CN101345816A - 拍摄控制设备和方法 - Google Patents

拍摄控制设备和方法 Download PDF

Info

Publication number
CN101345816A
CN101345816A CNA2008101323137A CN200810132313A CN101345816A CN 101345816 A CN101345816 A CN 101345816A CN A2008101323137 A CNA2008101323137 A CN A2008101323137A CN 200810132313 A CN200810132313 A CN 200810132313A CN 101345816 A CN101345816 A CN 101345816A
Authority
CN
China
Prior art keywords
time
electric charge
accumulated time
frame period
ray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2008101323137A
Other languages
English (en)
Other versions
CN101345816B (zh
Inventor
土谷佳司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Publication of CN101345816A publication Critical patent/CN101345816A/zh
Application granted granted Critical
Publication of CN101345816B publication Critical patent/CN101345816B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/30Transforming light or analogous information into electric information
    • H04N5/32Transforming X-rays
    • H04N5/3205Transforming X-rays using subtraction imaging techniques
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/54Control of apparatus or devices for radiation diagnosis
    • A61B6/542Control of apparatus or devices for radiation diagnosis involving control of exposure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Optics & Photonics (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

本发明涉及一种拍摄控制设备和方法。所述拍摄控制设备控制用于累积并读出电荷的传感器以便获得图像,包括:确定单元,用于基于输入单元的输入来确定表示图像拍摄间隔的帧周期;判断单元,用于基于由所述确定单元确定的所述帧周期来判断是否在所述帧周期内设置没有用于图像生成处理的电荷的累积和读出;以及控制单元,用于基于所述判断单元的判断来控制所述传感器。

