CN101336478A - 最小化n型掺杂物扩散的经沉积半导体结构和制造方法 - Google Patents

最小化n型掺杂物扩散的经沉积半导体结构和制造方法 Download PDF

Info

Publication number
CN101336478A
CN101336478A CNA2006800523544A CN200680052354A CN101336478A CN 101336478 A CN101336478 A CN 101336478A CN A2006800523544 A CNA2006800523544 A CN A2006800523544A CN 200680052354 A CN200680052354 A CN 200680052354A CN 101336478 A CN101336478 A CN 101336478A
Authority
CN
China
Prior art keywords
layer
germanium
diode
silicon
atom
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2006800523544A
Other languages
English (en)
Other versions
CN101336478B (zh
Inventor
S·布拉德·赫纳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sandy Technology Corp
SanDisk Technologies LLC
Original Assignee
SanDisk 3D LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SanDisk 3D LLC filed Critical SanDisk 3D LLC
Publication of CN101336478A publication Critical patent/CN101336478A/zh
Application granted granted Critical
Publication of CN101336478B publication Critical patent/CN101336478B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/102Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration including bipolar components
    • H01L27/1021Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration including bipolar components including diodes only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System
    • H01L29/161Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System including two or more of the elements provided for in group H01L29/16, e.g. alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System
    • H01L29/161Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System including two or more of the elements provided for in group H01L29/16, e.g. alloys
    • H01L29/165Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System including two or more of the elements provided for in group H01L29/16, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/20Resistance change memory devices, e.g. resistive RAM [ReRAM] devices comprising selection components having two electrodes, e.g. diodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/80Arrangements comprising multiple bistable or multi-stable switching components of the same type on a plane parallel to the substrate, e.g. cross-point arrays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • H10N70/24Multistable switching devices, e.g. memristors based on migration or redistribution of ionic species, e.g. anions, vacancies
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/821Device geometry
    • H10N70/826Device geometry adapted for essentially vertical current flow, e.g. sandwich or pillar type devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/883Oxides or nitrides
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/883Oxides or nitrides
    • H10N70/8833Binary metal oxides, e.g. TaOx

Abstract

在经沉积的硅中,例如磷和砷等n型掺杂物倾向于去往在沉积层时升高的所述硅的表面。当在未提供n型掺杂物的情况下在n掺杂硅上沉积第二未掺杂或p掺杂硅层时,第一厚度的此第二硅层仍倾向于包括从较低层向上扩散的非所要的n型掺杂物。当锗与所述硅合金化时,此去往表面的行为减少。在某些装置中,第二层具有显著的锗含量可能是不利的。在本发明中,沉积第一重度n掺杂半导体层(优选至少10原子%锗),接着沉积具有极少或无n型掺杂物的硅锗封盖层,接着沉积具有极少或无n型掺杂物并少于10原子%锗的层。所述第一层和所述封盖层中的所述锗使n型掺杂物进入上方少锗层中的扩散最小化。

