中该一个或更多非视觉估计的状态从该一个或更多传感器所提供的时间采样信息中导出,而该一个或更多视觉估计状态从一个或更多照相机所提供的时间采样图像中导出。
30.根据权利要求15所述的系统,其中所述处理器进一步被配置成根据所述图像信息来识别所述刀具上的标记,并在跟踪所述刀具的状态时使用所述标记来确定所述刀具的方向。
31.根据权利要求15所述的系统,其中所述处理器进一步被配置以生成所述刀具的计算机模型,所述刀具被定位和定向在像面内,所述像面在所述图像信息中定义,并且被配置成修改所述计算机模型相对于所述像面中所述刀具的图像的位置和方向直到所述计算机模型基本覆盖所述图像。
32.根据权利要求31所述的系统,其中所述处理器被配置成从所述计算机模型的修改后的位置和方向导出所述计算机模型在所述像面中的位置和方向,所述计算机模型的修改后的位置和方向由所述处理器为时间在先的像面确定。
33.根据权利要求31所述的系统,其中所述处理器被配置成从与所述像面在时间上对应的至少所述非视觉导出刀具状态信息中导出在所述像面中所述计算机模型的位置和方向。
CN2006800259132A 2005-05-16 2006-05-08 通过机械微创外科手术过程中联合传感器和/或照相机导出数据实现3-d刀具跟踪的系统 Active CN101222882B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201811067183.3A CN109077699B (zh) 2005-05-16 2006-05-08 通过联合传感器和/或照相机导出数据实现3-d刀具跟踪的方法与系统
CN201310054782.2A CN103211563B (zh) 2005-05-16 2006-05-08 通过机械微创外科手术过程中联合传感器和/或照相机导出数据实现3-d刀具跟踪的方法与系统

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11/130,471 US10555775B2 (en) 2005-05-16 2005-05-16 Methods and system for performing 3-D tool tracking by fusion of sensor and/or camera derived data during minimally invasive robotic surgery
US11/130,471 2005-05-16
PCT/US2006/017832 WO2006124388A1 (en) 2005-05-16 2006-05-08 Methods and system for performing 3-d tool tracking by fusion of sensor and/or camera derived data during minimally invasive robotic surgery

Related Child Applications (2)

Application Number Title Priority Date Filing Date
CN201310054782.2A Division CN103211563B (zh) 2005-05-16 2006-05-08 通过机械微创外科手术过程中联合传感器和/或照相机导出数据实现3-d刀具跟踪的方法与系统
CN201811067183.3A Division CN109077699B (zh) 2005-05-16 2006-05-08 通过联合传感器和/或照相机导出数据实现3-d刀具跟踪的方法与系统

Publications (2)

Publication Number Publication Date
CN101222882A CN101222882A (zh) 2008-07-16
CN101222882B true CN101222882B (zh) 2013-03-27

Family

ID=36941988

Family Applications (3)

Application Number Title Priority Date Filing Date
CN2006800259132A Active CN101222882B (zh) 2005-05-16 2006-05-08 通过机械微创外科手术过程中联合传感器和/或照相机导出数据实现3-d刀具跟踪的系统
CN201310054782.2A Active CN103211563B (zh) 2005-05-16 2006-05-08 通过机械微创外科手术过程中联合传感器和/或照相机导出数据实现3-d刀具跟踪的方法与系统
CN201811067183.3A Active CN109077699B (zh) 2005-05-16 2006-05-08 通过联合传感器和/或照相机导出数据实现3-d刀具跟踪的方法与系统

Family Applications After (2)

Application Number Title Priority Date Filing Date
CN201310054782.2A Active CN103211563B (zh) 2005-05-16 2006-05-08 通过机械微创外科手术过程中联合传感器和/或照相机导出数据实现3-d刀具跟踪的方法与系统
CN201811067183.3A Active CN109077699B (zh) 2005-05-16 2006-05-08 通过联合传感器和/或照相机导出数据实现3-d刀具跟踪的方法与系统

Country Status (5)

Country Link
US (6) US10555775B2 (zh)
EP (9) EP2687185B1 (zh)
KR (1) KR101296215B1 (zh)
CN (3) CN101222882B (zh)
WO (1) WO2006124388A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9814392B2 (en) 2009-10-30 2017-11-14 The Johns Hopkins University Visual tracking and annotaton of clinically important anatomical landmarks for surgical interventions
US11850008B2 (en) 2017-10-13 2023-12-26 Auris Health, Inc. Image-based branch detection and mapping for navigation
US11950898B2 (en) 2020-11-06 2024-04-09 Auris Health, Inc. Systems and methods for displaying estimated location of instrument