Description

拍摄控制设备和方法
技术领域
本发明涉及一种拍摄控制设备和方法。
背景技术
近年来,需求这样一种具有单个装置结构的放射线图像拍摄设备:该设备除了静止图像拍摄,还兼容于运动图像拍摄和能量减影拍摄等多种不同的拍摄模式。例如,在日本特开2005-287773号公报中示出了兼容于这些不同的拍摄模式的放射线图像拍摄设备。
这里,将使用图7和图8来说明日本特开2005-287773号公报中所示的运动图像拍摄模式中的操作。
示出了传统示例的图7是示出在运动图像拍摄模式下用于照射X射线并用于累积并读出传感器中的电荷的示例性定时的时序图。在图7中,示出了如下情况下的定时:在单个帧的帧周期中,在X射线照射之后进行一次传感器的光电转换装置中电荷的读出,然后在没有X射线照射的情况下进行一次传感器的光电转换装置中电荷的读出。
注意,如图7所示,X射线照射后的一次读出和没有X射线照射的一次读出都涉及传感器的全部光电转换装置(全部像素)的电荷读出。因此,在图7中,这些读出时间是相同的长度(Tr)。X射线照射后的读出用于获得X射线图像,而没有X射线照射的读出用于进行偏移校正。
在图7中,下面的公式(1)的关系成立,其中Tf10是X射线图像的单个帧的帧周期,Tr是电荷读出时间,Tw11是在进行X射线照射时的电荷累积时间,Tw12是在没有进行X射线照射时的电荷累积时间。此时,单个帧的帧周期Tf10等于X射线照射周期。
Tf10=(Tw11+Tr)+(Tw12+Tr)                    (1)
偏移校正值Vo10可由下面的公式(2)计算,其中Vx是在进行X射线照射时读出的像素值,Vf是在没有进行X射线照射时读出的像素值,而Vo10是偏移校正值。
Vo10=Vx-Vf                                  (2)
由于偏移校正值与电荷累积时间成比例,因此希望满足下面的公式(3),以完全去除偏移。
Tw11=Tw12                                   (3)
在这种情况下,当将公式(3)代入公式(1)时,可由下面的公式(4)来计算电荷累积时间Tw11。
Tw11=Tf10/2-Tr                              (4)
如图7所示,由于在进行X射线照射时的电荷累积时间Tw11大于X射线照射时间Tx,因此需要满足下面的公式(5),其中Tx是X射线照射时间。
Tw11>Tx                                     (5)
示出了传统示例的图8是示出在运动图像拍摄模式下用于照射X射线并用于累积并读出传感器中的电荷的示例性定时的时序图。在图8中,示出了如下情况下的定时:在单个帧的帧周期内,在X射线照射之后进行一次传感器的光电转换装置中电荷的读出,然后在没有X射线照射的情况下进行三次传感器的光电转换装置中电荷的读出。
在图8中,Tf11是X射线图像的单个帧的帧周期,Tr是电荷读出时间,Tw13是在进行X射线照射时的电荷累积时间,并且Tw14是在没有进行X射线照射时的电荷累积时间。此时,为了完全去除偏移,与公式(3)类似的旨意,希望满足下面的公式(6)。
Tw13=Tw14                                   (6)
因此,由下面的公式(7)给出单个帧的帧周期Tf11。
Tf11=k·(Tw13+Tr)                           (7)
注意,k是表示在单个帧的帧周期内重复电荷累积和读出的次数的正整数,在图8的情况下为k=4,而在图7的情况下为k=2。
在图8中,可以由下面的公式(8)计算偏移校正值Vo11,其中Vx是在进行X射线照射时读出的像素值,Vf1、Vf2和Vf3是在没有进行X射线照射时读出的像素值,而Vo11是偏移校正值。
Vo11=Vx-Vfn                                 (8)
注意,n是1和k-1之间的整数。
基于公式(7),可以由下面的公式(9)计算在进行X射线照射时的电荷累积时间Tw13。
Tw13=Tf11/k-Tr                              (9)
如图8所示,由于在进行X射线照射时的电荷累积时间Tw13大于X射线照射时间Tx,因此需要满足下面的公式(10),其中Tx是X射线照射时间。
Tw13>Tx                                     (10)
这里,由于公式(4)与公式(9)的比较表示公式(4)等同于将k=2代入的公式(9),因此公式(4)包含于公式(9)。
尽管日本特开2005-287773号公报示出了作为能量减影拍摄模式而各照射一次低电压X射线和高电压X射线的情况,但如果重复该处理,则可以进行运动图像的能量减影拍摄。这里,将使用图9和图10来说明在这种情况下的运动图像的能量减影拍摄模式中的操作。
示出了传统示例的图9是示出在运动图像的能量减影拍摄模式中用于照射X射线并用于累积并读出传感器的光电转换装置中的电荷的示例性定时的时序图。在图9中,示出了如下情况下的定时:在单个帧的帧周期内,在低电压X射线照射之后进行一次读出,在高电压X射线照射之后进行一次读出,并在没有X射线照射的情况下进行一次读出。
在图9中,下面的公式(11)成立,其中Tf12是X射线图像的单个帧的帧周期,Txl是低电压X射线照射时间,Txh是高电压X射线照射时间,Tw15是在进行低电压X射线照射时的电荷累积时间,Tw16是在进行高电压X射线照射时的电荷累积时间,Tw17是在没有进行X射线照射时的电荷累积时间。
Tf12=(Tw15+Tr)+(Tw16+Tr)+(Tw17+Tr)          (11)
可以由下面的公式(12)计算偏移校正值,其中Vxl是在进行低电压X射线照射时读出的像素值,Vxh是在进行高电压X射线照射时读出的像素值,Vf是在没有进行X射线照射时读出的像素值,Vol是在进行低电压X射线照射时的偏移校正值,Voh是在进行高电压X射线照射时的偏移校正值。
Vol=Vxl-Vf,Voh=Vxh-Vf                     (12)
为了完全去除偏移,与公式(3)类似的旨意,希望满足下面的公式(13)。
Tw15=Tw16=Tw17                             (13)
只要公式(13)成立,则低电压X射线照射时间Txl和高电压X射线照射时间Txh可以不同。
因此,当将公式(13)代入公式(11)时,可以由下面的公式(14)来计算在进行低电压X射线照射时的电荷累积时间Tw15。
Tw15=Tf12/3-Tr                              (14)
由于在进行低电压X射线照射时的电荷累积时间Tw15大于低电压X射线照射时间Txl和高电压X射线照射时间Txh,因此需要满足下面的公式(15)。
Tw15>Txl,Tw15>Txh                         (15)
示出了传统示例的图10是示出在运动图像的能量减影拍摄模式中用于照射X射线并用于累积并读出传感器的光电转换装置中的电荷的示例性定时的时序图。在图10中,示出了如下情况下的定时:在单个帧的帧周期内,在低电压X射线照射之后和在没有进行X射线照射的情况下各进行一次读出,并在高电压X射线照射之后和在没有进行X射线照射的情况下各进行一次读出。
在图10中,下面的公式(16)成立,其中Tf13是X射线图像的单个帧的帧周期,Txl是低电压X射线照射时间,Txh是高电压X射线照射时间,Tw18是在进行低电压X射线照射时的电荷累积时间,Tw19是随后的在没有进行X射线照射时的电荷累积时间,Tw20是在进行高电压X射线照射时的电荷累积时间,Tw21是随后的在没有进行X射线照射时的电荷累积时间。
Tf13=(Tw18+Tr)+(Tw19+Tr)+(Tw20+Tr)+(Tw21+Tr) (16)
可以由下面的公式(17)计算偏移校正值,其中Vxl是在进行低电压X射线照射时读出的像素值,Vfl是随后的在没有进行X射线照射时读出的像素值,Vxh是在进行高电压X射线照射时读出的像素值,Vfh是随后的在没有进行X射线照射时读出的像素值,Vol是在进行低电压X射线照射时的偏移校正值,Voh是在进行高电压X射线照射时的偏移校正值。
Vol=Vxl-Vfl,Voh=Vxh-Vfh                    (17)
为了完全去除偏移,与公式(3)类似的旨意,希望满足下面的公式(18)和(19)。
Tw18=Tw19                                    (18)
Tw20=Tw21                                    (19)
此时,只要公式(18)和(19)成立,则低电压X射线照射时间Txl和高电压X射线照射时间Txh可以不同。
因此,当将公式(18)和(19)代入公式(16)时,可给出下面的公式(20)。
Tw18+Tw20=Tf13/2-2Tr                        (20)
由于在进行X射线照射时的电荷累积时间大于X射线照射时间,因此需要满足下面的公式(21)。
Tw18>Txl,Tw20>Txh                         (21)
通常,低电压X射线照射时间Txl和高电压X射线照射时间Txh是预定的,从而通常例如下面的公式(22)和(23)成立。
