CN101416252A - 包含电阻切换氧化物或氮化物及抗熔丝的非易失性可重写存储器单元 - Google Patents

包含电阻切换氧化物或氮化物及抗熔丝的非易失性可重写存储器单元 Download PDF

Info

Publication number
CN101416252A
CN101416252A CNA2007800121076A CN200780012107A CN101416252A CN 101416252 A CN101416252 A CN 101416252A CN A2007800121076 A CNA2007800121076 A CN A2007800121076A CN 200780012107 A CN200780012107 A CN 200780012107A CN 101416252 A CN101416252 A CN 101416252A
Authority
CN
China
Prior art keywords
resistance
layer
memory cell
nitride
dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2007800121076A
Other languages
English (en)
Other versions
CN101416252B (zh
Inventor
罗伊·朔伊尔莱因
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sandy Technology Corp
SanDisk Technologies LLC
Original Assignee
SanDisk 3D LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SanDisk 3D LLC filed Critical SanDisk 3D LLC
Publication of CN101416252A publication Critical patent/CN101416252A/zh
Application granted granted Critical
Publication of CN101416252B publication Critical patent/CN101416252B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/003Cell access
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0007Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements comprising metal oxide memory material, e.g. perovskites
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0069Writing or programming circuits or methods
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/01Manufacture or treatment
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0069Writing or programming circuits or methods
    • G11C2013/0078Write using current through the cell
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/30Resistive cell, memory material aspects
    • G11C2213/32Material having simple binary metal oxide structure
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/70Resistive array aspects
    • G11C2213/72Array wherein the access device being a diode
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/70Resistive array aspects
    • G11C2213/76Array using an access device for each cell which being not a transistor and not a diode

Abstract

本发明揭示一种存储器单元,所述存储器单元包含以电性串联方式布置的介电熔断抗熔丝与电阻切换材料层,其中所述电阻切换材料是金属氧化物或氮化物化合物,所述化合物仅包括一种金属。在预调节步骤中熔断所述介电熔断抗熔丝,形成穿过所述抗熔丝的熔断区。所述熔断区提供窄导电路径,用以限制流向所述电阻切换材料的电流,且改善所述电阻切换层在较高与较低电阻状态间切换时的控制。