Families Citing this family (325)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6241747B1 (en) 1993-05-03 2001-06-05 Quill Medical, Inc. Barbed Bodily tissue connector
US8795332B2 (en) 2002-09-30 2014-08-05 Ethicon, Inc. Barbed sutures
US5931855A (en) 1997-05-21 1999-08-03 Frank Hoffman Surgical methods using one-way suture
US8944070B2 (en) 1999-04-07 2015-02-03 Intuitive Surgical Operations, Inc. Non-force reflecting method for providing tool force information to a user of a telesurgical system
US6626899B2 (en) 1999-06-25 2003-09-30 Nidus Medical, Llc Apparatus and methods for treating tissue
US7056331B2 (en) 2001-06-29 2006-06-06 Quill Medical, Inc. Suture method
US6848152B2 (en) 2001-08-31 2005-02-01 Quill Medical, Inc. Method of forming barbs on a suture and apparatus for performing same
US6773450B2 (en) 2002-08-09 2004-08-10 Quill Medical, Inc. Suture anchor and method
US8100940B2 (en) 2002-09-30 2012-01-24 Quill Medical, Inc. Barb configurations for barbed sutures
US20040088003A1 (en) 2002-09-30 2004-05-06 Leung Jeffrey C. Barbed suture in combination with surgical needle
US7624487B2 (en) 2003-05-13 2009-12-01 Quill Medical, Inc. Apparatus and method for forming barbs on a suture
US20060100610A1 (en) * 2004-03-05 2006-05-11 Wallace Daniel T Methods using a robotic catheter system
US7976539B2 (en) 2004-03-05 2011-07-12 Hansen Medical, Inc. System and method for denaturing and fixing collagenous tissue
NZ588140A (en) 2004-05-14 2012-05-25 Quill Medical Inc Suture methods and device using an enlongated body with cut barbs and a needle at one end and a loop at the other
US8005537B2 (en) * 2004-07-19 2011-08-23 Hansen Medical, Inc. Robotically controlled intravascular tissue injection system
DE102004057933A1 (de) * 2004-12-01 2006-06-08 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren und eine Vorrichtung zum Navigieren und Positionieren eines Gegenstands relativ zu einem Patienten
US8971597B2 (en) 2005-05-16 2015-03-03 Intuitive Surgical Operations, Inc. Efficient vision and kinematic data fusion for robotic surgical instruments and other applications
US8108072B2 (en) * 2007-09-30 2012-01-31 Intuitive Surgical Operations, Inc. Methods and systems for robotic instrument tool tracking with adaptive fusion of kinematics information and image information
US9867669B2 (en) * 2008-12-31 2018-01-16 Intuitive Surgical Operations, Inc. Configuration marker design and detection for instrument tracking
US9526587B2 (en) * 2008-12-31 2016-12-27 Intuitive Surgical Operations, Inc. Fiducial marker design and detection for locating surgical instrument in images
US9492240B2 (en) * 2009-06-16 2016-11-15 Intuitive Surgical Operations, Inc. Virtual measurement tool for minimally invasive surgery
US10555775B2 (en) 2005-05-16 2020-02-11 Intuitive Surgical Operations, Inc. Methods and system for performing 3-D tool tracking by fusion of sensor and/or camera derived data during minimally invasive robotic surgery
US9789608B2 (en) 2006-06-29 2017-10-17 Intuitive Surgical Operations, Inc. Synthetic representation of a surgical robot
US8073528B2 (en) * 2007-09-30 2011-12-06 Intuitive Surgical Operations, Inc. Tool tracking systems, methods and computer products for image guided surgery
US8147503B2 (en) * 2007-09-30 2012-04-03 Intuitive Surgical Operations Inc. Methods of locating and tracking robotic instruments in robotic surgical systems
US8398541B2 (en) 2006-06-06 2013-03-19 Intuitive Surgical Operations, Inc. Interactive user interfaces for robotic minimally invasive surgical systems
CN101193603B (zh) 2005-06-06 2010-11-03 直观外科手术公司 腹腔镜的超声机器人外科手术系统
US11259870B2 (en) 2005-06-06 2022-03-01 Intuitive Surgical Operations, Inc. Interactive user interfaces for minimally invasive telesurgical systems
US9266239B2 (en) * 2005-12-27 2016-02-23 Intuitive Surgical Operations, Inc. Constraint based control in a minimally invasive surgical apparatus
US9962066B2 (en) 2005-12-30 2018-05-08 Intuitive Surgical Operations, Inc. Methods and apparatus to shape flexible entry guides for minimally invasive surgery
US7930065B2 (en) 2005-12-30 2011-04-19 Intuitive Surgical Operations, Inc. Robotic surgery system including position sensors using fiber bragg gratings
US7907166B2 (en) * 2005-12-30 2011-03-15 Intuitive Surgical Operations, Inc. Stereo telestration for robotic surgery
US9636188B2 (en) * 2006-03-24 2017-05-02 Stryker Corporation System and method for 3-D tracking of surgical instrument in relation to patient body
US8182415B2 (en) 2006-06-13 2012-05-22 Intuitive Surgical Operations, Inc. Minimally invasive surgical system
US8560047B2 (en) 2006-06-16 2013-10-15 Board Of Regents Of The University Of Nebraska Method and apparatus for computer aided surgery
US10008017B2 (en) 2006-06-29 2018-06-26 Intuitive Surgical Operations, Inc. Rendering tool information as graphic overlays on displayed images of tools
US10258425B2 (en) * 2008-06-27 2019-04-16 Intuitive Surgical Operations, Inc. Medical robotic system providing an auxiliary view of articulatable instruments extending out of a distal end of an entry guide
US9718190B2 (en) 2006-06-29 2017-08-01 Intuitive Surgical Operations, Inc. Tool position and identification indicator displayed in a boundary area of a computer display screen
US20090192523A1 (en) 2006-06-29 2009-07-30 Intuitive Surgical, Inc. Synthetic representation of a surgical instrument
US7702494B1 (en) * 2006-07-18 2010-04-20 Livermore Software Technology Corporation Method and system for prescribing rigid body orientations in finite element analysis
US7892165B2 (en) * 2006-10-23 2011-02-22 Hoya Corporation Camera calibration for endoscope navigation system
EP2087470A2 (en) * 2006-12-01 2009-08-12 Thomson Licensing Estimating a location of an object in an image
US9232959B2 (en) 2007-01-02 2016-01-12 Aquabeam, Llc Multi fluid tissue resection methods and devices
US20080167662A1 (en) * 2007-01-08 2008-07-10 Kurtz Anthony D Tactile feel apparatus for use with robotic operations
JP4802112B2 (ja) * 2007-02-08 2011-10-26 株式会社東芝 トラッキング方法及びトラッキング装置
US7899226B2 (en) * 2007-04-03 2011-03-01 General Electric Company System and method of navigating an object in an imaged subject
US8915943B2 (en) 2007-04-13 2014-12-23 Ethicon, Inc. Self-retaining systems for surgical procedures
EP2148629B1 (en) * 2007-04-16 2012-06-06 NeuroArm Surgical, Ltd. Frame mapping and force feedback methods, devices and systems
US9469034B2 (en) 2007-06-13 2016-10-18 Intuitive Surgical Operations, Inc. Method and system for switching modes of a robotic system
US9138129B2 (en) 2007-06-13 2015-09-22 Intuitive Surgical Operations, Inc. Method and system for moving a plurality of articulated instruments in tandem back towards an entry guide
US9089256B2 (en) 2008-06-27 2015-07-28 Intuitive Surgical Operations, Inc. Medical robotic system providing an auxiliary view including range of motion limitations for articulatable instruments extending out of a distal end of an entry guide
US9084623B2 (en) 2009-08-15 2015-07-21 Intuitive Surgical Operations, Inc. Controller assisted reconfiguration of an articulated instrument during movement into and out of an entry guide
US8903546B2 (en) 2009-08-15 2014-12-02 Intuitive Surgical Operations, Inc. Smooth control of an articulated instrument across areas with different work space conditions
US8620473B2 (en) 2007-06-13 2013-12-31 Intuitive Surgical Operations, Inc. Medical robotic system with coupled control modes
WO2009042841A2 (en) 2007-09-27 2009-04-02 Angiotech Pharmaceuticals, Inc. Self-retaining sutures including tissue retainers having improved strength
WO2009045827A2 (en) * 2007-09-30 2009-04-09 Intuitive Surgical, Inc. Methods and systems for tool locating and tool tracking robotic instruments in robotic surgical systems
EP2222233B1 (en) 2007-12-19 2020-03-25 Ethicon, LLC Self-retaining sutures with heat-contact mediated retainers
US8916077B1 (en) 2007-12-19 2014-12-23 Ethicon, Inc. Self-retaining sutures with retainers formed from molten material
US8118834B1 (en) 2007-12-20 2012-02-21 Angiotech Pharmaceuticals, Inc. Composite self-retaining sutures and method
US8615856B1 (en) 2008-01-30 2013-12-31 Ethicon, Inc. Apparatus and method for forming self-retaining sutures
EP2242430B1 (en) 2008-01-30 2016-08-17 Ethicon, LLC Apparatus and method for forming self-retaining sutures
BRPI0907787B8 (pt) 2008-02-21 2021-06-22 Angiotech Pharm Inc método para formar uma sutura de autorretenção e aparelho para elevar os retentores em um fio de sutura a um ângulo desejado
US8216273B1 (en) 2008-02-25 2012-07-10 Ethicon, Inc. Self-retainers with supporting structures on a suture
US8641732B1 (en) 2008-02-26 2014-02-04 Ethicon, Inc. Self-retaining suture with variable dimension filament and method
WO2009111736A1 (en) 2008-03-06 2009-09-11 Aquabeam Llc Tissue ablation and cautery with optical energy carried in fluid stream
JP2009240634A (ja) * 2008-03-31 2009-10-22 Olympus Corp 内視鏡装置
EP2282681B1 (en) 2008-04-15 2018-12-12 Ethicon, LLC Self-retaining sutures with bi-directional retainers or uni-directional retainers
US20110105897A1 (en) * 2008-04-15 2011-05-05 Giora Kornblau Hybrid medical device localization system
US8961560B2 (en) 2008-05-16 2015-02-24 Ethicon, Inc. Bidirectional self-retaining sutures with laser-marked and/or non-laser marked indicia and methods
US8864652B2 (en) 2008-06-27 2014-10-21 Intuitive Surgical Operations, Inc. Medical robotic system providing computer generated auxiliary views of a camera instrument for controlling the positioning and orienting of its tip
US8359549B1 (en) * 2008-09-10 2013-01-22 Adobe Systems Incorporated Multiple-function user interactive tool for manipulating three-dimensional objects in a graphical user interface environment
