CN101365868A - 内燃机及改进燃烧室的方法 - Google Patents

内燃机及改进燃烧室的方法 Download PDF

Info

Publication number
CN101365868A
CN101365868A CNA2006800156954A CN200680015695A CN101365868A CN 101365868 A CN101365868 A CN 101365868A CN A2006800156954 A CNA2006800156954 A CN A2006800156954A CN 200680015695 A CN200680015695 A CN 200680015695A CN 101365868 A CN101365868 A CN 101365868A
Authority
CN
China
Prior art keywords
chamber
firing chamber
combustion engine
internal
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2006800156954A
Other languages
English (en)
Other versions
CN101365868B (zh
Inventor
约翰·扎杰克
伊恩·F·史密斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ZAJAC OPTIMUM OUTPUT MOTORS IN
Original Assignee
ZAJAC OPTIMUM OUTPUT MOTORS IN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ZAJAC OPTIMUM OUTPUT MOTORS IN filed Critical ZAJAC OPTIMUM OUTPUT MOTORS IN
Publication of CN101365868A publication Critical patent/CN101365868A/zh
Application granted granted Critical
Publication of CN101365868B publication Critical patent/CN101365868B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B31/00Component parts, details, or accessories not provided for in, or of interest apart from, other groups
    • F01B31/14Changing of compression ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/02Valve drive
    • F01L1/022Chain drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/352Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using bevel or epicyclic gear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L13/00Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations
    • F01L13/0015Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L7/00Rotary or oscillatory slide valve-gear or valve arrangements
    • F01L7/02Rotary or oscillatory slide valve-gear or valve arrangements with cylindrical, sleeve, or part-annularly shaped valves
    • F01L7/021Rotary or oscillatory slide valve-gear or valve arrangements with cylindrical, sleeve, or part-annularly shaped valves with one rotary valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L7/00Rotary or oscillatory slide valve-gear or valve arrangements
    • F01L7/02Rotary or oscillatory slide valve-gear or valve arrangements with cylindrical, sleeve, or part-annularly shaped valves
    • F01L7/026Rotary or oscillatory slide valve-gear or valve arrangements with cylindrical, sleeve, or part-annularly shaped valves with two or more rotary valves, their rotational axes being parallel, e.g. 4-stroke
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L7/00Rotary or oscillatory slide valve-gear or valve arrangements
    • F01L7/02Rotary or oscillatory slide valve-gear or valve arrangements with cylindrical, sleeve, or part-annularly shaped valves
    • F01L7/027Rotary or oscillatory slide valve-gear or valve arrangements with cylindrical, sleeve, or part-annularly shaped valves with two or more valves arranged coaxially
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L7/00Rotary or oscillatory slide valve-gear or valve arrangements
    • F01L7/16Sealing or packing arrangements specially therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B15/00Engines characterised by the method of introducing liquid fuel into cylinders and not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B33/00Engines characterised by provision of pumps for charging or scavenging
    • F02B33/02Engines with reciprocating-piston pumps; Engines with crankcase pumps
    • F02B33/06Engines with reciprocating-piston pumps; Engines with crankcase pumps with reciprocating-piston pumps other than simple crankcase pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B41/00Engines characterised by special means for improving conversion of heat or pressure energy into mechanical power
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B41/00Engines characterised by special means for improving conversion of heat or pressure energy into mechanical power
    • F02B41/02Engines with prolonged expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B41/00Engines characterised by special means for improving conversion of heat or pressure energy into mechanical power
    • F02B41/02Engines with prolonged expansion
    • F02B41/06Engines with prolonged expansion in compound cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/40Other reciprocating-piston engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D15/00Varying compression ratio
    • F02D15/04Varying compression ratio by alteration of volume of compression space without changing piston stroke
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • F02F3/28Other pistons with specially-shaped head
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/02Hot gas positive-displacement engine plants of open-cycle type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/02Valve drive
    • F01L1/024Belt drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/02Valve drive
    • F01L1/026Gear drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L13/00Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations
    • F01L13/0005Deactivating valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2301/00Using particular materials
    • F01L2301/02Using ceramic materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2800/00Methods of operation using a variable valve timing mechanism
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2820/00Details on specific features characterising valve gear arrangements
    • F01L2820/01Absolute values
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2820/00Details on specific features characterising valve gear arrangements
    • F01L2820/03Auxiliary actuators
    • F01L2820/032Electric motors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Abstract

一种恒压内燃机,具有长条形的燃烧室,在一些实施例中该燃烧室向自身折回并具有凹凸不平的、曲折的内侧壁,用于将燃料引入燃烧室燃料入口,与该燃烧室相通的压缩室,用于改变燃烧室和压缩室容积以形成燃料空气混合物的装置,该混合物在穿过燃烧室时燃烧并被凹凸不平的、曲折的燃烧室侧壁进一步混合,与燃烧室相通的膨胀室,以及在压缩室中的输出元件,该输出元件由燃烧混合物产生的压力驱动,由于具有改变压缩室容积的装置以及膨胀室中的输出元件连接在一起以一致运动,这样燃烧室中的压力基本保持恒定。燃料入口附近的气流隔离器在燃烧室中形成一个或者多个更小的容积,在此处燃料可以与引入燃烧室中的仅仅一部分空气混合并燃烧。长的、尖锐的突起从燃烧室壁向内延伸而这些突起与燃烧室中的湍流器一起促进燃料和空气的完全混合以及燃烧。