Description

包含电阻切换氧化物或氮化物及抗熔丝的非易失性可重写存储器单元
技术领域
本发明涉及一种包含电阻切换材料的非易失性存储器单元。
背景技术
可在稳定电阻状态间以可逆方式切换的电阻切换材料可用于非易失性存储器单元中。电阻切换材料的电阻状态存储单元的数据状态。
对于某些电阻切换材料,低至高电阻或高至低电阻切换或这两者可能难以控制。改善对所述切换的控制将是有利的。
发明内容
通过随附权利要求书来定义本发明,且不应将此部分中的任何内容视为对所述权利要求书的限制。一般而言,本发明是针对一种包含电阻切换材料的非易失性存储器单元。
本发明的第一方面提供一种非易失性存储器单元,其包含:电阻切换元件,所述电阻切换元件包含电阻切换金属氧化物或氮化物化合物的层,所述金属氧化物或氮化物化合物仅包括一种金属;及介电熔断抗熔丝。
本发明的优选实施例提供一种非易失性存储器阵列,其包含第一多个存储器单元,所述第一多个存储器单元中的每一存储器单元包含:介电熔断抗熔丝;电阻切换存储器元件,其包含电阻切换金属氧化物或氮化物化合物的层,所述金属氧化物或氮化物化合物仅包括一种金属。
本发明的另一方面提供一种用于形成及编程非易失性存储器单元的方法,所述方法包含:形成介电熔断抗熔丝;及形成电阻切换金属氧化物或氮化物化合物的层,所述金属氧化物或氮化物化合物仅包括一种金属,其中所述介电熔断抗熔丝及所述电阻切换元件是以电性串联方式布置于所述非易失性存储器单元内;及,在完成所述存储器单元的制造之后,施加预调节脉冲,其中所述预调节脉冲是用以熔断所述介电熔断抗熔丝,形成穿过所述介电熔断抗熔丝的低电阻熔断区,且其中所述预调节脉冲是用以在所述电阻切换金属氧化物或氮化物化合物的层中形成电阻切换区,改变所述电阻切换区的电阻状态。
本发明的另一优选实施例提供一种单片三维存储器阵列,其包含:i)第一存储器级,其是以单片形式形成于衬底上,所述第一存储器级包含:a)多个大致平行大致共面的第一导体;b)所述第一导体上的多个大致平行大致共面的第二导体;及c)第一多个存储器单元,每一存储器单元包含介电熔断抗熔丝,所述底部导体之一的一部分,及所述顶部导体之一的一部分,电阻切换金属氧化物或氮化物化合物的层,其中所述金属氧化物或氮化物化合物仅包括一种金属,且其中所述介电熔断抗熔丝与所述电阻切换金属氧化物或氮化物的层是以电性串联方式布置于所述顶部导体的所述部分与所述底部导体的所述部分之间,及ii)第二存储器级,其是以单片形式形成于所述第一存储器级上。
本发明的又一方面提供一种用于编程非易失性存储器单元的方法,其中所述单元包含:介电熔断抗熔丝及电阻切换存储器元件,所述电阻切换存储器元件包含电阻切换金属氧化物或氮化物化合物的层,所述金属氧化物或氮化物化合物仅包括一种金属,所述方法包含:施加预调节脉冲,其中所述预调节脉冲是用以熔断所述介电熔断抗熔丝,形成穿过所述介电熔断抗熔丝的低电阻熔断区,且其中所述预调节脉冲是用以在所述电阻切换金属氧化物或氮化物化合物的层中形成切换区,将所述切换区置于低电阻设置状态下。
本文所述的本发明的若干方面及实施例中的每一者均可单独或相互组合使用。
现在将参考附图来说明优选方面及实施例。
附图说明
图1是依据本发明的优选实施例所形成的非易失性存储器单元的透视图。
图2是包含多个图1的存储器单元的存储器级的一部分的透视图。
图3是依据′939申请案的存储器单元的透视图。
图4是具有从中穿过而形成的小导电熔断区的介电熔断抗熔丝的平面图。
图5a至5d是电路图,其说明用以预调节、重设、设置及读取被选定存储器单元S而不干扰邻接半选定单元H与F及未被选定单元U的偏压方案。
图6a至6d是横截面图,其说明依据本发明的优选实施例所形成的单片三维存储器阵列中的存储器级的形成阶段。
具体实施方式
在赫尔纳(Herner)等人于2005年5月9日所申请的美国专利申请案第11/125,939号“包括二极管和电阻切换材料的可重写存储器单元”(“Rewriteable Memory CellComprising a Diode and a Resistance-Switching Material”)(下文中的′939申请案且以引用方式并入本文);及赫尔纳等人的美国专利申请案第_号“,”(与本申请案同一日期所申请的_申请案(代理人案号MA-146-1))中揭示了一种包括金属氧化物或氮化物化合物的电阻切换层的非易失性存储器单元,所述金属氧化物或氮化物化合物包括一种金属。在优选实施例中,与二极管串联地布置所述电阻切换层。在这两个申请案中,存储器单元的数据状态是存储于电阻切换层的电阻状态中;即,电阻切换层处于低电阻状态下的存储器单元可对应于数据“0”,而电阻切换层处于高电阻状态下的存储器单元可对应于数据“1”。
电阻切换材料是金属氧化物或氮化物化合物的层,所述金属氧化物或氮化物化合物仅包括一种金属。优选金属氧化物或氮化物化合物包括NixOy、NbxOy、TixOy、HfxOy、AlxOy、MgxOy、CoxOy、CrxOy、VxOy、ZnxOy、ZrxOy、BxNy及AlxNy,其中x与y的范围在0与1之间。实例是化学计量化合物NiO、Nb2O5、TiO2、HfO2、Al2O3、MgOx、CoO、CrO2、VO、ZnO、ZrO、BN、及AlN,但也可使用非化学计量化合物。以初始稳定电阻状态(例如高电阻状态)形成这些材料之一的层。可通过施加适当的电脉冲使所述初始电阻状态变为不同的稳定电阻状态。使电阻切换层从较高电阻重设状态变为较低电阻设置状态的脉冲是设置脉冲,而使电阻切换层从较低电阻状态变为较高电阻状态的脉冲是重设脉冲。视需要,此说明也会提及设置电压、设置电流、重设电压或重设电流。
在本发明中,以与电阻切换层串联的方式包含介电熔断抗熔丝。以初始非导电状态形成介电熔断抗熔丝,阻止电流流动。一旦施加编程脉冲,抗熔丝的介电材料即经受电介质崩溃,永久地改变介电熔断抗熔丝并使其变为导电,从而允许增加的电流流动。在优选实施例中,也以与介电熔断抗熔丝及电阻切换层串联的方式形成二极管。
在本发明中,仅在小的导电熔断区中发生抗熔丝的介电熔断。通过此熔断区使电流聚集,且此电流聚集是用以集中流经穿过电阻切换层的窄切换路径的电流,使得此层的电阻的切换更加可控制。优选在工厂中在预调节步骤中在每一单元中熔断介电熔断抗熔丝,以准备好存储器以便使用。
图1绘示依据本发明的优选实施例的存储器单元。柱300包括垂直定位二极管30、电阻切换层118及介电熔断抗熔丝117,其是以串联方式设置在底部导体200与顶部导体400之间。大多数实施例将包括额外层,用作势垒层、黏合层等等,如下所述。
图1是非易失性存储器单元的一个实例,其包含:电阻切换元件,其包含电阻切换金属氧化物或氮化物化合物的层,所述金属氧化物或氮化物化合物仅包括一种金属;及介电熔断抗熔丝。也可包括二极管,二极管、电阻切换元件及抗熔丝是以电性串联方式布置。这些元件可设置在顶部与底部导体之间。
在优选实施例中,所述二极管是半导体结二极管。半导体结二极管是具有以下特性的半导体装置:沿一个方向比沿另一方向更容易传导电流、具有两个端子电极且由一个电极处为p型且另一电极处为n型的半导电材料制成。实例是p-n二极管、p-i-n二极管及齐纳二极管。在替代实施例中,所述二极管可为肖特基势垒二极管,或具有半导体特性的金属氧化物(例如NiO用作p型区且TiO2用作n型区)的二极管。
图2绘示此类存储器单元的存储器级,其可通过形成多个大致共面的底部导体200、柱300及顶部导体400而形成。此存储器级可由衬底(例如半导体晶片衬底,如单晶硅晶片或绝缘体上硅晶片)上沉积的层形成。
可堆栈二、三、四或更多此类存储器级以形成单片三维存储器阵列。单片三维存储器阵列当中会有多个存储器级在无任何中间衬底的情况下在单个衬底(例如晶片)上形成。形成一个存储器级的所述层直接在现存存储器级的层上沉积或生长。相反,堆栈式存储器如同于李迪(Leedy)的美国专利第5,915,167号“三维结构存储器”(“ThreeDimensional Structure Memory”)中所述,通过在分离衬底上形成存储器级并在每一存储器级的顶上黏附另一存储器级而构造。可在接合之前对所述衬底加以薄化或从存储器级移除衬底,但由于所述存储器级最初是形成在分离衬底上,所以此类存储器并不是真正的单片三维存储器阵列。
形成在衬底上的单片三维存储器阵列包含至少一按第一高度形成在衬底上的第一存储器级及一按不同于所述第一高度的第二高度形成的第二存储器级。在此多级阵列中可在衬底上形成三、四、八乃至任何数目的存储器级。
在以下专利中说明单片三维存储器阵列:约翰逊(Johnson)等人的美国专利第6,034,882号“垂直堆栈现场可编程非易失性存储器及制造方法”(“Vertically stackedfield programmable nonvolatile memory and method offabrication”);科纳尔(Knall)等人的美国专利第6,420,215号“三维存储器阵列及制造方法”(“Three Dimensional MemoryArray and Method of Fabrication”);及赫尔纳(Herner)等人的美国专利第6,952,030号“高密度三维存储器单元”(“High-density three-dimensional memory cell”),将所述专利全部以引用方式并入本文。
如先前所述,用于电阻切换层的优选材料包括NixOy、NbxOy、TixOy、HfxOy、AlxOy、MgxOy、CoxOy、CrxOy、VxOy、ZnxOy、ZrxOy、BxNy及AlxNy。为简单起见,此论述将说明使用氧化镍作为电阻切换金属氧化物或氮化物化合物所形成的存储器单元。应明白,也可使用任何其它指定材料。应进一步明白,在此论述中,“氧化镍”指镍的化学计量及非化学计量氧化物。
一般而言,以高电阻状态形成氧化镍层。一旦施加设置脉冲,所述氧化镍即转换为低电阻状态。转向图3,在不具有介电熔断抗熔丝的存储器单元中,当在顶部导体400与底部导体200之间施加设置电压且电流流经二极管30时,氧化镍层118从其初始高电阻状态转换为较低电阻状态。在′939申请案中说明此存储器单元。
设置及重设脉冲需要精细控制。从设置状态切换回至较高电阻重设状态需要横跨电阻切换层建立重设电压。参考图3,如果氧化镍层118的设置状态是极低电阻,允许高电流流动,则可能很难建立足以使氧化镍层118重设回较高电阻状态的电压。
参考图1,在本发明中,介电熔断抗熔丝117是由介电材料形成;例如,此抗熔丝可为单层生长或沉积的二氧化硅或某一其它生长或沉积的电介质。施加足以引起电介质崩溃的电压而形成穿过抗熔丝的低电阻熔断区。参考图4,此熔断区42的面积比抗熔丝40本身的面积小得多;其直径可为(例如)大约2至5nm。
参考图1,当介电熔断抗熔丝117与氧化镍层118邻接时,透过极窄熔断区集中电流,形成穿过氧化镍层118的比较窄的切换区。可在氧化镍层与抗熔丝之间插入薄导电势垒层(未图示)。如果所述势垒层足够薄(优选比电阻切换层薄)且是由相对较高电阻材料(优选具有可与电阻切换材料的高电阻状态相比较的电阻)形成,则将透过势垒层传送电流聚集效应。
此电流聚集建立穿过窄切换区的较高的观察到的电阻。电阻切换层118中的此切换区的较高电阻有助于控制设置及重设状态。与不具有抗熔丝层117的类似单元相比较,在本发明中,电流路径在相同电压下是较高电阻,允许较低电流,从而允许较低功率。可很容易设置及重设电阻切换层的电阻状态,有助于获得稳固的可重写存储器单元。
为将最大功率输送至单元,编程期间所编程的单元的电阻应与驱动被选定单元的字线及位线的电路的电阻和大约相同。当通过横跨介电层的电介质崩溃而以电性方式形成低电阻熔断区时,介电区最初为高电阻,之后电阻随着熔断区形成而下降。随着熔断区的电阻接近电路的电阻,熔断区开始冷却,且尺寸将不再增加。因此,熔断区的形成机制倾向于使熔断区的电阻与驱动电路的电阻大约相同。接着,在随后的编程事件中,熔断区提供用以将可预测功率级输送至单元的构件。如所属领域的技术人员将众所周知的,在编程期间可有利地使用常规电流限制器电路来控制驱动器的有效电阻。
在特征尺寸的范围为大约.1微米下至大约10nm的存储器中(如同在本发明的大多数优选实施例中),未熔断抗熔丝的初始电阻会非常高,在大约10兆欧与大约1000兆欧之间。电介质崩溃之后,熔断区的电阻将在大约10千欧与大约1兆欧之间。
本发明允许对设置及重设状态的改良控制;因此,在某些实施例中,对于氧化镍(或其它电阻切换材料),将可重复实现两个以上可很容易检测的稳定电阻状态。在与本申请案同一日期所申请的_申请案(代理人案号MA-146-1)中说明用以设置及重设为多个电阻级的有利方法。