Description

最小化N型掺杂物扩散的经沉积半导体结构和制造方法
相关申请案
本申请案是赫纳(Herner)等人在2004年9月29日申请的题为“包含变化的半导体组份的面结型二极管(Junction Diode Comprising Varying SemiconductorCompositions)”的第10/954,577号美国申请案的部分接续申请案,下文为′577申请案,且其全文明确以引用的方式并入本文中。
技术领域
本发明涉及一种用以最小化n型掺杂物的表面活性剂行为的经沉积垂直半导体层堆叠,和制造所述层堆叠的方法。
背景技术
在硅的沉积期间,例如磷和砷的n型掺杂物倾向于去往在沉积硅层时经由硅层而升高的表面。如果需要紧接在重度掺杂n型层上方沉积具有极少n型掺杂物或无n型掺杂物的层(例如,未掺杂或p掺杂层),则n型掺杂物原子朝向表面扩散的此趋势将非所要的掺杂物引入未掺杂或p掺杂层中。此非所要的n型掺杂物可不利地影响装置行为。
因此,需要限制n型掺杂物在经沉积硅和硅合金中的扩散。
发明内容
本发明由以下权利要求书界定,且此部分不应视为对那些权利要求书的限制。一般来说,本发明针对于用以限制n型掺杂物在经沉积半导体层堆叠中扩散的结构和方法。
本发明的第一方面提供一种包含层堆叠的半导体装置,所述层堆叠包含:在衬底上沉积的重度n掺杂半导体材料的第一层,所述第一层至少约50埃厚;未重度n掺杂的半导体材料的第二层,其中所述第二层的半导体材料为至少10原子%锗的硅锗合金,所述第二层至少约100埃厚,其中第二层在第一层上方且与其接触;和在第二层上且与其接触的未重度n掺杂的经沉积半导体材料的第三层,其中所述第三层的半导体材料为硅或少于10原子%锗的硅锗合金,其中第一、第二和第三层驻留在半导体装置中。
本发明的另一方面提供一种形成在衬底上方的非易失性存储器单元,所述存储器单元包含:位于所述衬底上方的底部导体的一部分;位于所述底部导体上方的顶部导体的一部分;和垂直安置在所述底部导体与所述顶部导体之间的二极管,所述二极管包含:i)重度n掺杂半导体材料的第一经沉积层;ii)未重度n掺杂的半导体材料的第二经沉积层,其中所述第二层的半导体材料为至少10原子%锗的硅锗合金,第二层安置在第一层上方且与其接触;和iii)未重度n掺杂的半导体材料的第三经沉积层,其中所述第三层的半导体材料为硅或少于10原子%锗的硅锗合金,其中第三层位于第二层上方且与其接触。
本发明的优选实施例提供一种用于在衬底上方形成第一存储器层级的方法,所述方法包含:沉积重度n掺杂半导体材料的第一层;在第一层上方且与其接触地沉积轻度n掺杂、p掺杂或未掺杂半导体材料的第二层,其中第二层的半导体材料为至少10原子%锗的硅锗合金,在第一层上方且与其接触地沉积轻度n掺杂、p掺杂或未掺杂半导体材料的第三层,其中所述第三层的半导体材料为硅或少于10原子%锗的硅锗合金;和图案化和蚀刻第一、第二和第三层以形成具有柱状物的形式的第一多个垂直定向的二极管。
相关实施例提供一种单片三维存储器阵列,其包含:a)形成在衬底上方的第一存储器层级,所述第一存储器层级包含:i)多个大体上平行、大体上共面的底部导体;ii)多个大体上平行、大体上共面的顶部导体;iii)多个半导体面结型二极管,每一二极管垂直安置在所述底部导体的一者与所述顶部导体的一者之间,其中每一二极管包含:重度n掺杂半导体材料的第一层;轻度n掺杂、p掺杂或未掺杂硅锗合金的第二层,其中所述第二层为至少10原子%锗,第二层在第一层上方;和轻度n掺杂、p掺杂或未掺杂硅或硅锗合金的第三层,其中第三层为少于10原子%锗,第三层在第二层上方;和b)单片形成在第一存储器层级上方的至少一第二存储器层级。
本文所描述的本发明的方面和实施例中的每一者可单独使用或彼此组合使用。
现在将参看附图描述优选方面和实施例。
附图说明
图1为可从本发明的结构和方法的使用中受益的垂直定向二极管的透视图。
图2为展示经沉积硅层中深度处的磷浓度的图。
图3为展示经沉积硅锗层中深度处的磷浓度的图。
图4为根据本发明的方面的半导体层堆叠的横截面视图。
图5a和5b为根据本发明的实施例而形成的垂直定向二极管的透视图。
图6为根据本发明的实施例而形成的存储器层级的透视图。
图7a-7c为说明根据本发明的实施例而形成第一存储器层级中的阶段的横截面视图。
图8a-8c为说明根据本发明的实施例在垂直定向二极管的形成期间硅厚度的损耗的横截面视图。
具体实施方式
半导体装置经掺杂有p型和n型掺杂物以增强传导率。大多数半导体装置在掺杂物分布中需要急剧过渡。举例来说,图1展示由多晶硅形成的垂直定向p-i-n二极管2(在此论述中,多晶硅(polycrystalline silicon)将称为多晶硅(polysilicon))。二极管形成在底部导体12与顶部导体14之间。底部区域4经重度掺杂有例如磷或砷的n型掺杂物,中间区域6为本征多晶硅,其未经有意掺杂,且顶部区域8经重度掺杂有例如硼或BF2的p型掺杂物。(包括p-n二极管、齐纳二极管、可控硅整流器、双极晶体管等的许多其它半导体装置包括具有不同掺杂特性的区域。图1的p-i-n二极管2呈现为实例)。这些不同区域之间的掺杂特性中的差异必须经维持以供装置运作。
可通过包括离子植入或扩散的若干方法从邻近掺杂物源将掺杂物引入半导体材料(例如,硅)中。如果硅经沉积,则可通过使在沉积期间将提供掺杂物的气体流动而将所述硅原位掺杂,使得掺杂物原子在沉积硅时并入硅中。
例如磷和砷的大多数n型掺杂物展现表面活性剂行为,强烈偏好于定位在经沉积硅的表面上而非埋入。参看图1,可通过使SiH4(用以沉积硅的典型前驱气体)连同将提供磷的PH3一起流动而形成重度掺杂n型区域4。为形成本征区域6,停止PH3的流动,而SiH4继续流动。在无掺杂物的情况下沉积区域6的硅,而来自区域4的磷在沉积期间扩散到区域6中。必须沉积显著厚度的硅以保证形成实际上不包括n型掺杂物的足够厚度的区域6。从重度掺杂区域4到本征区域6的非所要的掺杂物扩散使得难以在这些区域之间形成突变结,且可迫使二极管2的总高度大于所要的高度。
n型掺杂物的表面活性剂行为在硅锗合金中比在硅中小,且随着合金的锗含量增加而减小。在至少约10原子%锗,优选至少约20原子%锗的硅锗合金中,n型掺杂物在原位沉积期间去往表面的趋势显著减小。
图2为展示在以埃测量从标记为0埃的顶面到大约3500埃(其表示原位掺杂经沉积层的沉积的底部或初始表面)的深度范围上硅中的磷浓度的图。在此硅层中,在3450埃到3250埃的深度的初始硅沉积期间使PH3流动。在此深度,停止PH3的流动,而继续使SiH4流动,在重度n掺杂硅的顶部上标称地沉积未掺杂硅。然而,如图2中所展示,在已沉积额外700埃的硅而未提供掺杂物之后,磷的浓度仍保持在约5×1017个原子/立方厘米以上到约2650埃的深度。
图3为展示经沉积硅锗中的磷浓度的图。在此层的沉积期间,PH3的流动在4050埃的深度处开始,形成重度掺杂n型硅层,且在3900埃的深度处停止。在已沉积仅约50埃的额外厚度的硅锗之后,磷的浓度在约3850埃的深度处降到约5×1017个原子/立方厘米。
因此,如果图1的二极管2由硅锗合金(例如Si.8Ge.2)形成,则掺杂物从n掺杂区域4到本征区域6的扩散将显著减少,且可形成在这些区域之间的突变结。
然而,锗具有比硅小的带隙,且增加本征区域6的锗含量促使二极管在反向偏压下具有相对较高的漏电流。出于二极管的整流行为--其在一个方向上比在相反方向上更易于导通的趋势--且相反方向上的漏电流通常是不合需要的,而使用二极管。
简而言之,当二极管由硅形成时,本征区域6中非所要的n型掺杂物引起增加的反向漏电流。可通过形成硅锗合金的二极管来减少归因于表面活性剂行为的此掺杂物扩散,但此替代方案也不令人满意,因为此材料的较小带隙也导致较高的漏电流。
在本发明中通过改变层堆叠内的锗含量来解决此问题。转到图4,在本发明中,在经沉积的半导体层堆叠中,半导体材料的第一层20经重度掺杂有例如磷或砷的n型掺杂物(例如具有至少约5×1019个掺杂物原子/立方厘米的掺杂物浓度)。可在沉积期间原位掺杂层20或通过离子植入而掺杂。接下来紧接在第一层20上方沉积与其接触的至少约10原子%锗,优选至少约20原子%锗的硅锗薄封盖层21。封盖层21具有极低浓度的n型掺杂物。其未经掺杂或极轻度掺杂有n型掺杂物,n型掺杂物浓度不多于约5×1017个掺杂物原子/立方厘米。封盖层21可掺杂有p型掺杂物。封盖层21相对较薄,例如约100和或200埃,优选不多于约300到约500埃厚。在封盖层上方并与其接触地沉积硅或硅锗合金(其锗较少,例如少于10原子%锗,优选少于5原子%锗,优选没有锗)的第二层22。第二层22未经掺杂或极轻度掺杂有n型掺杂物,n型掺杂物浓度不大于约5×1017个掺杂物原子/立方厘米。第二层22可掺杂有p型掺杂物。整个层堆叠(层20、21和22)是经沉积的半导体材料。依据沉积条件,沉积的层堆叠可为非晶的或多晶的,或部分层堆叠可为非晶的而其它部分为多晶的。
硅锗封盖层21具有极低的n型掺杂物浓度,和锗含量,所述锗含量足够高以确保极少来自重度掺杂层20的n型掺杂物迁移通过此层。因此,硅锗封盖层21的顶面(少锗的第二层22沉积在其上)将实际上不具有n型掺杂物原子,且在掺杂物分布中可实现急剧过渡。
在优选实施例中,层20为至少10原子%锗,优选至少20原子%锗的硅锗合金。较高锗含量层20倾向于进一步减少表面活性剂行为。如果层20和21是相同的硅锗合金,则层堆叠的制造可简化。然而,如果需要,则层20可为硅、少于10原子%锗的硅锗合金,或某一其它半导体材料。