Tw18=Txl+α                                 (22)
Tw20=Txh+α                                 (23)
如果拍摄帧频高(例如,接近30fps),则α通常取几毫秒的值。
当使用公式(20)、(22)和(23)来整理时,由下面的公式(24)给出在进行低电压X射线照射时的电荷累积时间Tw18,并且由下面的公式(25)给出在进行高电压X射线照射时的电荷累积时间Tw20。
Tw18=Tfl3/4-Tr+(Txl-Txh)/2                  (24)
Tw20=Tfl3/4-Tr+(Txh-Txl)/2                  (25)
然而,通常,对于X射线拍摄设备,为了减少被检者(被摄体)接受放射线的量,而以降低的帧频来进行拍摄。存在这样的一种方法:该方法涉及例如,在降低帧频的情况下,即,在以更长的帧周期进行拍摄的情况下,在公式(7)中增大k的值。这里,在图7中k=2,在图8中k=4。
在图8的情况下,为了满足下面的公式(26),图8中所示的单个帧的帧周期Tf11将是图7所示的帧周期Tf10的2倍。
Tw11=Tw12=Tw13=Tw14                       (26)
然而,利用涉及改变k值的方法,仅可以以图7所示的帧周期Tf10的整数倍来延长单个帧的帧周期Tf11。即,在这种情况下,难以为了减少被检者(被摄体)接受放射线的量而适当地降低帧频。
为了减少被检者(被摄体)接受放射线的量而以更长的帧周期进行拍摄的另一种方法涉及延长电荷累积时间。图11示出了其时序图。示出了传统示例的图11是示出在运动图像拍摄模式中用于照射X射线并用于累积并读出传感器的光电转换装置中的电荷的示例性定时的时序图。在图11中,示出了k=2且与图7的示例相比较延长了电荷累积时间的情况下的定时。
在图11中,Tf14是X射线图像的单个帧的帧周期,Tr是电荷读出时间,Tw31是在进行X射线照射时的电荷累积时间,Tw32是在没有进行X射线照射时的电荷累积时间。
这里,如果单个帧的帧周期Tf14大于图7中的帧周期Tf10,则下面的公式(27)的关系成立。
Tw31>Tw11                                   (27)
然而,如图11所示,当延长电荷累积时间时流入传感器的光电转换装置中的暗电流(dark current)的量增加,从而在光电转换装置中累积的电荷量增加。当累积的电荷量增加时,信噪(S/N)比劣化,从而使动态范围变窄。关于能量减影拍摄模式和立体拍摄模式也类似地存在相同的问题。
发明内容
考虑到上述问题做出了本发明,并且本发明的目的在于,即使在根据需要通过降低帧频来减少被摄体接受放射线的量的情况下,也防止放射线图像的S/N比的劣化,并避免动态范围变窄。
根据本发明的一个方面,提供一种拍摄控制设备,所述拍摄控制设备控制用于累积并读出电荷的传感器以便获得图像,包括:确定单元,用于基于输入单元的输入来确定表示图像拍摄间隔的帧周期;判断单元,用于基于由所述确定单元确定的所述帧周期来判断是否在所述帧周期内设置没有用于图像生成处理的电荷的累积和读出;以及控制单元,用于基于所述判断单元的判断来控制所述传感器。
根据本发明的另一方面,提供一种拍摄控制设备的控制方法,所述拍摄控制设备控制用于累积并读出电荷的传感器以便获得图像,所述控制方法包括以下步骤:确定步骤,其基于输入单元的输入来确定表示图像拍摄间隔的帧周期;判断步骤,其基于由所述确定步骤确定的所述帧周期来判断是否在所述帧周期内设置没有用于图像生成处理的电荷的累积和读出;以及基于在所述判断步骤中的判断来控制所述传感器。
通过以下(参考附图)对典型实施例的说明,本发明的其它特征将变得明显。
附图说明
包含于说明书并构成说明书一部分的附图示出了本发明的实施例,并与说明书一起用来解释本发明的原理。
图1是示出根据本发明第一实施例的X射线拍摄设备(拍摄控制设备)的示例性示意结构的框图。
图2是示出根据本发明第一实施例的X射线拍摄设备(拍摄控制设备)的示例性处理过程的流程图。
图3示出了根据本发明第一实施例的X射线拍摄设备(拍摄控制设备)的示例性操作,是示出在运动图像拍摄模式中用于照射X射线并用于累积并读出传感器中的电荷的示例性定时的时序图。
图4示出了根据本发明第二实施例的X射线拍摄设备(拍摄控制设备)的示例性操作,是示出在运动图像拍摄模式中用于照射X射线并用于累积并读出传感器中的电荷的示例性定时的时序图。
图5示出了根据本发明第三实施例的X射线拍摄设备(拍摄控制设备)的示例性操作,是示出在运动图像拍摄模式中用于照射X射线并用于累积并读出传感器中的电荷的示例性定时的时序图。
图6示出了根据本发明第四实施例的X射线拍摄设备(拍摄控制设备)的示例性操作,是示出在运动图像拍摄模式中用于照射X射线并用于累积并读出传感器中的电荷的示例性定时的时序图。
图7示出了传统示例,是示出在运动图像拍摄模式中用于照射X射线并用于累积并读出传感器中的电荷的示例性定时的时序图。
图8示出了传统示例,是示出在运动图像拍摄模式中用于照射X射线并用于累积并读出传感器中的电荷的示例性定时的时序图。
图9示出了传统示例,是示出在运动图像的能量减影拍摄模式中用于照射X射线并用于累积并读出传感器的光电转换装置中的电荷的示例性定时的时序图。
图10示出了传统示例,是示出在运动图像的能量减影拍摄模式中用于照射X射线并用于累积并读出传感器的光电转换装置中的电荷的示例性定时的时序图。
图11示出了传统示例,是示出在运动图像拍摄模式中用于照射X射线并用于累积并读出传感器的光电转换装置中的电荷的示例性定时的时序图。
具体实施方式
下面将根据附图详细说明本发明的优选实施例。
以下,将使用附图说明本发明的第一实施例。
图1是示出根据本发明第一实施例的X射线拍摄设备(拍摄控制设备)的示例性示意结构的框图。
如图1所示,X射线拍摄设备10被构成为具有X射线生成单元1、操作输入单元2、控制单元3、传感器4、显示单元5、ROM6、RAM 7和累积单元8。在控制单元3中包括帧周期确定单元31、累积时间计算单元32、基准时间(规定时间)设置单元33、比较和判断单元34、累积时间改变单元35和拍摄单元36,作为功能元件。
X射线生成单元(放射线生成单元)1能够相对于被摄体(被检者)20连续地生成脉冲状X射线1a,并由例如X射线管构成。
当用户相对于X射线拍摄设备10进行输入指示时操作操作输入单元2。该操作输入单元2包括当从X射线生成单元1生成X射线1a时由用户操作的照射开关2a。
控制单元3读出例如存储在ROM 6中的计算机程序等,并由基于该程序等控制整个X射线拍摄设备10的CPU等构成。在本实施例中,特别地,控制单元3基于存储在ROM 6中的程序等来实现功能元件31~36中的处理。
这里,帧周期确定单元31确定X射线图像帧中的拍摄间隔(帧周期)。累积时间计算单元32计算当获得单个帧的X射线图像时重复交替进行的传感器4中的电荷的累积和读出中与电荷的累积有关的累积时间(第一累积时间)。基准时间设置单元33对构成基准的基准时间(规定时间)进行设置。比较和判断单元34对第一累积时间和基准时间进行比较。如果第一累积时间大于基准时间,则累积时间改变单元35在单个帧的帧周期内设置虚拟(dummy)累积时间和读出时间,并将第一累积时间改变成比第一累积时间短的第二累积时间。这里,虚拟累积时间和读出时间表示在X射线图像生成处理中没有使用而丢弃的电荷的累积时间和读出时间。如果由比较和判断单元34判断为第一累积时间小于或等于基准时间,则拍摄单元36在没有设置虚拟累积时间和读出时间的情况下基于第一累积时间来控制传感器4。另一方面,如果由比较和判断单元34判断为第一累积时间大于基准时间,则拍摄单元36基于第二累积时间来控制传感器4。然后进行虚拟累积和读出。注意,累积时间计算单元32、基准时间设置单元33、比较和判断单元34和累积时间改变单元35构成“判断单元”。拍摄单元36构成“控制单元”。
传感器4在控制单元3的控制下检测从X射线生成单元1照射之后穿过被摄体20的X射线1a。
在该传感器4中,二维地排列各自包括例如光电转换装置和TFT的像素,在这种情况下,在像素上设置有例如磷光体。在这种情况下,由磷光体将入射在传感器4上的X射线转换成可见光,由此得到的可见光入射到像素的光电转换装置上,并根据可见光在光电转换装置中生成电荷。注意,尽管在本实施例中由上述磷光体和光电转换装置构成用于将入射的X射线转换成电荷的“转换元件”,但所述“转换元件”也可以由所谓的直接转换型转换元件构成,该直接转换型转换元件在没有设置例如磷光体的情况下将入射的X射线直接转换成电荷。因此,在以下的说明中,将传感器4作为其中二维排列有“转换元件”而进行说明。
如在相关技术中说明的那样,传感器4能够通过重复交替地累积和读出转换元件的电荷来拍摄X射线图像。
显示单元5在控制单元3的控制下显示基于从传感器4读出的电荷的X射线图像、操作用户界面(UI)等。
ROM 6存储例如在控制单元3中进行的在以下图2所示的处理以及X射线拍摄设备10的其它控制中所需的计算机程序等。
例如当控制单元3进行各种控制时使用RAM 7,并且RAM 7暂时地存储例如由控制单元3计算并处理的各种信息、以及由用户通过操作输入单元2输入的各种信息。
累积单元8例如累积并存储基于由传感器4检测出的X射线的X射线图像(放射线图像)的图像数据。