适合用于依据本发明所形成的三维存储器阵列中的电路结构及方法是在斯切艾林(Scheuerlein)于2003年3月31日所申请的美国专利申请案第10/403,844号“用于三维存储器阵列的具有多层字线区段的字线布置”(“Word Line Arrangement HavingMulti-Layer Word Line Segments for Three-Dimensional Memory Array”)中进行说明,所述申请案是让渡给本发明的受让人且以引用方式并入本文。此布置的有益要素包括使用共同字线驱动器及极长位线,其可减少内务操作电路(overhead circuitry)。
斯切艾林(Scheuerlein)的美国专利申请案第11/040,262号“用于可靠写入的用于偏压相变存储器阵列的结构和方法”(“Structure and Method for Biasing Phase ChangeMemory Array for Reliable Writing”)说明一种可有利地用于依据本发明所形成的阵列中的偏压方案。此申请案的偏压方案可确保横跨未被选定与半选定单元的电压不足以造成所述单元的无意的转换,且允许对输送至待编程单元的功率进行精确控制。如果要了解更多有用教示,可参阅斯切艾林(Scheuerlein)的美国专利第6,618,295号“用于在写入存储器阵列时偏压选定和未选定阵列线的方法和设备”(“Method and Apparatus forBiasing Selected and Unselected Array Lines When Writing a Memory Array”)。
应记得,为存储器阵列内的每一抗熔丝施加预调节脉冲以建立熔断区,以便使装置作好用作存储器单元的准备。图5a说明一有利的偏压方案,其是用以在待对每一单元执行的预调节步骤中熔断被选定单元的抗熔丝。所属领域的技术人员应明白,此实例及以下实例中所供应的电压可视单元结构的许多细节而变化。
参考图1及5a至5d,在一优选实施例中,二极管30具有邻接切换材料118及抗熔丝层117的p型材料以及邻接底部导体200(其是字线)的n型材料。图1的存储器单元可形成于存储器阵列(如图2所示)中,因此,字线200是许多字线之一,而作为位线的顶部导体400是许多位线之一。应进一步明白,为简单起见,图5a至5d未描绘抗熔丝。
参考图5a,待经受抗熔丝熔断的单元是被选定字线W1与被选定位线B1的交叉点处的被选定单元S。在此实例中,将位线B1设置为相对较高的预调节电压VP(例如10v),而将字线W1设置为接地。此横跨存储器单元S的电压足以熔断抗熔丝、使二极管的高电阻多晶硅转换为低电阻状态以及将氧化镍电阻切换层置于低电阻设置状态下。为避免干扰相邻单元的存储器状态,将未被选定字线W0与W2设置为VP-VD伏特,其中VD是二极管的接通电压。低于二极管的接通电压时,二极管允许少量或不允许电流流动,而当高于接通电压时,允许高得多的电流流动。将所有未被选定位线(例如位线B0与B2)均设置为VD。因此,与被选定单元S共享字线W1的半选定单元H经受正电压VD。与被选定单元S共享位线B1的半选定单元F经受正电压VP-(VP-VD)=VD。既不与被选定单元S共享字线W1也不与其共享位线B1的未被选定单元U经受电压VD-(VP-VD)或负电压VP-2VD
例如,假设VP是10伏特且VD是0.8伏特。将未被选定字线W0与W2设置为9.2伏特且将未被选定位线B0与B2设置为0.8伏特。被选定单元S经受10伏特,半选定单元H与F经受0.8伏特,而未被选定单元U经受-8.4伏特的电压。
转向图5b,为了在抗熔丝熔断之后重设电阻切换层,将被选定位线B1设置为重设电压VR,例如在大约2与大约4伏特之间。对于横跨被选定单元S的VR伏特的电压,被选定字线W1同样是接地。将未被选定字线W0与W2设置为VR-VD且将未被选定位线B0与B2设置为VD。因此,被选定单元S经受VR,半选定单元H与F经受电压VD,而将电压VD-(VR-VD)施加给未被选定单元U。
例如,假设VR是3伏特且VD是0.8伏特。被选定位线B1是处于3伏特下,而被选定字线W0是接地。未被选定字线W0与W2是2.2伏特,而未被选定位线B0与B2是0.8伏特。因此,横跨被选定单元S的电压为3伏特,横跨半选定单元H与F的电压为0.8伏特,而横跨未被选定单元U的电压为-1.4v。
转向图5c,在随后的设置操作中,为设置电阻切换层,将被选定位线B1设置为设置电压VS,例如在大约4.1与大约7伏特之间。对于横跨被选定单元S的VS伏特的电压,被选定字线W1同样是接地。将未被选定字线W0与W2设置为VS-VD且将未被选定位线B0与B2设置为VD。因此,横跨被选定单元S的电压是VS,半选定单元H与F经受电压VD,而将电压VD-(VS-VD)施加给未被选定单元U。
例如,假设VS是6伏特且VD是0.8伏特。被选定位线B1是处于6伏特下,而被选定字线W1是接地。未被选定字线W0与W2是处于5.2伏特下,而未被选定位线B0与B2是处于0.8伏特下。因此,横跨被选定单元S的电压为6伏特,横跨半选定单元H与F的电压为0.8伏特,而横跨未被选定单元U的电压为-4.4伏特。
参考图5d,为读取被选定单元S,应横跨被选定单元S施加读取电压VRD。读取电压VRD是,例如,在大约1.5与大约1.9伏特之间。对于横跨被选定单元S的VRD伏特的电压,将被选定位线B1设置为VRD,而被选定字线W1同样是接地。将未被选定字线W0与W2设置为VRD且将未被选定位线B0与B2设置为VD。因此,半选定单元H经受VD的电压,而将VD-VRD的电压施加给未被选定单元U。半选定单元F经受大约零的偏压以确保被选定单元S的准确感测。
例如,假设VRD是1.8伏特且VD是0.8伏特。被选定位线B1是处于1.8伏特下,而被选定字线W1是接地。未被选定字线W0与W2是处于1.8伏特下,而未被选定位线B0与B2是处于0.8伏特下。因此,横跨被选定单元S的电压为1.8伏特,横跨半选定单元H的电压为0.8伏特,横跨未被选定单元U的电压为-1.0伏特,而横跨半选定单元F的电压大约为零伏特。
总而言之,为了编程存储器单元,在完成存储器单元的制造之后,施加预调节脉冲,其中所述预调节脉冲是用以熔断介电熔断抗熔丝,形成穿过介电熔断抗熔丝的低电阻熔断区,且其中所述预调节脉冲是用以在所述电阻切换金属氧化物或氮化物化合物的层中形成电阻切换区,改变电阻切换区的电阻状态。预调节脉冲之后,切换区是处于低电阻状态下,然后施加第一重设脉冲以将切换区置于高电阻重设状态下。
可进一步编程所述单元:第一重设脉冲之后,可施加第一编程设置脉冲以将切换区置于编程设置状态下,其中在切换区的电阻状态中存储存储器单元的第一数据状态。也可用新的值来编程所述单元,或将所述单元擦除:第一编程设置脉冲之后,可施加第一编程重设脉冲以将切换区置于编程重设状态下,其中在切换区的电阻状态中存储存储器单元的第二数据状态,依此类推。
当存储器单元内不包含抗熔丝层时,已发现,氧化镍层118的重设可能难以用正电压(即用横跨二极管的正向偏压)来实现。如果氧化镍层118的电阻在设置状态下太低,则电流可很容易流经氧化镍层118以允许建立足够电压来实现重设。在某些实施例中,通过使二极管处于负偏压下可更容易实现切换。不过,对于抗熔丝层117且通过仅在氧化镍层118的窄切换中执行电阻切换,可限制流经氧化镍层的电流,从而有助于重设。预期在本发明中,通过使二极管处于正向偏压下将很容易实现重设。
因此,可将每一单元编程为一不同的存储器状态。例如,依据本发明所形成的阵列可包含:第一存储器单元,其中熔断所述第一存储器单元的第一介电熔断抗熔丝,且其中所述第一存储器单元的第一电阻切换存储器元件是处于低电阻状态下;及第二存储器单元,其中熔断所述第二存储器单元的第二介电熔断抗熔丝,且其中所述第二存储器单元的第二电阻切换存储器元件是处于高电阻状态下。所述第二存储器元件的电阻可比所述第一存储器元件的电阻高至少三倍。
如上所述,抗熔丝所提供的增加的控制度使得更容易实现两个以上数据状态。因此,依据本发明所形成的阵列可包括:第一存储器单元,其中熔断所述第一存储器单元的第一介电熔断抗熔丝,且其中所述第一存储器单元的第一电阻切换存储器元件是处于第一电阻状态下;第二存储器单元,其中熔断所述第二存储器单元的第二介电熔断抗熔丝,且其中所述第二存储器单元的第二电阻切换存储器元件是处于不同于所述第一电阻状态的第二电阻状态下;及第三存储器单元,其中熔断所述第三存储器单元的第三介电熔断抗熔丝,且其中所述第三存储器单元的第三电阻切换存储器元件是处于不同于所述第一电阻状态及所述第二电阻状态的第三电阻状态下,其中第一、第二及第三电阻状态的不同是可检测的,且所述第一、第二及第三电阻状态对应于第一、第二及第三数据状态。
将提供依据本发明实施例的形成优选存储器单元的有利方法的详细实例。为了清晰及完整起见提供此实例,但不希望此实例是限制性的,所属领域的技术人员应明白,可使用许多其它方法来形成属于本发明的范畴的结构及装置。
一种用于制造密集非易失性单次可编程存储器阵列(其可很容易制造(的有利方法是在赫尔纳(Herner)等人的美国申请案第10/326,470号(下文中的′470申请案)中进行说明,由于已自动放弃,因而将所述申请案以引用方式并入本文。在以下申请案中说明相关存储器阵列以及其使用及制造方法:赫尔纳(Herner)等人于2004年9月29日所申请的美国专利申请案第10/955,549号“不带介电抗熔丝的具有高和低阻抗状态的非易失性存储器单元”(“Nonvolatile Memory Cell Without a Dielectric Antifuse HavingHigh-and Low-Impedance States”)(下文中的′549申请案);及赫尔纳(Herner)等人于2004年12月17日所申请的美国专利申请案第11/015,824号“包括降低高度的垂直二极管的非易失性存储器单元”(“Nonvolatile Memory Cell Comprising a Reduced HeightVertical Diode”)(下文中的′824申请案);将所述申请案全部以引用方式并入本文。这些已并入的申请案中所教示的方法将在制造依据本发明的存储器阵列时有用。为避免与本发明混淆,将来自已并入专利及申请案的许多细节省略。不过,应明白,并不意欲将来自这些专利及申请案的教示排除在外。
制造
将提供制造依据本发明优选实施例所形成的单片三维存储器阵列的详细实例。为清晰起见,将包括许多细节(包括步骤、材料及工艺条件)。应明白,此实例是非限制性的,且可对这些细节进行修改、省略或增加,而结果仍属于本发明的范畴。
转向图6a,存储器的形成以衬底100开始。此衬底100可为此项技术中已知的任何半导电衬底,例如单晶硅、IV-IV化合物(像硅锗或硅锗碳)、III-V化合物、II-VII化合物、此类衬底上的外延层或任何其它半导电材料。所述衬底可包括其中所制造的集成电路。
在衬底100上形成绝缘层102。所述绝缘层102可为氧化硅、氮化硅、高介电薄膜、Si-C-O-H薄膜或任何其它合适的绝缘材料。
在衬底100及绝缘体102上形成第一导体200。可在绝缘层102与导电层106之间包含黏合层104。用于黏合层104的优选材料是氮化钛,不过也可使用其它材料,或可省略此层。可通过任何常规方法(例如通过溅镀)来沉积黏合层104。
黏合层104的厚度的范围可为大约20至大约500埃,且优选地在大约100与大约400埃之间,最优选为大约200埃。应注意,在此论述中,“厚度”将表示沿垂直于衬底100的方向所测量的垂直厚度。
下一待沉积的层是导电层106。导电层106可包含此项技术中已知的任何导电材料,例如掺杂半导体、金属(例如钨)或导电金属硅化物;在优选实施例中,导电层106是钨。
将形成导体轨道的所有层一旦沉积,即将使用任何合适的掩蔽及蚀刻工艺来图案化及蚀刻所述层以形成大致平行大致共面的导体200,如图6a的横截面所示。在一个实施例中,沉积光致抗蚀剂、通过光刻加以图案化并蚀刻所述层,然后使用标准工艺技术(例如在含氧等离子体中的“灰化”)移除光致抗蚀剂,并在常规液体溶剂(例如通过EKC所配制的溶剂)中剥离蚀刻期间所形成的其余聚合物。
接着,在导体轨道200上及其间沉积介电材料108。介电材料108可为任何已知的电绝缘材料,例如氧化硅、氮化硅或氮氧化硅。在优选实施例中,将氧化硅用作介电材料108。可使用任何已知工艺(例如化学气相沉积(CVD),或例如高密度等离子体化学气相沉积(HDPCVD))来沉积氧化硅。