转到图5a,在第一实施例中,通过使用本发明的方法,可形成低泄漏、垂直定向的p-i-n二极管。重度掺杂层4(例如)通过原位掺杂或离子植入而重度掺杂有n型掺杂物。重度掺杂层4优选为至少10原子%锗,优选至少20原子%锗的硅锗合金。重度掺杂层4中某一锗含量是有利的,从而限制表面活性剂行为且提供与邻近导体的较佳电接触。然而,在次优选实施例中,重度掺杂层4可为硅、少于10原子%锗的硅锗合金,或某一其它半导体材料。封盖层5为至少10原子%,优选至少20原子%锗的硅锗合金,且未掺杂或轻度掺杂有n型掺杂物,掺杂物浓度小于约5×1017个原子/立方厘米。本征层6为硅或不多于10原子%锗,优选不多于5原子%锗,最优选大体上无锗的少锗硅锗合金。重度掺杂p型半导体材料(优选为硅)的顶层8可(例如)通过离子植入而形成在本征层6上方以完成二极管。在所完成的装置中,层4、5、6和8优选为多晶的。
转到图5b,在另一实施例中,本发明的方法可用以形成具有急剧掺杂物过渡的垂直定向p-n二极管。重度掺杂层4为半导体材料且(例如)通过原位掺杂或离子植入而重度掺杂有n型掺杂物。如在图5a的二极管中,虽然在次优选实施例中此层可为某一其它半导体材料,例如硅或少于10原子%锗的硅锗合金,但是此层优选为至少10原子%锗、优选至少20原子%锗的硅锗合金。封盖层5为至少10原子%锗、优选至少20原子%锗的硅锗合金,且未掺杂或轻度掺杂有n型掺杂物,掺杂物浓度少于5×1017个原子/立方厘米,或重度掺杂有p型掺杂物。在封盖层5上方形成重度掺杂p型硅或不多于约10原子%锗、优选不多于约5原子%锗、最优选大体上无锗的贫锗硅锗合金的顶层8以完成二极管。在所完成的装置中,层4、5和8优选为多晶的。
图5a和5b中所展示的垂直定向二极管是实例;本发明的方法可用于需要从经沉积重度n掺杂层到其上沉积有n型掺杂物的未重度掺杂层的掺杂物分布急剧过渡的其它半导体装置中;尤其用于其中未重度n掺杂的层具有极少或没有锗为优选的装置中。
2004年9月29日申请的赫纳(Herner)等人的第10/955,549号美国专利申请案“不具有拥有高合低阻抗状态的介电反熔丝的非易失性存储器单元(Nonvolatile Memory CellWithout a Dielectric Antifuse Having High-and Low-Impedance States)”(下文为′549申请案且以引用的方式并入本文中)描述包括类似图1的二极管2的垂直定向p-i-n二极管的单片三维存储器阵列。当形成时,p-i-n二极管的多晶硅处于高电阻状态。编程电压的施加永久地改变多晶硅的性质,使其呈低电阻。据信所述变化是通过2005年6月8日申请的赫纳(Herner)等人的第11/148,530号美国专利申请案“非易失性存储器单元通过增加多晶半导体材料中的次序来操作(Nonvolatile Memory Cell Operating byIncreasing Order in Polycrystalline Semiconductor Material)”(在下文为′530申请案且以引用的方式并入本文中)中更充分描述的多晶硅中有序度的增加而引起。电阻的此变化是稳定的且可易于检测,且因此可记录数据状态,从而允许所述装置操作为存储器单元。第一存储器层级形成在衬底上方,且额外的存储器层级可形成在其上方。这些存储器可从根据本发明的实施例的方法和结构的使用中受益。
2004年12月17日申请的赫纳(Herner)等人的第11/015,824号美国专利申请案“包含减少高度的垂直二极管的非易失性存储器单元(Nonvolatile Memory Cell Comprising aReduced Height Vertical Diode)”(下文为′824申请案且以引用的方式并入本文中)中描述相关存储器。如′824申请案中所描述,减少p-i-n二极管的高度可为有利的。较短的二极管需要较低的编程电压且减小邻近二极管之间的间隙的纵横比。极高纵横比的间隙难以无空隙地填充。至少600埃的厚度优选用于本征区域以减少二极管的反向偏压中的电流泄漏。根据本发明的优选实施例,在重度n掺杂层上形成具有少硅本征层的二极管(所述两者由硅锗的薄本征封盖层隔离)将允许掺杂物分布中的更具突变的过渡,且因此减少总二极管高度。
本发明的实施例证明在单片三维存储器阵列的形成中尤其有用。单片三维存储器阵列为其中多个存储器层级形成在例如晶片的单一衬底上而没有介入的衬底的阵列。形成一个存储器层级的层直接沉积或生长在现有级的层上。相反,如在里迪(Leedy),第5,915,167号美国专利“三维结构存储器(Three dimensional structure memory)”中,已通过在单独衬底上形成存储器层级且将顶上的存储器层级彼此粘附而建构堆叠的存储器。衬底可在结合之前经薄化或从存储器层级移除,但因为存储器层级最初形成在单独衬底上,所以这些存储器并非真正的单片三维存储器阵列。
图6展示根据本发明的实施例而形成的示范性存储器单元的存储器层级的一部分,其包括底部导体200、柱状物300(每一柱状物300包含一二极管)和顶部导体400。将详细描述此类存储器层级的制造,所述存储器层级包括垂直定向二极管,每一垂直定向二极管具有底部硅锗重度n掺杂区域、未掺杂的硅锗封盖层和由硅或少锗硅锗合金形成的本征区域。关于类似存储器层级的制造的更多详细信息在先前并入的′549和′824申请案中提供。相关存储器的制造的更多信息提供在由本发明的受让人所有且以引用的方式并入本文中的赫纳(Herner)等人的第6,952,030号美国专利“高密度三维存储器单元(High-Density Three-Dimensional Memory Cell)”中。为避免混淆本发明,虽然并非所有此细节将包括在此描述中,但是并不期望排除这些或其它并入的专利或申请案的教示。将了解,此实例是非限制性的,且本文所提供的细节可当结果属于本发明的范围内时经修改、省略或扩充。
实例
将详细描述单一存储器层级的制造。可堆叠额外的存储器层级,每一者单片地形成在其下方的一者上方。
转到图7a,存储器的形成开始于衬底100。此衬底100可为此项技术中已知的任何半导体衬底,例如单晶硅、类似硅锗或硅锗碳的IV-IV化合物、III-V化合物、II-VII化合物、此类衬底上的外延层或任何其它半导体材料。所述衬底可包括制造在其中的集成电路。
绝缘层102形成在衬底100上。绝缘层102可为二氧化硅、氮化硅、高介电膜、Si-C-O-H膜或任何其它合适的绝缘材料。
第一导体200形成在衬底和绝缘体上。粘附层104可包括在绝缘层102与传导层106之间以帮助传导层106粘附。如果上覆传导层为钨,则氮化钛优选为粘附层104。
待沉积的下一层为传导层106。传导层106可包含此项技术中已知的任何传导材料,例如钨或包括钽、钛、铜、钴或其合金的其它材料。
一旦已沉积将形成导体轨的所有层,将使用任何合适的掩蔽和蚀刻工艺来图案化和蚀刻所述层以形成图7a中所展示的横截面延伸出页面以外的大体上平行、大体上共面的导体200。在一实施例中,沉积光致抗蚀剂,通过光刻进行图案化且蚀刻所述层,且接着使用标准工艺技术而移除光致抗蚀剂。导体200可替代地通过镶嵌方法形成。
接着介电材料108沉积在导体轨200上并沉积在其间。介电材料108可为任何已知的电绝缘材料,例如二氧化硅、氮化硅或氮氧化硅。在优选实施例中,二氧化硅用作介电材料108。
最终,移除导体轨200顶部上多余的介电材料108,暴露由介电材料108隔离的导体轨200的顶部,且留下大体上平坦的表面109。所得结构展示在图7a中。可通过例如化学机械平坦化(CMP)或回蚀的此项技术中已知的任何工艺来执行用以形成平坦表面109的介电过填充的此移除。在此阶段,多个大体上平行的第一导体已形成在衬底100上方的第一高度处。
接着,转到图7b,垂直柱状物将形成在完成的导体轨200上方。(为了节省空间,衬底100在图7b和随后图式中未图示;将假设其存在)。在导体轨的平坦化之后,优选势垒层110沉积为第一层。包括氮化钨、氮化钽、氮化钛或这些材料的组合的任何合适的材料可用于势垒层中。在一优选实施例中,氮化钛用作势垒层。在势垒层为氮化钛的情况下,可以与早先所描述的粘附层相同的方式沉积势垒层。
接着沉积将被图案化为柱状物的半导体材料。在本实施例中,所述柱状物包含半导体面结型二极管p-i-n二极管,其具有底部重度掺杂n型区域、紧接在其上方的封盖层、中间本征区域和顶部重度掺杂p型区域。术语“面结型二极管”在本文中用以指代具有以下特性的半导体装置:在一个方向上比在另一方向上更易于传导电流,具有两个端子电极且由半导体材料(在一个电极处为p型且在另一电极处为n型)制造。
首先沉积将形成底部重度掺杂n型层112的半导体材料。此半导体材料优选为至少10原子%锗的硅锗合金,以最小化n型掺杂物的表面去往扩散。优选使用Si.8Ge.2合金。在其它实施例中,锗含量可较高;例如,其可为25原子%、30原子%、50原子%或更高,包括100原子%锗,没有硅。在其它实施例中,例如碳或锡的某一其它半导体材料可包括为硅锗合金的一小部分。优选通过使将提供n型掺杂物的适当供体气体流动而原位掺杂重度掺杂层112。在沉积期间使PH3流动将促使磷原子在层112形成时并入层112中。掺杂物浓度应为至少约5×1019个掺杂物原子/立方厘米,例如在约5×1019个掺杂物原子/立方厘米与约3×1021个掺杂物原子/立方厘米之间,优选约8×1020个掺杂物原子/立方厘米。重度掺杂层112优选在约50与约500埃厚之间,优选约200埃厚。
在次优选实施例中,重度掺杂n型层112为硅、少于约10原子%锗的硅锗合金或某一其它半导体材料。
不同于硅,硅锗倾向于不均匀地沉积在势垒层110上,最初形成岛状物而非连续层。为辅助硅锗层112的均匀沉积,可优选在开始硅锗的沉积前首先沉积例如约30埃厚的硅的薄种子层。此极薄层将不会显著改变装置的电行为。2005年6月22日申请的且以引用的方式并入本文中的赫纳(Herner)的第11/159,031号美国专利申请案“沉积锗膜的方法(Method of Depositing Germanium Films)”中描述了使用硅种子层来辅助锗膜的沉积。