Description

内燃机及改进燃烧室的方法
相关申请
临时申请号60/660045,2005年3月9日提交,
临时申请号60/660046,2005年3月9日提交,
临时申请号60/660050,2005年3月9日提交,
临时申请号60/760478,2006年1月20日提交,
临时申请号60/760641,2006年1月20日提交,
临时申请号60/760642,2006年1月20日提交,
本申请要求以上申请的优先权。
技术领域
本发明大体上涉及内燃机,更特别地涉及一种具有改进的燃烧室的内燃机极其运行方法。
背景技术
大多数内燃机,例如典型的奥图(Otto)循环发动机、狄塞尔(Diesel)柴油机和汪克尔(Wankel)发动机在变化的压力下运行,该压力由燃料燃烧产生的热量引起气体在有限容积中的膨胀产生。该压力驱动机器的运动部件产生运动。
迄今为止,有一些设计运行在恒定压力下的旋转发动机的尝试。在专利号为3862622、3989011、4657009以及5709188的美国专利中有这些设计的例子。然而,这些设计有一些问题,例如与旋转发动机通常相关的润滑和密封问题。
发明内容
大体上,本发明的一个目的是提供一种新的和改进的内燃机和方法,其中燃烧室中的压力保持基本恒定。
本发明的另一个目的是提供一种具有上述改进的燃烧室的内燃机和方法。
这些和其它目的通过按照本发明提供的一种具有伸长的燃烧室的恒压内燃机实现。所述燃烧室在一些实施例中向自身折回并具有凹凸不平的、曲折的内部侧壁、用于将燃料引入燃烧室的燃料入口、压缩室、与燃烧室相通的膨胀室以及膨胀室中由燃烧混合物产生的压力驱动的输出元件,在所述压缩室中空气被压缩然后注入燃烧室中以形成当穿过燃烧室时能持续燃烧的燃料和空气的混合物。
通过燃烧室并进入膨胀室的气流是由阀门控制的,而在一些实施例中,阀门被控制,因此燃烧室中压力保持基本恒定。
在一些实施例中,燃烧室具有多个回转或弯曲的迂回形状,此形状有助于湍流气流通过该室并在进入膨胀室的气体膨胀之前进一步促进燃料的充分燃烧。在其它实施例中,燃烧室自身是直的,但是输送气体到室以及把气体从腔室中输送出去的通道将一般具有弯曲和回转,这些弯曲和回转引起湍流并因此促进室中的混合和燃烧。
在一些公开的实施例中,燃烧室具有初始空气燃料比的燃料和空气的混合物可以被点燃的第一区段和另外的空气被添加到混合物以形成更稀薄混合物的第二区段。气流隔离器设置在燃料入口附近以在燃烧室中形成一个或者多个更小的容积,在燃烧室中燃料可以仅仅与进入室中的一部分空气混合并燃烧。另外的空气由压缩室提供并与下游的燃烧混合物混合以提供一种实际上更稀薄的总和混合物。准确的比例取决于载荷和被燃烧的燃料,但是使用汽油时,例如,点燃可以发生的区段的空气和燃料的比例可以是,例如14:1到16:1的级别,且更稀薄的混合物可具有空气和燃料的比例在14:4到160:1的级别。该比例是优选的,使得燃料被注入区域的温度大于1400K°以便CO将与O2相结合而形成CO2并因此避免产生污染物CO。
在一些实施例中,气流隔离器包括一个可移动的气流分配器,该分配器可以连续调整以在燃料注入和不注入的区段之间提供任何希望的空气分配,因此使得将燃烧温度设定为任何希望的功率级别并在不同的功率级别之间变化变得容易。
一些实施例也具有长的、尖锐的突起,该突起从燃烧室的壁向内延伸和形成高温点,该高温点有助于燃料混合物在整个燃烧室中达到完全燃烧。该突起也产生湍流并因此进一步促进完全混合和燃烧,且在一些实施例中,气流湍流器产生湍流并促进燃料和空气的完全混合和燃烧。
附图说明
图1是本发明的具有改进的燃烧室的恒压内燃机的一个实施例的示意图;
图2是图1的实施例中的内燃机的垂直剖面图;
图3是图2中沿着3-3线截取的剖面图;
图4是本发明的内燃机的另一个实施例的垂直截面图;
图5和6是本发明的内燃机的其它实施例的剖面图;
图7-9是本发明的燃烧室的另外的实施例的垂直截面图;
图10图9中沿着10-10线截取的放大截面图;
图11是本发明的燃烧室的另一个实施例的垂直截面图;
图12A-12D是说明了图11中实施例的不同相对尺寸和间距的湍流器周围涡流和气流的简图;
图13和14是本发明的燃烧室的其它实施例的垂直截面图。
具体实施方式
如图1中所示,该发动机有与燃烧室13相对端相通的压缩室11和膨胀室12,在压缩室和膨胀室中具有往复运动的活塞14、16。活塞通过曲轴(简略显示为枢转杆17)链接在一起以在相反方向运动从而在燃烧室中保持基本上恒定的压力水平。
空气通过活塞14的下行行程经由入口18吸入压缩室,然后压缩并因此在活塞的上行行程中加热并被注入燃烧室13的入口端19。在燃烧室中,加热的压缩空气与通过燃料入口引入燃烧室的燃料混合以形成混合物,该混合物在整个腔中燃烧并引起气体容积膨胀。膨胀器从燃烧室中取出一定容积的气体,该气体膨胀到大于压缩器输入燃烧室的空气或者气体的容积。通过控制离开燃烧室的气体的量,燃烧室中的压力可以得到控制。
因此膨胀器活塞16的直径和表面积大于活塞14,活塞16被与两个活塞表面积的差额相关的力向下驱动。废气通过排气口21在膨胀活塞的上行行程过程中排出。入口和出口以及室之间的联通由阀22-25控制。
压缩室和膨胀室的尺寸、活塞在其中的运动以及阀门的定时都是这样的,即燃烧室中的压力在内燃机整个运行循环过程中保持基本恒定,尽管一些压力峰值可能出现并可能在一些情况下是希望的。在所图解的实施例中,通过将膨胀活塞的直径制造的比压缩活塞的大提供尺寸差额。然而,其也可以通过使用更多数量的膨胀活塞、更长的膨胀行程,不同的阀门定时或者这些的结合完成。
如果需要,该机器可以包括在室中具有温度和压力传感器的控制系统和计算机或者其它响应温度和压力传感器的控制器以调节阀门的定时和注入燃烧室的燃料的量。这些传感器和控制器使用的例子可以在序列号为___(代理人文档号A-71789)和___(代理人文档号A-75064)中找到,两者同一日提交,该公开被引入本发明。
室的相对尺寸是这样:燃烧室足够大以平均来自压缩活塞的脉冲并减小压力变化的速度以便计算机和其它控制器有时间反应并保持对整个过程的控制。燃烧室优选具有大约10倍发动机每次循环进入该燃烧室的压缩气体的容积,且在实际中,1到100倍的范围是可能的。然而,非常小的室很难控制,而非常大的燃烧室可能降低发动机的响应性并增加发动机的成本和尺寸。非常大的燃烧室还可能增加热损失并因此降低发动机总的效率。即使燃烧室的尺寸与机器每个循环进入该燃烧室的压缩气体的容积相同,燃烧时间仍然比传统机器的时间长,在传统机器中,燃烧仅仅在循环的一半中发生。燃烧室的容积不仅仅包括该室自身的容积,其也包括将燃烧室与其它室分隔开的两组阀门之间通道的容积。
在图1-3中显示的实施例中,燃烧室为长条形的向自身后部折回的管道以在压缩室和膨胀室之间提供曲折的扭曲的通道。该燃烧室具有用诸如钢或者其它合适的金属和/或复合材料等结构足够强度的材料制成的外壁或外壳27和用诸如二氧化硅、氮化硅、氧化铝、氧化锆、氮化硼及其组合物等隔热陶瓷材料制成的衬套28。该外壳为容纳该室中的压力提供足够的强度,而陶瓷衬套减少室内壁中的径向和轴向热传递。在其它实施例中,该室可以具有其它结构并可以不向自身后部折回。
因为所述发动机设计为在加热气体的膨胀下运转而不是在气体压力的增大下运转,燃烧室中的峰值压力与奥图循环发动机和狄塞尔柴油机相比可以相对较低。燃烧室中的压力在一定程度上取决于发动机的压缩比,例如该压力范围可以从对于压缩比8:1的机器为大约270PSI到对于压缩比为18:1的机器大约为800PSI。在一些实施例中,出口阀门19从压缩室中打开和入口阀门24打开到膨胀室的定时可能引起压力波动。然而,由于与由压缩室提供的空气的容积相比燃烧室的容积相对较大,所以该压力波动相对较小。因此,该波动将不明显影响机器的效率。
在显示的实施例中,衬套厚度等级为0.5到2英寸并形成在部分28a、28b中,并在室的相对侧上带有重叠的凸缘。该凸缘无约束的配合在一起,因此气体可以在它们之间通过以便平衡衬套内外的压力并因此避免否则可能破坏陶瓷材料的压力。另外,衬套可以形成有用于平衡压力的穿孔(未显示)。类似的,此衬套可以形成有不同数目的可以通过其它方法连接到一起的部分。
燃料入口32设置在靠近燃烧室的入口端19以将燃料引入该燃烧室。此燃料与从压缩室注入的热压缩空气混合并通过该室的残余热量或者通过诸如电热塞(未显示)等其它合适的装置引燃。
衬套的内壁33是凹凸不平的或者不平的以进一步促进燃料和空气混合物在穿过燃烧室时的彻底混合和完全燃烧。此外,尖锐的突出34从衬套壁延伸到燃烧室并在整个燃烧室中产生热点,该热点进一步确保任何注入燃烧室中的燃料完全燃烧。
例如,此突出可以是嵌入该衬套壁中的陶瓷细针或者金属线。该突出不被冷却,并且没有将热量从其导出的良好途经。从而,这些突出足够热,例如850°K-1700°K,以引燃任何可能与其接触的未燃烧燃料。
一个或者多个温度传感器和压力传感器36、37设置在燃料入口的下游。燃烧室中的温度因此被监控和控制,因此该温度不能达到形成NOX的程度。在那方面,燃烧温度优选为保持在大约1700°K以下并不允许超过大约1800°K,因为这是NOX形成的温度。来自压力传感器的信息被车载微处理器(未显示)利用以控制阀门定时和运行以提供所希望的燃烧室压力、最高的效率以及启动的和制动的简易。
在图4的实施例中,气流隔离器39设置在燃料/空气混合物发生引燃和燃烧的燃烧室的入口端。该隔离器为延伸穿过燃烧室并将燃烧室的入口部分分成两区段或者两段40的叶片,而燃料入口仅仅将燃料注入其中的一个。燃料因此开始仅仅被与注入一区段的部分空气混合并引燃。当气体向燃烧室下部运动并通过隔离器时,燃烧混合物与来自其它区段中的空气混合,而相应的混合物平均压力较低并具有可能十分低的有效燃烧温度(例如低于大约1400°K)以至于否则将产生一氧化碳(CO)污染。这与在极低的温度下燃烧极度稀薄的空气/燃料混合物具有相同的效果。因此,发动机将在具有高的有效空气燃料比的稀薄混合物下运行,该比率的混合物在其它发动机中将不能燃烧,而这样的运行也不产生污染。