GB2464092A (en) * 2008-09-25 2010-04-07 Prosurgics Ltd Surgical mechanism control system
BRPI0921810B8 (pt) 2008-11-03 2021-06-22 Angiotech Pharm Inc montagem para inserir um comprimento de sutura no interior do corpo de um mamífero
US8184880B2 (en) * 2008-12-31 2012-05-22 Intuitive Surgical Operations, Inc. Robust sparse image matching for robotic surgery
US8594841B2 (en) 2008-12-31 2013-11-26 Intuitive Surgical Operations, Inc. Visual force feedback in a minimally invasive surgical procedure
US8830224B2 (en) 2008-12-31 2014-09-09 Intuitive Surgical Operations, Inc. Efficient 3-D telestration for local robotic proctoring
US8374723B2 (en) * 2008-12-31 2013-02-12 Intuitive Surgical Operations, Inc. Obtaining force information in a minimally invasive surgical procedure
US10070849B2 (en) * 2009-02-20 2018-09-11 Covidien Lp Marking articulating direction for surgical instrument
WO2014127242A2 (en) 2013-02-14 2014-08-21 Procept Biorobotics Corporation Aquablation aquabeam eye surgery methods and apparatus
US8223193B2 (en) 2009-03-31 2012-07-17 Intuitive Surgical Operations, Inc. Targets, fixtures, and workflows for calibrating an endoscopic camera
US9155592B2 (en) * 2009-06-16 2015-10-13 Intuitive Surgical Operations, Inc. Virtual measurement tool for minimally invasive surgery
US9492927B2 (en) 2009-08-15 2016-11-15 Intuitive Surgical Operations, Inc. Application of force feedback on an input device to urge its operator to command an articulated instrument to a preferred pose
US8918211B2 (en) 2010-02-12 2014-12-23 Intuitive Surgical Operations, Inc. Medical robotic system providing sensory feedback indicating a difference between a commanded state and a preferred pose of an articulated instrument
JP5517526B2 (ja) * 2009-08-27 2014-06-11 Ntn株式会社 遠隔操作型アクチュエータの工具先端位置検出装置
KR101004965B1 (ko) * 2009-08-28 2011-01-04 주식회사 이턴 수술용 로봇 및 그 세팅방법
EP2533678B1 (en) * 2010-02-11 2020-03-25 Intuitive Surgical Operations, Inc. System for automatically maintaining an operator selected roll orientation at a distal tip of a robotic endoscope
US20110218550A1 (en) * 2010-03-08 2011-09-08 Tyco Healthcare Group Lp System and method for determining and adjusting positioning and orientation of a surgical device
EP2550909A4 (en) * 2010-03-24 2016-01-27 Olympus Corp ENDOSCOPE DEVICE
US8842893B2 (en) * 2010-04-30 2014-09-23 Medtronic Navigation, Inc. Method and apparatus for image-based navigation
EP3400882A1 (en) 2010-05-04 2018-11-14 Ethicon LLC Laser cutting system and methods for creating self-retaining sutures
JP2013530028A (ja) 2010-05-04 2013-07-25 パスファインダー セラピューティクス,インコーポレイテッド 擬似特徴を使用する腹部表面マッチングのためのシステムおよび方法
US8746252B2 (en) 2010-05-14 2014-06-10 Intuitive Surgical Operations, Inc. Surgical system sterile drape
DE102010029275A1 (de) * 2010-05-25 2011-12-01 Siemens Aktiengesellschaft Verfahren zum Bewegen eines Instrumentenarms eines Laparoskopierobotors in einer vorgebbare Relativlage zu einem Trokar
WO2011152141A1 (ja) * 2010-05-31 2011-12-08 オリンパスメディカルシステムズ株式会社 内視鏡形状検出装置及び内視鏡の挿入部の形状検出方法
EP2449954B1 (en) * 2010-05-31 2014-06-04 Olympus Medical Systems Corp. Endoscopic form detection device and form detecting method of insertion section of endoscope
MX337815B (es) 2010-06-11 2016-03-18 Ethicon Llc Herramientas para dispensar suturas para cirugía endoscópica y asistida por robot y métodos.
US8672837B2 (en) 2010-06-24 2014-03-18 Hansen Medical, Inc. Methods and devices for controlling a shapeable medical device
JP5848762B2 (ja) * 2010-06-28 2016-01-27 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Emキャリブレーションのリアルタイム品質管理
US8702592B2 (en) 2010-09-30 2014-04-22 David Allan Langlois System and method for inhibiting injury to a patient during laparoscopic surgery
US9342997B2 (en) 2010-10-29 2016-05-17 The University Of North Carolina At Chapel Hill Modular staged reality simulator
US9805625B2 (en) 2010-10-29 2017-10-31 KindHeart, Inc. Surgical simulation assembly
JP2014504894A (ja) 2010-11-03 2014-02-27 アンジオテック ファーマシューティカルズ, インコーポレイテッド 薬剤を溶出する留置縫合材及びこれに関する方法
CN103188997B (zh) 2010-11-05 2017-05-24 皇家飞利浦电子股份有限公司 用于针对对象成像的成像设备
EP2637574B1 (en) 2010-11-09 2016-10-26 Ethicon, LLC Emergency self-retaining sutures
US9486189B2 (en) 2010-12-02 2016-11-08 Hitachi Aloka Medical, Ltd. Assembly for use with surgery system
WO2012078989A1 (en) * 2010-12-10 2012-06-14 Wayne State University Intelligent autonomous camera control for robotics with medical, military, and space applications
EP2670291A4 (en) * 2011-02-04 2015-02-25 Penn State Res Found METHOD AND DEVICE FOR DETERMINING THE LOCATION OF AN ENDOSCOPE
US10674968B2 (en) * 2011-02-10 2020-06-09 Karl Storz Imaging, Inc. Adjustable overlay patterns for medical display
US11412998B2 (en) 2011-02-10 2022-08-16 Karl Storz Imaging, Inc. Multi-source medical display
US10631712B2 (en) * 2011-02-10 2020-04-28 Karl Storz Imaging, Inc. Surgeon's aid for medical display
CN103370014B (zh) 2011-02-15 2019-01-18 直观外科手术操作公司 用于吻合或管封闭器械中刀位置的指示符
KR101181613B1 (ko) * 2011-02-21 2012-09-10 윤상진 사용자 지정에 따라 결정되는 변위 정보에 기초하여 수술을 수행하는 수술용 로봇 시스템과 그 제어 방법
JP6125488B2 (ja) 2011-03-23 2017-05-10 エシコン・エルエルシーEthicon LLC 自己保持可変ループ縫合材
US9026247B2 (en) 2011-03-30 2015-05-05 University of Washington through its Center for Communication Motion and video capture for tracking and evaluating robotic surgery and associated systems and methods
CN102151179B (zh) * 2011-05-13 2012-07-04 南开大学 用于微创外科手术机器人的三维力传感器
US9259289B2 (en) * 2011-05-13 2016-02-16 Intuitive Surgical Operations, Inc. Estimation of a position and orientation of a frame used in controlling movement of a tool
US20130172931A1 (en) 2011-06-06 2013-07-04 Jeffrey M. Gross Methods and devices for soft palate tissue elevation procedures
US9498231B2 (en) 2011-06-27 2016-11-22 Board Of Regents Of The University Of Nebraska On-board tool tracking system and methods of computer assisted surgery
US11911117B2 (en) 2011-06-27 2024-02-27 Board Of Regents Of The University Of Nebraska On-board tool tracking system and methods of computer assisted surgery
CA2840397A1 (en) 2011-06-27 2013-04-11 Board Of Regents Of The University Of Nebraska On-board tool tracking system and methods of computer assisted surgery
CA3082073C (en) 2011-07-11 2023-07-25 Board Of Regents Of The University Of Nebraska Robotic surgical devices, systems, and related methods
US9418442B2 (en) 2011-07-22 2016-08-16 The Trustees Of Columbia University In The City Of New York Tool tracking during surgical procedures
US20130030286A1 (en) * 2011-07-28 2013-01-31 Alouani Ali T Image guided surgery trackers using multiple asynchronous sensors
KR20130015441A (ko) * 2011-08-03 2013-02-14 주식회사 이턴 수술용 로봇 시스템
JP6021353B2 (ja) * 2011-08-04 2016-11-09 オリンパス株式会社 手術支援装置
WO2013063525A1 (en) 2011-10-26 2013-05-02 William Burbank Surgical instrument with integral knife blade
WO2013074272A2 (en) * 2011-11-15 2013-05-23 Intuitive Surgical Operations, Inc. Surgical instrument with stowing knife blade
KR101901961B1 (ko) * 2011-12-21 2018-09-28 한국전자통신연구원 부품을 인식하기 위한 장치 및 그 방법
EP2797543A2 (en) * 2011-12-27 2014-11-05 Koninklijke Philips N.V. Intra-operative quality monitoring of tracking systems
KR101876386B1 (ko) * 2011-12-29 2018-07-11 삼성전자주식회사 의료용 로봇 시스템 및 그 제어 방법
US9956042B2 (en) 2012-01-13 2018-05-01 Vanderbilt University Systems and methods for robot-assisted transurethral exploration and intervention
EP3351196A1 (en) 2012-02-29 2018-07-25 Procept Biorobotics Corporation Automated image-guided tissue resection and treatment
CN104584032A (zh) * 2012-04-13 2015-04-29 莱特克拉夫特科技有限责任公司 混合式精确跟踪
US9549720B2 (en) 2012-04-20 2017-01-24 Vanderbilt University Robotic device for establishing access channel
US9539726B2 (en) * 2012-04-20 2017-01-10 Vanderbilt University Systems and methods for safe compliant insertion and hybrid force/motion telemanipulation of continuum robots
WO2013158974A1 (en) 2012-04-20 2013-10-24 Vanderbilt University Dexterous wrists for surgical intervention
US9498292B2 (en) 2012-05-01 2016-11-22 Board Of Regents Of The University Of Nebraska Single site robotic device and related systems and methods
JP6323974B2 (ja) * 2012-05-18 2018-05-16 オリンパス株式会社 手術支援装置
CN103456223A (zh) * 2012-06-01 2013-12-18 苏州敏行医学信息技术有限公司 基于力反馈的腹腔镜手术模拟系统
RU2015101519A (ru) * 2012-06-20 2016-08-10 Конинклейке Филипс Н.В. Многокамерное отслеживание устройства
US10350013B2 (en) * 2012-06-21 2019-07-16 Globus Medical, Inc. Surgical tool systems and methods
US9413976B2 (en) * 2012-08-08 2016-08-09 Intuitive Surgical Operations, Inc. Auto exposure of a camera in a surgical robot
CA2880622C (en) 2012-08-08 2021-01-12 Board Of Regents Of The University Of Nebraska Robotic surgical devices, systems and related methods
US9008757B2 (en) 2012-09-26 2015-04-14 Stryker Corporation Navigation system including optical and non-optical sensors
KR101993384B1 (ko) 2012-10-24 2019-06-26 삼성전자주식회사 환자의 자세 변화에 따른 의료 영상을 보정하는 방법, 장치 및 시스템
US9851783B2 (en) * 2012-12-06 2017-12-26 International Business Machines Corporation Dynamic augmented reality media creation
US11576644B2 (en) * 2012-12-13 2023-02-14 Koninklijke Philips N.V. Interventional system
US10588597B2 (en) 2012-12-31 2020-03-17 Intuitive Surgical Operations, Inc. Systems and methods for interventional procedure planning
JP6297060B2 (ja) 2012-12-31 2018-03-20 インテュイティブ サージカル オペレーションズ, インコーポレイテッド 強化されたナイフクリアランスを備える外科用ステープルカートリッジ
US10507066B2 (en) 2013-02-15 2019-12-17 Intuitive Surgical Operations, Inc. Providing information of tools by filtering image areas adjacent to or on displayed images of the tools
US9057600B2 (en) 2013-03-13 2015-06-16 Hansen Medical, Inc. Reducing incremental measurement sensor error
CN105188592B (zh) 2013-03-15 2018-07-27 Sri国际公司 超灵巧型手术系统