在图1中,控制单元3进行控制,从而当操作并接通照射开关2a时从X射线生成单元1照射脉冲状X射线1a。控制单元3通过与X射线1a的脉冲同步地从传感器4读出基于已穿过被摄体(被检者)20的X射线1a的电荷,来生成X射线图像,并在根据需要对该X射线图像进行图像处理之后将该X射线图像显示在显示单元5上。
在由X射线拍摄设备10进行所谓的脉冲X射线运动图像拍摄的情况下,使用由帧周期确定单元31所确定的单个帧的帧周期来确定照射脉冲状X射线1a的时间间隔。使用帧周期确定单元31、累积时间计算单元32、比较和判断单元34和累积时间改变单元35来确定传感器4的转换元件中的电荷的累积和读出的定时。
然后,控制单元3(拍摄单元36)基于由累积时间计算单元32或累积时间改变单元35所确定的转换元件中的电荷的累积时间,通过控制传感器4来进行脉冲X射线运动图像拍摄。
接下来,对根据第一实施例的X射线拍摄设备10的处理过程进行说明。
图2是示出根据本发明第一实施例的X射线拍摄设备(拍摄控制设备)的示例性处理过程的流程图。
首先,在步骤S1中,当用户通过操作输入单元2输入拍摄条件时,控制单元3检测该输入,并例如在RAM 7中存储并由此设置通过操作输入单元2输入的各种信息。这里,在本实施例中,假定由用户输入与帧频Fr和k(k是表示电荷累积和读出的重复次数的正整数)有关的值、X射线照射时间Tx等,作为拍摄条件,并在RAM 7中存储并由此设置该信息。
接下来,在步骤S2中,控制单元3判断用户是否已经操作并接通了照射开关2a。如果判断为照射开关2a未接通,则控制单元3在步骤S2等待,直到在步骤S2判断为照射开关2a接通为止。
另一方面,如果在步骤S2判断为照射开关2a已接通,则处理进入步骤S3。注意,可以在后面说明的步骤S7和S8之间设置步骤S2。在进入步骤S3之后,控制单元3中的帧周期确定单元31基于在步骤S1中设置的帧频来确定X射线图像帧中的拍摄间隔(帧周期)。现在将详细说明步骤S3的处理。
对于运动图像拍摄模式中的X射线图像拍摄,需要确定单个帧的帧周期。这里,在下面的说明中,将对确定图7(或后面说明的图3)所示的单个帧的帧周期Tf10的示例性情况进行说明。
帧周期确定单元31使用关于在步骤S1中获得的帧频Fr的信息,通过计算下面的公式(28)来确定单个帧的帧周期Tf10。
Tf10=1/Fr                                   (28)
然后,帧周期确定单元31例如在RAM 7中存储关于计算出的单个帧的帧周期Tf10的信息并由此设置该信息。
接下来,在步骤S4中,控制单元3中的累积时间计算单元32计算当获得单个帧的X射线图像时重复交替进行的传感器4中的电荷的累积和读出中与电荷的累积有关的第一累积时间。现在将详细说明步骤S4的处理。
在第一实施例中,在单个帧的帧周期内,不包括电荷的虚拟累积和读出,将具有X射线照射的电荷的累积和读出进行一次并将没有X射线照射的电荷的累积和读出重复进行k-1次。即,在本实施例中,在单个帧的帧周期内,不包括电荷的虚拟累积和读出,将电荷的累积和读出重复进行共计k次。注意,在下面的说明中,将利用图7所示的示例对此进行说明。
累积时间计算单元32使用基于上述公式(9)的下面的公式(29),计算图7所示的具有X射线照射的电荷累积时间Tw11,作为第一实施例中的第一累积时间。
Tw11=Tf10/k-Tr                              (29)
这里,如上所述,Tr表示电荷读出时间,并且取为与累积时间无关的恒定值。为了完全去除偏移,如公式(3)所示,使电荷累积时间Tw11和Tw12相同。因此,随着帧周期Tf10增加,本实施例的第一累积时间Tw11也增加。
累积时间计算单元32例如在RAM 7中存储关于计算出的第一累积时间Tw11的信息并由此设置该信息,作为电荷累积时间信息。
接下来,在步骤S5中,控制单元3中的基准时间设置单元33对构成基准的基准时间(规定时间)进行设置。
在本实施例中,基准时间设置单元33基于与在步骤S1中获得的k有关的值以及X射线照射时间Tx来设置由下面的公式(30)给出的基准时间(规定时间)Tc。
Tc=Tx+Tr/k                                  (30)
基准时间设置单元33例如在RAM 7中存储关于计算出的基准时间Tc的信息并由此设置该信息。
接下来,在步骤S6中,控制单元3中的比较和判断单元34对在步骤S4计算出的第一累积时间和在步骤S 5设置的基准时间进行比较,并判断第一累积时间是否大于基准时间。
在本实施例中,比较和判断单元34判断是否满足下面所示的公式(31)。
Tw11>Tc                                     (31)
这里,当将公式(30)代入公式(31)时,下面的公式(32)成立。
Tw11>Tx+Tr/k                                (32)
当将公式(29)代入公式(32)时,下面的公式(33)成立。
Tf10>(k+1)·Tr+k·Tx                        (33)
因此,公式(33)具有与公式(32)相同的意义,如果公式(32)成立,则公式(33)也成立。
如果公式(33)成立,则可将电荷的虚拟累积和读出进一步插入单个帧的帧周期(Tf10)内。
如果在步骤S6中判断为第一累积时间大于基准时间,则处理进入步骤S7。在进入步骤S7之后,控制单元3中的累积时间改变单元35在单个帧的帧周期内设置虚拟累积时间,并将第一累积时间改变成比第一累积时间短的第二累积时间。现在将详细说明步骤S7的处理。
示出根据本发明第一实施例的X射线拍摄设备(拍摄控制设备)的示例性操作的图3是示出在运动图像拍摄模式中用于照射X射线并用于累积并读出传感器中的电荷的示例性定时的时序图。在图3的时序图中,k=2,并在单个帧的帧周期(Tf10)内,将传感器4中的电荷的虚拟累积和虚拟读出添加到示出传统示例的图7。这里,在图3中,基于公式(3)的旨意,将在进行X射线照射时的电荷累积时间和在没有进行X射线照射时的电荷累积时间设置成相同的电荷累积时间Tw1。
累积时间改变单元35如在下面的公式(34)中给出的那样设置虚拟累积时间Tw2,其中Tw1是第二累积时间,Tf10是帧周期,Tr是电荷读出时间。
Tw2=Tf10-(k·Tw1+(k+1)·Tr)                 (34)
在这种情况下,使用与上述公式(5)和(10)类似的旨意,设置第二累积时间Tw1从而满足下面的公式(35)。
Tw1>Tx                                      (35)
注意,Tr是虚拟读出时间。而且,通过累积时间改变单元35将第二累积时间Tw1设置为比第一累积时间(图7中所示的Tw11)更短的累积时间,并且例如在本实施例中设置为小于或等于基准时间Tc的时间(具体地,例如基准时间Tc)。此时,由于设置第二累积时间Tw1以使得满足上述公式(35),因而在本实施例的情况下,将第二累积时间Tw1设置为大于X射线照射时间Tx且小于或等于基准时间Tc。
即,在本实施例中,如果图7所示的第一累积时间Tw11大于基准时间Tc,则将图3中的虚拟累积时间Tw2设置在单个帧的帧周期内,并将第一累积时间Tw11改变成比该第一累积时间短的第二累积时间Tw1。
通常,X射线照射时间Tx是短的恒定时间,从而能够将第二累积时间Tw1设置为短时间。因此,作为公式(34)的结果,随着帧周期Tf10增加,虚拟累积时间Tw2增加,而第二累积时间Tw1没有增加。还可以通过调整虚拟累积时间Tw2来自由地设置帧周期Tf10。注意,如在相关技术的说明中所述的那样,可以通过公式(2)计算与在本实施例中的偏移校正有关的偏移校正值。
在公式(31)成立且如图3所示k=2的情况下,公式(34)变为下面的公式(36)。
Tw2=Tf10-(2Tw1+3Tr)                         (36)
如上所述,在公式(31)不成立的情况下的电荷累积时间可以由公式(29)来计算,随着单个帧的帧周期Tf10增加,第一累积时间Tw11也增加到基准时间Tc。
如果单个帧的帧周期Tf10进一步增加,则公式(31)将成立,在这种情况下,设置虚拟累积时间Tw2,并将电荷累积时间从第一累积时间Tw11改变为更短的第二累积时间Tw1。图3所示的虚拟累积时间Tw2可以由上述公式(35)来计算。
当进行了步骤S7的处理时,累积时间改变单元35例如在RAM 7代替关于第一累积时间Tw11的信息而存储关于第二累积时间Tw1的信息和关于虚拟累积时间Tw2的信息并由此设置这些信息,作为电荷累积时间信息。
再次返回图2的说明,如果步骤S7的处理已结束或如果在步骤S6中判断为第一累积时间不大于基准时间,则处理进入步骤S8。
在进入步骤S8后,控制单元3中的拍摄单元36基于在步骤S1和S3设置的各种信息和在步骤S4或S7设置的电荷累积时间信息来进行X射线拍摄处理。现在将详细说明步骤S8的处理。
首先,拍摄单元36基于在步骤S1设置的X射线照射时间Tx和在步骤S3设置的单个帧的帧周期Tf10,从X射线生成单元1向被摄体(被检者)20连续地照射脉冲状X射线1a。
接下来,拍摄单元36基于设置在RAM 7中的电荷累积时间信息来控制传感器4的转换元件中的电荷的累积,并进行X射线拍摄处理。
如果将关于第一累积时间Tw11的信息例如在RAM 7中设置为电荷累积时间信息,则拍摄单元36以图7所示的电荷累积和读出定时来控制传感器4。如果将关于第二累积时间Tw1的信息和关于虚拟累积时间Tw2的信息例如在RAM 7中设置为电荷累积时间信息,则拍摄单元36以图3所示的电荷累积和读出定时来控制传感器4。