最后,移除导体轨道200顶部上多余的介电材料108,暴露通过介电材料108而分离的导体轨道200的顶部,且留下大致平坦的表面109。图6a绘示所得结构。此移除溢出电介质以形成平坦表面109可通过此项技术中已知的任何工艺(例如回蚀或化学机械抛光(CMP))来执行。例如,可有利地使用拉古拉迈(Raghuram)等人于2004年6月30日所申请的美国申请案第10/883417号“用以暴露图案化的特征的非选择性不图案化回蚀”(“Nonselective Unpatterned Etchback to Expose Buried Patterned Features”)中所说明的回蚀技术,将所述申请案以引用方式全文并入本文。
或者,可通过镶嵌工艺来形成导体轨道,在所述镶嵌工艺中,沉积氧化物,在氧化物中蚀刻沟槽,然后用导电材料填充所述沟槽以形成导体轨道。
接着,转向图6b,将在已完成的导体轨道200上形成垂直柱。(为节省空间,在图6b及随后图式中省略衬底100;将假设存在衬底100。)在优选实施例中,在平坦表面109上沉积势垒层110(其优选由氮化钛形成)以防止导电层106的钨接触待沉积的二极管中的硅而随后形成硅化钨(其可能使二极管受损)。
沉积将图案化为柱的半导体材料。所述半导体材料可为(例如)硅、锗、或硅及/或锗的合金。或者,可使用半导体金属氧化物,例如作为p型半导体的氧化镍或作为n型半导体的氧化钛。本实例将说明使用硅的情形,不过,应明白,也可使用其它材料。
在优选实施例中,所述半导体柱包含结二极管,所述结二极管包含第一导电类型的底部重掺杂区及第二导电类型的顶部重掺杂区。顶部与底部区之间的中间区是第一或第二导电类型的本征或轻掺杂区。
在此实例中,底部重掺杂区112是重掺杂n型硅。在最优选的实施例中,沉积重掺杂区112且通过任何常规方法(优选通过原位掺杂)采用n型掺杂剂(例如磷)进行掺杂。此层优选在大约200与大约800埃之间。
接着沉积将形成二极管的其余部分的硅。在某些实施例中,随后的平坦化步骤将移除某些硅,因此要沉积额外厚度的硅。如果使用常规CMP方法来执行平坦化步骤,则可能会损失大约800埃的厚度(这是平均值;所述数量会横跨晶片而变化。视CMP期间所使用的浆及方法而定,所述硅损失可能更多或更少。)如果通过回蚀方法执行平坦化步骤,则仅可移除大约400埃或更少的硅。视欲使用的平坦化方法以及所需最后厚度而定,通过任何常规方法来沉积在大约800与大约4000埃之间的未掺杂硅;优选在大约1500与大约2500埃之间;最优选在大约1800与大约2200埃之间。也可视需要轻掺杂硅。
将图案化并蚀刻刚刚沉积的硅以形成柱300。柱300应具有与下面的导体200大约相同的间距及大约相同的宽度,以便在导体200顶部上形成每一柱300。可容许某种程度的不对齐。
可使用任何合适的掩蔽及蚀刻工艺来形成柱300。例如,可沉积光致抗蚀剂,使用标准光刻技术加以图案化,并加以蚀刻,然后移除光致抗蚀剂。或者,可在半导体层堆栈的顶部上形成某一其它材料(例如二氧化硅)的硬掩模,底部抗反射涂层(BARC)在顶部上,然后加以图案化及蚀刻。同样,可将介电抗反射涂层(DARC)用作硬掩模。
陈(Chen)于2003年12月5日所申请的美国申请案第10/728436号“具有使用交替相移的内部非印刷窗的光掩模特征”(“Photomask Features with Interior NonprintingWindow Using Alternating Phase Shifting”);或陈(Chen)于2004年4月1日所申请的美国申请案第10/815312号“具有无边框的非印刷相移窗的光掩模特征”(“PhotomaskFeatures with Chromeless Nonprinting Phase Shifting Window”)中所述的光刻技术可有利地用以执行依据本发明的存储器阵列的形成中所使用的任何光刻步骤,所述两个申请案均归本发明的受让人所有且以引用方式并入本文。
在柱300上及其间沉积介电材料108,从而填充柱之间的间隙。介电材料108可为任何已知的电绝缘材料,例如二氧化硅。
接着,移除柱300顶部上的介电材料,从而暴露通过介电材料108而分离的柱300的顶部,且留下大致平坦的表面。可通过此项技术中已知的任何工艺(例如CMP或回蚀)来执行此溢出电介质的移除及平坦化。例如,可使用拉古拉迈(Raghuram)等人的申请案中所述的回蚀技术。
在优选实施例中,通过用p型掺杂剂(例如硼或BF2)实施离子植入而在此点处形成重掺杂顶部区116。图6b中绘示所得结构。本文所述的二极管具有底部n型区112与顶部p型区116。如果优选,则也可反转导电类型。如有需要,可在一个存储器级中使用底部上具有n区的p-i-n二极管,而在另一存储器级中使用底部上具有p型区的p-i-n二极管。
总而言之,通过包含以下步骤的方法形成二极管:沉积硅、锗或者硅或锗的合金的半导体层堆栈;及图案化并蚀刻所述层堆栈以形成垂直定位的柱。用电介质填充二极管之间的间隙并移除溢出电介质。
参考图6c,接着形成介电熔断抗熔丝117。在优选实施例中,抗熔丝117是介电材料(例如氧化硅、氮化硅或氮氧化硅,优选为二氧化硅)的层。例如,可通过硅层116的氧化来生长二氧化硅层。一般而言,生长(通过氧化,例如通过消耗下伏层中的某些硅)而非沉积而成的氧化物会较密集,具有较少缺陷且质量高于可比的沉积电介质。在某些实施例中,具有高K值的电介质(例如Si3N4或Al2O3)可能优选。
接着,可沉积导电势垒材料(例如氮化钛、金属或某一其它适当材料)的可选层121。层121的厚度可在大约25与大约200埃之间,优选为大约50埃。在优选实施例中,层121是不施加自偏压情况下通过氮化钛的离子化金属等离子体沉积所形成的高电阻低密度氮化钛,如赫尔纳(Herner)于2003年6月30日所申请的美国专利第6,956,278号“用作与低泄漏介电层的接触件的低密度、高电阻氮化钛层”(“Low-Density,High-Resistivity Titanium Nitride Layer for Use as a Contact for Low-Leakage DielectricLayers”)中所述,且将所述专利以引用方式并入本文。例如,此氮化钛的电阻可大于大约300微欧-cm且其密度可小于大约4.25克/立方厘米。在某些实施例中,可省略层121。
在势垒层121上沉积金属氧化物或氮化物电阻切换材料的层118,或如果省略势垒层121,则直接在抗熔丝117上沉积此层。层118的厚度优选是在大约50与大约400埃之间。层118可为先前所述的材料中的任一材料,且优选由仅包含一种金属(其展现电阻切换行为)的金属氧化物或氮化物形成;优选为选自由以下各材料组成的群的材料:NixOy、NbxOy、TixOy、HfxOy、AlxOy、MgxOy、CoxOy、CrxOy、VxOy、ZnxOy、ZrxOy、BxNy及AlxNy。为简单起见,此论述将说明层118中使用氧化镍的情形。不过,应明白,也可使用所述其它材料中的任一材料。
如赫尔纳(Herner)等人于2005年11月23日所申请的美国专利申请案第11/287,452号“具有添加金属的可逆电阻切换金属氧化物或氮化物层”“ReversibleResistivity-Switching Metal Oxide or Nitride Layer with added Metal”(将所述申请案以引用方式并入本文)中所述,向电阻切换金属氧化物或氮化物化合物添加金属可有效减小在稳定电阻状态间切换金属氧化物或氮化物化合物的电阻切换层所需要的设置及重设电压。在某些实施例中,可向层118的金属氧化物或氮化物化合物添加金属。优选金属包括钴、铝、镓、铟、镍、铌、锆、钛、铪、钽、镁、铬、钒、硼、钇及镧。优选地,金属添加剂是在金属氧化物或氮化物化合物的层中的金属原子的大约百分之0.01与大约百分之5之间。
最后,在优选实施例中,在氧化镍层118上沉积势垒层123。层123优选为氮化钛,不过,也可使用某一其它适当导电势垒材料。在某些实施例中,可省略层123。
图案化并蚀刻层123、118及121以形成短柱,理想情况下直接在先前图案化及蚀刻步骤中所形成的柱300的顶部上形成短柱。可能会出现某种程度的不对齐,如图6c所示,且可容许所述不对齐。用以图案化柱300的光掩模可在此图案化步骤中重复使用。
在替代实施例中,可在二极管层112、114及116之前(因而在其下方)形成势垒层121、氧化镍层118及可选势垒层123,且可在相同图案化步骤或单独图案化步骤中加以图案化。在此情况下,在氧化镍层118与所述二极管层之间形成抗熔丝层117。
在已蚀刻短柱(包括层123、118及121)上及其间沉积介电材料108,且通过平坦化步骤(例如通过CMP)移除溢出电介质,从而在已平坦化表面处暴露短柱的顶部层。
接着,转向图6d,沉积导电材料或堆栈以形成顶部导体400。在优选实施例中,接着沉积氮化钛势垒层120,随后沉积钨层124。可采用与底部导体200相同的方式来图案化及蚀刻顶部导体400。上覆的第二导体400将优选地沿与第一导体200不同的方向延伸,优选大致垂直于第一导体200延伸。应在顶部导体400与底部导体200的交叉点处形成每一柱300。可容许某种程度的不对齐。在导体400上及其间沉积介电材料(未图示)。图6d所示的所得结构是底层或第一层存储器单元。
可在此第一存储器级上形成额外存储器级。在某些实施例中,可在存储器级间共享导体;即,顶部导体400可用作下一存储器级的底部导体。在其它实施例中,在图6d的第一存储器级上形成层间电介质,对其表面加以平坦化,且在此已平坦化的层间电介质上开始构造第二存储器级,不存在共享导体。
退火步骤使硅结晶为多晶硅。可在完成存储器级的制造之后作为单个步骤执行此退火,或通过热氧化生长抗熔丝所需要的温度可能足以使半导体材料结晶而可能无需单独退火。
光刻期间使用光掩模来图案化每一层。在每一存储器级中某些层会重复,且用以形成所述层的光掩模可重复使用。例如,定义图6d的柱300的光掩模可重复用于每一存储器级。每一光掩模均包括用以使其正确对齐的参考标记。当重复使用光掩模时,第二或后续使用中所形成的参考标记可能会与相同光掩模的先前使用期间所形成的相同参考标记有干扰。陈(Chen)等人于2005年3月31日所申请的美国专利申请案第11/097,496号“遮蔽重复覆盖和对齐掩模以允许在垂直结构中重复使用光掩模”(“Masking ofRepeated Overlay and Alignment Marks to Allow Reuse of Photomasks in a VerticalStructure”)(其是以引用方式并入本文)说明一种用以避免单片三维存储器阵列(像本发明的单片三维存储器阵列)形成期间的所述干扰的方法。
在依据本发明的优选实施例的单片三维存储器阵列中,电路适合于多次将每一存储器单元编程为一、二、三或更多已编程值,并将其擦除。
总而言之,所说明的是一种单片三维存储器阵列的范例,其包含:i)第一存储器级,其是以单片形式形成于衬底上,所述第一存储器级包含:a)多个大致平行大致共面的第一导体;b)所述第一导体上的多个大致平行大致共面的第二导体;及c)第一多个存储器单元,每一存储器单元包含一介电熔断抗熔丝,所述底部导体之一的一部分,及所述顶部导体之一的一部分,电阻切换金属氧化物或氮化物化合物的层,其中所述金属氧化物或氮化物化合物仅包括一种金属,且其中所述介电熔断抗熔丝与所述电阻切换金属氧化物或氮化物的层是以电性串联方式布置于所述顶部导体的所述部分与所述底部导体的所述部分之间,及ii)第二存储器级,其是以单片形式形成于所述第一存储器级上。
已说明一种详细制造方法,不过可进行许多变化。电阻切换层可位于二极管上方(如图1所示)或其下方。电阻切换层可为柱的部分,如图1所示。不过,应记得,电阻切换将仅在其中有电流流动的窄切换区中发生。如果以相对较高的电阻状态形成电阻切换材料,则可作为顶部导体或底部导体的部分形成所述电阻切换材料;非切换区的较高电阻将防止邻接单元短路在一起。
抗熔丝可位于(例如)电阻切换层上方或其下方。不过,抗熔丝应非常靠近电阻切换层;优选与电阻切换层直接邻接或其间仅插入薄势垒层。
如果电阻切换层与二极管均形成于垂直定位的柱中,如图1所示,则电阻切换层与二极管可在单个图案化步骤或在单独图案化步骤中形成。
在某些实施例中,在极小阵列中,可省略二极管,且存储器单元可仅包括串联在导体间的电阻切换层与抗熔丝。
可对刚刚说明的选项中的任何选项加以组合。
本文已说明详细制造方法,不过也可使用任何其它形成相同结构的方法,而结果仍属于本发明的范畴。
以上详细说明仅说明本发明可采用的许多形式中的若干形式。基于此原因,希望此详细说明属于说明的用途,而非限制的用途。仅希望随附权利要求书(包括其全部等效内容)定义本发明的范畴。