US9014851B2 (en) 2013-03-15 2015-04-21 Hansen Medical, Inc. Systems and methods for tracking robotically controlled medical instruments
US9271663B2 (en) 2013-03-15 2016-03-01 Hansen Medical, Inc. Flexible instrument localization from both remote and elongation sensors
US10105149B2 (en) 2013-03-15 2018-10-23 Board Of Regents Of The University Of Nebraska On-board tool tracking system and methods of computer assisted surgery
US11747895B2 (en) * 2013-03-15 2023-09-05 Intuitive Surgical Operations, Inc. Robotic system providing user selectable actions associated with gaze tracking
US9629595B2 (en) 2013-03-15 2017-04-25 Hansen Medical, Inc. Systems and methods for localizing, tracking and/or controlling medical instruments
WO2014146090A1 (en) * 2013-03-15 2014-09-18 Intuitive Surgical Operations, Inc. Inter-operative switching of tools in a robotic surgical system
KR20140121581A (ko) * 2013-04-08 2014-10-16 삼성전자주식회사 수술 로봇 시스템
US9592095B2 (en) 2013-05-16 2017-03-14 Intuitive Surgical Operations, Inc. Systems and methods for robotic medical system integration with external imaging
US11020016B2 (en) 2013-05-30 2021-06-01 Auris Health, Inc. System and method for displaying anatomy and devices on a movable display
JP6479790B2 (ja) 2013-07-17 2019-03-06 ボード オブ リージェンツ オブ ザ ユニバーシティ オブ ネブラスカ ロボット外科的デバイス、システムおよび関連する方法
JP6109001B2 (ja) * 2013-07-26 2017-04-05 オリンパス株式会社 医療用システムおよびその作動方法
CN103431832A (zh) * 2013-08-29 2013-12-11 田茂洲 —种手术腔镜摄像处理器纠正腔镜旋转保持正位成像装置
US9370372B2 (en) 2013-09-04 2016-06-21 Mcginley Engineered Solutions, Llc Drill bit penetration measurement systems and methods
US9833244B2 (en) 2013-11-08 2017-12-05 Mcginley Engineered Solutions, Llc Surgical saw with sensing technology for determining cut through of bone and depth of the saw blade during surgery
EP3578119B1 (en) 2013-12-11 2021-03-17 Covidien LP Wrist and jaw assemblies for robotic surgical systems
JP6218631B2 (ja) * 2014-02-18 2017-10-25 オリンパス株式会社 マニピュレータ装置の作動方法
JP6740131B2 (ja) 2014-02-21 2020-08-12 スリーディインテグレイテッド アーペーエス3Dintegrated Aps 手術器具を備えたセット、手術システム、及びトレーニング方法
EP2910187B1 (en) * 2014-02-24 2018-04-11 Université de Strasbourg (Etablissement Public National à Caractère Scientifique, Culturel et Professionnel) Automatic multimodal real-time tracking of a moving marker for image plane alignment inside a MRI scanner
CN103815972A (zh) * 2014-02-26 2014-05-28 上海齐正微电子有限公司 腹胸腔镜的手术区域自动跟踪系统及方法
JP6270537B2 (ja) * 2014-02-27 2018-01-31 オリンパス株式会社 医療用システム
WO2015143067A1 (en) * 2014-03-19 2015-09-24 Intuitive Surgical Operations, Inc. Medical devices, systems, and methods using eye gaze tracking
US10432922B2 (en) 2014-03-19 2019-10-01 Intuitive Surgical Operations, Inc. Medical devices, systems, and methods using eye gaze tracking for stereo viewer
EP3243476B1 (en) 2014-03-24 2019-11-06 Auris Health, Inc. Systems and devices for catheter driving instinctiveness
KR20150128049A (ko) * 2014-05-08 2015-11-18 삼성전자주식회사 수술 로봇 및 그 제어방법
USD779678S1 (en) 2014-07-24 2017-02-21 KindHeart, Inc. Surgical tray
KR101652888B1 (ko) * 2014-08-20 2016-09-01 재단법인 아산사회복지재단 수술 내비게이션에 의해 수술도구를 표시하는 방법
WO2016036756A1 (en) 2014-09-05 2016-03-10 Mcginley Engineered Solutions, Llc Instrument leading edge measurement system and method
KR101638477B1 (ko) * 2014-09-19 2016-07-11 주식회사 고영테크놀러지 옵티컬 트래킹 시스템 및 옵티컬 트래킹 시스템의 좌표계 정합 방법
CN107427327A (zh) 2014-09-30 2017-12-01 奥瑞斯外科手术机器人公司 具有虚拟轨迹和柔性内窥镜的可配置机器人外科手术系统
US10314463B2 (en) 2014-10-24 2019-06-11 Auris Health, Inc. Automated endoscope calibration
DE102014222293A1 (de) * 2014-10-31 2016-05-19 Siemens Aktiengesellschaft Verfahren zur automatischen Überwachung des Eindringverhaltens eines von einem Roboterarm gehaltenen Trokars und Überwachungssystem
US10179407B2 (en) * 2014-11-16 2019-01-15 Robologics Ltd. Dynamic multi-sensor and multi-robot interface system
WO2016096241A1 (en) * 2014-12-18 2016-06-23 Gambro Lundia Ab Method of displaying a predicted state, medical apparatus and computer program
JP2016131276A (ja) 2015-01-13 2016-07-21 ソニー株式会社 画像処理装置、画像処理方法、プログラム、及び、内視鏡システム
US10695142B2 (en) 2015-02-19 2020-06-30 Covidien Lp Repositioning method of input device for robotic surgical system
US10716639B2 (en) 2015-03-10 2020-07-21 Covidien Lp Measuring health of a connector member of a robotic surgical system
CN107530138B (zh) * 2015-03-17 2020-11-27 直观外科手术操作公司 用于在远程操作医疗系统中呈现器械的屏幕识别的系统和方法
GB2536650A (en) 2015-03-24 2016-09-28 Augmedics Ltd Method and system for combining video-based and optic-based augmented reality in a near eye display
CN107690302B (zh) 2015-04-06 2019-12-24 直观外科手术操作公司 在图像引导的外科手术中的配准补偿的系统和方法
US20160314712A1 (en) 2015-04-27 2016-10-27 KindHeart, Inc. Telerobotic surgery system for remote surgeon training using robotic surgery station and remote surgeon station and associated methods
KR101647467B1 (ko) * 2015-06-05 2016-08-11 주식회사 메드릭스 증강현실을 이용한 외과 수술용 3d 안경 시스템
DE102015109371A1 (de) * 2015-06-12 2016-12-15 avateramedical GmBH Vorrichtung und Verfahren zur robotergestützten Chirurgie
EP3313315B1 (en) 2015-06-23 2024-04-10 Covidien LP Robotic surgical assemblies
US10898271B2 (en) * 2015-06-29 2021-01-26 Medtronic Navigation, Inc. Method and apparatus for identification of multiple navigated instruments
CN108024806B (zh) 2015-07-21 2022-07-01 3D集成公司 套管组装套件、套管针组装套件、套筒组件、微创手术系统及其方法
US11020144B2 (en) 2015-07-21 2021-06-01 3Dintegrated Aps Minimally invasive surgery system
WO2017024081A1 (en) 2015-08-03 2017-02-09 Board Of Regents Of The University Of Nebraska Robotic surgical devices systems and related methods
US11638615B2 (en) * 2015-08-30 2023-05-02 Asensus Surgical Us, Inc. Intelligent surgical tool control system for laparoscopic surgeries
US10198969B2 (en) 2015-09-16 2019-02-05 KindHeart, Inc. Surgical simulation system and associated methods
JP6824967B2 (ja) 2015-09-18 2021-02-03 オーリス ヘルス インコーポレイテッド 管状網のナビゲーション
US10806454B2 (en) 2015-09-25 2020-10-20 Covidien Lp Robotic surgical assemblies and instrument drive connectors thereof
DK178899B1 (en) 2015-10-09 2017-05-08 3Dintegrated Aps A depiction system
US10058393B2 (en) 2015-10-21 2018-08-28 P Tech, Llc Systems and methods for navigation and visualization
WO2017075044A1 (en) 2015-10-27 2017-05-04 Mcginley Engineered Solutions, Llc Unicortical path detection for a surgical depth measurement system
EP3370629A4 (en) 2015-11-06 2019-07-24 Mcginley Engineered Solutions LLC MEASURING SYSTEM TO BE ASSOCIATED WITH A SURGICAL STRAW-TYPE INSTRUMENT
US11058386B2 (en) * 2015-11-16 2021-07-13 Canon Medical Systems Corporation X-ray diagnosis apparatus and medical image diagnosis system for specifying a device being currently operated
JP6945293B2 (ja) * 2015-11-16 2021-10-06 キヤノンメディカルシステムズ株式会社 X線診断装置および医用画像診断システム
WO2017087439A1 (en) 2015-11-19 2017-05-26 Covidien Lp Optical force sensor for robotic surgical system
KR102430277B1 (ko) 2015-11-27 2022-08-09 큐렉소 주식회사 정형외과 수술용 마커 위치 확인 시스템 및 그 확인 방법
US10143526B2 (en) 2015-11-30 2018-12-04 Auris Health, Inc. Robot-assisted driving systems and methods
WO2017098504A1 (en) * 2015-12-07 2017-06-15 M.S.T. Medical Surgery Technologies Ltd. Autonomic detection of malfunctioning in surgical tools
US10930007B2 (en) * 2015-12-14 2021-02-23 Koninklijke Philips N.V. System and method for medical device tracking
US10863959B2 (en) * 2015-12-21 2020-12-15 Canon Medical Systems Corporation X-ray CT apparatus
CN105411681B (zh) * 2015-12-22 2018-07-03 哈尔滨工业大学 分体式微创手术机器人的手眼协调控制系统及方法
EP3397184A1 (en) * 2015-12-29 2018-11-07 Koninklijke Philips N.V. System, control unit and method for control of a surgical robot
KR20180099702A (ko) 2015-12-31 2018-09-05 스트리커 코포레이션 가상 객체에 의해 정의된 타깃 부위에서 환자에게 수술을 수행하기 위한 시스템 및 방법
US10154886B2 (en) * 2016-01-06 2018-12-18 Ethicon Llc Methods, systems, and devices for controlling movement of a robotic surgical system
US10219868B2 (en) 2016-01-06 2019-03-05 Ethicon Llc Methods, systems, and devices for controlling movement of a robotic surgical system
US10130429B1 (en) 2016-01-06 2018-11-20 Ethicon Llc Methods, systems, and devices for controlling movement of a robotic surgical system
US9949798B2 (en) * 2016-01-06 2018-04-24 Ethicon Endo-Surgery, Llc Methods, systems, and devices for controlling movement of a robotic surgical system
WO2017130567A1 (ja) * 2016-01-25 2017-08-03 ソニー株式会社 医療用安全制御装置、医療用安全制御方法、及び医療用支援システム
US11576562B2 (en) 2016-04-07 2023-02-14 Titan Medical Inc. Camera positioning method and apparatus for capturing images during a medical procedure
WO2017189317A1 (en) 2016-04-26 2017-11-02 KindHeart, Inc. Telerobotic surgery system for remote surgeon training using robotic surgery station and remote surgeon station and an animating device
EP3457951B1 (en) 2016-05-18 2024-03-06 Virtual Incision Corporation Robotic surgical devices and systems
CN113180835A (zh) 2016-06-03 2021-07-30 柯惠Lp公司 用于机器人手术系统的控制臂
EP3463162A4 (en) 2016-06-03 2020-06-24 Covidien LP SYSTEMS, METHODS AND COMPUTER READABLE PROGRAM PRODUCTS FOR CONTROLLING A ROBOT CONTROLLED MANIPULATOR
US10413373B2 (en) * 2016-08-16 2019-09-17 Ethicon, Llc Robotic visualization and collision avoidance
KR101715026B1 (ko) * 2016-08-26 2017-03-13 (주)미래컴퍼니 수술 로봇 시스템 및 그 동작 제한 방법
EP3328308B1 (en) * 2016-09-27 2019-05-29 Brainlab AG Efficient positioning of a mechatronic arm
US9931025B1 (en) * 2016-09-30 2018-04-03 Auris Surgical Robotics, Inc. Automated calibration of endoscopes with pull wires
US11793394B2 (en) 2016-12-02 2023-10-24 Vanderbilt University Steerable endoscope with continuum manipulator
WO2018112025A1 (en) 2016-12-16 2018-06-21 Mako Surgical Corp. Techniques for modifying tool operation in a surgical robotic system based on comparing actual and commanded states of the tool relative to a surgical site
AU2017378250B2 (en) 2016-12-16 2023-09-28 Mako Surgical Corp. Techniques for detecting errors or loss of accuracy in a surgical robotic system