在图5的实施例中,隔离器有四个轴向延伸的径向叶片41,该叶片将燃烧室的入口部分分成四个区段或段42,燃料入口仅仅向其中之一注入燃料。又在此处,燃料仅仅被与注入一个区段的空气混合并开始引燃。当气体向燃烧室下部运动并经过隔离器时,燃烧的混合物与来自其它区段的空气混合。
作为示例,通常当空气燃料比在大约10:1到20:1之间时发动机的燃料将燃烧,而对于多数普通的燃料,空气燃料比为大约14.6:1时发生完全燃烧。如果载荷状态仅仅需要60:1的空气燃料比而相应量的燃料被注入燃烧室的全部入口区域,一些燃料可能不会燃烧,或者燃烧温度可能不是足够高到允许一氧化碳的完全氧化。然而,当一些量的燃料仅仅被注入气流隔离器四个区段中的一个时,该区段中的有效空气燃料比为15:1,混合物将燃烧的非常好。
该发动机可以燃烧几乎不限多么稀薄的汽油。限制不在于燃烧,而在于混合物提供足够能量以保持机器空转的能力。在燃烧室中具有隔离器的发动机中,最小的区段接收14.6:1的空气燃料比混合物和总空气流的大约10%,净效应将与在空气燃料比为146:1时运行相等。当在高功率等级下运行时,燃烧室的超过一个区段可以接收注入的燃料,而实际燃烧温度将保持在1400°K和1700°K之间以减少空气污染。
由于燃料开始仅仅被与注入燃烧室中的部分空气混合并引燃,该机器可以比其它发动机使用相当高的总空气燃料比。因此,该发动机可以在更稀薄时运行并甚至在例如启动和空转的低载荷条件下也具有高的燃料效率。
气流隔离器的引导端可以为宽度或厚度比叶片其它部分更大的杆或者管道。隔离物表面的不连续性将在通过其的混合物中产生涡流和附加湍流,因此提供了更充分的空气和燃料混合以及燃料的更完全燃烧。
气流隔离器可以将燃烧室分成任何希望的区段,而不是仅仅将燃烧室分成相等尺寸的区段或者单元,同时燃料被注入一个或者多个这些区段,如在特定应用中所希望或者需要。
因此在图6中的实施例中,例如,气流隔离器43将燃烧室的入口部分分成截面积为燃烧室截面积10%、30%以及60%级别的三区段44、46、47,燃料注射器48、49、51用于将燃料引入各自单元。这个特殊的设置有利之处在于其用最小数量的注射器提供了最大范围的空气燃料比。
如果需要,一个计算机或者其它控制器可以与压力和/或温度传感器结合使用以调整注入每个区段中的燃料的量以及所注入区段的数目以为特定的运行条件提供合适的空气燃料比。
图7的实施例与图1-3中的实施例相似,除了燃烧室是直的而不是自身向后部折回。此燃烧室具有用诸如钢或者其它合适的金属和/或复合材料等结构足够强度的材料制成的外壁或外壳53和用隔热陶瓷材料制成的衬套54。除了是直的之外,外壁53和衬套54与图1-3中实施例的外壁27和衬套28类似,且内壁56为凹凸不平的或者崎岖不平的并具有尖锐的突起57以产生局部热点。燃料入口58设置在燃烧室入口端附近,而温度和压力传感器59、61设置在燃料入口下游。
图8的实施例也与图1-3的实施例类似,但在这个实施例中,绝缘材料28设置在燃烧室壁27的外侧。否则这两个实施例将相同,其中对应的部件用相同的数字标记表示。与在图1-3中的实施例一样,壁27由结构强度足够并可以经受高温的材料制成,绝热材料28是绝热陶瓷材料,例如二氧化硅、氮化硅、氧化铝、氧化锆、氮化硼及其组合物。
在图9-10中的实施例中,燃烧室具有直的侧壁63,与图7中的实施例一样。在壁外侧上有绝热材料64,与图8中的实施例一样。在此实施例中,壁63由结构强度足够并可以经受高温的材料制成,绝热材料64为绝热陶瓷材料,例如二氧化硅、氮化硅、氧化铝、氧化锆、氮化硼及其组合物。
图7-10的实施例运行和使用与图1-3的实施例类似。
图11的实施例与图2的实施例类似,此实施例具有附加湍流器以进一步促进燃烧室中空气和燃料的产生湍流及混合。在图示的实施例中,湍流器为在燃烧室中的气流路径横向或者横贯延伸的长条形的杆或者圆柱。将湍流器设置在燃料进入燃烧室的区域尤其有利,这样在燃烧完成之前混合达到最大限度。这可以用作限制微观最大燃烧温度并因此有助于减少诸如NOX等高温污染物的形成。
图12A说明了由一个湍流器66产生的湍流67。如图12B中所示,如果一个或者多个湍流器彼此间隔设置在第一个下游,湍流将会更大。所产生的湍流的量取决于湍流器的相对大小和间距,并且申请人发现,当湍流器之间的间隔至少为湍流器直径的四倍时,即,当L/D=4时,发生更高层级的涡流和混合,此处L是湍流器中心到中心的间距而D是湍流器的直径。
当使用多个湍流器时,从上游湍流器逼近下游湍流器的气流为湍流,当两个湍流器之间的距离减小到直到该距离为湍流器直径的四倍时,在上游湍流器后面发散的旋涡被更加干扰。这个干涉引起流体力特性的变化和流动引起的混合的发生。
湍流器之间不同间隔的湍流器效应在图12B-12D中说明。在图12B中L/D=3,间距太近而不允许上游湍流器后面的涡流完全发散。在图12C中L/D=4以及在图12C中L/D=5时,涡流和混合相当大。
在图13中的实施例中,燃烧室71的入口部分被静止的叶片74分为两个区段72、73,且燃料注射器76将燃料注射到两个区段之一,即区段72。一个可调节的流体分流器77将从压缩室输入的加压空气根据机器此时的需要在两个区段之间分配。在这个特殊的实施例中,流体分流器包括一个运动叶片78,该叶片铰接在静止叶片74的上游端以旋转运动来控制到两个区段的入口的打开的相对大小。
操作杆79连接到运动叶片并横向延伸穿过燃烧室的绝热侧壁82中的小孔81。杆的外端连接到燃烧室外的一个线性致动器83,且波纹管84为燃烧室开口周围的壁提供了高温密封。通过在接近铰节的点将致动杆连接到叶片,制动器和波纹管所需要的运动量都可以最小。
波纹管是由能够经受高温的材料制成,例如,钽。虽然致动杆可以从室内传导一些热量到波纹管,但是这并不是个问题,因为运动的叶片和杆在室中温度只有大约850K°的较冷的部分。另外,因为波纹管在燃烧室壁外部,所以该波纹管稍微被绝热壁所保护,并且波纹管也被周围空气冷却。
温度传感器86、87监控燃料被注入并被引燃的区段72和燃烧室在分段区段下游的区域内以及燃烧混合物与通过区段73的剩余空气发生混合的区域的温度。来自传感器的信息可以被计算机或者其它控制器利用以分配气流以保持希望的燃烧温度。
图14中显示的实施例大体上与图13的实施例相似,除了在这个实施例中气流分配器包含一个形式为隔板或者平板88的可调节阀门,该阀门横向或者横贯延伸穿过燃烧室以改变进气口相对于两个区段的大小。操作杆89连接到该阀门并延伸穿过燃烧室侧壁92中的开口91。杆的外端连接到燃烧室外的一个线性致动器93,而波纹管94为燃烧室壁提供高温密封。滑动阀门的线性移动提供更大的线性气流控制而比铰接的叶片需要更小的移动力,但该阀门从最小功率到最大功率需要更多的移动。
图13和14的实施例的运行类似。在其每一个中,输送到两个区段的每一个中的压缩空气的相对量是由气流分配器的位置决定。可用于初始引燃和下游附加燃烧的空气的量可以非常精确的确定,而燃烧温度可以被确定为任何希望的功率级别并可以被在不同的功率级别之间平稳而持续调节。
由于具有可调节气流分配器,燃烧室的入口区域仅仅需要被分为两部分,并且只需要一个燃料注射器来就可以为燃烧温度提供必须的无限控制。因此,燃烧温度很容易保持在避免污染的最高和最低值之间,并很容易的为任何希望的功率级别设定。
在所有公开的实施例中,进入燃烧室的空气的温度比燃烧室内的空气温度或者排出燃烧室的低,因此,进入燃烧室的管道可以是外部绝热而不是内部绝热。没有内部绝热的话,管道的直径可以更小,这可以节省空间并允许更紧凑的弯管。
除了防止产生NOX和CO外,燃烧室也被认为可以防止第三种污染-未燃烧的碳氢化合物。燃烧室具有非常热的壁,该壁不熄灭火焰前锋,这在水冷气缸中发生燃烧的发动机中可能发生。另外,任何与燃烧室的壁接触的燃料将汽化并被引燃。因此,高温内壁是具有很显著优势的一个特征。
本发明有许多重要的调整和优势。具有凹凸不平表面壁的、长的、绝热的专用燃烧室,在燃烧室入口或其附近的弯管,用于完全燃烧燃料并加热工作气体的气流湍流器。燃烧室足够大以平均来自压缩活塞的冲击并降低压力变化的速度以便计算机和控制器有时间反应并对整个过程保持控制。
燃烧室的尺寸或长度也影响气体充分燃烧的时间。例如,在3000RPM并且燃烧室的容积为每一个循环进入燃烧室的压缩气体的10倍时,气体将有0.1到0.2秒之间的点燃和燃烧时间,取决于载荷。这是对气缸中具有燃烧室的常规3000RPM的内燃机显著改进,该常规内燃机仅有大约0.01秒的完全燃烧时间。这对于完全燃烧是不充分的时间,而未燃烧气体通过排放系统作为污染物排放,该污染物可能需要进一步处理。反之,本发明的内燃机的燃烧室中用于点燃和燃烧的时间可以比其它相同的转速(RPM)运行的内燃机长很多(一般在2到100倍长的级别)。
在燃烧室中有绝热衬套的实施例中,衬套防止热量的损失,热量损失将降低内燃机的效率。该衬套也保持金属管或外壳不与高温气体直接接触并避免使用诸如钨或钽等熔点足够高而能承受燃烧室中例如1700°K(1425℃)高温的金属。
绝热衬套也防止沿着燃烧室内壁轴向和径向的热传递或者热损失。因为燃烧室端部连接到内燃机其它可能水冷的部分,所以尽可能的减小轴向热损失很重要。因此,此衬套提供径向和轴向绝热的同时允许燃烧室使用常用的、廉价的、低熔点的金属,例如钢铁。
燃烧室内壁的绝热允许该燃烧室的所有部分具有高温,这防止燃料凝结在燃烧室内壁上,如在奥图发动机和狄塞尔内燃机中发生的。这有助于进一步改进燃料效率并减少空气污染,因为在排气行程中没有凝结的碳氢化合物排放到大气中。
此分段的燃烧室可以燃烧任何非常稀薄燃料空气混合物并可以保持合适的温度范围以避免CO和NOX以及未燃烧的碳氢化合物的产生,而且在一些实施例中,这是在高温高压的燃烧室中没有运动部件下完成的。
从上述内容显然看出,本发明提供了一种新的并且改进的内燃机和方法。而这里仅仅描述了表述上优选的一些实施例。明显,对本领域技术人员来说,一定的变化和修改可以在不背离本发明的如所附权利要求所限定的范围内做出。