接下来将紧接在重度掺杂n型层112的顶部上沉积封盖层113。停止供体气体(例如,PH3)的流动,使得封盖层113未经掺杂。在重度掺杂层112的沉积与封盖层113的沉积之间未从沉积腔室移除衬底。优选的是,封盖层113为与重度掺杂n型层112相同的硅锗合金,例如Si.8Ge.2。在其它实施例中,只要锗的比例保持为至少10原子%,则封盖层113可具有不同比例的锗。举例来说,锗含量可通过封盖层113逐渐降低。封盖层113至少约100埃厚,例如约200埃厚。
接下来紧接着在封盖层113的顶部上沉积本征层114。层114为硅或少于约10原子%锗(例如少于约5原子%锗)的硅锗合金;层114优选为硅。在一优选实施例中,将通过离子植入形成重度掺杂p型层116。转到图8a,本征层114具有一经沉积厚度A。如图8b中所展示,即将进行的平坦化步骤将移除厚度B,且在图8c中,用以形成区域116的离子植入将促使厚度C被重度掺杂。在所完成的装置中,本征层114应具有厚度D。因此,待沉积的厚度A为本征区域114的最终所要厚度D、将要通过植入形成的重度掺杂p型区域116的厚度C与在平坦化期间将要损耗的厚度B的总和。在所完成的装置中,本征区域114优选在约600与约2000埃之间,例如约1600埃。重度掺杂p型层116在约100与约1000埃厚之间,优选约200埃。在平坦化期间损耗的量将最有可能在约400与约800埃之间,这取决于所使用的平坦化方法。接着,在此步骤中将要沉积的未掺杂厚度在约1100与约3800埃之间,优选约2600埃。
返回到图7b,刚刚沉积的半导体层114、113和112连同下伏势垒层110将经图案化和蚀刻以形成柱状物300。柱状物300应与其下方的导体200具有约相同的间距和约相同的宽度,使得每一柱状物300形成在导体200的顶部上。可容许某一不对准。
可使用任何合适的掩蔽和蚀刻工艺来形成柱状物300。举例来说,可沉积光致抗蚀剂,使用标准光刻技术进行图案化,且蚀刻,接着移除光致抗蚀剂。或者,可将例如二氧化硅等某一其它材料的硬掩模形成在半导体层堆叠的顶部上(且底部抗反射涂层(BARC)位于顶部上),接着将其图案化和蚀刻。类似地,介电抗反射涂层(DARC)可用作硬掩模。
在均由本发明的受让人所有且以引用的方式并入本文中的2003年12月5日申请的陈(Chen)的第10/728436号美国专利申请案“使用交替式相移的具有内部非印刷窗的光掩模特征(Photomask Features with Interior Nonprinting Window Using Alternating PhaseShifting)”;或2004年4月1日申请的陈(Chen)的第10/815312号美国申请案“具有非印刷相移窗的光掩模特征(Photomask Features with Chromeless Nonprinting PhaseShifting Window)”中描述的光刻技术可有利地用于执行根据本发明的存储器阵列的形成中所使用的任何光刻步骤。
介电材料108沉积在半导体柱状物300上和半导体柱状物300之间,填充其间的间隙。介电材料108可为任何已知的电绝缘材料,例如氧化硅、氮化硅或氮氧化硅。在一优选实施例中,二氧化硅用作绝缘材料。
接下来移除位于柱状物300的顶部上的介电材料,暴露由介电材料108隔离的柱状物300的顶部,且留下大体上平坦的表面。可通过例如CMP或回蚀的此项技术中已知的任何工艺来执行介电过填充的此移除。在CMP或回蚀之后,执行离子植入,形成重度掺杂p型顶部区域116。p型掺杂物优选为硼或BF2。所得结构展示在图7b中。
如先前所描述,所并入的′539申请案描述:当经受编程电压时,二极管的半导体材料的电阻率可检测地且永久地变化。在某些实施例中,在编程之前完好且在编程期间断裂的介电断裂反熔丝可包括在单元中,以增加当读取电压施加到经编程对未经编程单元时所观测到的电流之间的差异。
转到图7c,如果包括可选的介电断裂反熔丝118,则其可通过任何适当方法(包括重度掺杂p型区域116的一部分的热氧化)来形成。或者,可替代地沉积此层,且可为任何合适的介电材料。举例来说,可在约150摄氏度下沉积Al2O3层。可使用其它材料。介电断裂反熔丝118优选在约20与约80埃厚之间,优选约50埃厚。在其它实施例中,可省略介电断裂反熔丝118。
可以与底部导体200相同的方式,例如通过沉积优选为氮化钛的粘附层120和优选为钨的传导层122来形成顶部导体400。接着使用任何合适的掩蔽和蚀刻技术来图案化和蚀刻传导层122和粘附层120,以形成图7c中所展示的从左到右延伸通过页面的大体上平行、大体上共面的导体400。在一优选实施例中,沉积光致抗蚀剂,通过光刻进行图案化且蚀刻层,且接着使用标准工艺技术来移除光致抗蚀剂。每一柱状物应安置在底部导体的一者与顶部导体的一者之间;可容许某些不对准。
接下来介电材料(未图示)沉积在导体轨400上和其间。介电材料可为任何已知的电绝缘材料,例如二氧化硅、氮化硅或氮氧化硅。在一优选实施例中,二氧化硅用作此介电材料。
已描述第一存储器层级的形成。此存储器层级包含多个存储器单元,且在每一存储器单元中,一柱状物垂直安置在底部导体与顶部导体之间,其中非易失性存储器单元包含底部导体的一部分、柱状物和顶部导体的一部分。额外的存储器层级可形成在此第一存储器层级上。在某些实施例中,导体可在存储器层级之间共用;即,顶部导体400将用作下一存储器层级的底部导体。在其它实施例中,级间电介质(未图示)形成在图7c的第一存储器层级上,其表面经平坦化,且在此经平坦化的级间电介质上开始第二存储器层级的建构,且不具有共用的导体。
柱状物300和随后形成的存储器层级中的半导体材料优选经结晶以形成多晶二极管。优选在所有二极管已形成之后执行最终的结晶退火。
形成在衬底上的单片三维存储器阵列包含在所述衬底上方第一高度处形成的至少一第一存储器层级和在不同于所述第一高度的第二高度处形成的第二存储器层级。在此多级阵列中可在衬底上方形成三个、四个、八个或实际上任何数目的存储器层级。
已在包括一个或一个以上存储器层级中的垂直定向的二极管的单片三维存储器阵列的背景下描述了本发明的方法和结构。除先前并入的那些专利和申请案之外,本发明的方法可有利地用于例如在佩蒂(Petti)等人的第6,946,719号美国专利“包括包含硅化物的面结型二极管接触接触件-反熔丝单元的半导体装置(Semiconductor DeviceIncluding Junction Diode Contacting Contact-Antifuse Unit Comprising Silicide)”;2004年9月29日申请的佩蒂(Petti)的第10/955,387号美国专利申请案“包含二极管的存储器单元,二极管用作熔丝元件(Fuse Memory Cell Comprising a Diode,the Diode Serving asthe Fuse Element)”;和2004年9月29日申请的赫纳(Herner)等人的第10/954,510号美国专利申请案“包含邻近于硅化物而结晶的半导体面结型二极管的存储器单元(Memory Cell Comprising a Semiconductor Junction Diode Crystallized Adjacent to aSilicide)”中所描述的那些单片三维存储器阵列的相关单片三维存储器阵列中。
在均以引用的方式并入本文中的2005年5月9日申请的赫纳(Herner)等人的第11/125939号美国专利申请案且下文为′939申请案,“包含二极管和电阻切换材料的可重写存储器单元(Rewriteable Memory Cell Comprising a Diode and a Resistance-SwitchingMaterial)”;和2005年11月23日申请的赫纳(Herner)等人的第11,287,452号美国专利申请案“具有添加金属的可逆电阻率切换金属氧化物或氮化物层(ReversibleResistivity-Switching Metal Oxide or Nitride Layer With Added Metal)”(下文为′452申请案)中所描述的存储器阵列的实施例中,垂直定向的p-i-n二极管(或在某些实施例中,垂直定向的p-n二极管)与包含电阻率切换材料的可逆状态改变元件配对以形成存储器单元。在优选实施例中,可逆状态改变元件与二极管串联而以电方式形成,垂直安置在所述二极管与顶部导体之间或所述二极管与底部导体之间。
可逆电阻率切换材料为电阻率切换金属氧化物或氮化物化合物,所述化合物确切地包括一种金属;例如,所述电阻率切换金属氧化物或氮化物化合物可选自由以下各物组成的群:NiO、Nb2O5、TiO2、HfO2、Al2O3、CoO、MgOx、CrO2、VO、BN和AlN。在某些实施例中,电阻率切换金属氧化物或氮化物化合物的层包括添加的金属。所述层可包括如在′452申请案中所描述的添加的金属。这些存储器单元是可重写的。根据本发明所形成的p-i-n二极管的减少的反向漏电流可证明在类似′939和′452申请案的那些阵列中在写入和擦除存储器单元中尤其有利。
然而,所属领域的技术人员将明白,如当具有较宽带隙的材料是优选时,尤其如果沉积在重度掺杂n型层上的层优选具有极少锗或没有锗,那么本发明的方法和结构可有利地用于其中需要在重度掺杂n型层上方的掺杂物分布中具有急剧过渡的经沉积半导体层堆叠的任何装置中。本发明的效用未以任何方式限于垂直定向的二极管、存储器单元或单片三维存储器阵列或结构。
虽然已在本文中描述了制造的详细方法,但是当结果属于发明的范围内时可使用形成相同结构的任何其它方法。
前述详细描述仅描述本发明可呈现的许多形式中的数个形式。出于此原因,此详细描述意欲是以说明而非限制的方式。仅以下权利要求书(包括所有等效物)意欲定义本发明的范围。