US10918445B2 (en) 2016-12-19 2021-02-16 Ethicon Llc Surgical system with augmented reality display
US10244926B2 (en) 2016-12-28 2019-04-02 Auris Health, Inc. Detecting endolumenal buckling of flexible instruments
JP2020507377A (ja) 2017-02-15 2020-03-12 コヴィディエン リミテッド パートナーシップ 医療用ロボット用途の圧砕防止のためのシステムおよび機器
US10813710B2 (en) 2017-03-02 2020-10-27 KindHeart, Inc. Telerobotic surgery system using minimally invasive surgical tool with variable force scaling and feedback and relayed communications between remote surgeon and surgery station
KR101892631B1 (ko) 2017-03-06 2018-08-28 한국과학기술연구원 2차원 영상 기반의 수술도구 3차원 위치 추적 장치 및 방법
WO2018183727A1 (en) 2017-03-31 2018-10-04 Auris Health, Inc. Robotic systems for navigation of luminal networks that compensate for physiological noise
US11779192B2 (en) * 2017-05-03 2023-10-10 Covidien Lp Medical image viewer control from surgeon's camera
EP3621520A4 (en) 2017-05-12 2021-02-17 Auris Health, Inc. BIOPSY APPARATUS AND SYSTEM
US10806532B2 (en) 2017-05-24 2020-10-20 KindHeart, Inc. Surgical simulation system using force sensing and optical tracking and robotic surgery system
US11717361B2 (en) 2017-05-24 2023-08-08 Covidien Lp Electrosurgical robotic system having tool presence detection
EP3629980A4 (en) 2017-05-25 2021-03-10 Covidien LP ROBOTIC SURGICAL SYSTEM WITH AUTOMATED GUIDANCE
US10022192B1 (en) 2017-06-23 2018-07-17 Auris Health, Inc. Automatically-initialized robotic systems for navigation of luminal networks
JP7317723B2 (ja) 2017-06-28 2023-07-31 オーリス ヘルス インコーポレイテッド 電磁場の歪み検出
US11583349B2 (en) 2017-06-28 2023-02-21 Intuitive Surgical Operations, Inc. Systems and methods for projecting an endoscopic image to a three-dimensional volume
US11395703B2 (en) 2017-06-28 2022-07-26 Auris Health, Inc. Electromagnetic distortion detection
JP7130682B2 (ja) 2017-06-28 2022-09-05 オーリス ヘルス インコーポレイテッド 器具挿入補償
US10426559B2 (en) 2017-06-30 2019-10-01 Auris Health, Inc. Systems and methods for medical instrument compression compensation
CN107517372B (zh) * 2017-08-17 2022-07-26 腾讯科技(深圳)有限公司 一种vr内容拍摄方法、相关设备及系统
US10987113B2 (en) 2017-08-25 2021-04-27 Mcginley Engineered Solutions, Llc Sensing of surgical instrument placement relative to anatomic structures
US10772703B2 (en) 2017-08-25 2020-09-15 Titan Medical Inc. Methods and apparatuses for positioning a camera of a surgical robotic system to capture images inside a body cavity of a patient during a medical procedure
CN110177516B (zh) 2017-09-05 2023-10-24 柯惠Lp公司 用于机器人手术系统的碰撞处理算法
US10967504B2 (en) 2017-09-13 2021-04-06 Vanderbilt University Continuum robots with multi-scale motion through equilibrium modulation
CA3076625A1 (en) * 2017-09-27 2019-04-04 Virtual Incision Corporation Robotic surgical devices with tracking camera technology and related systems and methods
WO2019070729A1 (en) 2017-10-02 2019-04-11 Mcginley Engineered Solutions, Llc SURGICAL INSTRUMENT FOR AIDING REAL-TIME NAVIGATION
US10145747B1 (en) 2017-10-10 2018-12-04 Auris Health, Inc. Detection of undesirable forces on a surgical robotic arm
US11058493B2 (en) 2017-10-13 2021-07-13 Auris Health, Inc. Robotic system configured for navigation path tracing
WO2019091875A1 (en) 2017-11-07 2019-05-16 Koninklijke Philips N.V. Augmented reality triggering of devices
EP3709927A4 (en) 2017-11-16 2020-12-23 Intuitive Surgical Operations Inc. MASTER / SLAVE REGISTRATION AND CONTROL FOR REMOTE OPERATION
CN110709024A (zh) 2017-11-21 2020-01-17 直观外科手术操作公司 用于直观运动的主/工具配准和控制的系统和方法
WO2019106711A1 (ja) * 2017-11-28 2019-06-06 オリンパス株式会社 医療システムおよび医療システムの作動方法
WO2019113249A1 (en) 2017-12-06 2019-06-13 Auris Health, Inc. Systems and methods to correct for uncommanded instrument roll
JP7322026B2 (ja) 2017-12-14 2023-08-07 オーリス ヘルス インコーポレイテッド 器具の位置推定のシステムおよび方法
WO2019125964A1 (en) 2017-12-18 2019-06-27 Auris Health, Inc. Methods and systems for instrument tracking and navigation within luminal networks
CN108158634A (zh) * 2017-12-28 2018-06-15 姚春龙 一种可超声致动的外科刀
CN111556735A (zh) 2018-01-04 2020-08-18 柯惠Lp公司 将手术配件安装至机器人手术系统并且提供穿过其的通路的系统和组件
CN116370084A (zh) 2018-02-13 2023-07-04 奥瑞斯健康公司 用于驱动医疗器械的系统和方法
US10881472B2 (en) 2018-02-20 2021-01-05 Verb Surgical Inc. Correcting a robotic surgery user interface device tracking input
US10856942B2 (en) * 2018-03-02 2020-12-08 Ethicon Llc System and method for closed-loop surgical tool homing
CN110891469B (zh) 2018-03-28 2023-01-13 奥瑞斯健康公司 用于定位传感器的配准的系统和方法
US10827913B2 (en) 2018-03-28 2020-11-10 Auris Health, Inc. Systems and methods for displaying estimated location of instrument
CN114601559A (zh) 2018-05-30 2022-06-10 奥瑞斯健康公司 用于基于定位传感器的分支预测的系统和介质
EP3801189A4 (en) 2018-05-31 2022-02-23 Auris Health, Inc. PATH-BASED NAVIGATION OF TUBULAR NETWORKS
MX2020012904A (es) 2018-05-31 2021-02-26 Auris Health Inc Analisis y mapeo de vias respiratorias basados en imagen.
CN112236083A (zh) 2018-05-31 2021-01-15 奥瑞斯健康公司 用于导航检测生理噪声的管腔网络的机器人系统和方法
CN112105312A (zh) 2018-07-03 2020-12-18 柯惠Lp公司 用于在手术程序期间检测图像退化的系统、方法和计算机可读介质
US11291507B2 (en) 2018-07-16 2022-04-05 Mako Surgical Corp. System and method for image based registration and calibration
CN109044530A (zh) * 2018-07-17 2018-12-21 哈尔滨理工大学 一种前列腺手术机器人的多模态感知系统及数据融合方法
US10413364B1 (en) 2018-08-08 2019-09-17 Sony Corporation Internal organ localization of a subject for providing assistance during surgery
GB2576574B (en) * 2018-08-24 2023-01-11 Cmr Surgical Ltd Image correction of a surgical endoscope video stream
EP3856064A4 (en) 2018-09-28 2022-06-29 Auris Health, Inc. Systems and methods for docking medical instruments
US11897127B2 (en) 2018-10-22 2024-02-13 Intuitive Surgical Operations, Inc. Systems and methods for master/tool registration and control for intuitive motion
US11766296B2 (en) 2018-11-26 2023-09-26 Augmedics Ltd. Tracking system for image-guided surgery
CN109559329B (zh) * 2018-11-28 2023-04-07 陕西师范大学 一种基于深度去噪自动编码器的粒子滤波跟踪方法
JP2022516474A (ja) * 2018-12-28 2022-02-28 アクティブ サージカル, インコーポレイテッド 外科手術中の遠隔カメラの向きに関するユーザインターフェース要素
US11903658B2 (en) 2019-01-07 2024-02-20 Virtual Incision Corporation Robotically assisted surgical system and related devices and methods
US11576733B2 (en) 2019-02-06 2023-02-14 Covidien Lp Robotic surgical assemblies including electrosurgical instruments having articulatable wrist assemblies
CN111588464B (zh) * 2019-02-20 2022-03-04 忞惪医疗机器人(苏州)有限公司 一种手术导航方法及系统
EP3930617A1 (en) * 2019-02-28 2022-01-05 Koninklijke Philips N.V. Training data collection for machine learning models
WO2020223312A1 (en) * 2019-04-29 2020-11-05 Smith & Nephew, Inc. Multi-level positional tracking
EP3963597A1 (en) 2019-05-01 2022-03-09 Intuitive Surgical Operations, Inc. System and method for integrated motion with an imaging device
WO2020263520A1 (en) * 2019-06-26 2020-12-30 Auris Health, Inc. Systems and methods for robotic arm alignment and docking
US11712306B2 (en) * 2019-07-12 2023-08-01 Neuralink Corp. Optical coherence tomography for robotic brain surgery
US11529180B2 (en) 2019-08-16 2022-12-20 Mcginley Engineered Solutions, Llc Reversible pin driver
JP2022546421A (ja) 2019-08-30 2022-11-04 オーリス ヘルス インコーポレイテッド 位置センサの重みベースの位置合わせのためのシステム及び方法
WO2021038495A1 (en) 2019-08-30 2021-03-04 Auris Health, Inc. Instrument image reliability systems and methods
KR20220056220A (ko) 2019-09-03 2022-05-04 아우리스 헬스, 인코포레이티드 전자기 왜곡 검출 및 보상
US11229494B2 (en) * 2019-10-24 2022-01-25 Verb Surgical Inc. Regulating joint space velocity of a surgical robotic arm
WO2021087433A1 (en) * 2019-11-01 2021-05-06 True Digital Surgery Robotic surgical navigation using a proprioceptive digital surgical stereoscopic camera system
US11625834B2 (en) * 2019-11-08 2023-04-11 Sony Group Corporation Surgical scene assessment based on computer vision
WO2021118702A1 (en) 2019-12-12 2021-06-17 Mujin, Inc. Method and computing system for performing motion planning based on image information generated by a camera
US20220008068A1 (en) * 2019-12-13 2022-01-13 Dinesh Vyas Stapler apparatus and methods for use
US11589864B2 (en) 2019-12-13 2023-02-28 Dinesh Vyas Stapler apparatus and methods for use
US20230056943A1 (en) * 2019-12-13 2023-02-23 Dinesh Vyas Stapler apparatus and methods for use
CN110897719B (zh) * 2019-12-16 2020-10-27 福州中康信息科技有限公司 一种医疗手术机器人控制系统
US11382712B2 (en) 2019-12-22 2022-07-12 Augmedics Ltd. Mirroring in image guided surgery
EP4084720A4 (en) 2019-12-31 2024-01-17 Auris Health Inc ALIGNMENT TECHNIQUES FOR PERCUTANE ACCESS
EP4084721A4 (en) 2019-12-31 2024-01-03 Auris Health Inc IDENTIFICATION OF AN ANATOMIC FEATURE AND AIMING
CN114929148A (zh) 2019-12-31 2022-08-19 奥瑞斯健康公司 用于经皮进入的对准界面
US20210393344A1 (en) * 2020-06-22 2021-12-23 Auris Health, Inc. Control scheme calibration for medical instruments
US20220005226A1 (en) * 2020-07-05 2022-01-06 Asensus Surgical Us, Inc. Camera calibration using measured motion
USD963851S1 (en) 2020-07-10 2022-09-13 Covidien Lp Port apparatus
DE102020211507A1 (de) * 2020-09-14 2022-03-17 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zum Bewerten einer Kamerakalibrierung
JP7454112B2 (ja) 2021-02-18 2024-03-21 キヤノン ユーエスエイ,インコーポレイテッド 連続体ロボット装置、方法及び媒体
US11948226B2 (en) 2021-05-28 2024-04-02 Covidien Lp Systems and methods for clinical workspace simulation
US11896445B2 (en) 2021-07-07 2024-02-13 Augmedics Ltd. Iliac pin and adapter
WO2023288233A1 (en) * 2021-07-16 2023-01-19 Bright Machines, Inc. Method and apparatus for vision-based tool localization
US20230096268A1 (en) * 2021-09-29 2023-03-30 Cilag Gmbh International Methods for Controlling Cooperative Surgical Instruments
US20230100698A1 (en) * 2021-09-29 2023-03-30 Cilag Gmbh International Methods for Controlling Cooperative Surgical Instruments
CN114099005B (zh) * 2021-11-24 2023-09-15 重庆金山医疗机器人有限公司 器械是否在视野内、是否被遮挡的判断法及能量显示方法
CN115521864A (zh) * 2022-11-29 2022-12-27 季华实验室 一种远程操作的力反馈自适应显微操作仪