当进行了步骤S8的处理时,拍摄单元36例如在累积单元8中累积并存储作为X射线拍摄处理的结果所获得的X射线图像的图像数据。
注意,在第一实施例中,如果第一累积时间长于基准时间,则设置虚拟累积和读出时间。因此在单个帧的帧周期长于预定时间的情况下,可以例如直接地而不是间接地设置虚拟累积和读出时间。即,在这种情况下,首先设置用于图像处理的电荷的累积时间TwX和读出时间TrX。这些时间各自略微长于X射线照射时间。然后将虚拟累积时间设置为(帧周期Tf11-2TwX-3TrX)。如果这是负的时间段,则不设置虚拟累积和读出时间。
在第一实施例中,帧周期确定单元31通过使用公式(28)进行计算来确定单个帧的帧周期,然而本发明不限于该实施例。例如,帧周期确定单元31可以检测在步骤S1由用户通过操作输入单元2直接输入的单个帧的帧周期,并将该帧周期确定为单个帧的帧周期。
在第一实施例中,作为控制单元3运行存储在ROM 6中的程序的结果,构成元件31~36可以由软件来实现,然而这些构成元件也可以由例如硬件来实现。
在第一实施例中,如图3所示,以具有X射线照射的电荷累积、没有X射线照射的电荷累积和虚拟累积的驱动顺序来说明示例,然而驱动定时的顺序不限于该示例。例如,驱动的顺序可以是没有X射线照射的电荷累积、具有X射线照射的电荷累积和虚拟累积。
第二实施例
下文中,将使用附图来说明本发明的第二实施例。
这里,根据第二实施例的X射线拍摄设备(拍摄控制设备)的示意性结构与图1所示的根据第一实施例的X射线拍摄设备10的示意性结构类似。
示出根据本发明第二实施例的X射线拍摄设备(拍摄控制设备)的示例性操作的图4是示出在运动图像拍摄模式中用于照射X射线并用于累积并读出传感器中的电荷的示例性定时的时序图。在图4的时序图中,k=4,并且在单个帧的帧周期(Tf11)中,将传感器4中的电荷的虚拟累积和虚拟读出添加到示出传统示例的图8。这里,在图4中,基于公式(6)的旨意,将在进行X射线照射时的电荷累积时间和在没有进行X射线照射时的电荷累积时间设置为相同的电荷累积时间Tw3。
即,图4示出了这样的情况:在单个帧的帧周期内,不包括电荷的虚拟累积和读出,将具有X射线照射的电荷的累积和读出进行一次,并将没有X射线照射的电荷的累积和读出进行三次这样共计重复四次。
在第二实施例的情况下,应用在图8中所示的具有X射线照射的电荷累积时间Tw13,作为第一累积时间。
在第二实施例的情况下,如果基于公式(31)Tw13>Tc成立,则可以将电荷的虚拟累积和读出进一步插入单个帧的帧周期(Tf11)内。在这种情况下,控制单元3中的累积时间改变单元35在单个帧的帧周期(Tf11)内设置图4所示的虚拟累积时间Tw4,并将第一累积时间Tw13改变为比第一累积时间短的第二累积时间Tw3。
由下面的公式(37)给出虚拟累积时间Tw4,其中如图4所示k=4,且在公式(34)中以Tw4代替Tw2作为虚拟累积时间,以Tf11代替Tf10作为帧周期并以Tw3代替Tw1作为第二累积时间。
Tw4=Tf11-(4Tw3+5Tr)                         (37)
如在相关技术的说明中所述的那样,可以通过公式(8)计算与本实施例中的偏移校正有关的偏移校正值。
第三实施例
下文中,将使用附图说明本发明的第三实施例。
这里,根据第三实施例的X射线拍摄设备(拍摄控制设备)的示意性结构与图1所示的根据第一实施例的X射线拍摄设备10的示意性结构类似。
第三实施例与传统示例的图9所示的运动图像拍摄模式相对应。即,在本实施例中,进行这样的能量减影拍摄:在单个帧的帧周期内,将低电压X射线照射之后的读出进行一次,然后将高电压X射线照射之后的读出进行一次,并将在没有X射线照射时的读出进行一次。
对于根据第三实施例的X射线拍摄设备10,在控制单元3的控制下,从X射线生成单元1每帧分别脉冲照射一次在X射线生成单元1的电压为低时的X射线(第一放射线)和在X射线生成单元1的电压为高时的X射线(第二放射线)。
然后在这种情况下,帧周期确定单元31确定第三实施例中单个帧的帧周期Tf12,其中在公式(28)中以图9所示的Tf12代替Tf10作为单个帧的帧周期。累积时间计算单元32使用上述公式(14)计算在进行低电压X射线照射时的累积时间Tw15,作为第一累积时间。在这种情况下,需要公式(15)成立。
基准时间设置单元33使用下面的公式(38)来设置基准时间Tc。
Tc=Tx+Tr/3                                  (38)
然后,比较和判断单元34通过对第一累积时间Tw15和基准时间Tc进行比较来判断是否满足以下所示的公式(39)。
Tw15>Tc                                     (39)
这里,当将公式(38)代入公式(39)时,下面的公式(40)成立。
Tw15>Tx+Tr/3                                (40)
考虑到公式(14),公式(40)变为下面的公式(41)。
Tf12>4Tr+3Tx                                (41)
该公式(41)具有与公式(40)相同的意义,因此如果公式(40)成立,则公式(41)也成立。
如果公式(40)成立,则可以将电荷的虚拟累积和读出进一步插入单个帧的帧周期(Tf12)内。
示出根据本发明第三实施例的X射线拍摄设备(拍摄控制设备)的示例性操作的图5是示出在运动图像拍摄模式中用于照射X射线并用于累积并读出传感器中的电荷的示例性定时的时序图。在图5的时序图中,在单个帧的帧周期(Tf12)内,将传感器4中的电荷的虚拟累积和虚拟读出添加到示出传统示例的图9。这里,在图5中,基于公式(6)的旨意,将在进行X射线照射时的电荷累积时间和在没有进行X射线照射时的电荷累积时间设置为相同的电荷累积时间Tw5。
如果公式(39)成立,则累积时间改变单元35在单个帧的帧周期(Tf12)内设置图5所示的虚拟累积时间Tw6,并将第一累积时间Tw15改变为比第一累积时间短的第二累积时间Tw5。
在这种情况下,累积时间改变单元35使用下面的公式(42)设置虚拟累积时间Tw6,其中Tr是电荷读出时间。
Tw6=Tf12-(2Tw5+3Tr)                         (42)
由于第二累积时间Tw5大于X射线照射时间Txl和Txh,因此使用与公式(15)类似的旨意,需要满足下面的公式(43)。
Tw5>Txl,Tw5>Txh                           (43)
如果X射线照射时间Txl和Txh是相同的时间Tx,则可以将公式(43)表示为Tw5>Tx。
由累积时间改变单元35将第二累积时间Tw5设置为比第一累积时间(图9中所示的Tw15)更短的累积时间,并且与第一实施例类似地,设置为例如小于或等于基准时间Tc的时间(具体地,例如基准时间Tc)。此时,由于设置第二累积时间Tw5以使得满足上述公式(43),因而在本实施例的情况下,将第二累积时间Tw5设置为大于X射线照射时间Txl和Txh,且小于或等于基准时间Tc。
通常,X射线照射时间Txl和Txh是短的恒定时间,从而能够将第二累积时间Tw5设置为短时间。因此,作为公式(42)的结果,随着帧周期Tf12增加,虚拟累积时间Tw6增加,而第二累积时间Tw5不增加。还可以通过调整虚拟累积时间Tw6来自由地设置帧周期Tf12。注意,如在相关技术的说明中所述的那样,可以由公式(12)来计算与本实施例中的偏移校正有关的偏移校正值。
可以利用公式(14)来计算在公式(39)不成立的情况下的电荷累积时间。如果单个帧的帧周期Tf12增加,则公式(39)成立,在这种情况下,设置虚拟累积时间Tw6,并将电荷累积时间从第一累积时间Tw15改变为更短的第二累积时间Tw5。在帧周期Tf12进一步增加的情况下,虚拟累积时间Tw6增加。
在第三实施例中,如图5所示,以具有与低电压有关的X射线照射的累积、具有与高电压有关的X射线照射的累积、没有X射线照射的累积和虚拟累积的驱动顺序来说明示例,然而驱动定时的顺序并不局限于该示例。例如,驱动顺序也可以是具有与高电压有关的X射线照射的累积、具有与低电压有关的X射线照射的累积、没有X射线照射的累积和虚拟累积。
而且,X射线生成单元1可以由例如2个(左和右)X射线管构成,并且可以代替低电压X射线照射而从其中一个X射线管(例如左边的)进行X射线照射,并代替高电压X射线照射而从另一个X射线管(例如右边的)进行X射线照射。因此可以利用与图5相同的时序图来进行运动图像的立体拍摄。
第四实施例
下文中,将使用附图说明本发明的第四实施例。这里,根据第四实施例的X射线拍摄设备(拍摄控制设备)的示意性结构与图1所示的根据第一实施例的X射线拍摄设备10的示意性结构类似。
第四实施例与传统示例的图10所示的运动图像拍摄模式相对应。即,在本实施例中,进行这样的能量减影拍摄:在单个帧的帧周期内,将低电压X射线照射之后和没有X射线照射时的读出各进行一次,然后将高电压X射线照射之后和没有X射线照射时的读出各进行一次。
对于根据第四实施例的X射线拍摄设备10,在控制单元3的控制下,从X射线生成单元1每帧分别脉冲照射一次在X射线生成单元1的电压为低时的X射线(第一放射线)和在X射线生成单元1的电压为高时的X射线(第二放射线)。