Claims (15)

1.一种非易失性存储器单元,其包含:
电阻切换元件,其包含电阻切换金属氧化物或氮化物化合物的层,所述金属氧化物或氮化物化合物仅包括一种金属;及
介电熔断抗熔丝。
2.根据权利要求1所述的存储器单元,其进一步包含二极管,其中所述电阻切换元件、所述介电熔断抗熔丝及所述二极管以电性串联方式布置。
3.根据权利要求2所述的存储器单元,其中所述二极管是半导体结二极管。
4.根据权利要求3所述的存储器单元,其中所述二极管包含硅、锗或者硅或锗的合金。
5.根据权利要求2所述的存储器单元,其中所述二极管是采用柱的形式,且所述二极管、介电熔断抗熔丝及电阻切换元件是垂直设置在顶部导体与底部导体之间。
6.根据权利要求5所述的存储器单元,其中所述底部导体、顶部导体、二极管、介电熔断抗熔丝及电阻切换元件都形成在半导体衬底上。
7.根据权利要求1所述的存储器单元,其中所述介电熔断抗熔丝包含介电氧化物、氮化物或氮氧化物层。
8.根据权利要求7所述的存储器单元,其中所述介电氧化物、氮化物或氮氧化物层是生长的。
9.根据权利要求8所述的存储器单元,其中所述生长的介电氧化物、氮化物或氮氧化物层是二氧化硅层。
10.根据权利要求1所述的存储器单元,其中所述电阻切换金属氧化物或氮化物是选自由下列各物组成的群:NixOy、NbxOy、TixOy、HfxOy、AlxOy、MgxOy、CoxOy、CrxOy、VxOy、ZnxOy、ZrxOy、BxNy及AlxNy
11.根据权利要求10所述的存储器单元,其中所述电阻切换金属氧化物或氮化物化合物的层包括金属添加剂,其中所述金属添加剂是在所述金属氧化物或氮化物化合物的层中的金属原子的大约百分之0.01与大约百分之5之间。
12.一种用于编程非易失性存储器单元的方法,其中所述单元包含介电熔断抗熔丝及电阻切换存储器元件,所述电阻切换存储器元件包含电阻切换金属氧化物或氮化物化合物的层,所述金属氧化物或氮化物化合物仅包括一种金属,所述方法包含:
施加预调节脉冲,其中所述预调节脉冲是用以熔断所述介电熔断抗熔丝,形成穿过所述介电熔断抗熔丝的低电阻熔断区,且其中所述预调节脉冲是用以在所述电阻切换金属氧化物或氮化物化合物的层中形成切换区,将所述切换区置于低电阻设置状态下。
13.根据权利要求12所述的方法,其进一步包含在施加所述预调节脉冲之后,施加第一重设脉冲以将所述切换区置于高电阻重设状态下。
14.根据权利要求13所述的方法,其进一步包含在施加所述第一重设脉冲之后,施加第一编程设置脉冲以将所述切换区置于编程设置状态下,其中在所述切换区的电阻状态中存储所述存储器单元的第一数据状态。
15.根据权利要求12所述的方法,其进一步包含在施加所述第一编程设置脉冲之后,施加第一编程重设脉冲以将所述切换区置于编程重设状态下,其中在所述切换区的所述电阻状态中存储所述存储器单元的第二数据状态。
CN2007800121076A 2006-03-31 2007-03-22 一种用于编程非易失性存储器单元的方法 Active CN101416252B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11/395,421 2006-03-31
US11/395,421 US7829875B2 (en) 2006-03-31 2006-03-31 Nonvolatile rewritable memory cell comprising a resistivity-switching oxide or nitride and an antifuse
PCT/US2007/007153 WO2007126678A1 (en) 2006-03-31 2007-03-22 Nonvolatile rewriteable memory cell comprising a resistivity- switching oxide or nitride and an antifuse

Publications (2)

Publication Number Publication Date
CN101416252A true CN101416252A (zh) 2009-04-22
CN101416252B CN101416252B (zh) 2011-11-30

Family

ID=38420527

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2007800121076A Active CN101416252B (zh) 2006-03-31 2007-03-22 一种用于编程非易失性存储器单元的方法

Country Status (7)

Country Link
US (1) US7829875B2 (zh)
EP (1) EP2002444A1 (zh)
JP (1) JP2009535793A (zh)
KR (1) KR20090006839A (zh)
CN (1) CN101416252B (zh)
TW (1) TWI348757B (zh)
WO (1) WO2007126678A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103003971A (zh) * 2010-06-18 2013-03-27 桑迪士克3D有限责任公司 具有包括击穿层的电阻开关层的存储单元
CN105679785A (zh) * 2016-01-18 2016-06-15 苏州大学 一种基于多层氮化硼的rram器件及其制备方法