Claims (85)

1.一种内燃机,包括:长条形的燃烧室,该燃烧室向自身折回并具有凹凸不平、曲折的内壁;用于将燃料引入所述燃烧室的燃料入口;用于将空气引入所述燃烧室以形成燃料空气混合物的装置,该混合物在通过所述燃烧室中时持续燃烧并进一步通过所述燃烧室的凹凸不平、曲折侧壁混合;以及一个具有由燃烧混合物产生的压力驱动的输出元件的膨胀室。
2.如权利要求1所述的内燃机,其中改变所述膨胀室容积的元件是一个往复运动的活塞。
3.如权利要求1所述的内燃机,其中用于将空气引入所述燃烧室的装置包括一个带有可移动元件的压缩室,该元件压缩空气并连接到所述膨胀室中的可移动元件并与其配合以将所述燃烧室中的压力保持为基本恒定。
4.如权利要求1所述的内燃机另外包括长的尖锐的突起,该突起从所述燃烧室的壁向内延伸并形成有助于燃料混合物在整个所述燃烧室中充分燃烧的热点。
5.如权利要求1所述的内燃机,包括在所述燃料入口附近的气流隔离器,该气流隔离器在所述燃烧室内形成了一个更小容积,在该容积内燃料可以在被与剩余空气混合之前与仅仅一部分引入燃烧室的空气混合并燃烧。
6.如权利要求1所述的内燃机,在所述燃烧室中包括至少一个气流湍流器。
7.如权利要求1所述的内燃机,包括多个气流湍流器,这些湍流器在燃烧室横向延伸并在燃烧室长度方向间隔开。
8.如权利要求7所述的内燃机,其中所述湍流器的截面为圆形,且所述湍流器之间的距离和所述湍流器直径之比至少为4。
9.如权利要求1所述的内燃机,其中所述燃烧室的壁包括绝热陶瓷材料。
10.如权利要求9所述的内燃机,其中所述绝热陶瓷材料是从包括二氧化硅、氮化硅、氧化铝、氧化锆、氮化硼及其组合物的组中选出。
11.如权利要求1所述的内燃机,其中所述燃烧室的侧壁包括结构强度足够的材料制成的外壁和绝热陶瓷材料制成的衬套。
12.如权利要求11所述的内燃机,其中所述衬套以允许其内部和外部的气体压力相等的方式形成。
13.如权利要求11所述的内燃机,其中所述外壁由从包括金属、复合材料及其组合物的组中选出的材料制成。
14.一种内燃机,包括:长条形的燃烧室,该燃烧室向自身折回并具有一个凹凸不平、曲折的内壁;用于将燃料引入所述燃烧室的燃料入口;与所述燃烧室相通的压缩室;在所述压缩室中往复运动以将压缩空气注入所述燃烧室从而形成燃料空气混合物的活塞,该混合物在其通过所述燃烧室时燃烧并进一步被所述燃烧室凹凸不平、曲折的侧壁混合;与所述燃烧室相通的膨胀室;以及在所述膨胀室中由燃烧混合物产生的压力驱动而往复运动的活塞。
15.如权利要求14所述的内燃机,另外包括长而尖锐的突起,该突起从所述燃烧室壁向内延伸并形成有助于燃料混合物在整个燃烧室中充分燃烧的热点点。
16.如权利要求14所述的内燃机,包括在所述燃料入口附近的气流隔离器,该隔离器在所述燃烧室内形成了一个更小容积,在该容积内燃料可以与注入燃烧室的仅仅一部分空气混合并燃烧。
17.如权利要求14所述的内燃机,在所述燃烧室中包含至少一个气流湍流器。
18.如权利要求14所述的内燃机,包括多个气流湍流器,这些湍流器在所述燃烧室横向延伸并在所述燃烧室长度方向间隔开。
19.如权利要求18所述的内燃机,其中所述湍流器的截面为圆形,且所述湍流器之间的距离和所述湍流器直径之比至少为4。
20.如权利要求14所述的内燃机,其中所述燃烧室的侧壁包括结构强度足够的材料制成的外壁和绝热陶瓷材料制成的衬套。
21.如权利要求20所述的内燃机,其中所述外壁由从包括金属、复合材料及其组合物的组中选出的材料制成。
22.如权利要求20所述的内燃机,其中所述内部衬套由从包括二氧化硅、氮化硅、氧化铝、氧化锆、氮化硼及其组合物的组中选出的绝热陶瓷材料制成。
23.如权利要求14所述的内燃机,其中所述压缩室和膨胀室中的活塞连接在一起以一致动作,这样所述燃烧室中的压力保持基本恒定。
24.在内燃机中:长条形的燃烧室,其向自身折回并具有结构强度足够的材料制成的外壁和绝热陶瓷材料制成的衬套,该衬套具有凹凸不平的、曲折的内壁,用于将燃料和空气引入所述燃烧室以形成易燃混合物的装置,以及长而尖锐的突起,该突起从侧壁向内延伸并形成有助于燃料在整个燃烧室中充分燃烧的热点。
25.如权利要求24所述的内燃机,其中所述陶瓷衬套形成在区段中,这些区段以气体可以在所述区段之间通过并使衬套内部和外部的压力相等的方式装配到一起。
26.如权利要求24所述的内燃机,其中所述衬套时由从包括二氧化硅、氮化硅、氧化铝、氧化锆、氮化硼及其组合物的组中选出的材料制成。
27.如权利要求24所述的内燃机,其中所述长而尖锐的突起由从包括金属线、陶瓷材料的细针及其组合物的组中选出的材料制成。
28.如权利要求24所述的内燃机,包括气流隔离器,该隔离器在燃烧室内形成了一个更小容积,在该容积内燃料可以与引入所述燃烧室的仅仅一部分空气混合并燃烧。
29.如权利要求24所述的内燃机,在所述燃烧室中包括至少一个湍流器。
30.如权利要求24所述的内燃机,包括多个气流湍流器,这些湍流器在燃烧室横向延伸并在燃烧室长度方向间隔开。
31.如权利要求24所述的内燃机,其中湍流器的截面为圆形,且所述湍流器之间的距离和所述湍流器直径之比至少为4。
32.一种内燃机,包括长条形的燃烧室、在所述燃烧室中的一部分轴向延伸并将该部分分成至少两个区段的气流隔离器、用于将空气引入所述燃烧室以便其通过所有这些区段的装置、用于将燃料引入区段之一的燃料入口,这样燃料仅仅与一个区段中的空气混合并燃烧并且此后与所述室中的剩余空气混合。
33.如权利要求32所述的内燃机,其中所述室具有凹凸不平的、曲折的侧壁,该侧壁促进燃料和空气在通过所述室时的混合。
34.如权利要求32所述的内燃机,其中所述气流隔离器包括多个轴向延伸的叶片。
35.如权利要求32所述的内燃机,包括用于将燃料引入超过一个所述区段的燃料入口。
36.如权利要求32所述的内燃机,其中所述气流隔离器将所述室分为几个截面面积为燃烧室截面面积10%、30%以及60%级别的区段,燃料入口将燃料引入每一个所述区段。
37.一种内燃机,包括:长条形的燃烧室;燃料入口;用于将空气引入所述燃烧室以形成燃料空气混合物的装置,该混合物当通过所述燃烧室时燃烧;以及在所述燃料入口附近的气流隔离器,该隔离器在所述室中形成更小的容积,在该容积处燃料可以与所述室中仅仅一部分空气混合并燃烧。
38.如权利要求37所述的内燃机,其中所述室具有凹凸不平的、曲折的侧壁,该侧壁在燃料和空气通过所述室时促进其混合。
39.一种内燃机,包括:长条形的燃烧室,该燃烧室向自身折回并具有凹凸不平的、曲折的内侧壁;在燃烧室端部内轴向延伸并将该端部分为多个区段的气流隔离器;与该燃烧室相通的压缩室;在所述压缩室中用于将压缩空气注入所述燃烧室端部的往复运动的活塞,这样压缩空气通过所有所述区段;至少一个用于将燃料引入至少一个所述区段的燃料入口,这样燃料仅仅与其中的一部分空气混合并燃烧,且此后与所述室中剩余的空气混合并进一步燃烧;与所述燃烧室第二端部相通的膨胀室;在所述膨胀室中由燃烧混合物产生的压力驱动而往复运动的活塞。
40.如权利要求39所述的内燃机,其中所述压缩室和膨胀室中的活塞连接到一起以一致运动,这样所述燃烧室中的压力保持基本恒定。
41.一种内燃机,包括:长条形的燃烧室,该燃烧室向自身折回并具有凹凸不平的、曲折的内侧壁;在所述室端部内轴向延伸并将该端部分为多个区段的气流隔离器;用于将压缩空气注入所述室的端部以便该压缩空气通过所有所述区段;用于将燃料引入至少一个所述区段中的燃料入口,这样燃料仅仅与其中的一部分空气混合并燃烧而且其后与所述室中剩余的空气进一步燃烧;以及具有输出元件的膨胀室,该输出元件由燃烧燃料混合物产生的压力所驱动。
42.如权利要求41所述的内燃机,其中所述输出元件以保持燃烧室中的压力基本恒定的方式改变所述膨胀室的容积。
43.一种内燃机,包括:长条形的具有凹凸不平的内侧壁的燃烧室;用于将燃料引入所述燃烧室的燃料入口;用于将空气引入所述燃烧室以形成燃料和空气混合物的装置,所述混合物在穿过燃烧室时持续燃烧并被所述燃烧室凹凸不平的侧壁进一步混合;以及一个具有输出元件的膨胀室,该输出元件由燃烧燃料混合物产生的压力所驱动。
44.如权利要求43所述的内燃机,其中所述燃烧室的侧壁向其自身折回并限定了一个用于燃料空气混合物通过所述燃烧室的弯曲的通道。
45.如权利要求43所述的内燃机,其中所述燃烧室的侧壁为直圆柱的形式。
46.如权利要求43所述的内燃机,其中所述燃烧室的内侧壁由绝热陶瓷材料制成。
47.如权利要求46所述的内燃机,其中所述绝热陶瓷材料是从包括二氧化硅、氮化硅、氧化铝、氧化锆、氮化硼及其组合物的组中选出。
48.如权利要求43所述的内燃机,其中所述燃烧室的侧壁包括结构强度足够的材料制成的外壁和绝热陶瓷材料制成的内衬套。
49.如权利要求48所述的内燃机,其中所述衬套以允许其内部和外部的气体压力相等的方式形成。
50.如权利要求48所述的内燃机,其中所述外壁由从包括金属、复合材料及其组合物的组中选出的材料制成。
51.如权利要求43所述的内燃机,其中所述燃烧室的侧壁包括由结构强度足够并可以经受高温的材料制成的内壁和由绝热材料制成的外套。
52.如权利要求51所述的内燃机,其中所述外套是从包括二氧化硅、氮化硅、氧化铝、氧化锆、氮化硼及其组合物的一组中选出的陶瓷材料制成。
53.如权利要求43所述的内燃机,在所述燃烧室中包含至少一个气流湍流器。
54.如权利要求43所述的内燃机,包括多个气流湍流器,这些湍流器在所述燃烧室横向延伸并在所述燃烧室长度方向间隔开。
55.如权利要求54所述的内燃机,其中所述湍流器的截面为圆形,且所述湍流器之间的距离和所述湍流器直径之比至少为4。
56.如权利要求43所述的内燃机,其中所述输出元件以保持所述燃烧室中的压力基本恒定的方式改变所述膨胀室的容积。
57.一种内燃机,包括:长条形的向自身折回的燃烧室;用于将燃料和空气引入所述室以形成燃料空气混合物的装置,该混合物当通过所述室时燃烧;所述室中的至少一个气流隔离器以促进燃料和空气的混合;以及多个长的、尖锐的突起,该突起从所述室壁向内延伸并形成有助于燃料混合物在整个燃烧室中充分燃烧的热点。
58.如权利要求57所述的内燃机,其中多个湍流器在所述室横向延伸并在所述室长度方向间隔开。
59.如权利要求58所述的内燃机,其中所述湍流器的截面为圆形,而所述湍流器之间的距离和所述湍流器直径之比至少为4。
60.一种内燃机,包括:压缩室;容积基本恒定的燃烧室;在所述压缩室和燃烧室之间用于控制从所述压缩室到燃烧室气流的出口阀门;用于为所述燃烧室提供燃料的燃料入口;在所述燃烧室和膨胀室之间用于控制从燃烧室到膨胀室气流的入口阀门,其中所述压缩室设置为容积可变化并压缩输送到所述燃烧室中的气体,所述膨胀室设置为容积可变化并接收来自所述燃烧室的气体,所述出口阀门允许气体从所述压缩室到所述燃烧室流动以便燃烧,且所述入口阀门允许气体在燃烧后从所述燃烧室向膨胀室流动,同时所述燃烧室中保持基本恒定的压力。
61.如权利要求60所述的内燃机,其中所述压缩室为具有多个回转的蜿蜒形状。
62.如权利要求60所述的内燃机,其中所述燃烧室具有多个在其中延伸以形成促进燃烧的热点的突起。
63.如权利要求60所述的内燃机,其中所述燃烧室中的压力在250到1000PSI之间。
64.如权利要求60所述的内燃机,其中在稳定运行期间,所述燃烧室中的压力变化小于所述燃烧室中平均压力的20%。
65.一种用于具有基本恒定容积燃烧室的内燃机中燃烧燃料的方法,包括步骤为:把空气和燃料引入燃烧室的第一区域以形成第一空气燃料比的混合物,在燃烧室的第一区域中点燃该混合物;点燃后为混合物中增加空气而不改变燃烧室的容积以增大空气燃料的有效比例并因此提供稀薄混合物的低温效应,使稀薄混合物通过容积基本恒定的燃烧室的第二区域以进行补充燃烧。
66.一种内燃机,包括:压缩室;燃烧室;在所述压缩室和燃烧室之间用于控制从所述压缩室到所述燃烧室的气流和压力的出口阀门;用于为所述燃烧室提供燃料的燃料入口;膨胀室;在所述燃烧室和膨胀室之间用于控制从所述燃烧室到所述膨胀室的气流的入口阀门,其中所述压缩室的的容积大小在循环中变化以压缩输送到所述燃烧室的气体,且所述压缩室和燃烧室的相对尺寸是这样:来自每个压缩循环的气体在所述燃烧室中停留的时间比其在所述压缩室中停留的时间长。
67.如权利要求66所述的内燃机,其中来自每个压缩循环的气体在所述燃烧室中至少停留其在所述压缩室中停留时间的两倍。
68.一种内燃机,包括:压缩气缸;在所述压缩气缸中的活塞;燃烧室;在所述压缩气缸和所述燃烧室之间用于控制从所述压缩气缸到所述燃烧室的气流的出口阀门;用于为所述燃烧室提供燃料的燃料入口;膨胀气缸;在所述膨胀气缸中的活塞;在所述燃烧室和所述膨胀气缸之间用于控制从所述燃烧室到所述膨胀气缸的气流的入口阀门;以及一个将所述活塞互相连接以在汽缸中顶部和底部死点位置之间往复运动的曲轴,其中气体通过所述燃烧室的平均时间比所述压缩气缸中活塞的上行时间长。
69.如权利要求68所述的内燃机,其中气体通过所述燃烧室的平均时间至少是所述压缩气缸中活塞的上行时间的两倍。
70.一种内燃机,包括:压缩气缸;在所述压缩气缸中的活塞;燃烧室;在所述压缩气缸和所述燃烧室之间用于控制从所述压缩气缸到所述燃烧室的气流的出口阀门;用于为所述燃烧室提供燃料的燃料入口;膨胀气缸;在所述膨胀气缸中的活塞:在所述燃烧室和膨胀气缸之间用于控制从所述燃烧室到所述膨胀气缸的气流的入口阀门;以及将所述活塞互相连接以在所述汽缸中顶部和底部死点位置之间往复运动的曲轴,其中当所述出口阀门打开时,所述燃烧室的容积至少是所述压缩气缸容积的两倍。
71.如权利要求70所述的内燃机,其中当所述出口阀门打开时,所述燃烧室的容积至少是所述压缩气缸容积的两倍。
72.一种内燃机,包括:长条形的具有多个区段的燃烧室;用于将燃料引入至少一个所述区段的燃料入口;用于将空气引入所述室以形成燃料空气混合物的装置,该混合物当通过所述室时燃烧;用于分配接收燃料的区段和不接收燃料的区段之间的空气的可调节气流分配器;以及具有输出元件的膨胀室,该输出元件由燃烧燃料混合物产生的压力驱动。
73.如权利要求72所述的内燃机,其中所述可调节气流分配器包括铰接的叶片。
74.如权利要求72所述的内燃机,其中所述气流分配器包括在基本与所述室轴垂直的沿横向延伸并可以相对各所述区段横向运动的阀门。
75.如权利要求72所述的内燃机,包括操作杆,该杆连接到气流分配器并延伸穿过所述室壁上的开口,波纹管在所述开口周围对壁形成高温密封。
76.一种内燃机,包括:长条形的燃烧室;用于将燃料引入所述燃烧室的燃料入口;用于将空气引入所述室以形成燃料空气混合物的装置,该混合物当通过所述室时燃烧;以及具有输出元件的膨胀室,该输出元件由燃烧燃料混合物产生的压力驱动。
77.如权利要求76所述的内燃机,其中燃烧室具有侧壁,该侧壁向自身折回并限定一个用于燃料空气混合物通过所述燃烧室的弯曲通道。
78.如权利要求76所述的内燃机,其中所述燃烧室具有形式为直圆柱的侧壁。
79.如权利要求76所述的内燃机,其中所述燃烧室具有包括绝热陶瓷材料的侧壁。
80.如权利要求79所述的内燃机,其中所述绝热陶瓷材料是从包括二氧化硅、氮化硅、氧化铝、氧化锆、氮化硼及其组合物的组中选出。
81.如权利要求76所述的内燃机,其中所述燃烧室具有由结构强度足够的材料制成的外壁,绝热陶瓷材料在所述外壁内部。
82.如权利要求81所述的内燃机,其中衬套以允许气体压力在该衬套内部和外部相等的方式形成。
83.如权利要求82所述的内燃机,其中所述外壁是由从包括金属、复合材料及其组合物的组中选出的材料制成。
84.如权利要求76所述的内燃机,其中所述燃烧室具有结构强度足够并可以经受高温的内壁和绝热陶瓷材料制成的外套。
85.如权利要求84所述的内燃机,其中所述外套的陶瓷材料是从包括二氧化硅、氮化硅、氧化铝、氧化锆、氮化硼及其组合物的组中选出。
CN200680015695.4A 2005-03-09 2006-03-09 内燃机及改进燃烧室的方法 Expired - Fee Related CN101365868B (zh)