Family Cites Families (173)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4209852A (en) * 1974-11-11 1980-06-24 Hyatt Gilbert P Signal processing and memory arrangement
US3740779A (en) * 1971-11-26 1973-06-26 Leveen H Surgical device
US4312363A (en) 1980-02-26 1982-01-26 Senco Products, Inc. Surgical tissue thickness measuring instrument
US4753569A (en) * 1982-12-28 1988-06-28 Diffracto, Ltd. Robot calibration
US4614366A (en) * 1983-11-18 1986-09-30 Exactident, Inc. Nail identification wafer
US4754415A (en) * 1984-10-12 1988-06-28 Diffracto Ltd. Robotic alignment and part simulation
US5078140A (en) * 1986-05-08 1992-01-07 Kwoh Yik S Imaging device - aided robotic stereotaxis system
US4725965A (en) 1986-07-23 1988-02-16 American Telephone And Telegraph Company Method for calibrating a SCARA robot
US4922909A (en) 1987-07-17 1990-05-08 Little James H Video monitoring and reapposition monitoring apparatus and methods
US4831549A (en) * 1987-07-28 1989-05-16 Brigham Young University Device and method for correction of robot inaccuracy
US5579444A (en) * 1987-08-28 1996-11-26 Axiom Bildverarbeitungssysteme Gmbh Adaptive vision-based controller
US4826391A (en) * 1988-02-23 1989-05-02 The University Of British Columbia Manipulator arm position sensing
JP2698660B2 (ja) * 1989-06-12 1998-01-19 株式会社日立製作所 マニピュレータの制御方法及び制御装置並びにマニピュレータ装置
FR2660185B1 (fr) 1990-03-30 1998-04-17 Medirand Inc Systeme et procede destines a indiquer une position devant etre operee dans le corps d'un patient.
US5086401A (en) * 1990-05-11 1992-02-04 International Business Machines Corporation Image-directed robotic system for precise robotic surgery including redundant consistency checking
ATE126994T1 (de) 1990-07-31 1995-09-15 Faro Medical Technologies Inc Computerunterstützte chirurgische vorrichtung.
US5279309A (en) * 1991-06-13 1994-01-18 International Business Machines Corporation Signaling device and method for monitoring positions in a surgical operation
US5417210A (en) * 1992-05-27 1995-05-23 International Business Machines Corporation System and method for augmentation of endoscopic surgery
US5603318A (en) * 1992-04-21 1997-02-18 University Of Utah Research Foundation Apparatus and method for photogrammetric surgical localization
US5657429A (en) 1992-08-10 1997-08-12 Computer Motion, Inc. Automated endoscope system optimal positioning
US7074179B2 (en) * 1992-08-10 2006-07-11 Intuitive Surgical Inc Method and apparatus for performing minimally invasive cardiac procedures
US5388059A (en) * 1992-12-30 1995-02-07 University Of Maryland Computer vision system for accurate monitoring of object pose
GB9306449D0 (en) * 1993-03-29 1993-05-19 Nat Heart Research Fund Tissue equivalents
JP2665052B2 (ja) * 1993-05-14 1997-10-22 エスアールアイ インターナショナル 遠隔中心位置決め装置
EP0951874A3 (en) * 1994-09-15 2000-06-14 Visualization Technology, Inc. Position tracking and imaging system for use in medical applications using a reference unit secured to a patients head
JPH08164148A (ja) * 1994-12-13 1996-06-25 Olympus Optical Co Ltd 内視鏡下手術装置
US5836869A (en) 1994-12-13 1998-11-17 Olympus Optical Co., Ltd. Image tracking endoscope system
US6690963B2 (en) * 1995-01-24 2004-02-10 Biosense, Inc. System for determining the location and orientation of an invasive medical instrument
JP3539645B2 (ja) 1995-02-16 2004-07-07 株式会社日立製作所 遠隔手術支援装置
US5797849A (en) * 1995-03-28 1998-08-25 Sonometrics Corporation Method for carrying out a medical procedure using a three-dimensional tracking and imaging system
US6122541A (en) 1995-05-04 2000-09-19 Radionics, Inc. Head band for frameless stereotactic registration
US5649021A (en) * 1995-06-07 1997-07-15 David Sarnoff Research Center, Inc. Method and system for object detection for instrument control
DE19529950C1 (de) * 1995-08-14 1996-11-14 Deutsche Forsch Luft Raumfahrt Verfahren zum Nachführen eines Stereo-Laparoskops in der minimalinvasiven Chirurgie
WO1999037208A1 (en) 1996-02-01 1999-07-29 Biosense Inc. Intrabody measurement
ES2212079T3 (es) * 1996-02-15 2004-07-16 Biosense, Inc. Sonda marcadora de posicion.
US5797900A (en) * 1996-05-20 1998-08-25 Intuitive Surgical, Inc. Wrist mechanism for surgical instrument for performing minimally invasive surgery with enhanced dexterity and sensitivity
US6167296A (en) 1996-06-28 2000-12-26 The Board Of Trustees Of The Leland Stanford Junior University Method for volumetric image navigation
AU3880397A (en) * 1996-07-11 1998-02-09 Board Of Trustees Of The Leland Stanford Junior University High-speed inter-modality image registration via iterative feature matching
US5950201A (en) * 1996-12-06 1999-09-07 International Business Machines Corporation Computerized design automation method using a single logical PFVL paradigm
US6331181B1 (en) 1998-12-08 2001-12-18 Intuitive Surgical, Inc. Surgical robotic tools, data architecture, and use
US6132368A (en) * 1996-12-12 2000-10-17 Intuitive Surgical, Inc. Multi-component telepresence system and method
US6434507B1 (en) 1997-09-05 2002-08-13 Surgical Navigation Technologies, Inc. Medical instrument and method for use with computer-assisted image guided surgery
US6714839B2 (en) * 1998-12-08 2004-03-30 Intuitive Surgical, Inc. Master having redundant degrees of freedom
US5978696A (en) * 1997-10-06 1999-11-02 General Electric Company Real-time image-guided placement of anchor devices
US20030163142A1 (en) * 1997-11-27 2003-08-28 Yoav Paltieli System and method for guiding the movements of a device to a target particularly for medical applications
WO1999038449A1 (en) 1998-01-28 1999-08-05 Cosman Eric R Optical object tracking system
US6529765B1 (en) * 1998-04-21 2003-03-04 Neutar L.L.C. Instrumented and actuated guidance fixture for sterotactic surgery
ATE272365T1 (de) * 1998-05-28 2004-08-15 Orthosoft Inc Interaktives und rechnerunterstüztes chirurgisches system
US6425865B1 (en) * 1998-06-12 2002-07-30 The University Of British Columbia Robotically assisted medical ultrasound
US6226003B1 (en) 1998-08-11 2001-05-01 Silicon Graphics, Inc. Method for rendering silhouette and true edges of 3-D line drawings with occlusion
US5959425A (en) * 1998-10-15 1999-09-28 Fanuc Robotics North America, Inc. Vision guided automatic robotic path teaching method
US6292715B1 (en) * 1998-10-27 2001-09-18 Perry Investments, Inc. Robotic process planning method and apparatus using templates
JP4101951B2 (ja) * 1998-11-10 2008-06-18 オリンパス株式会社 手術用顕微鏡
US6665554B1 (en) 1998-11-18 2003-12-16 Steve T. Charles Medical manipulator for use with an imaging device
US6659939B2 (en) 1998-11-20 2003-12-09 Intuitive Surgical, Inc. Cooperative minimally invasive telesurgical system
US6398726B1 (en) * 1998-11-20 2002-06-04 Intuitive Surgical, Inc. Stabilizer for robotic beating-heart surgery
EP1150601B1 (en) 1998-11-20 2009-08-19 Intuitive Surgical, Inc. System for performing cardiac surgery without cardioplegia
US6951535B2 (en) 2002-01-16 2005-10-04 Intuitive Surgical, Inc. Tele-medicine system that transmits an entire state of a subsystem
US6459926B1 (en) 1998-11-20 2002-10-01 Intuitive Surgical, Inc. Repositioning and reorientation of master/slave relationship in minimally invasive telesurgery
US6468265B1 (en) * 1998-11-20 2002-10-22 Intuitive Surgical, Inc. Performing cardiac surgery without cardioplegia
US6720988B1 (en) 1998-12-08 2004-04-13 Intuitive Surgical, Inc. Stereo imaging system and method for use in telerobotic systems
US6493608B1 (en) * 1999-04-07 2002-12-10 Intuitive Surgical, Inc. Aspects of a control system of a minimally invasive surgical apparatus
US6799065B1 (en) * 1998-12-08 2004-09-28 Intuitive Surgical, Inc. Image shifting apparatus and method for a telerobotic system
US6770081B1 (en) * 2000-01-07 2004-08-03 Intuitive Surgical, Inc. In vivo accessories for minimally invasive robotic surgery and methods
US6522906B1 (en) * 1998-12-08 2003-02-18 Intuitive Surgical, Inc. Devices and methods for presenting and regulating auxiliary information on an image display of a telesurgical system to assist an operator in performing a surgical procedure
US6161296A (en) * 1998-12-21 2000-12-19 Davio; John Leon Thomas Joseph Alignment device for use in welding
US6278906B1 (en) * 1999-01-29 2001-08-21 Georgia Tech Research Corporation Uncalibrated dynamic mechanical system controller
US6285902B1 (en) * 1999-02-10 2001-09-04 Surgical Insights, Inc. Computer assisted targeting device for use in orthopaedic surgery
US6470207B1 (en) * 1999-03-23 2002-10-22 Surgical Navigation Technologies, Inc. Navigational guidance via computer-assisted fluoroscopic imaging
JP2003527880A (ja) 1999-03-31 2003-09-24 ウルトラガイド・リミテッド 医療診断ならびに医療誘導インターベンションおよび治療のための装置および方法
US6424885B1 (en) 1999-04-07 2002-07-23 Intuitive Surgical, Inc. Camera referenced control in a minimally invasive surgical apparatus
US6594552B1 (en) 1999-04-07 2003-07-15 Intuitive Surgical, Inc. Grip strength with tactile feedback for robotic surgery
US6817972B2 (en) * 1999-10-01 2004-11-16 Computer Motion, Inc. Heart stabilizer
US6235038B1 (en) * 1999-10-28 2001-05-22 Medtronic Surgical Navigation Technologies System for translation of electromagnetic and optical localization systems
DE19961971B4 (de) 1999-12-22 2009-10-22 Forschungszentrum Karlsruhe Gmbh Vorrichtung zum sicheren automatischen Nachführen eines Endoskops und Verfolgen eines Instruments
US7689014B2 (en) 2000-01-18 2010-03-30 Z-Kat Inc Apparatus and method for measuring anatomical objects using coordinated fluoroscopy
US7803151B2 (en) * 2001-12-04 2010-09-28 Power Medical Interventions, Llc System and method for calibrating a surgical instrument
US6725080B2 (en) * 2000-03-01 2004-04-20 Surgical Navigation Technologies, Inc. Multiple cannula image guided tool for image guided procedures
US7819799B2 (en) * 2000-03-16 2010-10-26 Immersion Medical, Inc. System and method for controlling force applied to and manipulation of medical instruments
JP4468544B2 (ja) * 2000-04-03 2010-05-26 オリンパス株式会社 内視鏡装置
US6856827B2 (en) * 2000-04-28 2005-02-15 Ge Medical Systems Global Technology Company, Llc Fluoroscopic tracking and visualization system
US6856826B2 (en) 2000-04-28 2005-02-15 Ge Medical Systems Global Technology Company, Llc Fluoroscopic tracking and visualization system
US6490475B1 (en) * 2000-04-28 2002-12-03 Ge Medical Systems Global Technology Company, Llc Fluoroscopic tracking and visualization system
DE10025285A1 (de) * 2000-05-22 2001-12-06 Siemens Ag Vollautomatische, robotergestützte Kameraführung unter Verwendung von Positionssensoren für laparoskopische Eingriffe
US6782287B2 (en) * 2000-06-27 2004-08-24 The Board Of Trustees Of The Leland Stanford Junior University Method and apparatus for tracking a medical instrument based on image registration
US6741911B2 (en) * 2000-09-20 2004-05-25 John Castle Simmons Natural robot control
US7194118B1 (en) * 2000-11-10 2007-03-20 Lucid, Inc. System for optically sectioning and mapping surgically excised tissue
DE10058123A1 (de) 2000-11-22 2002-05-23 Wella Ag Deckenstativeinheit
US6845190B1 (en) * 2000-11-27 2005-01-18 University Of Washington Control of an optical fiber scanner
US20020072739A1 (en) * 2000-12-07 2002-06-13 Roberta Lee Methods and devices for radiofrequency electrosurgery
US6587742B2 (en) 2000-12-20 2003-07-01 Mark Manuel Method and apparatus for the creation of a tool