Families Citing this family (127)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7728390B2 (en) * 2005-05-06 2010-06-01 Taiwan Semiconductor Manufacturing Company, Ltd. Multi-level interconnection memory device
US7812404B2 (en) * 2005-05-09 2010-10-12 Sandisk 3D Llc Nonvolatile memory cell comprising a diode and a resistance-switching material
US7816659B2 (en) 2005-11-23 2010-10-19 Sandisk 3D Llc Devices having reversible resistivity-switching metal oxide or nitride layer with added metal
US7834338B2 (en) * 2005-11-23 2010-11-16 Sandisk 3D Llc Memory cell comprising nickel-cobalt oxide switching element
KR101176542B1 (ko) * 2006-03-02 2012-08-24 삼성전자주식회사 비휘발성 메모리 소자 및 이를 포함하는 메모리 어레이
US7875871B2 (en) 2006-03-31 2011-01-25 Sandisk 3D Llc Heterojunction device comprising a semiconductor and a resistivity-switching oxide or nitride
US7808810B2 (en) * 2006-03-31 2010-10-05 Sandisk 3D Llc Multilevel nonvolatile memory cell comprising a resistivity-switching oxide or nitride and an antifuse
KR101239962B1 (ko) * 2006-05-04 2013-03-06 삼성전자주식회사 하부 전극 상에 형성된 버퍼층을 포함하는 가변 저항메모리 소자
KR101206036B1 (ko) * 2006-11-16 2012-11-28 삼성전자주식회사 전이 금속 고용체를 포함하는 저항성 메모리 소자 및 그제조 방법
US7704789B2 (en) * 2007-02-05 2010-04-27 Intermolecular, Inc. Methods for forming resistive switching memory elements
US7972897B2 (en) * 2007-02-05 2011-07-05 Intermolecular, Inc. Methods for forming resistive switching memory elements
US7678607B2 (en) * 2007-02-05 2010-03-16 Intermolecular, Inc. Methods for forming resistive switching memory elements
US7629198B2 (en) * 2007-03-05 2009-12-08 Intermolecular, Inc. Methods for forming nonvolatile memory elements with resistive-switching metal oxides
US8097878B2 (en) * 2007-03-05 2012-01-17 Intermolecular, Inc. Nonvolatile memory elements with metal-deficient resistive-switching metal oxides
US8975613B1 (en) 2007-05-09 2015-03-10 Intermolecular, Inc. Resistive-switching memory elements having improved switching characteristics
WO2008140979A1 (en) * 2007-05-09 2008-11-20 Intermolecular, Inc. Resistive-switching nonvolatile memory elements
US8173989B2 (en) * 2007-05-30 2012-05-08 Samsung Electronics Co., Ltd. Resistive random access memory device and methods of manufacturing and operating the same
US8233308B2 (en) 2007-06-29 2012-07-31 Sandisk 3D Llc Memory cell that employs a selectively deposited reversible resistance-switching element and methods of forming the same
US7902537B2 (en) * 2007-06-29 2011-03-08 Sandisk 3D Llc Memory cell that employs a selectively grown reversible resistance-switching element and methods of forming the same
US7846785B2 (en) * 2007-06-29 2010-12-07 Sandisk 3D Llc Memory cell that employs a selectively deposited reversible resistance-switching element and methods of forming the same
US7824956B2 (en) 2007-06-29 2010-11-02 Sandisk 3D Llc Memory cell that employs a selectively grown reversible resistance-switching element and methods of forming the same
US8294219B2 (en) * 2007-07-25 2012-10-23 Intermolecular, Inc. Nonvolatile memory element including resistive switching metal oxide layers
KR101482814B1 (ko) 2007-07-25 2015-01-14 인터몰레큘러 인코퍼레이티드 다중상태 비휘발성 메모리 소자
KR20090029558A (ko) * 2007-09-18 2009-03-23 삼성전자주식회사 다이오드 및 그를 포함하는 메모리 소자
US8183553B2 (en) * 2009-04-10 2012-05-22 Intermolecular, Inc. Resistive switching memory element including doped silicon electrode
US8343813B2 (en) * 2009-04-10 2013-01-01 Intermolecular, Inc. Resistive-switching memory elements having improved switching characteristics
US7960216B2 (en) * 2008-05-10 2011-06-14 Intermolecular, Inc. Confinement techniques for non-volatile resistive-switching memories
JP4836092B2 (ja) 2008-03-19 2011-12-14 国立大学法人東北大学 半導体装置の形成方法
US7961494B2 (en) 2008-04-11 2011-06-14 Sandisk 3D Llc Non-volatile multi-level re-writable memory cell incorporating a diode in series with multiple resistors and method for writing same
US8129704B2 (en) * 2008-05-01 2012-03-06 Intermolecular, Inc. Non-volatile resistive-switching memories
US7977152B2 (en) * 2008-05-10 2011-07-12 Intermolecular, Inc. Non-volatile resistive-switching memories formed using anodization
US8305793B2 (en) * 2008-05-16 2012-11-06 Qimonda Ag Integrated circuit with an array of resistance changing memory cells
US8008096B2 (en) * 2008-06-05 2011-08-30 Intermolecular, Inc. ALD processing techniques for forming non-volatile resistive-switching memories
US8049305B1 (en) 2008-10-16 2011-11-01 Intermolecular, Inc. Stress-engineered resistance-change memory device
JP2012506621A (ja) 2008-10-20 2012-03-15 ザ・リージェンツ・オブ・ザ・ユニバーシティ・オブ・ミシガン シリコン系ナノスケールクロスバーメモリ
US8178864B2 (en) * 2008-11-18 2012-05-15 Seagate Technology Llc Asymmetric barrier diode
US8420478B2 (en) * 2009-03-31 2013-04-16 Intermolecular, Inc. Controlled localized defect paths for resistive memories
US8158964B2 (en) 2009-07-13 2012-04-17 Seagate Technology Llc Schottky diode switch and memory units containing the same
WO2011052354A1 (ja) * 2009-10-27 2011-05-05 キヤノンアネルバ株式会社 不揮発性記憶素子およびその製造方法
US8072795B1 (en) 2009-10-28 2011-12-06 Intermolecular, Inc. Biploar resistive-switching memory with a single diode per memory cell
KR20110074354A (ko) 2009-12-24 2011-06-30 삼성전자주식회사 메모리소자 및 그 동작방법
US8216862B2 (en) * 2010-03-16 2012-07-10 Sandisk 3D Llc Forming and training processes for resistance-change memory cell
US9012307B2 (en) 2010-07-13 2015-04-21 Crossbar, Inc. Two terminal resistive switching device structure and method of fabricating
US8946046B1 (en) 2012-05-02 2015-02-03 Crossbar, Inc. Guided path for forming a conductive filament in RRAM
US9570678B1 (en) 2010-06-08 2017-02-14 Crossbar, Inc. Resistive RAM with preferental filament formation region and methods
US9601692B1 (en) 2010-07-13 2017-03-21 Crossbar, Inc. Hetero-switching layer in a RRAM device and method
US8441835B2 (en) 2010-06-11 2013-05-14 Crossbar, Inc. Interface control for improved switching in RRAM
KR101883236B1 (ko) 2010-06-11 2018-08-01 크로스바, 인크. 메모리 디바이스를 위한 필러 구조 및 방법
CN102280465B (zh) * 2010-06-13 2013-05-29 北京大学 阻变随机访问存储器件及制造方法
US8724369B2 (en) 2010-06-18 2014-05-13 Sandisk 3D Llc Composition of memory cell with resistance-switching layers
US8520425B2 (en) 2010-06-18 2013-08-27 Sandisk 3D Llc Resistive random access memory with low current operation
US8351241B2 (en) 2010-06-24 2013-01-08 The Regents Of The University Of Michigan Rectification element and method for resistive switching for non volatile memory device
US8374018B2 (en) 2010-07-09 2013-02-12 Crossbar, Inc. Resistive memory using SiGe material
US8569172B1 (en) 2012-08-14 2013-10-29 Crossbar, Inc. Noble metal/non-noble metal electrode for RRAM applications
US8884261B2 (en) 2010-08-23 2014-11-11 Crossbar, Inc. Device switching using layered device structure
US8947908B2 (en) 2010-11-04 2015-02-03 Crossbar, Inc. Hetero-switching layer in a RRAM device and method
US8168506B2 (en) 2010-07-13 2012-05-01 Crossbar, Inc. On/off ratio for non-volatile memory device and method
US8467227B1 (en) 2010-11-04 2013-06-18 Crossbar, Inc. Hetero resistive switching material layer in RRAM device and method
US8404553B2 (en) 2010-08-23 2013-03-26 Crossbar, Inc. Disturb-resistant non-volatile memory device and method
US9401475B1 (en) 2010-08-23 2016-07-26 Crossbar, Inc. Method for silver deposition for a non-volatile memory device
US8889521B1 (en) 2012-09-14 2014-11-18 Crossbar, Inc. Method for silver deposition for a non-volatile memory device
US8841196B1 (en) 2010-09-29 2014-09-23 Crossbar, Inc. Selective deposition of silver for non-volatile memory device fabrication
US8492195B2 (en) 2010-08-23 2013-07-23 Crossbar, Inc. Method for forming stackable non-volatile resistive switching memory devices
US8558212B2 (en) 2010-09-29 2013-10-15 Crossbar, Inc. Conductive path in switching material in a resistive random access memory device and control
US8391049B2 (en) 2010-09-29 2013-03-05 Crossbar, Inc. Resistor structure for a non-volatile memory device and method
US8187945B2 (en) 2010-10-27 2012-05-29 Crossbar, Inc. Method for obtaining smooth, continuous silver film
US8258020B2 (en) 2010-11-04 2012-09-04 Crossbar Inc. Interconnects for stacked non-volatile memory device and method
US8502185B2 (en) 2011-05-31 2013-08-06 Crossbar, Inc. Switching device having a non-linear element
USRE46335E1 (en) 2010-11-04 2017-03-07 Crossbar, Inc. Switching device having a non-linear element
US8088688B1 (en) 2010-11-05 2012-01-03 Crossbar, Inc. p+ polysilicon material on aluminum for non-volatile memory device and method
US8648426B2 (en) 2010-12-17 2014-02-11 Seagate Technology Llc Tunneling transistors
US8930174B2 (en) 2010-12-28 2015-01-06 Crossbar, Inc. Modeling technique for resistive random access memory (RRAM) cells
US8815696B1 (en) 2010-12-31 2014-08-26 Crossbar, Inc. Disturb-resistant non-volatile memory device using via-fill and etchback technique
US9153623B1 (en) 2010-12-31 2015-10-06 Crossbar, Inc. Thin film transistor steering element for a non-volatile memory device
US8791010B1 (en) 2010-12-31 2014-07-29 Crossbar, Inc. Silver interconnects for stacked non-volatile memory device and method
US8450710B2 (en) 2011-05-27 2013-05-28 Crossbar, Inc. Low temperature p+ silicon junction material for a non-volatile memory device
US8394670B2 (en) 2011-05-31 2013-03-12 Crossbar, Inc. Vertical diodes for non-volatile memory device
US9620206B2 (en) 2011-05-31 2017-04-11 Crossbar, Inc. Memory array architecture with two-terminal memory cells
US8619459B1 (en) 2011-06-23 2013-12-31 Crossbar, Inc. High operating speed resistive random access memory
US9564587B1 (en) 2011-06-30 2017-02-07 Crossbar, Inc. Three-dimensional two-terminal memory with enhanced electric field and segmented interconnects
US9627443B2 (en) 2011-06-30 2017-04-18 Crossbar, Inc. Three-dimensional oblique two-terminal memory with enhanced electric field
US8659929B2 (en) 2011-06-30 2014-02-25 Crossbar, Inc. Amorphous silicon RRAM with non-linear device and operation
US8946669B1 (en) 2012-04-05 2015-02-03 Crossbar, Inc. Resistive memory device and fabrication methods
US9166163B2 (en) 2011-06-30 2015-10-20 Crossbar, Inc. Sub-oxide interface layer for two-terminal memory
WO2013015776A1 (en) * 2011-07-22 2013-01-31 Crossbar, Inc. Seed layer for a p + silicon germanium material for a non-volatile memory device and method
US10056907B1 (en) 2011-07-29 2018-08-21 Crossbar, Inc. Field programmable gate array utilizing two-terminal non-volatile memory
US9729155B2 (en) 2011-07-29 2017-08-08 Crossbar, Inc. Field programmable gate array utilizing two-terminal non-volatile memory
US8674724B2 (en) 2011-07-29 2014-03-18 Crossbar, Inc. Field programmable gate array utilizing two-terminal non-volatile memory
KR101528572B1 (ko) * 2011-08-03 2015-06-12 휴렛-팩커드 디벨롭먼트 컴퍼니, 엘.피. 질화물계 멤리스터
US8853099B2 (en) 2011-12-16 2014-10-07 Intermolecular, Inc. Nonvolatile resistive memory element with a metal nitride containing switching layer
JP5684104B2 (ja) 2011-12-27 2015-03-11 株式会社東芝 メタルブリッジ型記憶装置の製造方法
TWI452689B (zh) * 2012-01-17 2014-09-11 Winbond Electronics Corp 非揮發性記憶體元件及其陣列
US8592250B2 (en) * 2012-02-01 2013-11-26 International Business Machines Corporation Self-aligned process to fabricate a memory cell array with a surrounding-gate access transistor
US8741772B2 (en) 2012-02-16 2014-06-03 Intermolecular, Inc. In-situ nitride initiation layer for RRAM metal oxide switching material
US8716098B1 (en) 2012-03-09 2014-05-06 Crossbar, Inc. Selective removal method and structure of silver in resistive switching device for a non-volatile memory device
US9087576B1 (en) 2012-03-29 2015-07-21 Crossbar, Inc. Low temperature fabrication method for a three-dimensional memory device and structure
US9685608B2 (en) 2012-04-13 2017-06-20 Crossbar, Inc. Reduced diffusion in metal electrode for two-terminal memory
US8946667B1 (en) 2012-04-13 2015-02-03 Crossbar, Inc. Barrier structure for a silver based RRAM and method
US8658476B1 (en) 2012-04-20 2014-02-25 Crossbar, Inc. Low temperature P+ polycrystalline silicon material for non-volatile memory device
US8796658B1 (en) 2012-05-07 2014-08-05 Crossbar, Inc. Filamentary based non-volatile resistive memory device and method
US8765566B2 (en) 2012-05-10 2014-07-01 Crossbar, Inc. Line and space architecture for a non-volatile memory device
US9070859B1 (en) 2012-05-25 2015-06-30 Crossbar, Inc. Low temperature deposition method for polycrystalline silicon material for a non-volatile memory device
US10096653B2 (en) 2012-08-14 2018-10-09 Crossbar, Inc. Monolithically integrated resistive memory using integrated-circuit foundry compatible processes
US9583701B1 (en) 2012-08-14 2017-02-28 Crossbar, Inc. Methods for fabricating resistive memory device switching material using ion implantation
US8946673B1 (en) 2012-08-24 2015-02-03 Crossbar, Inc. Resistive switching device structure with improved data retention for non-volatile memory device and method
US8796102B1 (en) 2012-08-29 2014-08-05 Crossbar, Inc. Device structure for a RRAM and method
US9312483B2 (en) 2012-09-24 2016-04-12 Crossbar, Inc. Electrode structure for a non-volatile memory device and method
US9576616B2 (en) 2012-10-10 2017-02-21 Crossbar, Inc. Non-volatile memory with overwrite capability and low write amplification
US11068620B2 (en) 2012-11-09 2021-07-20 Crossbar, Inc. Secure circuit integrated with memory layer
US8982647B2 (en) 2012-11-14 2015-03-17 Crossbar, Inc. Resistive random access memory equalization and sensing
US9412790B1 (en) 2012-12-04 2016-08-09 Crossbar, Inc. Scalable RRAM device architecture for a non-volatile memory device and method
US9406379B2 (en) 2013-01-03 2016-08-02 Crossbar, Inc. Resistive random access memory with non-linear current-voltage relationship
US9324942B1 (en) 2013-01-31 2016-04-26 Crossbar, Inc. Resistive memory cell with solid state diode
US9112145B1 (en) 2013-01-31 2015-08-18 Crossbar, Inc. Rectified switching of two-terminal memory via real time filament formation
US8934280B1 (en) 2013-02-06 2015-01-13 Crossbar, Inc. Capacitive discharge programming for two-terminal memory cells
US9627057B2 (en) 2013-03-15 2017-04-18 Crossbar, Inc. Programming two-terminal memory cells with reduced program current
US10290801B2 (en) 2014-02-07 2019-05-14 Crossbar, Inc. Scalable silicon based resistive memory device
US9425237B2 (en) 2014-03-11 2016-08-23 Crossbar, Inc. Selector device for two-terminal memory
US9768234B2 (en) 2014-05-20 2017-09-19 Crossbar, Inc. Resistive memory architecture and devices
US9633724B2 (en) 2014-07-07 2017-04-25 Crossbar, Inc. Sensing a non-volatile memory device utilizing selector device holding characteristics
US10211397B1 (en) 2014-07-07 2019-02-19 Crossbar, Inc. Threshold voltage tuning for a volatile selection device
US9685483B2 (en) 2014-07-09 2017-06-20 Crossbar, Inc. Selector-based non-volatile cell fabrication utilizing IC-foundry compatible process
US10115819B2 (en) 2015-05-29 2018-10-30 Crossbar, Inc. Recessed high voltage metal oxide semiconductor transistor for RRAM cell
US9460788B2 (en) 2014-07-09 2016-10-04 Crossbar, Inc. Non-volatile memory cell utilizing volatile switching two terminal device and a MOS transistor
US9698201B2 (en) 2014-07-09 2017-07-04 Crossbar, Inc. High density selector-based non volatile memory cell and fabrication
US10096362B1 (en) 2017-03-24 2018-10-09 Crossbar, Inc. Switching block configuration bit comprising a non-volatile memory cell
US11042432B1 (en) 2019-12-20 2021-06-22 Western Digital Technologies, Inc. Data storage device with dynamic stripe length manager