Applications Claiming Priority (13)

Application Number Priority Date Filing Date Title
US66004605P 2005-03-09 2005-03-09
US66004505P 2005-03-09 2005-03-09
US66005005P 2005-03-09 2005-03-09
US60/660,046 2005-03-09
US60/660,050 2005-03-09
US60/660,045 2005-03-09
US76064206P 2006-01-20 2006-01-20
US76064106P 2006-01-20 2006-01-20
US76047806P 2006-01-20 2006-01-20
US60/760,642 2006-01-20
US60/760,478 2006-01-20
US60/760,641 2006-01-20
PCT/US2006/008459 WO2006099064A2 (en) 2005-03-09 2006-03-09 Internal combustion engine and method with improved combustion chamber

Publications (2)

Publication Number Publication Date
CN101365868A true CN101365868A (zh) 2009-02-11
CN101365868B CN101365868B (zh) 2015-03-04

Family

ID=36954050

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200680015695.4A Expired - Fee Related CN101365868B (zh) 2005-03-09 2006-03-09 内燃机及改进燃烧室的方法

Country Status (4)

Country Link
US (18) US7658169B2 (zh)
EP (1) EP1866531A2 (zh)
CN (1) CN101365868B (zh)
WO (3) WO2006099064A2 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111108285A (zh) * 2017-08-02 2020-05-05 H2P系统公司 具有滑阀的外部热源发动机

Families Citing this family (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101365868B (zh) * 2005-03-09 2015-03-04 扎杰克优质发动机股份有限公司 内燃机及改进燃烧室的方法
US7143725B1 (en) * 2005-11-22 2006-12-05 Lung Tan Hu Dual six-stroke self-cooling internal combustion engine
US7434551B2 (en) * 2006-03-09 2008-10-14 Zajac Optimum Output Motors, Inc. Constant temperature internal combustion engine and method
US20070236211A1 (en) * 2006-04-11 2007-10-11 Cahill Eric D True speed sensor
JP4367439B2 (ja) * 2006-05-30 2009-11-18 トヨタ自動車株式会社 火花点火式内燃機関
US7591240B2 (en) * 2006-12-28 2009-09-22 Perkins Engines Company Limited Method for providing a mixture of air and exhaust
JP2008196377A (ja) * 2007-02-13 2008-08-28 Toyota Motor Corp 内燃機関の制御装置
JP2010539368A (ja) * 2007-02-21 2010-12-16 ジェイコブス ビークル システムズ、インコーポレイテッド 内燃機関に於いてエンジンブレーキによって排気ガス温度を制御する方法
US7714377B2 (en) * 2007-04-19 2010-05-11 Qimonda Ag Integrated circuits and methods of manufacturing thereof
BE1017617A5 (fr) * 2007-05-24 2009-02-03 Schmitz Gerhard Moteur a combustion interne a quatre temps et demi.
CA2696823A1 (en) * 2007-08-28 2009-03-12 John Arthur Devine Ultra efficient engine
DE102007049691B4 (de) * 2007-10-17 2012-09-06 Audi Ag Verfahren zur bedarfsgerechten Zufuhr verdichteter Luft zu einer Brennkraftmaschine mittels eines ventilgesteuerten Verdichters und entsprechende Brennkraftmaschine
WO2009076534A1 (en) * 2007-12-11 2009-06-18 Cornell University Resonant body transistor and oscillator
JP4924486B2 (ja) * 2008-03-07 2012-04-25 日産自動車株式会社 車両用内燃機関の吸気制御装置
US8499727B1 (en) * 2008-06-05 2013-08-06 Stuart B. Pett, Jr. Parallel cycle internal combustion engine
US8714119B2 (en) * 2008-06-05 2014-05-06 Stuart B. Pett, Jr. Parallel cycle internal combustion engine with double headed, double sided piston arrangement
US8371103B2 (en) * 2008-06-19 2013-02-12 Zajac Optimum Output Motors, Inc. Valve assembly and method for high temperature internal combustion engines
WO2009155620A1 (de) * 2008-06-26 2009-12-30 Sl Ingconsult Gmbh PRINZIP EINES VIERTAKT-HUBKOLBENMOTORS MIT RÄUMLICHER TRENNUNG DER TAKTE FÜR ANSAUGEN UND VERDICHTEN VON DEN TAKTEN FÜR ARBEIT UND GASAUSSTOß
DE102008063604A1 (de) * 2008-12-18 2010-06-24 Mahle International Gmbh Ventileinrichtung und Brennkraftmaschinensystem
US9249693B2 (en) * 2008-12-22 2016-02-02 Warren Engine Company, Inc. Opposed piston diesel engine
GB0907496D0 (en) * 2009-05-01 2009-06-10 Hall Keith G Engines and drives
US8353159B2 (en) * 2009-05-06 2013-01-15 Shapiro Robert L Combustion engine with heat recovery system
FR2945578A1 (fr) * 2009-05-15 2010-11-19 Jean Louis Lombard Procede et systeme de moteur hybride a synergie thermodynamique a charge thermique et pneumatique a cycles divises par plusieurs modes de fonctionnement
US8371256B2 (en) * 2009-05-27 2013-02-12 GM Global Technology Operations LLC Internal combustion engine utilizing dual compression and dual expansion processes
US9249696B2 (en) 2009-06-16 2016-02-02 Zajac Optimum Output Motors, Inc. Valve assembly and method for high temperature engines
SK288056B6 (sk) * 2009-07-06 2013-03-01 Jan Tuna Valves for steam engine with rotary piston and their drive
DE112010003064A5 (de) * 2009-07-24 2012-09-13 GETAS GESELLSCHAFT FüR THERMODYNAMISCHE ANTRIEBSSYSTEME MBH Axialkolbenmotor, verfahren zum betrieb eines axialkolbenmotors sowie verfahren zur herstellung eines wärmeübertragers eines axialkolbenmotors
JP2011102669A (ja) * 2009-11-10 2011-05-26 Mitsubishi Heavy Ind Ltd ガスタービン燃焼器及びガスタービン
US9057265B2 (en) * 2010-03-01 2015-06-16 Bright Energy Storage Technologies LLP. Rotary compressor-expander systems and associated methods of use and manufacture
MX2011011837A (es) * 2010-03-15 2011-11-29 Scuderi Group Llc Motor hibrido de aire de ciclo dividido con modo de encendido y carga.
MX2012000777A (es) * 2010-03-15 2012-02-28 Scuderi Group Llc Motor de ciclo dividido que tiene una valvula de expansion de cruzamiento para control de carga.
US8918238B2 (en) * 2010-04-12 2014-12-23 Lung-Tan Hu Mackay cold-expansion engine system
US9074526B2 (en) 2010-06-10 2015-07-07 Zajac Optimum Output Motors, Inc. Split cycle engine and method with increased power density
DE102010025048A1 (de) * 2010-06-18 2011-12-22 Seneca International Ag Brennkraftmotor
US8833315B2 (en) 2010-09-29 2014-09-16 Scuderi Group, Inc. Crossover passage sizing for split-cycle engine
US8616171B2 (en) * 2010-10-10 2013-12-31 Afshin Kiani Valve system for piston engines
US8051827B1 (en) * 2010-11-19 2011-11-08 Pao Chi Pien Applying the law of conservation of energy to the analysis and design of internal combustion engines
US20120164011A1 (en) * 2010-12-27 2012-06-28 Michael Anguelo Magnetic air engine
RU2477375C2 (ru) * 2011-05-03 2013-03-10 Государственное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный морской технический университет" Способ осуществления цикла поршневого двигателя и поршневой двигатель
CN103748323B (zh) 2011-06-28 2016-06-29 布莱特能源存储科技有限责任公司 带分开的燃烧器的发动机、以及相关联的系统和方法
WO2013032487A1 (en) * 2011-09-02 2013-03-07 International Engine Intellectual Property Company, Llc Improving compression release brake
US8826868B2 (en) 2012-04-02 2014-09-09 Pao Chi Pien Reciprocating internal combustion engine
NO334443B1 (no) * 2012-08-22 2014-03-03 Viking Heat Engines As Pulsbredderegulerende ventil
EP2971636A1 (en) 2013-03-15 2016-01-20 Scuderi Group, Inc. Split-cycle engines with direct injection
CN104376009B (zh) * 2013-08-14 2019-11-05 腾讯科技(深圳)有限公司 微博页面的丰富化方法、系统和装置
US9869241B2 (en) 2014-08-07 2018-01-16 John Zajac Split cycle engine and method of operation
US9903239B2 (en) * 2015-01-29 2018-02-27 Vaztec Engine Venture, Llc Engine with rotary valve apparatus
US20170300589A1 (en) * 2015-12-31 2017-10-19 Maria Francisca Jones Virtual office
DE102016002051A1 (de) * 2016-02-22 2017-08-24 GM Global Technology Operations LLC (n. d. Gesetzen des Staates Delaware) Kraftfahrzeug-Antriebsstrang-Steuerung
US10683796B2 (en) 2016-03-30 2020-06-16 General Electric Company Systems and methods for reduced oil carryover
US10393011B1 (en) * 2016-12-22 2019-08-27 Nickolas Adam Rowland Method of operating an internal combustion engine utilizing heat in engine cycles
GB2558333B (en) 2016-12-23 2020-03-18 Ricardo Uk Ltd Split cycle engine with liquid provided to a compression cylinder
US10711667B2 (en) * 2018-01-31 2020-07-14 Jonathan TAVERNIER Internal combustion engine with tubular valves and braking system
US11624300B2 (en) 2018-07-12 2023-04-11 Lse R&D Engineering Limited Internal combustion engine valve system and method
US11220934B2 (en) 2018-07-12 2022-01-11 LSE R&D Engineering, LLC Intake and exhaust valve system for an internal combustion engine
US11486275B2 (en) 2018-07-12 2022-11-01 Lse R&D Engineering Limited Internal combustion engine valve system and method
US11598229B2 (en) 2018-07-12 2023-03-07 Lse R&D Engineering Limited Internal combustion engine valve system and method
US11549409B2 (en) 2018-07-12 2023-01-10 Lse R&D Engineering Limited Internal combustion engine valve system and method
CN113039353B (zh) * 2018-09-10 2023-09-29 G.W.力士克有限公司 阀组件和方法
WO2020113168A2 (en) 2018-11-30 2020-06-04 Stenz David L Internal combustion engine configured for use with solid, slow burning, liquid, or gaseous fuels and methods of operating or implementing same
FR3105302B1 (fr) * 2019-12-20 2021-12-24 H2P Systems Moteur à source chaude externe à cycle divisé à boisseaux
CN112065574B (zh) * 2020-09-09 2021-11-02 高富 一种提高热机效率减少尾气污染的中燃热气轮机
US11512656B2 (en) * 2020-10-15 2022-11-29 Saudi Arabian Oil Company Oxycombustion engine systems including recirculation management features
EP4001608A1 (en) * 2020-11-17 2022-05-25 Volvo Truck Corporation An internal combustion engine system
US11920546B2 (en) 2022-05-17 2024-03-05 Jaime Ruvalcaba Buffered internal combustion engine