US6690960B2 (en) * 2000-12-21 2004-02-10 David T. Chen Video-based surgical targeting system
EP1364183B1 (en) * 2001-01-30 2013-11-06 Mako Surgical Corp. Tool calibrator and tracker system
NO20011769D0 (no) * 2001-04-06 2001-04-06 Bjoern Franc Iversen Anordning og system for gjensidig posisjonering av protesedeler
US7607440B2 (en) 2001-06-07 2009-10-27 Intuitive Surgical, Inc. Methods and apparatus for surgical planning
US20040243147A1 (en) 2001-07-03 2004-12-02 Lipow Kenneth I. Surgical robot and robotic controller
WO2003021365A2 (en) * 2001-08-31 2003-03-13 The Board Of Regents Of The University And Community College System, On Behalf Of The University Of Nevada, Reno Coordinated joint motion control system
US6728599B2 (en) * 2001-09-07 2004-04-27 Computer Motion, Inc. Modularity system for computer assisted surgery
US6587750B2 (en) * 2001-09-25 2003-07-01 Intuitive Surgical, Inc. Removable infinite roll master grip handle and touch sensor for robotic surgery
US7182770B2 (en) * 2001-10-10 2007-02-27 Medical Designs, Llc Needle positioning forceps
JP2005529630A (ja) * 2001-11-08 2005-10-06 ザ ジョンズ ホプキンズ ユニバーシティ 画像サーボに基づき蛍光透視法によりターゲティングを行うロボットのためのシステムおよび方法
CA2369845A1 (en) * 2002-01-31 2003-07-31 Braintech, Inc. Method and apparatus for single camera 3d vision guided robotics
US20030210812A1 (en) * 2002-02-26 2003-11-13 Ali Khamene Apparatus and method for surgical navigation
US8010180B2 (en) 2002-03-06 2011-08-30 Mako Surgical Corp. Haptic guidance system and method
US7166112B2 (en) * 2002-03-25 2007-01-23 Depuy Spine, Inc. Device for determining distance between two points in a surgical site
GB0208909D0 (en) * 2002-04-18 2002-05-29 Canon Europa Nv Three-dimensional computer modelling
US6757582B2 (en) * 2002-05-03 2004-06-29 Carnegie Mellon University Methods and systems to control a shaping tool
US6978167B2 (en) 2002-07-01 2005-12-20 Claron Technology Inc. Video pose tracking system and method
CA2633137C (en) 2002-08-13 2012-10-23 The Governors Of The University Of Calgary Microsurgical robot system
WO2004019799A2 (en) 2002-08-29 2004-03-11 Computerized Medical Systems, Inc. Methods and systems for localizing of a medical imaging probe and of a biopsy needle
AU2003268554A1 (en) * 2002-09-09 2004-03-29 Z-Kat, Inc. Image guided interventional method and apparatus
US6826257B2 (en) * 2002-09-13 2004-11-30 Beekley Corporation Device and method for margin marking of radiography specimens
US7177737B2 (en) * 2002-12-17 2007-02-13 Evolution Robotics, Inc. Systems and methods for correction of drift via global localization with a visual landmark
US7458936B2 (en) 2003-03-12 2008-12-02 Siemens Medical Solutions Usa, Inc. System and method for performing probabilistic classification and decision support using multidimensional medical image databases
FR2855292B1 (fr) * 2003-05-22 2005-12-09 Inst Nat Rech Inf Automat Dispositif et procede de recalage en temps reel de motifs sur des images, notamment pour le guidage par localisation
US20050054910A1 (en) 2003-07-14 2005-03-10 Sunnybrook And Women's College Health Sciences Centre Optical image-based position tracking for magnetic resonance imaging applications
US8064985B2 (en) * 2003-09-12 2011-11-22 Ge Medical Systems Global Technology Company System and method for determining the position of a flexible instrument used in a tracking system
US7545965B2 (en) * 2003-11-10 2009-06-09 The University Of Chicago Image modification and detection using massive training artificial neural networks (MTANN)
US20050102063A1 (en) 2003-11-12 2005-05-12 Pierre Bierre 3D point locator system
US20050193451A1 (en) * 2003-12-30 2005-09-01 Liposonix, Inc. Articulating arm for medical procedures
US20050234679A1 (en) 2004-02-13 2005-10-20 Evolution Robotics, Inc. Sequential selective integration of sensor data
US7689321B2 (en) * 2004-02-13 2010-03-30 Evolution Robotics, Inc. Robust sensor fusion for mapping and localization in a simultaneous localization and mapping (SLAM) system
US20050215879A1 (en) * 2004-03-12 2005-09-29 Bracco Imaging, S.P.A. Accuracy evaluation of video-based augmented reality enhanced surgical navigation systems
US7634374B2 (en) 2004-04-26 2009-12-15 Orthosoft Inc. Method for permanent calibration based on actual measurement
JP2005319086A (ja) * 2004-05-10 2005-11-17 Fujinon Corp 体腔内観察システム
DE102004026813A1 (de) * 2004-06-02 2005-12-29 Kuka Roboter Gmbh Verfahren und Vorrichtung zum Steuern von Handhabungsgeräten
US7540288B2 (en) * 2004-06-04 2009-06-02 Stereotaxis, Inc. User interface for remote control of medical devices
JP4145275B2 (ja) 2004-07-27 2008-09-03 富士通株式会社 動きベクトル検出・補償装置
US7283654B2 (en) * 2004-08-26 2007-10-16 Lumeniq, Inc. Dynamic contrast visualization (DCV)
DE102004042489B4 (de) 2004-08-31 2012-03-29 Siemens Ag Medizinische Untersuchungs- oder Behandlungseinrichtung mit dazugehörigem Verfahren
US7464596B2 (en) 2004-09-24 2008-12-16 The Boeing Company Integrated ultrasonic inspection probes, systems, and methods for inspection of composite assemblies
WO2006089887A2 (en) * 2005-02-28 2006-08-31 Abb Ab A system for calibration of an industrial robot and a method thereof
US7664571B2 (en) * 2005-04-18 2010-02-16 Honda Motor Co., Ltd. Controlling a robot using pose
US9867669B2 (en) 2008-12-31 2018-01-16 Intuitive Surgical Operations, Inc. Configuration marker design and detection for instrument tracking
US9526587B2 (en) 2008-12-31 2016-12-27 Intuitive Surgical Operations, Inc. Fiducial marker design and detection for locating surgical instrument in images
US8147503B2 (en) * 2007-09-30 2012-04-03 Intuitive Surgical Operations Inc. Methods of locating and tracking robotic instruments in robotic surgical systems
US8971597B2 (en) 2005-05-16 2015-03-03 Intuitive Surgical Operations, Inc. Efficient vision and kinematic data fusion for robotic surgical instruments and other applications
US8108072B2 (en) 2007-09-30 2012-01-31 Intuitive Surgical Operations, Inc. Methods and systems for robotic instrument tool tracking with adaptive fusion of kinematics information and image information
US10555775B2 (en) 2005-05-16 2020-02-11 Intuitive Surgical Operations, Inc. Methods and system for performing 3-D tool tracking by fusion of sensor and/or camera derived data during minimally invasive robotic surgery
US9789608B2 (en) 2006-06-29 2017-10-17 Intuitive Surgical Operations, Inc. Synthetic representation of a surgical robot
US9492240B2 (en) 2009-06-16 2016-11-15 Intuitive Surgical Operations, Inc. Virtual measurement tool for minimally invasive surgery
US8073528B2 (en) 2007-09-30 2011-12-06 Intuitive Surgical Operations, Inc. Tool tracking systems, methods and computer products for image guided surgery
CN101193603B (zh) * 2005-06-06 2010-11-03 直观外科手术公司 腹腔镜的超声机器人外科手术系统
US8398541B2 (en) 2006-06-06 2013-03-19 Intuitive Surgical Operations, Inc. Interactive user interfaces for robotic minimally invasive surgical systems
WO2006131373A2 (de) 2005-06-09 2006-12-14 Ife Industrielle Forschung Und Entwicklung Gmbh Vorrichtung zum berührungslosen ermitteln und vermessen einer raumposition und/oder einer raumorientierung von körpern
US20090037278A1 (en) * 2005-07-01 2009-02-05 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Implementing visual substitution options in media works
US7835785B2 (en) * 2005-10-04 2010-11-16 Ascension Technology Corporation DC magnetic-based position and orientation monitoring system for tracking medical instruments
WO2007047782A2 (en) * 2005-10-20 2007-04-26 Intuitive Surgical, Inc Auxiliary image display and manipulation on a computer display in a medical robotic system
US20070161854A1 (en) * 2005-10-26 2007-07-12 Moshe Alamaro System and method for endoscopic measurement and mapping of internal organs, tumors and other objects
US7453227B2 (en) 2005-12-20 2008-11-18 Intuitive Surgical, Inc. Medical robotic system with sliding mode control
US7907166B2 (en) 2005-12-30 2011-03-15 Intuitive Surgical Operations, Inc. Stereo telestration for robotic surgery
US20070167702A1 (en) * 2005-12-30 2007-07-19 Intuitive Surgical Inc. Medical robotic system providing three-dimensional telestration
DE112007000340T5 (de) 2006-02-09 2008-12-18 Northern Digital Inc., Waterloo Retroreflektierende Markenverfolgungssysteme
US8526688B2 (en) * 2006-03-09 2013-09-03 General Electric Company Methods and systems for registration of surgical navigation data and image data
EP1854425A1 (de) 2006-05-11 2007-11-14 BrainLAB AG Medizintechnische Positionsbestimmung mit redundanten Positionserfassungseinrichtungen und Prioritätsgewichtung für die Positionserfassungseinrichtungen
US8182415B2 (en) 2006-06-13 2012-05-22 Intuitive Surgical Operations, Inc. Minimally invasive surgical system
US10258425B2 (en) 2008-06-27 2019-04-16 Intuitive Surgical Operations, Inc. Medical robotic system providing an auxiliary view of articulatable instruments extending out of a distal end of an entry guide
US9718190B2 (en) * 2006-06-29 2017-08-01 Intuitive Surgical Operations, Inc. Tool position and identification indicator displayed in a boundary area of a computer display screen
US7612805B2 (en) 2006-07-11 2009-11-03 Neal Solomon Digital imaging system and methods for selective image filtration
US20080013809A1 (en) 2006-07-14 2008-01-17 Bracco Imaging, Spa Methods and apparatuses for registration in image guided surgery
DE502006005408D1 (de) * 2006-08-08 2009-12-31 Brainlab Ag Planungsverfahren und System zur Freiform-Implantatsanpassung
DE102007021185B4 (de) 2007-05-05 2012-09-20 Ziehm Imaging Gmbh Röntgendiagnostikeinrichtung mit einer Vielzahl kodierter Marken und ein Verfahren zur Bestimmung der Lage von Einrichtungsteilen der Röntgendiagnostikeinrichtung
US7962313B2 (en) 2007-12-14 2011-06-14 Palo Alto Research Center Incorporated Method and apparatus for using mobile code for distributed data fusion in networked sensing systems
US8473031B2 (en) * 2007-12-26 2013-06-25 Intuitive Surgical Operations, Inc. Medical robotic system with functionality to determine and display a distance indicated by movement of a tool robotically manipulated by an operator
US20090171332A1 (en) 2007-12-27 2009-07-02 Intuitive Surgical, Inc. Medical device with orientable tip for robotically directed laser cutting and biomaterial application
US8808164B2 (en) * 2008-03-28 2014-08-19 Intuitive Surgical Operations, Inc. Controlling a robotic surgical tool with a display monitor
US8169468B2 (en) 2008-04-26 2012-05-01 Intuitive Surgical Operations, Inc. Augmented stereoscopic visualization for a surgical robot
US8086026B2 (en) 2008-06-27 2011-12-27 Waldean Schulz Method and system for the determination of object positions in a volume
US8184880B2 (en) 2008-12-31 2012-05-22 Intuitive Surgical Operations, Inc. Robust sparse image matching for robotic surgery
US8830224B2 (en) 2008-12-31 2014-09-09 Intuitive Surgical Operations, Inc. Efficient 3-D telestration for local robotic proctoring
US8223193B2 (en) 2009-03-31 2012-07-17 Intuitive Surgical Operations, Inc. Targets, fixtures, and workflows for calibrating an endoscopic camera
US9155592B2 (en) 2009-06-16 2015-10-13 Intuitive Surgical Operations, Inc. Virtual measurement tool for minimally invasive surgery
US8218727B2 (en) 2009-09-04 2012-07-10 Siemens Medical Solutions Usa, Inc. System for medical image processing, manipulation and display