Family Cites Families (125)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US739064A (en) * 1900-07-23 1903-09-15 Kitson Hydrocarbon Heating And Incandescent Lighting Company Hydrocarbon incandescent lamp.
US2655609A (en) 1952-07-22 1953-10-13 Bell Telephone Labor Inc Bistable circuits, including transistors
FR1223418A (fr) 1959-01-07 1960-06-16 Dispositifs à semi-conducteur à deux bornes à résistance différentielle négative
GB1284645A (en) 1970-01-30 1972-08-09 Welwyn Electric Ltd Then film device
US3796926A (en) 1971-03-29 1974-03-12 Ibm Bistable resistance device which does not require forming
IT982622B (it) 1972-06-05 1974-10-21 Ibm Dispositivo di memorizzazione perfezionato
US4204028A (en) 1978-03-16 1980-05-20 Ppg Industries, Inc. Conductive metal oxide film for solar energy control
US4499557A (en) 1980-10-28 1985-02-12 Energy Conversion Devices, Inc. Programmable cell for use in programmable electronic arrays
GB2164491B (en) 1984-09-14 1988-04-07 Stc Plc Semiconductor devices
US4646266A (en) 1984-09-28 1987-02-24 Energy Conversion Devices, Inc. Programmable semiconductor structures and methods for using the same
FR2623038B1 (fr) 1987-11-10 1994-05-20 Thomson Csf Matrice d'elements photosensibles associant un phototransistor et une capacite de stockage
DE3817826A1 (de) 1988-05-26 1989-11-30 Deutsche Automobilgesellsch Waessrige nickelhydroxid-paste hoher fliessfaehigkeit
US5037200A (en) 1989-07-11 1991-08-06 Tosoh Corporation Laser-operated detector
US5166758A (en) 1991-01-18 1992-11-24 Energy Conversion Devices, Inc. Electrically erasable phase change memory
US5311055A (en) 1991-11-22 1994-05-10 The United States Of America As Represented By The Secretary Of The Navy Trenched bipolar transistor structures
US5273915A (en) 1992-10-05 1993-12-28 Motorola, Inc. Method for fabricating bipolar junction and MOS transistors on SOI
JPH09210130A (ja) * 1996-02-07 1997-08-12 Honda Motor Co Ltd 軸状部材に対する筒状部材の固定構造
US6653733B1 (en) 1996-02-23 2003-11-25 Micron Technology, Inc. Conductors in semiconductor devices
WO1997032340A1 (en) 1996-03-01 1997-09-04 Micron Technology, Inc. Novel vertical diode structures with low series resistance
US6750091B1 (en) 1996-03-01 2004-06-15 Micron Technology Diode formation method
US5687112A (en) 1996-04-19 1997-11-11 Energy Conversion Devices, Inc. Multibit single cell memory element having tapered contact
US5876788A (en) 1997-01-16 1999-03-02 International Business Machines Corporation High dielectric TiO2 -SiN composite films for memory applications
US5915167A (en) 1997-04-04 1999-06-22 Elm Technology Corporation Three dimensional structure memory
US5774394A (en) 1997-05-22 1998-06-30 Motorola, Inc. Magnetic memory cell with increased GMR ratio
US6465370B1 (en) 1998-06-26 2002-10-15 Infineon Technologies Ag Low leakage, low capacitance isolation material
US6224013B1 (en) * 1998-08-27 2001-05-01 Lockheed Martin Corporation Tail fin deployment device
US6034882A (en) 1998-11-16 2000-03-07 Matrix Semiconductor, Inc. Vertically stacked field programmable nonvolatile memory and method of fabrication
WO2000049659A1 (en) 1999-02-17 2000-08-24 International Business Machines Corporation Microelectronic device for storing information and method thereof
JP4491870B2 (ja) 1999-10-27 2010-06-30 ソニー株式会社 不揮発性メモリの駆動方法
GB0006142D0 (en) 2000-03-14 2000-05-03 Isis Innovation Spin transistor
US6420215B1 (en) 2000-04-28 2002-07-16 Matrix Semiconductor, Inc. Three-dimensional memory array and method of fabrication
US6761985B2 (en) 2000-10-05 2004-07-13 Battelle Memorial Institute Magnetic transparent conducting oxide film and method of making
JP4047531B2 (ja) * 2000-10-17 2008-02-13 株式会社東芝 強誘電体メモリ装置
US6587370B2 (en) 2000-11-01 2003-07-01 Canon Kabushiki Kaisha Magnetic memory and information recording and reproducing method therefor
US6618295B2 (en) 2001-03-21 2003-09-09 Matrix Semiconductor, Inc. Method and apparatus for biasing selected and unselected array lines when writing a memory array
US7195840B2 (en) 2001-07-13 2007-03-27 Kaun Thomas D Cell structure for electrochemical devices and method of making same
US6778441B2 (en) 2001-08-30 2004-08-17 Micron Technology, Inc. Integrated circuit memory device and method
US6545287B2 (en) 2001-09-07 2003-04-08 Intel Corporation Using selective deposition to form phase-change memory cells
US6541792B1 (en) * 2001-09-14 2003-04-01 Hewlett-Packard Development Company, Llp Memory device having dual tunnel junction memory cells
JP3597163B2 (ja) * 2001-10-22 2004-12-02 沖電気工業株式会社 強誘電体メモリセルの読み出し方法および読み出し回路
US6879525B2 (en) 2001-10-31 2005-04-12 Hewlett-Packard Development Company, L.P. Feedback write method for programmable memory
US6549447B1 (en) * 2001-10-31 2003-04-15 Peter Fricke Memory cell structure
US6483734B1 (en) 2001-11-26 2002-11-19 Hewlett Packard Company Memory device having memory cells capable of four states
US6534841B1 (en) 2001-12-14 2003-03-18 Hewlett-Packard Company Continuous antifuse material in memory structure
TWI224403B (en) 2002-03-15 2004-11-21 Axon Technologies Corp Programmable structure, an array including the structure, and methods of forming the same
US20030189851A1 (en) * 2002-04-09 2003-10-09 Brandenberger Sarah M. Non-volatile, multi-level memory device
US6798985B2 (en) * 2002-04-30 2004-09-28 Albert A. Reff Camera system including a camera mounting apparatus for obtaining close-up photographs
US6952043B2 (en) 2002-06-27 2005-10-04 Matrix Semiconductor, Inc. Electrically isolated pillars in active devices
US6774458B2 (en) * 2002-07-23 2004-08-10 Hewlett Packard Development Company, L.P. Vertical interconnection structure and methods
US7186569B2 (en) 2002-08-02 2007-03-06 Unity Semiconductor Corporation Conductive memory stack with sidewall
US6798685B2 (en) 2002-08-02 2004-09-28 Unity Semiconductor Corporation Multi-output multiplexor
US7038935B2 (en) 2002-08-02 2006-05-02 Unity Semiconductor Corporation 2-terminal trapped charge memory device with voltage switchable multi-level resistance
US7326979B2 (en) 2002-08-02 2008-02-05 Unity Semiconductor Corporation Resistive memory device with a treated interface
US6870755B2 (en) 2002-08-02 2005-03-22 Unity Semiconductor Corporation Re-writable memory with non-linear memory element
US6970375B2 (en) 2002-08-02 2005-11-29 Unity Semiconductor Corporation Providing a reference voltage to a cross point memory array
US6836421B2 (en) 2002-08-02 2004-12-28 Unity Semiconductor Corporation Line drivers that fit within a specified line pitch
US6753561B1 (en) 2002-08-02 2004-06-22 Unity Semiconductor Corporation Cross point memory array using multiple thin films
US7042035B2 (en) 2002-08-02 2006-05-09 Unity Semiconductor Corporation Memory array with high temperature wiring
US6850429B2 (en) 2002-08-02 2005-02-01 Unity Semiconductor Corporation Cross point memory array with memory plugs exhibiting a characteristic hysteresis
US6850455B2 (en) 2002-08-02 2005-02-01 Unity Semiconductor Corporation Multiplexor having a reference voltage on unselected lines
US6917539B2 (en) 2002-08-02 2005-07-12 Unity Semiconductor Corporation High-density NVRAM
US7071008B2 (en) 2002-08-02 2006-07-04 Unity Semiconductor Corporation Multi-resistive state material that uses dopants
US6856536B2 (en) 2002-08-02 2005-02-15 Unity Semiconductor Corporation Non-volatile memory with a single transistor and resistive memory element
US6831854B2 (en) 2002-08-02 2004-12-14 Unity Semiconductor Corporation Cross point memory array using distinct voltages
US6834008B2 (en) 2002-08-02 2004-12-21 Unity Semiconductor Corporation Cross point memory array using multiple modes of operation
US6965137B2 (en) 2002-08-02 2005-11-15 Unity Semiconductor Corporation Multi-layer conductive memory device
US6859382B2 (en) 2002-08-02 2005-02-22 Unity Semiconductor Corporation Memory array of a non-volatile ram
US6940744B2 (en) 2002-10-31 2005-09-06 Unity Semiconductor Corporation Adaptive programming technique for a re-writable conductive memory device
US6847047B2 (en) 2002-11-04 2005-01-25 Advanced Micro Devices, Inc. Methods that facilitate control of memory arrays utilizing zener diode-like devices
US6989806B2 (en) 2002-11-20 2006-01-24 Osram Opto Semiconductors Gmbh Current limiting device
US7238607B2 (en) 2002-12-19 2007-07-03 Sandisk 3D Llc Method to minimize formation of recess at surface planarized by chemical mechanical planarization
US7800933B2 (en) 2005-09-28 2010-09-21 Sandisk 3D Llc Method for using a memory cell comprising switchable semiconductor memory element with trimmable resistance
US20050158950A1 (en) 2002-12-19 2005-07-21 Matrix Semiconductor, Inc. Non-volatile memory cell comprising a dielectric layer and a phase change material in series
JP2006511965A (ja) 2002-12-19 2006-04-06 マトリックス セミコンダクター インコーポレイテッド 高密度不揮発性メモリを製作するための改良された方法
US7176064B2 (en) 2003-12-03 2007-02-13 Sandisk 3D Llc Memory cell comprising a semiconductor junction diode crystallized adjacent to a silicide
US7285464B2 (en) 2002-12-19 2007-10-23 Sandisk 3D Llc Nonvolatile memory cell comprising a reduced height vertical diode
US7265049B2 (en) 2002-12-19 2007-09-04 Sandisk 3D Llc Ultrathin chemically grown oxide film as a dopant diffusion barrier in semiconductor devices
US6946719B2 (en) 2003-12-03 2005-09-20 Matrix Semiconductor, Inc Semiconductor device including junction diode contacting contact-antifuse unit comprising silicide
US8637366B2 (en) 2002-12-19 2014-01-28 Sandisk 3D Llc Nonvolatile memory cell without a dielectric antifuse having high- and low-impedance states
US7606059B2 (en) 2003-03-18 2009-10-20 Kabushiki Kaisha Toshiba Three-dimensional programmable resistance memory device with a read/write circuit stacked under a memory cell array
US6879505B2 (en) 2003-03-31 2005-04-12 Matrix Semiconductor, Inc. Word line arrangement having multi-layer word line segments for three-dimensional memory array
US20040197947A1 (en) * 2003-04-07 2004-10-07 Fricke Peter J. Memory-cell filament electrodes and methods
KR100773537B1 (ko) 2003-06-03 2007-11-07 삼성전자주식회사 한 개의 스위칭 소자와 한 개의 저항체를 포함하는비휘발성 메모리 장치 및 그 제조 방법
US6956278B2 (en) 2003-06-30 2005-10-18 Matrix Semiconductor, Inc. Low-density, high-resistivity titanium nitride layer for use as a contact for low-leakage dielectric layers
WO2005008783A1 (ja) 2003-07-18 2005-01-27 Nec Corporation スイッチング素子、スイッチング素子の駆動方法、書き換え可能な論理集積回路およびメモリ素子
JP4356542B2 (ja) 2003-08-27 2009-11-04 日本電気株式会社 半導体装置
US7274035B2 (en) 2003-09-03 2007-09-25 The Regents Of The University Of California Memory devices based on electric field programmable films
DE10342026A1 (de) 2003-09-11 2005-04-28 Infineon Technologies Ag Speicherzelle mit Ionenleitungsspeichermechanismus und Verfahren zu deren Herstellung
WO2005041303A1 (ja) * 2003-10-23 2005-05-06 Matsushita Electric Industrial Co., Ltd. 抵抗変化素子、その製造方法、その素子を含むメモリ、およびそのメモリの駆動方法
US7172840B2 (en) 2003-12-05 2007-02-06 Sandisk Corporation Photomask features with interior nonprinting window using alternating phase shifting
JP4338545B2 (ja) * 2004-02-19 2009-10-07 富士通株式会社 コンデンサシート
US20050221200A1 (en) 2004-04-01 2005-10-06 Matrix Semiconductor, Inc. Photomask features with chromeless nonprinting phase shifting window
DE102004020575B3 (de) 2004-04-27 2005-08-25 Infineon Technologies Ag Halbleiterspeicherbauelement in Cross-Point-Architektur
KR101051704B1 (ko) 2004-04-28 2011-07-25 삼성전자주식회사 저항 구배를 지닌 다층막을 이용한 메모리 소자
DE102004024610B3 (de) 2004-05-18 2005-12-29 Infineon Technologies Ag Festkörperelektrolytschaltelement
US7224013B2 (en) 2004-09-29 2007-05-29 Sandisk 3D Llc Junction diode comprising varying semiconductor compositions
US20060067117A1 (en) 2004-09-29 2006-03-30 Matrix Semiconductor, Inc. Fuse memory cell comprising a diode, the diode serving as the fuse element
US7405465B2 (en) 2004-09-29 2008-07-29 Sandisk 3D Llc Deposited semiconductor structure to minimize n-type dopant diffusion and method of making
US7189626B2 (en) 2004-11-03 2007-03-13 Micron Technology, Inc. Electroless plating of metal caps for chalcogenide-based memory devices
KR100657911B1 (ko) 2004-11-10 2006-12-14 삼성전자주식회사 한 개의 저항체와 한 개의 다이오드를 지닌 비휘발성메모리 소자
US7391064B1 (en) 2004-12-01 2008-06-24 Spansion Llc Memory device with a selection element and a control line in a substantially similar layer
US7300876B2 (en) 2004-12-14 2007-11-27 Sandisk 3D Llc Method for cleaning slurry particles from a surface polished by chemical mechanical polishing
JP5135797B2 (ja) * 2004-12-28 2013-02-06 日本電気株式会社 スイッチング素子、スイッチング素子の製造方法、書き換え可能な論理集積回路、およびメモリ素子
US7307268B2 (en) 2005-01-19 2007-12-11 Sandisk Corporation Structure and method for biasing phase change memory array for reliable writing
US7553611B2 (en) 2005-03-31 2009-06-30 Sandisk 3D Llc Masking of repeated overlay and alignment marks to allow reuse of photomasks in a vertical structure
US7812404B2 (en) 2005-05-09 2010-10-12 Sandisk 3D Llc Nonvolatile memory cell comprising a diode and a resistance-switching material
US20060250836A1 (en) 2005-05-09 2006-11-09 Matrix Semiconductor, Inc. Rewriteable memory cell comprising a diode and a resistance-switching material
US20060273298A1 (en) 2005-06-02 2006-12-07 Matrix Semiconductor, Inc. Rewriteable memory cell comprising a transistor and resistance-switching material in series
KR100622268B1 (ko) 2005-07-04 2006-09-11 한양대학교 산학협력단 ReRAM 소자용 다층 이원산화박막의 형성방법
US20070010100A1 (en) 2005-07-11 2007-01-11 Matrix Semiconductor, Inc. Method of plasma etching transition metals and their compounds
JP3889023B2 (ja) 2005-08-05 2007-03-07 シャープ株式会社 可変抵抗素子とその製造方法並びにそれを備えた記憶装置
US7834338B2 (en) 2005-11-23 2010-11-16 Sandisk 3D Llc Memory cell comprising nickel-cobalt oxide switching element
US7816659B2 (en) 2005-11-23 2010-10-19 Sandisk 3D Llc Devices having reversible resistivity-switching metal oxide or nitride layer with added metal
EP1966841B1 (en) 2005-12-20 2010-09-08 Nxp B.V. A vertical phase change memory cell and methods for manufacturing thereof
US7808810B2 (en) 2006-03-31 2010-10-05 Sandisk 3D Llc Multilevel nonvolatile memory cell comprising a resistivity-switching oxide or nitride and an antifuse
US7875871B2 (en) 2006-03-31 2011-01-25 Sandisk 3D Llc Heterojunction device comprising a semiconductor and a resistivity-switching oxide or nitride
US7501331B2 (en) 2006-03-31 2009-03-10 Sandisk 3D Llc Low-temperature metal-induced crystallization of silicon-germanium films
KR100717286B1 (ko) 2006-04-21 2007-05-15 삼성전자주식회사 상변화 물질층의 형성 방법과, 그 방법을 이용한 상변화기억 소자의 형성 방법 및 상변화 기억 소자
CN101536188B (zh) 2006-11-30 2010-09-29 富士通株式会社 电阻存储元件及其制造方法、非易失性半导体存储装置
JP5091491B2 (ja) 2007-01-23 2012-12-05 株式会社東芝 不揮発性半導体記憶装置
US7902537B2 (en) 2007-06-29 2011-03-08 Sandisk 3D Llc Memory cell that employs a selectively grown reversible resistance-switching element and methods of forming the same
US20090104756A1 (en) 2007-06-29 2009-04-23 Tanmay Kumar Method to form a rewriteable memory cell comprising a diode and a resistivity-switching grown oxide
US7824956B2 (en) 2007-06-29 2010-11-02 Sandisk 3D Llc Memory cell that employs a selectively grown reversible resistance-switching element and methods of forming the same
US7846785B2 (en) 2007-06-29 2010-12-07 Sandisk 3D Llc Memory cell that employs a selectively deposited reversible resistance-switching element and methods of forming the same
US8233308B2 (en) 2007-06-29 2012-07-31 Sandisk 3D Llc Memory cell that employs a selectively deposited reversible resistance-switching element and methods of forming the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103003971A (zh) * 2010-06-18 2013-03-27 桑迪士克3D有限责任公司 具有包括击穿层的电阻开关层的存储单元
CN103168372A (zh) * 2010-06-18 2013-06-19 桑迪士克3D有限责任公司 具有电阻开关层的存储单元的组合
CN103003971B (zh) * 2010-06-18 2015-06-03 桑迪士克3D有限责任公司 具有包括击穿层的电阻开关层的存储单元
CN103168372B (zh) * 2010-06-18 2015-11-25 桑迪士克3D有限责任公司 具有电阻开关层的存储单元的组合
CN105679785A (zh) * 2016-01-18 2016-06-15 苏州大学 一种基于多层氮化硼的rram器件及其制备方法