然后在这种情况下,帧周期确定单元31确定第四实施例中单个帧的帧周期Tf13,其中在公式(28)中图10所示的Tf13代替Tf10作为单个帧的帧周期。累积时间计算单元32使用上述公式(24)和(25)来计算在进行低电压X射线照射时的累积时间Tw18和在进行高电压X射线照射时的累积时间Tw20,作为第一累积时间。在这种情况下,需要公式(21)成立。
基准时间设置单元33使用下面的公式(44)和(45)分别设置电荷累积时间Tw18和Tw20中的基准时间Tc1和Tc2,其中Txl是低电压X射线照射时间,而Txh是高电压X射线照射时间。
Tc1=Txl+Tr/4                                (44)
Tc2=Txh+Tr/4                                (45)
然后,比较和判断单元34判断是否满足以下所示的公式(46)和(47)。
Tw18>Tc1                                    (46)
Tw20>Tc2                                    (47)
在这种情况下,当将公式(44)代入公式(46)并将公式(45)代入公式(47)时,给出下面的公式(48)和(49)。
Tw18>Txl+Tr/4                               (48)
Tw20>Txh+Tr/4                               (49)
此时,考虑到公式(24)和(25),可以将公式(48)和(49)重写为下面的公式(50)。
Tf13>5Tr+2(Txl+Txh)                         (50)
该公式(50)具有与公式(48)和(49)相同的意义,因而如果公式(50)成立,则公式(48)和(49)也成立。
如果公式(50)成立,则可以将电荷的虚拟累积和读出进一步插入单个帧的帧周期(Tf13)内。
示出根据本发明第四实施例的X射线拍摄设备(拍摄控制设备)的示例性操作的图6是示出在运动图像拍摄模式中用于照射X射线并用于累积并读出传感器中的电荷的示例性定时的时序图。在图6的时序图中,在单个帧的帧周期(Tf13)内,已经将传感器4中的电荷的虚拟累积和虚拟读出添加到示出传统示例的图10。这里,在图6中,基于公式(18)的旨意,将在进行低电压X射线照射时的电荷累积时间和随后的在没有进行X射线照射时的电荷累积时间设置为相同的电荷累积时间Tw7。类似地,基于公式(19)的旨意,将在进行高电压X射线照射时的电荷累积时间和随后的在没有进行X射线照射时的电荷累积时间设置为相同的电荷累积时间Tw8。
如果公式(50)成立,则累积时间改变单元35在单个帧的帧周期(Tf13)内设置图5所示的虚拟累积时间Tw9。然后,累积时间改变单元35将第一累积时间Tw18改变为比第一累积时间Tw18短的第二累积时间Tw7,并将第一累积时间Tw20改变为比第一累积时间Tw20短的第二累积时间Tw8。
在这种情况下,累积时间改变单元35使用下面的公式(51)设置虚拟累积时间Tw9,其中Tr是电荷读出时间。
Tw9=Tf13-(2·(Tw7+Tw8)+5Tr)                 (51)
此时,由于第二累积时间Tw7和Tw8分别长于X射线照射时间Txl和Txh,因此使用与公式(21)相同的旨意,需要满足下面的公式(52)。
Tw7>Txl,Tw8>Txh                           (52)
通常,X射线照射时间是短时间,从而能够将第二累积时间Tw7和Tw8设置为短时间。因此,作为公式(51)的结果,随着帧周期Tf13增加,虚拟累积时间Tw9增加,而第二累积时间Tw7和Tw8不增加。还可以通过调整虚拟累积时间Tw9来自由地设置帧周期Tf13。注意,如在相关技术的说明中所述的那样,可以由公式(17)来计算与本实施例中的偏移校正有关的偏移校正值。
可以由公式(24)和(25)来计算在公式(50)不成立的情况下的电荷累积时间。如果单个帧的帧周期Tf13增加,则公式(50)成立,在这种情况下,设置虚拟累积时间Tw9,并将电荷累积时间分别从第一累积时间Tw18和Tw20改变为更短的第二累积时间Tw7和Tw8。在帧周期Tf13进一步增加的情况下,虚拟累积时间Tw9也增加。
接下来,将采用第一实施例作为示例详细说明本发明的操作和效果。
在图3中,从在进行X射线照射时读出电荷来获得像素值Vx,进行该读出是为了获得X射线图像。此时,利用理想的传感器4可以获得与X射线的强度成比例的像素值作为像素值Vx。然而,在实际中,像素值Vx中存在偏移值和噪声。
这里,重点关注传感器4的单个任意像素,传感器4的任意像素的像素值Vx通常由下面的公式(53)来表示,其中X是X射线强度,Vo是偏移值,Vn1是由噪声导致的值(噪声值)。
Vx=a·X+Vo+Vn1(a是比例常数)                 (53)
此时,偏移值Vo与电荷累积时间成比例地增加,并在像素与像素之间略有差异。噪声值Vn1在由下面的公式(54)所表示的范围内随机地改变。
-Vr1≤Vn1≤Vr1                               (54)
这里,Vr1与电荷累积时间成比例地增加。
因此,由于通过在进行X射线照射时的电荷的读出所获得的像素值Vx尽管与X射线的强度成比例,但还包含偏移和噪声值,因而不能获得清楚的X射线图像。
有鉴于此,进行没有X射线照射的电荷的读出。利用在没有进行X射线照射时的电荷的该读出来获得像素值Vf。对于在没有进行X射线照射时的电荷的该读出,由于在没有X射线照射的情况下进行读出,因而获得偏移和噪声值。传感器4的单个任意像素的像素值Vf通常由下面的公式(55)来表示,其中Vo是由在没有进行X射线照射时的电荷的读出所获得的偏移值,并且Vn2是噪声值。
Vf=Vo+Vn2                                   (55)
此时,噪声值Vn2在由下面的公式(56)所表示的范围内随机地改变。
-Vr2≤Vn2≤Vr2                               (56)
这里,Vr2与电荷累积时间成比例地增加。
基于公式(53)和(55),使用下面的公式(57)获得已消除了偏移值Vo的像素值V。
V=Vx-Vf=a·X+Vn1-Vn2                       (57)
关于偏移校正处理,对传感器4中的全部像素逐像素地进行上述处理。即,通过在没有进行X射线照射时读出电荷,来从与X射线图像有关的像素值Vx中去除偏移值Vo。在这种情况下,因为偏移值Vo与电荷累积时间成比例地增加,所以在进行X射线照射时的电荷累积时间与在没有进行X射线照射时的电荷累积时间必须基本相同。
在第一实施例中,在单个帧的帧周期(Tf10)内设置图3所示的虚拟累积时间Tw2,并将累积时间从图7所示的第一累积时间Tw11改变为图3所示的第二累积时间Tw1。
首先,将对能够防止放射线图像的S/N比劣化,即,能够相对于传统示例改善S/N比这一点进行说明。
在公式(57)中包括噪声值的项(Vn1-Vn2),并且考虑公式(54)和(56),该噪声值倾向于随着电荷累积时间变长而增加。因此,当帧周期(Tf10)增加,即,当帧频降低时,电荷累积时间变长,结果,噪声值增加。为了防止这一点,通过添加电荷的虚拟读出来缩短在进行X射线照射时和没有进行X射线照射时的电荷累积时间,从而能够使噪声值降低。因此,可以防止放射线图像的S/N比劣化,即,可以相对于传统示例改善S/N比。
接下来,对能够避免动态范围变窄,即,能够相对于传统示例拓宽动态范围这一点进行说明。
在公式(53)中存在偏移值Vo的项,并且该偏移值Vo与电荷累积时间成比例地增加。因此,当帧周期(Tf10)增加,即,当帧频降低时,电荷累积时间变长,结果,偏移值Vo增加。为了防止这一点,通过添加电荷的虚拟读出来缩短在进行X射线照射时和在没有进行X射线照射时的电荷累积时间,从而降低偏移值Vo。结果,可以避免动态范围变窄,即,可以相对于传统示例拓宽动态范围。
可以由存储在ROM 6中的计算机程序的运行来实现图1中构成根据前述实施例的X射线拍摄设备10的构成元件、以及图2中示出X射线拍摄设备的控制方法的步骤。该程序和存储该程序的计算机可读存储介质包括在本发明中。
具体地,通过记录在例如CD-ROM等的存储介质上、或通过各种传输介质来将程序提供给计算机。除CD-ROM以外,可以用于提供程序的存储介质包括软盘、硬盘、磁带、磁光盘和非易失性存储卡。另一方面,可以使用的传输介质包括用于提供作为传播波而传播的程序信息的计算机网络(LAN、因特网等的WAN、无线通信网络等)系统中的通信介质。这种通信介质包括光纤等的线缆线路或无线线路。
不仅通过运行提供给计算机的程序来实现根据实施例的X射线拍摄设备10的功能。在由该程序与运行在计算机上的操作系统(OS)或另一应用程序等相结合来实现根据实施例的X射线拍摄设备10的功能的情况下,该程序包括在本发明中。而且,在使用计算机的功能扩展板或功能扩展单元进行所提供的程序的全部或部分处理来实现根据实施例的X射线拍摄设备10的功能的情况下,该程序包括在本发明中。
前述实施例仅示出用于实现本发明的具体示例,且不应作为这些实施例的结果而限制性地解释本发明的技术范围。即,不脱离本发明的技术思想和主要特征而可由各种形式来实现本发明。
尽管参考典型实施例说明了本发明,但是应该理解,本发明不局限于所公开的典型实施例。所附权利要求书的范围符合最宽的解释,以包含所有这类修改、等同结构和功能。