Claims (20)

1.一种包含层堆叠的半导体装置,所述层堆叠包含:
位于衬底上方的经沉积重度n掺杂半导体材料的第一层,所述第一层至少约50埃厚;
未重度n掺杂的半导体材料的第二层,其中所述第二层的半导体材料为至少10原子%锗的硅锗合金,所述第二层至少约100埃厚,其中所述第二层位于所述第一层上方且与其接触;以及
位于所述第二层上方且与其接触的未重度n掺杂的经沉积半导体材料的第三层,其中所述第三层的半导体材料为硅或少于10原子%锗的硅锗合金,
其中所述第一、第二和第三层驻留在半导体装置中。
2.根据权利要求1所述的半导体装置,其中所述第二层的半导体材料为至少20原子%锗。
3.根据权利要求1所述的半导体装置,其中所述第三层的半导体材料不多于5原子%锗。
4.根据权利要求1所述的半导体装置,其中所述第一、第二和第三层是垂直定向的面结型二极管的部分。
5.根据权利要求4所述的半导体装置,其中所述二极管是p-i-n二极管,且所述第三层未经掺杂或经轻度掺杂。
6.根据权利要求4所述的半导体装置,其中所述第一、第二和第三层已被图案化和蚀刻以形成柱状物。
7.根据权利要求6所述的半导体装置,其中所述柱状物垂直安置在底部导体与顶部导体之间,其中非易失性存储器单元包含所述底部导体的一部分、所述柱状物和所述顶部导体的一部分。
8.根据权利要求1所述的半导体装置,其中所述第一层被掺杂到至少约5×1019个掺杂物原子/立方厘米的掺杂物浓度。
9.根据权利要求8所述的半导体装置,其中所述第三层具有小于约5×1017个掺杂物原子/立方厘米的掺杂物浓度的n型掺杂物。
10.一种形成在衬底上方的非易失性存储器单元,所述存储器单元包含:
位于所述衬底上方的底部导体的一部分;
位于所述底部导体上方的顶部导体的一部分;以及
垂直安置在所述底部导体与所述顶部导体之间的二极管,所述二极管包含:
i)重度n掺杂半导体材料的第一沉积层;
ii)未重度n掺杂的半导体材料的第二沉积层,其中所述第二层的半导体材料为至少10原子%锗的硅锗合金,所述第二层安置在所述第一层上方且与其接触;以及
iii)未重度n掺杂的半导体材料的第三沉积层,其中所述第三层的半导体材料为硅或少于10原子%锗的硅锗合金,其中所述第三层位于所述第二层上方且与其接触。
11.根据权利要求10所述的非易失性存储器单元,其中所述第一层的半导体材料为至少10原子%锗的硅锗合金。
12.根据权利要求10所述的非易失性存储器单元,其中所述第一层被掺杂到至少约5×1019个掺杂物原子/立方厘米的掺杂物浓度。
13.根据权利要求12所述的非易失性存储器单元,其中所述第三层具有少于约5×1017个掺杂物原子/立方厘米的掺杂物浓度的n型掺杂物。
14.根据权利要求12所述的非易失性存储器单元,其中所述第二层具有少于约5×1017个掺杂物原子/立方厘米的掺杂物浓度的n型掺杂物。
15.根据权利要求10所述的非易失性存储器单元,其中所述第三层的半导体材料为硅或不多于5原子%锗的硅锗合金。
16.根据权利要求10所述的非易失性存储器单元,其中所述二极管呈柱状物的形式。
17.根据权利要求10所述的非易失性存储器单元,其中所述存储器单元进一步包含可逆状态改变元件,所述可逆状态改变元件安置在所述二极管与所述底部导体之间或所述二极管与所述顶部导体之间。
18.根据权利要求17所述的非易失性存储器单元,其中所述可逆状态改变元件包含选自由以下各物组成的群的电阻率切换金属氧化物或氮化物化合物层:NiO、Nb2O5、TiO2、HfO2、Al2O3、CoO、MgOx、CrO2、VO、BN和AlN。
19.根据权利要求10所述的非易失性存储器单元,其中所述第二层为至少约100埃厚。
20.一种单片三维存储器阵列,其包含:
a)形成在衬底上方的第一存储器层级,所述第一存储器层级包含:
i)多个大体上平行、大体上共面的底部导体;
ii)多个大体上平行、大体上共面的顶部导体;
iii)多个半导体面结型二极管,每一二极管垂直安置在所述底部导体的一者与所述顶部导体的一者之间,其中每一二极管包含重度n掺杂半导体材料的第一层;轻度n掺杂、p掺杂或未掺杂硅锗合金的第二层,其中所述第二层为至少10原子%锗,所述第二层位于所述第一层上方;和轻度n掺杂、p掺杂或未掺杂硅或硅锗合金的第三层,其中所述第三层为少于10原子%锗,所述第三层位于所述第二层上方;以及
b)单片形成在所述第一存储器层级上方的至少一第二存储器层级。
CN2006800523544A 2005-12-09 2006-11-30 最小化n型掺杂物扩散的经沉积半导体结构和制造方法 Active CN101336478B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11/298,331 US7405465B2 (en) 2004-09-29 2005-12-09 Deposited semiconductor structure to minimize n-type dopant diffusion and method of making
US11/298,331 2005-12-09
PCT/US2006/046133 WO2007067448A1 (en) 2005-12-09 2006-11-30 Deposited semiconductor structure to minimize n-type dopant diffusion and method of making

Publications (2)

Publication Number Publication Date
CN101336478A true CN101336478A (zh) 2008-12-31
CN101336478B CN101336478B (zh) 2011-02-16

Family

ID=37820656

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2006800523544A Active CN101336478B (zh) 2005-12-09 2006-11-30 最小化n型掺杂物扩散的经沉积半导体结构和制造方法

Country Status (7)

Country Link
US (5) US7405465B2 (zh)
EP (1) EP1961044A1 (zh)
JP (1) JP5042233B2 (zh)
KR (1) KR20080091135A (zh)
CN (1) CN101336478B (zh)
TW (1) TWI331769B (zh)
WO (1) WO2007067448A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102640289A (zh) * 2009-09-17 2012-08-15 桑迪士克3D公司 具有硅锗低接触电阻的pin二极管及其形成方法
CN111261748A (zh) * 2018-11-30 2020-06-09 原子能和替代能源委员会 用于制造具有低暗电流的基于锗的二极管阵列的方法