Family Cites Families (223)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US125166A (en) * 1872-04-02 Improvement in gas-engines
US286803A (en) 1883-10-16 Valve-gear
US691017A (en) 1898-01-17 1902-01-14 Elihu Thomson Gas or oil internal-combustion engine.
US729983A (en) 1899-05-31 1903-06-02 Wallmann Engine Company Internal-combustion engine.
US708236A (en) * 1901-07-19 1902-09-02 William A Leonard Gas-engine.
US837989A (en) 1904-05-20 1906-12-11 Carl Weidmann Combustion-engine.
US871523A (en) 1907-05-17 1907-11-19 James Pollock Rotary gas-engine.
US1111841A (en) * 1911-03-07 1914-09-29 Joseph Koenig Internal-combustion engine.
US1117095A (en) 1912-12-26 1914-11-10 Jarvis Engineering Co Ltd Internal-combustion engine.
US1097166A (en) 1913-01-30 1914-05-19 Fred D Calkins Internal-combustion engine.
US1147428A (en) 1913-04-15 1915-07-20 Alfred Peterson Rotary motor.
US1122529A (en) 1913-07-24 1914-12-29 Fred D Moss Gas-engine.
US1273834A (en) 1914-03-18 1918-07-30 Emile Paul Dumanois Internal-combustion engine.
US1213873A (en) 1915-05-12 1917-01-30 George E Hollmann Rotary-valve hydrocarbon-engine.
US1386477A (en) 1916-01-08 1921-08-02 Wallace Edward Valve for internal-combustion and fluid-pressure engines
US1299264A (en) 1916-04-04 1919-04-01 Henry W Thayer Explosion-engine.
US1265092A (en) 1916-12-11 1918-05-07 Joseph Koenig Internal-combustion engine.
US1360107A (en) 1919-04-05 1920-11-23 Antony C Fronk Rotary valve for internal-combustion engines
US1597924A (en) 1921-02-02 1926-08-31 A L Powell Power Co Inc Internal-combustion engine
US1695714A (en) 1922-01-19 1928-12-18 Bartley J Wright Constant-volume and constant-compression engine and method of operating same
US1578581A (en) 1922-04-29 1926-03-30 Alfred P J Pinel Internal-combustion engine
US1512673A (en) 1922-11-07 1924-10-21 Aviation Louis Breguet Sa Internal-combustion engine
US1559300A (en) 1923-06-27 1925-10-27 Henry Noble Fletcher Internal-combustion engine
US1534951A (en) 1924-03-05 1925-04-21 Hiemer Ferdinand Internal-combustion motor
US1669780A (en) * 1925-04-07 1928-05-15 Ricardo Harry Ralph Means for starting internal-combustion engines
US1759429A (en) * 1925-04-23 1930-05-20 Bowen Products Corp Lubricating system
US1639165A (en) 1925-12-16 1927-08-16 Automotive Valves Co Internal-combustion engine
US1677460A (en) 1926-07-21 1928-07-17 Waukesha Motor Co Valve mechanism
US1808671A (en) 1926-08-04 1931-06-02 Luyckx Charles Rotary distribution valve
US1746728A (en) 1926-11-06 1930-02-11 Orville H Ensign Internal-combustion engine
US1869805A (en) 1927-01-17 1932-08-02 Ensign Carburetor Co Ltd Art of fuel injection for internal combustion engines
US1740758A (en) 1927-11-24 1929-12-24 White Douglas George Fisher Valve for internal-combustion engines
US1759425A (en) * 1928-06-06 1930-05-20 Suekoff Samuel Internal-combustion engine
US1805670A (en) 1929-11-01 1931-05-19 Ingersoll Rand Co Internal combustion engine
US1890326A (en) 1931-02-27 1932-12-06 Sern L Hansen Valve structure for gas engines
US1917816A (en) 1931-03-31 1933-07-11 William H D Spears Valve
US1967734A (en) 1931-07-09 1934-07-24 Erwin G Baker Internal combustion engine
US1997491A (en) 1933-02-08 1935-04-09 Charles C Kemp Rotary valve mechanism
US2169631A (en) 1936-02-21 1939-08-15 Cross Roland Claude Rotary valve engine
US2183024A (en) 1938-03-30 1939-12-12 William W Large Rotary valve for engines
BE481609A (zh) 1947-04-03
US2627162A (en) 1947-05-22 1953-02-03 Jarvis C Marble Elastic fluid power plant
US2991616A (en) 1953-12-16 1961-07-11 Miller Ralph Supercharged intercooled two stroke cycle engine with compression control valve
CH452276A (de) 1960-07-11 1968-05-31 Eickmann Karl Drehkolben-Brennkraftmaschine
US3171425A (en) 1962-03-14 1965-03-02 Martin J Berlyn Rotary valve for internal combustion engines
US3301236A (en) * 1964-10-05 1967-01-31 Robert E Bratton Rotary valve internal combustion engine
US3577729A (en) * 1969-03-11 1971-05-04 Glenn B Warren Reciprocating internal combustion engine with constant pressure combustion
US3651641A (en) * 1969-03-18 1972-03-28 Ginter Corp Engine system and thermogenerator therefor
US3623463A (en) 1969-09-24 1971-11-30 Gerrit De Vries Internal combustion engine
US3932987A (en) * 1969-12-23 1976-01-20 Muenzinger Friedrich Method of operating a combustion piston engine with external combustion
US3625189A (en) 1970-02-02 1971-12-07 Phillip S Myers Method and apparatus for reducing exhaust emissions and improving fuel utilization in internal combustion engines
US4024704A (en) * 1970-09-23 1977-05-24 Hudson Perry D Combustion products pressure generator continuous burner type and engines
US3745979A (en) 1971-09-27 1973-07-17 R Williams Rotary combustion engine
US3844117A (en) 1972-08-04 1974-10-29 T Ryan Positive displacement brayton cycle rotary engine
US3877229A (en) * 1972-11-15 1975-04-15 Cornell Res Foundation Inc Combustion means for a low-pollution engine
US3862622A (en) 1973-01-10 1975-01-28 Raymond G Spinnett Torque conversion systems
JPS50102711A (zh) * 1974-01-25 1975-08-14
US3940925A (en) 1974-01-28 1976-03-02 Kelley Arthur P Rotary internal combustion engine
US3948227A (en) 1974-03-08 1976-04-06 Guenther William D Stratified charge engine
US4074571A (en) * 1974-08-01 1978-02-21 Fischer & Porter Co. Obstacle assembly for vortex type flowmeter
US3993036A (en) 1974-08-27 1976-11-23 Tischler Wald E Internal combustion engine
US4074671A (en) * 1974-10-31 1978-02-21 Pennila Simo A O Thin and low specific heat ceramic coating and method for increasing operating efficiency of internal combustion engines
GB1480753A (en) 1974-11-14 1977-07-27 Hydraulics Ltd A Hydraulically-operated devices
US3943895A (en) 1974-11-29 1976-03-16 Howell Roy M Barrel type internal combustion engine
US4007725A (en) 1975-03-05 1977-02-15 Weaver Robert R Rotary valving unit for an internal combustion engine
US4050420A (en) 1975-05-02 1977-09-27 General Motors Corporation Constant pressure-temperature delayed combustion high compression ratio engine and method
US4040400A (en) 1975-09-02 1977-08-09 Karl Kiener Internal combustion process and engine
US4077382A (en) 1975-10-06 1978-03-07 Gentile Carl A Rotary valve for internal combustion engines
US4094284A (en) 1975-10-21 1978-06-13 Eltra Corporation Emission control system
US4182261A (en) * 1975-12-18 1980-01-08 Identicator Corporation Credit card printer for fingerprints and solutions
US4041837A (en) 1976-03-05 1977-08-16 Franz Weidlich Induction and exhaust apparatus for piston machines
US4074533A (en) * 1976-07-09 1978-02-21 Ford Motor Company Compound regenerative engine
US4200149A (en) * 1976-12-06 1980-04-29 Murray Pechner Heat exchanger with fluid turbulator
US4149370A (en) * 1977-02-28 1979-04-17 Eduardo Ayala Vargas Self starting internal combustion engine with means for changing the expansion ratio
US4927349A (en) * 1977-05-25 1990-05-22 Phillips Petroleum Company Method for burning nitrogen-containing fuels
US4198946A (en) 1977-06-03 1980-04-22 Rassey Louis J Rotary valve construction for an internal combustion engine
US4546743A (en) 1977-06-20 1985-10-15 Karl Eickmann Arrangements to rotary valves for engines compressors, motors or pumps
US4562796A (en) 1977-06-20 1986-01-07 Karl Eickmann Reciprocating piston engine
US4133172A (en) * 1977-08-03 1979-01-09 General Motors Corporation Modified Ericsson cycle engine
US4336686A (en) 1978-04-21 1982-06-29 Combustion Research & Technology, Inc. Constant volume, continuous external combustion rotary engine with piston compressor and expander
US4212163A (en) * 1978-06-16 1980-07-15 Mikina Stanley J Heat engine
CA1087735A (en) * 1978-07-28 1980-10-14 Szymon Szwarcbier Process and apparatus for positive identification of customers
US4244338A (en) 1978-08-16 1981-01-13 Rassey Louis J Internal combustion engine
US4375949A (en) * 1978-10-03 1983-03-08 Exxon Research And Engineering Co. Method of at least partially burning a hydrocarbon and/or carbonaceous fuel
US4354459A (en) 1979-06-20 1982-10-19 Maxey Joel W Non-throttling control apparatus for spark ignition internal combustion engines
GB2072750B (en) * 1980-03-28 1983-10-26 Miles M A P Rotary positive-displacement fluidmachines
US4418658A (en) 1980-07-07 1983-12-06 Diross James Engine valve
US4333427A (en) 1980-08-05 1982-06-08 Antonio Burillo Internal combustion engine
US4381737A (en) 1980-11-13 1983-05-03 Turner William H Rotary valved internal combustion engine
SE425704B (sv) * 1981-03-18 1982-10-25 Loefberg Bo Databerare
US4663938A (en) 1981-09-14 1987-05-12 Colgate Thermodynamics Co. Adiabatic positive displacement machinery
US4545337A (en) 1981-12-14 1985-10-08 Lyons George A Rotary valve engine
US4473041A (en) 1981-12-14 1984-09-25 Lyons George A Rotary valve engine
SE450590B (sv) 1982-01-29 1987-07-06 Lars Hedelin Forbrenningsmotor
BE897345A (fr) 1982-07-27 1984-01-20 Negre Guy Elf France Dispositif de controle d'circuit de gaz d'une chambre de combustion et organe d'etancheite pour sa mise en oeuvre
EP0101431A3 (de) 1982-08-18 1985-01-23 Harald Rus Mehrfachschiebersteuerung
US4506634A (en) 1982-08-26 1985-03-26 Kerrebrock Jack L Internal combustion engine
EP0118432A1 (en) 1982-09-10 1984-09-19 KEISLER, D. Michael Internal combustion engine having a spherical chamber
US4458635A (en) * 1982-09-23 1984-07-10 Beasley Albert W Two-cycle internal combustion engine
DE3242431A1 (de) 1982-11-16 1984-05-17 Motos Motor GmbH, 4512 Wallenhorst Drehkolben-heissgasmotor mit kontinuierlicher verbrennung
FR2544823B1 (fr) 1983-04-21 1985-07-12 Negre Guy Procede et dispositif d'equilibrage pour une machine rotative a piston
US4556023A (en) 1983-08-02 1985-12-03 Joseph Giocastro Rotary valves and gear timing
JPS6036723A (ja) 1983-08-10 1985-02-25 Mazda Motor Corp エンジンの吸気装置
DE3432047C2 (de) 1983-09-19 1993-11-04 Suzuki Motor Co Zweitaktmaschine
US4553385A (en) 1983-11-18 1985-11-19 Lamont John S Internal combustion engine
US4592310A (en) 1984-01-26 1986-06-03 Mazda Motor Corporation Intake device for internal combustion engine
US4657009A (en) 1984-05-14 1987-04-14 Zen Sheng T Closed passage type equi-pressure combustion rotary engine
JPS60249614A (ja) 1984-05-23 1985-12-10 Kawasaki Heavy Ind Ltd 2サイクルエンジンの排気孔制御装置
GB2165886A (en) 1984-10-23 1986-04-23 Ford Motor Co An inlet manifold for an i c engine
US5081966A (en) * 1984-11-15 1992-01-21 Hansen Engine Corporation Internal combustion engine with rotary valve assembly
US4738233A (en) 1985-02-25 1988-04-19 Mazda Motor Corporation Intake system for internal combustion engines
US4776306A (en) 1985-04-05 1988-10-11 Honda Giken Kogyo Kabushiki Kaisha Valve operating system for internal combustion engine
US4636622A (en) * 1985-05-06 1987-01-13 Clark Clement P Card user identification system
US4714063A (en) 1985-09-17 1987-12-22 Mazda Motor Corporation Intake system for internal combustion engine
DE3633259A1 (de) 1985-09-30 1987-05-14 Honda Motor Co Ltd Drehventileinrichtung fuer brennkraftmaschinen
US5194289A (en) * 1986-04-30 1993-03-16 Butland Trust Organization Method for labeling an object for its verification
US4882195A (en) * 1986-04-30 1989-11-21 Print-Lock Corp. Method for labeling an object for its verification
US4864984A (en) 1986-09-02 1989-09-12 Blish Nelson A Rotary valve internal combustion engine
US4739737A (en) 1986-09-03 1988-04-26 Volkswagen Ag Rotary valve for control of the cylinder charge change of an internal combustion engine
US4742802A (en) 1986-09-03 1988-05-10 Volkswagen Ag Rotary valve for control of the cylinder charge change of an internal combustion engine
GB8708037D0 (en) 1987-04-03 1987-05-07 Jaguar Cars Rotary valves
US4783966A (en) 1987-09-01 1988-11-15 Aldrich Clare A Multi-staged internal combustion engine
US4864980A (en) 1987-11-02 1989-09-12 Brunswick Corporation Exhaust valve throttling mechanism for two-stroke engine
US4821692A (en) 1988-01-25 1989-04-18 Browne Daniel F Rotary valve mechanism for internal combustion engine