Claims (15)

1.一种拍摄控制设备,所述拍摄控制设备控制用于累积并读出电荷的传感器以便获得图像,包括:
确定单元,用于基于输入单元的输入来确定表示图像拍摄间隔的帧周期;
判断单元,用于基于由所述确定单元确定的所述帧周期来判断是否在所述帧周期内设置没有用于图像生成处理的电荷的累积和读出;以及
控制单元,用于基于所述判断单元的判断来控制所述传感器。
2.根据权利要求1所述的拍摄控制设备,其特征在于,所述判断单元包括:
计算单元,用于基于由所述确定单元确定的所述帧周期来计算对用于获得所述图像的电荷进行累积的第一累积时间;
比较单元,用于对所述第一累积时间和构成基准的基准时间进行比较;以及
改变单元,用于如果由所述比较单元判断为所述第一累积时间大于所述基准时间,则对没有用于所述图像生成处理的电荷的累积和读出进行设置,并将所述第一累积时间改变为比所述第一累积时间短的第二累积时间。
3.根据权利要求2所述的拍摄控制设备,其特征在于,所述第一累积时间是在重复交替地进行电荷的累积和读出时的电荷累积时间。
4.根据权利要求3所述的拍摄控制设备,其特征在于,
所述传感器检测所照射的放射线作为电荷,以及
在使所述帧周期内的重复次数为正整数,而将在照射放射线时的电荷的累积和读出进行一次并将在没有照射放射线时的电荷的累积和读出重复k-1次的情况下,所述改变单元对没有用于所述图像生成处理的电荷的累积时间进行设置,从而满足
Tw2=Tf10-(k·Tw1+(k+1)·Tr),以及
Tw1>Tx
其中,Tx是放射线的照射时间,Tr是与电荷的读出有关的读出时间,Tf10是所述帧周期,Tw1是所述第二累积时间,Tw2是没有用于所述图像生成处理的电荷的所述累积时间。
5.根据权利要求4所述的拍摄控制设备,其特征在于,所述基准时间是
Tc=Tx+Tr/k
其中,Tc是所述基准时间。
6.根据权利要求4所述的拍摄控制设备,其特征在于,所述计算单元使用
Tw11=Tf10/k-Tr
来计算所述第一累积时间,其中,Tw11是所述第一累积时间。
7.根据权利要求3所述的拍摄控制设备,其特征在于,在所述帧周期内作为所述重复而进行在照射第一放射线时的电荷的累积和读出、在照射第二放射线时的电荷的累积和读出、以及在没有照射放射线时的电荷的累积和读出的情况下,所述改变单元对没有用于所述图像生成处理的电荷的累积时间进行设置,从而满足
Tw6=Tf12-(2Tw5+3Tr),以及
Tw5>Tx
其中,Tx是所述第一放射线和所述第二放射线的照射时间,Tr是与电荷的读出有关的读出时间,Tf12是所述帧周期,Tw5是所述第二累积时间,Tw6是没有用于所述图像生成处理的电荷的所述累积时间。
8.根据权利要求7所述的拍摄控制设备,其特征在于,所述基准时间是
Tc=Tx+Tr/3
其中,Tc是所述基准时间。
9.根据权利要求7所述的拍摄控制设备,其特征在于,所述计算单元使用
Tw15=Tf12/3-Tr
来计算所述第一累积时间,其中,Tw15是所述第一累积时间。
10.根据权利要求3所述的拍摄控制设备,其特征在于,在所述帧周期内作为所述重复而进行在照射第一放射线时的电荷的累积和读出、在没有照射放射线时的电荷的累积和读出、在照射第二放射线时的电荷的累积和读出、以及在没有照射放射线时的电荷的累积和读出的情况下,所述改变单元对没有用于所述图像生成处理的电荷的累积时间进行设置,从而满足
Tw9=Tf13-(2·(Tw7+Tw8)+5Tr),以及
Tw7>Txl,Tw8>Txh
其中,Txl是所述第一放射线的照射时间,Txh是所述第二放射线的照射时间,Tr是与电荷的读出有关的读出时间,Tf13是所述帧周期,Tw7是在照射所述第一放射线时的所述第二累积时间,Tw8是在照射所述第二放射线时的所述第二累积时间,Tw9是没有用于所述图像生成处理的电荷的所述累积时间。
11.根据权利要求10所述的拍摄控制设备,其特征在于,所述基准时间是
Tc1=Txl+Tr/4,以及
Tc2=Txh+Tr/4
其中,Tc1是在所述第一放射线的情况下的所述基准时间,Tc2是在所述第二放射线的情况下的所述基准时间。
12.根据权利要求10所述的拍摄控制设备,其特征在于,所述计算单元使用
Tw18=Tf13/4-Tr+(Txl-Txh)/2,以及
Tw20=Tf13/4-Tr+(Txh-Txl)/2
来计算所述第一累积时间,其中,Tw18是在所述第一放射线的情况下的所述第一累积时间,Tw20是在所述第二放射线的情况下的所述第一累积时间。
13.根据权利要求12所述的拍摄控制设备,其特征在于,所述比较单元对
Tc1>Tw18,以及
Tc2>Tw20
进行比较。
14.根据权利要求7所述的拍摄控制设备,其特征在于,所述第一放射线由低电压产生,所述第二放射线由高电压产生。
15.一种拍摄控制设备的控制方法,所述拍摄控制设备控制用于累积并读出电荷的传感器以便获得图像,所述控制方法包括以下步骤:
确定步骤,其基于输入单元的输入来确定表示图像拍摄间隔的帧周期;
判断步骤,其基于由所述确定步骤确定的所述帧周期来判断是否在所述帧周期内设置没有用于图像生成处理的电荷的累积和读出;以及
基于在所述判断步骤中的判断来控制所述传感器。
CN2008101323137A 2007-07-09 2008-07-09 拍摄控制设备和方法 Expired - Fee Related CN101345816B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007179893 2007-07-09
JP2007-179893 2007-07-09
JP2007179893A JP5063227B2 (ja) 2007-07-09 2007-07-09 撮影制御装置及びその制御方法、並びに、プログラム