Families Citing this family (146)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7767499B2 (en) * 2002-12-19 2010-08-03 Sandisk 3D Llc Method to form upward pointing p-i-n diodes having large and uniform current
US7176064B2 (en) * 2003-12-03 2007-02-13 Sandisk 3D Llc Memory cell comprising a semiconductor junction diode crystallized adjacent to a silicide
US7682920B2 (en) * 2003-12-03 2010-03-23 Sandisk 3D Llc Method for making a p-i-n diode crystallized adjacent to a silicide in series with a dielectric antifuse
US8018024B2 (en) * 2003-12-03 2011-09-13 Sandisk 3D Llc P-i-n diode crystallized adjacent to a silicide in series with a dielectric antifuse
US7405465B2 (en) 2004-09-29 2008-07-29 Sandisk 3D Llc Deposited semiconductor structure to minimize n-type dopant diffusion and method of making
US7812404B2 (en) 2005-05-09 2010-10-12 Sandisk 3D Llc Nonvolatile memory cell comprising a diode and a resistance-switching material
US7834338B2 (en) 2005-11-23 2010-11-16 Sandisk 3D Llc Memory cell comprising nickel-cobalt oxide switching element
US7808810B2 (en) 2006-03-31 2010-10-05 Sandisk 3D Llc Multilevel nonvolatile memory cell comprising a resistivity-switching oxide or nitride and an antifuse
US7829875B2 (en) 2006-03-31 2010-11-09 Sandisk 3D Llc Nonvolatile rewritable memory cell comprising a resistivity-switching oxide or nitride and an antifuse
US7875871B2 (en) 2006-03-31 2011-01-25 Sandisk 3D Llc Heterojunction device comprising a semiconductor and a resistivity-switching oxide or nitride
US7586773B2 (en) 2007-03-27 2009-09-08 Sandisk 3D Llc Large array of upward pointing p-i-n diodes having large and uniform current
US7667999B2 (en) * 2007-03-27 2010-02-23 Sandisk 3D Llc Method to program a memory cell comprising a carbon nanotube fabric and a steering element
US7982209B2 (en) * 2007-03-27 2011-07-19 Sandisk 3D Llc Memory cell comprising a carbon nanotube fabric element and a steering element
US7537968B2 (en) * 2007-06-19 2009-05-26 Sandisk 3D Llc Junction diode with reduced reverse current
US20080315206A1 (en) * 2007-06-19 2008-12-25 Herner S Brad Highly Scalable Thin Film Transistor
US7718546B2 (en) * 2007-06-27 2010-05-18 Sandisk 3D Llc Method for fabricating a 3-D integrated circuit using a hard mask of silicon-oxynitride on amorphous carbon
US8233308B2 (en) 2007-06-29 2012-07-31 Sandisk 3D Llc Memory cell that employs a selectively deposited reversible resistance-switching element and methods of forming the same
US20090104756A1 (en) * 2007-06-29 2009-04-23 Tanmay Kumar Method to form a rewriteable memory cell comprising a diode and a resistivity-switching grown oxide
US7824956B2 (en) * 2007-06-29 2010-11-02 Sandisk 3D Llc Memory cell that employs a selectively grown reversible resistance-switching element and methods of forming the same
US7846785B2 (en) * 2007-06-29 2010-12-07 Sandisk 3D Llc Memory cell that employs a selectively deposited reversible resistance-switching element and methods of forming the same
US7902537B2 (en) * 2007-06-29 2011-03-08 Sandisk 3D Llc Memory cell that employs a selectively grown reversible resistance-switching element and methods of forming the same
US20090086521A1 (en) * 2007-09-28 2009-04-02 Herner S Brad Multiple antifuse memory cells and methods to form, program, and sense the same
US8349663B2 (en) * 2007-09-28 2013-01-08 Sandisk 3D Llc Vertical diode based memory cells having a lowered programming voltage and methods of forming the same
US20090166610A1 (en) * 2007-12-31 2009-07-02 April Schricker Memory cell with planarized carbon nanotube layer and methods of forming the same
US8878235B2 (en) 2007-12-31 2014-11-04 Sandisk 3D Llc Memory cell that employs a selectively fabricated carbon nano-tube reversible resistance-switching element and methods of forming the same
US8236623B2 (en) 2007-12-31 2012-08-07 Sandisk 3D Llc Memory cell that employs a selectively fabricated carbon nano-tube reversible resistance-switching element and methods of forming the same
US8558220B2 (en) * 2007-12-31 2013-10-15 Sandisk 3D Llc Memory cell that employs a selectively fabricated carbon nano-tube reversible resistance-switching element formed over a bottom conductor and methods of forming the same
CN101978497A (zh) * 2008-01-15 2011-02-16 桑迪士克3D有限责任公司 柱形器件及其制作方法
US7745312B2 (en) * 2008-01-15 2010-06-29 Sandisk 3D, Llc Selective germanium deposition for pillar devices
US7906392B2 (en) 2008-01-15 2011-03-15 Sandisk 3D Llc Pillar devices and methods of making thereof
US8110476B2 (en) * 2008-04-11 2012-02-07 Sandisk 3D Llc Memory cell that includes a carbon-based memory element and methods of forming the same
US7723180B2 (en) * 2008-04-11 2010-05-25 Sandisk 3D Llc Multilevel nonvolatile memory device containing a carbon storage material and methods of making and using same
JP5469159B2 (ja) * 2008-04-11 2014-04-09 サンディスク スリーディー,エルエルシー カーボンナノチューブ可逆抵抗スイッチング素子を含むメモリセルおよびその形成方法
US8304284B2 (en) * 2008-04-11 2012-11-06 Sandisk 3D Llc Memory cell that employs a selectively fabricated carbon nano-tube reversible resistance-switching element, and methods of forming the same
US8530318B2 (en) * 2008-04-11 2013-09-10 Sandisk 3D Llc Memory cell that employs a selectively fabricated carbon nano-tube reversible resistance-switching element formed over a bottom conductor and methods of forming the same
US7859887B2 (en) * 2008-04-11 2010-12-28 Sandisk 3D Llc Multilevel nonvolatile memory device containing a carbon storage material and methods of making and using same
US8048474B2 (en) * 2008-04-11 2011-11-01 Sandisk 3D Llc Method of making nonvolatile memory cell containing carbon resistivity switching as a storage element by low temperature processing
US7812335B2 (en) * 2008-04-11 2010-10-12 Sandisk 3D Llc Sidewall structured switchable resistor cell
US7830698B2 (en) * 2008-04-11 2010-11-09 Sandisk 3D Llc Multilevel nonvolatile memory device containing a carbon storage material and methods of making and using same
US8133793B2 (en) * 2008-05-16 2012-03-13 Sandisk 3D Llc Carbon nano-film reversible resistance-switchable elements and methods of forming the same
US8471307B2 (en) * 2008-06-13 2013-06-25 Texas Instruments Incorporated In-situ carbon doped e-SiGeCB stack for MOS transistor
US8154005B2 (en) * 2008-06-13 2012-04-10 Sandisk 3D Llc Non-volatile memory arrays comprising rail stacks with a shared diode component portion for diodes of electrically isolated pillars
DE102008035816B4 (de) * 2008-07-31 2011-08-25 GLOBALFOUNDRIES Dresden Module One Ltd. Liability Company & Co. KG, 01109 Leistungssteigerung in PMOS- und NMOS-Transistoren durch Verwendung eines eingebetteten verformten Halbleitermaterials
US8557685B2 (en) * 2008-08-07 2013-10-15 Sandisk 3D Llc Memory cell that includes a carbon-based memory element and methods of forming the same
US8431417B2 (en) * 2008-08-19 2013-04-30 Sandisk 3D Llc Methods for increasing carbon nano-tube (CNT) yield in memory devices
WO2010026865A1 (en) * 2008-09-05 2010-03-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor memory device and semiconductor device
WO2010026654A1 (ja) * 2008-09-05 2010-03-11 株式会社 東芝 記憶装置
US7920407B2 (en) * 2008-10-06 2011-04-05 Sandisk 3D, Llc Set and reset detection circuits for reversible resistance switching memory material
KR20110080166A (ko) * 2008-10-23 2011-07-12 쌘디스크 3디 엘엘씨 감소된 박리를 나타내는 탄소계 메모리 소자와 상기 소자를 형성하는 방법
KR101548674B1 (ko) * 2009-08-26 2015-09-01 삼성전자주식회사 3차원 반도체 메모리 장치 및 그 제조 방법
US8284601B2 (en) 2009-04-01 2012-10-09 Samsung Electronics Co., Ltd. Semiconductor memory device comprising three-dimensional memory cell array
US8270199B2 (en) 2009-04-03 2012-09-18 Sandisk 3D Llc Cross point non-volatile memory cell
US8279650B2 (en) 2009-04-20 2012-10-02 Sandisk 3D Llc Memory system with data line switching scheme
US20100279493A1 (en) * 2009-04-30 2010-11-04 Kishore Kamath Doping of semiconductor layer for improved efficiency of semiconductor structures
US20100276785A1 (en) * 2009-04-30 2010-11-04 Kishore Kamath Doping of semiconductor layer for improved efficiency of semiconductor structures
US8154904B2 (en) 2009-06-19 2012-04-10 Sandisk 3D Llc Programming reversible resistance switching elements
US7927977B2 (en) * 2009-07-15 2011-04-19 Sandisk 3D Llc Method of making damascene diodes using sacrificial material
US8551855B2 (en) * 2009-10-23 2013-10-08 Sandisk 3D Llc Memory cell that includes a carbon-based reversible resistance switching element compatible with a steering element, and methods of forming the same
US8481396B2 (en) * 2009-10-23 2013-07-09 Sandisk 3D Llc Memory cell that includes a carbon-based reversible resistance switching element compatible with a steering element, and methods of forming the same
US8741696B2 (en) * 2009-10-26 2014-06-03 Sandisk 3D Llc Methods of forming pillars for memory cells using sequential sidewall patterning
US8298887B2 (en) * 2009-12-03 2012-10-30 Applied Materials, Inc. High mobility monolithic p-i-n diodes
US8551850B2 (en) * 2009-12-07 2013-10-08 Sandisk 3D Llc Methods of forming a reversible resistance-switching metal-insulator-metal structure
US8223525B2 (en) 2009-12-15 2012-07-17 Sandisk 3D Llc Page register outside array and sense amplifier interface
US8213243B2 (en) 2009-12-15 2012-07-03 Sandisk 3D Llc Program cycle skip
US8431492B2 (en) 2010-02-02 2013-04-30 Sandisk 3D Llc Memory cell that includes a sidewall collar for pillar isolation and methods of forming the same
US8389375B2 (en) * 2010-02-11 2013-03-05 Sandisk 3D Llc Memory cell formed using a recess and methods for forming the same
US8686419B2 (en) * 2010-02-23 2014-04-01 Sandisk 3D Llc Structure and fabrication method for resistance-change memory cell in 3-D memory
US8237146B2 (en) * 2010-02-24 2012-08-07 Sandisk 3D Llc Memory cell with silicon-containing carbon switching layer and methods for forming the same
US20110210306A1 (en) * 2010-02-26 2011-09-01 Yubao Li Memory cell that includes a carbon-based memory element and methods of forming the same
US8481394B2 (en) * 2010-03-04 2013-07-09 Sandisk 3D Llc Memory cell that includes a carbon-based memory element and methods of forming the same
WO2011115926A1 (en) * 2010-03-16 2011-09-22 Sandisk 3D, Llc Bottom electrodes for use with metal oxide resistivity switching layers
JP2011222929A (ja) * 2010-03-23 2011-11-04 Toshiba Corp 不揮発性記憶装置及びその製造方法
US8471360B2 (en) 2010-04-14 2013-06-25 Sandisk 3D Llc Memory cell with carbon switching material having a reduced cross-sectional area and methods for forming the same
US8436447B2 (en) 2010-04-23 2013-05-07 Sandisk 3D Llc Memory cell that includes a carbon-based memory element and methods of forming the same
CN102024676A (zh) * 2010-05-25 2011-04-20 福建钧石能源有限公司 单室反应器中制造半导体器件的方法
US9601692B1 (en) 2010-07-13 2017-03-21 Crossbar, Inc. Hetero-switching layer in a RRAM device and method
US8946046B1 (en) 2012-05-02 2015-02-03 Crossbar, Inc. Guided path for forming a conductive filament in RRAM
US9570678B1 (en) 2010-06-08 2017-02-14 Crossbar, Inc. Resistive RAM with preferental filament formation region and methods
US8724369B2 (en) 2010-06-18 2014-05-13 Sandisk 3D Llc Composition of memory cell with resistance-switching layers
US8395927B2 (en) 2010-06-18 2013-03-12 Sandisk 3D Llc Memory cell with resistance-switching layers including breakdown layer
US8520425B2 (en) 2010-06-18 2013-08-27 Sandisk 3D Llc Resistive random access memory with low current operation
CN101901763B (zh) * 2010-06-28 2011-12-07 启东吉莱电子有限公司 可控硅生产工艺
US8569172B1 (en) 2012-08-14 2013-10-29 Crossbar, Inc. Noble metal/non-noble metal electrode for RRAM applications
US8884261B2 (en) 2010-08-23 2014-11-11 Crossbar, Inc. Device switching using layered device structure
US8168506B2 (en) 2010-07-13 2012-05-01 Crossbar, Inc. On/off ratio for non-volatile memory device and method
JP2012033750A (ja) * 2010-07-30 2012-02-16 Toshiba Corp 半導体装置及びその製造方法
US9401475B1 (en) 2010-08-23 2016-07-26 Crossbar, Inc. Method for silver deposition for a non-volatile memory device
US8492195B2 (en) 2010-08-23 2013-07-23 Crossbar, Inc. Method for forming stackable non-volatile resistive switching memory devices
US8841196B1 (en) 2010-09-29 2014-09-23 Crossbar, Inc. Selective deposition of silver for non-volatile memory device fabrication
JP5075959B2 (ja) * 2010-09-14 2012-11-21 株式会社東芝 抵抗変化メモリ
US8883589B2 (en) 2010-09-28 2014-11-11 Sandisk 3D Llc Counter doping compensation methods to improve diode performance
US8841648B2 (en) 2010-10-14 2014-09-23 Sandisk 3D Llc Multi-level memory arrays with memory cells that employ bipolar storage elements and methods of forming the same
US8389971B2 (en) 2010-10-14 2013-03-05 Sandisk 3D Llc Memory cells having storage elements that share material layers with steering elements and methods of forming the same
US8187945B2 (en) 2010-10-27 2012-05-29 Crossbar, Inc. Method for obtaining smooth, continuous silver film
US8258020B2 (en) 2010-11-04 2012-09-04 Crossbar Inc. Interconnects for stacked non-volatile memory device and method
US8502185B2 (en) 2011-05-31 2013-08-06 Crossbar, Inc. Switching device having a non-linear element
USRE46335E1 (en) 2010-11-04 2017-03-07 Crossbar, Inc. Switching device having a non-linear element
US8355271B2 (en) 2010-11-17 2013-01-15 Sandisk 3D Llc Memory system with reversible resistivity-switching using pulses of alternate polarity
US8462580B2 (en) 2010-11-17 2013-06-11 Sandisk 3D Llc Memory system with reversible resistivity-switching using pulses of alternatrie polarity
US8791010B1 (en) 2010-12-31 2014-07-29 Crossbar, Inc. Silver interconnects for stacked non-volatile memory device and method
US8866124B2 (en) 2011-02-02 2014-10-21 Sandisk 3D Llc Diodes with native oxide regions for use in memory arrays and methods of forming the same
US9053766B2 (en) 2011-03-03 2015-06-09 Sandisk 3D, Llc Three dimensional memory system with intelligent select circuit
US8553476B2 (en) 2011-03-03 2013-10-08 Sandisk 3D Llc Three dimensional memory system with page of data across word lines
US8374051B2 (en) 2011-03-03 2013-02-12 Sandisk 3D Llc Three dimensional memory system with column pipeline
US8699293B2 (en) 2011-04-27 2014-04-15 Sandisk 3D Llc Non-volatile storage system with dual block programming
US9620206B2 (en) 2011-05-31 2017-04-11 Crossbar, Inc. Memory array architecture with two-terminal memory cells
US8619459B1 (en) 2011-06-23 2013-12-31 Crossbar, Inc. High operating speed resistive random access memory
US9564587B1 (en) 2011-06-30 2017-02-07 Crossbar, Inc. Three-dimensional two-terminal memory with enhanced electric field and segmented interconnects
US9166163B2 (en) 2011-06-30 2015-10-20 Crossbar, Inc. Sub-oxide interface layer for two-terminal memory
US8946669B1 (en) 2012-04-05 2015-02-03 Crossbar, Inc. Resistive memory device and fabrication methods
US9627443B2 (en) 2011-06-30 2017-04-18 Crossbar, Inc. Three-dimensional oblique two-terminal memory with enhanced electric field
CN103828047A (zh) * 2011-07-22 2014-05-28 科洛斯巴股份有限公司 用于非易失性存储器装置的p+硅锗材料的种子层及方法
US8866121B2 (en) 2011-07-29 2014-10-21 Sandisk 3D Llc Current-limiting layer and a current-reducing layer in a memory device
US8659001B2 (en) 2011-09-01 2014-02-25 Sandisk 3D Llc Defect gradient to boost nonvolatile memory performance
JP2013069933A (ja) * 2011-09-22 2013-04-18 Toshiba Corp 不揮発性半導体記憶装置
US8637413B2 (en) 2011-12-02 2014-01-28 Sandisk 3D Llc Nonvolatile resistive memory element with a passivated switching layer
US8698119B2 (en) 2012-01-19 2014-04-15 Sandisk 3D Llc Nonvolatile memory device using a tunnel oxide as a current limiter element
US8686386B2 (en) 2012-02-17 2014-04-01 Sandisk 3D Llc Nonvolatile memory device using a varistor as a current limiter element
US9685608B2 (en) 2012-04-13 2017-06-20 Crossbar, Inc. Reduced diffusion in metal electrode for two-terminal memory
US8946667B1 (en) 2012-04-13 2015-02-03 Crossbar, Inc. Barrier structure for a silver based RRAM and method
US8682809B2 (en) 2012-04-18 2014-03-25 Scorpcast, Llc System and methods for providing user generated video reviews
US8658476B1 (en) 2012-04-20 2014-02-25 Crossbar, Inc. Low temperature P+ polycrystalline silicon material for non-volatile memory device
US8796658B1 (en) 2012-05-07 2014-08-05 Crossbar, Inc. Filamentary based non-volatile resistive memory device and method
US8765566B2 (en) 2012-05-10 2014-07-01 Crossbar, Inc. Line and space architecture for a non-volatile memory device
US9070859B1 (en) * 2012-05-25 2015-06-30 Crossbar, Inc. Low temperature deposition method for polycrystalline silicon material for a non-volatile memory device
US8883603B1 (en) 2012-08-01 2014-11-11 Crossbar, Inc. Silver deposition method for a non-volatile memory device
US9741765B1 (en) 2012-08-14 2017-08-22 Crossbar, Inc. Monolithically integrated resistive memory using integrated-circuit foundry compatible processes
US9583701B1 (en) 2012-08-14 2017-02-28 Crossbar, Inc. Methods for fabricating resistive memory device switching material using ion implantation
KR101932230B1 (ko) * 2012-08-28 2018-12-26 에스케이하이닉스 주식회사 매립비트라인을 구비한 반도체 장치 및 그 제조방법
US8796102B1 (en) 2012-08-29 2014-08-05 Crossbar, Inc. Device structure for a RRAM and method
US9312483B2 (en) 2012-09-24 2016-04-12 Crossbar, Inc. Electrode structure for a non-volatile memory device and method
US9576616B2 (en) 2012-10-10 2017-02-21 Crossbar, Inc. Non-volatile memory with overwrite capability and low write amplification
US9406379B2 (en) 2013-01-03 2016-08-02 Crossbar, Inc. Resistive random access memory with non-linear current-voltage relationship
US20140241031A1 (en) 2013-02-28 2014-08-28 Sandisk 3D Llc Dielectric-based memory cells having multi-level one-time programmable and bi-level rewriteable operating modes and methods of forming the same
US9093635B2 (en) 2013-03-14 2015-07-28 Crossbar, Inc. Controlling on-state current for two-terminal memory
US8947944B2 (en) 2013-03-15 2015-02-03 Sandisk 3D Llc Program cycle skip evaluation before write operations in non-volatile memory
US8947972B2 (en) 2013-03-15 2015-02-03 Sandisk 3D Llc Dynamic address grouping for parallel programming in non-volatile memory
US10290801B2 (en) 2014-02-07 2019-05-14 Crossbar, Inc. Scalable silicon based resistive memory device
CN104022219A (zh) * 2014-06-26 2014-09-03 中山大学 基于Al2O3薄膜的擦写一次读多次非挥发性存储器
CN108352400B (zh) * 2015-10-30 2021-09-10 佛罗里达大学研究基金会有限公司 包封的纳米结构及其制造方法
KR102494683B1 (ko) 2016-03-02 2023-02-02 에스케이하이닉스 주식회사 스위칭 소자, 스위칭 소자 어레이, 저항 변화 메모리 장치, 및 이들의 제조 방법
US9806256B1 (en) 2016-10-21 2017-10-31 Sandisk Technologies Llc Resistive memory device having sidewall spacer electrode and method of making thereof
US11600634B2 (en) 2020-08-05 2023-03-07 Sandisk Technologies Llc Three-dimensional memory device including a composite semiconductor channel and a horizontal source contact layer and method of making the same
US11552100B2 (en) 2020-08-05 2023-01-10 Sandisk Technologies Llc Three-dimensional memory device including a composite semiconductor channel and a horizontal source contact layer and method of making the same
US11302714B2 (en) 2020-08-05 2022-04-12 Sandisk Technologies Llc Three-dimensional memory device including a composite semiconductor channel and a horizontal source contact layer and method of making the same
WO2022031357A1 (en) * 2020-08-05 2022-02-10 Sandisk Technologies Llc Three-dimensional memory device including a composite semiconductor channel and a horizontal source contact layer and method of making the same