GB2221954B (en) 1988-08-16 1992-07-08 Austin Rover Group An internal combustion engine inlet manifold
JP2644547B2 (ja) 1988-09-09 1997-08-25 日本特殊陶業株式会社 内燃機関の回転式吸排気弁装置
JPH02169818A (ja) 1988-12-21 1990-06-29 Fuji Heavy Ind Ltd 2サイクルエンジン
US5239166A (en) * 1989-01-17 1993-08-24 Graves Marcel A Secure data interchange system erasing a card memory upon an invalid response
JP2718482B2 (ja) 1989-02-06 1998-02-25 ヤマハ発動機株式会社 2サイクル多気筒エンジンの弁駆動機構
US4987864A (en) 1989-06-21 1991-01-29 General Motors Corporation Two cycle engine with valved pressure scavenging
US5003942A (en) 1989-07-21 1991-04-02 Hansard Gregory R Rotary vaned valves
US4926809A (en) 1989-08-10 1990-05-22 Allen Charles A Internal combustion engine with rotary valve
US6003762A (en) * 1989-09-06 1999-12-21 Fujitsu Limited Transaction terminal for an electronic cashless system
US6003767A (en) * 1989-09-06 1999-12-21 Fujitsu Limited Cashless medium for an electronic cashless system
US6926200B1 (en) * 1989-09-06 2005-08-09 Fujitsu Limited Electronic cashless system
US5095194A (en) * 1989-10-12 1992-03-10 Joseph Barbanell Holographic credit card with automatical authentication and verification
US4944261A (en) 1989-10-16 1990-07-31 Coates George J Spherical rotary valve assembly for an internal combustion engine
US4949685A (en) 1989-10-25 1990-08-21 Doland George J Internal combustion engine with rotary valves
WO1991006920A1 (en) * 1989-11-02 1991-05-16 Tms, Incorporated Non-minutiae automatic fingerprint identification system and methods
US4976232A (en) 1989-12-06 1990-12-11 Coates George J Valve seal for rotary valve engine
US4976227A (en) 1990-04-16 1990-12-11 Draper David J Internal combustion engine intake and exhaust valve control apparatus
DE4017760A1 (de) 1990-06-01 1991-12-05 Motos Motor Technik Gmbh Drehkolbenbrennkraftmaschine
US5103645A (en) 1990-06-22 1992-04-14 Thermon Manufacturing Company Internal combustion engine and method
US5410998A (en) 1991-05-21 1995-05-02 Paul; Marius A. Continuous external heat engine
US5228415A (en) 1991-06-18 1993-07-20 Williams Thomas H Engines featuring modified dwell
US5199262A (en) 1991-11-05 1993-04-06 Inco Limited Compound four stroke internal combustion engine with crossover overcharging
US5205251A (en) 1992-08-05 1993-04-27 Ibex Technologies, Inc. Rotary valve for internal combustion engine
US5522356A (en) * 1992-09-04 1996-06-04 Spread Spectrum Method and apparatus for transferring heat energy from engine housing to expansion fluid employed in continuous combustion, pinned vane type, integrated rotary compressor-expander engine system
US5309718A (en) 1992-09-14 1994-05-10 Hughes Aircraft Company Liquid fuel turbocharged power plant and method
US5305608A (en) * 1992-10-15 1994-04-26 Hughes Aircraft Company Liquid fuel power plant and method
US5333458A (en) 1993-01-14 1994-08-02 Hughes Aircraft Company Liquid fuel power plant
BR9406733A (pt) * 1993-06-02 2000-04-25 Verifone Inc Sistema e processo para a reavaliação de indicações armazenadas em carões ic.
US5485312A (en) * 1993-09-14 1996-01-16 The United States Of America As Represented By The Secretary Of The Air Force Optical pattern recognition system and method for verifying the authenticity of a person, product or thing
US5709188A (en) 1993-12-09 1998-01-20 Al-Qutub; Amro Heat engine
US5474036A (en) 1994-02-25 1995-12-12 Hansen Engine Corporation Internal combustion engine with rotary valve assembly having variable intake valve timing
FR2717857B1 (fr) * 1994-03-25 1996-04-26 Maurice Huwarts Moteur à combustion interne, à obturateurs de distribution rotatifs.
US5598474A (en) * 1994-03-29 1997-01-28 Neldon P Johnson Process for encrypting a fingerprint onto an I.D. card
ATE180081T1 (de) * 1994-08-10 1999-05-15 Nadir Tech Co Ltd Mit einem dokument oder einer kundenspezifizierten karte verbundenes kreditdokument, unabhängige kundenspezifizierte kreditkarte und zugehörige ausgabe- und prüfapparatur
US5732148A (en) * 1994-09-16 1998-03-24 Keagy; John Martin Apparatus and method for electronically acquiring fingerprint images with low cost removable platen and separate imaging device
FR2727723A1 (fr) 1994-12-02 1996-06-07 Philippe Luc Laurent Un moteur a combustion interne pourvu d'un systeme d'injection directe de carburant avec assistance pneumatique
US5566549A (en) * 1995-06-05 1996-10-22 Caterpillar Inc. In-line engines having residual cycles and method of operation
US6006328A (en) * 1995-07-14 1999-12-21 Christopher N. Drake Computer software authentication, protection, and security system
AUPN559395A0 (en) * 1995-09-22 1995-10-19 Smith, Brian Rotary valve for an internal combustion engine
FI102860B (fi) * 1995-11-07 1999-02-26 Nokia Telecommunications Oy Menetelmä ja järjestelmä elektronisen maksutapahtuman suorittamiseksi
US5706775A (en) * 1996-04-12 1998-01-13 New Avenue Development Corp. Rotary valve apparatus for internal combustion engines and methods of operating same
SE9602688L (sv) * 1996-07-08 1998-01-09 Volvo Ab Katalytisk brännkammare, samt förfarande för tändning och reglering av den katalytiska brännkammaren
US5869822A (en) * 1996-10-04 1999-02-09 Meadows, Ii; Dexter L. Automated fingerprint identification system
KR19990076696A (ko) * 1996-10-23 1999-10-15 요트.게.아. 롤페즈 이동 통신 서비스 요금 지불 체계
US6175922B1 (en) * 1996-12-04 2001-01-16 Esign, Inc. Electronic transaction systems and methods therefor
US6044388A (en) * 1997-05-15 2000-03-28 International Business Machine Corporation Pseudorandom number generator
AUPO770797A0 (en) * 1997-07-04 1997-07-31 Smith, Brian Rotary valve for internal combustion engines
KR100382181B1 (ko) * 1997-12-22 2003-05-09 모토로라 인코포레이티드 단일 계좌 휴대용 무선 금융 메시지 유닛
US6092365A (en) * 1998-02-23 2000-07-25 Leidel; James A. Heat engine
US6182892B1 (en) * 1998-03-25 2001-02-06 Compaq Computer Corporation Smart card with fingerprint image pass-through
US6270011B1 (en) * 1998-05-28 2001-08-07 Benenson Tal Remote credit card authentication system
US7231068B2 (en) * 1998-06-19 2007-06-12 Solidus Networks, Inc. Electronic transaction verification system
FI105965B (fi) * 1998-07-07 2000-10-31 Nokia Networks Oy Autentikointi tietoliikenneverkosssa
US20010045458A1 (en) * 1998-07-27 2001-11-29 Stephen T. Polansky Biometeric system for verifying the user of a credit/identification card by a miniature autonomous fingerprint capture and verification system
US6356752B1 (en) * 1998-07-31 2002-03-12 Avaya Technology Corp. Wireless telephone as a transaction device
AU5242599A (en) 1998-07-31 2000-02-21 The Texas A & M University System Quasi-isothermal brayton cycle engine
US6175923B1 (en) * 1998-12-08 2001-01-16 Senetas Corporation Limited Secure system using images of only part of a body as the key where the part has continuously-changing features
US6512919B2 (en) * 1998-12-14 2003-01-28 Fujitsu Limited Electronic shopping system utilizing a program downloadable wireless videophone
FR2792441B1 (fr) * 1999-04-14 2002-07-26 Iodp Systeme d'imagerie medicale
US6226752B1 (en) * 1999-05-11 2001-05-01 Sun Microsystems, Inc. Method and apparatus for authenticating users
US6957334B1 (en) * 1999-06-23 2005-10-18 Mastercard International Incorporated Method and system for secure guaranteed transactions over a computer network
US6318310B1 (en) * 1999-08-05 2001-11-20 Caterpillar Inc. Internal combustion engine
US6715679B1 (en) * 1999-09-08 2004-04-06 At&T Corp. Universal magnetic stripe card
EP1092851A3 (de) 1999-10-13 2002-04-17 Heinzle, Friedrich Verbrennungsmotor sowie Verfahren zum Betreiben einer Verbrennungskraftmaschine
US7270110B2 (en) 2000-04-24 2007-09-18 Frank Keoppel Four stroke internal combustion engine with inlet air compression chamber
US6390048B1 (en) * 2000-07-13 2002-05-21 Kevin M. Luchansky Valve apparatus for internal combustion engine
KR20030005157A (ko) * 2000-07-19 2003-01-17 김영완 무카드 보안 신용 거래 처리용 시스템 및 방법
JP2002056325A (ja) * 2000-08-08 2002-02-20 Nec Corp 電子決済方法およびシステムとその決済センタ装置、個人情報入力端末およびプログラムを記録した記録媒体
US7292996B2 (en) * 2000-10-06 2007-11-06 Openwave Systems Inc. Method and apparatus for performing a credit based transaction between a user of a wireless communications device and a provider of a product or service
US6755171B1 (en) * 2000-10-30 2004-06-29 Travis D. Brawner Twin rotary valves for a four stroke internal combustion engine
US6334575B1 (en) * 2000-11-01 2002-01-01 Singular Technology Corp. Safety transaction method
KR20010025234A (ko) * 2000-11-09 2001-04-06 김진삼 지문정보를 이용한 카드거래 인증방법 및 그 시스템
US20020073024A1 (en) * 2000-12-07 2002-06-13 Gilchrist Alexander Sandy Donald System and methods of using wireless communication devices to conduct financial transactions
US20020077993A1 (en) * 2000-12-18 2002-06-20 Nokia Corporation Method and system for conducting wireless payments
US20020077974A1 (en) * 2000-12-19 2002-06-20 Ortiz Luis M. Wireless point of sale
US20020082925A1 (en) * 2000-12-27 2002-06-27 Herwig Nathaniel C. Method and apparatus for utilizing a smart card to maintain a retail application on a number of portable, wireless hand-held computing devices
US6990444B2 (en) * 2001-01-17 2006-01-24 International Business Machines Corporation Methods, systems, and computer program products for securely transforming an audio stream to encoded text
US6578538B2 (en) * 2001-04-02 2003-06-17 O. Paul Trentham Rotary valve for piston engine
US20020163421A1 (en) * 2001-05-07 2002-11-07 Po-Tong Wang Personal fingerprint authentication method of bank card and credit card
US6543225B2 (en) 2001-07-20 2003-04-08 Scuderi Group Llc Split four stroke cycle internal combustion engine
WO2003012266A1 (en) 2001-07-30 2003-02-13 Massachusetts Institute Of Technology Internal combustion engine
WO2003040530A2 (en) 2001-11-02 2003-05-15 Scuderi Group Llc Split four stroke engine
US6595177B1 (en) 2002-02-27 2003-07-22 Kramer Jewelers, Inc. #2 Rotary sleeve port for an internal combustion engine
US20030174049A1 (en) * 2002-03-18 2003-09-18 Precision Dynamics Corporation Wearable identification appliance that communicates with a wireless communications network such as bluetooth
US20020107007A1 (en) * 2002-03-27 2002-08-08 Howard Gerson Method for wireless telephony payment and an apparatus therefor
KR100491330B1 (ko) * 2002-04-02 2005-05-25 한국에너지기술연구원 단계별 혼합 방식의 고압 촉매/화염 복합 연소식 버너
US20040104268A1 (en) * 2002-07-30 2004-06-03 Bailey Kenneth Stephen Plug in credit card reader module for wireless cellular phone verifications
US7047722B2 (en) * 2002-10-02 2006-05-23 Claudio Filippone Small scale hybrid engine (SSHE) utilizing fossil fuels
US20060229988A1 (en) * 2003-01-21 2006-10-12 Shunichi Oshima Card settlement method using portable electronic device having fingerprint sensor
US6817521B1 (en) * 2003-08-21 2004-11-16 International Business Machines Corporation Credit card application automation system
US7363505B2 (en) * 2003-12-03 2008-04-22 Pen-One Inc Security authentication method and system
US7681232B2 (en) * 2004-03-08 2010-03-16 Cardlab Aps Credit card and a secured data activation system
HRP20040269B1 (en) * 2004-03-19 2010-03-31 Rak Miroslav Thermal hydro-machine on hot gas with recirculation
US7299122B2 (en) * 2004-11-15 2007-11-20 Perkins Michael T On demand boost conditioner (ODBC)
US7271110B2 (en) 2005-01-05 2007-09-18 Chartered Semiconductor Manufacturing, Ltd. High density plasma and bias RF power process to make stable FSG with less free F and SiN with less H to enhance the FSG/SiN integration reliability
CN101365868B (zh) * 2005-03-09 2015-03-04 扎杰克优质发动机股份有限公司 内燃机及改进燃烧室的方法
US20060266823A1 (en) * 2005-05-31 2006-11-30 Selvin Passen Authentication method and system for use in vending a restricted product or service
US7140342B1 (en) * 2005-09-01 2006-11-28 Murray Michael J Slotted cylindrical tube rotary valve assembly
US7434551B2 (en) * 2006-03-09 2008-10-14 Zajac Optimum Output Motors, Inc. Constant temperature internal combustion engine and method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111108285A (zh) * 2017-08-02 2020-05-05 H2P系统公司 具有滑阀的外部热源发动机