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9814392B2 (en) 2009-10-30 2017-11-14 The Johns Hopkins University Visual tracking and annotaton of clinically important anatomical landmarks for surgical interventions
US11850008B2 (en) 2017-10-13 2023-12-26 Auris Health, Inc. Image-based branch detection and mapping for navigation
US11950898B2 (en) 2020-11-06 2024-04-09 Auris Health, Inc. Systems and methods for displaying estimated location of instrument

Also Published As

Publication number Publication date
CN109077699A (zh) 2018-12-25
US20190247131A1 (en) 2019-08-15
CN103211563B (zh) 2018-10-16
CN101222882A (zh) 2008-07-16
EP2689740B1 (en) 2017-10-25
EP2687186B1 (en) 2021-02-17
EP3851021A1 (en) 2021-07-21
US11116578B2 (en) 2021-09-14
US20170312036A1 (en) 2017-11-02
EP3851021B1 (en) 2022-10-26
EP2687183A1 (en) 2014-01-22
EP2745795A1 (en) 2014-06-25
KR20080027256A (ko) 2008-03-26
US20210000546A1 (en) 2021-01-07
EP1893118B1 (en) 2018-07-11
EP2687184A1 (en) 2014-01-22
WO2006124388A1 (en) 2006-11-23
EP2687183B1 (en) 2020-03-25
EP2745795B1 (en) 2020-10-28
EP2687185A1 (en) 2014-01-22
US10555775B2 (en) 2020-02-11
US10842571B2 (en) 2020-11-24
US11672606B2 (en) 2023-06-13
CN103211563A (zh) 2013-07-24
US20170079725A1 (en) 2017-03-23
EP2687185B1 (en) 2019-04-17
EP2687182B1 (en) 2022-04-13
KR101296215B1 (ko) 2013-08-13
US20060258938A1 (en) 2006-11-16
CN109077699B (zh) 2021-02-02
EP1893118A1 (en) 2008-03-05
US20170079726A1 (en) 2017-03-23
EP2689740A1 (en) 2014-01-29
EP2687184B1 (en) 2017-03-01
EP2687186A1 (en) 2014-01-22
US10792107B2 (en) 2020-10-06
US11478308B2 (en) 2022-10-25
EP2687182A1 (en) 2014-01-22

Similar Documents

Publication Publication Date Title
CN101222882B (zh) 通过机械微创外科手术过程中联合传感器和/或照相机导出数据实现3-d刀具跟踪的系统
US8108072B2 (en) Methods and systems for robotic instrument tool tracking with adaptive fusion of kinematics information and image information
US8073528B2 (en) Tool tracking systems, methods and computer products for image guided surgery
US8147503B2 (en) Methods of locating and tracking robotic instruments in robotic surgical systems
US8374723B2 (en) Obtaining force information in a minimally invasive surgical procedure
WO2009045827A2 (en) Methods and systems for tool locating and tool tracking robotic instruments in robotic surgical systems

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
ASS Succession or assignment of patent right

Owner name: INTUITIVE SURGICAL OPERATING COMPANY

Free format text: FORMER OWNER: INTUITIVE SURGICAL INC.

Effective date: 20101214

C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20101214

Address after: American California

Applicant after: Intuitive Surgical Operating Company

Address before: American California

Applicant before: Intuitive Surgical Inc.

C14 Grant of patent or utility model
GR01 Patent grant