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4319211B4 (de) 1993-06-09 2004-04-15 Daimlerchrysler Ag Tunnel-BARITT-Diode
US5437209A (en) 1993-09-30 1995-08-01 The Torrington Company Rocker arm assembly
TW227629B (en) 1993-10-30 1994-08-01 Nat Science Committee Photo receiver with high sensitivity and high current
JPH08125200A (ja) * 1994-10-25 1996-05-17 Mitsubishi Electric Corp 半導体装置及びその製造方法
US5915167A (en) 1997-04-04 1999-06-22 Elm Technology Corporation Three dimensional structure memory
US6162711A (en) * 1999-01-15 2000-12-19 Lucent Technologies, Inc. In-situ boron doped polysilicon with dual layer and dual grain structure for use in integrated circuits manufacturing
US6879014B2 (en) 2000-03-20 2005-04-12 Aegis Semiconductor, Inc. Semitransparent optical detector including a polycrystalline layer and method of making
US6426547B1 (en) 2000-12-12 2002-07-30 Information Business Machines Corporation Lateral polysilicon pin diode and method for so fabricating
TW512524B (en) 2001-01-19 2002-12-01 Nat Science Council Fabrication of amorphous silicon/amorphous silicon gemine NI1PI2N infrared position defectors
US7038248B2 (en) 2002-02-15 2006-05-02 Sandisk Corporation Diverse band gap energy level semiconductor device
JP3970729B2 (ja) 2002-09-20 2007-09-05 株式会社ルネサステクノロジ 半導体装置およびその製造方法
US20050226067A1 (en) * 2002-12-19 2005-10-13 Matrix Semiconductor, Inc. Nonvolatile memory cell operating by increasing order in polycrystalline semiconductor material
US8637366B2 (en) 2002-12-19 2014-01-28 Sandisk 3D Llc Nonvolatile memory cell without a dielectric antifuse having high- and low-impedance states
US7265049B2 (en) * 2002-12-19 2007-09-04 Sandisk 3D Llc Ultrathin chemically grown oxide film as a dopant diffusion barrier in semiconductor devices
US7176064B2 (en) 2003-12-03 2007-02-13 Sandisk 3D Llc Memory cell comprising a semiconductor junction diode crystallized adjacent to a silicide
US6946719B2 (en) 2003-12-03 2005-09-20 Matrix Semiconductor, Inc Semiconductor device including junction diode contacting contact-antifuse unit comprising silicide
AU2003296988A1 (en) * 2002-12-19 2004-07-29 Matrix Semiconductor, Inc An improved method for making high-density nonvolatile memory
US7285464B2 (en) * 2002-12-19 2007-10-23 Sandisk 3D Llc Nonvolatile memory cell comprising a reduced height vertical diode
JP4377817B2 (ja) * 2003-03-18 2009-12-02 株式会社東芝 プログラマブル抵抗メモリ装置
KR100773537B1 (ko) * 2003-06-03 2007-11-07 삼성전자주식회사 한 개의 스위칭 소자와 한 개의 저항체를 포함하는비휘발성 메모리 장치 및 그 제조 방법
US7172840B2 (en) 2003-12-05 2007-02-06 Sandisk Corporation Photomask features with interior nonprinting window using alternating phase shifting
US6951780B1 (en) 2003-12-18 2005-10-04 Matrix Semiconductor, Inc. Selective oxidation of silicon in diode, TFT, and monolithic three dimensional memory arrays
US20050221200A1 (en) 2004-04-01 2005-10-06 Matrix Semiconductor, Inc. Photomask features with chromeless nonprinting phase shifting window
US7405465B2 (en) 2004-09-29 2008-07-29 Sandisk 3D Llc Deposited semiconductor structure to minimize n-type dopant diffusion and method of making
US20060067117A1 (en) 2004-09-29 2006-03-30 Matrix Semiconductor, Inc. Fuse memory cell comprising a diode, the diode serving as the fuse element
US7224013B2 (en) * 2004-09-29 2007-05-29 Sandisk 3D Llc Junction diode comprising varying semiconductor compositions
US20060250836A1 (en) * 2005-05-09 2006-11-09 Matrix Semiconductor, Inc. Rewriteable memory cell comprising a diode and a resistance-switching material
US7678420B2 (en) 2005-06-22 2010-03-16 Sandisk 3D Llc Method of depositing germanium films
US20070102724A1 (en) * 2005-11-10 2007-05-10 Matrix Semiconductor, Inc. Vertical diode doped with antimony to avoid or limit dopant diffusion
US7816659B2 (en) 2005-11-23 2010-10-19 Sandisk 3D Llc Devices having reversible resistivity-switching metal oxide or nitride layer with added metal