Also Published As

Publication number Publication date
US20070012291A1 (en) 2007-01-18
US7415948B2 (en) 2008-08-26
US7905204B2 (en) 2011-03-15
US7757644B2 (en) 2010-07-20
US20070017200A1 (en) 2007-01-25
WO2006099064A3 (en) 2008-10-16
US7255082B2 (en) 2007-08-14
US7594492B2 (en) 2009-09-29
US20060243229A1 (en) 2006-11-02
CN101365868B (zh) 2015-03-04
US20070017204A1 (en) 2007-01-25
WO2006099066A3 (en) 2009-06-04
US20070017477A1 (en) 2007-01-25
US20070012023A1 (en) 2007-01-18
US7481189B2 (en) 2009-01-27
US7421995B2 (en) 2008-09-09
US7552703B2 (en) 2009-06-30
WO2006099066A2 (en) 2006-09-21
US20070017203A1 (en) 2007-01-25
US7424871B2 (en) 2008-09-16
US20070012020A1 (en) 2007-01-18
US7658169B2 (en) 2010-02-09
US20070012021A1 (en) 2007-01-18
US7487748B2 (en) 2009-02-10
US7748351B2 (en) 2010-07-06
EP1866531A2 (en) 2007-12-19
US7748352B2 (en) 2010-07-06
US20070012022A1 (en) 2007-01-18
US20060254554A1 (en) 2006-11-16
WO2006099064A2 (en) 2006-09-21
US20070017202A1 (en) 2007-01-25
US7415947B2 (en) 2008-08-26
US7418929B2 (en) 2008-09-02
US20060254249A1 (en) 2006-11-16
US7448349B2 (en) 2008-11-11
US20070151538A1 (en) 2007-07-05
US7328674B2 (en) 2008-02-12
US7325520B2 (en) 2008-02-05
WO2006096850A2 (en) 2006-09-14
US20070017201A1 (en) 2007-01-25
US20070012024A1 (en) 2007-01-18
US20070151537A1 (en) 2007-07-05
US20070017476A1 (en) 2007-01-25
WO2006096850A3 (en) 2009-04-16

Similar Documents

Publication Publication Date Title
CN101365868A (zh) 内燃机及改进燃烧室的方法
CN101094978B (zh) 把气态燃料喷射到内燃机中的方法
US5117801A (en) Combustion system for dual fuel engine
US4040400A (en) Internal combustion process and engine
EP2247837B1 (en) Pre-chamber arrangement
US5067458A (en) Fuel combustion system and method of operation for an otto-cycle internal combustion engine
US4787349A (en) Ignition device for air-compressing internal combustion engine
RU2005135152A (ru) Двигатель внутреннего сгорания с впрыском газообразного топлива
JP4276998B2 (ja) スプリットフェーズ燃料コンディショナ
JP4242773B2 (ja) バルブ制御の分割チャンバー内燃機関エンジン
US4201047A (en) Low emission combustors
JP5325020B2 (ja) 副室式エンジン
CA2340693A1 (en) Reciprocating machine with two sub-chambers
US20070256658A1 (en) Combined variable compression ratio and passive ignition system
US3973393A (en) Reciprocating internal combustion engine with continuous combustion
JP3235302B2 (ja) 副室式ガスエンジン
US6073604A (en) Combustion chamber structure of a gas engine
US328970A (en) place
EP0727571A1 (en) Arrangement for effectivating the burning process in a reciprocating internal combustion engine
JP3038091B2 (ja) セラミックバルブを用いたガスエンジン
RU2187666C1 (ru) Способ работы двс
GB2136049A (en) A Dual Combustion Compound Gas and Thermal Engine
WO2023234877A1 (en) Combustion chamber for an internal combustion engine
RU2092701C1 (ru) Двигатель внутреннего сгорания
KR100608549B1 (ko) 내연기관의 흡기장치

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150304

Termination date: 20160309

CF01 Termination of patent right due to non-payment of annual fee