Publications (2)

Publication Number Publication Date
CN101345816A true CN101345816A (zh) 2009-01-14
CN101345816B CN101345816B (zh) 2010-12-08

Family

ID=40247691

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008101323137A Expired - Fee Related CN101345816B (zh) 2007-07-09 2008-07-09 拍摄控制设备和方法

Country Status (3)

Country Link
US (1) US7683328B2 (zh)
JP (1) JP5063227B2 (zh)
CN (1) CN101345816B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102547149A (zh) * 2010-11-29 2012-07-04 佳能株式会社 放射线摄像设备和放射线摄像设备的控制方法

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4334602B1 (ja) * 2008-06-17 2009-09-30 任天堂株式会社 情報処理装置、情報処理システム、および情報処理プログラム
JP2010075677A (ja) * 2008-08-28 2010-04-08 Fujifilm Corp 放射線画像撮影装置、及び画像処理装置
US8605177B2 (en) * 2009-09-16 2013-12-10 Altasens, Inc. Image sensor with wide dynamic range
JP5562767B2 (ja) * 2010-08-26 2014-07-30 富士フイルム株式会社 放射線画像撮影システム及び放射線画像撮影方法
JP5643131B2 (ja) 2011-02-08 2014-12-17 富士フイルム株式会社 放射線画像撮影システム
US9459781B2 (en) 2012-05-09 2016-10-04 Apple Inc. Context-specific user interfaces for displaying animated sequences
JP6129517B2 (ja) * 2012-11-06 2017-05-17 東芝メディカルシステムズ株式会社 X線診断装置及び制御プログラム
JP2015217112A (ja) * 2014-05-16 2015-12-07 キヤノン株式会社 移動型放射線撮影装置及び移動型放射線発生用装置
US10452253B2 (en) 2014-08-15 2019-10-22 Apple Inc. Weather user interface
US10528610B2 (en) * 2014-10-31 2020-01-07 International Business Machines Corporation Customized content for social browsing flow
CN107921317B (zh) 2015-08-20 2021-07-06 苹果公司 基于运动的表盘和复杂功能块
US10430829B2 (en) * 2015-10-02 2019-10-01 American Express Travel Related Services Company, Inc. Systems and methods for generating curated and custom content for data-driven applications using closed-loop data
JP6057105B2 (ja) * 2015-12-03 2017-01-11 株式会社島津製作所 X線撮影装置
JP6708434B2 (ja) * 2016-02-19 2020-06-10 キヤノン株式会社 放射線撮像装置及び放射線撮像装置の処理方法
JP2017196009A (ja) * 2016-04-26 2017-11-02 コニカミノルタ株式会社 放射線撮影装置及び放射線撮影システム
DK179412B1 (en) 2017-05-12 2018-06-06 Apple Inc Context-Specific User Interfaces
JP7242266B2 (ja) * 2018-11-29 2023-03-20 キヤノン株式会社 放射線撮像装置および放射線撮像装置の制御方法
JP7007319B2 (ja) * 2019-03-29 2022-01-24 富士フイルム株式会社 放射線撮影装置、放射線撮影装置の作動方法、放射線撮影装置の作動プログラム
DK202070625A1 (en) 2020-05-11 2022-01-04 Apple Inc User interfaces related to time
US11526256B2 (en) 2020-05-11 2022-12-13 Apple Inc. User interfaces for managing user interface sharing
US11694590B2 (en) 2020-12-21 2023-07-04 Apple Inc. Dynamic user interface with time indicator
US11720239B2 (en) 2021-01-07 2023-08-08 Apple Inc. Techniques for user interfaces related to an event
US11921992B2 (en) 2021-05-14 2024-03-05 Apple Inc. User interfaces related to time

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2585917A1 (fr) * 1985-08-02 1987-02-06 Thomson Cgr Procede de reglage d'un dispositif de radiologie
JP3129599B2 (ja) * 1994-04-26 2001-01-31 キヤノン株式会社 動画撮像システム
JP4597171B2 (ja) * 1996-03-13 2010-12-15 キヤノン株式会社 光電変換装置、x線撮像装置、及び該装置を有するシステム
JP4273580B2 (ja) * 1999-06-23 2009-06-03 ソニー株式会社 固体撮像素子の駆動方法および固体撮像装置
JP3942142B2 (ja) * 2000-12-15 2007-07-11 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー 放射線断層撮影装置およびその方法
JP4746746B2 (ja) * 2000-12-27 2011-08-10 キヤノン株式会社 撮像装置
JP4185259B2 (ja) * 2001-05-08 2008-11-26 富士フイルム株式会社 デジタルカメラ、画像記録方法及び画像記録プログラム
JP4208482B2 (ja) * 2002-05-08 2009-01-14 キヤノン株式会社 撮像装置及び同撮像装置を用いたx線診断システム
AU2003296128A1 (en) * 2003-12-25 2005-07-21 Niles Co., Ltd. Imaging system
JP4441294B2 (ja) * 2004-03-12 2010-03-31 キヤノン株式会社 放射線撮像装置及びその制御方法
JP2005287773A (ja) 2004-03-31 2005-10-20 Canon Inc 画像撮影装置及び画像撮影システム
JP4612802B2 (ja) * 2004-04-30 2011-01-12 キヤノン株式会社 放射線画像取得装置および放射線画像取得方法、プログラム

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102547149A (zh) * 2010-11-29 2012-07-04 佳能株式会社 放射线摄像设备和放射线摄像设备的控制方法
US8952332B2 (en) 2010-11-29 2015-02-10 Canon Kabushiki Kaisha Radiation imaging apparatus and control method
CN102547149B (zh) * 2010-11-29 2015-05-06 佳能株式会社 放射线摄像设备和放射线摄像设备的控制方法

Also Published As

Publication number Publication date
US7683328B2 (en) 2010-03-23
JP5063227B2 (ja) 2012-10-31
CN101345816B (zh) 2010-12-08
US20090016492A1 (en) 2009-01-15
JP2009017476A (ja) 2009-01-22

Similar Documents

Publication Publication Date Title
CN101345816B (zh) 拍摄控制设备和方法
CN104010128B (zh) 摄像设备及其控制方法
AU2013295568B2 (en) YCbCr pulsed illumination scheme in a light deficient environment
CN101753837B (zh) 在多个拍摄条件下间隔拍摄的方法及其拍摄装置
US7554070B2 (en) Imaging-control apparatus and method of controlling same
JP2013223043A (ja) 受光装置および伝送システム
US20210334992A1 (en) Sensor-based depth estimation
CN101095340A (zh) 用于图像捕获设备的焦距检测
US20130343522A1 (en) X-ray detector, method for driving the same, and x ray photographing system including the same
CN102670222A (zh) 放射线摄像设备及其控制方法
CN110225242A (zh) 摄像元件、摄像元件的控制方法和摄像设备
CN111193846B (zh) 摄像设备
US20170257591A1 (en) Signal processing apparatus, image capturing apparatus, control apparatus, signal processing method, and control method
CN101374195B (zh) 摄像设备
US20180234646A1 (en) Endoscope apparatus, method of operating endoscope apparatus, and recording medium
WO2021116750A1 (en) Imaging devices and decoding methods thereof
JP6159811B2 (ja) 解像度および焦点改善
CN105847712A (zh) 拍摄设备以及用于漏光校正的方法
JP2013083876A (ja) 固体撮像装置及びカメラモジュール
US9842383B2 (en) Image processing device
JP5424542B2 (ja) 撮影制御装置及びその制御方法、並びに、プログラム
US11516408B2 (en) Image capturing apparatus, method for driving image capturing apparatus to detect flicker during shooting
WO2023037549A1 (ja) 監視画像生成システム、画像処理装置、画像処理方法、およびプログラム
JP2007183148A (ja) X線撮影装置
JP5366672B2 (ja) 固定パターンノイズ除去ユニット、撮像ユニット、および電子内視鏡システム

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20101208

Termination date: 20210709

CF01 Termination of patent right due to non-payment of annual fee