Also Published As

Publication number Publication date
JP2009535793A (ja) 2009-10-01
KR20090006839A (ko) 2009-01-15
US7829875B2 (en) 2010-11-09
TWI348757B (en) 2011-09-11
WO2007126678A1 (en) 2007-11-08
CN101416252B (zh) 2011-11-30
EP2002444A1 (en) 2008-12-17
US20070228354A1 (en) 2007-10-04
TW200802822A (en) 2008-01-01

Similar Documents

Publication Publication Date Title
CN101416252B (zh) 一种用于编程非易失性存储器单元的方法
CN101208752A (zh) 包括二极管和电阻切换材料的非易失性存储器单元
CN101288169B (zh) 使用包含可切换半导体存储器元件的存储器单元的方法
US7875871B2 (en) Heterojunction device comprising a semiconductor and a resistivity-switching oxide or nitride
CN100593867C (zh) 具有添加金属的可逆性电阻率切换金属氧化物或氮化物层
CN102067315B (zh) 包括具有被电隔离的柱的二极管的共享的二极管器件部的叠轨式堆叠的非易失性存储器阵列
CN101297402B (zh) 低温下制造的包括半导体二极管的高密度非易失性存储器阵列
US20060273298A1 (en) Rewriteable memory cell comprising a transistor and resistance-switching material in series
US8753973B2 (en) Method of fabricating semiconductor memory device
JP4783070B2 (ja) 半導体記憶装置及びその製造方法
US7808810B2 (en) Multilevel nonvolatile memory cell comprising a resistivity-switching oxide or nitride and an antifuse
US20090086521A1 (en) Multiple antifuse memory cells and methods to form, program, and sense the same
US20060250836A1 (en) Rewriteable memory cell comprising a diode and a resistance-switching material
CN101258600A (zh) 包括可切换电阻器和晶体管的非易失性存储器单元
US20110049466A1 (en) Large array of upward pointing p-i-n diodes having large and uniform current
CN101432823A (zh) 包括作为熔丝元件的二极管的熔丝存储单元
CN101711412A (zh) 利用正向偏置的二极管编程方法
CN101553925B (zh) 邻近于硅化物而结晶的与介电反熔丝串联的p-i-n二极管及其形成方法
JP2002026279A (ja) 半導体記憶装置及びその製造方法
CN101720485A (zh) 用于反向写入3d单元的高正向电流二极管及其制造方法
CN101796588B (zh) 具有减小的反向泄漏的3d读/写单元及其制造方法
KR101088487B1 (ko) 선택소자 및 3차원 구조 저항 변화 메모리 소자를 갖는 저항 변화 메모리 소자 어레이, 전자제품 및 소자 어레이 제조방법
CN101720507A (zh) 含有碳或氮掺杂的二极管的非易失性存储器件及其制造和操作方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C41 Transfer of patent application or patent right or utility model
C56 Change in the name or address of the patentee
CP01 Change in the name or title of a patent holder

Address after: Texas, USA

Patentee after: SANDISK TECHNOLOGIES LLC

Address before: Texas, USA

Patentee before: Sandy Technology Corp.

TR01 Transfer of patent right

Effective date of registration: 20160714

Address after: Texas, USA

Patentee after: Sandy Technology Corp.

Address before: California, USA

Patentee before: Sandisk 3D LLC