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102640289A (zh) * 2009-09-17 2012-08-15 桑迪士克3D公司 具有硅锗低接触电阻的pin二极管及其形成方法
CN111261748A (zh) * 2018-11-30 2020-06-09 原子能和替代能源委员会 用于制造具有低暗电流的基于锗的二极管阵列的方法

Also Published As

Publication number Publication date
US20120012808A1 (en) 2012-01-19
JP2009518861A (ja) 2009-05-07
CN101336478B (zh) 2011-02-16
US7405465B2 (en) 2008-07-29
US20100163831A1 (en) 2010-07-01
TWI331769B (en) 2010-10-11
US7648896B2 (en) 2010-01-19
TW200739683A (en) 2007-10-16
JP5042233B2 (ja) 2012-10-03
US20060087005A1 (en) 2006-04-27
US8030740B2 (en) 2011-10-04
WO2007067448A1 (en) 2007-06-14
US20130313505A1 (en) 2013-11-28
US20090026582A1 (en) 2009-01-29
US8766414B2 (en) 2014-07-01
US8314477B2 (en) 2012-11-20
EP1961044A1 (en) 2008-08-27
KR20080091135A (ko) 2008-10-09

Similar Documents

Publication Publication Date Title
CN101336478B (zh) 最小化n型掺杂物扩散的经沉积半导体结构和制造方法
CN101297402B (zh) 低温下制造的包括半导体二极管的高密度非易失性存储器阵列
CN101853921B (zh) 具有添加金属的可逆性电阻率切换金属氧化物或氮化物层
CN101681914B (zh) 具有大而均匀的电流的大阵列上指pin二极管及其形成方法
US7511352B2 (en) Rail Schottky device and method of making
US8722518B2 (en) Methods for protecting patterned features during trench etch
US20060006495A1 (en) Ultrathin chemically grown oxide film as a dopant diffusion barrier in semiconductor devices
CN101720506B (zh) 存储器单元,存储器阵列以及形成它们的方法
WO2008008630A2 (en) Highly dense monolithic three dimensional memory array and method for forming
CN101189714B (zh) 用于在形成通至导电部件的触点时减少电介质过蚀刻的方法
KR20100071049A (ko) 프로그래밍 전압이 감소된 수직 다이오드 기초 메모리 셀과 이를 형성하는 방법
US11444085B2 (en) Multi-layer thyristor random access memory with silicon-germanium bases
US20070102724A1 (en) Vertical diode doped with antimony to avoid or limit dopant diffusion
CN101553925B (zh) 邻近于硅化物而结晶的与介电反熔丝串联的p-i-n二极管及其形成方法
WO2008005412A2 (en) Ultrashallow semiconductor contact by outdiffusion from a solid source

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C41 Transfer of patent application or patent right or utility model
C56 Change in the name or address of the patentee
CP01 Change in the name or title of a patent holder

Address after: Texas, USA

Patentee after: SANDISK TECHNOLOGIES LLC

Address before: Texas, USA

Patentee before: Sandy Technology Corp.

TR01 Transfer of patent right

Effective date of registration: 20160726

Address after: Texas, USA

Patentee after: Sandy Technology Corp.

Address before: California, USA

Patentee before: Sandisk 3D LLC